WO2017149728A1 - Petroleum processing apparatus - Google Patents

Petroleum processing apparatus Download PDF

Info

Publication number
WO2017149728A1
WO2017149728A1 PCT/JP2016/056627 JP2016056627W WO2017149728A1 WO 2017149728 A1 WO2017149728 A1 WO 2017149728A1 JP 2016056627 W JP2016056627 W JP 2016056627W WO 2017149728 A1 WO2017149728 A1 WO 2017149728A1
Authority
WO
WIPO (PCT)
Prior art keywords
oil
crude oil
cdu
kbd
dcfcc
Prior art date
Application number
PCT/JP2016/056627
Other languages
French (fr)
Japanese (ja)
Inventor
渡邉 哲哉
厚徳 佐藤
Original Assignee
日揮株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日揮株式会社 filed Critical 日揮株式会社
Priority to PCT/JP2016/056627 priority Critical patent/WO2017149728A1/en
Priority to JP2018502454A priority patent/JPWO2017149728A1/en
Publication of WO2017149728A1 publication Critical patent/WO2017149728A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G11/00Catalytic cracking, in the absence of hydrogen, of hydrocarbon oils
    • C10G11/14Catalytic cracking, in the absence of hydrogen, of hydrocarbon oils with preheated moving solid catalysts
    • C10G11/18Catalytic cracking, in the absence of hydrogen, of hydrocarbon oils with preheated moving solid catalysts according to the "fluidised-bed" technique

Definitions

  • the present invention relates to a petroleum processing apparatus.
  • CDU atmospheric distillation unit
  • LPG light naphtha
  • heavy naphtha heavy naphtha
  • kerosene light oil
  • RFCC residual oil fluid catalytic cracking device
  • a crude oil heating furnace is provided upstream of the atmospheric distillation tower, fuel is poured in the heating furnace, and the crude oil is heated to about 350 ° C.
  • the white oil fraction is evaporated and then introduced into the atmospheric distillation column.
  • equipment provided with CDU and RFCC is generally used (see Patent Document 1).
  • An object of the present invention is to provide a petroleum processing apparatus capable of greatly reducing energy consumption.
  • a first aspect of the present invention is an oil comprising a crude oil fluidized catalytic cracking reaction apparatus through which crude oil or a mixed oil of crude oil and atmospheric residue is passed, and a reaction product distillation facility. It is a processing device. According to a second aspect of the present invention, there is provided a petroleum processing apparatus comprising a prefractionator, a crude oil fluid catalytic cracking reaction apparatus, and a reaction product distillation facility.
  • the first embodiment which is a petroleum processing apparatus comprising a crude oil fluidized catalytic cracking reactor for passing crude oil and a reaction product distillation facility,
  • the oil is cracked by passing it through a crude fluid fluid catalytic cracking device (Direct Crude Fluid Catalytic Cracking, hereinafter sometimes referred to as “DCFCC”) and then distilled in the reaction product distillation facility after the cracking.
  • DCFCC is composed of a crude oil fluid catalytic cracking reactor for fluid catalytic cracking of crude oil and a reaction product distillation facility for fractionating and purifying the reaction product therefrom.
  • the crude oil is directly passed through the DCFCC without passing through the CDU.
  • the first embodiment includes a crude oil fluid catalytic cracking reaction device for passing crude oil, and a reaction product distillation facility.
  • crude oil is directly passed through DCFCC, and the crude oil is subjected to fluid catalytic cracking.
  • Fluid catalytic cracking means that crude oil is brought into contact with a catalyst held in a fluid state and decomposed into light hydrocarbons mainly composed of gasoline and light olefins.
  • all the decomposition products produced in the reactor are gaseous hydrocarbons.
  • the catalyst that has come into contact with crude oil adheres to the coke produced by the reaction and decreases the reaction activity. It is regenerated by burning.
  • the crude oil passed through the reactor is evaporated and decomposed using the heat generated in the regeneration tower during catalyst regeneration as described above, so that the crude oil heating furnace required by the CDU to process the crude oil is used. The corresponding heating furnace becomes unnecessary.
  • crude oil preheated to about 250 ° C. is passed through a crude oil fluid catalytic cracker (DCFCC) via a line 11.
  • DCFCC crude oil fluid catalytic cracker
  • examples of the catalyst used for fluid catalytic cracking include a silica / alumina catalyst and a zeolite catalyst.
  • a commercial item may be used for these catalysts.
  • crude oil is decomposed at a reaction temperature of 560 to 570 ° C. by contacting with a catalyst having a high temperature of about 700 ° C.
  • the heat required for the evaporation and reaction of crude oil is covered by the heat during catalyst regeneration generated in the DCFCC regeneration tower.
  • the outlet temperature of the reaction zone for fluid catalytic cracking in DCFCC is preferably 500 ° C. or higher and 600 ° C. or lower, and more preferably 520 ° C. or higher and 570 ° C. or lower.
  • the contact time between the crude oil and the catalyst in fluid catalytic cracking is preferably from 1.5 seconds to 10 seconds, and more preferably from 2 to 8 seconds.
  • the components decomposed by DCFCC are introduced into the reaction product fractionation equipment through the line 12 and distilled. In the same fractionation equipment, it is separated into each fraction such as light gas, LPG, propylene, naphtha, middle distillate, and residual oil according to the boiling point. Each separated fraction is subjected to a treatment such as reforming as necessary, and can be appropriately used as a petroleum product base material.
  • olefins such as propylene can be obtained with high yield.
  • propylene is further decomposed by further decomposition of a naphtha fraction generated by decomposition of a heavy oil fraction in addition to olefins derived from a naphtha fraction in a raw material oil. This is because olefins such as can be obtained.
  • a refinery equipped with a conventional CDU and heavy oil desulfurization equipment it is possible to increase the production of about 340,000 tons of propylene per year.
  • the second embodiment is an embodiment in which the first embodiment and the conventional CDU facility are used in combination. That is, the second embodiment includes a CDU and a DCFCC.
  • the atmospheric distillation residue oil obtained by CDU and crude oil are mixed and passed through DCFCC for decomposition, and after the decomposition, the product is purified by a reaction product distillation facility.
  • a second embodiment will be described with reference to FIG.
  • Light oil (carbon number: 3) and LPG are mixed with LPG refined by CDU via line 22 and sent to a propylene recovery unit (PRU).
  • PRU propylene recovery unit
  • Naphtha performs hydrodesulfurization treatment by a hydrodesulfurization apparatus (CCG-HDS in FIG. 2) having a catalyst layer filled with a hydrodesulfurization purification catalyst.
  • CCG-HDS hydrodesulfurization apparatus
  • a mixed LPG of 30.1 kBD propylene and 27.9 kBD can be obtained.
  • the second embodiment is an embodiment in which conventional CDU equipment is used in combination.
  • the hydrodesulfurization apparatus (NH-HDS and KR-HDS in FIG. 2) provided with a catalyst layer filled with CDU and hydrodesulfurization purification catalyst used in the second embodiment can use facilities that have been used conventionally. *
  • propylene as much as 30.1 kBD can be purified from 200,000 BPSD crude oil.
  • a DCFCC having a crude oil processing capacity of 50,000 BPSD is introduced into an existing refinery having a crude oil processing capacity of 150,000 BPSD to increase the crude oil processing capacity to 200,000 BPSD.
  • DCFCC the amount of crude oil processed can be increased without modifying existing CDUs.
  • the third embodiment is an embodiment using an oil processing apparatus equipped with a CDU and a DCFCC. In processing 200,000 BPSD crude oil, 150.0 kBD crude oil is converted into CDU. The remaining 50.0 kBD crude oil is passed through DCFCC.
  • 59.3 kBD atmospheric distillation residue oil obtained by CDU is mixed with 50 kBD crude oil through line 21, and 109.3 kBD crude oil and atmospheric distillation residue oil is mixed with DCFCC.
  • Light oil (carbon number: 3) and LPG are mixed with LPG refined by CDU via line 22 and sent to a propylene recovery unit (PRU).
  • PRU propylene recovery unit
  • Naphtha performs hydrodesulfurization treatment by a hydrodesulfurization apparatus (CCG-HDS in FIG. 3) having a catalyst layer filled with a hydrodesulfurization purification catalyst.
  • CCG-HDS hydrodesulfurization apparatus
  • 24.4 kBD light oil carbon number: 3
  • 22.4 kBD LPG and 3.0 kBD LPG refined by CDU.
  • 24.4 kBD of propylene and 22.2 kBD of mixed LPG can be obtained.
  • as much as 24.4 kBD of propylene can be purified from 200,000 BPSD of crude oil.
  • the fourth embodiment is a petroleum processing apparatus including a prefractionator, a crude oil fluid catalytic cracking reaction apparatus, and a reaction product distillation facility.
  • the prefractionator is a distillation column that operates to remove a substance having a low boiling point to some extent. Using a prefractionator, the heavy oil is divided into two fractions, a light fraction from LPG to naphtha and a heavy oil, and the heavy oil is passed through DCFCC.
  • the crude oil is passed through the line 11 to the prefractionator.
  • the prefractionator it is fractionated into a lighter fraction lighter than naphtha having about 5 to 7 carbon atoms and a heavier heavy oil.
  • the light fraction fractionated by the prefractionator enters the reaction product distillation facility via line 15 and is fractionated together with the reaction product by fluid catalytic cracking.
  • the heavy oil obtained after passing through the pre-fractionator is passed through the line 13 to the crude oil fluid catalytic cracking reactor to undergo fluid catalytic cracking.
  • the components decomposed by the crude oil fluid catalytic cracking reactor are introduced into the reaction product fractionation equipment through the line 14 and distilled. In the same fractionation equipment, it is separated into each fraction such as light gas, LPG, propylene, naphtha, middle distillate, and residual oil according to the boiling point.
  • Each separated fraction is subjected to a treatment such as reforming as necessary, and can be appropriately used as a petroleum product base material.
  • FIG. 4 shows a comparative example in which the total amount of crude oil of 200,000 BPSD is fractionated by CDU, and the atmospheric residue is decomposed by hydrodesulfurizer and RFCC.
  • the amount of propylene refined from the crude oil of 200,000 BPSD was 18.5 kBD, which was a low yield compared to the second to third embodiments.

Abstract

This petroleum processing apparatus is characterized by including a direct crude fluid catalytic cracking reaction device through which crude oil or a mixture of crude oil and atmospheric residue oil is run, and reaction product distillation equipment.

Description

石油の処理装置Oil processing equipment
 本発明は、石油の処理装置に関する。 The present invention relates to a petroleum processing apparatus.
 従来の一般的な石油精製においては、原油を常圧蒸留装置(Crude Distillation Unit、以下「CDU」と記載する)において常圧蒸留し、軽質ガス、LPG、軽質ナフサ、重質ナフサ、灯油及び軽油などの各留分に分離する。
また、常圧蒸留で生じる常圧残留残渣油の付加価値を高めるべく更に処理する場合には、CDUの下流に残渣油流動接触分解装置(Resid Fluid Catalytic Cracking、以下「RFCC」と記載する)を設けて残渣油の軽質化を行い、ガソリンや軽油留分、ケミカル用途の軽質留分の製造が行われている。
 ここで、原油をCDU内の常圧蒸留塔で分留する為には、常圧蒸留塔の上流に原油加熱炉を設け、該加熱炉で燃料を焚いて、約350℃程度まで原油を加熱し、白油留分を蒸発させた後に、常圧蒸留塔に導入する。
 このように、石油精製においては、CDUと、RFCCとを備えた設備が一般に用いられる(特許文献1参照)。
In conventional general oil refining, crude oil is subjected to atmospheric distillation in an atmospheric distillation unit (hereinafter referred to as “CDU”) to produce light gas, LPG, light naphtha, heavy naphtha, kerosene and light oil. Separate into each fraction.
When further processing is performed to increase the added value of atmospheric residual oil generated by atmospheric distillation, a residual oil fluid catalytic cracking device (hereinafter referred to as “RFCC”) is provided downstream of the CDU. It is installed to lighten the residual oil and produce gasoline, light oil fractions, and light fractions for chemical use.
Here, in order to fractionate crude oil in the atmospheric distillation column in the CDU, a crude oil heating furnace is provided upstream of the atmospheric distillation tower, fuel is poured in the heating furnace, and the crude oil is heated to about 350 ° C. The white oil fraction is evaporated and then introduced into the atmospheric distillation column.
Thus, in petroleum refining, equipment provided with CDU and RFCC is generally used (see Patent Document 1).
特開2000-328068号公報JP 2000-328068 A
 しかし、従来の石油精製設備は、原油加熱炉において膨大なエネルギーを必要とする。石油精製工程において、省エネルギー化することが望まれるが、これまで原油は、まずCDU内の原油加熱炉で加熱された上で分留することが常識とされていた。 However, conventional oil refining equipment requires enormous energy in the crude oil heating furnace. In the oil refining process, it is desired to save energy, but until now it has been common knowledge that crude oil is first heated in a crude oil heating furnace in a CDU and then fractionated.
 本発明者らが鋭意検討した結果、原油を直接RFCCに通油することにより、従来の設備が有していた原油加熱炉を含むCDU相当の設備を省略でき、消費エネルギーを大きく削減できることを見出した。
 本発明は消費エネルギーを大きく削減できる石油の処理装置を提供することを課題とする。
As a result of intensive studies by the present inventors, it has been found that by directly passing crude oil through RFCC, it is possible to omit equipment equivalent to a CDU including a crude oil heating furnace, which the conventional equipment had, and to greatly reduce energy consumption. It was.
An object of the present invention is to provide a petroleum processing apparatus capable of greatly reducing energy consumption.
 本発明の第1の態様は、原油又は原油と常圧残渣油との混合油が通油される原油流動接触分解反応装置と、反応生成物蒸留設備と、を備えたことを特徴とする石油の処理装置である。
 本発明の第2の態様は、プレフラクショネーターと、原油流動接触分解反応装置と、反応生成物蒸留設備と、を備えたことを特徴とする石油の処理装置である。
A first aspect of the present invention is an oil comprising a crude oil fluidized catalytic cracking reaction apparatus through which crude oil or a mixed oil of crude oil and atmospheric residue is passed, and a reaction product distillation facility. It is a processing device.
According to a second aspect of the present invention, there is provided a petroleum processing apparatus comprising a prefractionator, a crude oil fluid catalytic cracking reaction apparatus, and a reaction product distillation facility.
 本発明によれば、消費エネルギーを大きく削減できる石油の処理装置を提供することができる。 According to the present invention, it is possible to provide a petroleum processing apparatus capable of greatly reducing energy consumption.
本発明の実施形態の一例を示す図。The figure which shows an example of embodiment of this invention. 本発明の実施形態の一例を示す図。The figure which shows an example of embodiment of this invention. 本発明の実施形態の一例を示す図。The figure which shows an example of embodiment of this invention. 本発明の実施形態の一例を示す図。The figure which shows an example of embodiment of this invention. 本発明に対する比較例の一例を示す図。The figure which shows an example of the comparative example with respect to this invention.
 以下、本発明の石油の処理装置の好ましい実施形態について説明する。但し、本発明はこれらの実施形態に限定されない。 Hereinafter, preferred embodiments of the petroleum processing apparatus of the present invention will be described. However, the present invention is not limited to these embodiments.
 <第1実施形態>
 第1実施形態は、原油を通油する原油流動接触分解反応装置と、反応生成物蒸留設備と、を備えたことを特徴とする石油の処理装置である
第1実施形態によれば、原油を、原油流動接触分解装置(Direct Crude Fluid Catalytic Cracking、以下「DCFCC」と記載することがある。)に通油して分解し、分解後に反応生成物蒸留設備で蒸留する。
 DCFCCは原油を流動接触分解する原油流動接触分解反応装置と、そこからの反応生成物を分留・精製する反応生成物蒸留設備とから構成される。
 第1実施形態では、原油をCDUを通さずに直接DCFCCに通油する。この態様においては、従来のように原油加熱炉を含むCDUを設ける必要がないので、CDUにおいて消費されていた分の消費エネルギーを大幅に削減できる。新規に石油精製プラントを建設する際には、建設コストを削減でき、設備面積も小さくすることができる。さらに、既に原油加熱炉を含むCDUが設けられている場合にも、CDUでの処理を行わずに直接DCFCCに通油するようにラインを整備することにより、消費エネルギーを削減できると共に既設CDU関連設備の改造が不要となり製油所全体の増強改造コストの削減にも寄与する。
 より具体的には、例えば、100,000BPSDの原油を処理する場合には、CDUに通油する従来の工程に比べて約40MWの燃料消費量を削減することができる。
<First Embodiment>
According to the first embodiment, which is a petroleum processing apparatus comprising a crude oil fluidized catalytic cracking reactor for passing crude oil and a reaction product distillation facility, The oil is cracked by passing it through a crude fluid fluid catalytic cracking device (Direct Crude Fluid Catalytic Cracking, hereinafter sometimes referred to as “DCFCC”) and then distilled in the reaction product distillation facility after the cracking.
DCFCC is composed of a crude oil fluid catalytic cracking reactor for fluid catalytic cracking of crude oil and a reaction product distillation facility for fractionating and purifying the reaction product therefrom.
In the first embodiment, the crude oil is directly passed through the DCFCC without passing through the CDU. In this aspect, since it is not necessary to provide a CDU including a crude oil heating furnace as in the prior art, it is possible to greatly reduce the amount of energy consumed by the CDU. When a new oil refining plant is constructed, the construction cost can be reduced and the equipment area can be reduced. In addition, even when a CDU including a crude oil heating furnace is already installed, energy consumption can be reduced and the existing CDU can be reduced by improving the line so that the oil is passed directly to the DCFCC without being processed by the CDU. It is no longer necessary to modify the equipment, which contributes to the cost of strengthening and remodeling the entire refinery.
More specifically, for example, when processing 100,000 BPSD crude oil, the fuel consumption can be reduced by about 40 MW compared to the conventional process of passing oil through the CDU.
石油処理装置では、通常、原油はCDU内の加熱炉により加熱され、まずCDU内の常圧蒸留塔において沸点の差により、ガス、LPG、ナフサ、灯油、軽油及び残油留分に分離される。これまでの石油の処理装置においては、CDUを備えた設備を設けることが当業者にとって常識であった。
一方で、石油の処理装置において、加熱炉における燃料費が運転費に占める割合が最も大きい。このため、加熱炉での加熱量を削減する事は運転費を左右する重要な要因であった。
In oil processing equipment, crude oil is usually heated by a furnace in the CDU and first separated into gas, LPG, naphtha, kerosene, light oil and residual oil fractions in the atmospheric distillation tower in the CDU due to differences in boiling points. . It has been common knowledge for those skilled in the art to provide equipment with a CDU in conventional petroleum processing equipment.
On the other hand, in the petroleum processing apparatus, the ratio of the fuel cost in the heating furnace to the operating cost is the largest. For this reason, reducing the amount of heating in the heating furnace was an important factor affecting the operating cost.
 本発明者らが鋭意検討した結果、驚くべきことに、原油を直接DCFCCに通油した場合に、ナフサやオレフィン等の収量が格段に向上することが見出された。
  本実施形態によれば、CDUにおいて消費するエネルギーを大きく削減できるとともに、高い収量でナフサやオレフィン等を得ることができる。
 以下、本実施形態について、図面を参照して説明する。
As a result of intensive studies by the present inventors, it has been surprisingly found that the yield of naphtha, olefins and the like is remarkably improved when crude oil is directly passed through DCFCC.
According to this embodiment, energy consumed in the CDU can be greatly reduced, and naphtha, olefin, and the like can be obtained with high yield.
Hereinafter, the present embodiment will be described with reference to the drawings.
 第1実施形態は、図1に示すように、原油を通油する原油流動接触分解反応装置と、反応生成物蒸留設備と、を備えている。
 第1実施形態では、原油を直接DCFCCに通油し、原油を流動接触分解する。
「流動接触分解」とは、原油と流動状態に保持されている触媒とを接触させ、ガソリンや軽質オレフィンを主体とした軽質な炭化水素に分解することを意味する。
尚、反応器で生成する分解生成物は全てガス状の炭化水素となる。
原油と接触した触媒は、反応によって生じるコークが付着し、反応活性が低下するので、反応器にて反応生成物と分離後に付帯する触媒再生塔に送られて、そこに吹き込まれた空気によってコークを燃焼させて再生される。
 DCFCCにおいては、上記の触媒再生時に再生塔で発生する熱を利用して、反応器に通油された原油を蒸発・分解させるので、原油を処理する為にCDUで必要とした原油加熱炉に相当する加熱炉が不要となる。
第1実施形態は、図1に示すように、250℃程度まで予熱した原油をライン11を介して原油流動接触分解装置(DCFCC)に通油する。
As shown in FIG. 1, the first embodiment includes a crude oil fluid catalytic cracking reaction device for passing crude oil, and a reaction product distillation facility.
In the first embodiment, crude oil is directly passed through DCFCC, and the crude oil is subjected to fluid catalytic cracking.
“Fluid catalytic cracking” means that crude oil is brought into contact with a catalyst held in a fluid state and decomposed into light hydrocarbons mainly composed of gasoline and light olefins.
In addition, all the decomposition products produced in the reactor are gaseous hydrocarbons.
The catalyst that has come into contact with crude oil adheres to the coke produced by the reaction and decreases the reaction activity. It is regenerated by burning.
In DCFCC, the crude oil passed through the reactor is evaporated and decomposed using the heat generated in the regeneration tower during catalyst regeneration as described above, so that the crude oil heating furnace required by the CDU to process the crude oil is used. The corresponding heating furnace becomes unnecessary.
In the first embodiment, as shown in FIG. 1, crude oil preheated to about 250 ° C. is passed through a crude oil fluid catalytic cracker (DCFCC) via a line 11.
DCFCCにおいて、流動接触分解に用いられる触媒としては、例えばシリカ・アルミナ触媒、ゼオライト触媒などが挙げられる。これらの触媒は市販品を用いてもよい。
これらの中でも、エチレン、プロピレン等オレフィン類が高い収量で得られることから、ゼオライト触媒を添加する事が好ましい。
In DCFCC, examples of the catalyst used for fluid catalytic cracking include a silica / alumina catalyst and a zeolite catalyst. A commercial item may be used for these catalysts.
Among these, it is preferable to add a zeolite catalyst because olefins such as ethylene and propylene can be obtained in a high yield.
 DCFCCでは、700℃程度の高温の触媒と接触させて560~570℃の反応温度にて原油を分解する。原油の蒸発や反応に必要な熱は、DCFCCの再生塔で発生する触媒再生時の熱によって賄う。
DCFCCにおける、流動接触分解の反応帯域の出口温度は、500℃以上600℃以下であることが好ましく、520℃以上570℃以下であることがより好ましい。
流動接触分解における原油と触媒の接触時間は、1.5秒以上10秒以下であることが好ましく、2~8秒であることがより好ましい。
In DCFCC, crude oil is decomposed at a reaction temperature of 560 to 570 ° C. by contacting with a catalyst having a high temperature of about 700 ° C. The heat required for the evaporation and reaction of crude oil is covered by the heat during catalyst regeneration generated in the DCFCC regeneration tower.
The outlet temperature of the reaction zone for fluid catalytic cracking in DCFCC is preferably 500 ° C. or higher and 600 ° C. or lower, and more preferably 520 ° C. or higher and 570 ° C. or lower.
The contact time between the crude oil and the catalyst in fluid catalytic cracking is preferably from 1.5 seconds to 10 seconds, and more preferably from 2 to 8 seconds.
DCFCCにより分解した成分は、ライン12を通じて反応生成物分留設備に導入し、蒸留を行う。同分留設備では、沸点により、軽質ガス、LPG、プロピレン、ナフサ、中間留分、残渣油等の各留分に分離する。分離された各留分は、必要により改質などの処理を行い、それぞれ石油製品基材として適宜用いることができる。 The components decomposed by DCFCC are introduced into the reaction product fractionation equipment through the line 12 and distilled. In the same fractionation equipment, it is separated into each fraction such as light gas, LPG, propylene, naphtha, middle distillate, and residual oil according to the boiling point. Each separated fraction is subjected to a treatment such as reforming as necessary, and can be appropriately used as a petroleum product base material.
第1実施形態によれば、高い収量でプロピレン等のオレフィン類を得ることができる。例えば、100,000BPSDの原油を第1実施形態で処理する場合には、原料油中のナフサ留分由来のオレフィン類に加え、重油留分の分解により生成するナフサ留分の更なる分解によりプロピレンをはじめとするオレフィン類を得ることができるためである。
従来のCDUと重油脱硫装置とを備えた製油所で精製する場合に比べて、年間約34万トンものプロピレンを増産することができる。
According to the first embodiment, olefins such as propylene can be obtained with high yield. For example, when processing a crude oil of 100,000 BPSD in the first embodiment, propylene is further decomposed by further decomposition of a naphtha fraction generated by decomposition of a heavy oil fraction in addition to olefins derived from a naphtha fraction in a raw material oil. This is because olefins such as can be obtained.
Compared to refining at a refinery equipped with a conventional CDU and heavy oil desulfurization equipment, it is possible to increase the production of about 340,000 tons of propylene per year.
<第2実施形態>
第2実施形態は、前記第1実施形態と、従来のCDU設備を併用する実施形態である。即ち、第2実施形態は、CDUと、DCFCCと、を備えている。
第2実施形態においては、CDUで得られた常圧蒸留残渣油と、原油とを混合して、DCFCCに通油して分解し、前記分解後に反応生成物蒸留設備で精製する。第2実施形態について、図2を参照して説明する。
Second Embodiment
The second embodiment is an embodiment in which the first embodiment and the conventional CDU facility are used in combination. That is, the second embodiment includes a CDU and a DCFCC.
In the second embodiment, the atmospheric distillation residue oil obtained by CDU and crude oil are mixed and passed through DCFCC for decomposition, and after the decomposition, the product is purified by a reaction product distillation facility. A second embodiment will be described with reference to FIG.
第2実施形態では、200,000BPSDのうち、100,000BPSDをCDUで分解し、残りの100,000BPSDと、CDUで得られた常圧蒸留残渣油とをDCFCCで分解する。
図2に示すように、CDUで得られた39.5kBDの常圧蒸留残渣油を、ライン21を通じて原油と混合し、139.6kBDの原油と常圧蒸留残渣油との混合油をDCFCCに通油する。
In the second embodiment, out of 200,000 BPSD, 100,000 BPSD is decomposed with CDU, and the remaining 100,000 BPSD and the atmospheric distillation residue obtained with CDU are decomposed with DCFCC.
As shown in FIG. 2, the 39.5 kBD atmospheric distillation residue oil obtained by CDU is mixed with crude oil through line 21, and the mixed oil of 139.6 kBD crude oil and atmospheric distillation residue oil is passed to DCFCC. Oil.
より具体的には、第2実施形態では、DCFCCに通油された139.5kBDの前記混合油、30.1kBDの軽質油(炭素数;3)と、29.4kBDのLPGと、58.2kBDのナフサと、24.1kBDのLCOと、6.6kBDのDCOとに分解される。 More specifically, in the second embodiment, 139.5 kBD of the mixed oil passed through DCFCC, 30.1 kBD of light oil (carbon number: 3), 29.4 kBD of LPG, and 58.2 kBD. Naphtha, 24.1 kBD LCO, and 6.6 kBD DCO.
軽質油(炭素数;3)とLPGは、ライン22を介してCDUにより精製されたLPGと混合され、プロピレン回収装置(PRU)に送られる。 Light oil (carbon number: 3) and LPG are mixed with LPG refined by CDU via line 22 and sent to a propylene recovery unit (PRU).
ナフサは水素化脱硫精製触媒を充填した触媒層を備えた水素化脱硫装置(図2中のCCG-HDS)により、水素化脱硫処理する。
第2実施形態では、DCFCCにより精製された30.1kBDの軽質油(炭素数;3)と、29.4kBDのLPGと、CDUにより精製された2.0kBDのLPG、との合計62.0kBDから、30.1kBDのプロピレンと、27.9kBDの混合LPGを得ることができる。
Naphtha performs hydrodesulfurization treatment by a hydrodesulfurization apparatus (CCG-HDS in FIG. 2) having a catalyst layer filled with a hydrodesulfurization purification catalyst.
In the second embodiment, from a total of 62.0 kBD of 30.1 kBD light oil (carbon number: 3) refined by DCFCC, 29.4 kBD LPG, and 2.0 kBD LPG refined by CDU. A mixed LPG of 30.1 kBD propylene and 27.9 kBD can be obtained.
第2実施形態は、従来のCDUの設備を併用する実施形態である。第2実施形態に用いるCDU及び水素化脱硫精製触媒を充填した触媒層を備えた水素化脱硫装置(図2中のNH-HDS及びKR-HDS)は、従来用いられていた設備を利用できる。  The second embodiment is an embodiment in which conventional CDU equipment is used in combination. The hydrodesulfurization apparatus (NH-HDS and KR-HDS in FIG. 2) provided with a catalyst layer filled with CDU and hydrodesulfurization purification catalyst used in the second embodiment can use facilities that have been used conventionally. *
第2実施形態によれば、200,000BPSDの原油から、30.1kBDものプロピレンを精製することができる。 According to the second embodiment, propylene as much as 30.1 kBD can be purified from 200,000 BPSD crude oil.
<第3実施形態>
第3実施形態は、例えば、原油処理能力が150,000BPSDの既設の製油所に、原油処理能力が50,000BPSDのDCFCCを導入して、原油処理能力を200,000BPSDに増強する実施形態である。DCFCCを導入することにより、既設のCDUの改造をすることなく、原油処理量を増やすことができる。
第3実施形態は、前記第2実施形態と同様に、CDUとDCFCCを備えた石油処理装置を用いた実施形態であって、200,000BPSDの原油を処理するにあたり、150.0kBDの原油をCDUに通油し、残りの50.0kBDの原油をDCFCCに通油する形態である。
第3実施形態を、図3を用いて説明する。
<Third Embodiment>
In the third embodiment, for example, a DCFCC having a crude oil processing capacity of 50,000 BPSD is introduced into an existing refinery having a crude oil processing capacity of 150,000 BPSD to increase the crude oil processing capacity to 200,000 BPSD. . By introducing DCFCC, the amount of crude oil processed can be increased without modifying existing CDUs.
Similar to the second embodiment, the third embodiment is an embodiment using an oil processing apparatus equipped with a CDU and a DCFCC. In processing 200,000 BPSD crude oil, 150.0 kBD crude oil is converted into CDU. The remaining 50.0 kBD crude oil is passed through DCFCC.
A third embodiment will be described with reference to FIG.
第3実施形態においては、CDUで得られた59.3kBDの常圧蒸留残渣油を、ライン21を通じて50kBDの原油と混合し、109.3kBDの原油と常圧蒸留残渣油との混合油をDCFCCに通油する。
DCFCCに通油された109.3kBDの前記混合油、24.4kBDの軽質油(炭素数;3)と、22.4kBDのLPGと、49.9kBDのナフサと、17.8kBDのLCOと、5.1kBDのDCOとに分解される。
In the third embodiment, 59.3 kBD atmospheric distillation residue oil obtained by CDU is mixed with 50 kBD crude oil through line 21, and 109.3 kBD crude oil and atmospheric distillation residue oil is mixed with DCFCC. Oil through.
109.3 kBD mixed oil passed through DCFCC, 24.4 kBD light oil (carbon number: 3), 22.4 kBD LPG, 49.9 kBD naphtha, 17.8 kBD LCO, 5 Decomposed into 1 kBD DCO.
軽質油(炭素数;3)とLPGは、ライン22を介してCDUにより精製されたLPGと混合され、プロピレン回収装置(PRU)に送られる。 Light oil (carbon number: 3) and LPG are mixed with LPG refined by CDU via line 22 and sent to a propylene recovery unit (PRU).
ナフサは水素化脱硫精製触媒を充填した触媒層を備えた水素化脱硫装置(図3中のCCG-HDS)により、水素化脱硫処理する。
第3実施形態では、DCFCCにより精製された24.4kBDの軽質油(炭素数;3)と、22.4kBDのLPGと、CDUにより精製された3.0kBDのLPG、との合計50.6kBDから、24.4kBDのプロピレンと、22.2kBDの混合LPGを得ることができる。
 第3実施形態によれば、200,000BPSDの原油から、24.4kBDものプロピレンを精製することができる。
Naphtha performs hydrodesulfurization treatment by a hydrodesulfurization apparatus (CCG-HDS in FIG. 3) having a catalyst layer filled with a hydrodesulfurization purification catalyst.
In the third embodiment, from a total of 50.6 kBD of 24.4 kBD light oil (carbon number: 3) refined by DCFCC, 22.4 kBD LPG, and 3.0 kBD LPG refined by CDU. 24.4 kBD of propylene and 22.2 kBD of mixed LPG can be obtained.
According to the third embodiment, as much as 24.4 kBD of propylene can be purified from 200,000 BPSD of crude oil.
<第4実施形態>
第4実施形態は、プレフラクショネーターと、原油流動接触分解反応装置と、反応生成物蒸留設備とを備えたことを特徴とする石油の処理装置である。
プレフラクショネーターは、沸点の低い物質をある程度除く操作をする蒸留塔である。プレフラクショネーターで、LPGからナフサまでの軽質留分と重質油の2つの留分に分け、重質油をDCFCCに通油する。
<Fourth embodiment>
The fourth embodiment is a petroleum processing apparatus including a prefractionator, a crude oil fluid catalytic cracking reaction apparatus, and a reaction product distillation facility.
The prefractionator is a distillation column that operates to remove a substance having a low boiling point to some extent. Using a prefractionator, the heavy oil is divided into two fractions, a light fraction from LPG to naphtha and a heavy oil, and the heavy oil is passed through DCFCC.
図4に示すように、原油をライン11を通じてプレフラクショネーターに通油する。プレフラクショネーターにおいて、炭素数5~7程度以下のナフサより軽い軽質留分と、それより重い重質油とに分留する。プレフラクショネーターで分留された軽質留分は、ライン15を介して反応生成物蒸留設備に入り、流動接触分解による反応生成物と共に分留される。 As shown in FIG. 4, the crude oil is passed through the line 11 to the prefractionator. In the prefractionator, it is fractionated into a lighter fraction lighter than naphtha having about 5 to 7 carbon atoms and a heavier heavy oil. The light fraction fractionated by the prefractionator enters the reaction product distillation facility via line 15 and is fractionated together with the reaction product by fluid catalytic cracking.
プレフラクショネーターに通油後に得られた重質油をライン13を通じて原油流動接触分解反応装置に通油し、流動接触分解する。
原油流動接触分解反応装置により分解した成分は、ライン14を通じて反応生成物分留設備に導入し、蒸留を行う。同分留設備では、沸点により、軽質ガス、LPG、プロピレン、ナフサ、中間留分、残渣油等の各留分に分離する。分離された各留分は、必要により改質などの処理を行い、それぞれ石油製品基材として適宜用いることができる。
The heavy oil obtained after passing through the pre-fractionator is passed through the line 13 to the crude oil fluid catalytic cracking reactor to undergo fluid catalytic cracking.
The components decomposed by the crude oil fluid catalytic cracking reactor are introduced into the reaction product fractionation equipment through the line 14 and distilled. In the same fractionation equipment, it is separated into each fraction such as light gas, LPG, propylene, naphtha, middle distillate, and residual oil according to the boiling point. Each separated fraction is subjected to a treatment such as reforming as necessary, and can be appropriately used as a petroleum product base material.
<比較例1>
図4に、200,000BPSDの原油全量をCDUで分留し、常圧残渣留分を水素化脱硫装置とRFCCで分解する比較例を示す。この場合には、図4に示すとおり、200,000BPSDの原油から精製されるプロピレンの量は18.5kBDと、上記第2~3実施形態に比べて低い収量であった。
<Comparative Example 1>
FIG. 4 shows a comparative example in which the total amount of crude oil of 200,000 BPSD is fractionated by CDU, and the atmospheric residue is decomposed by hydrodesulfurizer and RFCC. In this case, as shown in FIG. 4, the amount of propylene refined from the crude oil of 200,000 BPSD was 18.5 kBD, which was a low yield compared to the second to third embodiments.
 本発明によれば、大きく消費エネルギーを削減し、さらに、商品価値の高い軽質留分を高い収量で生産することができる。 According to the present invention, energy consumption can be greatly reduced, and a light fraction with high commercial value can be produced with high yield.

Claims (2)

  1.  原油又は原油と常圧残渣油との混合油が通油される原油流動接触分解反応装置と、反応生成物蒸留設備と、を備えたことを特徴とする石油の処理装置。 A petroleum processing apparatus comprising: a crude oil fluidized catalytic cracking reaction apparatus through which crude oil or a mixed oil of crude oil and atmospheric residue oil is passed; and a reaction product distillation facility.
  2.  プレフラクショネーターと、原油流動接触分解反応装置と、反応生成物蒸留設備と、を備えたことを特徴とする石油の処理装置。 A petroleum processing apparatus comprising: a prefractionator, a crude oil fluid catalytic cracking reactor, and a reaction product distillation facility.
PCT/JP2016/056627 2016-03-03 2016-03-03 Petroleum processing apparatus WO2017149728A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2016/056627 WO2017149728A1 (en) 2016-03-03 2016-03-03 Petroleum processing apparatus
JP2018502454A JPWO2017149728A1 (en) 2016-03-03 2016-03-03 Oil processing equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/056627 WO2017149728A1 (en) 2016-03-03 2016-03-03 Petroleum processing apparatus

Publications (1)

Publication Number Publication Date
WO2017149728A1 true WO2017149728A1 (en) 2017-09-08

Family

ID=59742649

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/056627 WO2017149728A1 (en) 2016-03-03 2016-03-03 Petroleum processing apparatus

Country Status (2)

Country Link
JP (1) JPWO2017149728A1 (en)
WO (1) WO2017149728A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01304183A (en) * 1988-03-25 1989-12-07 Amoco Corp Catalytic decomposition of unpurified crude oil
JP2000336375A (en) * 1999-05-05 2000-12-05 Bar Co Processes Joint Venture Improved fluidized catalytic cracking method for residual oil with high conversion
JP2007501311A (en) * 2003-08-04 2007-01-25 ストーン アンド ウェブスター プロセス テクノロジー インコーポレーテッド Control of catalyst temperature in catalyst stripper.

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01304183A (en) * 1988-03-25 1989-12-07 Amoco Corp Catalytic decomposition of unpurified crude oil
JP2000336375A (en) * 1999-05-05 2000-12-05 Bar Co Processes Joint Venture Improved fluidized catalytic cracking method for residual oil with high conversion
JP2007501311A (en) * 2003-08-04 2007-01-25 ストーン アンド ウェブスター プロセス テクノロジー インコーポレーテッド Control of catalyst temperature in catalyst stripper.

Also Published As

Publication number Publication date
JPWO2017149728A1 (en) 2018-12-27

Similar Documents

Publication Publication Date Title
JP6970185B2 (en) Systems and methods for converting feed hydrocarbons into petrochemicals
JP7281473B2 (en) High severity fluidized catalytic cracking system and process for producing olefins from petroleum feeds
KR102201157B1 (en) Process for high severity catalytic cracking of crude oil
KR102375080B1 (en) Process for the production of light olefins and btx using an fcc unit processing a heavy feedstock of the highly hydrotreated vgo type, coupled with a catalytic reforming unit and an aromatic complex processing a naphtha-type feedstock
JP4620427B2 (en) Integrated catalytic cracking and steam pyrolysis process for olefins
KR102413259B1 (en) Process and installation for the conversion of crude oil to petrochemicals having an improved propylene yield
JP6215936B2 (en) Conversion process of hydrocarbon feedstock by thermal steam cracking
JP6543501B2 (en) Process for producing light olefins and BTX using a catalytic cracking unit (NCC) processing a naphtha-based feed, a catalytic reforming unit and an aromatics complex
JP6490008B2 (en) Process for producing olefin-containing products by steam cracking using heat
RU2700710C1 (en) Method of processing crude oil into light olefins, aromatic compounds and synthetic gas
US20130267745A1 (en) Process for production of hydrocarbon chemicals from crude oil
JP6267694B2 (en) Direct catalytic cracking of crude oil by temperature gradient process
JP6181181B2 (en) Process for producing olefins by thermal steam cracking in a cracking furnace
EA017596B1 (en) Ancillary cracking of paraffinic naptha in conjunction with fluidized catalytic cracking (fcc) unit operations
JP2013536249A (en) Olefin production process by cracking refinery offgas and dilute feedstock of other light hydrocarbons
JP2017502110A (en) Integrated process of solvent degassing and fluid catalytic cracking for the production of light olefins
JP2015524451A (en) Process for producing olefins by thermal steam cracking
KR20190020775A (en) Systems and methods for producing chemical feedstock from crude oil
WO2017149728A1 (en) Petroleum processing apparatus
ES2916256T3 (en) Fluid Catalytic Cracking Process
WO2000069992A1 (en) Process for treating crude oil
US20220282169A1 (en) Naphtha catalytic cracking process
JP2012121937A (en) Method for producing hydrocarbon

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018502454

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16892568

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 16892568

Country of ref document: EP

Kind code of ref document: A1