WO2017149731A1 - Negative-electrode material for lithium-ion battery, lithium-ion battery, and method for manufacturing negative-electrode material for lithium-ion battery - Google Patents

Negative-electrode material for lithium-ion battery, lithium-ion battery, and method for manufacturing negative-electrode material for lithium-ion battery Download PDF

Info

Publication number
WO2017149731A1
WO2017149731A1 PCT/JP2016/056638 JP2016056638W WO2017149731A1 WO 2017149731 A1 WO2017149731 A1 WO 2017149731A1 JP 2016056638 W JP2016056638 W JP 2016056638W WO 2017149731 A1 WO2017149731 A1 WO 2017149731A1
Authority
WO
WIPO (PCT)
Prior art keywords
fine particles
aggregates
silicon
negative electrode
ion battery
Prior art date
Application number
PCT/JP2016/056638
Other languages
French (fr)
Japanese (ja)
Inventor
岡井 誠
徹 肥後
Original Assignee
株式会社日立製作所
日新化成株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所, 日新化成株式会社 filed Critical 株式会社日立製作所
Priority to PCT/JP2016/056638 priority Critical patent/WO2017149731A1/en
Publication of WO2017149731A1 publication Critical patent/WO2017149731A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/133Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/134Electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1393Processes of manufacture of electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1395Processes of manufacture of electrodes based on metals, Si or alloys
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a negative electrode material for a lithium ion battery, a lithium ion battery, and a method for producing a negative electrode material for a lithium ion battery.
  • the stoichiometric composition when the silicon is filled with lithium ions is Li 15 Si 4 or Li 22 Si 5 .
  • the calculated value of the theoretical capacity is 3577 mAh / g or 4197 mAh / g. Accordingly, when silicon is employed as the negative electrode material, it is theoretically possible to store lithium about 9.6 times or about 11.3 times that of graphite, so silicon (particularly, particulate silicon) Is a very attractive material.
  • a powder having a diameter of about 38 microns ( ⁇ m) or less formed by pulverizing single crystal silicon in a mortar and classifying with a mesh is used in an argon atmosphere at 30 ° C./min. What was heated to 150 degreeC (attainment temperature) by the temperature increase rate is disclosed (patent document 1).
  • pattern document 1 As another example, by supplying liquid silicon tetrachloride in high-temperature and high-concentration zinc gas and reacting at a high temperature of 1050 ° C. or higher, silicon tetrachloride is reduced to form silicon particles, Fine silicon is crystallized and agglomerated at 1000 ° C.
  • Patent Document 2 high-purity silicon particles having a particle size of about 1 to 100 ⁇ m can be obtained by this work, and that it is used (Patent Document 2).
  • silicon particles refined to about 10 nm even when the volume distribution is a median diameter (50% crystallite diameter) should be used as a part of a negative electrode material of a lithium ion battery.
  • Patent Documents 1 and 2 since it is necessary to perform a high-temperature synthesis and collection process, the manufacturing process until obtaining silicon particles as a negative electrode material becomes extremely complicated. As a result, it is unavoidable that productivity is lowered and manufacturing costs are increased. Further, the technique disclosed in Patent Document 3 is effective in that a part of silicon particles is considered not to be electrically isolated by, for example, expansion and contraction, but there is still room for improvement. Yes. In other words, development of lithium ion batteries using silicon particles is still halfway.
  • the inventors of the present application have achieved higher performance by making the most of their usefulness while utilizing certain characteristic silicon fine particles as a secondary material to the carbon base material.
  • the knowledge that a negative electrode material can be realized was obtained.
  • the present invention was created based on the above viewpoint.
  • the present invention greatly contributes to the realization of a higher performance negative electrode material of a lithium ion battery and a method for producing the same for a lithium ion battery, which is expected to greatly reduce carbon dioxide gas as the use expands.
  • silicon fine particles having a volume distribution with a mode diameter and a median diameter of less than 50 nm, or aggregates or aggregates thereof, are folded into a multi-layer petal shape or a scale shape.
  • a part of the above-mentioned silicon fine particles in an overlapped state or a part of the aggregate or the aggregate of the above-described silicon fine particles is in contact with or embedded in the carbon base material.
  • this negative electrode material for lithium ion batteries it is possible to prevent the silicon fine particles from being electrically isolated with higher accuracy. For example, the charge / discharge cycle characteristics can be improved, and the life of the lithium ion battery can be extended. It can be realized.
  • the manufacturing method of the negative electrode material of one lithium ion battery of this invention is a mode diameter and a median diameter of less than 50 nm by grind
  • silicone which is the chip or cutting waste scraped off by a fixed abrasive wire.
  • the silicon fine particles or the agglomerates or a part of the aggregates are in contact with the carbon substrate or embedded in the carbon substrate (eg, appear to pierce). Therefore, it is possible to manufacture a negative electrode material for a lithium ion battery that is more accurate and in which silicon fine particles are not electrically isolated. Therefore, by adopting the negative electrode material manufactured by the negative electrode material manufacturing method of the lithium ion battery, for example, the charge / discharge cycle characteristics can be improved and the life of the lithium ion battery can be extended.
  • the silicon fine particles can be prevented from being electrically isolated with higher accuracy.
  • the charge / discharge cycle characteristics are improved, and the length of the lithium ion battery is improved. It is possible to achieve a long life.
  • the negative electrode material manufactured by the negative electrode material manufacturing method of one lithium ion battery of the present invention for example, it is possible to improve the charge / discharge cycle characteristics and extend the life of the lithium ion battery. It becomes.
  • FIG. 2 is a scanning electron micrograph of the negative electrode material of Example 1.
  • FIG. 2 is a further enlarged scanning electron micrograph of the negative electrode material of Example 1. It is a scanning electron micrograph which shows the example of the structure which removed some silicon fine particles 201 etc. among the structures shown in FIG. 14, and was easy to see. It is the result of calculating the silicon weight ratio dependence of electric capacity.
  • FIG. 1 is a conceptual diagram schematically showing the negative electrode material 100.
  • the negative electrode material 100 of the present embodiment is formed using the carbon base material 101 and the silicon fine particles 201 or aggregates or aggregates thereof, and the silicon fine particles 201 in a state of being folded into a multi-layer petal shape or a scale shape. Or the agglomerates or aggregates of silicon fine particles 201. Further, a part of the silicon fine particles 201 or a part of the aggregate or aggregate of the silicon fine particles 201 in a state of being folded into a multi-layered petal shape or a scale shape is in contact with and attached to the carbon base material 101 or carbon. It is buried in the base material 101. Note that, as will be described later, the silicon fine particles of the present embodiment or the aggregates or aggregates thereof have a volume distribution with a mode diameter and a median diameter of less than 50 nm.
  • the silicon fine particles 201 or a part of the aggregates or aggregates thereof are attached to the surface of the carbon base material 101 by van der Waals force.
  • the silicon fine particles 201 or the aggregates or aggregates thereof can also form a multilayer structure (for example, a multilayer petal-like structure) by contacting or adhering to each other by van der Waals force.
  • the contact area between the silicon fine particles can be made larger than, for example, the contact surface between the spherical silicon fine particles.
  • the lithium ion battery is temporarily charged and discharged. Even when expansion and contraction occur, it is possible to realize a negative electrode material that is difficult to isolate silicon fine particles and has high conductivity. Note that some of the silicon fine particles 201 or aggregates or aggregates thereof appear to be inserted so as to pierce the carbon substrate 101, as will be described later.
  • the role of occlusion and release of lithium ions is mainly played by the silicon fine particles 201 or aggregates or aggregates thereof.
  • a part of the silicon fine particles 201 or a part of the aggregate or aggregate of the silicon fine particles 201 is in contact with, adheres to, or is embedded in the carbon base material 101, thereby providing high conductivity. Can be realized.
  • FIG. 2 is a conceptual diagram of the carbon base material 101 that constitutes a part of the negative electrode material of the present embodiment.
  • the carbon base material 101 of this embodiment is particulate. Artificial graphite, natural graphite, or graphite material processed from them can be used as the carbon substrate 101 of the present embodiment.
  • the average of the longest particle diameter (longest particle diameter) of the carbon substrate 101 is 1 ⁇ m or more and 50 ⁇ m or less, and more preferably 5 ⁇ m or more and 30 ⁇ m or less.
  • the longest particle diameter is 1 ⁇ m or less, it is considered that the curvature of the surface of the carbon base material 101 increases due to the size being too small. As a result, it becomes difficult to contact or embed a portion of the silicon fine particles 201 or the aggregates or aggregates thereof, which will be described later, on the surface or inside thereof.
  • silicon fine particles 201 contact, adhesion, or part of the silicon fine particles 201 or aggregates or aggregates thereof (hereinafter collectively referred to as “silicon fine particles 201”) on the surface of the carbon substrate 101 or inside thereof.
  • the longest particle diameter is 5 ⁇ m or more.
  • the specific surface area becomes too small.
  • the longest particle size is 30 ⁇ m or less. It is one mode.
  • FIG. 3 is a flow diagram showing a manufacturing process of silicon fine particles 201 or aggregates or aggregates thereof constituting a part of the negative electrode material of the present embodiment.
  • FIG. 4 is a schematic diagram showing a manufacturing apparatus and manufacturing process for silicon fine particles 201 or aggregates or aggregates thereof.
  • the manufacturing method of the silicon fine particles 201 or the aggregates or aggregates thereof according to the present embodiment is silicon that is normally regarded as waste in the cutting process of silicon in the production process of silicon wafers used for semiconductor products such as solar cells. And various kinds of processes using, as an example of a starting material, cutting chips, silicon cutting scraps or polishing scraps (hereinafter also referred to as “silicon cutting chips” or “cutting chips”). Further, the chips and the like include fine scraps obtained by pulverizing a silicon wafer to be discarded by a known pulverizer. As shown in FIG. 1, the manufacturing method of the lithium ion battery of this embodiment includes the following steps (1) and (2). Moreover, the manufacturing method of the silicon
  • the negative electrode material and negative electrode manufacturing apparatus 500 of the lithium ion battery of the present embodiment mainly includes a cleaning machine (cleaning and preliminary pulverizer) 10, a pulverizer 20, and a dryer (not shown).
  • the rotary evaporator 40 is provided.
  • the negative electrode material of the lithium ion battery of this embodiment and the negative electrode manufacturing apparatus 500 can include an oxide film removal tank 50 and a centrifuge 58 as another aspect that can be employed. Note that only the pulverizer 20 described above, or the washing machine 10 and the pulverizer 20 are referred to as a pulverization unit in the present embodiment.
  • Cleaning step (S1) In the cleaning step (S1) of the present embodiment, for example, it is formed in the cutting process of single crystal or polycrystalline silicon, that is, a crystalline silicon lump or ingot (n-type crystalline silicon lump or ingot). Silicon chips and the like are cleaned. Typical silicon chips and the like are chips and the like in which a silicon ingot is cut out by a known wire or the like (typically, a fixed abrasive wire). Therefore, in the present embodiment, since the silicon fine particles constituting the negative electrode material of the lithium ion battery are formed using silicon chips, which have been conventionally regarded as waste, as the starting material, the manufacturing cost and / or the raw material Excellent in terms of easy procurement and resource utilization.
  • the cleaning step (S1) of the present embodiment is mainly for the purpose of removing organic substances adhering in the formation process of the above-described silicon chips, typically organic substances such as coolants and additives used in the cutting process.
  • the chips 1 to be cleaned are weighed, the chips 1, the predetermined first liquid, and the ball 11 have a bottomed cylindrical shape. It is introduced into the pot 13a. After sealing the inside of the pot 13a using the lid 13b, the two cylindrical rotating bodies 15 included in the ball mill which is the cleaning machine (cleaning and preliminary pulverizing machine) 10 are rotated, thereby rotating the rotary body 15 on the rotary body 15. The pot 13a is rotated. As a result, in the pot 13a, the chips 1 to be cleaned are dispersed in the first liquid, whereby the chips 1 are cleaned and preliminarily pulverized.
  • the ball mill machine of this embodiment uses the steel balls, magnetic balls, cobblestones and the like stored in the pot 13a and the lid 13b as the ball type 11 (grinding medium), and rotates the pot 13a and the lid 13b. It is a crusher that gives a physical impact force.
  • a suitable example of the first liquid is acetone.
  • 300 milliliters (mL) of acetone is added to 100 grams (g) of silicon chips and the like, and a ball mill machine (in this embodiment, manufactured by MASUDA, Silicon chips and the like were dispersed in acetone by stirring in a pot 13a and a lid 13b placed on a rotating body 15 (Universal BALL MILL) for about 1 hour.
  • Ball types of the ball mill machine were alumina balls having a particle diameter of ⁇ 10 millimeters (mm) and alumina balls having a particle diameter of ⁇ 20 mm.
  • the cleaning step (S1) of the present embodiment the dispersion process is performed by pre-grinding and stirring silicon chips and the like in the first liquid in the ball mill. Accordingly, since the cleaning efficiency is remarkably improved as compared with the treatment of simply immersing in the first liquid, silicon particles suitable for improving the negative electrode characteristics of the lithium ion battery, particularly for improving the charge / discharge cycle characteristics, are used. Can be obtained.
  • the lid 13b is opened to discharge the silicon particles together with the first liquid, and then the first liquid is removed by suction filtration with a known vacuum filtration means to become a waste liquid.
  • the remaining silicon particles are dried in a known dryer. If necessary, the silicon particles obtained after the drying treatment are again preliminarily crushed and washed in the washing machine (washing / preliminary pulverizer) 10 in the same process.
  • cleaning process (S1) is the washing
  • a suitable example of the second liquid of this embodiment is IPA (isopropyl alcohol).
  • the silicon particles obtained in the second liquid and the washing step (S1) are placed in the pot 13a so that the second liquid is 95% of the silicon particles and 95% of the second liquid.
  • a preliminary pulverization process is performed by rotating a cleaning machine (cleaning and preliminary pulverizer) 10. After relatively coarse particles are removed by passing the slurry containing silicon particles that have been subjected to pre-grinding treatment through a mesh having an opening of 180 microns, the obtained slurry containing silicon particles is used as a bead mill (this embodiment).
  • the finely pulverizing treatment is performed using a model star mill LMZ015 manufactured by Ashizawa Finetech. More specifically, a slurry containing silicon particles from which silicon chips having a particle diameter of 180 microns or more are removed is introduced into the inlet 21 of the pulverizer 20, and the slurry is processed by the bead mill using the pump 28. A fine pulverization process is performed in the chamber 22.
  • a specific example of the bead type of the bead mill is zirconia beads having a particle diameter of ⁇ 0.5 mm.
  • the second liquid is removed using a rotary evaporator 40 that automatically performs vacuum distillation to obtain finely pulverized silicon fine particles as a result. It is done.
  • silicon fine particles can be obtained by introducing about 450 g of zirconia beads having a particle diameter of ⁇ 0.5 mm and performing a pulverization process at a rotational speed of 2900 rpm for 4 hours.
  • the pulverization step (S2) it is also possible to perform the pulverization treatment by any one of the pulverizers other than those described above, or a combination of two or more of the pulverizers composed of a ball mill, a bead mill, a jet mill, and a shock wave pulverizer. Another aspect that can be achieved.
  • a pulverizer used in the pulverization step (S2) not only an automatic pulverizer but also a manual pulverizer may be employed.
  • a pulverization step (S2) consisting of processing by a bead mill, or a bead mill It is preferable to employ a pulverization step (S2) including the treatment by.
  • the silicon particles are not only pulverized, but also the formed silicon fine particles or aggregates or aggregates thereof are more accurately dispersed so that the silicon fine particles are “dama”. Can be prevented.
  • the silicon fine particles obtained by the above-described crushing step (S2) can be further crushed.
  • Oxide film removal step (S3) In the present embodiment, an oxide film removing step (S3) is performed as a preferred embodiment. However, even if this oxide film removal step (S3) is not performed, at least a part of the effects of the present embodiment can be achieved.
  • the silicon fine particles 2 obtained by the pulverizing step (S2) are brought into contact with hydrofluoric acid or an aqueous ammonium fluoride solution.
  • the silicon fine particles 2 obtained by the pulverization step (S2) are dispersed by being immersed in an aqueous solution of hydrofluoric acid or ammonium fluoride.
  • the silicon fine particles 2 are dispersed in a hydrofluoric acid or ammonium fluoride aqueous solution 55 by using a stirrer 57, whereby an oxide (on the surface of the silicon fine particles 2 ( Mainly silicon oxide) is removed.
  • the silicon fine particles from which part or all of the surface oxide has been removed are separated from the hydrofluoric acid aqueous solution by the centrifuge 58. Thereafter, the silicon fine particles are immersed in a third liquid such as an ethanol solution. By removing the third liquid, silicon fine particles from which part or all of the oxide (or oxide film) on the surface that was originally formed are removed can be obtained.
  • the silicon fine particles are immersed in hydrofluoric acid or an aqueous ammonium fluoride solution to bring the hydrofluoric acid into contact with the silicon fine particles.
  • a step of bringing hydrofluoric acid or an aqueous ammonium fluoride solution into contact with the silicon fine particles by the above method can also be employed.
  • spraying a hydrofluoric acid aqueous solution onto silicon fine particles like a so-called shower is another aspect that can be employed.
  • the silicon fine particles obtained by the above-described cleaning step (S1) and pulverizing step (S2) or by the cleaning step (S1), pulverizing step (S2), and oxide film removing step (S3) are, for example, In order to reduce the variation in the number distribution and / or volume distribution of the crystallite diameter of each silicon fine particle, it can be classified.
  • FIG. 5 is an SEM (scanning electron microscope) image of an example of silicon fine particles or aggregates or aggregates thereof after the crushing step (S2) of the first embodiment.
  • FIG. 6 is a view showing an SEM image of an example of enlarged silicon fine particles or aggregates or aggregates thereof after the crushing step (S2) of the first embodiment.
  • FIG. 7 is a diagram showing (a) an SEM image of another example of an aggregate or aggregate of silicon fine particles and (b) a partially enlarged view of (a) in the first embodiment. is there.
  • FIG. 8 is a diagram showing a transmission electron microscope (TEM) image of the silicon fine particles of the first embodiment.
  • TEM transmission electron microscope
  • silicon fine particles or aggregates thereof are, so to speak, thin layered silicon fine particles. It was confirmed that it was an aggregate or aggregate in a state of being folded into a multi-layer petal shape or a scale shape.
  • the range of the length (major axis) when the width (minor axis) of one or a group of scaly silicon fine particles is 1, is 3.3 to 12.9. there were.
  • FIG. 8 Another interesting finding was obtained from the TEM image shown in FIG. 8 focusing on individual silicon fine particles. Specifically, it was confirmed that the individual silicon fine particles shown by the region surrounded by the white line in FIG. 8 were crystalline, that is, single crystal silicon. In addition, it was confirmed that at least some of the silicon fine particles were amorphous polygonal crystallites having a size of about 2 nm to about 10 nm in a cross-sectional view. In FIG. 8, the crystal plane orientation is shown in each region surrounded by a white line.
  • FIG. 9 shows a crystallite size indicating (a) number distribution with respect to the crystallite size in the Si (111) direction of the silicon fine particles of the first embodiment. It is a graph which shows distribution and crystallite diameter distribution which shows (b) volume distribution.
  • FIG. 9 shows the results obtained by analyzing the crystallite size distribution of the silicon fine particles after the pulverization step (S2) using the X-ray diffraction method.
  • the horizontal axis represents the crystallite diameter (nm)
  • the vertical axis represents the frequency.
  • the mode diameter was 1.6 nm, and the median diameter (50% crystallite diameter) was 2.6 nm.
  • the mode diameter was 6.3 nm and the median diameter was 9.9 nm. Accordingly, it was confirmed that the number distribution was 5 nm or less regardless of the mode diameter or the median diameter, and more specifically, a value of 3 nm or less was realized. It should be noted that the volume distribution was confirmed to be at least less than 50 nm, particularly 30 nm or less (more specifically, less than 20 nm), regardless of the mode diameter or median diameter. . Furthermore, in the example shown in FIG. 9, it was confirmed that an extremely small value of 10 nm or less was realized.
  • the silicon fine particles obtained after the pulverization step (S2) using the bead mill method have an average crystallite diameter of about 20 nm or less, more specifically 10 nm. It was confirmed to be about 9.8 nm, which realizes the following.
  • the crystallite size distribution of the silicon fine particles after the oxide film removing step (S3) is almost the same as that in FIG.
  • the product can be said to be in a state in which so-called thin layer silicon fine particles having a major axis of about 100 nm or less are folded into a multi-layer petal shape or a scale shape.
  • the silicon fine particles are mainly composed of crystallites having a major axis of about 20 nm or less, more narrowly 10 nm or less.
  • the silicon fine particles of the present embodiment include silicon fine particles having a crystallite diameter of 1 nm or less as shown in FIG.
  • the average crystallite size in the volume distribution of the silicon fine particles of the present embodiment is about 10 nm.
  • This numerical value can be said to be a very small value.
  • the apparent volume diameter of the silicon fine particles was in the range of about 100 nm or less.
  • ultrafine silicon particles having a major axis of about 20 nm or less, more narrowly 10 nm or less, particularly 5 nm or less in a narrow sense, or aggregates or aggregates thereof are formed on the surface of the carbon substrate 101.
  • the charge / discharge cycle characteristics as a negative electrode material of a lithium ion battery can be improved with higher accuracy by contacting, adhering, or embedding a part thereof.
  • the fact that at least part of the surface of these fine silicon particles is covered with carbon increases the electrical conductivity between the silicon fine particles, and higher charge capacity value and discharge capacity value, In addition, this contributes to realizing excellent charge / discharge cycle characteristics.
  • the fine silicon particles after the crushing step (S2) or the oxide film removing step (S3) of the present embodiment or the aggregates or aggregates thereof are brought into contact with and attached to the surface of the carbon substrate 101 or inside thereof, or By embedding a part, high performance of the negative electrode material of the lithium ion battery can be realized. More specifically, when lithium ions (Li + ) ionized from the positive electrode material of the lithium ion battery reached the negative electrode, the lithium ions (Li + ) folded in multiple layers in a multi-layered petal shape or scale shape. A unique effect can be obtained in that it easily enters and exits the gap between the aggregates or aggregates in the state.
  • the above-described carbon substrate 101 and the above-mentioned silicon fine particles 201 or aggregates or aggregates thereof that is, silicon
  • a mixing step of mixing the fine particles 201) is performed. Specifically, using the bead mill (pulverizer 20) used in the pulverization step (S2), without introducing beads, the carbon substrate 101 and the silicon fine particles 201 and the like described above was mixed for about 1 hour. According to the inventors, the mixing ratio of the carbon base material 101 and silicon fine particles 201 or the like, or the amount of carbon covering the surface of the silicon fine particles 201 or the like, or silicon fine particles or the like, as will be described later.
  • the “coating” of the silicon fine particles 201 on the carbon base material 101 means that the silicon fine particles 201 are in contact with and adhere to the carbon base material 101 or in the carbon base material 101. It means that it is buried.
  • a bead mill in this embodiment, , Manufactured by Ashizawa Finetech Co., Ltd., model DMS65.
  • the mixing ratio of the object to be processed and IPA was 70 wt% (350 g) for IPA with respect to 30 wt% for the object to be processed.
  • treatment with a bead mill for about 2 hours for example, by carrying out a rotation speed of 2800 rpm, the carbon substrate was coated with silicon fine particles or aggregates or aggregates thereof.
  • the silicon fine particles 201 or aggregates or aggregates thereof (that is, silicon fine particles 201) have a multi-layered petal-like or scale-like shape as shown in FIG.
  • the silicon fine particles 201 and the bead mill are mixed and stirred before the mixing step of mixing the carbon substrate 101 and the silicon fine particles 201 is performed.
  • this stirring process leads not only to dispersion of silicon fine particles or aggregates or aggregates thereof but also to further pulverization by appropriately changing the conditions.
  • FIG. 10 is a conceptual diagram of a structure in which silicon fine particles 201 or aggregates or aggregates thereof are coated with carbon.
  • FIG. 10 covering the surface of silicon fine particles 201 or the like with a carbon coating layer 301 is also a preferred embodiment that can be adopted.
  • FIG. 10 shows a state in which the entire surface of the silicon fine particles 201 or the like is covered with the carbon coating layer 301, the present embodiment is not limited to such a mode. For example, even if a part of the surface of the silicon fine particle 201 or the like is covered with the carbon coating layer 301, at least a part of the effect can be achieved.
  • FIG. 11 is a conceptual diagram schematically showing a device configuration for forming the carbon coating layer 301.
  • silicon fine particles 201 or aggregates or aggregates thereof placed on a sample boat are accommodated in a reactor, and the sample boat is installed near the center of the reactor.
  • An example of the reaction furnace of this embodiment is a quartz tube.
  • the size of the reactor of this embodiment is 5 cm in diameter and 40 cm in length.
  • the hydrogen line was closed using a cock, and argon gas (Ar) was flowed at a flow rate of 200 mL / min, and the temperature was lowered to 800 ° C. at a rate of 10 ° C./min.
  • the carbon coating layer 301 was grown for 1 hour by introducing propylene gas (C 3 H 6 ) at a flow rate of 10 mL / min and introducing a flow rate of argon gas at 190 mL / min. .
  • the propylene gas line was closed, and the argon gas was kept at a flow rate of 200 mL / min for 15 minutes, and then naturally cooled.
  • FIG. 12 shows a method of coating the entire structure in which silicon fine particles 201 or the like are brought into contact with or embedded in the surface of the carbon base material 101.
  • FIG. 12 a structure in which silicon fine particles 201 or the like are brought into contact with the surface of carbon substrate 101 or inside thereof, or a part of the structure is embedded (or inserted) is further covered with carbon coating layer 302.
  • the structure shown in FIG. 12 can be manufactured, for example, by forming the carbon covering layer 302 after manufacturing the structure shown in FIG. In this way, by further covering with the carbon coating layer 302, further improvement in electrical conductivity can be realized.
  • Silicon fine particles or the like 201 (or a structure in which the surface of silicon fine particles or the like 201 is covered with the carbon coating layer 301) is brought into contact with the surface of the carbon substrate 101 or inside thereof, or a part thereof is embedded (or inserted).
  • a method of further forming the carbon coating layer 302 on the structure is as follows.
  • a typical example is the same method as the method of providing the carbon coating layer 301 on the surface of the silicon fine particle 201 or the like already described, and therefore a duplicate description can be omitted.
  • silicon fine particles 201 (or a structure in which the surface of the silicon fine particles 201 is covered with the carbon coating layer 301) is brought into contact with the surface of the carbon substrate 101 or the inside thereof on the sample boat shown in FIG. A partially embedded (or inserted) structure is placed, and the sample boat is installed near the center of the reactor.
  • silicon fine particles 201 or the like (or a structure in which the surface of the silicon fine particles 201 is covered with the carbon coating layer 301) is brought into contact with or embedded in the surface of the carbon substrate 101 (or A structure in which a part or all of the (inserted) structure is covered with the carbon coating layer 302 having a nanographene multilayer structure can be formed.
  • FIG. 13 is a scanning electron micrograph of the negative electrode material of Example 1.
  • Example 1 the structure in which the surface of the silicon fine particle 201 or the like shown in FIG. 10 is covered with the carbon coating layer 301 is brought into contact with or partially on the surface of the carbon base material 101 which is an artificial graphite particle. The entire structure is embedded. The longest diameter of the artificial graphite particles in Example 1 is 33 ⁇ m.
  • FIG. 14 is a further enlarged scanning electron micrograph of the negative electrode material of Example 1.
  • FIG. 14 is an enlarged view of the silicon fine particles 201 attached to the surface of the carbon substrate 101 (artificial graphite particles) shown in FIG. 13 or a part of the aggregate or aggregate thereof.
  • the average thickness of the silicon fine particles 201 or aggregates or aggregates thereof is 30 nm, and the average longest diameter is 300 nm.
  • the reason why the silicon microparticles 201 shown in FIG. 9 are used as a starting material is that the silicon microparticles 201 are mixed with each other in the process of mixing the silicon microparticles 201 with the carbon substrate 101. Furthermore, it is considered that it is because of aggregation or aggregation.
  • FIG. 15 is a scanning electron micrograph showing an example of the structure shown in FIG. 14 that is easy to see by removing some of the silicon fine particles 201 and the like.
  • a portion where the silicon fine particles 201 or the aggregates or aggregates thereof are considered to be in contact with or partially embedded in the surface of the carbon substrate 101 or inside thereof is indicated by arrows.
  • the bond between the carbon base material 101 and the silicon fine particles 201 or the aggregates or aggregates thereof is strengthened.
  • the bonding state between the carbon substrate 101 and the silicon fine particles 201 can be maintained.
  • silicon fine particles 201 existing in the vicinity of the surface of the carbon substrate 101 can be further bonded to the surrounding silicon fine particles 201 or aggregates or aggregates thereof by van der Waals force.
  • FIG. 15 shows a state in which a part of the silicon fine particles 201 or the like bonded by van der Waals force is removed.
  • the silicon fine particles 201 or aggregates or aggregates thereof are brought into contact with the surface of the carbon base material 101 or the inside thereof in a state of being almost uniformly dispersed without becoming “dama”. It is a preferred embodiment that a part or a part is embedded.
  • the silicon fine particles 201 are dispersed as finer particles, it is considered that a state is formed in which the carbon base material 101 is more easily contacted and embedded in the carbon base material 101 (for example, easily pierced). .
  • it is preferable to carry out a process such as stirring and dispersing the silicon fine particles 201 together with a bead mill or the like.
  • FIG. 16 shows the result of calculating the silicon weight ratio dependency of the electric capacity.
  • the carbon (C) is assumed to have a stoichiometric composition of LiC 6 when charged with lithium ions, and its electric capacity is 372 mAh / g.
  • silicon (Si) assuming that the stoichiometric composition at the time of filling with lithium ions is Li 15 Si 4 and its electric capacity is 3577 mAh / g (broken line in FIG. 16), Li Assuming 22 Si 5 , the calculation was made for both the case where the electric capacity was 4197 mAh / g (solid line in FIG. 16).
  • the horizontal axis Si / (Si + C) Si in FIG. 16 represents the weight of the silicon fine particles 201 and the like
  • the horizontal axis C in FIG. 16 represents the total weight of the carbon base material 101, the carbon coating layers 301, 302, and the like. It is.
  • a suitable numerical range that can be actually used is a silicon weight ratio of 5 wt% or more and 95 wt% or less.
  • a numerical range of 5 wt% or more and 50 wt% or less is adopted.
  • the lithium ion battery 1000 of this embodiment includes a positive electrode 1101, a separator 1102, a negative electrode 1103, a battery can 1104, a positive electrode current collector tab 1105, a negative electrode current collector tab 1106, an inner lid 1107, and an internal pressure release valve 1108. , A gasket 1109, a positive temperature coefficient (TPC) resistance element 1110, and a battery lid 1111.
  • the battery lid 1111 of this embodiment is an integrated part including an inner lid 1107, an internal pressure release valve 1108, a gasket 1109, and a temperature coefficient resistance element 1110.
  • the positive electrode 1101 can be manufactured by the following procedure.
  • LiMn 2 O 4 is employed as the positive electrode active material.
  • 7.0 wt% and 2.0 wt% of graphite powder and acetylene black are added as conductive materials to 85.0 wt% of the positive electrode active material, respectively.
  • a 6.0 wt% polyvinylidene fluoride (hereinafter abbreviated as PVDF) solution in 1-methyl-2-pyrrolidone (hereinafter abbreviated as NMP) was added as a binder, and a planetary mixer was used. And mix.
  • the positive electrode 1101 having a thickness of 100 ⁇ m, a length of 900 mm, and a width of 54 mm can be manufactured by cutting using a cutting machine.
  • the negative electrode 1103 can be manufactured by the following procedure.
  • the negative electrode material negative electrode active material
  • the negative electrode material made of the carbon material coated with the silicon fine particles 201 or the aggregates or aggregates thereof described in the first embodiment may be adopted. it can.
  • PVDF solution dissolved in NMP
  • 95.0 wt% of the negative electrode material are mixed using a planetary mixer.
  • a uniform negative electrode mixture slurry is prepared by removing bubbles in the slurry under vacuum.
  • This slurry is uniformly and evenly applied to both surfaces of a rolled copper foil having a thickness of 10 ⁇ m using a known applicator.
  • compression molding is performed using a roll press. The electrode density at this time is 1.3 g / cm 3 .
  • the negative electrode 1103 having a thickness of 110 ⁇ m, a length of 950 mm, and a width of 56 mm can be produced by cutting with a cutting machine.
  • the positive electrode current collecting tab 1105 and the negative electrode current collecting tab 1106 are ultrasonically welded to the uncoated portions (current collector exposed surfaces) of the positive electrode 1101 and the negative electrode 1103 manufactured by the above-described manufacturing method, respectively.
  • an aluminum lead piece can be used for the positive electrode current collecting tab 1105, and a nickel lead piece can be used for the negative electrode current collecting tab 1106.
  • a separator 1102 made of a porous polyethylene film having a thickness of 30 ⁇ m is inserted into the positive electrode 1101 and the negative electrode 1103, whereby the positive electrode 1101, the separator 1102, and the negative electrode 1103 are wound to produce a wound body.
  • the negative electrode current collecting tab 1106 is connected to the bottom of the battery can 1104 using a resistance welder.
  • the positive electrode current collecting tab 1105 is connected to the bottom surface of the inner lid 1107 by ultrasonic welding.
  • the solvent of the electrolyte solution of this embodiment consists of ethylene carbonate (EC), dimethyl carbonate (DMC), and diethyl carbonate (DEC), for example.
  • An example of the volume ratio of the three materials mentioned above is 1: 1: 1.
  • the electrolyte of the present embodiment is LiPF 6 having a concentration of 1 mol / L (about 0.8 mol / kg).
  • Comparative Example 1 As Comparative Example 1, instead of the carbon-coated silicon fine particles 201 employed in Example 1, carbon-coated spherical silicon nanoparticles were employed, and the same method as in Example 1 was used. evaluated.
  • the average major axis of artificial graphite as the carbon substrate 101 is 20 ⁇ m, and the average major axis of the silicon fine particles 201 is 60 nm.
  • An example of the silicon weight ratio in the lithium ion battery 1000 is 15.6 wt%.
  • charging / discharging was performed at a speed of 1C.
  • a composite material of the carbon base material 101 (artificial graphite) and silicon fine particles 201 of the present embodiment, more specifically, a part of the silicon fine particles 201 or the aggregate or aggregate of the silicon fine particles 201 When a part of the structure in contact with the carbon base material 101 or embedded in the carbon base material 101 was used, the capacity retention rate after 100 cycles was 91.0%. On the other hand, the capacity retention rate of the composite material of artificial graphite and carbon-coated spherical silicon nanoparticles was 48.7%.
  • FIG. 18 is a graph showing the results of evaluating the lithium ion batteries of Example 1 and Comparative Example 1.
  • the maintenance rate of the lithium ion battery 1000 of Example 1 was markedly superior to that of Comparative Example 1. More specifically, in Example 1, it was found that even when the number of cycles reached 100, the maintenance rate could be 90% or more, more specifically 91% or more. .
  • the maintenance rate of the lithium ion battery 1000 of Example 1 achieves a maintenance rate that is 40% or more higher than the result of Comparative Example 1.
  • a single-crystal or polycrystalline silicon lump or silicon chips formed in the cutting process of an ingot is exemplified, but other forms of silicon are exemplified.
  • chips and the like are used as a starting material.
  • silicon chips and the like are not necessarily formed in the cutting process of silicon ingots in the production process of semiconductor products. It is also possible to cut them randomly or randomly.
  • so-called silicon waste materials such as silicon chips and silicon polishing scraps that are normally discarded can be used as starting materials for the silicon fine particles in each of the above-described embodiments.
  • fine waste obtained by pulverizing a waste wafer or the like may be included.
  • fine silicon particles using a starting material such as metallic silicon chips or metallic silicon polishing scraps or other metallic silicon particles may be employed.
  • the impurity concentration of the n-type crystalline silicon in each of the above embodiments is not particularly limited. Further, not only n-type but also p-type crystalline silicon can be employed. Furthermore, crystalline silicon which is a genuine semiconductor can also be employed as the crystalline silicon in each of the embodiments described above. Note that since movement of electrons in the negative electrode material of the lithium ion battery is emphasized, it is more preferable to use crystalline silicon containing an n-type impurity.
  • the negative electrode manufacturing apparatus 200 of the lithium ion battery shown in FIG. 19 is adopted as an alternative device to the negative electrode material and negative electrode manufacturing apparatus 500 shown in FIG. 3 in the first embodiment. Also good. Specifically, from the viewpoint of simplification of equipment and / or reduction of manufacturing cost, in the negative electrode manufacturing apparatus 200 for a lithium ion battery, a cleaning machine for cleaning silicon chips formed in the cutting process of silicon.
  • Reference numeral 10 denotes an aspect also serving as a pulverizer 20 that forms fine silicon particles by pulverizing washed silicon chips and the like. Accordingly, in the apparatus / method shown in FIG.
  • Silicon fine particles will be obtained.
  • the silicon fine particles are formed by the bead mill machine after the processing using the ball mill machine as in the first embodiment. It is preferable to do.
  • the negative electrode material of the lithium ion battery and the lithium ion battery including the same of the present invention include, for example, various power generation or power storage devices (including small household power storage devices and large power storage systems), smartphones, portable information terminals, and portable electronics.
  • Equipment cell phones, portable music players, notebook computers, digital cameras / videos), electric vehicles, hybrid electric vehicles (HEV) or plug-in hybrid electric vehicles (PHEV), motorcycles powered by motors, motors
  • the present invention can be applied to various devices or apparatuses including a motor tricycle as a power source, other transport machines or vehicles.

Abstract

A negative-electrode material 100 for one lithium-ion battery according to the present invention is silicon fine particles 201 having a volume distribution in which the modal diameter and the median diameter are not more than 50 nm, or alternatively, an aggregate or collection of the silicon fine particles 201. Some of the silicon fine particles 201 that are folded in the shape of multilayered petals or ramenta or a part of the aggregate or collection of the silicon fine particles 201 are in contact with, or are embedded in, a carbon base material 101. A lithium-ion battery having superior charge/discharge cycle characteristics can be achieved by employing this negative-electrode material 100.

Description

リチウムイオン電池の負極材料、リチウムイオン電池、リチウムイオン電池の負極材料の製造方法Negative electrode material for lithium ion battery, lithium ion battery, and method for producing negative electrode material for lithium ion battery
 本発明は、リチウムイオン電池の負極材料、リチウムイオン電池、リチウムイオン電池の負極材料の製造方法に関する。 The present invention relates to a negative electrode material for a lithium ion battery, a lithium ion battery, and a method for producing a negative electrode material for a lithium ion battery.
 従来から採用されているリチウムイオン電池は、その負極側に、負極材と、負極活物質(以下、「負極材料」ともいう)の黒鉛(天然黒鉛、人造黒鉛等)とを結着材を用いて混合した合剤層を有する負電極を備えている。その黒鉛にリチウムイオンを充填した際の化学量論的組成は、LiCである。また、その理論容量の計算値は、372mAh/gである。 Conventionally used lithium ion batteries use a negative electrode material and a negative electrode active material (hereinafter also referred to as “negative electrode material”) graphite (natural graphite, artificial graphite, etc.) as a binder on the negative electrode side. And a negative electrode having a mixture layer mixed together. Stoichiometric composition when filled with lithium ions in its graphite is LiC 6. The calculated theoretical capacity is 372 mAh / g.
 これに対して、負極材料としてシリコンを採用した場合、該シリコンにリチウムイオンを充填した際の化学量論的組成は、Li15Si、又はLi22Siである。また、その理論容量の計算値は、3577mAh/g、又は4197mAh/gである。従って、シリコンを負極材料として採用すると、理論上、黒鉛に比べて、約9.6倍又は約11.3倍もリチウムを貯蔵することが可能となるため、シリコン(特に、粒子状のシリコン)は非常に魅力的な材料である。 On the other hand, when silicon is employed as the negative electrode material, the stoichiometric composition when the silicon is filled with lithium ions is Li 15 Si 4 or Li 22 Si 5 . The calculated value of the theoretical capacity is 3577 mAh / g or 4197 mAh / g. Accordingly, when silicon is employed as the negative electrode material, it is theoretically possible to store lithium about 9.6 times or about 11.3 times that of graphite, so silicon (particularly, particulate silicon) Is a very attractive material.
 例えば、シリコン粒子の製造例として、単結晶シリコンを乳鉢で粉砕し、メッシュを用いて分級することによって形成した、直径が約38ミクロン(μm)以下の粉末を、アルゴン雰囲気中30℃/分の昇温速度で150℃(到達温度)にまで加熱されたものが開示されている(特許文献1)。また、他の例として、高温高濃度の亜鉛ガス中に液状の四塩化ケイ素を供給し、1050℃以上の高温状態で反応させることによって、四塩化ケイ素を還元してシリコン粒子を形成し、該微細なシリコンを1000℃以下、特に500~800℃にて結晶成長並びに凝集させた後、形成したシリコン粒子の粒度を調整し、塩化亜鉛水溶液中に集める。この作業により、粒径が1~100μm程度の高純度シリコン粒子が得られること、及びそれを利用することが開示されている(特許文献2)。 For example, as an example of the production of silicon particles, a powder having a diameter of about 38 microns (μm) or less formed by pulverizing single crystal silicon in a mortar and classifying with a mesh is used in an argon atmosphere at 30 ° C./min. What was heated to 150 degreeC (attainment temperature) by the temperature increase rate is disclosed (patent document 1). As another example, by supplying liquid silicon tetrachloride in high-temperature and high-concentration zinc gas and reacting at a high temperature of 1050 ° C. or higher, silicon tetrachloride is reduced to form silicon particles, Fine silicon is crystallized and agglomerated at 1000 ° C. or lower, particularly 500 to 800 ° C., and the size of the formed silicon particles is adjusted and collected in an aqueous zinc chloride solution. It is disclosed that high-purity silicon particles having a particle size of about 1 to 100 μm can be obtained by this work, and that it is used (Patent Document 2).
 しかしながら、粒子状のシリコンにリチウムイオンを充填すると、シリコンの体積が約2.7倍~約3.1倍に膨張する。従って、リチウムイオンの充填と放出を繰り返すことは、シリコン粒子の膨張と収縮を繰り返すことになるため、時間の経過とともにシリコン粒子が力学的に破壊することになる。シリコン粒子が破壊されると、その破壊によって形成された微細なシリコン粒子が電気的に孤立する。加えて、それらの微細なシリコン粒子の破壊面上に新しい電気化学的被覆層が形成されることになる。その結果、不可逆容量が増加するため、充放電サイクル特性が著しく低下する。 However, when lithium ion is charged into particulate silicon, the volume of silicon expands to about 2.7 times to about 3.1 times. Therefore, repeating the filling and releasing of lithium ions repeats the expansion and contraction of the silicon particles, so that the silicon particles are dynamically destroyed over time. When silicon particles are destroyed, the fine silicon particles formed by the destruction are electrically isolated. In addition, a new electrochemical coating layer will be formed on the fracture surface of these fine silicon particles. As a result, the irreversible capacity is increased, and the charge / discharge cycle characteristics are significantly deteriorated.
 上述の技術的課題に対して、体積分布においてはメジアン径(50%結晶子径)であっても10nm程度にまで微細化したシリコン粒子を、リチウムイオン電池の負極材料の一部として活用することにより、リチウムイオンの充填と放出に伴う影響を抑制又は防止する技術が開示されている(特許文献3)。 In response to the above technical problems, silicon particles refined to about 10 nm even when the volume distribution is a median diameter (50% crystallite diameter) should be used as a part of a negative electrode material of a lithium ion battery. Discloses a technique for suppressing or preventing the influence associated with the filling and releasing of lithium ions (Patent Document 3).
特開2005-032733号公報JP 2005-032733 A 特開2012-101998号公報JP 2012-101998 A 国際公開公報第WO2015/189926号パンフレットInternational Publication No. WO2015 / 189926 Pamphlet
 しかしながら、上述の特許文献1及び2において開示されているシリコン粒子の場合、高温の合成と採集工程を行う必要があるため、負極材料としてのシリコン粒子を得るまでの製造工程が極めて複雑になる。その結果、生産性の低下を招いたり、製造コスト高になることが避けられない。また、特許文献3において開示されている技術は、シリコン粒子の一部が、例えば膨張収縮によって電気的に孤立しないように配慮されている点で有効であるが、改善の余地はまだまだ残されている。すなわち、シリコン粒子を用いたリチウムイオン電池の開発は、未だ道半ばである。 However, in the case of the silicon particles disclosed in the above-mentioned Patent Documents 1 and 2, since it is necessary to perform a high-temperature synthesis and collection process, the manufacturing process until obtaining silicon particles as a negative electrode material becomes extremely complicated. As a result, it is unavoidable that productivity is lowered and manufacturing costs are increased. Further, the technique disclosed in Patent Document 3 is effective in that a part of silicon particles is considered not to be electrically isolated by, for example, expansion and contraction, but there is still room for improvement. Yes. In other words, development of lithium ion batteries using silicon particles is still halfway.
 本願発明者らは、上述の技術的課題を踏まえ、負極材料として利用する材料をシリコン粒子のみに拘泥することなく、リチウムイオン電池のメカニズムに適応し得る、より高性能の負極材料を見出すべく、鋭意研究と分析を重ねた。 In order to find a higher-performance negative electrode material that can be adapted to the mechanism of a lithium ion battery, without limiting the material used as the negative electrode material only to silicon particles, in light of the above technical problem, Repeated research and analysis.
 その結果、本願発明者らは、ある特徴的なシリコン微細粒子を、炭素基材に対していわば副次的な材料として活用しつつ、その有用性を最大限活用することによって、より高性能の負極材料を実現し得るとの知見を得た。本発明は、上述の視点に基づいて創出された。 As a result, the inventors of the present application have achieved higher performance by making the most of their usefulness while utilizing certain characteristic silicon fine particles as a secondary material to the carbon base material. The knowledge that a negative electrode material can be realized was obtained. The present invention was created based on the above viewpoint.
 本発明は、用途の拡大とともに炭酸ガスの削減効果も大きく期待されている、リチウムイオン電池について、より高性能のリチウムイオン電池の負極材料及びその製造方法の実現に大きく貢献するものである。 The present invention greatly contributes to the realization of a higher performance negative electrode material of a lithium ion battery and a method for producing the same for a lithium ion battery, which is expected to greatly reduce carbon dioxide gas as the use expands.
 本発明の1つのリチウムイオン電池の負極材料においては、モード径及びメジアン径が50nm未満の体積分布を有するシリコン微細粒子あるいはその凝集物又は集合物であって、複層花弁状又は鱗片状に折重なった状態の前述のシリコン微細粒子の一部あるいは前述のシリコン微細粒子の該凝集物又は該集合物の一部が、炭素基材に接し、又は該炭素基材の中に埋まっている。 In the negative electrode material of one lithium ion battery of the present invention, silicon fine particles having a volume distribution with a mode diameter and a median diameter of less than 50 nm, or aggregates or aggregates thereof, are folded into a multi-layer petal shape or a scale shape. A part of the above-mentioned silicon fine particles in an overlapped state or a part of the aggregate or the aggregate of the above-described silicon fine particles is in contact with or embedded in the carbon base material.
 このリチウムイオン電池の負極材料を採用すれば、より確度高く、シリコン微細粒子が電気的に孤立しないようにすることができるため、例えば充放電サイクル特性を向上させ、リチウムイオン電池の長寿命化を実現することが可能となる。 By adopting this negative electrode material for lithium ion batteries, it is possible to prevent the silicon fine particles from being electrically isolated with higher accuracy. For example, the charge / discharge cycle characteristics can be improved, and the life of the lithium ion battery can be extended. It can be realized.
 また、本発明の1つのリチウムイオン電池の負極材料の製造方法は、固定砥粒ワイヤによって削り出される切粉又は切削屑である結晶性シリコンを粉砕することにより、モード径及びメジアン径が50nm未満の体積分布を有するシリコン微細粒子あるいはその凝集物又は集合物を形成する粉砕工程と、前述のシリコン微細粒子あるいは前述の凝集物又は前述の集合物の一部が、炭素基材に接するように、又は該炭素基材の中に埋まるように、その炭素基材とそのシリコン微細粒子あるいはその凝集物又はその集合物とを混合する、混合工程と、を含む。 Moreover, the manufacturing method of the negative electrode material of one lithium ion battery of this invention is a mode diameter and a median diameter of less than 50 nm by grind | pulverizing the crystalline silicon | silicone which is the chip or cutting waste scraped off by a fixed abrasive wire. A pulverization step for forming silicon fine particles having a volume distribution of the above or an aggregate or aggregate thereof, and a part of the silicon fine particles or the aggregate or aggregate described above being in contact with the carbon substrate, Or a mixing step of mixing the carbon substrate with the silicon fine particles or the aggregates or aggregates so as to be embedded in the carbon substrate.
 このリチウムイオン電池の負極材料の製造方法によれば、切粉又は切削屑である結晶性シリコンを出発材として、上述の粉砕工程によって形成された特徴的なシリコン微細粒子あるいはその凝集物又は集合物を、炭素基材との混合する混合工程が行われる。その結果、そのシリコン微細粒子あるいはその凝集物又はその集合物の一部が、前述の炭素基材に接するように、又は該炭素基材の中に埋まる(例えば、突き刺さっているように見える)ように配置されるため、より確度高く、シリコン微細粒子が電気的に孤立しないリチウムイオン電池の負極材料を製造することができる。従って、このリチウムイオン電池の負極材料の製造方法によって製造された負極材料を採用することにより、例えば充放電サイクル特性を向上させ、リチウムイオン電池の長寿命化を実現することが可能となる。 According to this method for producing a negative electrode material for a lithium-ion battery, characteristic silicon fine particles formed by the above-described pulverization process or aggregates or aggregates thereof, starting from crystalline silicon that is chips or cutting waste Is mixed with the carbon substrate. As a result, the silicon fine particles or the agglomerates or a part of the aggregates are in contact with the carbon substrate or embedded in the carbon substrate (eg, appear to pierce). Therefore, it is possible to manufacture a negative electrode material for a lithium ion battery that is more accurate and in which silicon fine particles are not electrically isolated. Therefore, by adopting the negative electrode material manufactured by the negative electrode material manufacturing method of the lithium ion battery, for example, the charge / discharge cycle characteristics can be improved and the life of the lithium ion battery can be extended.
 本発明の1つのリチウムイオン電池の負極材料によれば、より確度高く、シリコン微細粒子が電気的に孤立しないようにすることができるため、例えば充放電サイクル特性を向上させ、リチウムイオン電池の長寿命化を実現することが可能となる。 According to the negative electrode material of one lithium ion battery of the present invention, the silicon fine particles can be prevented from being electrically isolated with higher accuracy. For example, the charge / discharge cycle characteristics are improved, and the length of the lithium ion battery is improved. It is possible to achieve a long life.
 また、本発明の1つのリチウムイオン電池の負極材料の製造方法によって製造された負極材料を採用することにより、例えば充放電サイクル特性を向上させ、リチウムイオン電池の長寿命化を実現することが可能となる。 In addition, by adopting the negative electrode material manufactured by the negative electrode material manufacturing method of one lithium ion battery of the present invention, for example, it is possible to improve the charge / discharge cycle characteristics and extend the life of the lithium ion battery. It becomes.
第1の実施形態の負極材料100を模式的に示した概念図である。It is the conceptual diagram which showed typically the negative electrode material 100 of 1st Embodiment. 第1の実施形態の炭素基材101の概念図である。It is a conceptual diagram of the carbon base material 101 of 1st Embodiment. 第1の実施形態の負極材料の一部を構成する、シリコン微細粒子201あるいはその凝集物又は集合物の製造工程を示すフロー図である。It is a flowchart which shows the manufacturing process of the silicon fine particle 201 which comprises a part of negative electrode material of 1st Embodiment, or its aggregate or aggregate. 第1の実施形態のシリコン微細粒子201あるいはその凝集物又は集合物の製造装置及び製造工程を示す概要図である。It is a schematic diagram which shows the manufacturing apparatus and manufacturing process of the silicon | silicone fine particle 201 of 1st Embodiment, or its aggregate or aggregate. 第1の実施形態のシリコン微細粒子あるいはその凝集物又は集合物の一例のSEM像である。It is a SEM image of an example of the silicon fine particle of 1st Embodiment, its aggregate, or an aggregate. 第1の実施形態における、拡大されたシリコン微細粒子あるいはその凝集物又は集合物の一例のSEM像を示す図である。It is a figure which shows the SEM image of an example of the expanded silicon | silicone fine particle or its aggregate or aggregate | assembly in 1st Embodiment. 第1の実施形態における、(a)シリコン微細粒子の凝集物又は集合物の他の例のSEM像を示す図、及び(b)(a)の一部の拡大図である。In the first embodiment, (a) an SEM image of another example of an aggregate or aggregate of silicon fine particles, and (b) an enlarged view of a part of (a). 第1の実施形態のシリコン微細粒子のTEM像を示す図である。It is a figure which shows the TEM image of the silicon | silicone fine particle of 1st Embodiment. 第1の実施形態のシリコン微細粒子の結晶子径に対する、(a)個数分布における結晶子径分布と、(b)体積分布における結晶子径分布とを示すグラフである。It is a graph which shows the crystallite diameter distribution in (a) number distribution, and the (b) crystallite diameter distribution in volume distribution with respect to the crystallite diameter of the silicon | silicone fine particle of 1st Embodiment. 第1の実施形態のシリコン微細粒子等201を、炭素被覆層301を用いて被覆した構造物の模式図である。It is a schematic diagram of the structure which coat | covered the silicon fine particle etc. 201 of 1st Embodiment using the carbon coating layer 301. FIG. 炭素被覆層301を形成するための装置構成を模式的に示した概念図である。It is the conceptual diagram which showed typically the apparatus structure for forming the carbon coating layer 301. FIG. 第1の実施形態の、シリコン微細粒子等201を炭素基材101の表面又はその内部に接触させる又は一部を埋め込んだ構造物全体を、さらに炭素被覆層302を用いて被覆した構造物の模式図である。Schematic structure of the first embodiment in which the entire structure in which silicon fine particles 201 or the like are brought into contact with or embedded in the surface of the carbon substrate 101 or further partially covered with the carbon coating layer 302 is used. FIG. 実施例1の負極材料の走査型電子顕微鏡写真である。2 is a scanning electron micrograph of the negative electrode material of Example 1. FIG. 実施例1である負極材料の、さらに拡大した走査型電子顕微鏡写真である。2 is a further enlarged scanning electron micrograph of the negative electrode material of Example 1. 図14に示す構造物のうち、一部のシリコン微細粒子等201を取り除いて見易くした構造物の例を示す走査型電子顕微鏡写真である。It is a scanning electron micrograph which shows the example of the structure which removed some silicon fine particles 201 etc. among the structures shown in FIG. 14, and was easy to see. 電気容量のシリコン重量比依存性を計算した結果である。It is the result of calculating the silicon weight ratio dependence of electric capacity. 第2の実施形態のリチウムイオン電池の構造概念図である。It is a structure conceptual diagram of the lithium ion battery of 2nd Embodiment. 実施例1及び比較例1の各リチウムイオン電池を評価した結果を示すグラフである。4 is a graph showing the results of evaluating each lithium ion battery of Example 1 and Comparative Example 1. その他の実施形態の、シリコン微細粒子201あるいはその凝集物又は集合物の製造装置及び製造工程を示す概要図である。It is a schematic diagram which shows the manufacturing apparatus and manufacturing process of the silicon | silicone fine particle 201 or its aggregate or aggregate | assembly of other embodiment.
 1    切粉等
 2,201 シリコン微細粒子
 10   洗浄機(洗浄兼予備粉砕機)
 11   ボール種
 13a  ポット
 13b  蓋
 15   回転軸
 20   粉砕機
 21   導入口
 22   処理室
 24   排出口
 25   フィルタ
 30   乾燥機
 40   ロータリーエバポレータ
 50   酸化膜除去槽
 55   フッ化水素酸又はフッ化アンモニウム水溶液
 57   撹拌器
 58   遠心分離機
 100  負極材料
 101  炭素基材
 301,301  炭素被覆層
 500  リチウムイオン電池の負極材料及び負極の製造装置
 1000  リチウムイオン電池
 1101  正極
 1102  セパレータ
 1103  負極
 1104  電池缶
 1105  正極集電タブ
 1106  負極集電タブ
 1107  内蓋
 1108  圧力開放弁
 1109  ガスケット
 1110  正温度係数抵抗素子
 1111  電池蓋
1 Chips, etc. 2,201 Silicon fine particles 10 Washing machine (cleaning and preliminary grinding machine)
11 Ball type 13a Pot 13b Lid 15 Rotating shaft 20 Crusher 21 Inlet 22 Processing chamber 24 Discharge 25 Filter 30 Dryer 40 Rotary evaporator 50 Oxide film removal tank 55 Hydrofluoric acid or ammonium fluoride aqueous solution 57 Stirrer 58 Centrifugal Separator 100 Negative electrode material 101 Carbon substrate 301, 301 Carbon coating layer 500 Lithium ion battery negative electrode material and negative electrode manufacturing apparatus 1000 Lithium ion battery 1101 Positive electrode 1102 Separator 1103 Negative electrode 1104 Battery can 1105 Positive electrode current collecting tab 1106 Negative electrode current collecting tab 1107 Inner lid 1108 Pressure release valve 1109 Gasket 1110 Positive temperature coefficient resistance element 1111 Battery lid
 本発明の実施形態を、添付する図面に基づいて詳細に述べる。なお、この説明に際し、全図にわたり、特に言及がない限り、共通する部分には共通する参照符号が付されている。また、図中、各実施形態の要素のそれぞれは、必ずしも互いの縮尺比を保って示されてはいない。また、各図面を見やすくするために、一部の符号が省略され得る。 Embodiments of the present invention will be described in detail with reference to the accompanying drawings. In this description, common parts are denoted by common reference symbols throughout the drawings unless otherwise specified. In the drawings, each element of each embodiment is not necessarily shown in a scale ratio. Moreover, in order to make each drawing easy to see, some reference numerals may be omitted.
<第1の実施形態>
1.負極材料(負極活物質)について
 図1は、負極材料100を模式的に示した概念図である。本実施形態の負極材料100は、炭素基材101と、シリコン微細粒子201あるいはその凝集物又は集合物を用いて形成され、かつ複層花弁状又は鱗片状に折重なった状態のシリコン微細粒子201、又はシリコン微細粒子201の該凝集物又は該集合物と、を含む。また、複層花弁状又は鱗片状に折重なった状態のシリコン微細粒子201の一部あるいはシリコン微細粒子201の凝集物又は集合物の一部が、炭素基材101に接し、付着し、又は炭素基材101の中に埋まっている。なお、本実施形態のシリコン微細粒子あるいはその凝集物又は集合物は、後述するように、モード径及びメジアン径が50nm未満の体積分布を有している。
<First Embodiment>
1. Negative Electrode Material (Negative Electrode Active Material) FIG. 1 is a conceptual diagram schematically showing the negative electrode material 100. The negative electrode material 100 of the present embodiment is formed using the carbon base material 101 and the silicon fine particles 201 or aggregates or aggregates thereof, and the silicon fine particles 201 in a state of being folded into a multi-layer petal shape or a scale shape. Or the agglomerates or aggregates of silicon fine particles 201. Further, a part of the silicon fine particles 201 or a part of the aggregate or aggregate of the silicon fine particles 201 in a state of being folded into a multi-layered petal shape or a scale shape is in contact with and attached to the carbon base material 101 or carbon. It is buried in the base material 101. Note that, as will be described later, the silicon fine particles of the present embodiment or the aggregates or aggregates thereof have a volume distribution with a mode diameter and a median diameter of less than 50 nm.
 また、シリコン微細粒子201あるいはその凝集物又は集合物の一部は、ファンデルワールス力により、炭素基材101の表面に付着していると考えられる。加えて、シリコン微細粒子201あるいはその凝集物又は集合物同士も、ファンデルワールス力により、互いに接し、又は付着することによって多層構造(例えば、複層花弁状の構造)を形成し得る。このように、多層構造が形成されるため、シリコン微細粒子同士の接面積を、例えば球状のシリコン微細粒子同士の接触面よりも大きくすることができ、その結果、リチウムイオン電池の充放電によって仮に膨張収縮が起こった場合であっても、シリコン微細粒子が孤立しにくく、導電性が高い負極材料を実現することができる。なお、一部のシリコン微細粒子201あるいはその凝集物又は集合物は、後述するように、炭素基材101に突き刺さるように挿入されているように見える。 Further, it is considered that the silicon fine particles 201 or a part of the aggregates or aggregates thereof are attached to the surface of the carbon base material 101 by van der Waals force. In addition, the silicon fine particles 201 or the aggregates or aggregates thereof can also form a multilayer structure (for example, a multilayer petal-like structure) by contacting or adhering to each other by van der Waals force. Thus, since the multilayer structure is formed, the contact area between the silicon fine particles can be made larger than, for example, the contact surface between the spherical silicon fine particles. As a result, the lithium ion battery is temporarily charged and discharged. Even when expansion and contraction occur, it is possible to realize a negative electrode material that is difficult to isolate silicon fine particles and has high conductivity. Note that some of the silicon fine particles 201 or aggregates or aggregates thereof appear to be inserted so as to pierce the carbon substrate 101, as will be described later.
 本実施形態においては、リチウムイオンの吸蔵放出の役割は、主に、シリコン微細粒子201あるいはその凝集物又は集合物が担っていると考えられる。シリコン微細粒子201の一部あるいはシリコン微細粒子201の凝集物又は集合物の一部が、炭素基材101に接し、付着し、又は炭素基材101の中に埋まっていることによって、高い導電性を実現し得る。 In this embodiment, it is considered that the role of occlusion and release of lithium ions is mainly played by the silicon fine particles 201 or aggregates or aggregates thereof. A part of the silicon fine particles 201 or a part of the aggregate or aggregate of the silicon fine particles 201 is in contact with, adheres to, or is embedded in the carbon base material 101, thereby providing high conductivity. Can be realized.
2.炭素基材について
 図2は、本実施形態の負極材料の一部を構成する、炭素基材101の概念図である。本実施形態の炭素基材101は、粒子状である。また、人造黒鉛、天然黒鉛、あるいはそれらを加工した黒鉛材料を、本実施形態の炭素基材101として活用することができる。
2. Regarding Carbon Base Material FIG. 2 is a conceptual diagram of the carbon base material 101 that constitutes a part of the negative electrode material of the present embodiment. The carbon base material 101 of this embodiment is particulate. Artificial graphite, natural graphite, or graphite material processed from them can be used as the carbon substrate 101 of the present embodiment.
 炭素基材101の粒径の最も長い部分(最長粒径)の平均は、1μm以上50μm以下であり、より好ましくは5μm以上30μm以下である。最長粒径が1μm以下になると、その寸法が小さすぎることによって炭素基材101の表面の湾曲が大きくなると考えられる。その結果、後述する、シリコン微細粒子201あるいはその凝集物又は集合物を、その表面又はその内部に接触させる又は一部を埋め込むことが困難となる。 The average of the longest particle diameter (longest particle diameter) of the carbon substrate 101 is 1 μm or more and 50 μm or less, and more preferably 5 μm or more and 30 μm or less. When the longest particle diameter is 1 μm or less, it is considered that the curvature of the surface of the carbon base material 101 increases due to the size being too small. As a result, it becomes difficult to contact or embed a portion of the silicon fine particles 201 or the aggregates or aggregates thereof, which will be described later, on the surface or inside thereof.
 また、シリコン微細粒子201あるいはその凝集物又は集合物(以下、総称して「シリコン微細粒子等201」ともいう)の、炭素基材101の表面上又はその内部への接触、付着、又は一部の埋め込みをより確度高く実現するためには、その最長粒径が5μm以上であることが望ましい。なお、最長粒径が50μm以上になると、比表面積が小さくなりすぎる。その結果、炭素基材101の表面上又はその内部に、多くのシリコン微細粒子201あるいはその凝集物又は集合物を接触させ、付着させ、又は一部を埋め込むことが必要となる。しかしながら、多数のシリコン微細粒子201あるいはその凝集物又は集合物を接触させ、付着させ、又は一部を埋め込むと、シリコン微細粒子201あるいはその凝集物又は集合物間の電気抵抗が障害となり得る。つまり、炭素基材101の表面近傍にあるシリコン微細粒子等201以外のものが、効率的に負極活物質として利用できなくなるため、結果としてリチウムイオン電池の寿命特性が劣化する可能性がある。なお、炭素基材101の表面に接触させ、付着させ、又は一部の埋め込んだシリコン微細粒子等201をより効率的に利用する観点から言えば、最長粒径が30μm以下であることは好適な一態様である。 Further, contact, adhesion, or part of the silicon fine particles 201 or aggregates or aggregates thereof (hereinafter collectively referred to as “silicon fine particles 201”) on the surface of the carbon substrate 101 or inside thereof. In order to realize the embedding with higher accuracy, it is desirable that the longest particle diameter is 5 μm or more. When the longest particle size is 50 μm or more, the specific surface area becomes too small. As a result, it is necessary to make many silicon fine particles 201 or aggregates or aggregates thereof contact, adhere to, or partially embed on the surface of the carbon substrate 101 or inside thereof. However, when a large number of silicon fine particles 201 or aggregates or aggregates thereof are brought into contact with each other, adhered, or partially embedded, electrical resistance between the silicon fine particles 201 or aggregates or aggregates thereof may be an obstacle. In other words, since things other than the silicon fine particles 201 near the surface of the carbon substrate 101 cannot be efficiently used as the negative electrode active material, the life characteristics of the lithium ion battery may be deteriorated as a result. From the viewpoint of more efficiently using the silicon fine particles 201 or the like that are brought into contact with, attached to, or partially embedded in the surface of the carbon base material 101, it is preferable that the longest particle size is 30 μm or less. It is one mode.
3.シリコン微細粒子あるいはその凝集物又は集合物について
 図3は、本実施形態の負極材料の一部を構成する、シリコン微細粒子201あるいはその凝集物又は集合物の製造工程を示すフロー図である。また、図4は、シリコン微細粒子201あるいはその凝集物又は集合物の製造装置及び製造工程を示す概要図である。
3. Silicon Fine Particles or Aggregates or Aggregates thereof FIG. 3 is a flow diagram showing a manufacturing process of silicon fine particles 201 or aggregates or aggregates thereof constituting a part of the negative electrode material of the present embodiment. FIG. 4 is a schematic diagram showing a manufacturing apparatus and manufacturing process for silicon fine particles 201 or aggregates or aggregates thereof.
 本実施形態のシリコン微細粒子201あるいはその凝集物又は集合物の製造方法は、例えば太陽電池等の半導体製品に使用されるシリコンウェハの生産過程におけるシリコンの切削加工において通常は廃棄物とされるシリコンの切粉あるいはシリコンの切削屑又は研磨屑(以下、「シリコンの切粉等」又は「切粉等」ともいう)を出発材料の一例とした、各種の工程を備える。また、切粉等には、廃棄対象となったシリコンウェハを公知の粉砕機によって粉砕した微細な屑も含まれる。図1に示すように、本実施形態のリチウムイオン電池の製造方法は、以下の(1)及び(2)の工程を含む。また、本実施形態のシリコン微細粒子201あるいはその凝集物又は集合物の製造方法は、採用し得る他の一態様として、以下の(3)の工程を含むことができる。
 (1)洗浄工程(S1)
 (2)粉砕工程(S2)
 (3)酸化膜除去工程(S3)
The manufacturing method of the silicon fine particles 201 or the aggregates or aggregates thereof according to the present embodiment is silicon that is normally regarded as waste in the cutting process of silicon in the production process of silicon wafers used for semiconductor products such as solar cells. And various kinds of processes using, as an example of a starting material, cutting chips, silicon cutting scraps or polishing scraps (hereinafter also referred to as “silicon cutting chips” or “cutting chips”). Further, the chips and the like include fine scraps obtained by pulverizing a silicon wafer to be discarded by a known pulverizer. As shown in FIG. 1, the manufacturing method of the lithium ion battery of this embodiment includes the following steps (1) and (2). Moreover, the manufacturing method of the silicon | silicone fine particle 201 of this embodiment, or its aggregate or aggregate | assembly can include the following processes (3) as another aspect which can be employ | adopted.
(1) Cleaning step (S1)
(2) Grinding step (S2)
(3) Oxide film removal step (S3)
 また、図4に示すように、本実施形態のリチウムイオン電池の負極材料及び負極の製造装置500は、主として、洗浄機(洗浄兼予備粉砕機)10、粉砕機20、乾燥機(図示しない)、ロータリーエバポレータ40を備える。また、本実施形態のリチウムイオン電池の負極材料及び負極の製造装置500は、採用し得る他の一態様として、酸化膜除去槽50、遠心分離機58を備えることができる。なお、上記の粉砕機20のみ、あるいは洗浄機10及び粉砕機20を、本実施形態における粉砕部という。 As shown in FIG. 4, the negative electrode material and negative electrode manufacturing apparatus 500 of the lithium ion battery of the present embodiment mainly includes a cleaning machine (cleaning and preliminary pulverizer) 10, a pulverizer 20, and a dryer (not shown). The rotary evaporator 40 is provided. Moreover, the negative electrode material of the lithium ion battery of this embodiment and the negative electrode manufacturing apparatus 500 can include an oxide film removal tank 50 and a centrifuge 58 as another aspect that can be employed. Note that only the pulverizer 20 described above, or the washing machine 10 and the pulverizer 20 are referred to as a pulverization unit in the present embodiment.
(1)洗浄工程(S1)
 本実施形態の洗浄工程(S1)においては、例えば、単結晶又は多結晶のシリコン、すなわち、結晶性シリコンの塊又はインゴット(n型の結晶性シリコンの塊又はインゴット)の切削過程において形成されるシリコンの切粉等が洗浄される。代表的なシリコンの切粉等は、シリコンのインゴットが公知のワイヤ等(代表的には、固定砥粒ワイヤ)によって削り出される切粉等である。従って、本実施形態においては、従来、云わば廃材とされてきたシリコンの切粉等を出発材として、リチウムイオン電池の負極材料を構成するシリコン微細粒子を形成するため、製造コスト及び又は原材料の調達の容易性、及び資源の活用性の観点で優れている。
(1) Cleaning step (S1)
In the cleaning step (S1) of the present embodiment, for example, it is formed in the cutting process of single crystal or polycrystalline silicon, that is, a crystalline silicon lump or ingot (n-type crystalline silicon lump or ingot). Silicon chips and the like are cleaned. Typical silicon chips and the like are chips and the like in which a silicon ingot is cut out by a known wire or the like (typically, a fixed abrasive wire). Therefore, in the present embodiment, since the silicon fine particles constituting the negative electrode material of the lithium ion battery are formed using silicon chips, which have been conventionally regarded as waste, as the starting material, the manufacturing cost and / or the raw material Excellent in terms of easy procurement and resource utilization.
 本実施形態の洗浄工程(S1)は、主として、上述のシリコンの切粉等の形成過程において付着する有機物、代表的には、切削過程で使用するクーラント剤及び添加剤等の有機物の除去を目的とする。本実施形態においては、図3に示すように、まず、洗浄対象となる切粉等1を秤量した後、その切粉等1と所定の第1液体、並びにボール11が、有底円筒形のポット13a内に導入される。蓋13bを用いてポット13a内を密閉にした後、洗浄機(洗浄兼予備粉砕機)10であるボールミル機が有する円柱状の2本の回転体15を回転させることによって、回転体15上のポット13aを回転させる。その結果、ポット13a内において、洗浄対象となる切粉等1を第1液体中に分散させることにより切粉等1の洗浄、及び予備的な粉砕処理が行われる。 The cleaning step (S1) of the present embodiment is mainly for the purpose of removing organic substances adhering in the formation process of the above-described silicon chips, typically organic substances such as coolants and additives used in the cutting process. And In this embodiment, as shown in FIG. 3, first, after the chips 1 to be cleaned are weighed, the chips 1, the predetermined first liquid, and the ball 11 have a bottomed cylindrical shape. It is introduced into the pot 13a. After sealing the inside of the pot 13a using the lid 13b, the two cylindrical rotating bodies 15 included in the ball mill which is the cleaning machine (cleaning and preliminary pulverizing machine) 10 are rotated, thereby rotating the rotary body 15 on the rotary body 15. The pot 13a is rotated. As a result, in the pot 13a, the chips 1 to be cleaned are dispersed in the first liquid, whereby the chips 1 are cleaned and preliminarily pulverized.
 ここで、本実施形態のボールミル機は、ポット13a及び蓋13bに収められた鋼球、磁性ボール、玉石及びその類似物をボール種11(粉砕媒体)とし、ポット13a及び蓋13bを回転させることによって物理的な衝撃力を与える粉砕機である。また、上述の第1液体の好適な例は、アセトンである。また、より具体的な一態様においては、例えば、シリコンの切粉等の100グラム(g)に対してアセトン300ミリリットル(mL)を添加し、ボールミル機(本実施形態においては、MASUDA社製、Universal BALL MILL)の回転体15上に乗せられたポット13a及び蓋13b内で約1時間撹拌することにより、シリコンの切粉等をアセトン中に分散させた。なお、ボールミル機のボール種は、粒径φ10ミリメートル(mm)のアルミナボールと粒径φ20mmのアルミナボールであった。なお、本実施形態の洗浄工程(S1)においては、ボールミル機内において、シリコンの切粉等を第1液体中で予備粉砕及び撹拌することによって分散処理を行っている。従って、単に第1液体に浸漬させるだけの処理よりも、洗浄効率を格段に高めることになるため、リチウムイオン電池の負極特性の向上、特に充放電サイクル特性の向上の観点で好適なシリコン粒子を得ることが可能となる。 Here, the ball mill machine of this embodiment uses the steel balls, magnetic balls, cobblestones and the like stored in the pot 13a and the lid 13b as the ball type 11 (grinding medium), and rotates the pot 13a and the lid 13b. It is a crusher that gives a physical impact force. A suitable example of the first liquid is acetone. Moreover, in one more specific aspect, for example, 300 milliliters (mL) of acetone is added to 100 grams (g) of silicon chips and the like, and a ball mill machine (in this embodiment, manufactured by MASUDA, Silicon chips and the like were dispersed in acetone by stirring in a pot 13a and a lid 13b placed on a rotating body 15 (Universal BALL MILL) for about 1 hour. Ball types of the ball mill machine were alumina balls having a particle diameter of φ10 millimeters (mm) and alumina balls having a particle diameter of φ20 mm. In the cleaning step (S1) of the present embodiment, the dispersion process is performed by pre-grinding and stirring silicon chips and the like in the first liquid in the ball mill. Accordingly, since the cleaning efficiency is remarkably improved as compared with the treatment of simply immersing in the first liquid, silicon particles suitable for improving the negative electrode characteristics of the lithium ion battery, particularly for improving the charge / discharge cycle characteristics, are used. Can be obtained.
 洗浄工程(S1)の後、蓋13bを開けてシリコン粒子を第1液体とともに排出した後、公知の減圧濾過手段により、第1液体は吸引ろ過にて除去されて廃液となる。一方、残ったシリコン粒子は、公知の乾燥機内において乾燥される。なお、必要に応じて、乾燥処理後に得られたシリコン粒子を、同一工程によって再び洗浄機(洗浄兼予備粉砕機)10内において予備粉砕及び洗浄が行われる。なお、洗浄工程(S1)において採用され得る他の洗浄方法の例は、RCA洗浄法を用いた洗浄、又は水(純水を含む)を用いた洗浄である。 After the washing step (S1), the lid 13b is opened to discharge the silicon particles together with the first liquid, and then the first liquid is removed by suction filtration with a known vacuum filtration means to become a waste liquid. On the other hand, the remaining silicon particles are dried in a known dryer. If necessary, the silicon particles obtained after the drying treatment are again preliminarily crushed and washed in the washing machine (washing / preliminary pulverizer) 10 in the same process. In addition, the example of the other washing | cleaning method which can be employ | adopted in washing | cleaning process (S1) is the washing | cleaning using the RCA washing | cleaning method, or the washing | cleaning using water (a pure water is included).
(2)粉砕工程(S2)
 その後、粉砕工程(S2)においては、洗浄されたシリコン粒子に所定の第2液体を添加して、ビーズミル機内においてシリコン粒子の粉砕処理が行われる。従って、本実施形態においては、前述のボールミル機の後、換言すれば、前述のボールミル機による粉砕の後に用いられるビーズミル機によって、洗浄工程(S1)を経たシリコン粒子がさらに細かく粉砕されることになる。
(2) Grinding step (S2)
Thereafter, in the pulverization step (S2), a predetermined second liquid is added to the washed silicon particles, and the silicon particles are pulverized in the bead mill. Therefore, in this embodiment, the silicon particles that have undergone the cleaning step (S1) are further finely pulverized by the bead mill used after the above-described ball mill, in other words, after the above-described ball mill. Become.
 本実施形態の第2液体の好適な例は、IPA(イソプロピルアルコール)である。粉砕工程の前処理として、第2液体と洗浄工程(S1)で得られたシリコン粒子をポット13a内に、重量比で、第2液体が95%に対してシリコン粒子を5%となるように収めた後、洗浄機(洗浄兼予備粉砕機)10を回転させることによって予備粉砕処理が行われる。予備粉砕処理されたシリコン粒子を含むスラリーを開口部180ミクロンのメッシュに通すことによって比較的粗い粒子が取り除かれた後、得られたシリコン粒子を含むスラリーを、粉砕機20のビーズミル(本実施形態においては、アシザワ・ファインテック社製、型式スターミルLMZ015)を用いてさらに微粉砕処理する。より具体的には、粒子径180ミクロン以上のシリコン切粉が除去されたシリコン粒子を含むスラリーを粉砕機20の導入口21へ投入し、ポンプ28を用いてスラリーを循環させながらビーズミル機の処理室22で微粉砕処理が行われる。具体的なビーズミル機のビーズ種の一例は、粒径φ0.5mmのジルコニアビーズである。微粉砕処理されたシリコン粒子を含むスラリーを回収した後、減圧蒸留を自動で行うロータリーエバポレータ40を用いて第2液体を除去することにより、微粉砕処理された結果物としてのシリコン微細粒子が得られる。 A suitable example of the second liquid of this embodiment is IPA (isopropyl alcohol). As a pretreatment of the pulverization step, the silicon particles obtained in the second liquid and the washing step (S1) are placed in the pot 13a so that the second liquid is 95% of the silicon particles and 95% of the second liquid. After storing, a preliminary pulverization process is performed by rotating a cleaning machine (cleaning and preliminary pulverizer) 10. After relatively coarse particles are removed by passing the slurry containing silicon particles that have been subjected to pre-grinding treatment through a mesh having an opening of 180 microns, the obtained slurry containing silicon particles is used as a bead mill (this embodiment). , The finely pulverizing treatment is performed using a model star mill LMZ015 manufactured by Ashizawa Finetech. More specifically, a slurry containing silicon particles from which silicon chips having a particle diameter of 180 microns or more are removed is introduced into the inlet 21 of the pulverizer 20, and the slurry is processed by the bead mill using the pump 28. A fine pulverization process is performed in the chamber 22. A specific example of the bead type of the bead mill is zirconia beads having a particle diameter of φ0.5 mm. After collecting the slurry containing finely pulverized silicon particles, the second liquid is removed using a rotary evaporator 40 that automatically performs vacuum distillation to obtain finely pulverized silicon fine particles as a result. It is done.
 なお、本実施形態においては、粒径φ0.5mmのジルコニアビーズを約450g導入し、回転速度2900rpm、4時間の微粉砕処理が行われることによって、シリコン微細粒子を得ることができる。また、粉砕工程(S2)においては、ボールミル、ビーズミル、ジェットミル、衝撃波粉砕機の群からなる粉砕機のうちの上述以外のいずれか、又は2種以上の組み合わせによって粉砕処理を行うことも、採用し得る他の一態様である。また、粉砕工程(S2)において用いられる粉砕機として、自動の粉砕機のみならず手動の粉砕機が採用されても良い。但し、確度高く、後述する複層花弁状又は鱗片状に折重なった状態のシリコン微細粒子の凝集物又は集合物を形成する観点から言えば、ビーズミルによる処理からなる粉砕工程(S2)、又はビーズミルによる処理を含む粉砕工程(S2)が採用されることが好ましい。また、少なくともビーズミルによる処理を採用することにより、シリコン粒子を単に粉砕するだけでなく、形成されるシリコン微細粒子あるいはその凝集物又は集合物同士をより確度高く分散させ、シリコン微細粒子が「ダマ」となることを防ぐことができる。 In this embodiment, silicon fine particles can be obtained by introducing about 450 g of zirconia beads having a particle diameter of φ0.5 mm and performing a pulverization process at a rotational speed of 2900 rpm for 4 hours. Further, in the pulverization step (S2), it is also possible to perform the pulverization treatment by any one of the pulverizers other than those described above, or a combination of two or more of the pulverizers composed of a ball mill, a bead mill, a jet mill, and a shock wave pulverizer. Another aspect that can be achieved. In addition, as a pulverizer used in the pulverization step (S2), not only an automatic pulverizer but also a manual pulverizer may be employed. However, from the viewpoint of forming agglomerates or aggregates of silicon fine particles that are highly accurate and folded into a multi-layered petal shape or scale shape, which will be described later, a pulverization step (S2) consisting of processing by a bead mill, or a bead mill It is preferable to employ a pulverization step (S2) including the treatment by. In addition, by adopting at least a treatment with a bead mill, the silicon particles are not only pulverized, but also the formed silicon fine particles or aggregates or aggregates thereof are more accurately dispersed so that the silicon fine particles are “dama”. Can be prevented.
 また、公知のライカイ機(代表的なライカイ機として、株式会社石川工場社製、型式20D型)を用いて、上述の粉砕工程(S2)によって得られたシリコン微細粒子をさらに解砕することは、採用し得る他の好適な一態様である。この解砕処理により、リチウムイオン電池の負極を形成する際の分散性が改善されるため、リチウムの吸蔵・放出によって負極が破壊されることが確度高く防止され又は抑制されるという効果が得られる。 In addition, using a known reiki machine (as a typical reiki machine, manufactured by Ishikawa Factory Co., Ltd., Model 20D), the silicon fine particles obtained by the above-described crushing step (S2) can be further crushed. This is another preferred embodiment that can be adopted. Since this disintegration treatment improves the dispersibility when forming the negative electrode of the lithium ion battery, it is possible to highly reliably prevent or suppress destruction of the negative electrode due to insertion and extraction of lithium. .
(3)酸化膜除去工程(S3)
 本実施形態においては、好適な一態様として酸化膜除去工程(S3)が行われる。ただし、この酸化膜除去工程(S3)が行われなくても、本実施形態の効果の少なくとも一部の効果が奏される。
(3) Oxide film removal step (S3)
In the present embodiment, an oxide film removing step (S3) is performed as a preferred embodiment. However, even if this oxide film removal step (S3) is not performed, at least a part of the effects of the present embodiment can be achieved.
 本実施形態の酸化膜除去工程(S3)においては、粉砕工程(S2)によって得られたシリコン微細粒子2を、フッ化水素酸又はフッ化アンモニウム水溶液に接触させる処理が行われる。粉砕工程(S2)によって得られたシリコン微細粒子2を、フッ化水素酸又はフッ化アンモニウム水溶液中に浸漬することにより分散させる。具体的には、酸化膜除去槽50において、シリコン微細粒子2を、フッ化水素酸又はフッ化アンモニウム水溶液55中に撹拌器57を用いて分散させることによりシリコン微細粒子2の表面の酸化物(主として、酸化シリコン)が除去される。 In the oxide film removing step (S3) of the present embodiment, the silicon fine particles 2 obtained by the pulverizing step (S2) are brought into contact with hydrofluoric acid or an aqueous ammonium fluoride solution. The silicon fine particles 2 obtained by the pulverization step (S2) are dispersed by being immersed in an aqueous solution of hydrofluoric acid or ammonium fluoride. Specifically, in the oxide film removal tank 50, the silicon fine particles 2 are dispersed in a hydrofluoric acid or ammonium fluoride aqueous solution 55 by using a stirrer 57, whereby an oxide (on the surface of the silicon fine particles 2 ( Mainly silicon oxide) is removed.
 その後、遠心分離機58によって、表面の酸化物の一部又は全部が除去されたシリコン微細粒子とフッ化水素酸水溶液とが分離される。その後、シリコン微細粒子をエタノール溶液等の第3液体中に浸漬する。第3液体を除去することにより、当初形成されていた表面の酸化物(又は酸化膜)の一部又は全部が除去されたシリコン微細粒子が得られる。 Thereafter, the silicon fine particles from which part or all of the surface oxide has been removed are separated from the hydrofluoric acid aqueous solution by the centrifuge 58. Thereafter, the silicon fine particles are immersed in a third liquid such as an ethanol solution. By removing the third liquid, silicon fine particles from which part or all of the oxide (or oxide film) on the surface that was originally formed are removed can be obtained.
 なお、本実施形態の酸化膜除去工程(S3)においては、シリコン微細粒子をフッ化水素酸又はフッ化アンモニウム水溶液に浸漬することによってシリコン微細粒子にフッ化水素酸を接触させているが、その他の方法によってシリコン微細粒子にフッ化水素酸又はフッ化アンモニウム水溶液を接触させる工程も採用し得る。例えば、いわゆるシャワーのようにフッ化水素酸水溶液をシリコン微細粒子に対して散布することも、採用し得る他の一態様である。 In the oxide film removal step (S3) of this embodiment, the silicon fine particles are immersed in hydrofluoric acid or an aqueous ammonium fluoride solution to bring the hydrofluoric acid into contact with the silicon fine particles. A step of bringing hydrofluoric acid or an aqueous ammonium fluoride solution into contact with the silicon fine particles by the above method can also be employed. For example, spraying a hydrofluoric acid aqueous solution onto silicon fine particles like a so-called shower is another aspect that can be employed.
<その他の工程>
 ところで、上述の洗浄工程(S1)及び粉砕工程(S2)によって、あるいは、洗浄工程(S1)、粉砕工程(S2)、及び酸化膜除去工程(S3)によって得られたシリコン微細粒子は、例えば、各シリコン微細粒子の結晶子径の個数分布及び/又は体積分布のバラつきを軽減するために分級され得る。
<Other processes>
By the way, the silicon fine particles obtained by the above-described cleaning step (S1) and pulverizing step (S2) or by the cleaning step (S1), pulverizing step (S2), and oxide film removing step (S3) are, for example, In order to reduce the variation in the number distribution and / or volume distribution of the crystallite diameter of each silicon fine particle, it can be classified.
<第1の実施形態において得られたシリコン微細粒子の分析結果>
A.SEM像及びTEM像よるシリコン微細粒子の解析
<Analysis results of silicon fine particles obtained in the first embodiment>
A. Analysis of fine silicon particles by SEM and TEM images
 図5は、第1の実施形態の粉砕工程(S2)後のシリコン微細粒子あるいはその凝集物又は集合物の一例のSEM(走査型電子顕微鏡)像である。また、図6は、第1の実施形態の粉砕工程(S2)後における、拡大されたシリコン微細粒子あるいはその凝集物又は集合物の一例のSEM像を示す図である。また、図7は、第1の実施形態における、(a)シリコン微細粒子の凝集物又は集合物の他の例のSEM像を示す図、及び(b)(a)の一部の拡大図である。加えて、図8は、第1の実施形態のシリコン微細粒子の透過電子顕微鏡(TEM)像を示す図である。 FIG. 5 is an SEM (scanning electron microscope) image of an example of silicon fine particles or aggregates or aggregates thereof after the crushing step (S2) of the first embodiment. FIG. 6 is a view showing an SEM image of an example of enlarged silicon fine particles or aggregates or aggregates thereof after the crushing step (S2) of the first embodiment. FIG. 7 is a diagram showing (a) an SEM image of another example of an aggregate or aggregate of silicon fine particles and (b) a partially enlarged view of (a) in the first embodiment. is there. In addition, FIG. 8 is a diagram showing a transmission electron microscope (TEM) image of the silicon fine particles of the first embodiment.
 図5に示すように、個別のシリコン微細粒子のみならず、Y1及びY2に示すシリコン微細粒子あるいはその凝集物又は集合物が確認された。大変興味深いことに、さらに詳細に分析をすると、図6、並びに図7(a),(b)のZ部分に示すように、シリコン微細粒子又はその凝集物は、いわば薄層状のシリコン微細粒子が複層花弁状又は鱗片状に折重なった状態の凝集物又は集合物であることが確認できた。なお、より詳しく観察すれば、例えば、1つ又は一群の鱗片状のシリコン微細粒子の幅(短径)を1としたときの長さ(長径)の範囲は、3.3~12.9であった。 As shown in FIG. 5, not only individual silicon fine particles but also silicon fine particles indicated by Y1 and Y2, or aggregates or aggregates thereof were confirmed. Interestingly, when analyzed in more detail, as shown in FIG. 6 and the Z portion in FIGS. 7A and 7B, silicon fine particles or aggregates thereof are, so to speak, thin layered silicon fine particles. It was confirmed that it was an aggregate or aggregate in a state of being folded into a multi-layer petal shape or a scale shape. In more detail, for example, the range of the length (major axis) when the width (minor axis) of one or a group of scaly silicon fine particles is 1, is 3.3 to 12.9. there were.
 また、個別のシリコン微細粒子に着目した図8に示すTEM像から、もう一つの興味深い知見が得られた。具体的には、図8における白線で囲っている領域が示す個別のシリコン微細粒子は、結晶性、すなわち単結晶シリコンであることが確認できた。加えて、シリコン微細粒子の少なくとも一部は、断面視において約2nm~約10nmの大きさの不定形の多角形の結晶子であることが確認できた。なお、図8においては、白線で囲っている各領域に、結晶の面方位が示されている。 Also, another interesting finding was obtained from the TEM image shown in FIG. 8 focusing on individual silicon fine particles. Specifically, it was confirmed that the individual silicon fine particles shown by the region surrounded by the white line in FIG. 8 were crystalline, that is, single crystal silicon. In addition, it was confirmed that at least some of the silicon fine particles were amorphous polygonal crystallites having a size of about 2 nm to about 10 nm in a cross-sectional view. In FIG. 8, the crystal plane orientation is shown in each region surrounded by a white line.
B.X線回折法によるシリコン微細粒子の結晶子径分布の解析
 図9は、第1の実施形態のシリコン微細粒子のSi(111)方向の結晶子径に対する、(a)個数分布を示す結晶子径分布と、(b)体積分布を示す結晶子径分布とを示すグラフである。図9は、粉砕工程(S2)後のシリコン微細粒子の結晶子径分布を、X線回折法を用いて解析することによって得られた結果を示している。図9(a)及び図9(b)は、いずれも、横軸が結晶子径(nm)を表し、縦軸は、頻度を表している。
B. Analysis of crystallite size distribution of silicon fine particles by X-ray diffraction method FIG. 9 shows a crystallite size indicating (a) number distribution with respect to the crystallite size in the Si (111) direction of the silicon fine particles of the first embodiment. It is a graph which shows distribution and crystallite diameter distribution which shows (b) volume distribution. FIG. 9 shows the results obtained by analyzing the crystallite size distribution of the silicon fine particles after the pulverization step (S2) using the X-ray diffraction method. In each of FIGS. 9A and 9B, the horizontal axis represents the crystallite diameter (nm), and the vertical axis represents the frequency.
 図9(a)及び図9(b)の結果から、個数分布においては、モード径が1.6nm、メジアン径(50%結晶子径)が2.6nmであった。また、体積分布においては、モード径が6.3nm、メジアン径が9.9nmであった。従って、個数分布においてはモード径であってもメジアン径であっても5nm以下であり、より詳細には3nm以下の値が実現されていることが確認された。なお、体積分布においては、モード径であってもメジアン径であっても少なくとも50nm未満であり、特に30nm以下(より限定的には、20nm未満)であることが確認されたことは特筆に値する。さらに、図9に示された例においては、10nm以下という極めて小さい値が実現されていることが確認された。 From the results shown in FIGS. 9A and 9B, in the number distribution, the mode diameter was 1.6 nm, and the median diameter (50% crystallite diameter) was 2.6 nm. In the volume distribution, the mode diameter was 6.3 nm and the median diameter was 9.9 nm. Accordingly, it was confirmed that the number distribution was 5 nm or less regardless of the mode diameter or the median diameter, and more specifically, a value of 3 nm or less was realized. It should be noted that the volume distribution was confirmed to be at least less than 50 nm, particularly 30 nm or less (more specifically, less than 20 nm), regardless of the mode diameter or median diameter. . Furthermore, in the example shown in FIG. 9, it was confirmed that an extremely small value of 10 nm or less was realized.
 図9(a)及び図9(b)の結果より、ビーズミル法を用いた粉砕工程(S2)後に得られるシリコン微細粒子は、平均の結晶子径が約20nm以下、より具体的には、10nm以下を実現する、約9.8nmであることが確認できた。なお、酸化膜除去工程(S3)後のシリコン微細粒子の結晶子径分布も、図9とほぼ同様である。 From the results shown in FIGS. 9A and 9B, the silicon fine particles obtained after the pulverization step (S2) using the bead mill method have an average crystallite diameter of about 20 nm or less, more specifically 10 nm. It was confirmed to be about 9.8 nm, which realizes the following. The crystallite size distribution of the silicon fine particles after the oxide film removing step (S3) is almost the same as that in FIG.
 従って、図9の結果と図5乃至図7の各図の結果とを合わせて解析すれば、少なくとも粉砕工程(S2)後又は酸化膜除去工程(S3)後のシリコン微細粒子の凝集物又は集合物は、いわば長径約100nm以下の範囲のいわば薄層状のシリコン微細粒子が、複層花弁状又は鱗片状に折重なった状態であるといえる。また、シリコン微細粒子は、図8及び図9から分かるように、主として長径が約20nm以下、より狭義には10nm以下の結晶子から構成されている。 Accordingly, if the results of FIG. 9 and the results of FIGS. 5 to 7 are combined and analyzed, an aggregate or aggregate of silicon fine particles at least after the pulverization step (S2) or the oxide film removal step (S3). The product can be said to be in a state in which so-called thin layer silicon fine particles having a major axis of about 100 nm or less are folded into a multi-layer petal shape or a scale shape. As can be seen from FIGS. 8 and 9, the silicon fine particles are mainly composed of crystallites having a major axis of about 20 nm or less, more narrowly 10 nm or less.
 また、本実施形態のシリコン微細粒子は、図9に示すように、1nm以下の結晶子径のシリコン微細粒子を含んでいることが分かる。また、興味深いことに、本実施形態のシリコン微細粒子の体積分布における平均結晶子径は、約10nmであることも確認された。この数値は、非常に小さい値であるといえる。また、上述のとおり、さらに調査を進めることによって、そのシリコン微細粒子の見かけの体積径として約100nm以下の範囲にあることが確認された。特に、長径が約20nm以下、より狭義には10nm以下、特に狭義には5nm以下の結晶子径からなる、極微細なシリコン粒子、あるいはその凝集物又は集合物を、炭素基材101の表面上又はその内部に接触させ、付着させ、又は一部を埋め込むことによって、後述するリチウムイオン電池の負極材料としての充放電サイクル特性をより確度高く向上させるものである。なお、後述するように、それらの微細なシリコン粒子に表面の少なくとも一部が炭素によって覆われていることは、シリコン微細粒子同士の電気伝導度を高め、より高い充電容量値及び放電容量値、並びに優れた充放電のサイクル特性を実現することに貢献する。 Also, it can be seen that the silicon fine particles of the present embodiment include silicon fine particles having a crystallite diameter of 1 nm or less as shown in FIG. Interestingly, it was also confirmed that the average crystallite size in the volume distribution of the silicon fine particles of the present embodiment is about 10 nm. This numerical value can be said to be a very small value. Further, as described above, by further investigation, it was confirmed that the apparent volume diameter of the silicon fine particles was in the range of about 100 nm or less. In particular, ultrafine silicon particles having a major axis of about 20 nm or less, more narrowly 10 nm or less, particularly 5 nm or less in a narrow sense, or aggregates or aggregates thereof are formed on the surface of the carbon substrate 101. Alternatively, the charge / discharge cycle characteristics as a negative electrode material of a lithium ion battery, which will be described later, can be improved with higher accuracy by contacting, adhering, or embedding a part thereof. As will be described later, the fact that at least part of the surface of these fine silicon particles is covered with carbon increases the electrical conductivity between the silicon fine particles, and higher charge capacity value and discharge capacity value, In addition, this contributes to realizing excellent charge / discharge cycle characteristics.
 なお、図8に示すように、本実施形態の粉砕工程(S2)後のシリコン微細粒子については、主として面方位が(111)である結晶性のシリコン微細粒子が、複層花弁状又は鱗片状に多重に折重なった状態の凝集物又は集合物であるといえる。また、本発明者の研究によれば、大変興味深いことに、粉砕工程(S2)後の2θ=28.4°付近のSi(111)に帰属する回折ピークの強度は、その他の回折ピークの強度(例えば、Si(220)又はSi(311)のピーク強度)よりも大きいことが確認されている。加えて、粉砕工程(S2)後のシリコン微細粒子の結晶格子のSi(111)の配列間隔は、図8に示したとおり、0.31nm(3.1Å)である。 In addition, as shown in FIG. 8, about the silicon | silicone fine particle after the grinding | pulverization process (S2) of this embodiment, the crystalline silicon | silicone fine particle whose surface orientation is (111) mainly has a multilayer petal shape or scale shape. It can be said that they are aggregates or aggregates in a state of being folded in multiple layers. Further, according to the study by the present inventor, very interestingly, the intensity of the diffraction peak attributed to Si (111) near 2θ = 28.4 ° after the pulverization step (S2) is the intensity of other diffraction peaks. It is confirmed that it is larger than (for example, the peak intensity of Si (220) or Si (311)). In addition, the arrangement interval of Si (111) in the crystal lattice of the silicon fine particles after the pulverization step (S2) is 0.31 nm (3.1 cm) as shown in FIG.
 本実施形態の粉砕工程(S2)後又は酸化膜除去工程(S3)後のシリコン微細粒子あるいはその凝集物又は集合物を、炭素基材101の表面上又はその内部に接触させ、付着させ、又は一部を埋め込むことによって、リチウムイオン電池の負極材料の高性能化が実現し得る。より具体的には、リチウムイオン電池の正極材料中から電離したリチウムイオン(Li)が負極に到達したときに、リチウムイオン(Li)が複層花弁状又は鱗片状に多重に折重なった状態の凝集物又は集合物の襞部間隙に入り込み易く、また出易いという特有の効果が奏され得る。 The fine silicon particles after the crushing step (S2) or the oxide film removing step (S3) of the present embodiment or the aggregates or aggregates thereof are brought into contact with and attached to the surface of the carbon substrate 101 or inside thereof, or By embedding a part, high performance of the negative electrode material of the lithium ion battery can be realized. More specifically, when lithium ions (Li + ) ionized from the positive electrode material of the lithium ion battery reached the negative electrode, the lithium ions (Li + ) folded in multiple layers in a multi-layered petal shape or scale shape. A unique effect can be obtained in that it easily enters and exits the gap between the aggregates or aggregates in the state.
4.炭素基材へのシリコン微細粒子あるいはその凝集物又は集合物の被覆方法について
 本実施形態においては、上述の炭素基材101と、上述のシリコン微細粒子201あるいはその凝集物又は集合物(すなわち、シリコン微細粒子等201)とを混合する混合工程が行われる。具体的には、上述の粉砕工程(S2)において用いられたビーズミル機(粉砕機20)を用いて、ビーズを導入することなく、上述の炭素基材101と、上述のシリコン微細粒子等201とを約1時間混合することによって行われた。なお、本発明者によれば、炭素基材101とシリコン微細粒子等201の混合割合、又は、後述するように、シリコン微細粒子等201の表面を被覆する炭素の量、あるいは、シリコン微細粒子等201を炭素基材101の表面又はその内部に接触させる又は一部を埋め込んだ構造物全体を被覆する炭素の量を調整することにより、その電気容量を調整することが可能であるとの知見が得られている。また、本実施形態においては、炭素基材101へのシリコン微細粒子等201の「被覆」とは、シリコン微細粒子等201が炭素基材101に接し、付着し、又は炭素基材101の中に埋まっている状態を意味する。
4). Regarding the method for coating silicon fine particles or aggregates or aggregates thereof on a carbon substrate In the present embodiment, the above-described carbon substrate 101 and the above-mentioned silicon fine particles 201 or aggregates or aggregates thereof (that is, silicon) A mixing step of mixing the fine particles 201) is performed. Specifically, using the bead mill (pulverizer 20) used in the pulverization step (S2), without introducing beads, the carbon substrate 101 and the silicon fine particles 201 and the like described above Was mixed for about 1 hour. According to the inventors, the mixing ratio of the carbon base material 101 and silicon fine particles 201 or the like, or the amount of carbon covering the surface of the silicon fine particles 201 or the like, or silicon fine particles or the like, as will be described later. The knowledge that the electric capacity can be adjusted by adjusting the amount of carbon that covers the entire structure in which 201 is brought into contact with the surface of the carbon base material 101 or inside thereof, or a part of the structure is embedded therein, is known. Has been obtained. In the present embodiment, the “coating” of the silicon fine particles 201 on the carbon base material 101 means that the silicon fine particles 201 are in contact with and adhere to the carbon base material 101 or in the carbon base material 101. It means that it is buried.
 具体的には、炭素素材101とシリコン微細粒子等201とを50wt%ずつ混合した計150gの被処理対象物を、溶剤であるIPA(イソプロピルアルコール)と合わせて、ビーズミル機(本実施形態においては、アシザワ・ファインテック社製、型式DMS65)内に導入した。なお、このときの、被処理対象とIPAとの混合比は、被処理対象が30wt%に対して、IPAが70wt%(350g)であった。その後、約2時間のビーズミル機による処理(例えば、回転速度が2800rpmを行うことにより、炭素基材へのシリコン微細粒子あるいはその凝集物又は集合物の被覆を行った。 Specifically, a total of 150 g of the object to be processed, in which the carbon material 101 and silicon fine particles 201 are mixed by 50 wt%, together with IPA (isopropyl alcohol) as a solvent, is combined with a bead mill (in this embodiment, , Manufactured by Ashizawa Finetech Co., Ltd., model DMS65). At this time, the mixing ratio of the object to be processed and IPA was 70 wt% (350 g) for IPA with respect to 30 wt% for the object to be processed. Thereafter, treatment with a bead mill for about 2 hours (for example, by carrying out a rotation speed of 2800 rpm, the carbon substrate was coated with silicon fine particles or aggregates or aggregates thereof.
 ところで、シリコン微細粒子201あるいはその凝集物又は集合物(すなわち、シリコン微細粒子等201)は、図7に示すように、複層花弁状又は鱗片状の形状を有することから、粒子間の接面積が大きく、ダマになりやすい可能性がある。そのため、これをより確度高く分散するために、炭素基材101とシリコン微細粒子等201との混合する混合工程を行う前に、シリコン微細粒子等201と、ビーズミルとを混合して撹拌する、撹拌工程を採用することは好適な一態様である。なお、この撹拌工程は、その条件を適宜変更することによって、シリコン微細粒子あるいはその凝集物又は集合物の分散だけでなく、さらなる粉砕にもつながる。 By the way, since the silicon fine particles 201 or aggregates or aggregates thereof (that is, silicon fine particles 201) have a multi-layered petal-like or scale-like shape as shown in FIG. There is a possibility that it is big and is easy to get rid of. Therefore, in order to disperse this more accurately, the silicon fine particles 201 and the bead mill are mixed and stirred before the mixing step of mixing the carbon substrate 101 and the silicon fine particles 201 is performed. Employing the process is a preferred embodiment. In addition, this stirring process leads not only to dispersion of silicon fine particles or aggregates or aggregates thereof but also to further pulverization by appropriately changing the conditions.
5.シリコン微細粒子201あるいはその凝集物又は集合物の、炭素による被覆方法について
 図10は、シリコン微細粒子あるいはその凝集物又は集合物の表面を炭素被覆層によって被覆した構造物の概念図である。図10に示すように、シリコン微細粒子等201の表面を炭素被覆層301によって覆うことも採用し得る好適な一態様である。
5. FIG. 10 is a conceptual diagram of a structure in which silicon fine particles 201 or aggregates or aggregates thereof are coated with carbon. FIG. As shown in FIG. 10, covering the surface of silicon fine particles 201 or the like with a carbon coating layer 301 is also a preferred embodiment that can be adopted.
 本実施形態の炭素被覆層301は、電気伝導性を有しているため、シリコン微細粒子等201の粒子間の電気伝導を、確度高く向上させ得る。なお、図10においては、シリコン微細粒子等201の表面の全てが炭素被覆層301によって覆われている状態が示されているが、本実施形態はそのような態様には限定されない。例えば、シリコン微細粒子等201の表面の一部が、炭素被覆層301で覆われていた場合であっても、少なくとも一部の効果が奏され得る。 Since the carbon coating layer 301 of the present embodiment has electrical conductivity, electrical conduction between particles such as silicon fine particles 201 can be improved with high accuracy. Although FIG. 10 shows a state in which the entire surface of the silicon fine particles 201 or the like is covered with the carbon coating layer 301, the present embodiment is not limited to such a mode. For example, even if a part of the surface of the silicon fine particle 201 or the like is covered with the carbon coating layer 301, at least a part of the effect can be achieved.
 また、図11は、炭素被覆層301を形成するための装置構成を模式的に示した概念図である。 FIG. 11 is a conceptual diagram schematically showing a device configuration for forming the carbon coating layer 301.
 図11に示すように、サンプルボートに乗せたシリコン微細粒子201あるいはその凝集物又は集合物を反応炉(Reactor)内に収容し、該サンプルボートを反応炉の中央付近に設置する。本実施形態の反応炉の一例は、石英製の管である。また、本実施形態の反応炉のサイズは、直径が5cm、長さが40cmである。 As shown in FIG. 11, silicon fine particles 201 or aggregates or aggregates thereof placed on a sample boat are accommodated in a reactor, and the sample boat is installed near the center of the reactor. An example of the reaction furnace of this embodiment is a quartz tube. The size of the reactor of this embodiment is 5 cm in diameter and 40 cm in length.
 図11に示す水素ガス(H)のラインを用いて、水素ガスを200mL/minの流速で流し、反応炉の温度を室温から1000℃まで、10℃/minでの速度で昇温させた。その後、1000℃の温度条件下において1時間保持した。この熱処理工程により、シリコン微細粒子201あるいはその凝集物又は集合物の表面に形成された自然酸化膜を還元することが可能である。 Using the hydrogen gas (H 2 ) line shown in FIG. 11, hydrogen gas was flowed at a flow rate of 200 mL / min, and the temperature of the reactor was increased from room temperature to 1000 ° C. at a rate of 10 ° C./min. . Then, it hold | maintained on 1000 degreeC temperature conditions for 1 hour. By this heat treatment step, it is possible to reduce the natural oxide film formed on the surface of the silicon fine particles 201 or their aggregates or aggregates.
 その後、水素ラインを、コック(Cock)を用いて閉塞し、アルゴンガス(Ar)を200mL/minの流速で流し、10℃/minの速度で800℃まで降温した。800℃に達したときに、プロピレンガス(C)を10mL/minの流速で導入するとともに、アルゴンガスの流速を190mL/minで導入することによって、炭素被覆層301を1時間成長した。その後、プロピレンガスラインを閉塞し、アルゴンガスを200mL/minの流速で流した状態で15min保持した後、自然冷却した。これらの処理により、シリコン微細粒子201あるいはその凝集物又は集合物の一部又は全部を、ナノグラフェン多層構造を有する炭素被覆層301(膜厚5nm)を用いて覆った構造を形成することができる。 Thereafter, the hydrogen line was closed using a cock, and argon gas (Ar) was flowed at a flow rate of 200 mL / min, and the temperature was lowered to 800 ° C. at a rate of 10 ° C./min. When the temperature reached 800 ° C., the carbon coating layer 301 was grown for 1 hour by introducing propylene gas (C 3 H 6 ) at a flow rate of 10 mL / min and introducing a flow rate of argon gas at 190 mL / min. . Thereafter, the propylene gas line was closed, and the argon gas was kept at a flow rate of 200 mL / min for 15 minutes, and then naturally cooled. By these treatments, it is possible to form a structure in which silicon fine particles 201 or a part or all of aggregates or aggregates thereof are covered with a carbon coating layer 301 (film thickness 5 nm) having a nanographene multilayer structure.
6.シリコン微細粒子等201を炭素基材101の表面又はその内部に接触させる又は一部を埋め込んだ構造物全体の、炭素による被覆方法について
 図12は、シリコン微細粒子等201を炭素基材101の表面又はその内部に接触させる又は一部を埋め込んだ構造物全体を、さらに炭素被覆層302を用いて被覆した構造物の模式図である。
6). FIG. 12 shows a method of coating the entire structure in which silicon fine particles 201 or the like are brought into contact with or embedded in the surface of the carbon base material 101. FIG. Or it is the schematic diagram of the structure which coat | covered the whole structure which contacted the inside or embedded the part further using the carbon coating layer 302. FIG.
 図12においては、シリコン微細粒子等201を炭素基材101の表面又はその内部に接触させる又は一部を埋め込んだ(又は挿入された)構造物が、さらに炭素被覆層302によって覆われている状態が、概念的に描かれている。図12に示す構造体の製造は、例えば、図1に示す構造体を製造した後、炭素被覆層302を形成することにより得ることができる。このように、さらに炭素被覆層302によって覆うことにより、電気伝導度の更なる向上を実現し得る。 In FIG. 12, a structure in which silicon fine particles 201 or the like are brought into contact with the surface of carbon substrate 101 or inside thereof, or a part of the structure is embedded (or inserted) is further covered with carbon coating layer 302. Is conceptually depicted. The structure shown in FIG. 12 can be manufactured, for example, by forming the carbon covering layer 302 after manufacturing the structure shown in FIG. In this way, by further covering with the carbon coating layer 302, further improvement in electrical conductivity can be realized.
 シリコン微細粒子等201(又は、シリコン微細粒子等201の表面を炭素被覆層301によって被覆した構造物)を炭素基材101の表面又はその内部に接触させる又は一部を埋め込んだ(又は挿入された)構造物に、さらに炭素被覆層302を形成する方法は、次のとおりである。 Silicon fine particles or the like 201 (or a structure in which the surface of silicon fine particles or the like 201 is covered with the carbon coating layer 301) is brought into contact with the surface of the carbon substrate 101 or inside thereof, or a part thereof is embedded (or inserted). ) A method of further forming the carbon coating layer 302 on the structure is as follows.
 その代表的な一例は、既に説明した、シリコン微細粒子等201の表面に炭素被覆層301を設ける方法と同様の方法であるため、重複する説明は省略し得る。 A typical example is the same method as the method of providing the carbon coating layer 301 on the surface of the silicon fine particle 201 or the like already described, and therefore a duplicate description can be omitted.
 まず、図11に示すサンプルボートに、シリコン微細粒子等201(又は、シリコン微細粒子等201の表面を炭素被覆層301によって被覆した構造物)を炭素基材101の表面又はその内部に接触させる又は一部を埋め込んだ(又は挿入された)構造物を配置し、該サンプルボートを反応炉の中央付近に設置する。 First, silicon fine particles 201 (or a structure in which the surface of the silicon fine particles 201 is covered with the carbon coating layer 301) is brought into contact with the surface of the carbon substrate 101 or the inside thereof on the sample boat shown in FIG. A partially embedded (or inserted) structure is placed, and the sample boat is installed near the center of the reactor.
 その後、シリコン微細粒子等201の表面に炭素被覆層301を設ける方法と同様に、水素ガスの雰囲気下における1000℃の加熱処理、アルゴンガスを反応炉内に導入した状態における800℃までの降温処理、並びに、プロピレンガスとアルゴンガスとを反応炉内に導入した状態における1時間の炭素被覆層302の成長処理が行われる。最後に、プロピレンガスラインを閉塞し、アルゴンガスを200mL/minの流速で流した状態で15min保持した後、自然冷却する。その結果、シリコン微細粒子等201(又は、シリコン微細粒子等201の表面を炭素被覆層301によって被覆した構造物)を炭素基材101の表面又はその内部に接触させる又は一部を埋め込んだ(又は挿入された)構造物の一部又は全部を、ナノグラフェン多層構造を有する炭素被覆層302を用いて覆った構造を形成することができる。 Thereafter, similarly to the method of providing the carbon coating layer 301 on the surface of the silicon fine particles 201 or the like, a heat treatment at 1000 ° C. in an atmosphere of hydrogen gas, and a temperature lowering treatment to 800 ° C. in a state where argon gas is introduced into the reaction furnace. In addition, a growth process of the carbon coating layer 302 is performed for one hour in a state where propylene gas and argon gas are introduced into the reaction furnace. Finally, the propylene gas line is closed, and the argon gas is kept at a flow rate of 200 mL / min for 15 minutes, and then naturally cooled. As a result, silicon fine particles 201 or the like (or a structure in which the surface of the silicon fine particles 201 is covered with the carbon coating layer 301) is brought into contact with or embedded in the surface of the carbon substrate 101 (or A structure in which a part or all of the (inserted) structure is covered with the carbon coating layer 302 having a nanographene multilayer structure can be formed.
 図13は、実施例1である負極材料の走査型電子顕微鏡写真である。実施例1においては、図10に示す、シリコン微細粒子等201の表面を炭素被覆層301によって被覆した構造物を、人造黒鉛粒子である炭素基材101の表面又はその内部に接触させる又は一部を埋め込んだ構造物全体を採用している。なお、実施例1における人造黒鉛粒子の最長径は33μmである。 FIG. 13 is a scanning electron micrograph of the negative electrode material of Example 1. In Example 1, the structure in which the surface of the silicon fine particle 201 or the like shown in FIG. 10 is covered with the carbon coating layer 301 is brought into contact with or partially on the surface of the carbon base material 101 which is an artificial graphite particle. The entire structure is embedded. The longest diameter of the artificial graphite particles in Example 1 is 33 μm.
 図14は、実施例1である負極材料の、さらに拡大した走査型電子顕微鏡写真である。図14は、図13に示す炭素基材101(人造黒鉛粒子)の表面に付着したシリコン微細粒子201あるいはその凝集物又は集合物の一部を拡大している。この例における、シリコン微細粒子201あるいはその凝集物又は集合物の平均厚さは30nm、平均最長径は300nmである。なお、図9に示すシリコン微細粒子201を出発材として、このような比較的大きいサイズになった理由は、シリコン微細粒子等201を炭素基材101との混合工程において、シリコン微細粒子201同士がさらに凝集又は集合したためであると考えられる。 FIG. 14 is a further enlarged scanning electron micrograph of the negative electrode material of Example 1. FIG. 14 is an enlarged view of the silicon fine particles 201 attached to the surface of the carbon substrate 101 (artificial graphite particles) shown in FIG. 13 or a part of the aggregate or aggregate thereof. In this example, the average thickness of the silicon fine particles 201 or aggregates or aggregates thereof is 30 nm, and the average longest diameter is 300 nm. The reason why the silicon microparticles 201 shown in FIG. 9 are used as a starting material is that the silicon microparticles 201 are mixed with each other in the process of mixing the silicon microparticles 201 with the carbon substrate 101. Furthermore, it is considered that it is because of aggregation or aggregation.
 図15は、図14に示す構造物のうち、一部のシリコン微細粒子等201を取り除いて見易くした構造物の例を示す走査型電子顕微鏡写真である。図15においては、シリコン微細粒子201あるいはその凝集物又は集合物が、炭素基材101の表面又はその内部に接触した又は一部の埋まっていると考えられる部分を矢印に示している。この写真に示す構造が形成されることにより、炭素基材101とシリコン微細粒子201あるいはその凝集物又は集合物との結合が強くなるため、シリコン微細粒子等201が仮に膨張収縮した場合であっても、炭素基材101とシリコン微細粒子201との結合状態を維持し得る。 FIG. 15 is a scanning electron micrograph showing an example of the structure shown in FIG. 14 that is easy to see by removing some of the silicon fine particles 201 and the like. In FIG. 15, a portion where the silicon fine particles 201 or the aggregates or aggregates thereof are considered to be in contact with or partially embedded in the surface of the carbon substrate 101 or inside thereof is indicated by arrows. By forming the structure shown in this photograph, the bond between the carbon base material 101 and the silicon fine particles 201 or the aggregates or aggregates thereof is strengthened. In addition, the bonding state between the carbon substrate 101 and the silicon fine particles 201 can be maintained.
 また、炭素基材101表面付近に存在するシリコン微細粒子等201が、さらにその周りのシリコン微細粒子201あるいはその凝集物又は集合物ともファンデルワールス力により結合し得る。その結果、炭素基材101から離れた位置にあるシリコン微細粒子等201であっても、電気的に独立することなく、炭素基材101と充分な結合状態を維持し得る。なお、図15においては、ファンデルワールス力により結合しているシリコン微細粒子等201の一部を取り除いた状態が示されていることになる。 Further, silicon fine particles 201 existing in the vicinity of the surface of the carbon substrate 101 can be further bonded to the surrounding silicon fine particles 201 or aggregates or aggregates thereof by van der Waals force. As a result, even if the silicon fine particles 201 and the like are located away from the carbon base material 101, a sufficient bonding state with the carbon base material 101 can be maintained without being electrically independent. Note that FIG. 15 shows a state in which a part of the silicon fine particles 201 or the like bonded by van der Waals force is removed.
 上述の構造を得るためには、シリコン微細粒子201あるいはその凝集物又は集合物同士が、「ダマ」になることなくほぼ均一に分散した状態で、炭素基材101の表面又はその内部に接触し、又は一部が埋め込まれることが好適な一態様である。シリコン微細粒子等201がより細かい粒子となって分散することにより、炭素基材101表面により接触し易く、又炭素基材101内部に埋まり易い(例えば、突き刺さり易い)状態が形成されると考えられる。なお、既に述べたとおり、シリコン微細粒子等201がより確度高く分散されるためには、シリコン微細粒子201をビーズミル等とともに撹拌、分散させる等の工程を実施することが好ましい。 In order to obtain the above-described structure, the silicon fine particles 201 or aggregates or aggregates thereof are brought into contact with the surface of the carbon base material 101 or the inside thereof in a state of being almost uniformly dispersed without becoming “dama”. It is a preferred embodiment that a part or a part is embedded. When the silicon fine particles 201 are dispersed as finer particles, it is considered that a state is formed in which the carbon base material 101 is more easily contacted and embedded in the carbon base material 101 (for example, easily pierced). . As already described, in order to disperse the silicon fine particles 201 with higher accuracy, it is preferable to carry out a process such as stirring and dispersing the silicon fine particles 201 together with a bead mill or the like.
 図16は、電気容量のシリコン重量比依存性を計算した結果である。該計算に当たり、炭素(C)については、リチウムイオンを充填した際の化学量論的組成を、LiCと仮定し、その電気容量を372mAh/gとしている。また、シリコン(Si)については、リチウムイオンを充填した際の化学量論的組成を、Li15Siと仮定し、その電気容量を3577mAh/gとした場合(図16における破線)と、Li22Siと仮定し、その電気容量を4197mAh/gとした場合(図16における実線)との両方について計算した。なお、図16における横軸のSi/(Si+C)のSiは、シリコン微細粒子等201の重量を、図16における横軸のCは、炭素基材101、炭素被覆層301,302等の合計重量である。 FIG. 16 shows the result of calculating the silicon weight ratio dependency of the electric capacity. In the calculation, the carbon (C) is assumed to have a stoichiometric composition of LiC 6 when charged with lithium ions, and its electric capacity is 372 mAh / g. As for silicon (Si), assuming that the stoichiometric composition at the time of filling with lithium ions is Li 15 Si 4 and its electric capacity is 3577 mAh / g (broken line in FIG. 16), Li Assuming 22 Si 5 , the calculation was made for both the case where the electric capacity was 4197 mAh / g (solid line in FIG. 16). Note that the horizontal axis Si / (Si + C) Si in FIG. 16 represents the weight of the silicon fine particles 201 and the like, and the horizontal axis C in FIG. 16 represents the total weight of the carbon base material 101, the carbon coating layers 301, 302, and the like. It is.
 図16に示すように、シリコン微細粒子等201の重量比を変えることによって、炭素固有の電気容量から、シリコン固有の電気容量まで、幅広く制御することが可能であることが分かった。なお、実際に採用し得る好適な数値範囲としては、シリコン重量比5wt%以上95wt%以下である。但し、より確度高く、炭素による被覆率を向上させる観点から言えば、5wt%以上50wt%以下の数値範囲が採用されることは好適な一態様である。 As shown in FIG. 16, it was found that by changing the weight ratio of the silicon fine particles 201 and the like, it is possible to control a wide range from a carbon specific capacitance to a silicon specific capacitance. A suitable numerical range that can be actually used is a silicon weight ratio of 5 wt% or more and 95 wt% or less. However, from the viewpoint of higher accuracy and improving the coverage with carbon, it is a preferred embodiment that a numerical range of 5 wt% or more and 50 wt% or less is adopted.
<第2の実施形態>
1.リチウムイオン電池の構造及び製造方法について
 本実施形態においては、図17に示すリチウムイオン電池1000の構造及びその製造方法について説明する。
<Second Embodiment>
1. About Structure and Manufacturing Method of Lithium Ion Battery In this embodiment, the structure and manufacturing method of the lithium ion battery 1000 shown in FIG. 17 will be described.
 図17に示すように、本実施形態のリチウムイオン電池1000は、正極1101、セパレータ1102、負極1103、電池缶1104、正極集電タブ1105、負極集電タブ1106、内蓋1107、内圧開放弁1108、ガスケット1109、正温度係数(TPC;positive temperature coefficient)抵抗素子1110、及び電池蓋1111を備える。なお、本実施形態の電池蓋1111は、内蓋1107、内圧開放弁1108、ガスケット1109、温度係数抵抗素子1110からなる一体化部品である。 As shown in FIG. 17, the lithium ion battery 1000 of this embodiment includes a positive electrode 1101, a separator 1102, a negative electrode 1103, a battery can 1104, a positive electrode current collector tab 1105, a negative electrode current collector tab 1106, an inner lid 1107, and an internal pressure release valve 1108. , A gasket 1109, a positive temperature coefficient (TPC) resistance element 1110, and a battery lid 1111. Note that the battery lid 1111 of this embodiment is an integrated part including an inner lid 1107, an internal pressure release valve 1108, a gasket 1109, and a temperature coefficient resistance element 1110.
 例えば、正極1101は、以下の手順により製造することができる。この例においては、正極活物質には、LiMnが採用される。 For example, the positive electrode 1101 can be manufactured by the following procedure. In this example, LiMn 2 O 4 is employed as the positive electrode active material.
 まず、正極活物質の85.0wt%に、導電材として黒鉛粉末とアセチレンブラックをそれぞれ7.0wt%と2.0wt%を添加する。さらに、結着剤として6.0wt%のポリフッ化ビニリデン(以下、PVDFと略記)を1-メチル-2-ピロリドン(以下、NMPと略記)に溶解した溶液)を加えて、プラネタリ-ミキサーを用いて混合する。 First, 7.0 wt% and 2.0 wt% of graphite powder and acetylene black are added as conductive materials to 85.0 wt% of the positive electrode active material, respectively. Further, a 6.0 wt% polyvinylidene fluoride (hereinafter abbreviated as PVDF) solution in 1-methyl-2-pyrrolidone (hereinafter abbreviated as NMP) was added as a binder, and a planetary mixer was used. And mix.
 その後、真空下においてスラリー中の気泡を除去することにより、均質な正極合剤スラリーを調製する。このスラリーを、公知の塗布機を用いて厚さ20μmのアルミニウム箔の両面に均一かつ均等に塗布する。その塗布後、ロールプレス機を用いて、電極密度が2.55g/cmになるように圧縮成形する。圧縮成形後、切断機を用いて裁断することにより、厚さ100μm、長さ900mm、幅54mmの正極1101を製造することができる。 Thereafter, air bubbles in the slurry are removed under vacuum to prepare a homogeneous positive electrode mixture slurry. This slurry is uniformly and evenly applied to both surfaces of an aluminum foil having a thickness of 20 μm using a known applicator. After the application, compression molding is performed using a roll press so that the electrode density is 2.55 g / cm 3 . After compression molding, the positive electrode 1101 having a thickness of 100 μm, a length of 900 mm, and a width of 54 mm can be manufactured by cutting using a cutting machine.
 また、例えば、負極1103は、以下の手順により製造することができる。この例においては、負極材料(負極活物質)として、第1の実施形態において説明した、シリコン微細粒子201あるいはその凝集物又は集合物が被覆された炭素材料からなる負極材料を採用とすることができる。 For example, the negative electrode 1103 can be manufactured by the following procedure. In this example, as the negative electrode material (negative electrode active material), the negative electrode material made of the carbon material coated with the silicon fine particles 201 or the aggregates or aggregates thereof described in the first embodiment may be adopted. it can.
 まず、負極材料の95.0wt%に、結着剤として5.0wt%のPVDF(NMPに溶解した溶液)を加える。それらをプラネタリ-ミキサーを用いて混合する。 First, 5.0 wt% PVDF (solution dissolved in NMP) is added as a binder to 95.0 wt% of the negative electrode material. They are mixed using a planetary mixer.
 その後、真空下においてスラリー中の気泡を除去することにより、均質な負極合剤スラリーを調製する。このスラリーを、公知の塗布機を用いて厚さ10μmの圧延銅箔の両面に均一かつ均等に塗布する。その塗布後、ロールプレス機を用いて圧縮成形する。このときの電極密度は1.3g/cmとする。圧縮成形後、切断機で裁断し、厚さ110μm、長さ950mm、幅56mmの負極1103を製造することができる。 Thereafter, a uniform negative electrode mixture slurry is prepared by removing bubbles in the slurry under vacuum. This slurry is uniformly and evenly applied to both surfaces of a rolled copper foil having a thickness of 10 μm using a known applicator. After the application, compression molding is performed using a roll press. The electrode density at this time is 1.3 g / cm 3 . After compression molding, the negative electrode 1103 having a thickness of 110 μm, a length of 950 mm, and a width of 56 mm can be produced by cutting with a cutting machine.
 上述の製造方法によって製造される正極1101及び負極1103の未塗布部(集電板露出面)に、それぞれ、正極集電タブ1105及び負極集電タブ1106を超音波溶接する。なお、正極集電タブ1105にはアルミニウム製リード片を採用し、負極集電タブ1106にはニッケル製リード片を採用することができる。 The positive electrode current collecting tab 1105 and the negative electrode current collecting tab 1106 are ultrasonically welded to the uncoated portions (current collector exposed surfaces) of the positive electrode 1101 and the negative electrode 1103 manufactured by the above-described manufacturing method, respectively. Note that an aluminum lead piece can be used for the positive electrode current collecting tab 1105, and a nickel lead piece can be used for the negative electrode current collecting tab 1106.
 さらにその後、厚み30μmの多孔性ポリエチレンフィルムからなるセパレータ1102を、正極1101と負極1103に挿入することにより、正極1101、セパレータ1102、及び負極1103を捲回することにより捲回体を作製する。この捲回体を電池缶1104に収納した後、抵抗溶接機を用いて、負極集電タブ1106を電池缶1104の缶底に接続する。一方、正極集電タブ1105は、内蓋1107の底面に超音波溶接により接続する。 Thereafter, a separator 1102 made of a porous polyethylene film having a thickness of 30 μm is inserted into the positive electrode 1101 and the negative electrode 1103, whereby the positive electrode 1101, the separator 1102, and the negative electrode 1103 are wound to produce a wound body. After the wound body is stored in the battery can 1104, the negative electrode current collecting tab 1106 is connected to the bottom of the battery can 1104 using a resistance welder. On the other hand, the positive electrode current collecting tab 1105 is connected to the bottom surface of the inner lid 1107 by ultrasonic welding.
 上部の電池蓋1111を電池缶1104に取り付ける前に、非水電解液を注入する。本実施形態の電解液の溶媒は、例えば、エチレンカーボネート(EC)とジメチルカーボネート(DMC)とジエチルカーボネート(DEC)からなる。前述の3種の材料の体積比の例は、1:1:1である。また、本実施形態の電解質は、濃度1mol/L(約0.8mol/kg)のLiPFである。該電解液を捲回体の上から滴下した後、電池蓋1111を電池缶1104に、かしめて密封することにより、リチウムイオン電池1000を製造することができる。 Before attaching the upper battery lid 1111 to the battery can 1104, a non-aqueous electrolyte is injected. The solvent of the electrolyte solution of this embodiment consists of ethylene carbonate (EC), dimethyl carbonate (DMC), and diethyl carbonate (DEC), for example. An example of the volume ratio of the three materials mentioned above is 1: 1: 1. Further, the electrolyte of the present embodiment is LiPF 6 having a concentration of 1 mol / L (about 0.8 mol / kg). After the electrolytic solution is dropped from above the wound body, the battery lid 1111 is caulked and sealed in the battery can 1104, whereby the lithium ion battery 1000 can be manufactured.
2.リチウムイオン電池の評価結果について
 リチウムイオン電池1000の放電容量及び維持率の測定は、1Cの速度で、定電流モードの条件下において行った。
2. About the evaluation result of a lithium ion battery The measurement of the discharge capacity and the maintenance factor of the lithium ion battery 1000 was performed under conditions of a constant current mode at a speed of 1C.
[比較例1]
 ここで、比較例1として、実施例1において採用した、炭素被覆したシリコン微細粒子等201の代わりに、炭素被覆した球状のシリコンナノ粒子を採用した上で、実施例1と同様の方法にて評価した。
[Comparative Example 1]
Here, as Comparative Example 1, instead of the carbon-coated silicon fine particles 201 employed in Example 1, carbon-coated spherical silicon nanoparticles were employed, and the same method as in Example 1 was used. evaluated.
 なお、炭素基材101としての人造黒鉛の平均長径は20μm、シリコン微細粒子等201の平均長径は60nmである。また、リチウムイオン電池1000におけるシリコン重量比の一例は、15.6wt%である。加えて、充放電については、1Cの速度で行った。本実施形態の炭素基材101(人造黒鉛)とシリコン微細粒子等201との複合材料、より具体的には、シリコン微細粒子201の一部あるいはシリコン微細粒子201の該凝集物又は該集合物の一部が、炭素基材101に接し、又は炭素基材101の中に埋まっている構造物を採用した場合、100サイクル後の容量維持率が91.0%であった。一方、人造黒鉛と炭素被覆し球状のシリコンナノ粒子との複合材料の容量維持率は、48.7%であった。 The average major axis of artificial graphite as the carbon substrate 101 is 20 μm, and the average major axis of the silicon fine particles 201 is 60 nm. An example of the silicon weight ratio in the lithium ion battery 1000 is 15.6 wt%. In addition, charging / discharging was performed at a speed of 1C. A composite material of the carbon base material 101 (artificial graphite) and silicon fine particles 201 of the present embodiment, more specifically, a part of the silicon fine particles 201 or the aggregate or aggregate of the silicon fine particles 201 When a part of the structure in contact with the carbon base material 101 or embedded in the carbon base material 101 was used, the capacity retention rate after 100 cycles was 91.0%. On the other hand, the capacity retention rate of the composite material of artificial graphite and carbon-coated spherical silicon nanoparticles was 48.7%.
 実施例1及び比較例1の各リチウムイオン電池を評価した結果を、表1に示す。また、図18は、実施例1及び比較例1の各リチウムイオン電池を評価した結果を示すグラフである。その結果、比較例1と比較して、実施例1のリチウムイオン電池1000の維持率は格段に優れていることが明らかとなった。より具体的には、実施例1においては、サイクル数が100回に到達した場合であっても、維持率を90%以上、より具体的には、91%以上を実現し得ることが分かった。また、実施例1のリチウムイオン電池1000の維持率は、比較例1の結果と比較して、40%以上高い維持率を実現していることが分かる。 Table 1 shows the results of evaluating the lithium ion batteries of Example 1 and Comparative Example 1. FIG. 18 is a graph showing the results of evaluating the lithium ion batteries of Example 1 and Comparative Example 1. As a result, it was revealed that the maintenance rate of the lithium ion battery 1000 of Example 1 was markedly superior to that of Comparative Example 1. More specifically, in Example 1, it was found that even when the number of cycles reached 100, the maintenance rate could be 90% or more, more specifically 91% or more. . In addition, it can be seen that the maintenance rate of the lithium ion battery 1000 of Example 1 achieves a maintenance rate that is 40% or more higher than the result of Comparative Example 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
<その他の実施形態(1)>
 ところで、上述の各実施形態においては、出発材として、単結晶又は多結晶のシリコンの塊又はインゴットの切削過程において形成されるシリコンの切粉等を例示しているが、その他の形態のシリコンの切粉等を出発材とすることも採用し得る他の一態様である。具体的には、シリコンの切粉等は、半導体製品の生産過程におけるシリコンのインゴットの切削加工において必然的に形成されるものに限らず、予め選定した結晶性シリコンのインゴットを切削機で一様に又はランダムに切削して作製することも可能である。また、通常は廃棄物とされるシリコンの切粉やシリコンの研磨屑等のいわゆるシリコン廃材が、上述の各実施形態のシリコン微細粒子の出発材となり得るが、該シリコン廃材には、ウェハの破片、廃棄ウェハ等を粉砕することによって得られる微細な屑も含まれ得る。さらに、金属性のシリコンの切粉又は金属性のシリコンの研磨屑、あるいは金属性のその他の粒子状のシリコンといった材料を出発材料として用いるシリコン微細粒子も、採用し得る。
<Other embodiment (1)>
By the way, in each of the above-described embodiments, as a starting material, a single-crystal or polycrystalline silicon lump or silicon chips formed in the cutting process of an ingot is exemplified, but other forms of silicon are exemplified. It is another aspect in which chips and the like are used as a starting material. Specifically, silicon chips and the like are not necessarily formed in the cutting process of silicon ingots in the production process of semiconductor products. It is also possible to cut them randomly or randomly. In addition, so-called silicon waste materials such as silicon chips and silicon polishing scraps that are normally discarded can be used as starting materials for the silicon fine particles in each of the above-described embodiments. Also, fine waste obtained by pulverizing a waste wafer or the like may be included. Further, fine silicon particles using a starting material such as metallic silicon chips or metallic silicon polishing scraps or other metallic silicon particles may be employed.
<その他の実施形態(2)>
 また、上述の各実施形態におけるn型結晶性シリコンの不純物濃度は特に限定されない。また、n型のみならず、p型の結晶性シリコンを採用することもできる。さらに、真正半導体である結晶性シリコンも、上述の各実施形態における結晶性シリコンとして採用し得る。なお、リチウムイオン電池の負極材料内における電子の移動が重視されるため、n型の不純物を含有する結晶性シリコンを用いるのがより好適である。
<Other embodiment (2)>
Further, the impurity concentration of the n-type crystalline silicon in each of the above embodiments is not particularly limited. Further, not only n-type but also p-type crystalline silicon can be employed. Furthermore, crystalline silicon which is a genuine semiconductor can also be employed as the crystalline silicon in each of the embodiments described above. Note that since movement of electrons in the negative electrode material of the lithium ion battery is emphasized, it is more preferable to use crystalline silicon containing an n-type impurity.
<その他の実施形態(3)>
 また、上述の第1の実施形態における図3に示すリチウムイオン電池の負極材料及び負極の製造装置500の代替的な装置として、図19に示すリチウムイオン電池の負極の製造装置200が採用されても良い。具体的には、設備の簡素化及び/又は製造コストの低減の観点から、リチウムイオン電池の負極の製造装置200においては、シリコンの切削過程で形成されるシリコンの切粉等を洗浄する洗浄機10が、洗浄されたシリコンの切粉等を粉砕することによってシリコン微細粒子を形成する粉砕機20を兼ねている態様である。従って、図19に示す装置/方法においては、例えば、洗浄工程においては比較的大きな径のビーズを用い、粉砕工程においては比較的小さい径のビーズを用いることによって、リチウムイオン電池の負極材料として用いるシリコン微細粒子を得ることになる。但し、より確度高く、第1の実施形態において説明したシリコン微細粒子を得るためには、第1の実施形態のように、ボールミル機を用いて処理した後のビーズミル機によって、シリコン微細粒子を形成することが好ましい。
<Other embodiment (3)>
Further, as an alternative device to the negative electrode material and negative electrode manufacturing apparatus 500 shown in FIG. 3 in the first embodiment, the negative electrode manufacturing apparatus 200 of the lithium ion battery shown in FIG. 19 is adopted. Also good. Specifically, from the viewpoint of simplification of equipment and / or reduction of manufacturing cost, in the negative electrode manufacturing apparatus 200 for a lithium ion battery, a cleaning machine for cleaning silicon chips formed in the cutting process of silicon. Reference numeral 10 denotes an aspect also serving as a pulverizer 20 that forms fine silicon particles by pulverizing washed silicon chips and the like. Accordingly, in the apparatus / method shown in FIG. 19, for example, a relatively large-diameter bead is used in the cleaning process, and a relatively small-diameter bead is used in the pulverization process, so that the negative electrode material of the lithium ion battery is used. Silicon fine particles will be obtained. However, in order to obtain the silicon fine particles described in the first embodiment with higher accuracy, the silicon fine particles are formed by the bead mill machine after the processing using the ball mill machine as in the first embodiment. It is preferable to do.
 上述の各実施形態の開示は、それらの実施形態の説明のために記載したものであって、本発明を限定するために記載したものではない。加えて、各実施形態の他の組合せを含む本発明の技術思想の範囲内に存在する変形例もまた、特許請求の範囲に含まれるものである。 The disclosure of each of the above-described embodiments is described for explaining the embodiments, and is not described for limiting the present invention. In addition, modifications that exist within the scope of the technical idea of the present invention including other combinations of the embodiments are also included in the scope of the claims.
 本発明のリチウムイオン電池の負極材料及びそれを備えたリチウムイオン電池は、例えば、各種の発電又は蓄電装置(家庭用小型電力貯蔵装置及び大型蓄電システムを含む)、スマートフォン、携帯情報端末、携帯電子機器(携帯電話、携帯用音楽プレイヤー、ノート型パソコン、デジタルカメラ・ビデオ)、電気自動車、ハイブリッド電気自動車(HEV)又はプラグインハイブリッド電気自動車(PHEV)、モーターを電力源とする自動二輪車、モーターを電力源とする自動三輪車、その他の輸送機械又は車両等を含む多種のデバイスないし装置に対して適することができる。 The negative electrode material of the lithium ion battery and the lithium ion battery including the same of the present invention include, for example, various power generation or power storage devices (including small household power storage devices and large power storage systems), smartphones, portable information terminals, and portable electronics. Equipment (cell phones, portable music players, notebook computers, digital cameras / videos), electric vehicles, hybrid electric vehicles (HEV) or plug-in hybrid electric vehicles (PHEV), motorcycles powered by motors, motors The present invention can be applied to various devices or apparatuses including a motor tricycle as a power source, other transport machines or vehicles.

Claims (14)

  1.  モード径及びメジアン径が50nm未満の体積分布を有するシリコン微細粒子あるいはその凝集物又は集合物であって、複層花弁状又は鱗片状に折重なった状態の前記シリコン微細粒子の一部あるいは前記シリコン微細粒子の該凝集物又は該集合物の一部が、炭素基材に接し、又は該炭素基材の中に埋まっている、
     リチウムイオン電池の負極材料。
    Silicon fine particles having a volume distribution with a mode diameter and median diameter of less than 50 nm, or aggregates or aggregates thereof, a part of the silicon fine particles in a state of being folded into a multi-layer petal shape or a scale shape, or the silicon A part of the aggregate or aggregate of fine particles is in contact with or embedded in the carbon substrate;
    A negative electrode material for lithium ion batteries.
  2.  前記炭素基材は、人造黒鉛又は天然黒鉛を含む、
     請求項1に記載のリチウムイオン電池の負極材料。
    The carbon substrate includes artificial graphite or natural graphite,
    The negative electrode material of the lithium ion battery according to claim 1.
  3.  前記シリコン微細粒子あるいはその凝集物又は集合物の、モード径及びメジアン径が、20nm未満の体積分布を有する、
     請求項1又は請求項2に記載のリチウムイオン電池の負極材料。
    The mode diameter and median diameter of the silicon fine particles or aggregates or aggregates thereof have a volume distribution of less than 20 nm.
    The negative electrode material of the lithium ion battery according to claim 1 or 2.
  4.  前記炭素基材の平均最長粒径が、1μm以上50μm以下である、
     請求項1又は請求項2に記載のリチウムイオン電池の負極材料。
    The average longest particle diameter of the carbon substrate is 1 μm or more and 50 μm or less,
    The negative electrode material of the lithium ion battery according to claim 1 or 2.
  5.  前記炭素基材の平均最長粒径が、5μm以上30μm以下である、
     請求項1又は請求項2に記載のリチウムイオン電池の負極材料。
    The average longest particle diameter of the carbon substrate is 5 μm or more and 30 μm or less.
    The negative electrode material of the lithium ion battery according to claim 1 or 2.
  6.  前記シリコン微細粒子と前記炭素基材との合計重量に対する、前記シリコン微細粒子の重量比が、5wt%以上95wt%以下である、
     請求項1又は請求項2に記載のリチウムイオン電池の負極材料。
    The weight ratio of the silicon fine particles to the total weight of the silicon fine particles and the carbon substrate is 5 wt% or more and 95 wt% or less.
    The negative electrode material of the lithium ion battery according to claim 1 or 2.
  7.  前記シリコン微細粒子あるいはその凝集物又は集合物が、固定砥粒ワイヤによって削り出される切粉又は切削屑である結晶性シリコンを粉砕することにより形成される、
     請求項1又は請求項2に記載のリチウムイオン電池の負極材料。
    The silicon fine particles or the aggregates or aggregates thereof are formed by pulverizing crystalline silicon that is chips or cutting scraps cut by a fixed abrasive wire.
    The negative electrode material of the lithium ion battery according to claim 1 or 2.
  8.  前記シリコン微細粒子あるいはその凝集物又は集合物が、炭素により被覆されている、
     請求項1乃至請求項7のいずれか1項に記載のリチウムイオン電池の負極材料。
    The silicon fine particles or aggregates or aggregates thereof are coated with carbon,
    The negative electrode material for a lithium ion battery according to any one of claims 1 to 7.
  9.  前記炭素基材と、前記シリコン微細粒子あるいはその凝集物又は集合物とが、いずれも炭素により被覆されている、
     請求項1乃至請求項7のいずれか1項に記載のリチウムイオン電池の負極材料。
    The carbon substrate and the silicon fine particles or aggregates or aggregates thereof are all coated with carbon.
    The negative electrode material for a lithium ion battery according to any one of claims 1 to 7.
  10.  正極と負極と備え、かつ
     前記負極は、請求項1乃至請求項9のいずれか1項に記載のリチウムイオン電池の負極材料を有する、
     リチウムイオン電池。
    A positive electrode and a negative electrode are provided, and the negative electrode has the negative electrode material for a lithium ion battery according to any one of claims 1 to 9.
    Lithium ion battery.
  11.  固定砥粒ワイヤによって削り出される切粉又は切削屑である結晶性シリコンを粉砕することにより、モード径及びメジアン径が50nm未満の体積分布を有するシリコン微細粒子あるいはその凝集物又は集合物を形成する粉砕工程と、
     前記シリコン微細粒子あるいは前記凝集物又は前記集合物の一部が、炭素基材に接するように、又は該炭素基材の中に埋まるように、前記炭素基材と前記シリコン微細粒子あるいは前記凝集物又は前記集合物とを混合する、混合工程と、を含む、
     リチウムイオン電池の負極材料の製造方法。
    By pulverizing crystalline silicon, which is a chip or cutting scraped by a fixed abrasive wire, silicon fine particles having a volume distribution with a mode diameter and a median diameter of less than 50 nm, or aggregates or aggregates thereof are formed. Crushing process;
    The carbon substrate and the silicon fine particles or the aggregate so that a part of the silicon fine particle or the aggregate or the aggregate is in contact with the carbon substrate or embedded in the carbon substrate. Or a mixing step of mixing the assembly.
    A method for producing a negative electrode material for a lithium ion battery.
  12.  前記シリコン微細粒子あるいは前記凝集物又は前記集合物の、モード径及びメジアン径が20nm未満の体積分布を有する、
     請求項11に記載のリチウムイオン電池の負極材料の製造方法。
    The silicon fine particles or the aggregates or the aggregates have a volume distribution with a mode diameter and a median diameter of less than 20 nm.
    The manufacturing method of the negative electrode material of the lithium ion battery of Claim 11.
  13.  前記粉砕工程において、前記結晶性シリコンをビーズミル機によって粉砕することにより、前記シリコン微細粒子あるいは前記凝集物又は前記集合物が形成される、
     請求項11又は請求項12に記載のリチウムイオン電池の負極材料の製造方法。
    In the pulverization step, the silicon fine particles or the aggregates or the aggregates are formed by pulverizing the crystalline silicon with a bead mill.
    The manufacturing method of the negative electrode material of the lithium ion battery of Claim 11 or Claim 12.
  14.  前記混合工程の前に、前記シリコン微細粒子あるいは前記凝集物又は前記集合物と、ビーズミルとを混合して撹拌する、撹拌工程を、さらに含む、
     請求項11乃至請求項13のいずれか1項に記載のリチウムイオン電池の負極材料の製造方法。
    The method further includes a stirring step of mixing and stirring the silicon fine particles or the aggregates or the aggregates and the bead mill before the mixing step.
    The method for producing a negative electrode material for a lithium ion battery according to any one of claims 11 to 13.
PCT/JP2016/056638 2016-03-03 2016-03-03 Negative-electrode material for lithium-ion battery, lithium-ion battery, and method for manufacturing negative-electrode material for lithium-ion battery WO2017149731A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/056638 WO2017149731A1 (en) 2016-03-03 2016-03-03 Negative-electrode material for lithium-ion battery, lithium-ion battery, and method for manufacturing negative-electrode material for lithium-ion battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/056638 WO2017149731A1 (en) 2016-03-03 2016-03-03 Negative-electrode material for lithium-ion battery, lithium-ion battery, and method for manufacturing negative-electrode material for lithium-ion battery

Publications (1)

Publication Number Publication Date
WO2017149731A1 true WO2017149731A1 (en) 2017-09-08

Family

ID=59743588

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/056638 WO2017149731A1 (en) 2016-03-03 2016-03-03 Negative-electrode material for lithium-ion battery, lithium-ion battery, and method for manufacturing negative-electrode material for lithium-ion battery

Country Status (1)

Country Link
WO (1) WO2017149731A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005310759A (en) * 2004-03-26 2005-11-04 Shin Etsu Chem Co Ltd Silicon composite particle, production method of same, and negative electrode material for nonaqueous electrolyte secondary battery
JP2009535776A (en) * 2006-05-23 2009-10-01 ケイエヌユー‐インダストリー・コオペレイション・ファウンデイション Negative electrode active material for lithium secondary battery, method for producing the same, negative electrode including the same, and lithium secondary battery including the same
JP2014060124A (en) * 2012-09-19 2014-04-03 Mitsubishi Chemicals Corp Negative electrode material for nonaqueous secondary battery, negative electrode for nonaqueous secondary battery, and nonaqueous secondary battery
JP2015060640A (en) * 2013-09-17 2015-03-30 中央電気工業株式会社 Alloy-graphite composite particle and method for producing the same
JP2015220221A (en) * 2014-05-21 2015-12-07 東ソー株式会社 Negative electrode for lithium ion secondary battery and method for manufacturing the same
JP2015219989A (en) * 2014-05-14 2015-12-07 東ソー株式会社 Negative electrode active material for lithium ion secondary battery and method for producing the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005310759A (en) * 2004-03-26 2005-11-04 Shin Etsu Chem Co Ltd Silicon composite particle, production method of same, and negative electrode material for nonaqueous electrolyte secondary battery
JP2009535776A (en) * 2006-05-23 2009-10-01 ケイエヌユー‐インダストリー・コオペレイション・ファウンデイション Negative electrode active material for lithium secondary battery, method for producing the same, negative electrode including the same, and lithium secondary battery including the same
JP2014060124A (en) * 2012-09-19 2014-04-03 Mitsubishi Chemicals Corp Negative electrode material for nonaqueous secondary battery, negative electrode for nonaqueous secondary battery, and nonaqueous secondary battery
JP2015060640A (en) * 2013-09-17 2015-03-30 中央電気工業株式会社 Alloy-graphite composite particle and method for producing the same
JP2015219989A (en) * 2014-05-14 2015-12-07 東ソー株式会社 Negative electrode active material for lithium ion secondary battery and method for producing the same
JP2015220221A (en) * 2014-05-21 2015-12-07 東ソー株式会社 Negative electrode for lithium ion secondary battery and method for manufacturing the same

Similar Documents

Publication Publication Date Title
CN106133956B (en) Negative electrode active material for lithium ion secondary battery and method for producing same
KR102280508B1 (en) Negative electrode material for lithium ion batteries, lithium ion battery, method and apparatus for producing negative electrode for lithium ion batteries, and method and apparatus for producing negative electrode material for lithium ion batteries
JP6957603B2 (en) Negative electrode active material for secondary batteries and its manufacturing method
JP7385096B2 (en) Lithium ion battery negative electrode material or negative electrode manufacturing device and manufacturing method thereof
JP2023109877A (en) Anode material for lithium ion battery, lithium ion battery, manufacturing method for anode material for lithium ion battery, and device for the same
JP6617403B2 (en) Negative electrode active material for lithium ion secondary battery and method for producing the same
JP2013144639A (en) Dense powdery compound of mixed titanium lithium oxide, method for manufacturing the compound, and electrode containing the compound
JP2017528868A (en) Method for producing silicon-based active material particles for secondary battery, and silicon-based active material particles
WO2015146864A1 (en) Negative electrode active material for lithium ion secondary battery, and method for producing same
JP2016001613A (en) Negative electrode material of lithium ion battery, lithium ion battery, and method of manufacturing negative electrode or negative electrode material of lithium ion battery
JP2016110969A (en) Negative electrode active material for lithium ion secondary battery, and manufacturing method thereof
KR20210035628A (en) Porous graphene-silicon aerogel composite containing graphene-wrapped silicon nanoparticles, preparation of the same and lithium secondary battery using the same
JP6451071B2 (en) Carbon silicon negative electrode active material for lithium ion secondary battery and method for producing the same
JP2017183113A (en) Composite active material for lithium ion secondary battery, and method for manufacturing the same
JP2016143462A (en) Negative electrode active material for lithium ion secondary battery and lithium ion secondary battery
CN108565454B (en) Lithium nickel manganese oxide positive electrode material with three-dimensional desert wave structure and preparation method and application thereof
JP6746906B2 (en) Silicon-based particles, negative electrode active material for lithium-ion secondary battery containing the same, and methods for producing the same
CN116655004B (en) Cobalt-free positive electrode material and preparation method and application thereof
Cheng et al. Synthesizing nano-sized (∼ 20 nm) Li 4 Ti 5 O 12 at low temperature for a high-rate performance lithium ion battery anode
WO2017149731A1 (en) Negative-electrode material for lithium-ion battery, lithium-ion battery, and method for manufacturing negative-electrode material for lithium-ion battery
CN112824320B (en) Electrode material, preparation method thereof and battery
KR102518142B1 (en) Nanosilicon-graphene microball composite anode material and its manufacturing method, anode for secondary battery comprising microball composite anode material

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16892571

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 16892571

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP