WO2017149818A1 - 構造体、および構造体の製造方法 - Google Patents

構造体、および構造体の製造方法 Download PDF

Info

Publication number
WO2017149818A1
WO2017149818A1 PCT/JP2016/078931 JP2016078931W WO2017149818A1 WO 2017149818 A1 WO2017149818 A1 WO 2017149818A1 JP 2016078931 W JP2016078931 W JP 2016078931W WO 2017149818 A1 WO2017149818 A1 WO 2017149818A1
Authority
WO
WIPO (PCT)
Prior art keywords
plasma
reinforcing
reinforcing member
reinforcing fiber
region
Prior art date
Application number
PCT/JP2016/078931
Other languages
English (en)
French (fr)
Inventor
賢太郎 河野
真一郎 竹本
内田 浩司
Original Assignee
日産自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産自動車株式会社 filed Critical 日産自動車株式会社
Priority to KR1020197015080A priority Critical patent/KR102164167B1/ko
Priority to EP16892655.8A priority patent/EP3425258B1/en
Priority to KR1020187027151A priority patent/KR101998540B1/ko
Priority to JP2018502512A priority patent/JP6583530B2/ja
Priority to CA3016388A priority patent/CA3016388C/en
Priority to US16/081,452 priority patent/US11040479B2/en
Priority to CN201680083175.0A priority patent/CN108779893B/zh
Publication of WO2017149818A1 publication Critical patent/WO2017149818A1/ja

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M10/00Physical treatment of fibres, threads, yarns, fabrics, or fibrous goods made from such materials, e.g. ultrasonic, corona discharge, irradiation, electric currents, or magnetic fields; Physical treatment combined with treatment with chemical compounds or elements
    • D06M10/02Physical treatment of fibres, threads, yarns, fabrics, or fibrous goods made from such materials, e.g. ultrasonic, corona discharge, irradiation, electric currents, or magnetic fields; Physical treatment combined with treatment with chemical compounds or elements ultrasonic or sonic; Corona discharge
    • D06M10/025Corona discharge or low temperature plasma
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C53/00Shaping by bending, folding, twisting, straightening or flattening; Apparatus therefor
    • B29C53/56Winding and joining, e.g. winding spirally
    • B29C53/58Winding and joining, e.g. winding spirally helically
    • B29C53/60Winding and joining, e.g. winding spirally helically using internal forming surfaces, e.g. mandrels
    • B29C53/602Winding and joining, e.g. winding spirally helically using internal forming surfaces, e.g. mandrels for tubular articles having closed or nearly closed ends, e.g. vessels, tanks, containers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B13/00Conditioning or physical treatment of the material to be shaped
    • B29B13/08Conditioning or physical treatment of the material to be shaped by using wave energy or particle radiation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/04Reinforcing macromolecular compounds with loose or coherent fibrous material
    • C08J5/06Reinforcing macromolecular compounds with loose or coherent fibrous material using pretreated fibrous materials
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C1/00Pressure vessels, e.g. gas cylinder, gas tank, replaceable cartridge
    • F17C1/02Pressure vessels, e.g. gas cylinder, gas tank, replaceable cartridge involving reinforcing arrangements
    • F17C1/04Protecting sheathings
    • F17C1/06Protecting sheathings built-up from wound-on bands or filamentary material, e.g. wires
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/712Containers; Packaging elements or accessories, Packages
    • B29L2031/7154Barrels, drums, tuns, vats
    • B29L2031/7156Pressure vessels
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M10/00Physical treatment of fibres, threads, yarns, fabrics, or fibrous goods made from such materials, e.g. ultrasonic, corona discharge, irradiation, electric currents, or magnetic fields; Physical treatment combined with treatment with chemical compounds or elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/01Reinforcing or suspension means
    • F17C2203/011Reinforcing means
    • F17C2203/012Reinforcing means on or in the wall, e.g. ribs

Definitions

  • the present invention relates to a structure and a method for manufacturing the structure.
  • reinforcing members in which reinforcing fibers are impregnated with resin have attracted attention as automobile parts.
  • a reinforcing member is wound around the outer periphery of a high-pressure gas storage container that stores hydrogen gas used as fuel for automobiles.
  • reinforcing members are used for automobile panels.
  • the reinforcing fiber since the reinforcing fiber has low adhesion to the resin, it is necessary to improve the adhesion of the reinforcing fiber to the resin.
  • the surface of the aromatic polyamide fiber is modified and bonded by irradiating the aromatic polyamide fiber with plasma from a direction perpendicular to the fiber arrangement surface.
  • a method for improving adhesion has been disclosed to improve the properties.
  • the above-mentioned high-pressure gas storage container and automobile panel have different stresses depending on the part.
  • the design is made so that damage does not occur at the place where the maximum stress is applied, there are places that are excessively thick against the stress when viewed as the whole product, and the weight of the whole product Will increase.
  • the present invention has been made to solve the above-described problems, and provides a structure and a method for manufacturing the structure that can reduce the weight of the entire product by reducing the thickness while maintaining an appropriate strength.
  • the purpose is to provide.
  • the structure according to the present invention that achieves the above object is a structure including a reinforcing member made of a reinforcing fiber impregnated with a resin.
  • the reinforcing member is formed by irradiating the reinforcing fiber with plasma, and the reinforcing fiber is irradiated with a smaller amount of the plasma than the first region.
  • the structure is provided with the reinforcing member by positioning the first region at a position where the strength is required to be higher than that of the second region.
  • the structure manufacturing method according to the present invention for achieving the above object is a method for manufacturing a structure including a reinforcing member made of a reinforcing fiber impregnated with a resin.
  • the reinforcing fiber is irradiated with plasma to impregnate the resin, thereby forming a first region in the reinforcing member.
  • the reinforcing fiber is irradiated with the plasma in a smaller amount than the first region or impregnated with the resin without irradiating the plasma, thereby forming the second region in the reinforcing member.
  • the first region is positioned at a place where the strength is required to be higher than that of the second region.
  • 10 is a graph showing a plasma dose distribution according to Modification Example 1; 10 is a graph showing a plasma dose distribution according to Modification Example 2; It is a figure for demonstrating the effect of the high pressure gas storage container which concerns on the modification 2. It is a figure for demonstrating the effect of the high pressure gas storage container which concerns on the modification 2. It is a figure for demonstrating the effect of the high pressure gas storage container which concerns on the modification 2. It is a schematic diagram which shows the panel of a motor vehicle.
  • FIG. 1 is a view showing a high-pressure gas storage container 1 according to this embodiment.
  • FIG. 2 is a diagram illustrating a state before the reinforcing member 20 is wound around the outer peripheral surface 10 ⁇ / b> A of the liner 10.
  • FIG. 3 is a diagram illustrating a state after the reinforcing member 20 is wound around the outer peripheral surface 10 ⁇ / b> A of the liner 10.
  • FIG. 4 is a cross-sectional view showing a part of the reinforcing member 20 made of the reinforcing fiber 21 impregnated with the resin 22.
  • FIG. 5 is a graph showing the dose distribution of plasma P.
  • FIG. 5 is a graph showing the dose distribution of plasma P.
  • FIG. 6 is a graph showing the relationship between the stress generated in the reinforcing layer 30 and the material strength of the reinforcing layer 30.
  • FIG. 1 shows a process in which the reinforcing member 20 is wound around the outer peripheral surface 10 ⁇ / b> A of the liner 10.
  • the plasma P irradiation and the resin 22 impregnation are omitted.
  • the high-pressure gas storage container 1 is briefly described as shown in FIGS. 1 to 3. As shown in FIGS. 1 to 3, the liner 10 that stores high-pressure gas such as hydrogen gas, and the belt-shaped reinforcing member 20 on the outer peripheral surface 10 A of the liner 10. And a reinforcing layer 30 formed by winding the wire.
  • high-pressure gas such as hydrogen gas
  • the belt-shaped reinforcing member 20 on the outer peripheral surface 10 A of the liner 10.
  • a reinforcing layer 30 formed by winding the wire.
  • the high-pressure gas storage container 1 includes a reinforcing member 20 made of reinforcing fibers 21 impregnated with a resin 22, as shown in FIG.
  • the reinforcing member 20 includes a first region A1 formed by irradiating the reinforcing fiber 21 with the plasma P, and a smaller amount of the plasma P than the first region A1 with respect to the reinforcing fiber 21.
  • region A2 which is irradiated.
  • region A1 is located in the inner peripheral side of the reinforcement layer 30 by which intensity
  • the liner 10 is formed as a cylindrical tank.
  • the liner 10 has a gas barrier property and suppresses permeation of high-pressure gas to the outside.
  • the liner 10 includes a barrel portion 11 provided at the center in the axial direction X, a mirror portion 12 provided on both sides of the barrel portion 11 in the axial direction X, and a base provided on one of the mirror portions 12. 13.
  • the trunk portion 11 is formed in a cylindrical shape so as to extend in the axial direction X.
  • the mirror part 12 is curved so as to gradually decrease outward in the axial direction X.
  • the base 13 is configured to protrude outward from the mirror part 12 in the axial direction X.
  • a pipe is connected to the base 13 or a valve mechanism including an open / close valve and a pressure reducing valve is connected to fill and discharge the high pressure gas storage container 1 with high pressure gas.
  • die 13 may be provided in the mirror part 12 of both sides.
  • the material constituting the liner 10 can be made of metal or synthetic resin.
  • the metal for example, iron, aluminum, stainless steel or the like can be used.
  • the synthetic resin that can be used include polyethylene, polyamide, and polypropylene.
  • the reinforcing layer 30 is formed by winding a predetermined number of portions from the winding start end portion 20 a to the winding end end portion 20 b of the reinforcing member 20 around the outer peripheral surface 10 ⁇ / b> A of the liner 10.
  • the winding start end portion 20a means an end portion when the reinforcing member 20 starts to be wound around the outer peripheral surface 10A of the liner 10
  • the winding end end portion 20b means the reinforcing member 20 of the liner 10. It means the end when winding is finished on the outer peripheral surface 10A.
  • the number of times the reinforcing member 20 is wound, that is, the number of the reinforcing layers 30 is not particularly limited, but is, for example, 20 to 30.
  • the reinforcing layer 30 improves the pressure resistance strength of the liner 10.
  • the reinforcing layer 30 includes a hoop layer 31 formed by winding the reinforcing member 20 around the trunk portion 11 along the circumferential direction, and the reinforcing member 20 against the trunk portion 11 and the mirror portion 12. And a helical layer 32 wound spirally.
  • the hoop layers 31 and the helical layers 32 are alternately stacked.
  • the hoop layers 31 and the helical layers 32 may not be stacked alternately. That is, for example, after the reinforcing member 20 is wound so that two hoop layers 31 are formed, the reinforcing member 20 may be wound so that two helical layers 32 are formed.
  • the hoop layer 31 contributes to the radial tensile strength of the body 11 because the reinforcing member 20 is wound around the body 11.
  • the helical layer 32 ensures the strength in the axial direction X of the high-pressure gas storage container 1 because the reinforcing member 20 is wound around the trunk portion 11 and the mirror portion 12.
  • the reinforcing member 20 constituting the reinforcing layer 30 is composed of reinforcing fibers 21 impregnated with a resin 22, as shown in FIG.
  • the reinforcing fiber 21 according to this embodiment is irradiated with plasma P.
  • an acidic functional group can be added to the reinforcing fiber 21. Therefore, the adhesion of the resin 22 to the reinforcing fiber 21 is improved, and the strength as the reinforcing member 20 is improved.
  • the reinforcing fiber 21 is irradiated with a relatively large amount of plasma P in the first region A1 on the inner peripheral side of the reinforcing member 20 that constitutes the reinforcing layer 30, and the reinforcing fiber 30 is reinforced.
  • the plasma P is irradiated with a relatively small amount. More specifically, as shown in FIG. 5, in the reinforcing fiber 21, the irradiation amount of the plasma P is gradually reduced from the winding start end portion 20a to the winding end end portion 20b of the reinforcing member 20. .
  • the reinforcing member 20 composed of the reinforcing fibers 21 irradiated with the plasma P has a strength that gradually decreases from the winding start end portion 20a to the winding end end portion 20b, similarly to the irradiation amount distribution of the plasma P. To do.
  • the reinforcing member 20 is wound around the outer peripheral surface 10A of the liner 10 to form the reinforcing layer 30.
  • the strength distribution along the radial direction r (see FIG. 3) of the reinforcing layer 30 is a distribution in which the strength decreases from the inner circumferential side to the outer circumferential side in the radial direction r, as shown by the solid line in FIG. (See arrow in FIG. 6).
  • the stress ⁇ generated in the reinforcing layer 30 is expressed as follows: In the position R of the direction r, it shows by following formula (1).
  • the stress ⁇ generated in the reinforcing layer 30 gradually decreases gradually from the inner peripheral side to the outer peripheral side as shown by the dotted line in FIG.
  • the reinforcing member 20 has a strength that can withstand the stress ⁇ generated in the reinforcing layer 30, as shown in FIG.
  • the reinforcing fiber 21 constituting the reinforcing member 20 for example, carbon fiber, glass fiber, polyamide fiber or the like can be used.
  • a carbon fiber having a small coefficient of thermal expansion and excellent dimensional stability and less deterioration in mechanical properties even at high temperatures will be described.
  • the reinforcing fiber 21 is configured in a bundle of about 1000 to 50000 carbon fibers.
  • thermosetting resin for example, an epoxy resin, a polyester resin, or a phenol resin can be used.
  • thermoplastic resin for example, a polyamide resin or a polypropylene resin can be used.
  • FIG. 7 is a view showing a manufacturing apparatus 100 for the high-pressure gas storage container 1.
  • the manufacturing apparatus 100 for the high-pressure gas storage container 1 includes a storage unit 110, an irradiation unit 120, an impregnation unit 130, a transport unit 140, a detection unit 150, and a control unit 160. .
  • the storage unit 110 stores the bobbin-shaped reinforcing fibers 21.
  • the storage unit 110 includes a set unit 111 on which the bobbin-shaped reinforcing fibers 21 are set, and four rollers 112 to 115 that maintain the tension of the reinforcing fibers 21.
  • the irradiation unit 120 irradiates the reinforcing fiber 21 with plasma P.
  • the irradiation unit 120 irradiates the surface 21A of the reinforcing fiber 21 with the plasma P from a direction inclined with respect to the Y direction (orthogonal direction orthogonal to the surface 21A). It is preferable.
  • the irradiation part 120 irradiates the surface 21A of the reinforced fiber 21 with the plasma P from the direction inclined 30 degrees or more with respect to the Y direction.
  • the plasma gas is applied to the surface 21A of the reinforcing fiber 21 while being inclined, so that compression of the plasma gas is suppressed and the center It is possible to irradiate by ignoring the high temperature part. Therefore, it is possible to efficiently irradiate the reinforcing fiber 21 with the plasma P and add an acidic functional group to the reinforcing fiber 21 while reducing damage to the reinforcing fiber 21.
  • the power source of the irradiation unit 120 it is preferable to use an AC power source 121.
  • the AC power supply 121 is grounded (grounded).
  • the irradiation intensity of the plasma P irradiated from the irradiation unit 120 can be adjusted by adjusting the plasma voltage, current, frequency, electrode, and gas conditions (gas composition).
  • adjusting the irradiation intensity of the plasma P means adjusting the irradiation intensity of the plasma P by adjusting at least one of the above-described plasma voltage, current, frequency, electrode, and gas conditions. It means to adjust.
  • the plasma voltage is, for example, 200 to 400 V and preferably 260 to 280 V from the viewpoint of the ease of generating plasma P.
  • the pulse discharge frequency is, for example, 10 to 30 kHz, and preferably 16 to 20 kHz, from the viewpoint of easy generation of plasma P.
  • the plasma irradiation distance is, for example, 2 to 30 mm, preferably 10 to 15 mm. If the plasma irradiation distance is short, the reinforcing fiber 21 may be damaged. If the plasma irradiation distance is long, the surface modification effect becomes small.
  • the plasma irradiation time is, for example, 0.1 to 5.0 seconds, and preferably 0.5 to 1.0 seconds. If the plasma irradiation time is short, the surface modification effect is small, and if it is long, the reinforcing fiber 21 may be damaged.
  • the plasma gas for example, a mixed gas containing 0.5% or more of oxygen, nitrogen, or helium can be used.
  • the impregnation unit 130 impregnates the reinforcing fiber 21 irradiated with the plasma P with the resin 22.
  • the impregnation unit 130 includes a storage unit 131 in which the resin 22 is stored, and a rotating unit 132 that rotates in synchronization with the conveyance of the reinforcing fibers 21 while being in contact with the reinforcing fibers 21.
  • the impregnation unit 130 further includes an adjustment unit 133 that adjusts the amount of the resin 22 that adheres to the rotation unit 132, and a pair of rollers 134 and 135 that are provided on the upstream side and the downstream side of the rotation unit 132 in the transport direction and maintain tension. And having.
  • the impregnation unit 130 further includes a guide unit 136 that is provided on the downstream side of the downstream roller 135 and guides the reinforcing fiber 21 toward the liner 10.
  • the storage unit 131 includes a recess 131 ⁇ / b> A on the upper side, and the resin 22 is stored in the recess 131 ⁇ / b> A.
  • the rotating part 132 rotates while contacting the resin 22 stored in the recess 131A in the lower part and in contact with the reinforcing fiber 21 conveyed in the upper part.
  • the rotating unit 132 rotates clockwise in synchronization with the conveyance of the reinforcing fiber 21.
  • the resin 22 adhering to the outer periphery of the rotation part 132 is lifted upward and adheres to the reinforcing fiber 21 irradiated with the plasma P.
  • the reinforcing fiber 21 can be impregnated with the resin 22 and the reinforcing member 20 is formed.
  • the rotating unit 132 maintains the tension of the reinforcing fiber 21 irradiated with the plasma P together with the rollers 134 and 135.
  • the adjusting unit 133 adjusts the amount of the resin 22 attached to the outer periphery of the rotating unit 132.
  • the adjusting unit 133 contacts the resin 22 attached to the outer periphery of the rotating unit 132 to move the removing unit 133A that removes the resin 22 by a predetermined amount and the removing unit 133A so that the rotating unit 132 can be approached and separated.
  • Moving unit 133B to be moved.
  • the guide part 136 guides the reinforcing fiber 21 impregnated with the resin 22 toward the liner 10.
  • the guide part 136 has an L shape.
  • the structure of the impregnation part 130 will not be specifically limited if it is the structure which can impregnate the resin 22 to the reinforced fiber 21 with which the plasma P was irradiated.
  • the transport unit 140 transports the reinforcing fiber 21 from the left side to the right side of FIG. 7, while the reinforcing member 20 in which the resin 22 is impregnated with the reinforcing fiber 21 irradiated with the plasma P on the surface 21 ⁇ / b> A is used as the liner 10. Is wound around the outer peripheral surface 10A.
  • the transport unit 140 is a motor.
  • the detection unit 150 detects the conveyance speed of the reinforcing fiber 21.
  • a known speed sensor can be used.
  • the location where the detection unit 150 is disposed is not particularly limited as long as the reinforcing fiber 21 is conveyed.
  • the control unit 160 controls the operation of the irradiation unit 120, the transport unit 140, and the like.
  • the control part 160 what was comprised by the well-known microcomputer provided with CPU, RAM, ROM, etc. can be used.
  • the bobbin-shaped reinforcing fiber 21 is set in the setting unit 111, and the conveying unit 140 is operated in a state where the liner 10 is set at the position shown in FIG. As a result, the liner 10 rotates and the reinforcing fibers 21 are conveyed (S01). At this time, the detection unit 150 detects the conveyance speed of the reinforcing fibers 21.
  • the irradiation unit 120 irradiates the conveyed reinforcing fiber 21 with the plasma P (S02).
  • the plasma P is irradiated to the reinforcing fibers 21 constituting the reinforcing member 20 while gradually decreasing from the winding start end 20a to the winding end 20b of the reinforcing member 20. (See FIG. 5).
  • the irradiation amount of the plasma P is adjusted by adjusting the irradiation intensity of the irradiation unit 120 and the conveyance speed of the reinforcing fiber 21.
  • the reinforcing fiber 21 irradiated with the plasma P is impregnated with the resin 22 to form the reinforcing member 20 (S03).
  • the strength of the reinforcing member 20 gradually decreases gradually from the winding start end 20a to the winding end end 20b in the same manner as the irradiation amount distribution of the plasma P.
  • the reinforcing member 20 is wound around the outer peripheral surface 10A of the liner 10 to form the reinforcing layer 30 (S04).
  • the reinforcing layer 30 formed by winding the reinforcing member 20 is formed along the radial direction r.
  • the intensity distribution shown by the solid line 6 is provided.
  • the conveying speed of the reinforcing fibers 21 depends on the diameter at the time of winding. Change. Specifically, when the reinforcing member 20 is wound on the outer peripheral side, the conveying speed of the reinforcing fiber 21 is increased. Therefore, the conveyance speed of the reinforcing fibers 21 increases from the front side to the rear side in the conveyance direction. Therefore, the irradiation amount of the plasma P to the reinforcing fiber 21 gradually decreases from the winding start end portion 20a to the winding end end portion 20b of the reinforcing member 20.
  • the reinforcing member 20 is configured from the winding start end 20a to the winding end end 20b by increasing the angular velocity ⁇ or decreasing the irradiation intensity of the irradiation unit 120. It is preferable that the irradiation amount of the plasma P on the reinforcing fiber 21 to be gradually reduced.
  • FIG. 10A is a graph showing the relationship between the stress generated in the reinforcing layer and the material strength of the reinforcing layer when the plasma P is not irradiated.
  • the strength of the reinforcing layer 30 increases from the outer peripheral side to the inner peripheral side as shown in FIG. 10B. It improves so that it may increase toward the direction (refer arrow of FIG. 10B). And since the strength of the reinforcing layer 30 is improved, a margin for strength is generated on the inner peripheral side in addition to the outer peripheral side.
  • the quantity of the reinforcing member 20 wound around the outer peripheral surface 10A of the liner 10 can be reduced to such an extent that the strength distribution of the reinforcing layer 30 is not exceeded.
  • the stress generated in the reinforcing layer 30 increases, but the area indicated by reference sign S2 in FIG. 10C is smaller than the area indicated by reference sign S1 in FIG. 10A. For this reason, excessive strength design is relaxed. Therefore, the high-pressure gas storage container 1 can be reduced in weight by reducing the amount of the reinforcing member 20 wound around the liner 10 and reducing the thickness of the reinforcing layer 30 while maintaining appropriate strength.
  • FIG. 11 is a graph showing the relationship between pressure and strain acting on the high-pressure gas storage container.
  • the horizontal axis represents pressure
  • the vertical axis represents strain.
  • the straight line including the rhombus plot in FIG. 11 shows the relationship between the pressure and strain of the high-pressure gas storage container including the reinforcing fiber not irradiated with plasma.
  • the straight line containing a rectangular plot shows the relationship between the pressure and the strain of the high-pressure gas storage container 1 according to this embodiment.
  • the strain has shown the experimental value, and is measured with the strain gauge affixed on the outer peripheral side of the reinforcement layer.
  • the reinforcing fiber 21 constituting the reinforcing member 20 is plasma from the winding start end 20a to the winding end end 20b of the reinforcing member 20 with respect to the liner 10.
  • the irradiation amount of P is gradually decreased. Therefore, it is possible to increase the strength of the inner peripheral side than the outer peripheral side of the reinforcing layer 30. Therefore, when an external force F1 that is not intended on the outer peripheral side acts on the high-pressure gas storage container 1, as shown in FIG. 12, cracks C can be preferentially generated on the outer peripheral side. Therefore, the crack generation site can be detected by the appearance, and the detectability can be improved.
  • the reinforcing fiber 21 constituting the reinforcing member 20 is plasma from the winding start end 20a to the winding end end 20b of the reinforcing member 20 with respect to the liner 10.
  • the irradiation amount of P is gradually decreased. Therefore, the strength distribution of the reinforcing member 20 continuously decreases gradually from the winding start end portion 20a toward the winding end end portion 20b, so that the occurrence of shear fracture between the layers 31 and 32 can be suitably suppressed. .
  • the high-pressure gas storage container 1 is a structure including the reinforcing member 20 including the reinforcing fibers 21 impregnated with the resin 22.
  • the reinforcing member 20 has a first region A1 in which the reinforcing fiber 21 is irradiated with the plasma P and a second region A2 in which the reinforcing fiber 21 is irradiated with a smaller amount of the plasma P than the first region A1. And having.
  • the high-pressure gas storage container 1 is provided with the reinforcing member 20 by positioning the first region A1 at a place where the strength is required to be higher than that of the second region A2.
  • the high-pressure gas storage container 1 configured in this way, acidic functional groups can be added to the reinforcing fibers 21 by irradiating the reinforcing fibers 21 with the plasma P. For this reason, the adhesiveness of the resin 22 with respect to the reinforcing fiber 21 is improved, and the strength of the reinforcing member 20 can be improved. And 1st area
  • the high-pressure gas storage container 1 further has a core member that is a liner 10, and the reinforcing member 20 has a strip shape.
  • the belt-shaped reinforcing member 20 is wound around the outer peripheral surface 10 ⁇ / b> A of the liner 10 to form a reinforcing layer 30 composed of a plurality of layers.
  • the inner peripheral side of the reinforcing layer 30 is configured by the first region A1
  • the outer peripheral side of the reinforcing layer 30 is configured by the second region A2. According to the structure configured in this manner, the strength on the inner peripheral side of the reinforcing layer 30 can be increased.
  • the amount of winding the reinforcing member 20 can be reduced while maintaining an appropriate strength even for a structure in which a high pressure acts on the inner peripheral side of the reinforcing layer 30. Therefore, the thickness of the reinforcing layer 30 can be reduced and the product as a whole can be reduced in weight.
  • the core member is a liner 10 that contains high-pressure gas. For this reason, it is possible to reduce the amount of the reinforcing member 20 wound around the high-pressure gas storage container 1 while maintaining an appropriate strength. Therefore, the thickness of the reinforcing layer 30 can be reduced and the product as a whole can be reduced in weight.
  • the reinforcing member 20 has the irradiation amount of the plasma P with respect to the reinforcing fiber 21 gradually and gradually decreased from the winding start end portion 20a to the winding end end portion 20b. According to this configuration, the strength of the reinforcing member 20 is continuously reduced gradually from the winding start end portion 20a toward the winding end end portion 20b, so that the occurrence of shear fracture between the layers 31 and 32 is suitably suppressed. Can do.
  • the method for manufacturing the high-pressure gas storage container 1 is a method for manufacturing the high-pressure gas storage container 1 including the reinforcing member 20 made of the reinforcing fibers 21 impregnated with the resin 22.
  • the reinforcing fiber 21 is irradiated with the plasma P, impregnated with the resin 22, and the first region A ⁇ b> 1 is formed in the reinforcing member 20.
  • the reinforcing fiber 21 is irradiated with a smaller amount of plasma P than the first region A ⁇ b> 1 to impregnate the resin 22, thereby forming the second region A ⁇ b> 2 in the reinforcing member 20.
  • the first area A1 is positioned at a place where the strength is required to be higher than that of the second area A2.
  • the acidic functional group can be added to the reinforcing fiber 21 by irradiating the reinforcing fiber 21 with the plasma P. For this reason, the adhesiveness of the resin 22 with respect to the reinforcing fiber 21 is improved, and the strength of the reinforcing member 20 can be improved.
  • strength improved relatively by irradiating relatively much plasma P is located in the inner peripheral side of the reinforcement layer 30 by which intensity
  • the high-pressure gas storage container 1 that can be reduced in weight as a whole by reducing the thickness while maintaining an appropriate strength.
  • the reinforcing fiber 21 configured in a belt shape is transported, and the reinforcing fiber 21 is impregnated with the plasma P by irradiating the reinforcing fiber 21 with the plasma P on the front side in the transport direction so that the first region A1 is formed in the reinforcing member 20.
  • the reinforcing fiber 21 is irradiated with a smaller amount of plasma P than the first region A1 to impregnate the resin 22, thereby forming the second region A2 in the reinforcing member 20.
  • the reinforcing member 20 in which the first region A1 and the second region A2 are formed is wound around the core member that is the liner 10.
  • the strength of the inner peripheral side of the reinforcing layer 30 can be increased. Therefore, the amount of winding the reinforcing member 20 can be reduced while maintaining an appropriate strength even for a structure in which a high pressure acts on the inner peripheral side of the reinforcing layer 30. Therefore, the thickness of the reinforcing layer 30 can be reduced and the product as a whole can be reduced in weight.
  • the core member is a liner 10 that contains high-pressure gas. For this reason, it is possible to reduce the amount of the reinforcing member 20 wound around the high-pressure gas storage container 1 while maintaining an appropriate strength. Therefore, the thickness of the reinforcing layer 30 can be reduced and the product as a whole can be reduced in weight.
  • the reinforcing fiber 21 is irradiated with the plasma P continuously decreasing gradually from the winding start end portion 20a to the winding end end portion 20b of the reinforcing member 20 with respect to the liner 10.
  • this manufacturing method it is possible to manufacture a high-pressure gas storage container in which the strength of the reinforcing member 20 gradually decreases gradually from the winding start end portion 20a toward the winding end end portion 20b. For this reason, generation
  • the irradiation amount of the plasma P is adjusted by adjusting the irradiation intensity of the plasma P by adjusting at least one of the plasma voltage, current, frequency, electrode, and gas conditions.
  • the irradiation amount of the plasma P with respect to the reinforced fiber 21 can be adjusted easily. Therefore, the strength of the reinforcing member 20 can be adjusted so that the area indicated by reference numeral S2 in FIG. 10C is reduced. Thus, the excessive strength design is further relaxed by reducing the area indicated by reference sign S2.
  • the irradiation amount of the plasma P is adjusted by changing the conveyance speed of the reinforcing fiber 21 when the reinforcing fiber 21 is irradiated with the plasma P.
  • the conveying speed of the reinforcing fiber 21 can be increased. it can. Therefore, manufacturing time can be shortened and productivity is improved.
  • the surface 21A of the reinforcing fiber 21 is irradiated with the plasma P from a direction inclined with respect to the Y direction orthogonal to the surface 21A.
  • the plasma gas is irradiated to the surface 21A of the reinforcing fiber 21 while being inclined, so that the compression of the plasma gas is suppressed and the central high temperature portion can be emitted and irradiated. Therefore, it is possible to efficiently irradiate the reinforcing fiber 21 with the plasma P and add an acidic functional group to the reinforcing fiber 21 while reducing damage to the reinforcing fiber 21.
  • the high-pressure gas storage container according to the modified example 1 is different from the high-pressure gas storage container 1 according to the above-described embodiment in the irradiation amount distribution of the plasma P with respect to the reinforcing fiber 21.
  • FIG. 13 is a graph showing an irradiation dose distribution of plasma P according to Modification Example 1.
  • the reinforcing fiber 21 of the high-pressure gas storage container according to the modified example 1 has an irradiation amount of the plasma P from the winding start end 20 a to the winding end end 20 b of the reinforcing member 20 with respect to the liner 10. It gradually decreases step by step.
  • a certain amount of plasma P is irradiated on the hoop layer 31a.
  • the helical layer 32 adjacent to the outer peripheral side of the hoop layer 31a is irradiated with a smaller amount of plasma P than the hoop layer 31a.
  • the hoop layer 31 b adjacent to the outer peripheral side of the helical layer 32 is irradiated with a smaller amount of plasma P than the helical layer 32.
  • the irradiation amount of the plasma P gradually decreases in the order of the helical layer 32 and the hoop layer 31 toward the outer peripheral side.
  • the reinforcing member 20 composed of the reinforcing fibers 21 irradiated with the plasma P gradually decreases in strength from the winding start end portion 20a to the winding end end portion 20b in the same manner as the irradiation amount distribution of the plasma P. To do.
  • the intensity distribution along the radial direction r of the reinforcement layer 30 is the intensity
  • the plasma P is gradually reduced to the reinforcing fibers 21 constituting the reinforcing member 20 from the winding start end 20a to the winding end end 20b of the reinforcing member 20 with respect to the liner 10. Irradiate while.
  • the process of irradiating the plasma P will be described in detail.
  • the step of irradiating the plasma P includes a first irradiation step of irradiating the reinforcing fiber 21 constituting the reinforcing member 20 wound around the hoop layer 31 with a certain amount of plasma P. Further, the step of irradiating the plasma P includes a second irradiation step of irradiating the reinforcing fiber 21 constituting the reinforcing member 20 wound around the helical layer 32 with a certain amount of plasma P.
  • the first irradiation step and the second irradiation step are performed alternately, and the amount of irradiation of plasma P is reduced when switching from the first irradiation step to the second irradiation step and when switching from the second irradiation step to the first irradiation step. .
  • the reinforcing member 20 has the irradiation amount of the plasma P on the reinforcing fiber 21 from the winding start end 20a to the winding end 20b to the liner 10. It gradually decreases step by step.
  • the strength of the inner peripheral side of the reinforcing layer 30 can be increased. Therefore, the amount of the reinforcing member 20 to be wound can be reduced while maintaining an appropriate strength even for a high-pressure gas storage container in which a high pressure acts on the inner peripheral side of the reinforcing layer 30. Therefore, the thickness of the reinforcing layer 30 can be reduced and the product as a whole can be reduced in weight.
  • the reinforcement layer 30 is formed by gradually decreasing the irradiation amount of the plasma P to the reinforcing fiber 21 for each of the layers 31 and 32. For this reason, the irradiation amount of the plasma P in one layer 31 and 32 becomes constant. Therefore, since the strength of the reinforcing layer 30 in one layer 31 and 32 can be made constant, a high-pressure gas storage container having a suitable strength distribution can be provided.
  • the plasma P is applied stepwise to the reinforcing fibers 21 from the winding start end 20a to the winding end end 20b of the reinforcing member 20 with respect to the liner 10. Irradiate while gradually decreasing.
  • a high-pressure gas storage container having high strength on the inner peripheral side of the reinforcing layer 30 can be manufactured. Therefore, the amount of the reinforcing member 20 to be wound can be reduced while maintaining an appropriate strength even for a high-pressure gas storage container in which a high pressure acts on the inner peripheral side. Therefore, the thickness of the reinforcing layer 30 can be reduced and the product as a whole can be reduced in weight.
  • the object to be irradiated with the plasma P is changed from the reinforcing fiber 21 in one layer to the reinforcing fiber 21 in another layer adjacent on the outer peripheral side of the one layer.
  • the irradiation amount of plasma P is reduced. According to this manufacturing method, the irradiation amount of the plasma P in one of the layers 31 and 32 is constant. Therefore, since the strength of the reinforcing layer 30 in one layer 31 and 32 can be made constant, a high-pressure gas storage container having a suitable strength distribution can be provided.
  • the high-pressure gas storage container according to Modification Example 2 is different from the high-pressure gas storage container 1 according to the embodiment described above in the irradiation amount distribution of the plasma P on the reinforcing fiber 21.
  • FIG. 14 is a graph showing the irradiation dose distribution of the plasma P according to the modified example 2.
  • the reinforcing member made of the reinforcing fiber 21 irradiated with the plasma P has a strength distribution with improved strength only from the winding start end portion 20a to the intermediate portion 20c, similarly to the irradiation amount distribution of the plasma P.
  • the plasma P In the step of irradiating the plasma P, a certain amount of the plasma P is irradiated to the reinforcing fibers 21 constituting the reinforcing member 20 from the winding start end portion 20a to the intermediate portion 20c. Then, the plasma P irradiation is stopped. That is, the plasma P is not irradiated to the reinforcing fiber 21 constituting the reinforcing member 20 from the midway portion 20c to the winding end portion 20b.
  • FIG. 15A is a graph showing the relationship between the stress generated in the reinforcing layer and the material strength of the reinforcing layer when the plasma P is not irradiated.
  • the strength design is performed on the inner peripheral side of the reinforcing layer where high stress is generated. For this reason, an excessive strength design corresponding to the area indicated by reference numeral S1 in FIG. 15A is performed, and the weight of the high-pressure gas storage container is increased.
  • the strength on the inner peripheral side of the reinforcing layer 30 is as shown in FIG. 15B. Improve (see arrow in FIG. 15B). And since the strength on the inner peripheral side of the reinforcing layer 30 is improved, a margin for strength is generated on the inner peripheral side in addition to the outer peripheral side.
  • the quantity of the reinforcing member 20 wound around the outer peripheral surface 10A of the liner 10 can be reduced to such an extent that the strength distribution of the reinforcing layer 30 is not exceeded.
  • the stress generated in the reinforcing layer 30 increases, but the area indicated by reference sign S3 in FIG. 15C is smaller than the area indicated by reference sign S1 in FIG. 15A. For this reason, excessive strength design is relaxed. Therefore, it is possible to reduce the weight of the high-pressure gas storage container by reducing the thickness of the reinforcing layer 30 by reducing the amount wound around the liner 10 of the reinforcing member 20 while maintaining appropriate strength.
  • the reinforcing member 20 from the winding start end portion 20a to the midway portion 20c is formed by irradiating the reinforcing fiber 21 with a certain amount of plasma P. Further, the reinforcing member 20 from the midway portion 20 c to the winding end portion 20 b is not irradiated with the plasma P with respect to the reinforcing fiber 21. When manufacturing such a reinforcing member 20, the irradiation of the plasma P may be stopped at the intermediate portion 20c. Therefore, a high-pressure gas storage container can be easily manufactured.
  • the plasma P is applied to the reinforcing fibers 21 constituting the reinforcing member 20 from the winding start end portion 20a to the midway portion 20c. A certain amount of is irradiated. Moreover, the plasma P is not irradiated with respect to the reinforced fiber 21 which comprises the reinforcement member 20 ranging from the intermediate
  • the high-pressure gas storage container in which the reinforcing member 20 is wound around the outer peripheral surface 10A of the liner 10 as a structure has been described as an example.
  • the structure may be applied to an automobile panel 5 as shown in FIG.
  • the automobile panel 5 is formed in a panel shape with the reinforcing member 20 as a core member.
  • the panel 5 is formed by an RTM (Resin Transfer Molding) molding method.
  • RTM Resin Transfer Molding
  • the irradiation intensity of the plasma P is adjusted by adjusting the plasma voltage, current, frequency, electrode, and gas conditions.
  • the irradiation intensity of the plasma P may be adjusted by providing a filter between the irradiation unit 120 and the reinforcing fiber 21. According to this structure, the irradiation amount of the plasma P with respect to the reinforced fiber 21 can be adjusted easily, without operating a plasma voltage, an electric current, a frequency, an electrode, and gas conditions.
  • the liner 10 has a cylindrical shape, but may have a quadrangular prism shape or the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • General Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Toxicology (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)
  • Chemical Or Physical Treatment Of Fibers (AREA)

Abstract

【課題】適切な強度を保ちつつ、肉厚を低減することによって、製品全体として軽量化することができる構造体を提供する。 【解決手段】樹脂(22)が含浸された強化繊維(21)からなる補強部材(20)を備える構造体であって、補強部材(20)は、強化繊維(21)に対してプラズマ(P)が照射されてなる第1領域(A1)と、強化繊維(21)に対して第1領域(A1)よりも少ない量のプラズマ(P)が照射されてなる第2領域(A2)と、を有し、第1領域(A1)を第2領域(A2)よりも強度が求められる箇所に位置させて、補強部材(20)を設けてなる。

Description

構造体、および構造体の製造方法
 本発明は、構造体、および構造体の製造方法に関する。
 近年、自動車部品として、強化繊維に樹脂を含浸させた補強部材が注目を集めている。具体的には、自動車用の燃料として使用される水素ガスなどが貯蔵される高圧ガス貯蔵容器の外周に補強部材が巻き付けられている。また、自動車の軽量化を目的に、自動車のパネルに、補強部材が用いられている。
 一般的に、強化繊維は樹脂との接着性が低いために、強化繊維の樹脂に対する接着性を向上させる必要がある。
 これに関連して、例えば下記の特許文献1には、芳香族ポリアミド繊維に対して繊維の配置面に直交する方向からプラズマを照射することによって、芳香族ポリアミド繊維の表面を改質して接着性を改良する接着性改良方法が開示されている。
特開昭61-258065号公報
 一方、上述の高圧ガス貯蔵容器や自動車のパネルは、部位によって応力が異なる。しかしながら、最大応力がかかる箇所において破損が生じないように設計が行われているため、製品全体としてみたときに、応力に対して過大に肉厚となっている箇所があり、製品全体として重さが増大する。
 本発明は、上記課題を解決するためになされたものであり、適切な強度を保ちつつ、肉厚を低減することによって、製品全体として軽量化することのできる構造体および構造体の製造方法を提供することを目的とする。
 上記目的を達成する本発明に係る構造体は、樹脂が含浸された強化繊維からなる補強部材を備える構造体である。前記補強部材は、前記強化繊維に対してプラズマが照射されてなる第1領域と、前記強化繊維に対して前記第1領域よりも少ない量の前記プラズマが照射されてなる、または、前記プラズマが照射されない第2領域と、を有する。構造体は、前記第1領域を前記第2領域よりも強度が求められる箇所に位置させて、前記補強部材を設けてなる。
 また、上記目的を達成する本発明に係る構造体の製造方法は、樹脂が含浸された強化繊維からなる補強部材を備える構造体の製造方法である。構造体の製造方法は、前記強化繊維に対してプラズマを照射して、前記樹脂を含浸させて、前記補強部材に第1領域を形成する。そして、前記強化繊維に対して前記第1領域よりも少ない量の前記プラズマを照射して、または、前記プラズマを照射することなく、前記樹脂を含浸させて、前記補強部材に第2領域を形成する。そして、前記第1領域を前記第2領域よりも強度が求められる箇所に位置させる。
本実施形態に係る高圧ガス貯蔵容器を示す図である。 ライナーの外周面に補強部材が巻き付けられる前の様子を示す図である。 ライナーの外周面に補強部材が巻き付けられた後の様子を示す図である。 樹脂が含浸された強化繊維からなる補強部材の一部を示す断面図である。 プラズマの照射量分布を示すグラフである。 補強層に発生する応力と補強層の材料強度との関係を示すグラフである。 高圧ガス貯蔵容器の製造装置を示す図である。 高圧ガス貯蔵容器の製造方法を示すフローチャートである。 補強部材をライナーに巻き付ける様子を示す図である。 高圧ガス貯蔵容器の効果を説明するための図である。 高圧ガス貯蔵容器の効果を説明するための図である。 高圧ガス貯蔵容器の効果を説明するための図である。 高圧ガス貯蔵容器に作用する圧力とひずみとの関係を示すグラフである。 高圧ガス貯蔵容器の外周側においてクラックが発生する様子を示す図である。 改変例1に係るプラズマの照射量分布を示すグラフである。 改変例2に係るプラズマの照射量分布を示すグラフである。 改変例2に係る高圧ガス貯蔵容器の効果を説明するための図である。 改変例2に係る高圧ガス貯蔵容器の効果を説明するための図である。 改変例2に係る高圧ガス貯蔵容器の効果を説明するための図である。 自動車のパネルを示す模式図である。
 以下、添付した図面を参照しながら、本発明の実施形態を説明する。なお、図面の説明において同一の要素には同一の符号を付し、重複する説明を省略する。図面の寸法比率は、説明の都合上誇張されており、実際の比率とは異なる場合がある。本実施形態では構造体の一例として、補強部材20がライナー10(芯部材に相当)の外周面10Aに巻き付けてなる高圧ガス貯蔵容器1を挙げて説明する。
 図1は、本実施形態に係る高圧ガス貯蔵容器1を示す図である。図2は、ライナー10の外周面10Aに補強部材20が巻き付けられる前の様子を示す図である。図3は、ライナー10の外周面10Aに補強部材20が巻き付けられた後の様子を示す図である。図4は、樹脂22が含浸された強化繊維21からなる補強部材20の一部を示す断面図である。図5は、プラズマPの照射量分布を示すグラフである。図6は、補強層30に発生する応力と補強層30の材料強度との関係を示すグラフである。なお、理解の容易のため、図1では、補強部材20をライナー10の外周面10Aに巻き付けている過程を示している。また、図2では、プラズマPの照射および樹脂22を含浸する様子は省略する。
 <高圧ガス貯蔵容器>
 本実施形態に係る高圧ガス貯蔵容器1は、概説すると、図1~図3に示すように、水素ガス等の高圧ガスを収容するライナー10と、ライナー10の外周面10Aに帯状の補強部材20を巻き付けて形成した補強層30と、を有する。
 また、高圧ガス貯蔵容器1は、図4に示すように、樹脂22が含浸された強化繊維21からなる補強部材20を備える。補強部材20は、図2、5に示すように、強化繊維21に対してプラズマPが照射されてなる第1領域A1と、強化繊維21に対して第1領域A1よりも少ない量のプラズマPが照射されてなる第2領域A2と、を有する。第1領域A1は、第2領域A2よりも強度が求められる、補強層30の内周側に位置する。以下、本実施形態に係る高圧ガス貯蔵容器1の構成を詳述する。
 ライナー10は、円筒形状からなるタンクとして形成されている。ライナー10は、ガスバリア性を有し、高圧ガスの外部への透過を抑制する。ライナー10は、図1に示すように、軸方向Xの中央に設けられる胴部11と、胴部11の軸方向Xの両側に設けられる鏡部12と、鏡部12の一方に設けられる口金13と、を有する。
 胴部11は、軸方向Xに延在するように、筒状に構成される。
 鏡部12は、軸方向Xの外方に向けて漸減するように湾曲する。
 口金13は、鏡部12から軸方向Xの外方に向けて突出して構成される。口金13には、配管を接続するか、あるいは開閉バルブや減圧バルブを備えたバルブ機構を接続し、高圧ガス貯蔵容器1に対して、高圧ガスの充填および放出を行う。なお、口金13は、両側の鏡部12に設けられていてもよい。
 ライナー10を構成する材料は、金属製または合成樹脂製を用いることができる。金属製としては、例えば、鉄、アルミニウム、ステンレスなどを用いることができる。合成樹脂製としては、例えば、ポリエチレン、ポリアミド、ポリプロピレンなどを用いることができる。
 補強層30は、図2、3に示すように、補強部材20の巻き始め端部20aから巻き終わり端部20bまでを、ライナー10の外周面10Aに、所定数巻き付けることによって形成する。本明細書において、巻き始め端部20aとは、補強部材20がライナー10の外周面10Aに巻き始められる際の端部を意味し、巻き終わり端部20bとは、補強部材20がライナー10の外周面10Aに巻き終わる際の端部を意味する。
 補強部材20を巻き付ける回数、すなわち、補強層30の層数は、特に限定されないが、例えば20~30である。このように、補強部材20をライナー10の外周面10Aに巻き付けることによって、補強層30は、ライナー10の耐圧強度を向上させる。
 補強層30は、図1に示すように、補強部材20を胴部11に対して円周方向に沿って巻き付けてなるフープ層31と、補強部材20を胴部11および鏡部12に対して螺旋状に巻き付けてなるヘリカル層32と、を有する。フープ層31およびヘリカル層32は、交互に積層されている。なお、フープ層31およびヘリカル層32は、交互に積層されていなくてもよい。すなわち、例えば、補強部材20をフープ層31が2層形成するように巻き付けた後に、ヘリカル層32が2層形成するように巻き付けてもよい。
 フープ層31は、補強部材20が胴部11に巻かれてなるため、胴部11の径方向の引張強度に寄与する。ヘリカル層32は、補強部材20が胴部11および鏡部12に巻かれてなるため、高圧ガス貯蔵容器1の軸方向Xの強度を確保する。
 補強層30を構成する補強部材20は、図4に示すように、樹脂22が含浸された強化繊維21からなる。
 本実施形態に係る強化繊維21は、プラズマPが照射されてなる。このように、強化繊維21にプラズマPを照射することによって、強化繊維21に酸性官能基を付加させることができる。したがって、強化繊維21に対する樹脂22の密着性が向上し、補強部材20としての強度が向上する。
 強化繊維21は、図2、5に示すように、補強層30を構成する補強部材20の内周側の第1領域A1において、プラズマPが比較的多く照射され、補強層30を構成する補強部材20の外周側の第2領域A2において、プラズマPが比較的少なく照射される。より具体的には、強化繊維21は、図5に示すように、補強部材20の巻き始め端部20aから巻き終わり端部20bに亘って、プラズマPの照射量が連続的に漸減してなる。
 このようにプラズマPが照射された強化繊維21からなる補強部材20は、プラズマPの照射量分布と同様に、巻き始め端部20aから巻き終わり端部20bに亘って、強度が連続的に漸減する。
 そして、このような補強部材20をライナー10の外周面10Aに巻き付けて補強層30を形成する。このとき、補強層30の径方向r(図3参照)に沿う強度分布は、図6の実線に示すように、径方向rの内周側から外周側に向かって強度が低下した分布となる(図6矢印参照)。
 一方、高圧ガス貯蔵容器1には、ライナー10の内部に貯蔵された高圧ガスから内圧が作用して、これに起因して、補強層30には、応力σが発生する。
 補強層30に発生する応力σは、図3に示すように、高圧ガスの内圧をP、補強層30の最外周における径をr2、補強層30の最内周における径をr1とすると、径方向rの位置Rにおいて、下記式(1)によって示される。
Figure JPOXMLDOC01-appb-M000001
 このように、補強層30に発生する応力σは、図6の点線に示すように、内周側から外周側にかけて連続的に漸減する。
 本実施形態において、補強部材20は、図6に示すように、補強層30に発生する応力σに対して耐えうる強度を有している。
 補強部材20を構成する強化繊維21としては、例えば、炭素繊維、ガラス繊維、ポリアミド繊維などを用いることができる。本実施形態では、一例として、熱膨張係数が小さく寸法安定性に優れ、高温下においても機械的特性の低下が少ない炭素繊維を挙げて説明する。強化繊維21は、炭素繊維が1000本から50000本程度の束の状態で構成される。
 補強部材20を構成する樹脂22としては、例えば、熱硬化性樹脂または熱可塑性樹脂を用いることができる。熱硬化性樹脂としては、例えば、エポキシ樹脂、ポリエステル樹脂、フェノール樹脂を用いることができる。熱可塑性樹脂としては、例えば、ポリアミド樹脂、ポリプロピレン樹脂を用いることができる。
 <高圧ガス貯蔵容器の製造装置>
 次に、図7を参照して、本実施形態に係る高圧ガス貯蔵容器1の製造装置100を説明する。図7は、高圧ガス貯蔵容器1の製造装置100を示す図である。
 高圧ガス貯蔵容器1の製造装置100は、図7に示すように、収納部110と、照射部120と、含浸部130と、搬送部140と、検知部150と、制御部160と、を有する。
 収納部110は、ボビン状の強化繊維21を収納する。収納部110は、ボビン状の強化繊維21がセットされるセット部111と、強化繊維21の張力を維持する4つのローラ112~115と、を有する。
 照射部120は、強化繊維21に対してプラズマPを照射する。照射部120は、本出願人が特願2014-181512に開示するように、強化繊維21の表面21AにY方向(表面21Aに直交する直交方向)に対して傾斜した方向からプラズマPを照射することが好ましい。なお、照射部120は、Y方向に対して30°以上傾斜した方向から強化繊維21の表面21AにプラズマPを照射することが好ましい。このように、Y方向に対して傾斜した方向からプラズマPを照射することによって、プラズマガスは、強化繊維21の表面21Aに傾斜して照射されるため、プラズマガスの圧縮が抑制され、かつ中心の高温部分を逃して照射することができる。したがって、強化繊維21の損傷を低減しつつ、効率よくプラズマPを強化繊維21に照射して強化繊維21に酸性官能基を付加することができる。
 照射部120の電源としては、交流電源121を用いることが好ましい。交流電源121は、アース(接地)される。
 照射部120から照射されるプラズマPの照射強度は、プラズマ電圧、電流、周波数、電極、およびガス条件(ガスの組成)を調整することによって、調整することができる。以下、本実施形態において、「プラズマPの照射強度を調整する」とは、上述のプラズマ電圧、電流、周波数、電極、およびガス条件の少なくとも一つを調整することによって、プラズマPの照射強度を調整することを意味するものとする。
 以下、プラズマPの照射条件の一例について説明する。
 プラズマ電圧は、プラズマPの発生し易さの観点から、例えば200~400Vであって、260~280Vであることが好ましい。
 パルス放電周波数は、プラズマPの発生し易さの観点から、例えば10~30kHzであって、16~20kHzであることが好ましい。
 プラズマ照射距離は、例えば2~30mmであって、10~15mmであることが好ましい。プラズマ照射距離が短いと強化繊維21が損傷する可能性があり、長いと表面改質効果が小さくなる。
 プラズマ照射時間は、例えば0.1~5.0秒であって、0.5~1.0秒であることが好ましい。プラズマ照射時間が短いと表面改質効果が小さくなり、長いと強化繊維21が損傷する可能性がある。
 プラズマガスとしては、例えば酸素、窒素、またはヘリウムを0.5%以上含む混合ガスを用いることができる。
 含浸部130は、プラズマPが照射された強化繊維21に樹脂22を含浸させる。含浸部130は、図7に示すように、樹脂22が貯蔵された貯蔵部131と、強化繊維21に接しつつ強化繊維21の搬送と同期して回転する回転部132と、を有する。含浸部130は、さらに、回転部132に付着する樹脂22の量を調整する調整部133と、搬送方向における回転部132の上流側および下流側に設けられ張力を維持する一対のローラ134、135と、を有する。また、含浸部130は、さらに、下流側のローラ135の下流側に設けられ強化繊維21をライナー10に向けてガイドするガイド部136を有する。
 貯蔵部131は、図7に示すように、上方に凹部131Aを備えており、凹部131Aに、樹脂22が貯蔵される。
 回転部132は、下方において、凹部131Aに貯蔵される樹脂22に接するとともに、上方において、搬送される強化繊維21に接しながら回転する。回転部132は、強化繊維21の搬送と同期して、時計回りに回転する。このように回転部132が時計回りに回転することによって、回転部132の外周に付着された樹脂22が、上方に持ち上げられ、プラズマPが照射された強化繊維21に対して付着する。これによって、強化繊維21に樹脂22を含浸させることができ、補強部材20が形成する。なお、回転部132は、ローラ134、135とともに、プラズマPが照射された強化繊維21の張力を維持する。
 調整部133は、回転部132の外周に付着した樹脂22の量を調整する。調整部133は、回転部132の外周に付着した樹脂22に接触することによって、樹脂22を所定の量だけ除去する除去部133Aと、除去部133Aを回転部132に対して接近離間可能に移動させる移動部133Bと、を有する。
 移動部133Bによって、除去部133Aを、図7の右側に移動すると、回転部132の外周に付着した樹脂22はより多くの量が除去される。一方、移動部133Bによって、除去部133Aを、図7の左側に移動すると、回転部132の外周に付着した樹脂22はより少ない量が除去される。
 ガイド部136は、樹脂22が含浸された強化繊維21を、ライナー10に向けてガイドする。ガイド部136は、L字形状を有する。
 なお、含浸部130の構成は、プラズマPが照射された強化繊維21に樹脂22を含浸することのできる構成であれば、特に限定されない。
 搬送部140は、強化繊維21を、図7の左側から右側に向けて搬送しつつ、表面21AにプラズマPが照射された強化繊維21に樹脂22を含浸してなる補強部材20を、ライナー10の外周面10Aに巻き付ける。搬送部140は、モーターである。
 検知部150は、強化繊維21の搬送速度を検知する。検知部150としては、公知の速度センサを用いることができる。検知部150が配置される箇所は、強化繊維21が搬送される範囲であれば、特に限定されない。
 制御部160は、照射部120、搬送部140などの動作制御を行う。制御部160としては、CPU、RAM、ROM等を備える公知のマイクロコンピュータにより構成されたものを用いることができる。
 <高圧ガス貯蔵容器の製造方法>
 次に、図8のフローチャートを参照して、本実施形態に係る高圧ガス貯蔵容器1の製造方法について説明する。なお、本実施形態に係る高圧ガス貯蔵容器1の製造方法は、フィラメントワインディング法によって行われる。
 まず、ボビン状の強化繊維21をセット部111にセットするとともに、ライナー10を図7に示す位置にセットした状態で、搬送部140を動作させる。これによって、ライナー10が回転し、強化繊維21が搬送される(S01)。このとき、検知部150は、強化繊維21の搬送速度を検知する。
 次に、照射部120は、搬送される強化繊維21に対して、プラズマPを照射する(S02)。
 プラズマPを照射する工程では、補強部材20の巻き始め端部20aから巻き終わり端部20bに亘って、補強部材20を構成する強化繊維21に対して、プラズマPを連続的に漸減しながら照射する(図5参照)。
 プラズマPの照射量は、照射部120の照射強度および強化繊維21の搬送速度を調整することによって、調整する。
 すなわち、搬送方向の前方側から後方側に向けて、照射部120の照射強度が弱くなるように調整する操作、および、強化繊維21の搬送速度を早くする操作の少なくとも一方の操作を行って、強化繊維21に対するプラズマPの照射量を連続的に漸減させる。
 次に、プラズマPが照射された強化繊維21に樹脂22を含浸させて補強部材20を形成する(S03)。
 補強部材20の強度は、プラズマPの照射量分布と同様に、巻き始め端部20aから巻き終わり端部20bに亘って連続的に漸減する。
 次に、補強部材20をライナー10の外周面10Aに巻き付けて補強層30を形成する(S04)。
 補強部材20の強度は、巻き始め端部20aから巻き終わり端部20bに亘って連続的に漸減するために、補強部材20を巻き付けて形成する補強層30は、径方向rに沿って、図6の実線に示す強度分布を備える。
 また、図9に示すように、一定の角速度ωでライナー10を回転させて、補強部材20をライナー10の外周面10Aに巻き付ける場合、巻き付ける際の径に応じて、強化繊維21の搬送速度が変化する。具体的には、より外周側において補強部材20が巻き付けられる場合、強化繊維21の搬送速度は速くなる。したがって、搬送方向の前方側から後方側に向けて、強化繊維21の搬送速度は速くなる。したがって、補強部材20の巻き始め端部20aから巻き終わり端部20bに亘って、強化繊維21に対するプラズマPの照射量は漸減する。本実施形態では、これに加えて、角速度ωを早くしたり、照射部120の照射強度を弱くしたりして、巻き始め端部20aから巻き終わり端部20bに亘って、補強部材20を構成する強化繊維21に対するプラズマPの照射量を漸減させることが好ましい。
 次に、図10A~図12を参照して、本実施形態に係る高圧ガス貯蔵容器1の効果を説明する。
 図10Aは、プラズマPを照射しない場合における、補強層に発生する応力と補強層の材料強度との関係を示すグラフである。
 このとき、高い応力が発生する補強層の内周側において強度設計を行っている。このため、図10Aにおいて符号S1で示される面積に相当する過剰な強度設計が行われており、高圧ガス貯蔵容器の重さが増大している。
 これに比して、ライナー10の外周面10Aに対して上述の補強部材20を巻き付けてなる補強層30の場合、図10Bに示すように、補強層30の強度は外周側から内周側に向けて増大するように向上する(図10B矢印参照)。そして、補強層30の強度が向上した分、外周側に加えて内周側にも強度の余裕代が発生する。
 そして、補強層30の強度分布を超えない程度に、ライナー10の外周面10Aに巻き付ける補強部材20の量を低減することができる。この結果、図10Cに示すように、補強層30に発生する応力は増大するが、図10Cにおいて符号S2で示される面積は、図10Aにおいて符号S1で示される面積よりも小さくなる。このため、過剰な強度設計は緩和されることになる。よって、適切な強度を保ちつつ、補強部材20のライナー10に対して巻き付ける量を低減して補強層30の肉厚を低減することで、高圧ガス貯蔵容器1を軽量化することができる。
 また、図11は、高圧ガス貯蔵容器に作用する圧力とひずみとの関係を示すグラフである。図11において、横軸は圧力を示し、縦軸はひずみを示している。また、図11においてひし形のプロットを含む直線は、プラズマが照射されていない強化繊維を含む高圧ガス貯蔵容器の圧力とひずみとの関係を示す。また、矩形状のプロットを含む直線は、本実施形態に係る高圧ガス貯蔵容器1の圧力とひずみとの関係を示す。また、図11において、ひずみは実験値を示しており、補強層の外周側に貼り付けられたひずみゲージによって測定される。
 図11に示すように、強化繊維21に対してプラズマPを照射することによって、ひずみの数値が低下することが分かる。すなわち、プラズマPを照射することによって、補強部材20の強度が向上することが分かる。
 また、本実施形態に係る高圧ガス貯蔵容器1によれば、補強部材20を構成する強化繊維21は、補強部材20のライナー10に対する巻き始め端部20aから巻き終わり端部20bに亘って、プラズマPの照射量が連続的に漸減してなる。よって、補強層30の外周側よりも内周側の強度を高めることができる。したがって、外周側において意図しない外力F1が、高圧ガス貯蔵容器1に作用した場合、図12に示すように、外周側に優先的にクラックCを発生させることができる。よって、外観によってクラック発生部位を検知することができ、検知性を向上することができる。
 また、本実施形態に係る高圧ガス貯蔵容器1によれば、補強部材20を構成する強化繊維21は、補強部材20のライナー10に対する巻き始め端部20aから巻き終わり端部20bに亘って、プラズマPの照射量が連続的に漸減してなる。よって、補強部材20の強度分布は、巻き始め端部20aから巻き終わり端部20bに向かって、連続的に漸減するため、層31、32間のせん断破壊の発生を好適に抑制することができる。
 以上説明したように、本実施形態に係る高圧ガス貯蔵容器1は、樹脂22が含浸された強化繊維21からなる補強部材20を備える構造体である。補強部材20は、強化繊維21に対してプラズマPが照射されてなる第1領域A1と、強化繊維21に対して第1領域A1よりも少ない量のプラズマPが照射されてなる第2領域A2と、を有する。また高圧ガス貯蔵容器1は、第1領域A1を第2領域A2よりも強度が求められる箇所に位置させて、補強部材20を設けてなる。このように構成した高圧ガス貯蔵容器1によれば、強化繊維21にプラズマPを照射することによって、強化繊維21に酸性官能基を付加させることができる。このため、強化繊維21に対する樹脂22の密着性が向上し、補強部材20の強度を向上させることができる。そして、相対的に多くのプラズマPを照射することによって相対的に強度が向上した第1領域A1を、強度が求められる補強層30の内周側に位置させる。したがって、肉厚を低減したとしても、プラズマPが照射されることによって強度が向上しているため、適切な強度を保つことができる。以上から、適切な強度を保ちつつ、肉厚を低減することによって、全体として軽量化することができる。
 また、高圧ガス貯蔵容器1は、ライナー10である芯部材をさらに有し、補強部材20は帯状を有する。帯状の補強部材20は、ライナー10の外周面10Aに巻き付けられて複数の層からなる補強層30を構成する。補強層30は、当該補強層30の内周側が第1領域A1によって構成され、当該補強層30の外周側が第2領域A2によって構成される。このように構成した構造体によれば、補強層30の内周側の強度を高くすることができる。したがって、補強層30の内周側に高い圧力が作用するような構造体に対しても、適切な強度を保ちつつ、補強部材20を巻き付ける量を低減することができる。したがって、補強層30の肉厚を低減して、製品全体として軽量化することができる。
 また、芯部材は、高圧ガスを収容するライナー10である。このため、高圧ガス貯蔵容器1に対して、適切な強度を保ちつつ、補強部材20を巻き付ける量を低減することができる。したがって、補強層30の肉厚を低減して、製品全体として軽量化することができる。
 また、補強部材20は、ライナー10に対する巻き始め端部20aから巻き終わり端部20bに亘って、強化繊維21に対するプラズマPの照射量が連続的に漸減してなる。この構成によれば、補強部材20の強度は、巻き始め端部20aから巻き終わり端部20bに向かって連続的に漸減するため、層31、32間のせん断破壊の発生を好適に抑制することができる。
 また、以上説明したように、本実施形態に係る高圧ガス貯蔵容器1の製造方法は、樹脂22が含浸された強化繊維21からなる補強部材20を備える高圧ガス貯蔵容器1の製造方法である。高圧ガス貯蔵容器1の製造方法は、強化繊維21に対してプラズマPを照射して、樹脂22を含浸させて、補強部材20に第1領域A1を形成する。そして、強化繊維21に対して第1領域A1よりも少ない量のプラズマPを照射して、樹脂22を含浸させて、補強部材20に第2領域A2を形成する。そして、第1領域A1を第2領域A2よりも強度が求められる箇所に位置させる。この製造方法によれば、強化繊維21にプラズマPを照射することによって、強化繊維21に酸性官能基を付加させることができる。このため、強化繊維21に対する樹脂22の密着性が向上し、補強部材20の強度を向上させることができる。そして、相対的に多くのプラズマPを照射することによって相対的に強度が向上した第1領域A1を、強度が求められる補強層30の内周側に位置させる。したがって、肉厚を低減したとしても、プラズマPが照射されることによって強度が向上しているため、適切な強度を保つことができる。以上から、適切な強度を保ちつつ、肉厚を低減することによって、全体として軽量化することのできる高圧ガス貯蔵容器1を提供することができる。
 また、帯状に構成される強化繊維21を搬送し、搬送方向の前方側において、強化繊維21に対してプラズマPを照射して、樹脂22を含浸させて、補強部材20に第1領域A1を形成する。また、搬送方向の後方側において、強化繊維21に対して第1領域A1よりも少ない量のプラズマPを照射して、樹脂22を含浸させて、補強部材20に第2領域A2を形成する。そして、第1領域A1および第2領域A2が形成された補強部材20をライナー10である芯部材に巻き付ける。この製造方法によれば、補強層30の内周側の強度を高くすることができる。したがって、補強層30の内周側に高い圧力が作用するような構造体に対しても、適切な強度を保ちつつ、補強部材20を巻き付ける量を低減することができる。したがって、補強層30の肉厚を低減して、製品全体として軽量化することができる。
 また、芯部材は、高圧ガスを収容するライナー10である。このため、高圧ガス貯蔵容器1に対して、適切な強度を保ちつつ、補強部材20を巻き付ける量を低減することができる。したがって、補強層30の肉厚を低減して、製品全体として軽量化することができる。
 また、補強部材20のライナー10に対する巻き始め端部20aから巻き終わり端部20bに亘って、強化繊維21に対して、プラズマPを連続的に漸減しながら照射する。この製造方法によれば、補強部材20の強度が、巻き始め端部20aから巻き終わり端部20bに向かって連続的に漸減する、高圧ガス貯蔵容器を製造することができる。このため、層31、32間のせん断破壊の発生を好適に抑制することができる。
 また、プラズマ電圧、電流、周波数、電極、ガス条件の少なくとも一つを調整してプラズマPの照射強度を調整することによって、プラズマPの照射量を調整する。この製造方法によれば、強化繊維21に対するプラズマPの照射量を容易に調整することができる。したがって、図10Cにおいて符号S2で示される面積が小さくなるように、補強部材20の強度を調整することができる。このように、符号S2で示される面積がより小さくなることによって、過剰な強度設計がより緩和される。
 また、プラズマPを強化繊維21に対して照射する際における強化繊維21の搬送速度を変えることによって、プラズマPの照射量を調整する。この製造方法によれば、強化繊維21に対するプラズマPの照射量が少ない補強層30の外周側における強化繊維21に対してプラズマPを照射する際に、強化繊維21の搬送速度を早くすることができる。したがって、製造時間を短縮することができ、生産性が向上する。
 また、強化繊維21の表面21Aに、表面21Aに直交するY方向に対して傾斜した方向からプラズマPを照射する。この製造方法によれば、プラズマガスは、強化繊維21の表面21Aに傾斜して照射されるため、プラズマガスの圧縮が抑制され、かつ中心の高温部分を逃して照射することができる。したがって、強化繊維21の損傷を低減しつつ、効率よくプラズマPを強化繊維21に照射して強化繊維21に酸性官能基を付加することができる。
 <改変例1>
 以下、上述した実施形態の改変例1について説明する。
 改変例1に係る高圧ガス貯蔵容器は、強化繊維21に対するプラズマPの照射量分布が、上述した実施形態に係る高圧ガス貯蔵容器1と相違する。
 図13は、改変例1に係るプラズマPの照射量分布を示すグラフである。
 改変例1に係る高圧ガス貯蔵容器の強化繊維21は、図13に示すように、補強部材20のライナー10に対する巻き始め端部20aから巻き終わり端部20bに亘って、プラズマPの照射量が段階的に漸減してなる。
 より具体的には、図13に示すように、フープ層31aにおいて、プラズマPが一定量照射されている。また、フープ層31aの外周側に隣り合うヘリカル層32において、フープ層31aよりも少ない量のプラズマPが照射されている。さらに、ヘリカル層32の外周側に隣り合うフープ層31bにおいて、ヘリカル層32よりも少ない量のプラズマPが照射されている。以下、ヘリカル層32、フープ層31の順で、外周側に向けて、段階的にプラズマPの照射量が漸減する。
 このようにプラズマPが照射された強化繊維21からなる補強部材20は、プラズマPの照射量分布と同様に、巻き始め端部20aから巻き終わり端部20bに亘って、強度が段階的に漸減する。
 そして、このような補強部材20をライナー10の外周面10Aに巻き付けて補強層30を形成した場合、補強層30の径方向rに沿う強度分布は、上述した実施形態に係る補強層30の強度分布と同様に、径方向rの内周側から外周側に向かって強度が低下する。
 次に、改変例1に係る高圧ガス貯蔵容器の製造方法を説明する。
 ここでは、プラズマPを照射する工程についてのみ説明する。
 プラズマPを照射する工程では、補強部材20のライナー10に対する巻き始め端部20aから巻き終わり端部20bに亘って、補強部材20を構成する強化繊維21に対して、プラズマPを段階的に漸減しながら照射する。以下、プラズマPを照射する工程について詳述する。
 プラズマPを照射する工程は、フープ層31において巻き付けられる補強部材20を構成する強化繊維21にプラズマPを一定量照射する第1照射工程を有する。また、プラズマPを照射する工程は、ヘリカル層32において巻き付けられる補強部材20を構成する強化繊維21にプラズマPを一定量照射する第2照射工程を有する。
 第1照射工程および第2照射工程は交互に行われ、第1照射工程から第2照射工程に切り替わる際、および第2照射工程から第1照射工程に切り替わる際に、プラズマPの照射量を減らす。
 以上説明したように、改変例1に係る高圧ガス貯蔵容器において、補強部材20は、ライナー10に対する巻き始め端部20aから巻き終わり端部20bに亘って、強化繊維21に対するプラズマPの照射量が段階的に漸減してなる。このように構成した高圧ガス貯蔵容器によれば、補強層30の内周側の強度を高くすることができる。したがって、補強層30の内周側に高い圧力が作用するような高圧ガス貯蔵容器に対しても、適切な強度を保ちつつ、補強部材20を巻き付ける量を低減することができる。したがって、補強層30の肉厚を低減して、製品全体として軽量化することができる。
 また、補強層30は、層31、32ごとに、強化繊維21に対するプラズマPの照射量が段階的に漸減してなる。このため、一つの層31、32におけるプラズマPの照射量は一定となる。よって、一つの層31、32における補強層30の強度を一定にすることができるため、好適な強度分布を備える高圧ガス貯蔵容器を提供することができる。
 また、改変例1に係る高圧ガス貯蔵容器の製造方法は、補強部材20のライナー10に対する巻き始め端部20aから巻き終わり端部20bに亘って、強化繊維21に対して、プラズマPを段階的に漸減しながら照射する。この製造方法によれば、補強層30の内周側の強度を高い高圧ガス貯蔵容器を製造することができる。したがって、内周側に高い圧力が作用するような高圧ガス貯蔵容器に対しても、適切な強度を保ちつつ、補強部材20を巻き付ける量を低減することができる。したがって、補強層30の肉厚を低減して、製品全体として軽量化することができる。
 また、プラズマPを強化繊維21に対して照射する際に、プラズマPを照射する対象が、一の層における強化繊維21から、一の層の外周側において隣り合う他の層における強化繊維21に切り替わる際に、プラズマPの照射量を減らす。この製造方法によれば、一つの層31、32におけるプラズマPの照射量は一定となる。よって、一つの層31、32における補強層30の強度を一定にすることができるため、好適な強度分布を備える高圧ガス貯蔵容器を提供することができる。
 <改変例2>
 以下、上述した実施形態の改変例2について説明する。
 改変例2に係る高圧ガス貯蔵容器は、強化繊維21に対するプラズマPの照射量分布が、上述した実施形態に係る高圧ガス貯蔵容器1と相違する。
 図14は、改変例2に係るプラズマPの照射量分布を示すグラフである。
 改変例2において、図14に示すように、巻き始め端部20aから、巻き始め端部20aと巻き終わり端部20bとの間に位置する途中部位20c(図2参照)までにおける補強部材20を構成する強化繊維21には、プラズマPが一定量照射されてなる。また、途中部位20cから巻き終わり端部20bまでにおける補強部材20を構成する強化繊維21には、プラズマPは照射されない。
 このようにプラズマPが照射された強化繊維21からなる補強部材は、プラズマPの照射量分布と同様に、巻き始め端部20aから途中部位20cまでのみにおいて、強度が向上した強度分布を備える。
 次に、改変例2に係る高圧ガス貯蔵容器の製造方法を説明する。
 ここでは、プラズマPを照射する工程についてのみ説明する。
 プラズマPを照射する工程では、巻き始め端部20aから途中部位20cに亘って、補強部材20を構成する強化繊維21に対して、プラズマPを一定量照射する。そして、その後、プラズマPの照射をやめる。すなわち、途中部位20cから巻き終わり端部20bに亘って、補強部材20を構成する強化繊維21に対してはプラズマPを照射しない。
 次に、図15A~図15Cを参照して、改変例2に係る高圧ガス貯蔵容器の効果を説明する。
 図15Aは、プラズマPを照射しない場合における、補強層に発生する応力と補強層の材料強度との関係を示すグラフである。
 このとき、上述したように、高い応力が発生する補強層の内周側において強度設計を行っている。このため、図15Aにおいて符号S1で示される面積に相当する過剰な強度設計が行われており、高圧ガス貯蔵容器の重さが増大している。
 これに比して、ライナー10の外周面10Aに対して改変例2に係る補強部材20を巻き付けてなる補強層30の場合、図15Bに示すように、補強層30の内周側における強度は向上する(図15B矢印参照)。そして、補強層30の内周側における強度が向上した分、外周側に加えて内周側にも強度の余裕代が発生する。
 そして、補強層30の強度分布を超えない程度に、ライナー10の外周面10Aに巻き付ける補強部材20の量を低減することができる。この結果、図15Cに示すように、補強層30に発生する応力は増大するが、図15Cにおいて符号S3で示される面積は、図15Aにおいて符号S1で示される面積よりも小さくなる。このため、過剰な強度設計は緩和されることになる。よって、適切な強度を保ちつつ、補強部材20のライナー10に対して巻き付ける量を低減して補強層30の肉厚を低減することで、高圧ガス貯蔵容器を軽量化することができる。
 以上説明したように、改変例2に係る高圧ガス貯蔵容器において、巻き始め端部20aから途中部位20cまでにおける補強部材20は、強化繊維21に対して、プラズマPが一定量照射されてなる。また、途中部位20cから巻き終わり端部20bまでにおける補強部材20は、強化繊維21に対して、プラズマPが照射されない。このような補強部材20を製造する際、プラズマPの照射を途中部位20cにおいて止めればよい。したがって、高圧ガス貯蔵容器を容易に製造することができる。
 また、以上説明したように、改変例2に係る高圧ガス貯蔵容器の製造方法では、巻き始め端部20aから途中部位20cに亘って、補強部材20を構成する強化繊維21に対して、プラズマPを一定量照射する。また、途中部位20cから巻き終わり端部20bに亘って、補強部材20を構成する強化繊維21に対して、プラズマPを照射しない。この製造方法によれば、プラズマPの照射を途中部位20cにおいて止めればよいので、高圧ガス貯蔵容器を容易に製造することができる。
 本発明は、上述した実施形態および改変例に限定されるものではなく、特許請求の範囲内で種々改変できる。
 上述した実施形態、改変例1、および改変例2では、構造体としてライナー10の外周面10Aに補強部材20が巻き付けられてなる高圧ガス貯蔵容器を例に挙げて説明した。しかしながら、構造体として、図16に示すような、自動車のパネル5に適用されてもよい。自動車のパネル5は、補強部材20を芯部材としてパネル形状に形成されてなる。パネル5は、RTM(Resin Transfer Molding)成形法によって形成される。例えば、パネル5に対して、図16に示す外力F2が作用する場合、相対的に多くのプラズマPが照射されることによって相対的に強度が向上した第1領域A1を、外力F2が作用する部位周辺に位置させる。これによって、肉厚を低減したとしても、プラズマPが照射されることによって強度が向上しているため、適切な強度を保つことができる。以上から、適切な強度を保ちつつ、肉厚を低減することによって、全体として軽量化することのできるパネル5を提供することができる。
 また、上述した実施形態では、プラズマ電圧、電流、周波数、電極、およびガス条件を調整することによって、プラズマPの照射強度を調整した。しかしながら、照射部120および強化繊維21との間にフィルターを設けることによって、プラズマPの照射強度を調整してもよい。この構成によれば、プラズマ電圧、電流、周波数、電極、ガス条件を操作することなく、容易に強化繊維21に対するプラズマPの照射量を調整することができる。
 また、上述した実施形態では、ライナー10は円筒状を有したが、四角柱形状等であってもよい。
 さらに、本出願は、2016年3月4日に出願された日本特許出願番号2016-042733号に基づいており、それらの開示内容は、参照され、全体として、組み入れられている。
  1  高圧ガス貯蔵容器(構造体)、
  5  自動車のパネル(構造体)、
  10  ライナー、
  10A  ライナーの外周面、
  11  胴部、
  12  鏡部、
  20  補強部材、
  21  強化繊維、
  22  樹脂、
  30  補強層、
  31  フープ層、
  32  ヘリカル層、
  A1  第1領域、
  A2  第2領域、
  P  プラズマ。

Claims (20)

  1.  樹脂が含浸された強化繊維からなる補強部材を備える構造体であって、
     前記補強部材は、前記強化繊維に対してプラズマが照射されてなる第1領域と、前記強化繊維に対して前記第1領域よりも少ない量の前記プラズマが照射されてなる、または、前記プラズマが照射されない第2領域と、を有し、
     前記第1領域を前記第2領域よりも強度が求められる箇所に位置させて、前記補強部材を設けてなる構造体。
  2.  芯部材をさらに有し、
     前記補強部材は帯状を有し、
     帯状の前記補強部材は、前記芯部材の外周面に巻き付けられて複数の層からなる補強層を構成し、
     前記補強層は、当該補強層の内周側が前記第1領域によって構成され、当該補強層の外周側が前記第2領域によって構成される請求項1に記載の構造体。
  3.  前記芯部材は、高圧ガスを収容するライナーである請求項2に記載の構造体。
  4.  前記補強部材は、前記芯部材に対する巻き始め端部から巻き終わり端部に亘って、前記強化繊維に対する前記プラズマの照射量が連続的に漸減してなる請求項2または3に記載の構造体。
  5.  前記補強部材は、前記芯部材に対する巻き始め端部から巻き終わり端部に亘って、前記強化繊維に対する前記プラズマの照射量が段階的に漸減してなる請求項2または3に記載の構造体。
  6.  前記補強層は、前記層ごとに、前記強化繊維に対する前記プラズマの照射量が段階的に漸減してなる請求項5に記載の構造体。
  7.  前記芯部材に対する巻き始め端部から、当該巻き始め端部と巻き終わり端部との間に位置する途中部位までにおける前記補強部材は、前記強化繊維に対して、前記プラズマが一定量照射されてなり、
     前記途中部位から前記巻き終わり端部までにおける前記補強部材は、前記強化繊維に対して、前記プラズマが照射されていない請求項2または3に記載の構造体。
  8.  前記補強部材を芯部材としてパネル形状に形成されてなる請求項1に記載の構造体。
  9.  樹脂が含浸された強化繊維からなる補強部材を備える構造体の製造方法であって、
     前記強化繊維に対してプラズマを照射して、前記樹脂を含浸させて、前記補強部材に第1領域を形成し、
     前記強化繊維に対して前記第1領域よりも少ない量の前記プラズマを照射して、または、前記プラズマを照射することなく、前記樹脂を含浸させて、前記補強部材に第2領域を形成し、
     前記第1領域を前記第2領域よりも強度が求められる箇所に位置させる、構造体の製造方法。
  10.  帯状に構成される前記強化繊維を搬送し、
     搬送方向の前方側において、前記強化繊維に対して前記プラズマを照射して、前記樹脂を含浸させて、前記補強部材に前記第1領域を形成し、
     前記搬送方向の後方側において、前記強化繊維に対して前記第1領域よりも少ない量の前記プラズマを照射して、前記樹脂を含浸させて、前記補強部材に前記第2領域を形成し、
     前記第1領域および前記第2領域が形成された前記補強部材を芯部材に巻き付ける請求項9に記載の構造体の製造方法。
  11.  前記芯部材は、高圧ガスを収容するライナーである請求項10に記載の構造体の製造方法。
  12.  前記補強部材の前記芯部材に対する巻き始め端部から巻き終わり端部に亘って、前記強化繊維に対して、前記プラズマを連続的に漸減しながら照射する請求項10または11に記載の構造体の製造方法。
  13.  前記補強部材の前記芯部材に対する巻き始め端部から巻き終わり端部に亘って、前記強化繊維に対して、前記プラズマを段階的に漸減しながら照射する請求項10または11に記載の構造体の製造方法。
  14.  前記プラズマを前記強化繊維に対して照射する際に、
     前記プラズマを照射する対象が、一の層において巻き付けられる前記補強部材を構成する前記強化繊維から、前記一の層の外周側に隣り合う他の層において巻き付けられる前記補強部材を構成する前記強化繊維に切り替わる際に、前記プラズマの照射量を減らす請求項13に記載の構造体の製造方法。
  15.  前記補強部材の前記芯部材に対する巻き始め端部から、当該巻き始め端部と巻き終わり端部との間に位置する途中部位に亘って、前記補強部材を構成する前記強化繊維に対して、前記プラズマを一定量照射し、前記補強部材の前記途中部位から前記巻き終わり端部に亘って、前記補強部材を構成する前記強化繊維に対して、前記プラズマを照射しない請求項10または11に記載の構造体の製造方法。
  16.  前記補強部材を芯部材としてパネル形状に形成する請求項9に記載の構造体の製造方法。
  17.  プラズマ電圧、電流、周波数、電極、ガス条件の少なくとも一つを調整して前記プラズマの照射強度を調整することによって、前記プラズマの照射量を調整する請求項9~16のいずれか1項に記載の構造体の製造方法。
  18.  前記プラズマの照射部と前記強化繊維との間にフィルターを設けて、前記プラズマの照射強度を調整することによって、前記プラズマの照射量を調整する請求項9~17のいずれか1項に記載の構造体の製造方法。
  19.  前記プラズマを前記強化繊維に対して照射する際における前記強化繊維の搬送速度を変えることによって、前記プラズマの照射量を調整する請求項9~18のいずれか1項に記載の構造体の製造方法。
  20.  前記強化繊維の表面に、前記表面に直交する直交方向に対して傾斜した方向から前記プラズマを照射する請求項9~19のいずれか1項に記載の構造体の製造方法。
PCT/JP2016/078931 2016-03-04 2016-09-29 構造体、および構造体の製造方法 WO2017149818A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
KR1020197015080A KR102164167B1 (ko) 2016-03-04 2016-09-29 구조체 및 자동차 패널
EP16892655.8A EP3425258B1 (en) 2016-03-04 2016-09-29 Structure body, and method for manufacturing structure body
KR1020187027151A KR101998540B1 (ko) 2016-03-04 2016-09-29 구조체, 및 구조체의 제조 방법
JP2018502512A JP6583530B2 (ja) 2016-03-04 2016-09-29 構造体、および構造体の製造方法
CA3016388A CA3016388C (en) 2016-03-04 2016-09-29 Reinforcing members made of resin impregnated fibers subjected to plasma irradiation
US16/081,452 US11040479B2 (en) 2016-03-04 2016-09-29 Structure and method for manufacturing structure
CN201680083175.0A CN108779893B (zh) 2016-03-04 2016-09-29 构造体和构造体的制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-042733 2016-03-04
JP2016042733 2016-03-04

Publications (1)

Publication Number Publication Date
WO2017149818A1 true WO2017149818A1 (ja) 2017-09-08

Family

ID=59743708

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/078931 WO2017149818A1 (ja) 2016-03-04 2016-09-29 構造体、および構造体の製造方法

Country Status (7)

Country Link
US (1) US11040479B2 (ja)
EP (1) EP3425258B1 (ja)
JP (1) JP6583530B2 (ja)
KR (2) KR102164167B1 (ja)
CN (1) CN108779893B (ja)
CA (1) CA3016388C (ja)
WO (1) WO2017149818A1 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6927139B2 (ja) * 2018-05-10 2021-08-25 トヨタ自動車株式会社 フィラメントワインディング装置、フィラメントワインディングの設計方法およびタンクの製造方法
JP7207103B2 (ja) * 2019-04-01 2023-01-18 トヨタ自動車株式会社 高圧タンク及びその製造方法
DE102021123510A1 (de) * 2021-09-10 2023-03-16 Schmidt & Heinzmann Gmbh & Co Kg Produktionsvorrichtung, insbesondere SMC-Produktionsvorrichtung, zu einer Herstellung von duroplastischen Halbzeugen
CN115307052B (zh) * 2022-08-15 2024-05-28 佛山仙湖实验室 一种复合气瓶缠绕增强层优化设计方法及其应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63144153A (ja) * 1986-12-05 1988-06-16 群馬工業高等専門学校長 炭素繊維強化セメント複合材料およびその製造法
JPH04249545A (ja) * 1990-03-30 1992-09-04 Goodyear Tire & Rubber Co:The ゴムに対する接着力を強化するためのポリマーの表面処理方法およびこの方法を用いて作成された空気入りタイヤ
JP2005337394A (ja) * 2004-05-27 2005-12-08 Nippon Oil Corp 繊維強化圧力容器及びその製造法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61258065A (ja) 1985-05-10 1986-11-15 アイシ−エス株式会社 芳香族ポリアミド繊維の接着性改良方法およびその装置
JPH09280496A (ja) 1996-04-18 1997-10-31 Toray Ind Inc 圧力容器及びその製造方法
US6514449B1 (en) * 2000-09-22 2003-02-04 Ut-Battelle, Llc Microwave and plasma-assisted modification of composite fiber surface topography
US8227051B1 (en) * 2004-06-24 2012-07-24 UT-Battle, LLC Apparatus and method for carbon fiber surface treatment
JP2006233354A (ja) 2005-02-24 2006-09-07 Teijin Techno Products Ltd ゴム補強用繊維の製造方法
EP2418412B1 (en) 2009-04-10 2015-05-27 Toyota Jidosha Kabushiki Kaisha Tank and fabrication method thereof
US8664573B2 (en) 2009-04-27 2014-03-04 Applied Nanostructured Solutions, Llc CNT-based resistive heating for deicing composite structures
CN103206612B (zh) 2013-03-06 2015-07-01 清华大学深圳研究生院 一种轻金属内衬玄武岩纤维全缠绕复合气瓶及其制造工艺
JP6319000B2 (ja) 2014-09-05 2018-05-09 日産自動車株式会社 強化基材の表面改質方法及び表面改質装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63144153A (ja) * 1986-12-05 1988-06-16 群馬工業高等専門学校長 炭素繊維強化セメント複合材料およびその製造法
JPH04249545A (ja) * 1990-03-30 1992-09-04 Goodyear Tire & Rubber Co:The ゴムに対する接着力を強化するためのポリマーの表面処理方法およびこの方法を用いて作成された空気入りタイヤ
JP2005337394A (ja) * 2004-05-27 2005-12-08 Nippon Oil Corp 繊維強化圧力容器及びその製造法

Also Published As

Publication number Publication date
CN108779893A (zh) 2018-11-09
KR102164167B1 (ko) 2020-10-12
EP3425258A4 (en) 2019-03-06
CA3016388A1 (en) 2017-09-08
EP3425258B1 (en) 2020-05-27
US20190099937A1 (en) 2019-04-04
CA3016388C (en) 2020-01-28
KR101998540B1 (ko) 2019-07-09
US11040479B2 (en) 2021-06-22
EP3425258A1 (en) 2019-01-09
JP6583530B2 (ja) 2019-10-02
KR20180108859A (ko) 2018-10-04
CN108779893B (zh) 2019-07-23
JPWO2017149818A1 (ja) 2019-01-31
KR20190060017A (ko) 2019-05-31

Similar Documents

Publication Publication Date Title
US11590725B2 (en) Method for producing high-pressure gas storage container
KR101829127B1 (ko) 탱크의 제조 방법
JP6583530B2 (ja) 構造体、および構造体の製造方法
KR101489331B1 (ko) 고압 가스 탱크의 제조 방법
US8517206B2 (en) High pressure storage vessel
JP2018149737A (ja) 補強層の製造方法
US20220065400A1 (en) Tank production method and tank
KR101628522B1 (ko) 부직포 삽입형 수소 탱크 및 그 제작 방법
KR940003246B1 (ko) 폴라와인딩 및 헤리칼와인딩에 의한 양쪽돔 개공직경이 서로다른 압력용기의 제작방법
EP3393829B1 (en) Carbon fiber composite for tire bead core
JP2020159474A (ja) ガスタンクの製造方法
JP2018177898A (ja) トウプリプレグ捲回体の製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2018502512

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 3016388

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20187027151

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020187027151

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2016892655

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2016892655

Country of ref document: EP

Effective date: 20181004

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16892655

Country of ref document: EP

Kind code of ref document: A1