WO2017148399A1 - 应用于超级小区的通信方法和装置 - Google Patents

应用于超级小区的通信方法和装置 Download PDF

Info

Publication number
WO2017148399A1
WO2017148399A1 PCT/CN2017/075372 CN2017075372W WO2017148399A1 WO 2017148399 A1 WO2017148399 A1 WO 2017148399A1 CN 2017075372 W CN2017075372 W CN 2017075372W WO 2017148399 A1 WO2017148399 A1 WO 2017148399A1
Authority
WO
WIPO (PCT)
Prior art keywords
cell
mode
controller
reference signal
access network
Prior art date
Application number
PCT/CN2017/075372
Other languages
English (en)
French (fr)
Inventor
张宏平
曾清海
耿婷婷
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP17759250.8A priority Critical patent/EP3413623B1/en
Publication of WO2017148399A1 publication Critical patent/WO2017148399A1/zh
Priority to US16/119,861 priority patent/US10420004B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/34Reselection control
    • H04W36/38Reselection control by fixed network equipment
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/24Cell structures
    • H04W16/32Hierarchical cell structures
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0055Transmission or use of information for re-establishing the radio link
    • H04W36/0069Transmission or use of information for re-establishing the radio link in case of dual connectivity, e.g. decoupled uplink/downlink
    • H04W36/00692Transmission or use of information for re-establishing the radio link in case of dual connectivity, e.g. decoupled uplink/downlink using simultaneous multiple data streams, e.g. cooperative multipoint [CoMP], carrier aggregation [CA] or multiple input multiple output [MIMO]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0083Determination of parameters used for hand-off, e.g. generation or modification of neighbour cell lists
    • H04W36/0085Hand-off measurements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/08Reselecting an access point
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/24Reselection being triggered by specific parameters
    • H04W36/30Reselection being triggered by specific parameters by measured or perceived connection quality data
    • H04W36/304Reselection being triggered by specific parameters by measured or perceived connection quality data due to measured or perceived resources with higher communication quality
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0032Distributed allocation, i.e. involving a plurality of allocating devices, each making partial allocation
    • H04L5/0035Resource allocation in a cooperative multipoint environment
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/0051Allocation of pilot signals, i.e. of signals known to the receiver of dedicated pilots, i.e. pilots destined for a single user or terminal

Definitions

  • the present application relates to the field of communications and, more particularly, to a communication method and apparatus for use in a super cell.
  • UE User Equipment
  • mobility management of the UE is required. For example, when the UE moves from the coverage of the source cell to the coverage of the target cell, it is necessary to complete the handover between the cells in time.
  • the design concept of mobility management is a network-centric design idea (UE follows network).
  • UE network-centric design idea
  • each cell in the network sends a downlink reference signal for measurement by the UE.
  • the UE reports the measurement result to the network side in the form of a measurement report.
  • the network performs a handover decision based on the measurement report of the UE, and switches the UE to a cell with a good signal condition for data transmission.
  • the UE needs to measure a large number of small cells, which requires high measurement capability for the UE. For example, the UE can perform the handover after the measurement is performed and the measurement report is reported. Because the coverage of the small cell is small, the UE may be fast. If the coverage of the small cell is removed, the switch may fail due to insufficient handover. For example, the measurement report fails to be sent to the small cell, and the switch command fails to be sent. For example, due to the ultra-dense cell deployment, operations such as measurement report reporting and handover may generate a large amount of air interface signaling, and consume a large amount of air interface resources and network processing resources.
  • the present application proposes a communication method, a radio access network controller, a user equipment, and a transmission point applied to a super cell to solve the problem of difficulty in mobility management of a hot spot.
  • a communication method applied to a super cell includes: the controller of the radio access network allocates a first transmission point (TP) set and a second TP set to the UE in the first super cell.
  • the first super cell includes a plurality of TPs, and the first TP set and the second TP set each include at least one TP of the plurality of TPs, and the TP in the first TP set is used for measurement
  • the uplink reference signal sent by the UE, the TP in the second TP set is used for data communication with the UE, and the controller of the radio access network sends the first dedicated user of the UE to the UE Dedicated User Equipment Identity (DUI), the first DUI is used to identify the UE in the first super cell;
  • the controller of the radio access network receives the TP in the first TP set a measurement report sent, the measurement report carrying signal strength information of an uplink reference signal sent by the UE; the controller of the radio access network according to the TP in the first TP set
  • the controller of the radio access network may send the first DUI to the TP in the first TP set and/or the TP in the second TP set.
  • the TP in the first TP set may measure the uplink reference signal sent by the UE based on the first DUI.
  • the TP in the second TP set may perform data communication with the UE based on the first DUI.
  • the measurement report can be used to indicate the strength or quality of the uplink reference signal sent by the UE.
  • the cell transmits a downlink reference signal
  • the UE measures the downlink reference signal of the cell, and reports the measurement report, and then performs a cell handover decision by the network side based on the UE's measurement report, thereby implementing the UE mobility.
  • Sexual management the controller of the radio access network allocates a first TP set and a second TP set to the UE, where the second TP set is used to transmit data of the UE, and the first TP set is used to measure the UE sending.
  • the uplink reference signal, the controller of the radio access network updates the second TP set based on the measurement report of the TP in the first TP set.
  • the sender of the reference signal becomes the UE
  • the measurer of the reference signal becomes the TP in the super cell
  • the network side continuously updates for transmitting the UE data as the UE moves.
  • the second TP set but from the perspective of the UE, the UE does not obviously perceive the network change, does not require complicated measurement and reporting operations, reduces the complexity of the UE, and does not require excessive UE and TP in the whole process.
  • Air interface signaling interaction saves air interface resources, thus solving the problem of mobility management in hotspot areas.
  • the method before the controller of the radio access network allocates a first TP set and a second TP set to a UE in the first super cell, the method The controller of the radio access network determines that the working mode of the UE is a non-cell mode, where the working mode supported by the UE includes a cell mode and a non-cell mode, where the cell mode is based on the UE.
  • the measurement of the reference signal performs an operation mode of mobility management
  • the non-cell mode is an operation mode for performing mobility management by measuring an uplink reference signal transmitted by the UE.
  • the cell mode is an operation mode in which the network side performs mobility management based on a measurement result obtained by the UE measuring the downlink reference signal sent by the network side, where the non-cell mode is an uplink reference sent by the network side based on the measurement UE.
  • the measurement results obtained by the signal are used for the mobility management mode of operation.
  • the prior art ie, compatible cell mode
  • the controller of the radio access network determines that the working mode of the UE is a non-cell mode, including: at the UE After the random access procedure is initiated by the TP in the first super cell, the controller of the radio access network receives the request information sent by the TP in the first super cell, and the request information is used to request the The controller of the radio access network determines an operating mode of the UE, where the request information includes at least one of the following parameters of the UE: a type of the UE, a moving speed of the UE, a location of the UE, The service of the UE, the working mode supported by the UE, and the capability of the UE; the controller of the radio access network determines, according to the parameters of the UE carried in the request information, that the working mode of the UE is non- a cell working mode; the method further includes: the controller of the radio access network sending, to the UE, and the TP in the second TP
  • the controller of the radio access network determines that the working mode of the UE is a non-cell mode; for example, the request information carries the location of the UE, and the controller of the radio access network according to the UE The location determines whether the UE is located in the hotspot area; when the UE is located in the hotspot area, determines that the working mode of the UE is the non-cell mode.
  • the method further includes: the controller of the radio access network is configured according to the first Measurement report of TP in the TP set, Determining to switch the working mode of the UE to the cell mode; the controller of the radio access network sends a mode switching message to the UE, where the mode switching message is used to indicate that the UE switches from the non-cell mode to In the cell mode, the mode switching message includes a cell identifier of a serving cell of the UE in the cell mode.
  • the TP that sends the measurement report is located at the edge of the super cell, that is, the UE is about to leave the super cell.
  • the controller of the radio access network can switch the UE to the cell mode.
  • the controller of the radio access network selects an appropriate working mode for the UE based on the measurement report of the TP of the first TP set, and implements flexible switching between the UE mode and the non-cell mode.
  • the method further includes: the controller of the radio access network transmitting the first DUI to a TP in the first TP set, so that the TP in the first TP set is based on the A DUI determines the time-frequency resource, and detects an uplink reference signal of the UE on the time-frequency resource.
  • the UE By pre-establishing the correspondence between the DUI and the time-frequency resources occupied by the uplink reference signal, when the UE receives the first DUI, it can conveniently determine the time-frequency resource for transmitting the uplink reference signal according to the first DUI, which simplifies the occupation of the uplink reference signal.
  • the method of determining time-frequency resources By pre-establishing the correspondence between the DUI and the time-frequency resources occupied by the uplink reference signal, when the UE receives the first DUI, it can conveniently determine the time-frequency resource for transmitting the uplink reference signal according to the first DUI, which simplifies the occupation of the uplink reference signal. The method of determining time-frequency resources.
  • the method further includes: the controller of the radio access network is configured according to The measurement report of the TP in the first TP set updates the first TP set.
  • the controller of the radio access network configures the first TP set for the UE, and continuously maintains and updates the first TP set of the UE based on the measurement report of the first TP set, that is, the task of measuring the reference signal quality from the UE side
  • the UE is transferred to the network side to perform mobility management on the UE in the manner of updating the first TP set, which simplifies the implementation of the UE.
  • the method further includes: after the UE enters a power saving state, the controller of the radio access network is configured according to the The measurement report of the TP in the first TP set continues to update the first TP set, and the second TP set is no longer updated.
  • the controller of the radio access network can maintain only the first TP set of the power-saving UE, and does not maintain the second TP set of the UE, thereby saving the network side. resource of.
  • the method further includes: the controller of the radio access network is configured according to The measurement report of the TP in the first TP set determines that the UE reaches an edge of the second super cell; the controller of the radio access network instructs the TP in the second super cell to measure the uplink reference signal The controller of the radio access network reports the measurement of the uplink reference signal according to the TP in the second super cell (the measurement report of the TP in the second super cell to the uplink reference signal is used to indicate the location Determining the strength or quality of the uplink reference signal, determining to switch the UE to the second super cell; the controller of the radio access network sends a handover command to the UE, the handover command is used to indicate the The UE switches to the second super cell, the handover command includes a second DUI, and the second DUI is used to identify the UE in the second super cell.
  • the controller of the radio access network may be located in the second Uplink reference signal quality indicated by the measurement report of the TP of the super cell edge The amount is higher than a preset threshold, and the UE is determined to reach the edge of the second super cell. Or the controller of the radio access network finds that the TP of the second super cell edge occupies a super preset threshold of the total TP of the first TP set in the TP that sends the measurement report, and determines that the UE reaches the second super The edge of the cell.
  • the controller of the radio access network implements handover of the UE between the super cells based on the measurement report of the TP in the first TP set.
  • the method further includes: after the UE enters a power saving state, The controller of the radio access network sends a paging message to the UE; the controller of the radio access network receives a paging response message on the target uplink resource, where the target uplink resource is in a power-saving state.
  • An uplink resource configured by the UE in advance, so that the UE enters an active state from a power-saving state by using the target uplink resource.
  • the method further includes: after the UE enters a power saving state, The controller of the radio access network sends the paging message to the UE in a fixed paging frequency band, where the fixed paging frequency band is configured for sending a paging for the network where the first super cell is located.
  • the frequency band of the message, or the fixed paging frequency band is a frequency band configured for the first super cell to send a paging message.
  • a second aspect of the present invention provides a communication method for a super cell, including: receiving, by a UE in a first super cell, a first DUI allocated by a controller of a radio access network to the UE, where the first super cell Include a plurality of TPs, where the first DUI is used to identify the UE in the first super cell, and a controller of the radio access network allocates a first TP to the UE from the multiple TPs a set and a second TP set, where the TP in the second TP set is used for data communication with the UE, where the TP in the first TP set is used to measure an uplink reference signal sent by the UE; And sending, by the first DUI, an uplink reference signal, so that the controller of the radio access network updates the second TP set according to the measurement report obtained by measuring the uplink reference signal by using the TP in the first TP set.
  • the measurement report carries signal strength information of an uplink reference signal sent by the UE.
  • the sending, by the UE, the uplink reference signal according to the first DUI may include: the UE sending, to the network side, an uplink reference signal that is scrambled by the first DUI; or The UE sends the uplink reference signal corresponding to the first DUI to the network side (the correspondence between the first DUI and the uplink reference signal may be established in advance).
  • the uplink reference signal sent by the UE is measured by the TP, and the controller of the radio access network updates the UE's second TP set based on the TP-based measurement report to perform mobility management on the UE, thereby solving the problem that the mobility management of the hotspot area is difficult. .
  • the working mode of the UE is a non-cell mode
  • the working mode supported by the UE includes a cell mode and a non-cell mode, where the cell mode is based on
  • the UE performs a mobility management working mode on the measurement of the downlink reference signal, where the non-cell mode is an operation mode for performing mobility management by measuring an uplink reference signal sent by the UE.
  • the prior art ie, compatible cell mode
  • the method further includes: after the UE initiates a random access procedure by using a TP in the first super cell, The UE to the The TP in the first super cell sends the parameters of the UE, so that the TP in the first super cell sends the parameters of the UE to the controller of the radio access network, which is based on the radio network controller.
  • the parameters of the UE determine an operating mode of the UE, and the parameters of the UE include a type of the UE, a moving speed of the UE, a location of the UE, a service of the UE, and a work supported by the UE. At least one of a mode and an ability of the UE; the UE receiving information sent by a controller of the radio access network indicating that the working mode of the UE is a non-cell mode.
  • the method further includes: receiving, by the UE, a controller of the radio access network a mode switching message, where the mode switching message is used to indicate that the UE switches from the non-cell mode to the cell mode, where the mode switching message includes a cell of a serving cell of the UE in the cell mode. Identifying, by the UE, the serving cell according to the cell identifier; and the UE performing data transmission by using the serving cell.
  • the first DUI and the time-frequency occupied by the uplink reference signal The resource has a corresponding relationship.
  • the method further includes: determining, by the UE, that the time-frequency resource is sent by using the corresponding relationship according to the first DUI; And the reference signal includes: the UE sending the uplink reference signal on the time-frequency resource.
  • the UE By pre-establishing the correspondence between the DUI and the time-frequency resources occupied by the uplink reference signal, when the UE receives the first DUI, it can conveniently determine the time-frequency resource for transmitting the uplink reference signal according to the first DUI, which simplifies the occupation of the uplink reference signal.
  • the method of determining time-frequency resources By pre-establishing the correspondence between the DUI and the time-frequency resources occupied by the uplink reference signal, when the UE receives the first DUI, it can conveniently determine the time-frequency resource for transmitting the uplink reference signal according to the first DUI, which simplifies the occupation of the uplink reference signal. The method of determining time-frequency resources.
  • the method further includes: the UE receiving the wireless access a handover command sent by a controller of the network, the handover command is used to instruct the UE to switch to a second super cell, the handover command includes a second DUI, and the second DUI is used in the second super cell Identifying the UE.
  • the method further includes: after the UE enters a power saving state The UE receives the paging message sent by the controller of the radio access network; the paging response message is sent from the power saving state to the active state on the target uplink resource of the UE, where the target uplink resource is a section The uplink resource pre-configured by the UE in the electrical state.
  • the method further includes: after the UE enters a power saving state Receiving, by the UE, the paging message sent by the controller of the radio access network in a fixed paging frequency band, where the fixed paging frequency band is configured for sending by the network where the first super cell is located
  • the frequency band of the paging message, or the fixed paging frequency band is a frequency band configured for the first super cell to send a paging message.
  • a third aspect of the present invention provides a communication method for a super cell, including: a target TP in a first super cell measures an uplink reference signal sent by a UE in the first super cell, where the first super cell includes a plurality of TPs, where the target TP is any one of the plurality of TPs, and the controller of the radio access network allocates a first DUI to the UE in the first super cell, and from the multiple The first TP set and the second TP set are allocated to the UE in the TP, the first DUI is used to identify the UE in the first super cell, and the TP in the first TP set is used Measure an uplink reference signal sent by the UE, where the TP in the second TP set is used Performing data communication with the UE, the target TP is a TP in the first TP set; the target TP generates a measurement report according to a measurement result of an uplink reference signal sent by the UE, where the measurement report carries a Transmitting, by the target TP,
  • the uplink reference signal sent by the UE is measured by the TP, and the controller of the radio access network updates the UE's second TP set based on the TP-based measurement report to perform mobility management on the UE, thereby solving the problem that the mobility management of the hotspot area is difficult. .
  • the working mode of the UE is a non-cell mode
  • the working mode supported by the UE includes a cell mode and a non-cell mode, where the cell mode is based on the UE.
  • the prior art ie, compatible cell mode
  • the method further includes: after the UE initiates a random access process by using the target TP, the target TP is The UE receives the parameters of the UE, where the parameters of the UE include the type of the UE, the moving speed of the UE, the location of the UE, the service of the UE, the working mode supported by the UE, and the Determining at least one of the capabilities of the UE; the target TP transmitting parameters of the UE to a controller of the radio access network, such that the controller of the radio access network determines the The working mode of the UE; the target TP receives information sent by a controller of the radio access network indicating that the working mode of the UE is a non-cell mode.
  • the method further includes: the target TP receives the first DUI sent by a controller of the radio access network; and the target TP in the first super cell detects the first super
  • the uplink reference signal sent by the UE in the cell the target TP determines the time-frequency resource by using the corresponding relationship according to the first DUI, and the target TP detects the time-frequency resource. Uplink reference signal.
  • the UE By pre-establishing the correspondence between the DUI and the time-frequency resources occupied by the uplink reference signal, when the UE receives the first DUI, it can conveniently determine the time-frequency resource for transmitting the uplink reference signal according to the first DUI, which simplifies the occupation of the uplink reference signal.
  • the method of determining time-frequency resources By pre-establishing the correspondence between the DUI and the time-frequency resources occupied by the uplink reference signal, when the UE receives the first DUI, it can conveniently determine the time-frequency resource for transmitting the uplink reference signal according to the first DUI, which simplifies the occupation of the uplink reference signal. The method of determining time-frequency resources.
  • the target TP is a TP in the second TP set
  • the method further includes: the target TP receiving the first DUI sent by the radio network controller; and the target TP performing data communication with the UE according to the first DUI.
  • the target TP performs data communication with the UE according to the first DUI, including: the target TP slave data anchor Receiving downlink data of the UE, where the data anchor is used to encrypt downlink data of the UE; and the target TP sends the downlink data encrypted by the data anchor point to the UE.
  • the data anchor is used to encrypt the data of the UE, thereby ensuring the security of data communication in the super cell.
  • the method further includes: the target TP receiving a notification message sent by a controller of the radio access network, The notification message is used to notify that the target TP has been deleted from the second TP set of the UE; the target TP determines whether there is downlink data of the UE that is not successfully transmitted; when the downlink data that is not successfully transmitted exists Transmitting, by the target TP, the downlink data that is not successfully sent to the data anchor, so that the data anchor forwards the unsuccessfully sent downlink data to another TP in the second TP set to The UE.
  • the method further includes: the target TP receiving the wireless access First indication information sent by the controller of the network, the first indication information is used to indicate that the controller of the radio access network deletes the target TP from the first TP set; the target TP stops measuring The uplink reference signal sent by the UE.
  • the method further includes: the target TP from the wireless
  • the controller of the access network receives the second indication information, where the second indication information is used to indicate that the controller of the radio access network adds the target TP to the second TP set;
  • the UE performs data communication.
  • the method further includes: the target TP receiving third indication information from a controller of the radio access network, The third indication information is used to indicate that the controller of the radio access network deletes the target TP from the second TP set.
  • a controller for a radio access network comprising means for performing the method of the first aspect.
  • a UE comprising means for performing the method of the second aspect.
  • a TP is provided, the TP comprising means for performing the method of the third aspect.
  • a controller for a radio access network comprising a memory, a processor, and a transceiver.
  • the memory is for storing a program
  • the processor is for executing a program
  • the transceiver is for communicating with a TP in a super cell.
  • the processor performs the method of the first aspect when the program is executed.
  • a UE comprising a memory, a processor, and a transceiver.
  • the memory is for storing a program
  • the processor is for executing a program
  • the transceiver is for communicating with a TP in the super cell.
  • the processor is operative to perform the method of the second aspect when the program is executed.
  • a TP comprising a memory, a processor, and a transceiver.
  • the memory is for storing a program
  • the processor is for executing a program
  • the transceiver is configured to communicate with a UE in the super cell and a controller of a radio access network.
  • the processor is operative to perform the method of the third aspect when the program is executed.
  • a tenth aspect a communication system comprising the controller of the radio access network according to the fourth aspect, the UE of the fifth aspect, and the TP of the sixth aspect.
  • a communication system comprising the controller of the radio access network as described in the fourth aspect, and the TP as described in the sixth aspect.
  • a twelfth aspect a communication system comprising the controller of the radio access network according to the seventh aspect, the UE of the eighth aspect, and the TP of the ninth aspect.
  • a thirteenth aspect a communication system for a super cell, comprising the controller of the radio access network according to the seventh aspect, and the TP according to the ninth aspect.
  • a system chip including an input interface, an output interface, at least one processor, and a memory, wherein the input interface, the output interface, the processor, and the memory are connected by a bus, and the processing
  • the processor is for executing code in the memory, the processor implementing the method of the first aspect when the code is executed.
  • a system chip including an input interface, an output interface, at least one processor, and a memory, where the input interface, the output interface, the processor, and the memory are connected by a bus, and the processor is used by The code in the memory is executed, and when the code is executed, the processor implements the method in the second aspect.
  • a system chip including an input interface, an output interface, at least one processor, and a memory, where the input interface, the output interface, the processor, and the memory are connected by a bus, and the processor is used by The code in the memory is executed, and when the code is executed, the processor implements the method in the third aspect.
  • a seventeenth aspect a computer readable medium storing program code for execution by a controller of a wireless access network, the program code comprising instructions for performing the method of the first aspect .
  • a computer readable medium storing program code for execution by a UE, the program code comprising instructions for performing the method of the second aspect.
  • a computer readable medium storing program code for TP execution, the program code comprising instructions for performing the method of the third aspect.
  • the network side may refer to the access network side, and may include a TP and a controller of the radio access network.
  • the first super cell includes a plurality of cells.
  • the second set of TPs is a subset of the first set of TPs.
  • the first DUI is used by the TP in the first TP set to receive an uplink reference signal sent by the UE, and/or the first DUI is used in the second TP set.
  • the TP performs data communication with the UE.
  • the second TP set is set as a subset of the first TP set, and the second TP set is dynamically updated as the first TP set is dynamically updated, which simplifies the update and maintenance mode of the multiple TP sets on the network side.
  • the update of the first TP set may refer to an update of a member of the first TP set; or the update of the first TP set may refer to at least one of: deleting the TP in the first TP set, Add a TP to the first TP set.
  • the update of the second TP set may refer to the update of the members of the second TP set; or the update of the second TP set may refer to at least one of the following: deleting the TP in the second TP set, to the second TP Add a TP to the collection.
  • the first DUI is used to identify that the UE in the first super cell may refer to the first DUI for the TP in the first super cell to identify the UE.
  • the uplink and downlink data of the UE and the uplink reference signal may be scrambled by the first DUI.
  • the second DUI is used to identify that the UE in the second super cell may refer to the second DUI for the TP in the second super cell to identify the UE.
  • the uplink and downlink data of the UE and the uplink reference signal may be scrambled by the second DUI.
  • the first DUI may uniquely identify the UE in the first super cell
  • the second DUI may uniquely identify the UE in the second super cell.
  • the DUI may be any one or any combination of C-RNTI, hyper cell ID, TP ID, cell ID, newly defined ID, and the like.
  • the non-cell mode supported by the UE may also be referred to as a non-normal cell mode or a super cell mode
  • the cell mode supported by the UE may also be referred to as a normal cell mode.
  • the network side may perform mobility management on the UE through handover of the serving cell of the UE.
  • the network side is based on the TP set of the UE in the super cell (the first TP set and/or the second TP set) moving the UE Sexual management.
  • the TP band in the same or different hyper cell may be different.
  • two anchor bands can be introduced:
  • Anchor frequency band 1 used for receiving paging and/or downlink synchronization of the UE.
  • paging frequency band or downlink synchronization frequency band
  • Anchor frequency band 2 It is used for the UE to send the uplink reference signal. Even the TP of different frequency bands can monitor the same frequency band. For convenience of description, it is called the reference signal frequency band.
  • these two bands can be "fixed".
  • the two bands can be used by the entire network, and the UEs in the network move to where they are.
  • the two frequency bands may be fixed within a certain range.
  • the network sends the configuration information of the anchor frequency band to the UE; the advantage introduced by the anchor frequency band is that even in the case of moving, The UE does not need to care about the frequency band of the surrounding network.
  • the UE only needs to do two things. One is to monitor whether it has its own paging in the "fixed" paging frequency band. Alternatively, it can also perform downlink synchronization based on the paging frequency band.
  • the purpose is to send paging on the reference signal band; the second is to send the uplink reference signal on the "fixed" reference signal band.
  • the mechanism of the anchor band can also be applied to communication between the active UE and the network.
  • the manner in which the UE in the power-saving state sends the uplink reference signal may be: periodically transmitting the uplink reference signal, or transmitting the uplink reference signal after detecting that the UE has moved a certain distance for power saving; or a combination of the two, that is, detecting The uplink reference signal is sent after moving a certain distance, and the uplink reference signal is also sent after the cycle time is up.
  • the present application uses the UE to send an uplink reference signal, and the network side measures the mobility management of the UE, and the network side maintains and updates the second TP set for the UE data transmission (or data communication) for the UE, and reduces the UE. Burden and difficulty in mobility management in hotspot areas.
  • FIG. 1 is a schematic diagram of a scenario of a hyper cell according to an embodiment of the present invention.
  • FIG. 2 is a schematic flowchart of a communication method applied to a hyper cell according to an embodiment of the present invention.
  • FIG. 3 is a diagram showing an example of a TP set of a UE according to an embodiment of the present invention.
  • FIG. 4 is a schematic flowchart of a communication method applied to a hyper cell according to an embodiment of the present invention.
  • FIG. 5 is a schematic flowchart of a method applied to a hyper cell according to an embodiment of the present invention.
  • FIG. 6 is a schematic flowchart of a method applied to a hyper cell according to an embodiment of the present invention.
  • FIG. 7 is a schematic flowchart of a cell handover procedure applied to a hyper cell according to an embodiment of the present invention.
  • FIG. 8 is a schematic flowchart of a cell handover procedure applied to a hyper cell according to an embodiment of the present invention.
  • FIG. 9 is a schematic structural diagram of a controller of a radio access network according to an embodiment of the present invention.
  • FIG. 10 is a schematic structural diagram of a UE according to an embodiment of the present invention.
  • FIG. 11 is a schematic structural diagram of a TP according to an embodiment of the present invention.
  • FIG. 12 is a schematic structural diagram of a controller of a radio access network according to an embodiment of the present invention.
  • FIG. 13 is a schematic structural diagram of a UE according to an embodiment of the present invention.
  • FIG. 14 is a schematic structural diagram of a TP according to an embodiment of the present invention.
  • FIG. 15 is a schematic structural diagram of a system chip according to an embodiment of the present invention.
  • FIG. 16 is a schematic structural diagram of a system chip according to an embodiment of the present invention.
  • 17 is a schematic structural diagram of a system chip according to an embodiment of the present invention.
  • GSM Global System of Mobile communication
  • CDMA Code Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access
  • GPRS General Packet Radio Service
  • LTE Long Term Evolution
  • LTE-A Advanced Long Term Evolution
  • UMTS Universal Mobile Telecommunication System
  • the user equipment includes but is not limited to a mobile station (Mobile Station, MS), a mobile terminal (Mobile Terminal), a mobile phone (Mobile Telephone), a mobile phone (handset). And portable devices, etc., the user equipment can communicate with one or more core networks via a Radio Access Network (RAN), for example, the user equipment can be a mobile phone (or "cellular"
  • RAN Radio Access Network
  • the user equipment can be a mobile phone (or "cellular"
  • the telephone device, the computer with wireless communication function, etc., the user equipment can also be a mobile device that is portable, pocket-sized, handheld, built-in, or in-vehicle.
  • the hyper cell may be configured with a hyper cell ID, and the hyper cell may include multiple TPs of the same frequency and/or different frequency (optionally, as an embodiment, only one in the hyper cell may be included. TP), or, the hyper cell may include multiple cells (optionally, as an embodiment, only one cell may be included in the hyper cell).
  • the ID of the TP (or cell) in the hyper cell can be consistent with the ID of the hyper cell, or can be configured separately.
  • the UE moves in the hyper cell. If the mobility management mode of the prior art is still used, the UE will frequently perform cell handover because each TP corresponds to one or more cells (or small cells).
  • the common information of the TP in the hyper cell may be configured to be consistent.
  • the synchronization channel, the downlink reference channel, and the broadcast channel and the like have the same content.
  • the hyper cell is used.
  • the public information of the TP is the same, and the UE has no perception of the change of the serving cell.
  • the UE does not need to measure the downlink reference signal sent by each cell in the hyper cell. Instead, the UE sends an uplink reference signal, and the network side measures the uplink reference signal of the UE, and selects one or more TPs for the UE based on the measurement result. Data transfer.
  • the task of measuring the uplink reference signal and the TP handover can be completed by the network side, and the UE is not aware of the TP transformation as much as possible, which is equivalent to introducing the "no cell” working mode, so that not only the working mode is introduced, but not only the "no cell” is introduced. It can ensure the continuity of services, and can reduce the overhead of air interface signaling. The UE does not need to undertake heavy measurement tasks, and the design complexity is also reduced accordingly.
  • the working mode of “no cell” may be that the UE is responsible for transmitting the uplink reference signal, and the TP of the data communication service is continuously updated and maintained by the network side, so that the UE does not perceive the change of the TP as much as possible.
  • the “cell” herein refers to a normal cell in the prior art, that is, a normal cell.
  • the working mode of “no cell” in this application may also be referred to as a working mode of a super cell.
  • the UE is assigned a DUI, and the super cell can identify the UE according to the DUI.
  • the TP in the super cell may provide a data communication service for the UE based on the DUI; the TP in the super cell may also measure the uplink reference signal sent by the UE based on the DUI.
  • the DUI may be any one or any combination of C-RNTI, hyper cell ID, TP ID, cell ID, newly defined ID, and the like.
  • the specific type of the TP is not limited in the embodiment of the present invention.
  • it may be a normal base station (such as a NodeB or an eNB), may be a radio remote module, may be a pico base station, or may be a relay. ) or any other wireless access device.
  • the TP can report the no cell capability to the RAN controller, and the RAN controller performs no cell configuration on the TP supporting the no cell capability.
  • the no cell capability herein may refer to various capabilities required for the TP to work in the super cell, such as the capability of measuring the uplink reference signal sent by the UE.
  • the configuration of the measurement capability of the uplink reference signal of the TP is taken as an example for illustration.
  • the RAN controller can send measurement configuration signaling (or measurement control signaling) to the TP.
  • measurement configuration parameters may be configured by using the measurement configuration signaling: DUI, uplink reference signal configuration, carrying measurement identifier, measurement event name, measurement interval, measurement report reporting mode, measurement reporting condition, and measurement parameter.
  • a set of measurement configuration parameters may be configured for each DUI (or each UE), or a set of measurement configuration parameters may be configured for all DUIs (or all UEs) in the super cell.
  • the measurement parameters may include at least one of a reception quality of the uplink reference signal, a received power of the uplink reference signal, a signal to noise ratio, a signal to interference and noise ratio, a path loss, and the like.
  • the measurement configuration parameter may also include at least one of the thresholds of the above various parameters.
  • the measurement report reporting mode may include at least one of an event-triggered reporting mode, a periodic reporting mode, an event-triggered reporting, and a periodic reporting mode.
  • the event-triggered reporting mode may be: when the TP measured uplink reference signal meets the threshold in the measurement configuration parameter, the TP sends a measurement report to the RAN controller.
  • the periodic reporting mode can be that the TP periodically sends measurement reports to the RAN controller.
  • the TP After the RAN controller configures the measurement configuration parameter of the uplink reference signal for the TP, the TP can measure the uplink reference signal sent by the UE according to the measurement configuration parameter, and report the measurement result to the RAN controller according to the measurement reporting mode.
  • the measurement configuration signaling may indicate that the TP performs the intra-frequency measurement, and may also instruct the TP to perform the inter-frequency measurement.
  • the RAN controller may send the measurement configuration signaling of the intra-frequency measurement to the TP, or may send the measurement configuration signaling of the inter-frequency measurement to the TP.
  • the RAN controller may instruct the TP to perform the inter-frequency measurement, that is, the TP is configured to measure the uplink reference signal sent by the UE on the F2.
  • the RAN controller may also instruct the UE to send an uplink reference signal at the working frequency of the TP, that is, the F1 frequency band, and then instruct the TP to perform the same frequency measurement. In this way, the TP only needs to measure the uplink reference signal in its own working frequency band. It should be understood that the above two measurement methods may be used alone or in combination, which is not specifically limited in the embodiment of the present invention.
  • the RAN controller When the RAN controller receives the measurement report reported by each TP, it can determine whether to update the TP set of the UE transmission data according to the measurement report reported by each TP. Specifically, the RAN controller may compare the measurement result reported by each TP with the measurement result reported by the TP set currently transmitted by the UE, or may be the measurement result reported by each TP and the TP in the TP set currently transmitted by the UE.
  • the difference or absolute difference of the reported measurement result is compared with a certain threshold, and the measurement result reported by each TP and the average value of the measurement result reported by the TP set currently transmitted by the UE may be compared one by one, or may be The difference between the measurement result reported by each TP and the measurement result reported by the TP set in the TP set currently transmitted by the UE is compared with a certain threshold, and whether the TP of the UE transmission data is updated according to the comparison result is determined. set.
  • the measurement parameter is the reception quality of the reference signal
  • the TP set currently transmitting data for the UE includes TP1 and TP2
  • the RAN controller assigns measurement tasks to TP1, TP2, TP3, and TP4 respectively, that is, when the reception quality of the reference signal is high.
  • a measurement report is sent to the RAN controller.
  • the RAN controller receives the received quality of the reference signals reported by TP1, TP2, and TP3.
  • the RAN controller can determine whether to update the TP set of the data transmitted by the UE according to the following manner:
  • Method 1 directly adding TP3 as a TP set for transmitting data of the UE, and updating the TP set for transmitting data of the UE to TP1, TP2, and TP3;
  • the second method is to compare the received signal quality reported by the TP3 with the result reported by the TP1 and the TP2 respectively, if the result of the TP3 is higher than the TP1, at least one of the TP2, or the difference between the received quality of the reference signal reported by the TP3 and the TP1, or The absolute difference is higher than a certain threshold, or if the difference or absolute difference of the reference signal received by TP3 and TP2 is higher than a certain threshold, the RAN controller may add TP3 to the TP set for transmitting data for the UE, or The RAN controller can also replace TP1 or TP2 with TP3.
  • the measurement report reported by the TP3 can be forwarded by the RAN controller 2.
  • the RAN controller 1 can forward all the received measurement reports, or can be based on certain policies. For example, after comparing the measurement results, only a part of the measurement reports are selected for forwarding.
  • the UE may be notified by at least one of the following signaling or information: radio resource control RRC signaling, L1 signaling, L2 signaling, and downlink control information (Downlink) Control Information, DCI).
  • RRC signaling radio resource control RRC signaling
  • L1 signaling L1 signaling
  • L2 signaling L2 signaling
  • DCI Downlink Control Information
  • the name, the type, and the format of the signal for the network measurement sent by the UE are not specifically limited.
  • the following is an example in which the UE sends the uplink reference signal, but the embodiment of the present invention is not limited thereto, for example, It may be a newly introduced tracking signal for tracking the location of the UE, or may use a Sounding Reference Signal (SRS).
  • SRS Sounding Reference Signal
  • the hyper cell On the basis of the hyper cell, two states, a power-saving state and an active state, are introduced for the UE in the hyper cell. It should be understood that the power-saving state and the active state are separated from the idle state and the connected state in the prior art, but the embodiment of the present invention does not exclude the use of the idle state and the connected state after the introduction of the super cell.
  • the active state in the embodiment of the present invention may correspond to a connected state
  • the power saving state in the embodiment of the present invention may correspond to an idle state or a corresponding connected state.
  • the power saving state can exist independently of the hyper cell, that is, the power saving state can also be applied to the prior art, but is different from the idle state and the connected state in the prior art. .
  • the functions and characteristics of the UE in these two states are described in detail below.
  • the power-saving UE continues to retain the DUI of the UE and may have some or all of the following functions:
  • the dynamic control channel may not be monitored.
  • connection management (such as long-term link adaptation and long-period measurement) can be performed.
  • the signaling plane bearer and the user plane bearer of the core network may be reserved; or, the signaling plane bearer with the core network may be reserved, and the user plane bearer of the core network may be deleted.
  • an uplink background service or packet data to be transmitted it may be sent through a signaling plane bearer with the core network.
  • the data packet may be carried through the signaling of the access layer, or through a non-access stratum (Non-access stratum,
  • the NAS) signaling carries a data packet, and after the data packet is transmitted to the Mobility Management Entity (MME), the MME identifies the background service or packet data and forwards it to the Serving Gateway (SGW); optionally
  • the power-saving UE can
  • the bearer is reserved with the signaling plane of the core network, and the dedicated user plane bearer with the core network is deleted, and the public or default user plane bearer with the core network is established. When there is uplink background service or packet data to be transmitted, it can be transmitted through the public or default user plane bearer with the core network.
  • the uplink reference signal is sent, which may be sent periodically, or may be sent after the event trigger condition is met.
  • the event triggering condition may be based on the speed trigger of the UE.
  • the current sending period configured by the network side is T
  • the speed threshold of the UE is V.
  • the UE speed is less than and/or equal to V
  • the transmission period of the uplink reference signal may be configured to be infinite.
  • the maximum transmission period of the reference signal may be configured, such as 256s, 30min, and the like.
  • the event triggering condition may also be triggered based on the UE detecting other hyper cells, for example, the UE moves to the coverage overlapping area of multiple hyper cells, and the UE detects another hyper in addition to the ID of the currently located hyper cell. The ID of the cell. At this time, the UE can send an uplink reference signal.
  • the active UE has a DUI and may have some or all of the following functions:
  • the UE has two states, and can perform switching between the two states. For example, when there is no service data transmission for a period of time after the UE data transmission is completed, the UE can switch from the active state to the power-saving state; In the power-saving state, the UE may not monitor the dynamic control channel, and only needs to support a small amount of connection management, and its power consumption is less than the active state.
  • whether the transition between the power saving state and the active state is performed may be determined by the UE by measuring a certain parameter or indicator. For example, when a certain parameter or indicator meets the threshold, the UE sends the indication information to the network side, and then the network side can control the UE to perform state transition according to the indication information.
  • the RAN controller may send a threshold to the UE in advance, where the threshold may be, for example, a threshold of the buffered data size of the UE; when the cached data of the UE exceeds the threshold, the UE reports the measurement report to the RAN controller. Then, the RAN controller controls the UE to perform state transition.
  • the RAN controller may send a measurement indication to the UE, and when the UE measures that the size of the buffered data exceeds the currently allowed data size, the UE reports the measurement report to the RAN controller, and then the RAN controller controls.
  • the UE performs state transition.
  • the indication information of the UE may be reported by using L2 signaling, or may be reported by RRC signaling, such as a measurement report, or may be reported in the initially sent data, for example, by using an indication bit in the initially transmitted data block.
  • the indication bit is set to TRUE for indication, which is not specifically limited in this embodiment of the present invention.
  • the network side may indicate, by using RRC signaling, that the UE performs an active state or a power saving state.
  • a new status indication cell may be added to the RRC signaling, where the status indication cell may indicate that the UE enters a power-saving state or an active state, and the UE may enter a corresponding state according to the indication of the status indication cell.
  • the TP set (also referred to as a TP cluster) formed by the TP in the area 1 can transmit the data of the UE (or provide a communication service for the UE) when the user equipment moves from the location 1.
  • the set of TPs that may be formed by the TPs in region 2 are provided for the UE. That is to say, during the movement of the UE, the TP for transmitting data for the UE may be continuously updated, and the task of the update may be completed by the network side based on the uplink reference signal sent by the UE.
  • the TP set of the UE may be classified into a UL TP set and a DL TP set according to whether the service is an uplink service of the UE or a downlink service of the UE.
  • the update of the UL TP set may be completed by the network side based on the uplink reference signal sent by the UE.
  • the update of the DL TP set may be performed by the network side based on the uplink reference signal sent by the UE, or, alternatively, as an embodiment, may also be reported by the network side according to the UE.
  • the measurement is updated based on the measurement result of the downlink reference signal.
  • FIG. 2 is a schematic flowchart of a communication method applied to a hyper cell according to an embodiment of the present invention. It should be understood that FIG. 2 illustrates detailed communication steps or operations applied to the hyper cell, but these steps or operations are merely examples, and embodiments of the present invention may perform other operations or variations of the various operations in FIG. 2. Moreover, the various steps in FIG. 2 may be performed in a different order than that presented in FIG. 2, and it is possible that not all operations in FIG. 2 are to be performed.
  • a cell mode also referred to as a normal-cell mode or a network-centric mode
  • a non-cell mode referred to as a UE-centric mode
  • the cell mode the mobility management mode of the prior art may be adopted, that is, the network sends a downlink reference signal, the UE measures the downlink reference signal and feeds back the measurement report, and the network side performs cell handover based on the measurement report; in the non-cell mode, The UE sends an uplink reference signal, and the network measures the uplink reference signal of the UE, and then continuously updates the TP set for transmitting the UE data based on the measurement result.
  • the introduction of the two working modes is mainly to consider the flexibility and the compatibility problem.
  • the embodiment of the present invention does not exclude the complete replacement of the cell mode in the non-cell mode, or the mobility management in the cell mode only in the hyper cell. Possibility, in this case, the UE may be directly served in a non-cell mode without selecting an operating mode for the UE.
  • the radio access network controller provides mobility management for the UE, and the RAN controller may be an independent network element on the access network side, but
  • the RAN controller may be in the same entity as the TP, such as an access network device, and the TP may be a transmitting and receiving unit of the access network device; or the RAN controller may be a TP, and the TP may be Or not the TP in the TP set of the data transmission service provided by the UE.
  • the RAN controller can directly send signaling to the UE.
  • the UE initiates an initial access, and performs a Radio Resource Control (RRC) connection establishment process.
  • RRC Radio Resource Control
  • the related parameters may be carried to the network, and the parameters may include at least one of a speed of the UE, a location of the UE, a signal condition of the detected neighboring cell, service information, and the like. These parameters may be parameters measured by the UE's Global Positioning System (GPS), or other means.
  • GPS Global Positioning System
  • the hyper cell sends an initial UE message to a core network (Core Network, CN).
  • Core Network Core Network
  • the CN sends an initial context setup request to the hyper cell.
  • the hyper cell establishes a connection with the CN for the UE.
  • the hyper cell can obtain information such as the UE type or the UE capability from the UE or the CN.
  • the UE type may be a UE that is a fixed location, such as a sensor, whether the UE is power sensitive or the like.
  • the UE capability may be, for example, whether the UE supports the non-cell mode, which frequency bands the UE supports, and the like.
  • the hyper cell sends a message to the RAN controller, requesting the RAN controller to determine the working mode of the UE.
  • the message sent by the hyper cell to the RAN controller may carry the information of the UE obtained through steps 202 to 206, for example, may be the system architecture evolution Temporary Mobile Subscriber Identity (S) of the UE. -TMSI), mobile speed of the UE, location of the UE, UE type, UE capability, service information of the UE, and the like.
  • S system architecture evolution Temporary Mobile Subscriber Identity
  • -TMSI Temporary Mobile Subscriber Identity
  • the RAN controller determines a working mode of the UE.
  • the RAN controller may determine the mode of operation of the UE based on the information provided by the hyper cell in step 208. For example, the RAN controller learns the approximate location of the UE, the moving speed, and the like based on the received information, and then determines whether it is suitable to adopt the non-cell mode based on the network deployment situation around the location, if the non-cell working mode is suitable, and the UE supports the non-cell mode. Then, the working mode of the UE can be determined to be a non-cell mode.
  • the RAN controller performs resource coordination with the TP in the hyper cell.
  • the RAN controller may allocate the first TP set and the second TP set to the UE based on the acquired information of the UE, such as the location of the UE, the speed of the UE, the type of the UE, and the like, and perform resource coordination with the TPs.
  • each TP set includes one or more TPs.
  • the TP in the second TP set may be used for data transmission of the UE. Therefore, the second TP set may also be referred to as a transport TP set of the UE, or a transport cluster, and the TP in the first TP set may be used to measure an uplink reference signal sent by the UE. Therefore, the first TP set may also be referred to as a measurement TP set of the UE, or a measurement cluster.
  • the TP in the first TP set and the second TP set may be a TP around the UE.
  • the second TP set may be a subset of the first TP set.
  • the first TP set includes a second TP set.
  • the first TP set may include a second TP set and the second TP set peripheral layer TP.
  • the TP set formed by all the TPs in the hyper cell may be set as the first TP set of the UE. In this case, all the TPs in the hyper cell need to measure the uplink reference signal sent by the UE.
  • the setting manner may make the network burden relatively large.
  • At least one TP may be selected from the hyper cell to form a second TP set and a first TP set of the UE, and then may be dynamically updated based on the mobile location of the UE.
  • the second TP set of the UE and the first TP set may be selected from the hyper cell to form a second TP set and a first TP set of the UE, and then may be dynamically updated based on the mobile location of the UE.
  • the second TP set of the UE and the first TP set may be selected from the hyper cell to form a second TP set and a first TP set of the UE, and then may be dynamically updated based on the mobile location of the UE.
  • the RAN controller sends a no cell configuration message to the second TP set and the TP in the first TP set.
  • the non-cell configuration message may indicate that the TP in the second TP set provides a service for the UE, and indicates that the TP in the first TP set measures an uplink reference signal sent by the UE, and the non-cell configuration message may include an S-TMSI of the UE, optionally
  • the non-cell configuration message may further include a DUI allocated by the RAN controller to the UE, where the DUI may be used to identify the UE in the super cell (or uniquely identify the UE).
  • the DUI of the UE and the time-frequency resource (or time-frequency sequence) of the uplink reference signal sent by the UE may have a correspondence relationship
  • the TP in the first TP set may be according to the DUI of the UE and the Corresponding relationship, determining that the UE sends the time-frequency resource of the uplink reference signal, so that the uplink reference signal sent by the UE is measured on the time-frequency resource.
  • the embodiment of the present invention is not limited thereto.
  • the location of the time-frequency resource occupied by the uplink reference signal of the UE may be indicated by the non-cell configuration information to the TP in the first TP set.
  • the TP4 replaces the original TP3
  • some data related to the UE in the TP4 may be considered (for example, the data that is not successfully sent, Subsequent processing of data that has been sent but has not received an ACK.
  • the RAN controller and the TP3 need to exchange the unsent data of the UE and the data that has not received the ACK; the RAN controller sends the data to the TP3 according to the feedback of the TP3.
  • TP4 is sent by the TP4 to the UE; the UE performs corresponding feedback according to the HARQ feedback mechanism configured by the RAN controller.
  • the processing of the Media Access Control (MAC) entity of the UE may also need to be considered.
  • the MAC entity 1 processes the data received by the hyper cell 1 and can carry the mapping between the MAC entity 1 and the two hyper cells (hyper cell 1 and hyper cell 2) when the TP4 (hyper cell 2) is configured to provide data services for the UE.
  • the UE can identify the hyper cell to which the TP belongs, When the UE receives the configuration indicating that the replaced TP belongs to a different hyper cell, the UE may clear the buffer data received from the TP3.
  • the TP may only include the physical layer PHY, and the MAC and its upper layer are located on the BBU-pool side. Therefore, the data forwarding process is triggered only when the BBU-pool changes.
  • the Packet Data Convergence Protocol may be located on the baseband unit (BBU)-pool side, and other protocol layers are on the TP side (or all protocol layers). Both are on the TP side. At this time, every TP handover will involve the RRC reconfiguration process.
  • PDCP Packet Data Convergence Protocol
  • the data sent to the UE may be pre-stored in each TP.
  • the UE completes the related reset process according to the network configuration, such as completing the weight of at least one protocol layer in the RRC, PDCP, Radio Link Control (RLC), MAC, and PHY.
  • the indication message may be sent by at least one of the following message or signaling: a service request message, reconfiguration completion signaling, L2 signaling, uplink physical control, and a data channel.
  • the indication message may carry a current data buffering situation, for example, may carry an identifier of a protocol layer (the protocol layer may be at least one of protocol layers such as RRC, PDCP, RLC, MAC, PHY, etc.) and the protocol layer
  • the HARQ information corresponding to the data enables the new TP to uniquely identify the data according to the indication message, and perform data transmission on the UE according to the corresponding HARQ information (ACK or NACK information including the data).
  • the UE may update the port number of the received data, or the UE only performs the PHY protocol layer reset.
  • the UE may send an indication message to the network side, and may carry one or more of the PDCP, the RLC, and the MAC in the indication message.
  • the identifier information may further carry the HARQ information of the data in the protocol layer corresponding to the identifier information.
  • the new TP receives the above indication message and retransmits the NACK information.
  • the new TP sends an acknowledgement message to the original TP, indicating that the original TP stops sending data to the UE.
  • the RAN controller sends a non-cell configuration message to the UE by using the TP.
  • the non-cell configuration message may be used to indicate that the UE works in a non-cell mode in the super cell.
  • the non-cell configuration message may include a DUI of the UE.
  • the UE may utilize the DUI to perform data transmission with the TP in the second TP set.
  • the non-cell configuration message includes information of a TP in the first TP set.
  • the hyper cell sends an initial context setup complete message to the CN.
  • the UE can work in the non-cell mode, perform data communication with the second TP set allocated by the RAN controller, and send an uplink reference signal for measurement by the first TP set.
  • the UE sends an uplink reference signal.
  • the time-frequency resource location of the uplink reference signal of the UE may be indicated by the cell configuration message in step 216.
  • the correspondence between the dedicated user identifier of the UE and the time-frequency resource of the uplink reference signal may be established in advance.
  • the time-frequency resource for transmitting the uplink reference signal may be determined based on the correspondence.
  • the uplink reference signal may be an SRS.
  • the uplink reference signal may be sent periodically, or the UE may transmit after a certain distance, and the distance may be configured by the network, or a combination of the foregoing two transmission modes, that is, after detecting that the mobile has moved a certain distance. And also sent after the cycle time has elapsed.
  • the TP in the first TP set measures the uplink reference signal sent by the UE, and reports the measurement report to the RAN controller.
  • the RAN controller may continuously adjust or update the second TP set based on the measurement report reported by the TP in the first TP set or the second TP set (or describe to continuously adjust or update the members of the second TP set, for example, other
  • the TP joins the second TP set or deletes a member of the second TP set).
  • the RAN controller may further adjust or update the first TP set (or expressly adjust or update the members of the first TP set, for example, add other TPs to the first TP set or delete the first TP set. a member of the group).
  • the TP when the uplink reference signal of the UE measured by a certain TP in the second TP set is degraded, for example, below a certain threshold, the TP may be deleted from the second TP set; when the first TP set A certain TP in the network does not detect the uplink reference signal (or the detected uplink reference signal is below a certain threshold) and satisfies certain conditions (for example, a layer of TP in the vicinity thereof cannot detect the uplink reference signal or detection of the UE.
  • certain conditions for example, a layer of TP in the vicinity thereof cannot detect the uplink reference signal or detection of the UE.
  • the TP may be deleted from the first TP set; when a certain TP in the first TP set measures the uplink reference signal of the UE (or the uplink of the UE is measured) When the reference signal is above a certain threshold, a layer of TP around it may be added to the first TP set; when a certain TP in the first TP set measures the uplink reference signal of the UE and the signal strength is good enough ( That is, when the uplink reference signal of the UE is measured to be higher than the configured or set threshold, or the difference or absolute difference between the measured uplink reference signal of the UE and the measurement result or the average measurement result reported by the second TP set TP is one by one.
  • the TP may be added to the second TP set.
  • the RAN controller may pass the TP added to the second TP set through the following information or signaling.
  • the RAN controller determines that the UE works in a cell mode.
  • the RAN controller can determine that the UE is no longer suitable for working in the non-cell mode according to the measurement report reported by the first TP set. For example, the UE is about to move out of the range of the hyper cell, and the cell that the UE is about to enter is a normal cell. The working mode of the UE is switched to the cell working mode.
  • the RAN controller sends a non-cell release message to the UE by using the TP.
  • the non-cell release message can be used to indicate that the UE enters a cell mode.
  • the frequency and/or cell id of the serving cell in the cell release message is used to indicate the serving cell when the UE is in the cell mode.
  • the frequency and/or cell id may be a cell corresponding to one TP under the current second TP set.
  • the non-cell release message may indicate the frequency and cell id of the multiple serving cells.
  • one of the multiple serving cells may be the primary cell, and the other cells are the secondary cells, so that the UE may be in the cell mode. Carrier aggregation is performed.
  • the UE switches to the cell mode and communicates with the serving cell.
  • the network can flexibly configure the working mode of the UE, and control the UE to flexibly switch between the non-cell mode and the cell mode, thereby improving network performance.
  • the UE may be the UE in an active state.
  • the UE in the hyper-cell in the power-saving state or the UE in the ECO state, the ECO represents the Ecology), and the Conservation (in the following). Paging for energy saving, Optimization, or UEs in idle state, and the way to enter an active state (or connected state).
  • the UE in the power-saving state will still measure the uplink reference signal of each cell, perform cell reselection based on the measurement result, and try to select the cell that resides in the signal condition.
  • the UE needs to perform data transmission, the UE initiates an RRC connection in the currently camped cell, thereby entering an active state.
  • the UE in the non-cell mode of the power-saving state selects to camp in the unit of the hyper cell, and the uplink resource is pre-configured.
  • the UE can quickly enter through the pre-configured uplink resource. Active state, no need to re-initiate complex and time-consuming RRC connections. The following is a detailed description in conjunction with a specific process.
  • FIG. 4 is a schematic flowchart of a communication method applied to a hyper cell according to an embodiment of the present invention. It should be understood that FIG. 4 shows detailed communication steps or operations applied to the hyper cell, but these steps or operations are merely examples, the present invention Embodiments may also perform other operations or variations of the various operations in FIG. Moreover, the various steps in FIG. 4 may be performed in a different order than that presented in FIG. 4, and it is possible that not all operations in FIG. 4 are to be performed.
  • Step 402 is similar to step 202. To avoid repetition, details are not described herein.
  • the UE receives the indication information of the incoming power saving state sent by the network side.
  • the network may instruct the UE to enter a power-saving state (or ECO state).
  • the indication information may carry configuration parameters of the power saving state.
  • the configuration parameter may include at least one of the following parameters:
  • Parameter 1 indicating that the working mode of the UE in the power-saving state is a parameter of the non-cell mode.
  • the parameter is optional.
  • the parameter does not need to be configured, so that the working mode of the UE in the power-saving state is consistent with the working mode of the UE in the active state.
  • the UE can perform paging and enter the active state according to the existing manner, which will not be described in detail herein.
  • Parameter 2 a parameter indicating the paging occasion of the UE.
  • the paging occasion may refer to parameters such as a time-frequency resource that the UE receives the paging message or sends the paging response message.
  • the paging timing related parameter may be associated with the dedicated user equipment identifier of the UE under the hyper cell, that is, the UE may determine the paging occasion according to the dedicated user equipment identifier.
  • Parameter 3 parameters for the UE to quickly recover (or quickly enter the active state).
  • the parameter may be used to indicate an uplink resource that is pre-configured to the UE, such as a Scheduling Resource (SR), a Physical Uplink Shared Channel (PUSCH), or an uplink contention resource.
  • SR Scheduling Resource
  • PUSCH Physical Uplink Shared Channel
  • the parameter for the UE to quickly enter the active state may also be associated with the dedicated user equipment identifier of the UE, and the UE may determine the scheduling resource allocated for the UE according to the dedicated user equipment identifier and the association relationship, and then The scheduling resource can be used to quickly enter an active state without going through a complicated RRC connection establishment process.
  • the UE is provided with an initial TA value. After entering the active state, the UE may use the initial TA value to send uplink data.
  • the UE that enters the power-saving state sends an uplink reference signal.
  • the UE in the power-saving state may continue to reserve the dedicated user equipment identifier, continue to send the uplink reference signal, and monitor the paging message.
  • the TP band in the same or different hyper cell may be different.
  • two anchor bands can be introduced:
  • Anchor frequency band 1 used for receiving paging and/or downlink synchronization of the UE.
  • paging frequency band or downlink synchronization frequency band
  • Anchor frequency band 2 It is used for the UE to send the uplink reference signal. Even the TP of different frequency bands can monitor the same frequency band. For convenience of description, it is called the reference signal frequency band.
  • these two bands can be "fixed".
  • the two bands can be used by the entire network, and the UEs in the network move to where they are.
  • the two frequency bands may be fixed within a certain range.
  • the network sends the configuration information of the anchor frequency band to the UE; the advantage introduced by the anchor frequency band is that even in the case of moving, The UE does not need to care about the frequency band of the surrounding network.
  • the UE only needs to do two things. One is to monitor whether it has its own paging in the "fixed" paging frequency band. Alternatively, it can also perform downlink synchronization based on the paging frequency band.
  • the purpose is to send paging on the reference signal band; the second is to send the uplink reference signal on the "fixed" reference signal band.
  • the mechanism of the anchor band can also be applied to the active state.
  • the manner in which the UE in the power-saving state sends the uplink reference signal may be: periodically transmitting the uplink reference signal, or transmitting the uplink reference signal after detecting that the UE has moved a certain distance for power saving; or a combination of the two, that is, detecting The uplink reference signal is sent after moving a certain distance, and the uplink reference signal is also sent after the cycle time is up.
  • the TP in the first TP set sends a measurement report of the uplink reference signal of the UE to the RAN controller, and the RAN controller continuously adjusts or updates the TP in the first TP set based on the measurement report.
  • the TP set may be deleted from the first TP set.
  • the neighboring layer TP may also be added to the first TP set.
  • the RAN controller receives data of the UE.
  • the RAN controller sends a paging message to the UE by using the TP.
  • the RAN controller may select one or more TPs with better signal quality from the first TP set, and send a paging message to the UE in the paging frequency band through the TPs.
  • the identifier of the UE may be carried in the paging message.
  • an uplink resource used for the UE to quickly enter an active state may be carried in the paging message.
  • the downlink data sent when the downlink data sent is relatively small, the downlink data may be directly sent to the UE by using a paging message, and the UE does not need to enter an active state, so that the UE may be prevented from frequently performing an active state and a power saving state. Conversion.
  • the UE sends a paging response message to the RAN controller by using the TP in the pre-configured uplink resource.
  • the pre-configured uplink resource may be indicated by the indication information in step 404, may be associated with the dedicated user equipment identifier of the UE, or may be indicated by the paging message in steps 414-416, which is in the embodiment of the present invention. This is not specifically limited.
  • the UE sends a paging response message through the pre-assigned uplink resource, and quickly enters an active state without initiating an RRC connection establishment procedure.
  • Figures 2 through 4 relate to the update, management and maintenance of the UE-related TP set by the RAN controller.
  • the related content is described in more detail below with reference to specific embodiments.
  • the UE-related TP set includes a second TP set of the UE (data for transmitting the UE, or a transmission cluster called UE) and a first TP set (for measuring an uplink reference signal sent by the UE, or called UE measurement cluster).
  • the RAN controller may maintain the second TP set and the first TP set for the active UE. Since the power-saving UE does not need data transmission, the RAN controller may only maintain the first TP set of the UE.
  • the first TP set may include at least one TP of the hyper cell. If the first TP set includes all the TPs of the hyper cell, the first TP set does not need to be updated, but all the TPs of the hyper cell all measure the uplink reference signal of the UE.
  • the first TP set can include only a part of the TP of the hyper cell, and then the first TP set can be continuously updated as the UE moves.
  • the process of adding and deleting TPs in the TP set will be described in detail below with reference to FIG.
  • FIG. 5 is a schematic flowchart of a method applied to a super cell according to an embodiment of the present invention. It should be understood that FIG. 5 illustrates detailed communication steps or operations applied to the hyper cell, but these steps or operations are merely examples, and embodiments of the present invention may perform other operations or variations of the various operations in FIG. Moreover, the various steps in FIG. 5 may be performed in a different order than that presented in FIG. 5, and it is possible that not all operations in FIG. 5 are to be performed.
  • the RAN controller may delete or add a TP in the second TP set by using a message, such as a non-cell configuration message, where the message may carry the DUI of the UE, optionally, when deleting or adding the first TP set.
  • the RAN controller knows, by using the signaling message, the TP in the first TP set that the UE is deleted or added by the network, such as sending the deleted or added TP information, or sending the deleted or added first TP set. Contains TP information.
  • the RAN controller may delete or add the TP in the first TP set by referring to the signal measurement indication message, and the message may carry the dedicated user equipment identifier of the UE.
  • the reference signal measurement indication message may further carry a configuration message of the uplink reference signal, and indicate a time-frequency resource of the uplink reference signal sent by the UE.
  • the uplink reference signal may be determined in the manner that the dedicated user equipment identifier of the UE and the time-frequency resource of the uplink reference signal are associated with the time-frequency resource of the uplink reference signal, which is not limited in this embodiment of the present invention.
  • the data transmitted by the air interface needs to be secured.
  • the data transmitted by the air interface can be encrypted.
  • the RAN controller allocates a second TP set for transmitting UE data to the UE. If the TP of the UE is encrypted by each TP in the second TP set, the efficiency of the entire system is relatively low.
  • a data anchor that provides an encryption service for the UE data may be introduced on the network side, and the data anchor may be, for example, a service gateway.
  • the embodiment of the present invention provides the communication flow shown in FIG. Reduce the loss of UE data.
  • the RAN controller sends a reference signal measurement indication message to the TP2.
  • the RAN controller indicates that the TP2 measures the uplink reference signal sent by the UE by using the reference signal measurement indication message, indicating that the RAN controller adds the TP2 to the first TP set of the UE.
  • TP2 measures the uplink reference signal of the UE, and sends a measurement report to the RAN controller, indicating that the measured uplink reference signal quality of the UE is good.
  • the RAN controller sends a non-cell configuration message to the TP2, indicating that the TP2 is added to the second TP set of the UE, and is used to transmit data of the UE.
  • the RAN controller notifies that the data anchor TP2 is added to the second TP set of the UE.
  • the RAN controller may notify the data anchor TP2 that the TP2 has been added to the second TP.
  • the TP2 sends a measurement report to the RAN, indicating that the measured uplink reference signal quality of the UE is poor.
  • the RAN controller sends a non-cell configuration message to the TP2, indicating that the TP2 has been deleted from the second TP set of the UE, and is no longer responsible for transmitting the data of the UE.
  • the RAN controller notifies that the data anchor TP2 has been deleted from the second TP set of the UE.
  • the data anchor will not send the encrypted downlink data of the UE to TP2.
  • the TP2 sends the downlink data that is not successfully sent by the UE to the data anchor point.
  • the data anchor forwards the downlink data of the TP2 that is not successfully sent to other TPs in the second TP set, and sends the TP to the UE by other TPs.
  • the embodiment of the invention not only ensures the security of the UE data, but also effectively avoids the loss of the UE data.
  • Radio Link Control (RLC) layer is on the TP node, when a new TP is added, especially the TP of the same frequency, for example, the previous one is TPx, and a new one is added.
  • the same frequency TPy since the new TPy RLC layer sequence number starts from 0, the UE needs to identify that this is a new TP to distinguish TPx, so as to correctly receive data, possible ways include:
  • the first method is to carry a TP identifier information in each data packet sent to the UE, and the data packet sent by each TP to the UE carries its own TP identifier information, and the UE identifies whether it is a new TP based on the identifier information. Therefore, the data of the TP is received from the sequence number 0; optionally, the data packet carries an indication information for instructing the UE to delete a certain TP, and the network continuously sends the data packet carrying the indication information until the network determines that the UE successfully receives the packet.
  • the UE After the data packet of the indication information is stopped, the UE does not receive the data packet of the TP for a preset period of time (for example, the preset time is configured by the network), the TP is deleted, and the network is at the same time. If the TP packet is not sent within the time, the RLC layer sequence number is sent from 0 when it is sent again next time;
  • Manner 2 The TP change identifier of one bit is carried in each data packet sent to the UE.
  • the change identifier changes, the UE learns that a new co-frequency TP serves the UE, thereby releasing the old co-frequency TP, and the new one.
  • TP starts from sequence number 0. This method is suitable for data transmission between the TP and the UE that can only have one co-frequency at the same time.
  • the communication process of the UE in a hyper cell is described in detail above with reference to FIG. 1 to FIG. 6.
  • the UE is switched from the hyper cell 1 to the hyper cell 2 in detail below with reference to FIG. 7 to FIG. 8 .
  • the process of the second super cell to ensure the continuity of the business.
  • FIG. 7 is a schematic flowchart of a cell handover procedure applied to a hyper cell according to an embodiment of the present invention. It should be understood that FIG. 7 illustrates detailed communication steps or operations applied to the hyper cell, but these steps or operations are merely examples, and embodiments of the present invention may perform other operations or variations of the various operations in FIG. Moreover, the various steps in FIG. 7 may be performed in a different order than that presented in FIG. 7, and it is possible that not all operations in FIG. 7 are to be performed.
  • the hyper cell 1 sends a non-cell configuration message to the UE.
  • the UE is in the hyper cell 1, and the hyper cell 1 sends a non-cell configuration message to the UE.
  • the message can be used to indicate that the UE works in the non-cell mode.
  • the UE sends an uplink reference signal, and the TP in the hyper cell 1 sends the measurement report of the uplink reference signal to the RAN controller.
  • This step is similar to steps 220-222 above and will not be described in detail herein.
  • the RAN controller identifies, according to the measurement report of the TP in the hyper cell 1, that the UE is about to move to the coverage of the hyper cell 2.
  • the RAN controller finds that one or more TPs in the hyper cell 1 that are close to the hyper cell 2 detect the uplink reference signal of the UE.
  • the RAN controller sends a reference signal measurement indication message to the TP in the hyper cell 2.
  • the message may carry the dedicated user equipment identifier of the UE under the hyper cell 1 and/or the reference signal configuration of the UE (which may indicate the time-frequency resource and/or signal sequence of the uplink reference signal sent by the UE under the hyper cell 1).
  • These TPs in Hyper cell 2 may be contiguous TPs of the TP under the above hyper cell 1.
  • the TP in the hyper cell 2 measures the uplink reference signal of the UE, and reports the measurement result to the RAN controller.
  • the TP of the Hypercell 2 measures the uplink reference signal configured by the UE in the hyper cell 1.
  • the measurement report triggering condition for example, the threshold is greater than a certain threshold
  • the measurement result is reported to the RAN controller, and the trigger report trigger condition is generated. Is included in the reference signal measurement indication message;
  • the RAN controller determines, according to the measurement report of the TP in the hyper cell 2, that the UE has entered the hyper cell 2 The coverage is more suitable for data transmission under hyper cell 2, and it is decided to switch.
  • the RAN controller sends a new UE entry request to the TP in the hyper cell 2.
  • the new UE Enter Request may carry the dedicated user equipment identifier of the UE under the hyper cell 2, and the dedicated user equipment identifier may be used to uniquely identify the UE under the hyper cell 2, and receive the dedicated user equipment identifier.
  • the TP can provide communication services for the UE.
  • the TP in the hyper cell 2 sends a new UE entry response to the RAN controller.
  • the TP in the hyper cell 2 indicates that the UE receives the request to enter the hyper cell 2 by using a response message.
  • the RAN controller sends a handover command to the UE by using the TP in the hyper cell 1.
  • the handover command may carry the dedicated user identifier of the UE in the hyper cell 2.
  • the handover command may also carry an initial TA value.
  • the RAN controller may further derive a key for the UE to transmit data under the hyper cell 2, and carry the new key in the handover command, and the RAN controller sends the new key to the hyper.
  • the UE sends an uplink reference signal in the hyper cell 2.
  • the UE may use the reference signal configuration corresponding to the new dedicated user equipment identifier to send the uplink reference signal, so that the TP in the hyper cell 2 measures the signal quality of the UE, and the RAN controller may allocate the UE to the UE.
  • the handover process can be in the following two ways:
  • Manner 1 The UE recognizes that it moves to a new hyper cell, and the UE initiates the handover process itself.
  • Manner 2 The network learns that the UE moves to the new hyper cell through measurement, and the network initiates the handover process.
  • the UE determines to enter a new hyper cell 2.
  • the UE initiates a random access procedure to the TP in the hyper cell 2, or sends a hyper cell update message on the PUSCH shared by the hyper cell, and the message may carry the UE in the hyper cell 1
  • the user equipment identifier can also carry the identifier of hyper cell 1.
  • the hyper cell 2 notifies the RAN controller that the UE initiates a super cell update.
  • the RAN controller allocates the dedicated user equipment identifier of the UE under the hyper cell 2, and sends the newly allocated dedicated user equipment identifier to the UE by using a cell configuration message.
  • the RAN controller notifies the TP in the hyper cell 1 to release the related configuration of the UE.
  • the process is similar to that of the UE in the active state. The difference is that the handover command can be transmitted through the paging message because the UE is in the power-saving state. For details, refer to FIG. 8.
  • FIG. 8 is a schematic flowchart of a cell handover procedure applied to a hyper cell according to an embodiment of the present invention. It should be understood that FIG. 8 illustrates detailed communication steps or operations applied to the hyper cell, but these steps or operations are merely examples, and embodiments of the present invention may perform other operations or variations of the various operations in FIG. Moreover, the various steps in FIG. 8 may be performed in a different order than that presented in FIG. 8, and it is possible that not all operations in FIG. 8 are to be performed.
  • Steps 804-818 are similar to steps 704-718 of FIG. 7, and are not described in detail herein.
  • the RAN controller sends a handover command to the UE by using a paging message.
  • the handover command may carry the dedicated user identifier of the UE in the hyper cell 2.
  • the handover command may also carry an initial TA value.
  • the RAN controller may also derive its The key for data transmission in the hyper cell 2, and carries the new key in the handover command, and the RAN controller sends the new key to the data anchor corresponding to the hyper cell 2, so that the UE is in the hyper cell 2 Use a new key for data security.
  • the UE sends an uplink reference signal in the hyper cell 2.
  • a method for applying to a super cell according to an embodiment of the present invention is described in detail above with reference to FIG. 1 to FIG. 8.
  • a controller, a UE of a radio access network according to an embodiment of the present invention is described in detail with reference to FIG. 9 to FIG. And TP.
  • FIG. 9 is a schematic structural diagram of a controller of a radio access network according to an embodiment of the present invention. It should be understood that the controller 900 of the radio access network of FIG. 9 is capable of performing the various steps performed by the controller of the radio access network in FIGS. 1 through 8, in order to avoid repetition, which will not be described in detail herein.
  • the controller 900 of the radio access network includes:
  • the processing unit 910 is configured to allocate, by the user equipment UE in the first super cell, a first transmission point TP set and a second TP set, where the first super cell includes multiple TPs, the first TP set and the first Each of the two TP sets includes at least one TP of the plurality of TPs, where the TP in the first TP set is used to measure an uplink reference signal sent by the UE, and the TP in the second TP set is used to The UE performs data communication;
  • the sending unit 920 is configured to send, to the UE, a first dedicated user equipment identifier DUI, where the first DUI is used to identify the UE in the first super cell;
  • the receiving unit 930 is configured to receive a measurement report sent by the TP in the first TP set that is allocated by the processing unit 910, where the measurement report carries signal strength information of an uplink reference signal sent by the UE;
  • the processing unit 910 is further configured to update the second TP set according to the measurement report of the TP in the first TP set received by the receiving unit 930.
  • the embodiment of the present invention uses the UE to send an uplink reference signal, and the network side measures the mobility management of the UE, and the network side maintains and updates the second TP set for the UE data transmission (or data communication) for the UE, which is reduced.
  • the processing unit 910 is further configured to determine that the working mode of the UE is a non-cell mode, where the working mode supported by the UE includes a cell mode and a non-cell mode, where the cell mode is The operation mode is based on the UE performing mobility management on the measurement of the downlink reference signal, where the non-cell mode is an operation mode for performing mobility management by measuring an uplink reference signal sent by the UE.
  • the processing unit 910 is specifically configured to: after the UE initiates a random access procedure by using a TP in the first super cell, receive the TP transmission in the first super cell. And requesting information, where the request information is used to request the controller 900 of the radio access network to determine an operating mode of the UE, where the request information includes at least one of the following parameters of the UE: a type of the UE a moving speed of the UE, a location of the UE, a service of the UE, an operating mode supported by the UE, and a capability of the UE; determining, according to a parameter of the UE carried in the request information, The working mode of the UE is a non-cell mode; the sending unit 920 is further configured to send, to the UE, and the TP in the second TP set, information indicating that the working mode of the UE is a non-cell mode. .
  • the processing unit 910 is further configured to: according to the measurement report of the TP in the first TP set, determine to switch the working mode of the UE to the cell mode; the sending unit 920 further And sending, to the UE, a mode switching message, where the mode switching message is used to indicate that the UE switches from the non-cell mode to the cell mode, where the mode switching message includes the UE in the cell mode The cell identity of the serving cell.
  • the sending unit 920 is further configured to send the first DUI to the TP in the first TP set, so that the TP in the first TP set determines the time-frequency resource based on the first DUI And detecting an uplink reference signal of the UE on the time-frequency resource.
  • the processing unit 910 is further configured to update the first TP set according to the measurement report of the TP in the first TP set.
  • the processing unit 910 is further configured to: after the UE enters a power-saving state, continue to update the first TP set according to the measurement report of the TP in the first TP set, The second TP set is no longer updated.
  • the processing unit 910 is further configured to: determine, according to the measurement report of the TP in the first TP set, that the UE reaches an edge of the second super cell; and indicate the second super cell The TP in the measurement of the uplink reference signal; determining, according to the measurement report of the uplink reference signal by the TP in the second super cell, that the UE is handed over to the second super cell; the sending unit 920 further And sending, to the UE, a handover command, where the handover command is used to indicate that the UE switches to the second super cell, the handover command includes a second DUI, and the second DUI is used in the second The UE is identified in the super cell.
  • the second TP set is a subset of the first TP set.
  • the first DUI is used by the TP in the first TP set to receive an uplink reference signal sent by the UE, and/or the first DUI is used in the second TP
  • the TP in the set communicates with the UE.
  • FIG. 10 is a schematic structural diagram of a UE according to an embodiment of the present invention.
  • the UE 1000 of FIG. 10 can implement the various steps performed by the UE in FIG. 1 to FIG. 8. To avoid repetition, details are not described herein.
  • UE 1000 includes:
  • the receiving unit 1010 is configured to receive a first dedicated user equipment identifier DUI allocated by the controller of the radio access network to the UE 1000, where the first super cell includes multiple transmission points TP, and the first DUI is used by the first DUI. Identifying the UE 1000 in the first super cell, the controller of the radio access network allocates a first TP set and a second TP set to the UE 1000 from the multiple TPs, The TP in the second TP set is used for data communication with the UE 1000, and the TP in the first TP set is used to measure an uplink reference signal sent by the UE 1000;
  • the sending unit 1020 is configured to send an uplink reference signal according to the first DUI received by the receiving unit 1010, so that the controller of the radio access network compares the uplink reference according to the TP in the first TP set.
  • the signal is measured by the measurement report, and the second TP set is updated, where the measurement report carries signal strength information of the uplink reference signal sent by the UE 1000.
  • the embodiment of the present invention uses the UE to send an uplink reference signal, and the network side measures the mobility management of the UE, and the network side maintains and updates the second TP set for the UE data transmission (or data communication) for the UE, which is reduced.
  • the working mode of the UE 1000 is a non-cell mode
  • the working mode supported by the UE 1000 includes a cell mode and a non-cell mode, where the cell mode is based on a downlink reference signal of the UE 1000.
  • the working mode for performing mobility management is measured, and the non-cell mode is an operation mode for performing mobility management by measuring an uplink reference signal transmitted by the UE 1000.
  • the sending unit 1020 is further configured to send, after the UE 1000 initiates a random access procedure by using a TP in the first super cell, to a TP in the first super cell.
  • the parameters of the UE 1000, so that the TP in the first super cell sends the parameters of the UE 1000 to the radio access network.
  • a controller that determines, by the radio network controller, an operating mode of the UE 1000 based on parameters of the UE 1000, where parameters of the UE 1000 include a type of the UE 1000, a moving speed of the UE 1000, and the At least one of a location of the UE 1000, a service of the UE 1000, an operating mode supported by the UE 1000, and an capability of the UE 1000; the receiving unit 1010 is further configured to receive control of the radio access network The information sent by the device indicating that the working mode of the UE 1000 is a non-cell mode.
  • the receiving unit 1010 is further configured to receive a mode switching message sent by a controller of the radio access network, where the mode switching message is used to indicate that the UE 1000 is from the non-cell.
  • the mode switching message includes a cell identifier of the serving cell of the UE 1000 in the cell mode, and the UE 1000 further includes: a determining unit, configured to determine, according to the cell identifier, The serving cell; a data transmission unit, configured to perform data transmission by using the serving cell.
  • the first DUI has a corresponding relationship with a time-frequency resource occupied by the uplink reference signal
  • the UE 1000 further includes: a determining unit, configured to pass the first DUI according to the Determining the time-frequency resource; the sending unit 1020 is specifically configured to send the uplink reference signal on the time-frequency resource.
  • the receiving unit 1010 is further configured to receive a handover command sent by a controller of the radio access network, where the handover command is used to instruct the UE 1000 to switch to a second super cell.
  • the handover command includes a second DUI, and the second DUI is used to identify the UE 1000 in the second super cell.
  • the second TP set is a subset of the first TP set.
  • the first DUI is used by the TP in the first TP set to receive an uplink reference signal sent by the UE 1000, and/or the first DUI is used in the second
  • the TP in the TP set is in data communication with the UE 1000.
  • FIG. 11 is a schematic structural diagram of a TP according to an embodiment of the present invention.
  • the TP 1100 of FIG. 11 can implement the steps performed by the TP in FIGS. 1 to 8. To avoid repetition, details are not described herein.
  • the TP 1100 includes:
  • the measuring unit 1110 is configured to measure an uplink reference signal sent by the UE, where the first super cell includes multiple TPs, and a controller of the radio access network allocates the UE in the first super cell. Determining, by the first dedicated user equipment, a DUI, and allocating, from the plurality of TPs, the first TP set and the second TP set to the UE, where the first DUI is used to identify the first super cell a TP in the first TP set is used to measure an uplink reference signal sent by the UE, and a TP in the second TP set is used to perform data communication with the UE, where the TP 1100 is the first a TP in a TP set;
  • a generating unit 1120 configured to generate, according to a measurement result of the uplink reference signal sent by the UE by the measuring unit 1110, a measurement report, where the measurement report carries the uplink reference signal sent by the UE measured by the TP 1100 Signal strength information;
  • the sending unit 1130 is configured to send, to the controller of the radio access network, the measurement report generated by the generating unit 1120, so that the controller of the radio access network updates the second TP set according to the measurement report.
  • the embodiment of the present invention uses the UE to send an uplink reference signal, and the network side measures the mobility management of the UE, and the network side maintains and updates the second TP set for the UE data transmission (or data communication) for the UE, which is reduced.
  • the working mode of the UE is a non-cell mode
  • the working mode supported by the UE includes a cell mode and a non-cell mode, where the cell mode is based on a UE moving the measurement of the downlink reference signal.
  • the working mode of the sexual management, the non-cell mode is to move by measuring the uplink reference signal sent by the UE The working mode of sexual management.
  • the TP 1100 further includes: a receiving unit, configured to receive, by the UE, a parameter of the UE, after the UE initiates a random access procedure by using the TP 1100,
  • the parameters of the UE include at least one of a type of the UE, a moving speed of the UE, a location of the UE, a service of the UE, an operating mode supported by the UE, and an capability of the UE;
  • the sending unit 1130 is further configured to send a parameter of the UE to a controller of the radio access network, so that a controller of the radio access network determines an operating mode of the UE according to a parameter of the UE;
  • the unit is further configured to receive, by the controller of the radio access network, information indicating that the working mode of the UE is a non-cell mode.
  • the first DUI has a corresponding relationship with a time-frequency resource occupied by the uplink reference signal
  • the receiving unit is further configured to receive the The first DUI
  • the measuring unit 1110 is specifically configured to determine the time-frequency resource by using the corresponding relationship according to the first DUI, and detect the uplink reference signal on the time-frequency resource.
  • the TP 1100 is a TP in the second TP set, and the TP 1100 further includes: a receiving unit, configured to receive the first DUI sent by the radio network controller a data communication unit, configured to perform data communication with the UE according to the first DUI.
  • the data communication unit is specifically configured to receive downlink data of the UE from a data anchor, where the data anchor is used to encrypt downlink data of the UE; to the UE Sending the downlink data encrypted by the data anchor point.
  • the TP 1100 further includes: a receiving unit, configured to receive a notification message sent by a controller of the radio access network, where the notification message is used to notify that the TP 1100 has been Deleting a second TP set of the UE; determining a unit, configured to determine whether there is downlink data that is not successfully sent by the UE; and the sending unit 1130 is specifically configured to: when the downlink data that is not successfully sent is present, The data anchor sends the downlink data that is not successfully transmitted, so that the data anchor forwards the unsuccessfully transmitted downlink data to the UE by using other TPs in the second TP set.
  • the second TP set is a subset of the first TP set.
  • the first DUI is used by the TP in the first TP set to receive an uplink reference signal sent by the UE, and/or the first DUI is used in the second TP
  • the TP in the set communicates with the UE.
  • FIG. 12 is a schematic structural diagram of a controller of a radio access network according to an embodiment of the present invention. It should be understood that the controller 1200 of the radio access network of FIG. 12 can perform the various steps performed by the controller of the radio access network in FIGS. 1 through 8, in order to avoid repetition, which will not be described in detail herein.
  • the controller 1200 of the radio access network includes:
  • a memory 1210 configured to store a program
  • the processor 1220 is configured to execute a program in the memory 1210. When the program is executed, the processor 1220 allocates a first transmission point TP set and a second TP set to the user equipment UE in the first super cell.
  • the first super cell includes multiple TPs, and the first TP set and the second TP set each include at least one TP of the multiple TPs, and the TP in the first TP set is used for Measuring, by the UE, an uplink reference signal, where the TP in the second TP set is used for data communication with the UE;
  • the transceiver 1230 is configured to send, to the UE, a first dedicated user equipment identifier DUI, where the first DUI is used to identify the UE in the first super cell, and receive the first part allocated by the processor 1220. a measurement report sent by the TP in the TP set, where the measurement report carries signal strength information of the uplink reference signal sent by the UE;
  • the processor 1220 is further configured to update the second TP set according to the measurement report of the TP in the first TP set received by the transceiver 1230.
  • the embodiment of the present invention uses the UE to send an uplink reference signal, and the network side measures the mobility management of the UE, and the network side maintains and updates the second TP set for the UE data transmission (or data communication) for the UE, which is reduced.
  • the processor 1220 is further configured to determine that the working mode of the UE is a non-cell mode, where the working mode supported by the UE includes a cell mode and a non-cell mode, where the cell mode is The operation mode is based on the UE performing mobility management on the measurement of the downlink reference signal, where the non-cell mode is an operation mode for performing mobility management by measuring an uplink reference signal sent by the UE.
  • the processor 1220 is specifically configured to: after the UE initiates a random access procedure by using a TP in the first super cell, receive the TP transmission in the first super cell. And requesting information, where the request information is used to request the controller 1200 of the radio access network to determine an operating mode of the UE, where the request information includes at least one of the following parameters of the UE: a type of the UE a moving speed of the UE, a location of the UE, a service of the UE, an operating mode supported by the UE, and a capability of the UE; determining, according to a parameter of the UE carried in the request information, The working mode of the UE is a non-cell mode; the transceiver 1230 is further configured to send, to the UE, and the TP in the second TP set, information indicating that the working mode of the UE is a non-cell mode. .
  • the processor 1220 is further configured to: according to the measurement report of the TP in the first TP set, determine to switch the working mode of the UE to a cell mode; the transceiver 1230 further And sending, to the UE, a mode switching message, where the mode switching message is used to indicate that the UE switches from the non-cell mode to the cell mode, where the mode switching message includes the UE in the cell mode The cell identity of the serving cell.
  • the first DUI has a corresponding relationship with a time-frequency resource occupied by the uplink reference signal
  • the transceiver 1230 is further configured to send the to the TP in the first TP set.
  • a first DUI so that the TP in the first TP set determines the time-frequency resource based on the first DUI, and detects an uplink reference signal of the UE on the time-frequency resource.
  • the processor 1220 is further configured to update the first TP set according to the measurement report of the TP in the first TP set.
  • the processor 1220 is further configured to: after the UE enters a power-saving state, continue to update the first TP set according to the measurement report of the TP in the first TP set, The second TP set is no longer updated.
  • the processor 1220 is further configured to: determine, according to the measurement report of the TP in the first TP set, that the UE reaches an edge of the second super cell; and indicate the second super cell The TP in the measurement of the uplink reference signal; determining, according to the measurement report of the uplink reference signal by the TP in the second super cell, that the UE is switched to the second super cell; the transceiver 1230 further And sending, to the UE, a handover command, where the handover command is used to indicate that the UE switches to the second super cell, the handover command includes a second DUI, and the second DUI is used in the second The UE is identified in the super cell.
  • the second TP set is a subset of the first TP set.
  • the first DUI is used by the TP in the first TP set to receive an uplink reference signal sent by the UE, and/or the first DUI is used in the second TP TP in the set and the UE Data communication.
  • FIG. 13 is a schematic structural diagram of a UE according to an embodiment of the present invention.
  • the UE 1300 of FIG. 13 can implement the steps performed by the UE in FIG. 1 to FIG. 8. To avoid repetition, details are not described herein.
  • the UE 1300 includes:
  • a memory 1310 configured to store a program
  • the processor 1320 is configured to execute a program stored in the memory 1310, and when the program is executed, the processor 1320 controls the transceiver 1330 to send and receive information;
  • the transceiver 1330 is configured to receive a first dedicated user equipment identifier (DUI) allocated by the controller of the radio access network to the UE 1300, where the first super cell includes multiple transmission points TP, the first DUI
  • the controller of the radio access network allocates a first TP set and a second TP set to the UE 1300 from the multiple TPs.
  • the TP in the second TP set is used for data communication with the UE 1300, where the TP in the first TP set is used to measure an uplink reference signal sent by the UE 1300, and the uplink reference signal is sent according to the DUI.
  • the controller of the radio access network updates the second TP set according to the measurement report obtained by measuring the uplink reference signal by the TP in the first TP set, where the measurement report carries the The signal strength information of the uplink reference signal transmitted by the UE 1300.
  • the embodiment of the present invention uses the UE to send an uplink reference signal, and the network side measures the mobility management of the UE, and the network side maintains and updates the second TP set for the UE data transmission (or data communication) for the UE, which is reduced.
  • the working mode of the UE 1300 is a non-cell mode
  • the working mode supported by the UE 1300 includes a cell mode and a non-cell mode, where the cell mode is based on the downlink reference signal of the UE 1300.
  • the working mode for performing mobility management is measured, and the non-cell mode is an operation mode for performing mobility management by measuring an uplink reference signal transmitted by the UE 1300.
  • the transceiver 1330 is further configured to send, after the UE 1300 initiates a random access procedure by using a TP in the first super cell, to a TP in the first super cell.
  • the parameters of the UE 1300 so that the TP in the first super cell sends the parameters of the UE 1300 to the controller of the radio access network, and the radio network controller is based on the parameters of the UE 1300.
  • Determining the working mode of the UE 1300, the parameters of the UE 1300 include the type of the UE 1300, the moving speed of the UE 1300, the location of the UE 1300, the service of the UE 1300, and the UE 1300 support. At least one of the working mode and the capability of the UE 1300; the transceiver 1330 is further configured to receive, by the controller of the radio access network, information indicating that the working mode of the UE 1300 is a non-cell mode .
  • the transceiver 1330 is further configured to receive a mode switching message sent by a controller of the radio access network, where the mode switching message is used to indicate that the UE 1300 is from the non-cell.
  • the mode switching message includes a cell identity of the serving cell of the UE 1300 in the cell mode
  • the processor 1320 is further configured to determine the serving cell according to the cell identity. Transmitting data through the serving cell.
  • the first DUI has a corresponding relationship with a time-frequency resource occupied by the uplink reference signal
  • the processor 1320 is further configured to: according to the first DUI, by using the corresponding relationship, Determining the time-frequency resource; the transceiver 1330 is specifically configured to send the uplink reference signal on the time-frequency resource.
  • the transceiver 1330 is further configured to receive a handover command sent by a controller of the radio access network, where the handover command is used to instruct the UE 1300 to switch to a second super cell.
  • the handover command includes a second DUI, and the second DUI is used to identify the UE 1300 in the second super cell.
  • the second TP set is a subset of the first TP set.
  • the first DUI is used by the TP in the first TP set to receive an uplink reference signal sent by the UE 1300, and/or the first DUI is used in the second
  • the TP in the TP set is in data communication with the UE 1300.
  • FIG. 14 is a schematic structural diagram of a TP according to an embodiment of the present invention.
  • the TP 1400 of FIG. 14 can implement the steps performed by the TP in FIGS. 1 through 8, and to avoid repetition, it will not be described in detail herein.
  • the TP 1400 includes:
  • a memory 1410 configured to store a program
  • the processor 1420 is configured to execute a program stored by the memory 1410, when the program is executed, the processor 1420 measures an uplink reference signal sent by the UE, where the first super cell includes multiple TPs.
  • the controller of the radio access network allocates a first dedicated user equipment identifier DUI to the UE in the first super cell, and allocates a first TP set and a first TP set to the UE from the multiple TPs.
  • the first DUI is used to identify the UE in the first super cell
  • the TP in the first TP set is used to measure an uplink reference signal sent by the UE
  • the second TP The TP in the set is used for data communication with the UE
  • the TP 1400 is a TP in the first TP set.
  • a measurement report is generated, and the measurement report is generated. Carrying signal strength information of the uplink reference signal sent by the UE measured by the TP 1400;
  • the transceiver 1430 is configured to send a measurement report to a controller of the radio access network, so that the controller of the radio access network updates the second TP set according to the measurement report.
  • the embodiment of the present invention uses the UE to send an uplink reference signal, and the network side measures the mobility management of the UE, and the network side maintains and updates the second TP set for the UE data transmission (or data communication) for the UE, which is reduced.
  • the working mode of the UE is a non-cell mode
  • the working mode supported by the UE includes a cell mode and a non-cell mode, where the cell mode is based on a UE moving the measurement of the downlink reference signal.
  • the working mode of the sexual management, the non-cell mode is an operating mode for performing mobility management by measuring an uplink reference signal sent by the UE.
  • the transceiver 1430 is further configured to: after the UE initiates a random access procedure by using the TP 1400, receive parameters of the UE from the UE, where parameters of the UE include At least one of a type of the UE, a moving speed of the UE, a location of the UE, a service of the UE, an operating mode supported by the UE, and an ability of the UE; the transceiver 1430 further Transmitting, to the controller of the radio access network, a parameter of the UE, so that a controller of the radio access network determines an operating mode of the UE according to a parameter of the UE; and receiving the radio access network The information sent by the controller indicating that the working mode of the UE is a non-cell mode.
  • the first DUI has a corresponding relationship with a time-frequency resource occupied by the uplink reference signal
  • the transceiver 1430 is further configured to receive a location sent by a controller of the radio access network.
  • the first DUI is configured to determine the time-frequency resource by using the corresponding relationship according to the first DUI, and detect the uplink reference signal on the time-frequency resource.
  • the TP 1400 is a TP in the second TP set, and the transceiver 1430 is further configured to receive the first DUI sent by the radio network controller; The first DUI performs data communication with the UE.
  • the transceiver 1430 is specifically configured to receive the UE from a data anchor point.
  • Row data the data anchor is used to encrypt downlink data of the UE; and send the downlink data encrypted by the data anchor point to the UE.
  • the transceiver 1430 is further configured to receive a notification message sent by a controller of the radio access network, where the notification message is used to notify that the TP 1400 has received a The second TP set is deleted; the processor 1420 is further configured to determine whether there is unsuccessful downlink data of the UE, and the transceiver 1430 is specifically configured to: when the downlink data that is not successfully sent is present, The data anchor sends the downlink data that is not successfully transmitted, so that the data anchor forwards the unsuccessfully transmitted downlink data to the UE by using other TPs in the second TP set.
  • the second TP set is a subset of the first TP set.
  • the first DUI is used by the TP in the first TP set to receive an uplink reference signal sent by the UE, and/or the first DUI is used in the second TP
  • the TP in the set communicates with the UE.
  • FIG. 15 is a schematic structural diagram of a system chip according to an embodiment of the present invention.
  • the system chip 1500 of FIG. 15 includes an input interface 1510, an output interface 1520, at least one processor 1530, and a memory 1540.
  • the input interface 1510, the output interface 1520, the processor 1530, and the memory 1540 are connected by a bus.
  • the processor 1530 is configured to execute code in the memory 1540, and when the code is executed, the processor 1530 implements the method of FIG. 1-8 performed by a controller of a wireless access network.
  • FIG. 16 is a schematic structural diagram of a system chip according to an embodiment of the present invention.
  • the system chip 1600 of FIG. 16 includes an input interface 1610, an output interface 1620, at least one processor 1630, and a memory 1640.
  • the input interface 1610, the output interface 1620, the processor 1630, and the memory 1640 are connected by a bus.
  • the processor 1630 is configured to execute code in the memory 1640, and when the code is executed, the processor 1630 implements the method performed by the UE in FIGS. 1-8.
  • the 17 is a schematic structural diagram of a system chip according to an embodiment of the present invention.
  • the system chip 1700 of FIG. 17 includes an input interface 1710, an output interface 1720, at least one processor 1730, and a memory 1740.
  • the input interface 1710, the output interface 1720, the processor 1730, and the memory 1740 are connected by a bus.
  • the processor 1730 is configured to execute code in the memory 1740, and when the code is executed, the processor 1730 implements the method performed by the TP in FIGS. 1-8.
  • the disclosed systems, devices, and methods may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the functions may be stored in a computer readable storage medium if implemented in the form of a software functional unit and sold or used as a standalone product.
  • the technical solution of the present application which is essential or contributes to the prior art, or a part of the technical solution, may be embodied in the form of a software product, which is stored in a storage medium, including
  • the instructions are used to cause a computer device (which may be a personal computer, server, or network device, etc.) to perform all or part of the steps of the methods described in various embodiments of the present application.
  • the foregoing storage medium includes: a U disk, a mobile hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk, and the like. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明实施例提供一种应用于超级小的通信方法和装置,该方法包括UE发送上行参考信号,超级小区中的TP测量UE发送的上行参考信号,无线接入网的控制器根据TP的测量报告更新为UE提供通信服务的TP集合。本发明实施例降低了UE的负担和热点区域移动性管理的难度。

Description

应用于超级小区的通信方法和装置
本申请要求于2016年03月03日提交中国专利局、申请号为201610122160.2、发明名称为“应用于超级小区的通信方法和装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信领域,并且更为具体地,涉及一种应用于超级小区的通信方法和装置。
背景技术
现有技术中,为了保证用户设备(User Equipment,UE)业务的连续性,需要对UE进行移动性管理。例如,UE从源小区的覆盖范围移动到目标小区的覆盖范围时,需要及时地完成小区之间的切换。
但是,在现有的通信系统中,移动性管理的设计思想均是以网络为中心的设计思想(UE follows network)。以处于激活态的UE为例,为了实现该UE的移动性管理,网络中的各小区会发送下行参考信号,供该UE测量。UE会以测量报告的形式将测量结果上报至网络侧,网络基于该UE的测量报告进行切换判决,将UE切换至信号条件好的小区进行数据传输。
但是,在移动通信系统的后续演进过程中,为了满足巨量的数据通信需求,可能会在是热点区域集中部署大量的小小区(small cell),如果继续采用以网络为中心的设计思想,会引起UE的移动性管理难的问题。例如,在热点区域,UE需要测量大量的small cell,对于UE的测量能力要求较高;又如,UE进行测量并上报测量报告后才能进行切换,由于small cell的覆盖范围小,UE可能很快移出small cell的覆盖范围,可能造成切换不够及时而导致切换失败,比如测量报告发送到small cell失败,切换命令发送失败等。再如,由于超密集的小区部署,测量报告上报以及切换等操作可能产生大量的空口信令,大量消耗空口资源和网络的处理资源。
发明内容
本申请提出一种应用于超级小区的通信方法、无线接入网控制器、用户设备和传输点,以解决热点区域的移动性管理难的问题。
第一方面,提供一种应用于超级小区的通信方法。所述方法包括:无线接入网的控制器为第一超级小区中的UE分配第一传输点(Transmission Point,TP)集和第二TP集合。所述第一超级小区包括多个TP,所述第一TP集合和所述第二TP集合各自均包括所述多个TP中的至少一个TP,所述第一TP集合中的TP用于测量所述UE发送的上行参考信号,所述第二TP集合中的TP用于与所述UE进行数据通信;所述无线接入网的控制器向所述UE发送所述UE的第一专用用户设备标识(Dedicated User Equipment Identity,DUI),所述第一DUI用于在所述第一超级小区中标识所述UE;所述无线接入网的控制器接收所述第一TP集合中的TP发送的测量报告,所述测量报告携带所述UE发送的上行参考信号的信号强度信息;所述无线接入网的控制器根据所述第一TP集合中的TP的 测量报告,更新所述第二TP集合。可选地,无线接入网的控制器可以向第一TP集合中的TP和/或第二TP集合中的TP发送第一DUI。可选地,第一TP集合中的TP可以基于第一DUI测量UE发送的上行参考信号。可选地,第二TP集合中的TP可以基于第一DUI与UE进行数据通信。可选地,测量报告可用于指示UE发送的上行参考信号的强度或质量。
现有技术是小区(或称网络侧)发送下行参考信号,UE对小区的下行参考信号进行测量,并上报测量报告,再由网络侧基于UE的测量报告进行小区切换判决,从而实现UE的移动性管理。而在本申请的方案中,无线接入网的控制器为UE分配第一TP集合和第二TP集合,其中,第二TP集合可用于传输UE的数据,第一TP集合可用于测量UE发送的上行参考信号,无线接入网的控制器基于第一TP集合中的TP的测量报告更新第二TP集合。也就是说,在本申请的方案中,参考信号的发送方变成了UE,参考信号的测量者变成了超级小区中的TP,随着UE的移动,网络侧不断更新用于传输UE数据的第二TP集合,但从UE的角度来看,UE并没有明显感知网络的变化,无需复杂的测量和上报操作,降低了UE的复杂度,而且整个过程无需UE与TP之间过多的空口信令交互,节省了空口资源,从而解决了热点区域的移动性管理难的问题。
结合第一方面,在第一方面的第一种实现方式中,在所述无线接入网的控制器为第一超级小区中的UE分配第一TP集合和第二TP集合之前,所述方法还包括:所述无线接入网的控制器确定所述UE的工作模式为非小区模式,其中,所述UE支持的工作模式包括小区模式和非小区模式,所述小区模式是基于UE对下行参考信号的测量进行移动性管理的工作模式,所述非小区模式是通过测量UE发送的上行参考信号进行移动性管理的工作模式。可替换地,所述小区模式是网络侧基于UE对网络侧发送的下行参考信号进行测量得到的测量结果进行移动性管理的工作模式,所述非小区模式是网络侧基于测量UE发送的上行参考信号得到的测量结果进行移动性管理的工作模式。
通过为UE设置小区模式和非小区模式在内的多种工作模式,能够更好地兼容现有技术(即兼容小区模式)。
结合第一方面的第一种实现方式,在第一方面的第二种实现方式中,所述无线接入网的控制器确定所述UE的工作模式为非小区模式,包括:在所述UE通过所述第一超级小区内的TP发起随机接入过程之后,所述无线接入网的控制器接收所述第一超级小区内的TP发送的请求信息,所述请求信息用于请求所述无线接入网的控制器确定所述UE的工作模式,所述请求信息包括所述UE的如下参数的至少一种:所述UE的类型、所述UE的移动速度、所述UE的位置、所述UE的业务、所述UE支持的工作模式以及所述UE的能力;所述无线接入网的控制器根据所述请求信息中携带的UE的参数,确定所述UE的工作模式为非小区工作模式;所述方法还包括:所述无线接入网的控制器向所述UE、以及所述第二TP集合中的TP发送用于指示所述UE的工作模式为非小区模式的信息。例如,请求信息中携带UE支持非小区模式,则无线接入网的控制器确定UE的工作模式为非小区模式;又如,请求信息中携带UE的位置,无线接入网的控制器根据UE的位置,确定UE是否位于热点区域;当UE位于热点区域时,确定UE的工作模式为非小区模式。
结合第一方面的第一至第二种实现方式的任一种,在第一方面的第三种实现方式中,所述方法还包括:所述无线接入网的控制器根据所述第一TP集合中的TP的测量报告, 确定将所述UE的工作模式切换至小区模式;所述无线接入网的控制器向所述UE发送模式切换消息,所述模式切换消息用于指示所述UE从所述非小区模式切换至所述小区模式,所述模式切换消息包含所述UE在所述小区模式下的服务小区的小区标识。具体地,所述无线接入网的控制器根据所述第一TP集合中的TP的测量报告,确定将所述UE的工作模式切换至小区模式可以包括:所述无线接入网的控制器检测到发送测量报告的TP位于超级小区的边缘,即UE即将离开超级小区,此时,无线接入网的控制器可以将UE切换至小区模式。
在本实现方式中,无线接入网的控制器基于第一TP集合的TP的测量报告为UE选择合适的工作模式,实现了UE在小区模式和非小区模式之间的灵活切换。
结合第一方面以及第一方面的第一至第三种实现方式的任一种,在第一方面的第四种实现方式中,所述第一DUI与所述上行参考信号占用的时频资源具有对应关系,所述方法还包括:所述无线接入网的控制器向所述第一TP集合中的TP发送所述第一DUI,以便所述第一TP集合中的TP基于所述第一DUI确定所述时频资源,并在所述时频资源上检测所述UE的上行参考信号。
通过预先建立DUI和上行参考信号占用的时频资源的对应关系,当UE接收到第一DUI时,就能够根据第一DUI方便地确定发送上行参考信号的时频资源,简化了上行参考信号占用时频资源的确定方式。
结合第一方面以及第一方面的第一至第四种实现方式的任一种,在第一方面的第五种实现方式中,所述方法还包括:所述无线接入网的控制器根据所述第一TP集合中的TP的测量报告,更新所述第一TP集合。
无线接入网的控制器为UE配置第一TP集合,并基于第一TP集合的测量报告不断维护和更新该UE的第一TP集合,也就是说,将测量参考信号质量的任务从UE侧转移到网络侧,以第一TP集合更新的方式对UE进行移动性管理,简化了UE的实现。
结合第一方面的第五种实现方式,在第一方面的第六种实现方式中,所述方法还包括:在所述UE进入节电态之后,所述无线接入网的控制器根据所述第一TP集合中的TP的测量报告,继续更新所述第一TP集合,不再更新所述第二TP集合。
由于节电态的UE无需或者仅需少量的数据通信业务,无线接入网的控制器可以仅维护节电态UE的第一TP集合,不维护UE的第二TP集合,这样可以节省网络侧的资源。
结合第一方面以及第一方面的第一至第六种实现方式的任一种,在第一方面的第七种实现方式中,所述方法还包括:所述无线接入网的控制器根据所述第一TP集合中的TP的测量报告,确定所述UE到达第二超级小区的边沿;所述无线接入网的控制器指示所述第二超级小区中的TP测量所述上行参考信号;所述无线接入网的控制器根据所述第二超级小区中的TP对所述上行参考信号的测量报告(第二超级小区中的TP对所述上行参考信号的测量报告用于指示所述上行参考信号的强度或质量),确定将所述UE切换至所述第二超级小区;所述无线接入网的控制器向所述UE发送切换命令,所述切换命令用于指示所述UE切换至所述第二超级小区,所述切换命令包括第二DUI,所述第二DUI用于在所述第二超级小区中识别所述UE。所述无线接入网的控制器根据所述第一TP集合中的TP的测量报告,确定所述UE到达第二超级小区的边沿可以包括:所述无线接入网的控制器发现位于第二超级小区边沿的TP的测量报告指示的上行参考信号质 量高于预设阈值,确定所述UE到达第二超级小区的边沿。或者,所述无线接入网的控制器发现发送测量报告的TP中,位于第二超级小区边沿的TP占第一TP集合总TP的比例超级预设阈值,则确定所述UE到达第二超级小区的边沿。
本实现方式中,无线接入网的控制器基于第一TP集合中的TP的测量报告实现了UE在超级小区之间的切换。
结合第一方面以及第一方面的第一至第七种实现方式的任一种,在第一方面的第八种实现方式中,所述方法还包括:在所述UE进入节电态之后,所述无线接入网的控制器向所述UE发送寻呼消息;所述无线接入网的控制器在目标上行资源上接收寻呼响应消息,所述目标上行资源是为进入节电态的所述UE预先配置的上行资源,以便所述UE通过所述目标上行资源从节电态进入激活态。
结合第一方面以及第一方面的第一至第八种实现方式的任一种,在第一方面的第九种实现方式中,所述方法还包括:在所述UE进入节电态之后,所述无线接入网的控制器在固定的寻呼频段向所述UE发送所述寻呼消息,所述固定的寻呼频段是为所述第一超级小区所在网络配置的用于发送寻呼消息的频段,或者所述固定的寻呼频段是为所述第一超级小区配置的用于发送寻呼消息的频段。
通过设置固定的寻呼频段,无需为节电态的UE分配各自对应的寻呼频段,简化了超级小区中的节电态的UE的寻呼方式。
第二方面,提供一种应用于超级小区的通信方法,包括:第一超级小区中的UE接收无线接入网的控制器为所述UE分配的第一DUI,其中,所述第一超级小区包括多个TP,所述第一DUI用于在所述第一超级小区中标识所述UE,所述无线接入网的控制器从所述多个TP中为所述UE分配了第一TP集合和第二TP集合,所述第二TP集合中的TP用于与所述UE进行数据通信,所述第一TP集合中的TP用于测量所述UE发送的上行参考信号;所述UE根据所述第一DUI发送上行参考信号,以便所述无线接入网的控制器根据所述第一TP集合中的TP对所述上行参考信号进行测量得到的测量报告更新所述第二TP集合,其中,所述测量报告携带所述UE发送的上行参考信号的信号强度信息。可选地,作为一种实现方式,所述UE根据所述第一DUI,发送上行参考信号,可以包括:所述UE向网络侧发送经过所述第一DUI加扰的上行参考信号;或者,所述UE向网络侧发送所述第一DUI对应的上行参考信号(可以预先建立第一DUI与上行参考信号的对应关系)。
通过TP测量UE发送的上行参考信号,以及无线接入网的控制器基于TP的测量报告更新UE的第二TP集合的方式对UE进行移动性管理,解决了热点区域的移动性管理难的问题。
结合第二方面,在第二方面的第一种实现方式中,所述UE的工作模式为非小区模式,所述UE支持的工作模式包括小区模式和非小区模式,在所述小区模式是基于UE对下行参考信号的测量进行移动性管理的工作模式,所述非小区模式是通过测量UE发送的上行参考信号进行移动性管理的工作模式。
通过为UE设置小区模式和非小区模式在内的多种工作模式,能够更好地兼容现有技术(即兼容小区模式)。
结合第二方面的第一种实现方式,在第二方面的第二种实现方式中,所述方法还包括:在所述UE通过所述第一超级小区内的TP发起随机接入过程之后,所述UE向所述 第一超级小区内的TP发送所述UE的参数,以便所述第一超级小区内的TP将所述UE的参数发送至所述无线接入网的控制器,由所述无线网络控制器基于所述UE的参数确定所述UE的工作模式,所述UE的参数包括所述UE的类型、所述UE的移动速度、所述UE的位置、所述UE的业务、所述UE支持的工作模式以及所述UE的能力中的至少一种;所述UE接收所述无线接入网的控制器发送的指示所述UE的工作模式为非小区模式的信息。
结合第二方面的第一至第二种实现方式中的任一种,在第二方面的第三种实现方式中,所述方法还包括:所述UE接收所述无线接入网的控制器发送的模式切换消息,所述模式切换消息用于指示所述UE从所述非小区模式切换至所述小区模式,所述模式切换消息包含所述UE在所述小区模式下的服务小区的小区标识;所述UE根据所述小区标识,确定所述服务小区;所述UE通过所述服务小区进行数据传输。
结合第二方面以及第二方面的第一至第三种实现方式中的任一种,在第二方面的第四种实现方式中,所述第一DUI与所述上行参考信号占用的时频资源具有对应关系,在所述UE发送上行参考信号之前,所述方法还包括:所述UE根据所述第一DUI,通过所述对应关系,确定发送所述时频资源;所述UE发送上行参考信号,包括:所述UE在所述时频资源上发送所述上行参考信号。
通过预先建立DUI和上行参考信号占用的时频资源的对应关系,当UE接收到第一DUI时,就能够根据第一DUI方便地确定发送上行参考信号的时频资源,简化了上行参考信号占用时频资源的确定方式。
结合第二方面以及第二方面的第一至第四种实现方式中的任一种,在第二方面的第五种实现方式中,所述方法还包括:所述UE接收所述无线接入网的控制器发送的切换命令,所述切换命令用于指示所述UE切换至第二超级小区,所述切换命令包括第二DUI,所述第二DUI用于在所述第二超级小区中识别所述UE。
结合第二方面以及第二方面的第一至第五种实现方式中的任一种,在第二方面的第六种实现方式中,所述方法还包括:在所述UE进入节电态之后,所述UE接收无线接入网的控制器发送的寻呼消息;所述UE目标上行资源上发送寻呼响应消息,从节电态恢复至激活态,其中,所述目标上行资源是为节电态的所述UE预先配置的上行资源。
结合第二方面以及第二方面的第一至第六种实现方式中的任一种,在第二方面的第七种实现方式中,所述方法还包括:在所述UE进入节电态之后,所述UE在固定的寻呼频段接收所述无线接入网的控制器发送的所述寻呼消息,所述固定的寻呼频段是为所述第一超级小区所在网络配置的用于发送寻呼消息的频段,或者所述固定的寻呼频段是为所述第一超级小区配置的用于发送寻呼消息的频段。
通过设置固定的寻呼频段,无需为节电态的UE分配各自对应的寻呼频段,简化了超级小区中的节电态的UE的寻呼方式。
第三方面,提供一种应用于超级小区的通信方法,包括:第一超级小区中的目标TP测量所述第一超级小区中的UE发送的上行参考信号,其中,所述第一超级小区包括多个TP,所述目标TP为所述多个TP中的任意一个TP,无线接入网的控制器为所述第一超级小区中的所述UE分配了第一DUI,并从所述多个TP中为所述UE分配了第一TP集合和第二TP集合,所述第一DUI用于在所述第一超级小区中标识所述UE,所述第一TP集合中的TP用于测量所述UE发送的上行参考信号,所述第二TP集合中的TP用于 与所述UE进行数据通信,所述目标TP为所述第一TP集合中的TP;所述目标TP根据所述UE发送的上行参考信号的测量结果,生成测量报告,所述测量报告携带所述目标TP测量到的所述UE发送的上行参考信号的信号强度信息;所述目标TP向无线接入网的控制器发送所述测量报告,以便所述无线接入网的控制器根据所述测量报告更新所述第二TP集合。
通过TP测量UE发送的上行参考信号,以及无线接入网的控制器基于TP的测量报告更新UE的第二TP集合的方式对UE进行移动性管理,解决了热点区域的移动性管理难的问题。
结合第三方面,在第三方面的第一种实现方式中,所述UE的工作模式为非小区模式,所述UE支持的工作模式包括小区模式和非小区模式,所述小区模式是基于UE对下行参考信号的测量进行移动性管理的工作模式,所述非小区模式是通过测量UE发送的上行参考信号进行移动性管理的工作模式。
通过为UE设置小区模式和非小区模式在内的多种工作模式,能够更好地兼容现有技术(即兼容小区模式)。
结合第三方面的第一种实现方式,在第三方面的第二种实现方式中,所述方法还包括:在所述UE通过所述目标TP发起随机接入过程之后,所述目标TP从所述UE接收所述UE的参数,所述UE的参数包括所述UE的类型、所述UE的移动速度、所述UE的位置、所述UE的业务、所述UE支持的工作模式以及所述UE的能力中的至少一种;所述目标TP向所述无线接入网的控制器发送所述UE的参数,以便所述无线接入网的控制器基于所述UE的参数确定所述UE的工作模式;所述目标TP接收所述无线接入网的控制器发送的指示所述UE的工作模式为非小区模式的信息。
结合第三方面以及第三方面的的第一至第二种实现方式中的任一种,在第三方面的第三种实现方式中,所述第一DUI与所述上行参考信号占用的时频资源具有对应关系,所述方法还包括:所述目标TP接收所述无线接入网的控制器发送的所述第一DUI;所述第一超级小区中的目标TP检测所述第一超级小区中的UE发送的上行参考信号,包括:所述目标TP根据所述第一DUI,通过所述对应关系,确定所述时频资源;所述目标TP在所述时频资源上检测所述上行参考信号。
通过预先建立DUI和上行参考信号占用的时频资源的对应关系,当UE接收到第一DUI时,就能够根据第一DUI方便地确定发送上行参考信号的时频资源,简化了上行参考信号占用时频资源的确定方式。
结合第三方面以及第三方面的的第一至第三种实现方式中的任一种,在第三方面的第四种实现方式中,所述目标TP为所述第二TP集合中的TP,所述方法还包括:所述目标TP接收所述无线网络控制器发送的所述第一DUI;所述目标TP根据所述第一DUI与所述UE进行数据通信。
结合第三方面的第四种实现方式,在第三方面的第五种实现方式中,所述目标TP根据所述第一DUI与所述UE进行数据通信,包括:所述目标TP从数据锚点接收所述UE的下行数据,所述数据锚点用于对所述UE的下行数据进行加密;所述目标TP向所述UE发送经过所述数据锚点加密后的所述下行数据。
通过设置数据锚点,利用数据锚点对UE的数据进行加密,保证了超级小区中的数据通信的安全性。
结合第三方面的第五种实现方式,在第三方面的第六种实现方式中,所述方法还包括:所述目标TP接收所述无线接入网的控制器发送的通知消息,所述通知消息用于通知所述目标TP已从所述UE的第二TP集合中删除;所述目标TP确定是否存在所述UE的未发送成功的下行数据;当存在所述未发送成功的下行数据时,所述目标TP向所述数据锚点发送所述未发送成功的下行数据,以便所述数据锚点通过所述第二TP集合中的其它TP将所述未发送成功的下行数据转发至所述UE。
结合第三方面以及第三方面的第一至第六种实现方式的任一种,在第三方面的第七种实现方式中,所述方法还包括:所述目标TP接收所述无线接入网的控制器发送的第一指示信息,所述第一指示信息用于指示所述无线接入网的控制器将所述目标TP从所述第一TP集合中删除;所述目标TP停止测量所述UE发送的上行参考信号。
结合第三方面或所述第三方面的第一至第七种实现方式的任一种,在第三方面的第八种实现方式中,所述方法还包括:所述目标TP从所述无线接入网的控制器接收第二指示信息,所述第二指示信息用于指示所述无线接入网的控制器将所述目标TP添加至所述第二TP集合中;所述目标TP与所述UE进行数据通信。
结合第三方面的第八种实现方式中,在第三方面的第九种实现方式中,所述方法还包括:所述目标TP从所述无线接入网的控制器接收第三指示信息,所述第三指示信息用于指示所述无线接入网的控制器将所述目标TP从所述第二TP集合中删除。
第四方面,提供一种无线接入网的控制器,所述无线接入网的控制器包括用于执行第一方面的方法的模块。
第五方面,提供一种UE,所述UE包括用于执行第二方面的方法的模块。
第六方面,提供一种TP,所述TP包括用于执行第三方面的方法的模块。
第七方面,提供一种无线接入网的控制器,所述无线接入网的控制器包括存储器、处理器和收发器。所述存储器用于存储程序,所述处理器用于执行程序,所述收发器用于与超级小区中的TP进行通信。当所述程序被执行时,所述处理器执行第一方面的方法。
第八方面,提供一种UE,所述UE包括存储器、处理器和收发器。所述存储器用于存储程序,所述处理器用于执行程序,所述收发器用于与所述超级小区中的TP进行通信。当所述程序被执行时,所述处理器用于执行第二方面的方法。
第九方面,提供一种TP,所述TP包括存储器、处理器和收发器。所述存储器用于存储程序,所述处理器用于执行程序,所述收发器用于与所述超级小区中的UE和无线接入网的控制器进行通信。当所述程序被执行时,所述处理器用于执行第三方面的方法。
第十方面,提供一种通信系统,包括如第四方面所述的无线接入网的控制器,如第五方面所述的UE,以及如第六方面所述的TP。
第十一方面,提供一种通信系统,包括如第四方面所述的无线接入网的控制器,以及如第六方面所述的TP。
第十二方面,提供一种通信系统,包括如第七方面所述的无线接入网的控制器,如第八方面所述的UE,以及如第九方面所述的TP。
第十三方面,提供一种应用于超级小区的通信系统,包括如第七方面所述的无线接入网的控制器,以及如第九方面所述的TP。
第十四方面,提供一种系统芯片,包括输入接口、输出接口、至少一个处理器、存储器,所述输入接口、输出接口、所述处理器以及存储器之间通过总线相连,所述处理 器用于执行所述存储器中的代码,当所述代码被执行时,所述处理器实现第一方面中的方法。
第十五方面,提供一种系统芯片,包括输入接口、输出接口、至少一个处理器、存储器,所述输入接口、输出接口、所述处理器以及存储器之间通过总线相连,所述处理器用于执行所述存储器中的代码,当所述代码被执行时,所述处理器实现第二方面中的方法。
第十六方面,提供一种系统芯片,包括输入接口、输出接口、至少一个处理器、存储器,所述输入接口、输出接口、所述处理器以及存储器之间通过总线相连,所述处理器用于执行所述存储器中的代码,当所述代码被执行时,所述处理器实现第三方面中的方法。
第十七方面,提供一种计算机可读介质,所述计算机可读介质存储用于无线接入网的控制器执行的程序代码,所述程序代码包括用于执行第一方面中的方法的指令。
第十八方面,提供一种计算机可读介质,所述计算机可读介质存储用于UE执行的程序代码,所述程序代码包括用于执行第二方面中的方法的指令。
第十九方面,提供一种计算机可读介质,所述计算机可读介质存储用于TP执行的程序代码,所述程序代码包括用于执行第三方面中的方法的指令。
在某些实现方式中,网络侧可指接入网网络侧,可以包括TP和无线接入网的控制器等。
在某些实现方式中,所述第一超级小区包括多个小区。
在某些实现方式中,所述第二TP集合为所述第一TP集合的子集。
在某些实现方式中,所述第一DUI用于所述第一TP集合中的TP接收所述UE发送的上行参考信号,和/或所述第一DUI用于所述第二TP集合中的TP与所述UE进行数据通信。
将第二TP集合设置为第一TP集合的子集,第二TP集合会随着第一TP集合的动态更新而动态更新,简化了网络侧对多个TP集合的更新与维护方式。
在某些实现方式中,第一TP集合的更新可指第一TP集合的成员的更新;或者,第一TP集合的更新可指以下中的至少一种:删除第一TP集合中的TP,向第一TP集合添加TP。同理,第二TP集合的更新可指第二TP集合的成员的更新;或者,第二TP集合的更新可指以下中的至少一种:删除第二TP集合中的TP,向第二TP集合添加TP。
在某些实现方式中,第一DUI用于在第一超级小区中标识UE可指第一DUI用于第一超级小区中的TP识别所述UE。例如,第一超级小区中,UE的上下行数据及上行参考信号均可通过该第一DUI加扰。第二DUI用于在第二超级小区中标识UE可指第二DUI用于第二超级小区中的TP识别所述UE。例如,第二超级小区中,UE的上下行数据及上行参考信号均可通过该第二DUI加扰。此外,第一DUI可以在第一超级小区中唯一标识UE,第二DUI可以在第二超级小区中唯一标识UE。具体地,DUI可以是C-RNTI,hyper cell ID,TP ID,cell ID,新定义的ID等标识的任一个或者任意组合。
在某些实现方式中,UE支持的非小区模式也可以称为非普通小区模式,或超级小区模式,UE支持的小区模式也可称为普通小区(normal cell)模式。在普通小区模式下,网络侧可以通过UE的服务小区的切换对UE进行移动性管理,在超级小区模式下,网络侧在超级小区内基于UE的TP集合(第一TP集合和/或第二TP集合)对UE进行移动 性管理。
由于同一个或不同的hyper cell下的TP频段可能不同,本着网络尽量对UE透明的原则,在某些实现方式中,可以引入两个锚点频段:
锚点频段一:用于UE接收paging和/或进行下行同步等,这里为方便描述,称之为寻呼(paging)频段(或者叫下行同步频段);
锚点频段二:用于UE发送上行参考信号,即使是不同频段的TP,也可监视同一个频段,这里为方便描述,称之为参考信号频段。
这两个频段可以是“固定不变”的,比如,可以是整个网络均使用这两个频段,在该网络中的UE移动到哪里都是这两个频段。或者,这两个频段可以在一定的范围内是固定的,比如在非小区模式时,网络将锚点频段的配置信息发送给UE;锚点频段引入的好处是,即使在移动的情况下,UE不需要关心周边网络的频段情况,UE只需要做两件事,一是在“固定”的paging频段上监听是否有自己的paging,可选地,也可以基于paging频段进行下行同步,同步的目的是为了在参考信号频段上发送paging;二是在“固定”的参考信号频段上发送上行参考信号。应注意,锚点频段的机制也可以适用于激活态的UE与网络之间的通信。处于节电态的UE发送上行参考信号的方式可以是:周期发送上行参考信号,或者为了省电,在检测到UE移动了一定的距离后发送上行参考信号;或者二者的结合,即在检测到移动了一定的距离后发送上行参考信号,并且在周期时间到后也发送上行参考信号。
本申请采用UE发送上行参考信号,网络侧测量的方式对UE进行移动性管理,并由网络侧为UE维护和更新用于UE数据传输(或数据通信)的第二TP集合,降低了UE的负担和热点区域移动性管理的难度。
附图说明
图1是本发明实施例的hyper cell的场景示意图。
图2是本发明实施例的应用于hyper cell的通信方法的示意性流程图。
图3是本发明实施例的UE的TP集合的示例图。
图4是本发明实施例的应用于hyper cell的通信方法的示意性流程图。
图5是本发明实施例的应用于hyper cell的方法的示意性流程图。
图6是本发明实施例的应用于hyper cell的方法的示意性流程图。
图7是本发明实施例的应用于hyper cell的小区切换过程的示意性流程图。
图8是本发明实施例的应用于hyper cell的小区切换过程的示意性流程图。
图9是本发明实施例的无线接入网的控制器的示意性结构图。
图10是本发明实施例的UE的示意性结构图。
图11是本发明实施例的TP的示意性结构图。
图12是本发明实施例的无线接入网的控制器的示意性结构图。
图13是本发明实施例的UE的示意性结构图。
图14是本发明实施例的TP的示意性结构图。
图15是本发明实施例的系统芯片的示意性结构图。
图16是本发明实施例的系统芯片的示意性结构图。
图17是本发明实施例的系统芯片的示意性结构图。
具体实施方式
应理解,本发明的技术方案可以应用于各种通信系统,例如:全球移动通讯(Global System of Mobile communication,GSM)系统、码分多址(Code Division Multiple Access,CDMA)系统、宽带码分多址(Wideband Code Division Multiple Access,WCDMA)系统、通用分组无线业务(General Packet Radio Service,GPRS)、长期演进(Long Term Evolution,LTE)系统、先进的长期演进(Advanced long term evolution,LTE-A)系统、通用移动通信系统(Universal Mobile Telecommunication System,UMTS)、5G等。
还应理解,在本发明实施例中,用户设备(User Equipment,UE)包括但不限于移动台(Mobile Station,MS)、移动终端(Mobile Terminal)、移动电话(Mobile Telephone)、手机(handset)及便携设备(portable equipment)等,该用户设备可以经无线接入网(Radio Access Network,RAN)与一个或多个核心网进行通信,例如,用户设备可以是移动电话(或称为“蜂窝”电话)、具有无线通信功能的计算机等,用户设备还可以是便携式、袖珍式、手持式、计算机内置的或者车载的移动装置。
如图1所示,hyper cell可以配置有hyper cell ID,且hyper cell可以包括同频和/或异频的多个TP(可选地,作为一个实施例,hyper cell中也可仅包括1个TP),或者,hyper cell可以包括多个小区(可选地,作为一个实施例,hyper cell中也可仅包括1个小区)。可以理解的是,hyper cell内的TP(或者小区)的ID与hyper cell的ID可以保持一致,也可以分别配置。UE在hyper cell中移动,如果仍采用现有技术的移动性管理方式,由于每个TP均会对应一个或多个小区(或small cell),导致该UE会频繁的进行小区切换。本发明实施例中,一般地,hyper cell内的TP的公共信息可以配置成一致,比如同步信道,下行参考信道,广播信道等信道发送的内容相同,UE在hyper cell内移动时,由于hyper cell内的TP的公共信息相同,UE对服务小区的变化无感知。比如,具体地,UE无需测量hyper cell中的各小区发送的下行参考信号,相反,由UE发送上行参考信号,网络侧测量UE的上行参考信号,并基于测量结果为UE选择一个或多个TP进行数据传输。也就是说,UE在hyper cell移动的过程中,测量上行参考信号、TP切换的任务可以由网络侧完成,尽量让UE不感知TP的变换,相当于引入“no cell”的工作模式,这样不但能够保证业务的连续性,而且能够减少空口信令的开销,UE无需承担繁重的测量任务,设计复杂度也相应降低。
应理解,“no cell”的工作模式可以指:由UE负责发送上行参考信号,由网络侧不断更新和维护为UE提供数据通信服务的TP,使得UE尽量不感知TP的变化。应理解,这里的“cell”是指现有技术中的普通小区,即normal cell,本申请中的“no cell”的工作模式也可称为超级小区的工作模式。
在超级小区中,会为UE分配DUI,超级小区可以根据DUI识别UE。例如,超级小区中TP可以基于DUI为UE提供数据通信服务;超级小区中的TP还可以基于DUI测量UE发送的上行参考信号。具体地,DUI可以是C-RNTI,hyper cell ID,TP ID,cell ID,新定义的ID等标识的任一个或者任意组合。
应理解,本发明实施例对TP的具体类型不作限定,例如,可以是普通的基站(如NodeB或eNB),可以是射频拉远模块,可以是微基站(pico),可以是中继(relay)或者任何其它无线接入设备。
可选地,作为一个实施例,可以由TP向RAN controller上报其是否支持no cell能力,再由RAN controller对支持no cell能力的TP进行no cell配置。这里的no cell能力可以指TP在超级小区中工作所需的各种能力,例如测量UE发送的上行参考信号的能力等。
以TP的上行参考信号的测量能力的配置方式为例进行举例说明。首先,RAN controller可以向TP发送测量配置信令(或称测量控制信令)。具体地,可以通过该测量配置信令配置以下测量配置参数中的至少一种:DUI、上行参考信号配置、携带测量标识、测量事件名称、测量间隔、测量报告上报模式、测量上报条件、测量参数。此外,可以为每个DUI(或每个UE)配置一套测量配置参数,也可以为超级小区中的全部DUI(或全部UE)共同配置一套测量配置参数。进一步地,测量参数可以包括:上行参考信号的接收质量、上行参考信号的接收功率、信噪比、信号与干扰和噪声比、路损等中的至少一种。测量配置参数还可以包括上述各项参数的门限中的至少一种。当TP检测的测量参数满足测量上报条件时,TP发送测量报告,并在测量报告中包含相应的测量结果。测量报告上报模式可以包括:事件触发的上报模式、周期性的上报模式,事件触发上报和周期性上报相结合的模式中的至少一种。其中,事件触发的上报模式可以指:当TP测量到的上行参考信号满足测量配参数中的门限时,TP向RAN controller发送测量报告。周期性的上报模式可以指TP周期性向RAN controller发送测量报告。
当RAN controller为TP配置了上行参考信号的测量配置参数之后,TP就可以依据该测量配置参数对UE发送的上行参考信号进行测量,并依据测量上报模式,将测量结果上报至RAN controller。
需要说明的是,该测量配置信令可以指示TP进行同频测量,也可以指示该TP进行异频测量。或者,RAN controller可以向TP发送同频测量的测量配置信令,也可以向TP发送异频测量的测量配置信令。具体而言,假设TP的工作频点为F1,UE发送参考信号的频点为F2,RAN controller可以指示TP进行异频测量,即指示TP在F2上测量UE发送的上行参考信号。或者,作为另一种实现方式,RAN controller也可以指示UE在TP的工作频点,即F1频段发送上行参考信号,然后指示TP进行同频测量。这样,TP仅需要在自己的工作频段测量上行参考信号即可。应理解,以上两种测量方式可以单独使用,也可以结合使用,本发明实施例对此不作具体限定。
当RAN controller收到各TP上报的测量报告,可以根据各TP上报的测量报告判断是否更新为UE传输数据的TP集合。具体地,RAN controller可以把各TP上报的测量结果和当前为UE传输数据的TP集合上报的测量结果逐一对比,还可以是逐一把各TP上报的测量结果和当前为UE传输的TP集合中TP上报的测量结果的差值或者绝对差值与某一门限做对比,还可以把各TP上报的测量结果和当前为UE传输数据的TP集合上报的测量结果的平均值逐一做对比,还可以是逐一把各TP上报的测量结果和当前为UE传输的TP集合中TP集合上报的测量结果的差值或者绝对差值与某一门限做对比,根据比对结果判断是否更新为UE传输数据的TP集合。
举例说明,假设测量参数为参考信号的接收质量;当前为UE传输数据的TP集合包括TP1和TP2;RAN controller分别给TP1,TP2,TP3,TP4分配了测量任务,即当参考信号的接收质量高于某一门限时,向RAN controller发送测量报告。RAN controller收到了TP1,TP2,TP3分别上报的参考信号的接收质量。RAN controller可以依据下述方式判断是否更新为UE传输数据的TP集合:
方式一、直接把TP3加入为UE传输数据的TP集合中,即将为UE传输数据的TP集合更新为TP1,TP2,TP3;
方式二、把TP3上报的参考信号接收质量分别与TP1,TP2上报的结果对比,如果TP3的结果高于TP1,TP2中的至少一个,或者如果TP3和TP1上报的参考信号接收质量的差值或者绝对差值高于某一门限,或者如果TP3和TP2上报的参考信号接收质量的差值或者绝对差值高于某一门限,RAN controller可以把TP3添加到为UE传输数据的TP集合中,或者,RAN controller也可以用TP3替换TP1或TP2;
需要说明的是,如果TP1和TP2属于RAN controller 1,TP3和TP4属于RAN controller2,TP3上报的测量报告可以通过RAN controller 2转发。为了避免RAN controller 1收到TP1和TP2的测量报告和收到的RAN controller 2转发的TP3的测量报告存在较大的时间差异,可以在测量报告中引入时间信息,用于指示测量结果记录的时间。应理解,RAN controller 2可以转发收到的全部测量报告,也可以基于一定策略,比如对测量结果进行比较后,仅选择一部分测量报告进行转发。
当RAN controller确定更新为UE传输数据的TP集合时,可以通过以下方信令或信息中的至少一种通知UE:无线资源控制RRC信令,L1信令,L2信令,下行控制信息(Downlink Control Information,DCI)。
需要说明的是,本发明实施例对UE发送的供网络测量的信号的名称、种类、形式不作具体限定,下文均以UE发送上行参考信号为例,但本发明实施例不限于此,例如,可以是新引入的用于跟踪UE位置的跟踪信号,也可以沿用探测参考信号(Sounding Reference Signal,SRS)。
在hyper cell的基础上,为hyper cell中的UE引入节电态和激活态两种状态。应理解,这里所说的节电态和激活态是为了与现有技术中的空闲态和连接态区分开,但本发明实施例不排除引入超级小区后,却仍沿用空闲态和连接态这种称呼的情况,在这种情况下,本发明实施例中的激活态可对应于连接态,本发明实施例中的节电态可以对应空闲态,也可以对应连接态。还可以理解的是,作为一种新的UE状态,节电态可以独立于hyper cell单独存在,即节电态也可以适用现有技术,但又区别于现有技术中的空闲态和连接态。下面对UE在这两种状态下的功能和特性进行详细描述。
节电态的UE继续保留该UE的DUI,并可以具有以下功能中的部分或全部:
1、可以处理一些背景业务和小包传输。
2、可以支持下行免调度(DL Scheduling-free)传输,即可以使用下行共享资源。
3、可以支持上行免授权(UL grant-free)传输,即可以使用上行共享资源。
4、可以不监测动态控制信道。
5、可以进行少量的连接管理(如长周期的链路自适应、长周期的测量)。
6、可以保留和网络侧的RRC连接;
7、可以保留与核心网的信令面承载和用户面承载;或者,可以仅保留与核心网的信令面承载,删除与核心网的用户面承载。当有上行背景业务或小包数据需要传输时,可以通过与核心网的信令面承载发送,比如,可以通过接入层的信令携带数据包,或者通过非接入层(Non-access stratum,NAS)信令携带数据包,该数据包传输到移动性管理实体(Mobility Management Entity,MME)后,MME识别其为背景业务或小包数据,转发给服务网关(Serving Gateway,SGW);可选地,作为一种实现方式,节电态UE可 以保留与核心网的信令面承载,删除与核心网的专用用户面承载,建立与核心网的公用或缺省用户面承载。当有上行背景业务或小包数据需要传输时,可以通过与核心网的公用或缺省用户面承载进行传输。
8、发送上行参考信号,可以是周期性发送,也可以是满足事件触发条件后发送。事件触发条件可以是基于UE的速度触发,比如网络侧配置的当前发送周期为T,UE的速度门限为V。当UE速度小于和/或等于V时,UE可以自动延长上行参考信号的发送间隔为N*T,N=2,3,……。进一步地,如果UE静止,上行参考信号的发送周期可以配置为无限大,具体实现时,可以配置参考信号的最大发送周期,比如256s,30min等。或者,事件触发条件也可以是基于UE检测到其它hyper cell后触发,比如UE移动到多个hyper cell的覆盖重叠区域,UE除了检测到当前所处的hyper cell的ID,还检测到另一hyper cell的ID,此时,UE可以发送上行参考信号。
激活态的UE具有DUI,并可以具有如下功能的部分或全部:
1、可以处理交互、会话类业务
2、可以支持UE使用上下行共享资源和专用资源
3、可以支持快速连接管理(如快速链路自适应、短周期测量)
如上所述,UE有两种状态,并且可以在这两种状态之间进行转换,如当UE数据传送完毕后一段时间再没有业务数据传输,该UE可以从激活态转到节电态;在节电态,UE可以不监测动态控制信道,只需支持少量的连接管理,其耗电会比激活态少。
可选地,在一个实施例中,可以由UE通过测量某个参数或指标来确定是否在节电态与激活态之间进行转换。例如,当测量到某个参数或指标满足门限时,UE向网络侧发送指示信息,然后,网络侧可以根据该指示信息控制UE进行状态转换。具体地,RAN controller可以预先向UE下发一个门限值,该门限值例如可以是UE的缓存数据大小的门限;当UE的缓存数据超过该门限值时,UE向RAN controller上报测量报告,然后RAN controller控制UE进行状态转换。或者,RAN controller可以向UE发送测量指示,在该测量指示的作用下,当UE测量到其缓存数据大小超过了当前允许发送的数据大小时,UE向RAN controller上报测量报告,然后,RAN controller控制UE进行状态转换。UE的指示信息可以通过L2信令上报,也可以通过RRC信令,比如测量报告进行上报,还可以在初始发送的数据中上报,比如通过初始发送的数据块中的某一个指示位进行指示,比如指示位设为TRUE进行指示,本发明实施例对此不作具体限定。
可选地,在一个实施例中,网络侧可以通过RRC信令指示UE进行激活态或节电态。例如,可以在RRC信令中增加新的状态指示信元,该状态指示信元可以指示UE进入节电态或激活态,UE可以根据该状态指示信元的指示进入相应的状态。
继续参见图1,UE在位置1时,可以由区域1中的TP形成的TP集合(也可称为TP簇)传输UE的数据(或为UE提供通信服务),当用户设备从位置1移动至位置2时,可以由区域2中的TP形成的TP集合为UE提供。也就是说,在UE的移动过程中,为UE传输数据的TP可以是不断更新的,而该更新的任务可由网络侧基于UE发送的上行参考信号完成。需要说明的是,可以根据业务是UE的上行业务还是UE的下行业务,可以将UE的TP集合可以分为UL TP集合和DL TP集合。UL TP集合的更新可以由网络侧基于UE发送的上行参考信号完成。DL TP集合的更新可以由网络侧基于UE发送的上行参考信号完成,或者,可选地,作为一个实施例,也可以由网络侧根据UE上报的 基于下行参考信号的测量结果进行更新。
图2是本发明实施例的应用于hyper cell的通信方法的示意性流程图。应理解,图2示出了应用于hyper cell的详细的通信步骤或操作,但这些步骤或操作仅是示例,本发明实施例还可以执行其它操作或者图2中的各种操作的变形。此外,图2中的各个步骤可以按照与图2呈现的不同的顺序来执行,并且有可能并非要执行图2中的全部操作。
在图2的实施例首先为UE引入了两种工作模式:小区模式(也可称为normal-cell模式或network-centric模式)和非小区模式(no cell mode或者称为UE-centric模式)。在小区模式下,可以采用现有技术的移动性管理方式,即网络发送下行参考信号,UE测量下行参考信号并反馈测量报告,网络侧基于测量报告进行小区切换;在非小区模式下,可以由UE发送上行参考信号,网络测量UE的上行参考信号,然后基于测量结果不断更新用于传输UE数据的TP集合。但应理解,引入这两种工作模式主要是考虑到灵活性和兼容性问题,本发明实施例不排除以非小区模式完全替代小区模式,或者在hyper cell中仅以小区模式进行移动性管理的可能性,在这种情况下,可以无需为UE选择工作模式,直接采用非小区模式为UE提供服务。
此外,图2的实施例中,由无线接入网的控制器(Radio Access Network controller,RAN controller)为UE提供移动性管理,该RAN controller可以是接入网侧的独立的网元,但本发明实施例不限于此。例如,RAN controller可以与TP集合成在同一实体中,比如称之为接入网设备,TP可以是该接入网设备的发射和接收单元;或者,RAN controller也可以是TP,该TP可以是或不是为UE提供数据传输服务的TP集合中的TP,当是的时候,RAN controller可以直接发送信令给UE。
下面描述图2的具体步骤。
202、UE发起初始接入,执行无线资源控制(Radio Resource Control,RRC)连接建立流程。
在RRC连接建立过程中,可以携带相关的参数给网络,这些参数可以包括:UE的速度、UE的位置、检测到的周边小区的信号情况、业务信息等中的至少一个。这些参数可以是通过UE的全球定位系统(Global Positioning System,GPS),或其他方式测量得到的参数。
204、hyper cell向核心网(Core Network,CN)发送初始UE消息。
206、CN向hyper cell发送初始上下文建立请求。
在步骤204和206中,hyper cell为UE建立与CN的连接,在以上过程中,hyper cell可以从UE或CN获取到UE类型或UE能力等信息。具体来说,UE类型可以是该UE是否为固定位置的UE,比如传感器,该UE是否耗电敏感等。UE能力例如可以是UE是否支持非小区模式,UE支持哪些频段等。
208、hyper cell向RAN controller发送消息,请求RAN controller确定UE的工作模式。
在步骤208中,hyper cell向RAN controller发送的消息中可以携带通过步骤202至206获得的UE的信息,例如,可以是UE的系统架构演进临时移动用户身份(System Architecture Evolution Temporary Mobile Subscriber Identity,S-TMSI),UE的移动速度,UE的位置,UE类型,UE能力、UE的业务信息等。
210、RAN controller确定UE的工作模式。
RAN controller可以基于hyper cell在步骤208中提供的信息确定UE的工作模式。例如,RAN controller基于接收到的信息获知UE的大概位置、移动速度等,然后基于该位置周边的网络部署情况确定是否适合采用非小区模式,如果适合采用非小区工作模式,并且UE支持非小区模式,则可以将UE的工作模式确定为非小区模式。
212、RAN controller与hyper cell内的TP进行资源协调。
步骤212中,RAN controller可以基于获取到的UE的信息(如UE的位置、UE的速度、UE的类型等)为UE分配第一TP集合和第二TP集合,并与这些TP进行资源协调,其中,每个TP集合包括一个或多个TP。第二TP集合中的TP可用于UE的数据传输,因此,第二TP集合也可称为UE的传输TP集合,或传输簇,第一TP集合中的TP可用于测量UE发送的上行参考信号,因此,第一TP集合也可称为UE的测量TP集合,或测量簇。
具体而言,第一TP集合和第二TP集合中的TP可以是UE周边的TP,一般来说,第二TP集合可以为第一TP集合的子集。如图3所示,在UE的当前位置中,第一TP集合包括第二TP集合。可选地,作为一个实施例,第一TP集合可以包括第二TP集合以及该第二TP集合周边一层TP。需要说明的是,也可以将hyper cell中的所有TP形成的TP集合设置为UE的第一TP集合,这种情况下,hyper cell中的所有TP均需要去测量UE发送的上行参考信号,这种设置方式可能会使网络的负担比较大,因此,作为一个实施例,可以从hyper cell中选取至少一个TP形成UE的第二TP集合和第一TP集合,然后可以基于UE位置的移动动态更新该UE的第二TP集合和第一TP集合。
214、RAN controller向第二TP集合和第一TP集合中的TP发送非小区配置(no cell configuration)消息。
该非小区配置消息可指示第二TP集合中的TP为UE提供服务,指示第一TP集合中的TP测量UE发送的上行参考信号,该非小区配置消息可包括UE的S-TMSI,可选地,作为一个实施例,该非小区配置消息还可包括RAN controller为UE分配的DUI,该DUI可用于在该超级小区中标识该UE(或唯一标识该UE)。
可选地,作为一个实施例,UE的DUI与UE发送上行参考信号的时频资源(或称时频序列)之间可以具有对应关系,第一TP集合中的TP可以根据UE的DUI以及该对应关系,确定UE发送上行参考信号的时频资源,从而在该时频资源上测量该UE发送的上行参考信号。当然,本发明实施例并不限于此,例如,可以通过非小区配置信息向第一TP集合中的TP指示UE的上行参考信号所占的时频资源的位置。
可选地,作为一个实施例,如果UE的第二TP集合中TP发生了更新,比如TP4替换了原来的TP3,可以考虑TP4中的与UE相关的某些数据(如未发送成功的数据,已发送但未收到ACK的数据)的后续处理方式。具体地,如果TP4和TP3属于同一个hyper cell,RAN controller和TP3之间需要交互该UE的未发送的数据和已发送未收到ACK的数据;RAN controller根据TP3的反馈,把这些数据发送到TP4,由TP4发送给UE;UE根据RAN controller配置的HARQ反馈机制进行相应的反馈。如果TP4和TP3属于不同的hyper cell,可能还需要考虑UE的媒体介入控制(Media Access Control,MAC)实体的处理。例如,MAC实体1处理hyper cell 1收到的数据,在配置TP4(属于hyper cell2)为UE提供数据服务时,可以携带MAC实体1和2个hyper cell(hyper cell 1和hyper cell2)间的映射关系,以指示MAC实体2处理TP4的数据;UE可以识别TP所属的hyper cell, 当UE收到网络侧的配置指示替换的TP属于不同的hyper cell时,UE可以清空从TP3接收的缓存数据。当然,在时延理想的网络架构中,TP可能只包含物理层PHY,MAC及其上层位于BBU-pool侧,因此仅当BBU-pool发生改变时才将触发上述数据转发过程。对于时延不理想的网络架构,则可能只有分组数据汇聚协议(Packet Data Convergence Protocol,PDCP)位于基带处理单元(Baseband Unit,BBU)-pool侧,其它协议层均在TP侧(或者所有协议层均在TP侧),此时每切换一个TP都将涉及RRC重配置过程。
可选地,作为一个实施例,为了减少切换过程中的用户面数据传输的中断时延,可以在各TP预存储发送给UE的数据。当为UE传输数据的TP集合发生变化时,UE根据网络配置完成相关重置过程,比如完成RRC、PDCP、无线连接控制(Radio Link Control,RLC)、MAC、PHY中的至少一个协议层的重置过程,向网络发送当前缓存数据的指示消息。所述指示消息可以通过如下消息或信令中的至少一种发送:服务请求消息、重配置完成信令、通过L2信令、上行物理控制和数据信道。所述指示消息中可以携带当前的数据缓存情况,例如,可以携带协议层的标识(该协议层可以是RRC、PDCP、RLC、MAC、PHY等协议层中的至少一个)及该协议层中的数据对应的HARQ信息,使得新的TP可以根据该指示消息唯一识别数据,并根据相应的HARQ信息(包含数据的ACK或NACK信息)对UE进行数据传输。以UE仅更新接收数据的端口号,或者说UE仅执行PHY协议层重置为例,UE可以向网络侧发送指示消息,并可以在指示消息中携带PDCP、RLC以及MAC中的一个或多个的标识信息,该指示消息还可以携带该标识信息对应的协议层中的数据的HARQ信息。新的TP收到上述指示消息,对NACK信息进行重新传输。可选地,新的TP向原TP发送确认信息,指示原TP停止向UE发送数据。
216、RAN controller通过TP向UE发送非小区配置消息。
该非小区配置消息可用于指示该UE在该超级小区中采用非小区模式工作。可选地,作为一个实施例,该非小区配置消息可以包括该UE的DUI。UE可以利用该DUI与第二TP集合中的TP进行数据传输。可选地,该非小区配置消息包含第一TP集合中的TP的信息。
218、hyper cell向CN发送初始上下文建立完成消息。
接下来,UE就可以工作在非小区模式,与RAN controller为其分配的第二TP集合进行数据通信,并发送上行参考信号,供第一TP集合进行测量。
220、UE发送上行参考信号。
UE的上行参考信号的时频资源位置可以由步骤216中的小区配置消息指示,可选地,作为一个实施例,可以预先建立UE的专用用户标识与上行参考信号时频资源的对应关系,UE可以基于该对应关系,确定发送上行参考信号的时频资源。
在一个实施例中,上述上行参考信号可以是SRS。在一个实施例中,该上行参考信号可以周期发送,或者UE移动一段距离后发送,距离长短可以是网络配置的,或者上述两种发送方式的结合,即在检测到移动了一定的距离后发送,并且在周期时间到后也发送。
222-224、第一TP集合中的TP测量UE发送的上行参考信号,并将测量报告上报至RAN controller。
RAN controller可以基于第一TP集合或第二TP集合中的TP上报的测量报告,不断调整或更新第二TP集合(或表述为不断调整或更新第二TP集合的成员,例如,将其他 TP加入第二TP集合或者删除第二TP集合中的某个成员)。在一个实施例中,RAN controller还可以不断调整或更新第一TP集合(或表述为不断调整或更新第一TP集合的成员,例如,将其他TP加入第一TP集合或者删除第一TP集合中的某个成员)。
具体地,当第二TP集合中的某个TP测量到的UE的上行参考信号变差时,比如,低于某个门限,可以将该TP从第二TP集合中删除;当第一TP集合中的某个TP检测不到上行参考信号(或者检测到的上行参考信号低于一定的门限)并满足一定的条件(比如其周边的一层TP也检测不到该UE的上行参考信号或检测到的上行参考信号低于一定的门限),则可以将该TP从第一TP集合中删除;当第一TP集合中的某个TP测量到UE的上行参考信号时(或者测量到UE的上行参考信号高于某个门限时),可以将其周边的一层TP加入到第一TP集合中;当第一TP集合中的某个TP测量到UE的上行参考信号并且信号强度足够好时(也就是,测量到UE的上行参考信号高于配置或设置的门限时,或者测量到的UE的上行参考信号与第二TP集合TP上报的测量结果或平均测量结果的差值或者绝对差值逐一做对比,且所述差值或所述绝对差值小于某一门限时),可以将该TP加入到第二TP集合中,可选地,RAN Controller可以将该加入第二TP集合中的TP通过以下信息或信令中的至少一种通知UE:RRC信令,L1信令,L2信令和DCI。
226、RAN controller确定UE工作在小区模式。
RAN controller可以根据第一TP集合上报的测量报告,判断UE不再适合工作在非小区模式,例如,UE即将移出hyper cell的范围,并且UE即将进入的小区为普通小区,此时,RAN controller可以将UE的工作模式切换为小区工作模式。
228-230、RAN controller通过TP向UE发送非小区释放消息。
该非小区释放消息可用于指示UE进入小区模式。该小区释放消息中可携带服务小区的频率和/或cell id,用于指明UE在小区模式时的服务小区。在一个实施例中,该频率和/或cell id可以是当前第二TP集合下的一个TP对应的小区。在一个实施例中,非小区释放消息可以指示多个服务小区的频率和cell id,例如,多个服务小区中的某个小区可以是主小区,其他小区为辅小区,这样UE可以在小区模式下进行载波聚合。
232、UE切换至小区模式,并与服务小区进行通信。
本发明实施例中,网络能够灵活配置UE的工作模式,控制UE在非小区模式和小区模式之间灵活转换,提高了网络性能。
在图2的实施例中,UE可以是处于激活态的UE,下面结合图4,详细描述hyper cell中的处于节电态的UE(或ECO态的UE,ECO表示Ecology(生态),Conservation(节能)、Optimization(优化),或称为空闲态的UE)的寻呼以及进入激活态(或称为连接态)的方式。
现有的以网络为中心的设计思想中,处于节电态的UE仍会测量各小区的上行参考信号,基于测量结果进行小区重选,尽量选择驻留在信号条件好的小区。当UE需要进行数据传输时,该UE会在当前驻留的小区发起RRC连接,从而进入激活态。图4的实施例中,处于非小区模式的节电态的UE以hyper cell为单位选择驻留,并且预先配置了上行资源,当需要传输数据时,该UE可以利用预先配置的上行资源快速进入激活态,无需重新发起复杂耗时的RRC连接。下面结合具体的流程详细描述。
图4是本发明实施例的应用于hyper cell的通信方法的示意性流程图。应理解,图4示出了应用于hyper cell的详细的通信步骤或操作,但这些步骤或操作仅是示例,本发明 实施例还可以执行其它操作或者图4中的各种操作的变形。此外,图4中的各个步骤可以按照与图4呈现的不同的顺序来执行,并且有可能并非要执行图4中的全部操作。
步骤404之前可以执行图2中的部分或全部步骤,如步骤402与步骤202类似,为避免重复,此处不再详述。
404、UE接收到网络侧发送的进入节电态的指示信息。
例如,当UE的业务不频繁或几乎没有业务时,网络可以指示UE进入节电态(或ECO态)。可选地,该指示信息可以携带节电态的配置参数。具体地,该配置参数可以包含如下参数中的至少一种:
参数1、指示处于节电态的UE的工作模式为非小区模式的参数。
应理解,该参数是可选的,例如,无需配置该参数,使UE在节电态的工作模式与UE在激活态的工作模式保持一致即可。此外,如果处于空闲的UE的工作模式为小区工作模式,该UE可以参照现有的方式进行寻呼和进入激活态,此处不再详述。
参数2、指示UE的寻呼时机的参数。
寻呼时机可以指UE接收寻呼消息或发送寻呼响应消息的时频资源等参数。作为一个实施例,该寻呼时机相关的参数可以与UE在hyper cell下的专用用户设备标识相关联,即UE可以根据专用用户设备标识确定寻呼时机。
参数3、用于UE快速恢复(或快速进入激活态)的参数。
该参数可以指示预配置给UE的上行资源,如可以是调度资源(Scheduling Resource,SR),物理上行共享信道(Physical Uplink Shared Channel,PUSCH),或者上行竞争资源等。在一个实施例中,该用于UE快速进入激活态的参数也可以与UE的专用用户设备标识相关联,UE可以根据自己的专用用户设备标识以及该关联关系确定为其分配的调度资源,然后利用该调度资源快速进入激活态,无需经过复杂的RRC连接建立过程。
参数4、时间提前量(Timing Advance,TA)相关的配置参数。
例如,为UE提供初始的TA值,进入激活态后,UE可以利用该初始的TA值发送上行数据。
406、进入节电态的UE发送上行参考信号。
具体地,节电态的UE可以继续保留专用用户设备标识,继续发送上行参考信号,并监听寻呼消息。由于同一个或不同的hyper cell下的TP频段可能不同,本着网络尽量对UE透明的原则,在某些实现方式中,可以引入两个锚点频段:
锚点频段一:用于UE接收paging和/或进行下行同步等,这里为方便描述,称之为寻呼(paging)频段(或者叫下行同步频段);
锚点频段二:用于UE发送上行参考信号,即使是不同频段的TP,也可监视同一个频段,这里为方便描述,称之为参考信号频段。
这两个频段可以是“固定不变”的,比如,可以是整个网络均使用这两个频段,在该网络中的UE移动到哪里都是这两个频段。或者,这两个频段可以在一定的范围内是固定的,比如在非小区模式时,网络将锚点频段的配置信息发送给UE;锚点频段引入的好处是,即使在移动的情况下,UE不需要关心周边网络的频段情况,UE只需要做两件事,一是在“固定”的paging频段上监听是否有自己的paging,可选地,也可以基于paging频段进行下行同步,同步的目的是为了在参考信号频段上发送paging;二是在“固定”的参考信号频段上发送上行参考信号。应注意,锚点频段的机制也可以适用于激活态的 UE与网络之间的通信。处于节电态的UE发送上行参考信号的方式可以是:周期发送上行参考信号,或者为了省电,在检测到UE移动了一定的距离后发送上行参考信号;或者二者的结合,即在检测到移动了一定的距离后发送上行参考信号,并且在周期时间到后也发送上行参考信号。
408-410、第一TP集合中的TP将UE的上行参考信号的测量报告发送至RAN controller,RAN controller基于测量报告不断调整或更新第一TP集合中的TP。
例如,当第一TP集合中的某个TP检测不到UE发送的上行参考信号并满足一定条件,比如该TP周边一层TP也检测不到上行参考信号,可以从第一TP集合中删除该TP。又如,当第一TP集合合中的某个TP检测到UE发送的上行参考信号时,可以将其周边一层TP也加入到第一TP集合中。
412、RAN controller接收到UE的数据。
414-416、RAN controller通过TP向UE发送paging消息。
具体地,RAN controller可以从第一TP集合中选取信号质量较好的一个或多个TP,并通过这些TP,在paging频段向UE发送paging消息。paging消息中可以携带该UE的标识。可选地,作为一个实施例,用于UE快速进入激活态的上行资源可以携带于该paging消息中。可选地,在一个实施例中,当发送的下行数据比较小时,可以通过paging消息直接将该下行数据发送至UE,无需UE进入激活态,这样可以避免UE频繁地进行激活态和节电态的转换。
418-420、UE通过TP在预配置的上行资源向RAN controller发送paging响应消息。
如上文所述,该预配置的上行资源可以是通过步骤404中的指示信息指示,可以与UE的专用用户设备标识关联,或者可以由步骤414-416中的paging消息指示,本发明实施例对此不作具体限定,UE通过该预先分配的上行资源发送paging响应消息,无需发起RRC连接建立过程而快速进入激活态。
图2至图4的描述均涉及RAN controller对UE相关的TP集合的更新、管理与维护,下文结合具体的实施例,更加详细地描述相关内容。
应理解,UE相关的TP集合包括UE的第二TP集合(用于传输UE的数据,或称为UE的传输簇)和第一TP集合(用于测量UE发送的上行参考信号,或称为UE的测量簇)。RAN controller可以为激活态的UE维护第二TP集合和第一TP集合,由于节电态的UE无需数据传输,RAN controller可以仅维护该UE的第一TP集合。当然,第一TP集合可以包括hyper cell的至少一个TP,如果第一TP集合包括hyper cell的全部TP,那么第一TP集合无需更新,但hyper cell的全部TP全部测量UE的上行参考信号,这种做法会加大网络侧的负担,因此,可以将第一TP集合仅包括hyper cell的部分TP,然后随着UE的移动不断更新该第一TP集合即可。下面结合图5详细描述TP集合中的TP的添加和删减流程。
图5是本发明实施例的应用于超级小区的方法的示意性流程图。应理解,图5示出了应用于hyper cell的详细的通信步骤或操作,但这些步骤或操作仅是示例,本发明实施例还可以执行其它操作或者图5中的各种操作的变形。此外,图5中的各个步骤可以按照与图5呈现的不同的顺序来执行,并且有可能并非要执行图5中的全部操作。
参见图5,RAN controller可以通过消息,比如非小区配置消息删除或添加第二TP集合中的TP,该消息中可以携带UE的DUI,可选地,当删除或添加第一TP集合中的 TP时,RAN Controller通过信令消息知会UE被网络删除或添加的第一TP集合中的TP,比如发送被删除或添加的TP信息,或者发送执行删除或添加后的第一TP集合中还包含的TP信息。RAN controller可以通过参考信号测量指示消息删除或添加第一TP集合中的TP,该消息可以携带UE的专用用户设备标识。可选地,作为一个实施例,参考信号测量指示消息中还可以携带上行参考信号的配置消息,指示UE发送的上行参考信号的时频资源,当然,这仅是上行参考信号配置确定方式的一个举例,此处也可以沿用上文已经描述过的UE的专用用户设备标识和上行参考信号的时频资源相关联的方式确定上行参考信号,本发明实施例对此不作具体限定。
一般情况下,空口传输的数据均需要进行安全保护,例如,可以为空口传输的数据加密。如上文所述,RAN controller为UE分配了用于传输UE数据的第二TP集合,如果由第二TP集合中的各个TP分别对UE的数据进行加密,这样整个系统的效率会比较低。为了使得整个系统更加简单有效,可以在网络侧引入一个统一为UE的数据提供加密服务的数据锚点,这个数据锚点例如可以是服务网关。
当UE的第二TP集合中的某个TP从该第二TP集合中删除时,如果该TP还存在UE的未发送成功的下行数据,本发明实施例提供图6所示的通信流程,以减少UE数据的丢失。
602、RAN controller向TP2发送参考信号测量指示消息。
具体地,RAN controller通过参考信号测量指示消息指示TP2测量UE发送的上行参考信号,说明RAN controller将TP2添加到了UE的第一TP集合。
604-606、TP2测量UE的上行参考信号,并向RAN controller发送测量报告,指示测量到的UE的上行参考信号质量好。
608、RAN controller向TP2发送非小区配置消息,指示TP2被添加至UE的第二TP集合,可用于传输UE的数据。
610、RAN controller通知数据锚点TP2被添加至UE的第二TP集合。
具体地,由于数据锚点负责UE的数据的加密,并将加密后的数据经第二TP集合中的TP传至UE,因此,RAN controller可以通知数据锚点TP2已被添加至该第二TP集合,可以用来传输UE的数据。
612、TP2向RAN发送测量报告,指示测量到的UE的上行参考信号质量差。
614、RAN controller向TP2发送非小区配置消息,指示TP2已从UE的第二TP集合中删除,不再负责传输UE的数据。
616、RAN controller通知数据锚点TP2已从UE的第二TP集合中删除。
这样,数据锚点就不会将UE的加密后的下行数据发至TP2。
618、TP2将UE的未成功发送的下行数据发送至数据锚点。
620、数据锚点将TP2的未发送成功的下行数据转发至第二TP集合中的其它TP,由其它TP发送至UE。
本发明实施例不但保证了UE数据的安全,还有效避免了UE数据的丢失。
此外,需要说明的是,如果无线连接控制(Radio Link Control,RLC)层在TP节点上时,当增加一个新的TP,尤其是同频的TP时,比如,之前的为TPx,新增一个同频的TPy,由于新的TPy的RLC层序号从0开始,UE需要识别这是一个新的TP以区分TPx,从而正确接收数据,可能的方式包括:
方式一、在发送给UE的每个数据包中携带一个TP标识信息,每个TP发送给UE的数据包中携带自己的TP标识信息,UE基于该标识信息识别出是否是一个新的TP,从而从序号0开始接受该TP的数据;可选地,数据包中携带一个指示信息,用于指示UE删除某个TP,网络持续发送携带指示信息的数据包,直至网络确定UE成功接收到携带该指示信息的数据包后停止携带;或者,UE在预设的一段时间内没有收到TP的数据包(比如,预设时间由网络配置),则删除该TP,同理,网络在相同时长的时间内没有发送TP的数据包,则下次再次发送时,RLC层序号从0开始发送;
方式二、在发送给UE的每个数据包中携带一个bit的TP更改标识,当更改标识发生改变时,UE获知一个新的同频TP服务于UE,从而释放旧的同频TP,新的TP从序号0开始,这种方法适用于同时只能有一个同频的TP与UE进行数据传输。
方式三、当一个新的TP被增加,或者一个新的TP替换掉另一个TP时,网络将新增TP信息通知UE,从而使得UE能获知在该新的TP上传输的承载的数据包的序号从0开始。
上文结合图1至图6,详细描述了UE在一个hyper cell中的通信过程,下文结合图7至图8,详细描述UE从hyper cell 1(第一超级小区)切换至hyper cell 2(第二超级小区)的过程,以保证业务的连续性。
图7是本发明实施例的应用于hyper cell的小区切换过程的示意性流程图。应理解,图7示出了应用于hyper cell的详细的通信步骤或操作,但这些步骤或操作仅是示例,本发明实施例还可以执行其它操作或者图7中的各种操作的变形。此外,图7中的各个步骤可以按照与图7呈现的不同的顺序来执行,并且有可能并非要执行图7中的全部操作。
702、hyper cell 1向UE发送非小区配置消息。
UE此时位于hyper cell 1,hyper cell 1向UE发送非小区配置消息,该消息可用于指示UE工作在非小区模式下。
704-706、UE发送上行参考信号,hyper cell 1中的TP将该上行参考信号的测量报告发送至RAN controller。
该步骤与上文中的步骤220-222类似,此处不再详述。
708、RAN controller根据hyper cell 1中的TP的测量报告,识别UE即将移动至hyper cell 2的覆盖范围。
例如,RAN controller发现hyper cell 1中的靠近hyper cell 2的一个或多个TP检测到UE的上行参考信号。
710、RAN controller向hyper cell 2中的TP发送参考信号测量指示消息。
该消息可以携带UE在hyper cell 1下的专用用户设备标识和/或UE的参考信号配置(可以指示UE在hyper cell1下发送的上行参考信号的时频资源和/或信号序列)。Hyper cell2中的这些TP可以是上述hyper cell1下TP的邻接TP。
712、hyper cell 2中的TP测量UE的上行参考信号,并将测量结果上报至RAN controller。
Hyper cell2下的TP测量UE在hyper cell1下配置的上行参考信号,当测量的信号强度满足测量报告触发条件,比如大于一定的门限,则将测量结果上报给RAN controller,所述的触发报告触发条件被包含在参考信号测量指示消息里;
714、RAN controller根据hyper cell 2中的TP的测量报告确定UE已进入hyper cell 2 的覆盖范围,更适合在hyper cell 2下进行数据传输,决定进行切换。
716、RAN controller向hyper cell 2中的TP发送新UE进入请求。
该新UE进入请求(New UE Enter Request)中可以携带UE在hyper cell 2下的专用用户设备标识,该专用用户设备标识可用于在hyper cell 2下唯一标识该UE,接收到该专用用户设备标识的TP可以为该UE提供通信服务。
718、hyper cell 2中的TP向RAN controller发送新UE进入响应。
例如,hyper cell 2中的TP通过响应消息表示接收UE进入hyper cell 2的请求。
720-722、RAN controller通过hyper cell 1中的TP向UE发送切换命令。
该切换命令可以携带UE在hyper cell 2中的专用用户标识。在一个实施例中,该切换命令还可以携带初始TA值。在一个实施例中,RAN controller还可以为UE衍生其在hyper cell 2下进行数据传输的密钥,并在切换命令中携带该新的密钥,同时RAN controller将该新的密钥发送至hyper cell 2对应的数据锚点,从而使得UE在hyper cell 2下使用新的密钥进行数据的安全保护。
724、UE在hyper cell 2中发送上行参考信号。
例如,UE接收到切换命令之后,可以使用新的专用用户设备标识对应的参考信号配置发送上行参考信号,以便hyper cell 2中的TP测量UE的信号质量,进而可以由RAN controller为UE分配其在hyper cell 2中的第二TP集合和第一TP集合。
上面描述的是处于激活态的UE在hyper cell之间的切换过程,而对于处在节电态的UE,其切换过程可以有以下两种方式:
方式一:UE识别其移动至一个新的hyper cell,该UE自己发起切换过程。
方式二:网络通过测量获知UE移动到新的hyper cell,网络发起切换过程。
对于方式一,参见图7的步骤726至736,详细描述如下:
726、UE确定进入新的hyper cell 2。
728、UE向hyper cell 2中的TP发起随机接入过程,或者在hyper cell之间共享的PUSCH上发送超级小区更新消息(hyper cell update message),该消息可以携带UE在hyper cell 1中的专用用户设备标识,还可以携带hyper cell 1的标识。
730、hyper cell 2通知RAN controller有UE发起超级小区更新。
732-734、RAN controller为该UE分配其在hyper cell 2下的专用用户设备标识,并通过小区配置消息将该新分配的专用用户设备标识发送至UE。
736、RAN controller通知hyper cell 1中的TP释放该UE的相关配置。
对于方式二,其与处于激活态的UE的过程基本类似,不同点在于由于UE处于节电态,切换命令可以通过paging消息来传递,具体参见图8。
图8是本发明实施例的应用于hyper cell的小区切换过程的示意性流程图。应理解,图8示出了应用于hyper cell的详细的通信步骤或操作,但这些步骤或操作仅是示例,本发明实施例还可以执行其它操作或者图8中的各种操作的变形。此外,图8中的各个步骤可以按照与图8呈现的不同的顺序来执行,并且有可能并非要执行图8中的全部操作。
步骤804-818与图7中的步骤704-718类似,此处不再详述。
820-822、RAN controller通过寻呼消息,向UE发送切换命令。
该切换命令可以携带UE在hyper cell 2中的专用用户标识。在一个实施例中,该切换命令还可以携带初始TA值。在一个实施例中,RAN controller还可以为UE衍生其在 hyper cell 2下进行数据传输的密钥,并在切换命令中携带该新的密钥,同时RAN controller将该新的密钥发送至hyper cell 2对应的数据锚点,从而使得UE在hyper cell 2下使用新的密钥进行数据的安全保护。
824、UE在hyper cell 2发送上行参考信号。
上文结合图1至图8,详细描述了根据本发明实施例的应用于超级小区的方法,下文结合图9至图14,详细描述根据本发明实施例的无线接入网的控制器、UE和TP。
图9是本发明实施例的无线接入网的控制器的示意性结构图。应理解,图9的无线接入网的控制器900能够执行图1至图8中由无线接入网的控制器执行的各个步骤,为避免重复,此处不再详述。无线接入网的控制器900包括:
处理单元910,用于为第一超级小区中的用户设备UE分配第一传输点TP集合和第二TP集合,所述第一超级小区包括多个TP,所述第一TP集合和所述第二TP集合各自均包括所述多个TP中的至少一个TP,所述第一TP集合中的TP用于测量所述UE发送的上行参考信号,所述第二TP集合中的TP用于与所述UE进行数据通信;
发送单元920,用于向所述UE发送第一专用用户设备标识DUI,所述第一DUI用于在所述第一超级小区中标识所述UE;
接收单元930,用于接收所述处理单元910分配的所述第一TP集合中的TP发送的测量报告,所述测量报告携带所述UE发送的上行参考信号的信号强度信息;
所述处理单元910还用于根据所述接收单元930接收的所述第一TP集合中的TP的测量报告,更新所述第二TP集合。
本发明实施例采用UE发送上行参考信号,网络侧测量的方式对UE进行移动性管理,并由网络侧为UE维护和更新用于UE数据传输(或数据通信)的第二TP集合,降低了UE的负担和热点区域移动性管理的难度。
可选地,作为一个实施例,所述处理单元910还用于确定所述UE的工作模式为非小区模式,其中,所述UE支持的工作模式包括小区模式和非小区模式,所述小区模式是基于UE对下行参考信号的测量进行移动性管理的工作模式,所述非小区模式是通过测量UE发送的上行参考信号进行移动性管理的工作模式。
可选地,作为一个实施例,所述处理单元910具体用于在所述UE通过所述第一超级小区内的TP发起随机接入过程之后,接收所述第一超级小区内的TP发送的请求信息,所述请求信息用于请求所述无线接入网的控制器900确定所述UE的工作模式,所述请求信息包括所述UE的如下参数中的至少一种:所述UE的类型、所述UE的移动速度、所述UE的位置、所述UE的业务、所述UE支持的工作模式以及所述UE的能力;根据所述请求信息中携带的所述UE的参数,确定所述UE的工作模式为非小区工作模式;所述发送单元920还用于向所述UE、以及所述第二TP集合中的TP发送用于指示所述UE的工作模式为非小区模式的信息。
可选地,作为一个实施例,所述处理单元910还用于根据所述第一TP集合中的TP的测量报告,确定将所述UE的工作模式切换至小区模式;所述发送单元920还用于向所述UE发送模式切换消息,所述模式切换消息用于指示所述UE从所述非小区模式切换至所述小区模式,所述模式切换消息包含所述UE在所述小区模式下的服务小区的小区标识。
可选地,作为一个实施例,所述第一DUI与所述上行参考信号占用的时频资源具有 对应关系,所述发送单元920还用于向所述第一TP集合中的TP发送所述第一DUI,以便所述第一TP集合中的TP基于所述第一DUI确定所述时频资源,并在所述时频资源上检测所述UE的上行参考信号。
可选地,作为一个实施例,所述处理单元910还用于根据所述第一TP集合中的TP的测量报告,更新所述第一TP集合。
可选地,作为一个实施例,所述处理单元910还用于在所述UE进入节电态之后,根据所述第一TP集合中的TP的测量报告,继续更新所述第一TP集合,不再更新所述第二TP集合。
可选地,作为一个实施例,所述处理单元910还用于根据所述第一TP集合中的TP的测量报告,确定所述UE到达第二超级小区的边沿;指示所述第二超级小区中的TP测量所述上行参考信号;根据所述第二超级小区中的TP对所述上行参考信号的测量报告,确定将所述UE切换至所述第二超级小区;所述发送单元920还用于向所述UE发送切换命令,所述切换命令用于指示所述UE切换至所述第二超级小区,所述切换命令包括第二DUI,所述第二DUI用于在所述第二超级小区中识别所述UE。
可选地,作为一个实施例,所述第二TP集合为所述第一TP集合的子集。
可选地,作为一个实施例,所述第一DUI用于所述第一TP集合中的TP接收所述UE发送的上行参考信号,和/或所述第一DUI用于所述第二TP集合中的TP与所述UE进行数据通信。
图10是本发明实施例的UE的示意性结构图。图10的UE 1000能够实现图1至图8中由UE执行的各个步骤,为避免重复,此处不再详述。UE 1000包括:
接收单元1010,用于接收无线接入网的控制器为所述UE 1000分配的第一专用用户设备标识DUI,其中,所述第一超级小区包括多个传输点TP,所述第一DUI用于在所述第一超级小区中标识所述UE 1000,所述无线接入网的控制器从所述多个TP中为所述UE 1000分配了第一TP集合和第二TP集合,所述第二TP集合中的TP用于与所述UE1000进行数据通信,所述第一TP集合中的TP用于测量所述UE 1000发送的上行参考信号;
发送单元1020,用于根据所述接收单元1010接收的所述第一DUI,发送上行参考信号,以便所述无线接入网的控制器根据所述第一TP集合中的TP对所述上行参考信号进行测量得到的测量报告,更新所述第二TP集合,其中,所述测量报告携带所述UE 1000发送的上行参考信号的信号强度信息。
本发明实施例采用UE发送上行参考信号,网络侧测量的方式对UE进行移动性管理,并由网络侧为UE维护和更新用于UE数据传输(或数据通信)的第二TP集合,降低了UE的负担和热点区域移动性管理的难度。
可选地,作为一个实施例,所述UE 1000的工作模式为非小区模式,所述UE 1000支持的工作模式包括小区模式和非小区模式,所述小区模式是基于UE 1000对下行参考信号的测量进行移动性管理的工作模式,所述非小区模式是通过测量UE 1000发送的上行参考信号进行移动性管理的工作模式。
可选地,作为一个实施例,所述发送单元1020还用于在所述UE 1000通过所述第一超级小区内的TP发起随机接入过程之后,向所述第一超级小区内的TP发送所述UE 1000的参数,以便所述第一超级小区内的TP将所述UE 1000的参数发送至所述无线接入网的 控制器,由所述无线网络控制器基于所述UE 1000的参数确定所述UE 1000的工作模式,所述UE 1000的参数包括所述UE 1000的类型、所述UE 1000的移动速度、所述UE 1000的位置、所述UE 1000的业务、所述UE 1000支持的工作模式以及所述UE 1000的能力中的至少一种;所述接收单元1010还用于接收所述无线接入网的控制器发送的指示所述UE 1000的工作模式为非小区模式的信息。
可选地,作为一个实施例,所述接收单元1010还用于接收所述无线接入网的控制器发送的模式切换消息,所述模式切换消息用于指示所述UE 1000从所述非小区模式切换至所述小区模式,所述模式切换消息包含所述UE 1000在所述小区模式下的服务小区的小区标识;所述UE 1000还包括:确定单元,用于根据所述小区标识,确定所述服务小区;数据传输单元,用于通过所述服务小区进行数据传输。
可选地,作为一个实施例,所述第一DUI与所述上行参考信号占用的时频资源具有对应关系,所述UE 1000还包括:确定单元,用于根据所述第一DUI,通过所述对应关系,确定所述时频资源;所述发送单元1020具体用于在所述时频资源上发送所述上行参考信号。
可选地,作为一个实施例,所述接收单元1010还用于接收所述无线接入网的控制器发送的切换命令,所述切换命令用于指示所述UE 1000切换至第二超级小区,所述切换命令包括第二DUI,所述第二DUI用于在所述第二超级小区中识别所述UE 1000。
可选地,作为一个实施例,所述第二TP集合为所述第一TP集合的子集。
可选地,作为一个实施例,所述第一DUI用于所述第一TP集合中的TP接收所述UE 1000发送的上行参考信号,和/或所述第一DUI用于所述第二TP集合中的TP与所述UE 1000进行数据通信。
图11是本发明实施例的TP的示意性结构图。图11的TP 1100能够实现图1至图8中由TP执行的各个步骤,为避免重复,此处不再详述。TP 1100包括:
测量单元1110,用于测量所述UE发送的上行参考信号,其中,所述第一超级小区包括多个TP,无线接入网的控制器为所述第一超级小区中的所述UE分配了第一专用用户设备标识DUI,并从所述多个TP中为所述UE分配了第一TP集合和第二TP集合,所述第一DUI用于在所述第一超级小区中标识所述UE,所述第一TP集合中的TP用于测量所述UE发送的上行参考信号,所述第二TP集合中的TP用于与所述UE进行数据通信,所述TP 1100为所述第一TP集合中的TP;
生成单元1120,用于根据所述测量单元1110对所述UE发送的上行参考信号的测量结果,生成测量报告,所述测量报告携带所述TP 1100测量到的所述UE发送的上行参考信号的信号强度信息;
发送单元1130,用于向无线接入网的控制器发送所述生成单元生成1120的测量报告,以便所述无线接入网的控制器根据所述测量报告更新所述第二TP集合。
本发明实施例采用UE发送上行参考信号,网络侧测量的方式对UE进行移动性管理,并由网络侧为UE维护和更新用于UE数据传输(或数据通信)的第二TP集合,降低了UE的负担和热点区域移动性管理的难度。
可选地,作为一个实施例,所述UE的工作模式为非小区模式,所述UE支持的工作模式包括小区模式和非小区模式,所述小区模式是基于UE对下行参考信号的测量进行移动性管理的工作模式,所述非小区模式是通过测量UE发送的上行参考信号进行移动 性管理的工作模式。
可选地,作为一个实施例,所述TP 1100还包括:接收单元,用于在所述UE通过所述TP 1100发起随机接入过程之后,从所述UE接收所述UE的参数,所述UE的参数包括所述UE的类型、所述UE的移动速度、所述UE的位置、所述UE的业务、所述UE支持的工作模式以及所述UE的能力中的至少一种;所述发送单元1130还用于向所述无线接入网的控制器发送所述UE的参数,以便所述无线接入网的控制器基于所述UE的参数确定所述UE的工作模式;所述接收单元还用于接收所述无线接入网的控制器发送的指示所述UE的工作模式为非小区模式的信息。
可选地,作为一个实施例,所述第一DUI与所述上行参考信号占用的时频资源具有对应关系,所述接收单元还用于接收所述无线接入网的控制器发送的所述第一DUI;所述测量单元1110具体用于根据所述第一DUI,通过所述对应关系,确定所述时频资源;在所述时频资源上检测所述上行参考信号。
可选地,作为一个实施例,所述TP 1100为所述第二TP集合中的TP,所述TP 1100还包括:接收单元,用于接收所述无线网络控制器发送的所述第一DUI;数据通信单元,用于根据所述第一DUI与所述UE进行数据通信。
可选地,作为一个实施例,所述数据通信单元具体用于从数据锚点接收所述UE的下行数据,所述数据锚点用于对所述UE的下行数据进行加密;向所述UE发送经过所述数据锚点加密后的所述下行数据。
可选地,作为一个实施例,所述TP 1100还包括:接收单元,用于接收所述无线接入网的控制器发送的通知消息,所述通知消息用于通知所述TP 1100已从所述UE的第二TP集合中删除;确定单元,用于确定是否存在所述UE的未发送成功的下行数据;所述发送单元1130具体用于当存在所述未发送成功的下行数据时,向所述数据锚点发送所述未发送成功的下行数据,以便所述数据锚点通过所述第二TP集合中的其它TP将所述未发送成功的下行数据转发至所述UE。
可选地,作为一个实施例,所述第二TP集合为所述第一TP集合的子集。
可选地,作为一个实施例,所述第一DUI用于所述第一TP集合中的TP接收所述UE发送的上行参考信号,和/或所述第一DUI用于所述第二TP集合中的TP与所述UE进行数据通信。
图12是本发明实施例的无线接入网的控制器的示意性结构图。应理解,图12的无线接入网的控制器1200能够执行图1至图8中由无线接入网的控制器执行的各个步骤,为避免重复,此处不再详述。无线接入网的控制器1200包括:
存储器1210,用于存储程序;
处理器1220,用于执行所述存储器1210中的程序,当所述程序被执行时,所述处理器1220为第一超级小区中的用户设备UE分配第一传输点TP集合和第二TP集合,所述第一超级小区包括多个TP,所述第一TP集合和所述第二TP集合各自均包括所述多个TP中的至少一个TP,所述第一TP集合中的TP用于测量所述UE发送的上行参考信号,所述第二TP集合中的TP用于与所述UE进行数据通信;
收发器1230,用于向所述UE发送第一专用用户设备标识DUI,所述第一DUI用于在所述第一超级小区中标识所述UE;接收所述处理器1220分配的所述第一TP集合中的TP发送的测量报告,所述测量报告携带所述UE发送的上行参考信号的信号强度信息;
所述处理器1220还用于根据所述收发器1230接收的所述第一TP集合中的TP的测量报告,更新所述第二TP集合。
本发明实施例采用UE发送上行参考信号,网络侧测量的方式对UE进行移动性管理,并由网络侧为UE维护和更新用于UE数据传输(或数据通信)的第二TP集合,降低了UE的负担和热点区域移动性管理的难度。
可选地,作为一个实施例,所述处理器1220还用于确定所述UE的工作模式为非小区模式,其中,所述UE支持的工作模式包括小区模式和非小区模式,所述小区模式是基于UE对下行参考信号的测量进行移动性管理的工作模式,所述非小区模式是通过测量UE发送的上行参考信号进行移动性管理的工作模式。
可选地,作为一个实施例,所述处理器1220具体用于在所述UE通过所述第一超级小区内的TP发起随机接入过程之后,接收所述第一超级小区内的TP发送的请求信息,所述请求信息用于请求所述无线接入网的控制器1200确定所述UE的工作模式,所述请求信息包括所述UE的如下参数中的至少一种:所述UE的类型、所述UE的移动速度、所述UE的位置、所述UE的业务、所述UE支持的工作模式以及所述UE的能力;根据所述请求信息中携带的所述UE的参数,确定所述UE的工作模式为非小区工作模式;所述收发器1230还用于向所述UE、以及所述第二TP集合中的TP发送用于指示所述UE的工作模式为非小区模式的信息。
可选地,作为一个实施例,所述处理器1220还用于根据所述第一TP集合中的TP的测量报告,确定将所述UE的工作模式切换至小区模式;所述收发器1230还用于向所述UE发送模式切换消息,所述模式切换消息用于指示所述UE从所述非小区模式切换至所述小区模式,所述模式切换消息包含所述UE在所述小区模式下的服务小区的小区标识。
可选地,作为一个实施例,所述第一DUI与所述上行参考信号占用的时频资源具有对应关系,所述收发器1230还用于向所述第一TP集合中的TP发送所述第一DUI,以便所述第一TP集合中的TP基于所述第一DUI确定所述时频资源,并在所述时频资源上检测所述UE的上行参考信号。
可选地,作为一个实施例,所述处理器1220还用于根据所述第一TP集合中的TP的测量报告,更新所述第一TP集合。
可选地,作为一个实施例,所述处理器1220还用于在所述UE进入节电态之后,根据所述第一TP集合中的TP的测量报告,继续更新所述第一TP集合,不再更新所述第二TP集合。
可选地,作为一个实施例,所述处理器1220还用于根据所述第一TP集合中的TP的测量报告,确定所述UE到达第二超级小区的边沿;指示所述第二超级小区中的TP测量所述上行参考信号;根据所述第二超级小区中的TP对所述上行参考信号的测量报告,确定将所述UE切换至所述第二超级小区;所述收发器1230还用于向所述UE发送切换命令,所述切换命令用于指示所述UE切换至所述第二超级小区,所述切换命令包括第二DUI,所述第二DUI用于在所述第二超级小区中识别所述UE。
可选地,作为一个实施例,所述第二TP集合为所述第一TP集合的子集。
可选地,作为一个实施例,所述第一DUI用于所述第一TP集合中的TP接收所述UE发送的上行参考信号,和/或所述第一DUI用于所述第二TP集合中的TP与所述UE 进行数据通信。
图13是本发明实施例的UE的示意性结构图。图13的UE 1300能够实现图1至图8中由UE执行的各个步骤,为避免重复,此处不再详述。UE 1300包括:
存储器1310,用于存储程序;
处理器1320,用于执行所述存储器1310中存储的程序,当所述程序被执行时,所述处理器1320控制收发器1330收发信息;
所述收发器1330用于接收无线接入网的控制器为所述UE 1300分配的第一专用用户设备标识DUI,其中,所述第一超级小区包括多个传输点TP,所述第一DUI用于在所述第一超级小区中标识所述UE 1300,所述无线接入网的控制器从所述多个TP中为所述UE 1300分配了第一TP集合和第二TP集合,所述第二TP集合中的TP用于与所述UE1300进行数据通信,所述第一TP集合中的TP用于测量所述UE 1300发送的上行参考信号;根据所述DUI,发送上行参考信号,以便所述无线接入网的控制器根据所述第一TP集合中的TP对所述上行参考信号进行测量得到的测量报告,更新所述第二TP集合,其中,所述测量报告携带所述UE 1300发送的上行参考信号的信号强度信息。
本发明实施例采用UE发送上行参考信号,网络侧测量的方式对UE进行移动性管理,并由网络侧为UE维护和更新用于UE数据传输(或数据通信)的第二TP集合,降低了UE的负担和热点区域移动性管理的难度。
可选地,作为一个实施例,所述UE 1300的工作模式为非小区模式,所述UE 1300支持的工作模式包括小区模式和非小区模式,所述小区模式是基于UE 1300对下行参考信号的测量进行移动性管理的工作模式,所述非小区模式是通过测量UE 1300发送的上行参考信号进行移动性管理的工作模式。
可选地,作为一个实施例,所述收发器1330还用于在所述UE 1300通过所述第一超级小区内的TP发起随机接入过程之后,向所述第一超级小区内的TP发送所述UE 1300的参数,以便所述第一超级小区内的TP将所述UE 1300的参数发送至所述无线接入网的控制器,由所述无线网络控制器基于所述UE 1300的参数确定所述UE 1300的工作模式,所述UE 1300的参数包括所述UE 1300的类型、所述UE 1300的移动速度、所述UE 1300的位置、所述UE 1300的业务、所述UE 1300支持的工作模式以及所述UE 1300的能力中的至少一种;所述收发器1330还用于接收所述无线接入网的控制器发送的指示所述UE 1300的工作模式为非小区模式的信息。
可选地,作为一个实施例,所述收发器1330还用于接收所述无线接入网的控制器发送的模式切换消息,所述模式切换消息用于指示所述UE 1300从所述非小区模式切换至所述小区模式,所述模式切换消息包含所述UE 1300在所述小区模式下的服务小区的小区标识;所述处理器1320还用于根据所述小区标识,确定所述服务小区;通过所述服务小区进行数据传输。
可选地,作为一个实施例,所述第一DUI与所述上行参考信号占用的时频资源具有对应关系,所述处理器1320还用于根据所述第一DUI,通过所述对应关系,确定所述时频资源;所述收发器1330具体用于在所述时频资源上发送所述上行参考信号。
可选地,作为一个实施例,所述收发器1330还用于接收所述无线接入网的控制器发送的切换命令,所述切换命令用于指示所述UE 1300切换至第二超级小区,所述切换命令包括第二DUI,所述第二DUI用于在所述第二超级小区中识别所述UE 1300。
可选地,作为一个实施例,所述第二TP集合为所述第一TP集合的子集。
可选地,作为一个实施例,所述第一DUI用于所述第一TP集合中的TP接收所述UE 1300发送的上行参考信号,和/或所述第一DUI用于所述第二TP集合中的TP与所述UE 1300进行数据通信。
图14是本发明实施例的TP的示意性结构图。图14的TP 1400能够实现图1至图8中由TP执行的各个步骤,为避免重复,此处不再详述。TP 1400包括:
存储器1410,用于存储程序;
处理器1420,用于执行所述存储器1410存储的程序,当所述程序被执行时,所述处理器1420测量所述UE发送的上行参考信号,其中,所述第一超级小区包括多个TP,无线接入网的控制器为所述第一超级小区中的所述UE分配了第一专用用户设备标识DUI,并从所述多个TP中为所述UE分配了第一TP集合和第二TP集合,所述第一DUI用于在所述第一超级小区中标识所述UE,所述第一TP集合中的TP用于测量所述UE发送的上行参考信号,所述第二TP集合中的TP用于与所述UE进行数据通信,所述TP 1400为所述第一TP集合中的TP;根据所述UE发送的上行参考信号的测量结果,生成测量报告,所述测量报告携带所述TP 1400测量到的所述UE发送的上行参考信号的信号强度信息;
收发器1430,用于向无线接入网的控制器发送测量报告,以便所述无线接入网的控制器根据所述测量报告更新所述第二TP集合。
本发明实施例采用UE发送上行参考信号,网络侧测量的方式对UE进行移动性管理,并由网络侧为UE维护和更新用于UE数据传输(或数据通信)的第二TP集合,降低了UE的负担和热点区域移动性管理的难度。
可选地,作为一个实施例,所述UE的工作模式为非小区模式,所述UE支持的工作模式包括小区模式和非小区模式,所述小区模式是基于UE对下行参考信号的测量进行移动性管理的工作模式,所述非小区模式是通过测量UE发送的上行参考信号进行移动性管理的工作模式。
可选地,作为一个实施例,所述收发器1430还用于在所述UE通过所述TP 1400发起随机接入过程之后,从所述UE接收所述UE的参数,所述UE的参数包括所述UE的类型、所述UE的移动速度、所述UE的位置、所述UE的业务、所述UE支持的工作模式以及所述UE的能力中的至少一种;所述收发器1430还用于向所述无线接入网的控制器发送所述UE的参数,以便所述无线接入网的控制器基于所述UE的参数确定所述UE的工作模式;接收所述无线接入网的控制器发送的指示所述UE的工作模式为非小区模式的信息。
可选地,作为一个实施例,所述第一DUI与所述上行参考信号占用的时频资源具有对应关系,所述收发器1430还用于接收所述无线接入网的控制器发送的所述第一DUI;所述处理器1420具体用于根据所述第一DUI,通过所述对应关系,确定所述时频资源;在所述时频资源上检测所述上行参考信号。
可选地,作为一个实施例,所述TP 1400为所述第二TP集合中的TP,所述收发器1430还用于接收所述无线网络控制器发送的所述第一DUI;根据所述第一DUI与所述UE进行数据通信。
可选地,作为一个实施例,所述收发器1430具体用于从数据锚点接收所述UE的下 行数据,所述数据锚点用于对所述UE的下行数据进行加密;向所述UE发送经过所述数据锚点加密后的所述下行数据。
可选地,作为一个实施例,所述收发器1430还用于接收所述无线接入网的控制器发送的通知消息,所述通知消息用于通知所述TP 1400已从所述UE的第二TP集合中删除;所述处理器1420还用于确定是否存在所述UE的未发送成功的下行数据所述收发器1430具体用于当存在所述未发送成功的下行数据时,向所述数据锚点发送所述未发送成功的下行数据,以便所述数据锚点通过所述第二TP集合中的其它TP将所述未发送成功的下行数据转发至所述UE。
可选地,作为一个实施例,所述第二TP集合为所述第一TP集合的子集。
可选地,作为一个实施例,所述第一DUI用于所述第一TP集合中的TP接收所述UE发送的上行参考信号,和/或所述第一DUI用于所述第二TP集合中的TP与所述UE进行数据通信。
图15是本发明实施例的系统芯片的示意性结构图。图15的系统芯片1500包括输入接口1510、输出接口1520、至少一个处理器1530、存储器1540,所述输入接口1510、输出接口1520、所述处理器1530以及存储器1540之间通过总线相连,所述处理器1530用于执行所述存储器1540中的代码,当所述代码被执行时,所述处理器1530实现图1-8中由无线接入网的控制器执行的方法。
图16是本发明实施例的系统芯片的示意性结构图。图16的系统芯片1600包括输入接口1610、输出接口1620、至少一个处理器1630、存储器1640,所述输入接口1610、输出接口1620、所述处理器1630以及存储器1640之间通过总线相连,所述处理器1630用于执行所述存储器1640中的代码,当所述代码被执行时,所述处理器1630实现图1-8中由UE执行的方法。
图17是本发明实施例的系统芯片的示意性结构图。图17的系统芯片1700包括输入接口1710、输出接口1720、至少一个处理器1730、存储器1740,所述输入接口1710、输出接口1720、所述处理器1730以及存储器1740之间通过总线相连,所述处理器1730用于执行所述存储器1740中的代码,当所述代码被执行时,所述处理器1730实现图1-8中由TP执行的方法。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应所述以权利要求的保护范围为准。

Claims (54)

  1. 一种应用于超级小区的通信方法,其特征在于,包括:
    无线接入网的控制器为第一超级小区中的用户设备UE分配第一传输点TP集合和第二TP集合,所述第一超级小区包括多个TP,所述第一TP集合和所述第二TP集合各自均包括所述多个TP中的至少一个TP,所述第一TP集合中的TP用于测量所述UE发送的上行参考信号,所述第二TP集合中的TP用于与所述UE进行数据通信;
    所述无线接入网的控制器向所述UE发送第一专用用户设备标识DUI,所述第一DUI用于在所述第一超级小区中标识所述UE;
    所述无线接入网的控制器接收所述第一TP集合中的TP发送的测量报告,所述测量报告携带所述UE发送的上行参考信号的信号强度信息;
    所述无线接入网的控制器根据所述第一TP集合中的TP的测量报告,更新所述第二TP集合。
  2. 如权利要求1所述的方法,其特征在于,在所述无线接入网的控制器为第一超级小区中的UE分配第一TP集合和第二TP集合之前,所述方法还包括:
    所述无线接入网的控制器确定所述UE的工作模式为非小区模式,其中,所述UE支持的工作模式包括小区模式和非小区模式,所述小区模式是基于UE对下行参考信号的测量进行移动性管理的工作模式,所述非小区模式是通过测量UE发送的上行参考信号进行移动性管理的工作模式。
  3. 如权利要求2所述的方法,其特征在于,所述无线接入网的控制器确定所述UE的工作模式为非小区模式,包括:
    在所述UE通过所述第一超级小区内的TP发起随机接入过程之后,所述无线接入网的控制器接收所述第一超级小区内的TP发送的请求信息,所述请求信息用于请求所述无线接入网的控制器确定所述UE的工作模式,所述请求信息包括所述UE的如下参数中的至少一种:所述UE的类型、所述UE的移动速度、所述UE的位置、所述UE的业务、所述UE支持的工作模式以及所述UE的能力;
    所述无线接入网的控制器根据所述请求信息中携带的所述UE的参数,确定所述UE的工作模式为非小区工作模式;
    所述方法还包括:
    所述无线接入网的控制器向所述UE、以及所述第二TP集合中的TP发送用于指示所述UE的工作模式为非小区模式的信息。
  4. 如权利要求2或3所述的方法,其特征在于,所述方法还包括:
    所述无线接入网的控制器根据所述第一TP集合中的TP的测量报告,确定将所述UE的工作模式切换至小区模式;
    所述无线接入网的控制器向所述UE发送模式切换消息,所述模式切换消息用于指示所述UE从所述非小区模式切换至所述小区模式,所述模式切换消息包含所述UE在所述小区模式下的服务小区的小区标识。
  5. 如权利要求1-4中任一项所述的方法,其特征在于,所述第一DUI与所述上行参考信号占用的时频资源具有对应关系,
    所述方法还包括:
    所述无线接入网的控制器向所述第一TP集合中的TP发送所述第一DUI,以便所述 第一TP集合中的TP基于所述第一DUI确定所述时频资源,并在所述时频资源上检测所述UE的上行参考信号。
  6. 如权利要求1-5中任一项所述的方法,其特征在于,所述方法还包括:
    所述无线接入网的控制器根据所述第一TP集合中的TP的测量报告,更新所述第一TP集合。
  7. 如权利要求6所述的方法,其特征在于,所述方法还包括:
    在所述UE进入节电态之后,所述无线接入网的控制器根据所述第一TP集合中的TP的测量报告,继续更新所述第一TP集合,不再更新所述第二TP集合。
  8. 如权利要求1-7中任一项所述的方法,其特征在于,所述方法还包括:
    所述无线接入网的控制器根据所述第一TP集合中的TP的测量报告,确定所述UE到达第二超级小区的边沿;
    所述无线接入网的控制器指示所述第二超级小区中的TP测量所述上行参考信号;
    所述无线接入网的控制器根据所述第二超级小区中的TP对所述上行参考信号的测量报告,确定将所述UE切换至所述第二超级小区;
    所述无线接入网的控制器向所述UE发送切换命令,所述切换命令用于指示所述UE切换至所述第二超级小区,所述切换命令包括第二DUI,所述第二DUI用于在所述第二超级小区中识别所述UE。
  9. 如权利要求1-8中任一项所述的方法,其特征在于,所述第二TP集合为所述第一TP集合的子集。
  10. 如权利要求1-9中任一项所述的方法,其特征在于,所述第一DUI用于所述第一TP集合中的TP接收所述UE发送的上行参考信号,和/或所述第一DUI用于所述第二TP集合中的TP与所述UE进行数据通信。
  11. 一种应用于超级小区的通信方法,其特征在于,包括:
    第一超级小区中的用户设备UE接收无线接入网的控制器为所述UE分配的第一专用用户设备标识DUI,其中,所述第一超级小区包括多个传输点TP,所述第一DUI用于在所述第一超级小区中标识所述UE,所述无线接入网的控制器从所述多个TP中为所述UE分配了第一TP集合和第二TP集合,所述第二TP集合中的TP用于与所述UE进行数据通信,所述第一TP集合中的TP用于测量所述UE发送的上行参考信号;
    所述UE根据所述第一DUI发送上行参考信号,以便所述无线接入网的控制器根据所述第一TP集合中的TP对所述上行参考信号进行测量得到的测量报告,更新所述第二TP集合,其中,所述测量报告携带所述UE发送的上行参考信号的信号强度信息。
  12. 如权利要求11所述的方法,其特征在于,所述UE的工作模式为非小区模式,所述UE支持的工作模式包括小区模式和非小区模式,所述小区模式是基于UE对下行参考信号的测量进行移动性管理的工作模式,所述非小区模式是通过测量UE发送的上行参考信号进行移动性管理的工作模式。
  13. 如权利要求12所述的方法,其特征在于,所述方法还包括:
    在所述UE通过所述第一超级小区内的TP发起随机接入过程之后,所述UE向所述第一超级小区内的TP发送所述UE的参数,以便所述第一超级小区内的TP将所述UE的参数发送至所述无线接入网的控制器,由所述无线网络控制器基于所述UE的参数确定所述UE的工作模式,所述UE的参数包括所述UE的类型、所述UE的移动速度、所 述UE的位置、所述UE的业务、所述UE支持的工作模式以及所述UE的能力中的至少一种;
    所述UE接收所述无线接入网的控制器发送的指示所述UE的工作模式为非小区模式的信息。
  14. 如权利要求12或13所述的方法,其特征在于,所述方法还包括:
    所述UE接收所述无线接入网的控制器发送的模式切换消息,所述模式切换消息用于指示所述UE从所述非小区模式切换至所述小区模式,所述模式切换消息包含所述UE在所述小区模式下的服务小区的小区标识;
    所述UE根据所述小区标识,确定所述服务小区;
    所述UE通过所述服务小区进行数据传输。
  15. 如权利要求11-14中任一项所述的方法,其特征在于,所述第一DUI与所述上行参考信号占用的时频资源具有对应关系,
    在所述UE发送上行参考信号之前,所述方法还包括:
    所述UE根据所述第一DUI,通过所述对应关系,确定所述时频资源;
    所述UE发送上行参考信号,包括:
    所述UE在所述时频资源上发送所述上行参考信号。
  16. 如权利要求11-15中任一项所述的方法,其特征在于,所述方法还包括:
    所述UE接收所述无线接入网的控制器发送的切换命令,所述切换命令用于指示所述UE切换至第二超级小区,所述切换命令包括第二DUI,所述第二DUI用于在所述第二超级小区中识别所述UE。
  17. 如权利要求11-16中任一项所述的方法,其特征在于,所述第二TP集合为所述第一TP集合的子集。
  18. 如权利要求11-17中任一项所述的方法,其特征在于,所述第一DUI用于所述第一TP集合中的TP接收所述UE发送的上行参考信号,和/或所述第一DUI用于所述第二TP集合中的TP与所述UE进行数据通信。
  19. 一种应用于超级小区的通信方法,其特征在于,包括:
    第一超级小区中的任意一个目标传输点TP测量所述第一超级小区中的用户设备UE发送的上行参考信号,其中,所述第一超级小区包括多个TP,无线接入网的控制器为所述第一超级小区中的所述UE分配了第一专用用户设备标识DUI,并从所述多个TP中为所述UE分配了第一TP集合和第二TP集合,所述第一DUI用于在所述第一超级小区中标识所述UE,所述第一TP集合中的TP用于测量所述UE发送的上行参考信号,所述第二TP集合中的TP用于与所述UE进行数据通信,所述目标TP为所述第一TP集合中的TP;
    所述目标TP根据所述UE发送的上行参考信号的测量结果,生成测量报告,所述测量报告携带所述目标TP测量到的所述UE发送的上行参考信号的信号强度信息;
    所述目标TP向无线接入网的控制器发送所述测量报告,以便所述无线接入网的控制器根据所述测量报告更新所述第二TP集合。
  20. 如权利要求19所述的方法,其特征在于,所述UE的工作模式为非小区模式,所述UE支持的工作模式包括小区模式和非小区模式,所述小区模式是基于UE对下行参考信号的测量进行移动性管理的工作模式,所述非小区模式是通过测量UE发送的上行 参考信号进行移动性管理的工作模式。
  21. 如权利要求20所述的方法,其特征在于,所述方法还包括:
    在所述UE通过所述目标TP发起随机接入过程之后,所述目标TP从所述UE接收所述UE的参数,所述UE的参数包括所述UE的类型、所述UE的移动速度、所述UE的位置、所述UE的业务、所述UE支持的工作模式以及所述UE的能力中的至少一种;
    所述目标TP向所述无线接入网的控制器发送所述UE的参数,以便所述无线接入网的控制器基于所述UE的参数确定所述UE的工作模式;
    所述目标TP接收所述无线接入网的控制器发送的指示所述UE的工作模式为非小区模式的信息。
  22. 如权利要求19-21中任一项所述的方法,其特征在于,所述第一DUI与所述上行参考信号占用的时频资源具有对应关系,
    所述方法还包括:
    所述目标TP接收所述无线接入网的控制器发送的所述第一DUI;
    所述第一超级小区中的目标TP检测所述第一超级小区中的UE发送的上行参考信号,包括:
    所述目标TP根据所述第一DUI,通过所述对应关系,确定所述时频资源;
    所述目标TP在所述时频资源上检测所述上行参考信号。
  23. 如权利要求19-22中任一项所述的方法,其特征在于,所述目标TP为所述第二TP集合中的TP,
    所述方法还包括:
    所述目标TP接收所述无线网络控制器发送的所述第一DUI;
    所述目标TP根据所述第一DUI与所述UE进行数据通信。
  24. 如权利要求23所述的方法,其特征在于,所述目标TP根据所述第一DUI与所述UE进行数据通信,包括:
    所述目标TP从数据锚点接收所述UE的下行数据,所述数据锚点用于对所述UE的下行数据进行加密;
    所述目标TP向所述UE发送经过所述数据锚点加密后的所述下行数据。
  25. 如权利要求24所述的方法,其特征在于,所述方法还包括:
    所述目标TP接收所述无线接入网的控制器发送的通知消息,所述通知消息用于通知所述目标TP已从所述UE的第二TP集合中删除;
    所述目标TP确定是否存在所述UE的未发送成功的下行数据;
    当存在所述未发送成功的下行数据时,所述目标TP向所述数据锚点发送所述未发送成功的下行数据,以便所述数据锚点通过所述第二TP集合中的其它TP将所述未发送成功的下行数据转发至所述UE。
  26. 如权利要求19-25中任一项所述的方法,其特征在于,所述第二TP集合为所述第一TP集合的子集。
  27. 如权利要求19-26中任一项所述的方法,其特征在于,所述第一DUI用于所述第一TP集合中的TP接收所述UE发送的上行参考信号,和/或所述第一DUI用于所述第二TP集合中的TP与所述UE进行数据通信。
  28. 一种无线接入网的控制器,其特征在于,包括:
    处理单元,用于为第一超级小区中的用户设备UE分配第一传输点TP集合和第二TP集合,所述第一超级小区包括多个TP,所述第一TP集合和所述第二TP集合各自均包括所述多个TP中的至少一个TP,所述第一TP集合中的TP用于测量所述UE发送的上行参考信号,所述第二TP集合中的TP用于与所述UE进行数据通信;
    发送单元,用于向所述UE发送第一专用用户设备标识DUI,所述第一DUI用于在所述第一超级小区中标识所述UE;
    接收单元,用于接收所述处理单元分配的所述第一TP集合中的TP发送的测量报告,所述测量报告携带所述UE发送的上行参考信号的信号强度信息;
    所述处理单元还用于根据所述接收单元接收的所述第一TP集合中的TP的测量报告,更新所述第二TP集合。
  29. 如权利要求28所述的无线接入网的控制器,其特征在于,所述处理单元还用于确定所述UE的工作模式为非小区模式,其中,所述UE支持的工作模式包括小区模式和非小区模式,所述小区模式是基于UE对下行参考信号的测量进行移动性管理的工作模式,所述非小区模式是通过测量UE发送的上行参考信号进行移动性管理的工作模式。
  30. 如权利要求29所述的无线接入网的控制器,其特征在于,所述处理单元具体用于在所述UE通过所述第一超级小区内的TP发起随机接入过程之后,接收所述第一超级小区内的TP发送的请求信息,所述请求信息用于请求所述无线接入网的控制器确定所述UE的工作模式,所述请求信息包括所述UE的如下参数中的至少一种:所述UE的类型、所述UE的移动速度、所述UE的位置、所述UE的业务、所述UE支持的工作模式以及所述UE的能力;根据所述请求信息中携带的所述UE的参数,确定所述UE的工作模式为非小区工作模式;
    所述发送单元还用于向所述UE、以及所述第二TP集合中的TP发送用于指示所述UE的工作模式为非小区模式的信息。
  31. 如权利要求29或30所述的无线接入网的控制器,其特征在于,所述处理单元还用于根据所述第一TP集合中的TP的测量报告,确定将所述UE的工作模式切换至小区模式;
    所述发送单元还用于向所述UE发送模式切换消息,所述模式切换消息用于指示所述UE从所述非小区模式切换至所述小区模式,所述模式切换消息包含所述UE在所述小区模式下的服务小区的小区标识。
  32. 如权利要求28-31中任一项所述的无线接入网的控制器,其特征在于,所述第一DUI与所述上行参考信号占用的时频资源具有对应关系,所述发送单元还用于向所述第一TP集合中的TP发送所述第一DUI,以便所述第一TP集合中的TP基于所述第一DUI确定所述时频资源,并在所述时频资源上检测所述UE的上行参考信号。
  33. 如权利要求28-32中任一项所述的无线接入网的控制器,其特征在于,所述处理单元还用于根据所述第一TP集合中的TP的测量报告,更新所述第一TP集合。
  34. 如权利要求33所述的无线接入网的控制器,其特征在于,所述处理单元还用于在所述UE进入节电态之后,根据所述第一TP集合中的TP的测量报告,继续更新所述第一TP集合,不再更新所述第二TP集合。
  35. 如权利要求28-34中任一项所述的无线接入网的控制器,其特征在于,所述处理单元还用于根据所述第一TP集合中的TP的测量报告,确定所述UE到达第二超级小 区的边沿;指示所述第二超级小区中的TP测量所述上行参考信号;根据所述第二超级小区中的TP对所述上行参考信号的测量报告,确定将所述UE切换至所述第二超级小区;所述发送单元还用于向所述UE发送切换命令,所述切换命令用于指示所述UE切换至所述第二超级小区,所述切换命令包括第二DUI,所述第二DUI用于在所述第二超级小区中识别所述UE。
  36. 如权利要求28-35中任一项所述的无线接入网的控制器,其特征在于,所述第二TP集合为所述第一TP集合的子集。
  37. 如权利要求28-36中任一项所述的无线接入网的控制器,其特征在于,所述第一DUI用于所述第一TP集合中的TP接收所述UE发送的上行参考信号,和/或所述第一DUI用于所述第二TP集合中的TP与所述UE进行数据通信。
  38. 一种用户设备UE,其特征在于,所述UE为第一超级小区中的UE,所述UE包括:
    接收单元,用于接收无线接入网的控制器为所述UE分配的第一专用用户设备标识DUI,其中,所述第一超级小区包括多个传输点TP,所述第一DUI用于在所述第一超级小区中标识所述UE,所述无线接入网的控制器从所述多个TP中为所述UE分配了第一TP集合和第二TP集合,所述第二TP集合中的TP用于与所述UE进行数据通信,所述第一TP集合中的TP用于测量所述UE发送的上行参考信号;
    发送单元,用于根据所述第一UDI发送上行参考信号,以便所述无线接入网的控制器根据所述第一TP集合中的TP对所述上行参考信号进行测量得到的测量报告,更新所述第二TP集合,其中,所述测量报告携带所述UE发送的上行参考信号的信号强度信息。
  39. 如权利要求38所述的UE,其特征在于,所述UE的工作模式为非小区模式,所述UE支持的工作模式包括小区模式和非小区模式,所述小区模式是基于UE对下行参考信号的测量进行移动性管理的工作模式,所述非小区模式是通过测量UE发送的上行参考信号进行移动性管理的工作模式。
  40. 如权利要求39所述的UE,其特征在于,所述发送单元还用于在所述UE通过所述第一超级小区内的TP发起随机接入过程之后,向所述第一超级小区内的TP发送所述UE的参数,以便所述第一超级小区内的TP将所述UE的参数发送至所述无线接入网的控制器,由所述无线网络控制器基于所述UE的参数确定所述UE的工作模式,所述UE的参数包括所述UE的类型、所述UE的移动速度、所述UE的位置、所述UE的业务、所述UE支持的工作模式以及所述UE的能力中的至少一种;
    所述接收单元还用于接收所述无线接入网的控制器发送的指示所述UE的工作模式为非小区模式的信息。
  41. 如权利要求39或40所述的UE,其特征在于,所述接收单元还用于接收所述无线接入网的控制器发送的模式切换消息,所述模式切换消息用于指示所述UE从所述非小区模式切换至所述小区模式,所述模式切换消息包含所述UE在所述小区模式下的服务小区的小区标识;
    所述UE还包括:
    确定单元,用于根据所述小区标识,确定所述服务小区;
    数据传输单元,用于通过所述服务小区进行数据传输。
  42. 如权利要求38-41中任一项所述的UE,其特征在于,所述第一DUI与所述上行 参考信号占用的时频资源具有对应关系,
    所述UE还包括:
    确定单元,用于根据所述第一DUI,通过所述对应关系,确定所述时频资源;
    所述发送单元具体用于在所述时频资源上发送所述上行参考信号。
  43. 如权利要求38-42中任一项所述的UE,其特征在于,所述接收单元还用于接收所述无线接入网的控制器发送的切换命令,所述切换命令用于指示所述UE切换至第二超级小区,所述切换命令包括第二DUI,所述第二DUI用于在所述第二超级小区中识别所述UE。
  44. 如权利要求38-43中任一项所述的UE,其特征在于,所述第二TP集合为所述第一TP集合的子集。
  45. 如权利要求38-44中任一项所述的UE,其特征在于,所述第一DUI用于所述第一TP集合中的TP接收所述UE发送的上行参考信号,和/或所述第一DUI用于所述第二TP集合中的TP与所述UE进行数据通信。
  46. 一种传输点TP,其特征在于,所述TP为第一超级小区中的任意一个目标TP,所述目标TP包括:
    测量单元,用于测量所述UE发送的上行参考信号,其中,所述第一超级小区包括多个TP,无线接入网的控制器为所述第一超级小区中的所述UE分配了第一专用用户设备标识DUI,并从所述多个TP中为所述UE分配了第一TP集合和第二TP集合,所述第一DUI用于在所述第一超级小区中标识所述UE,所述第一TP集合中的TP用于测量所述UE发送的上行参考信号,所述第二TP集合中的TP用于与所述UE进行数据通信,所述目标TP为所述第一TP集合中的TP;
    生成单元,用于根据所述测量单元对所述UE发送的上行参考信号的测量结果,生成测量报告,所述测量报告携带所述目标TP测量到的所述UE发送的上行参考信号的信号强度信息;
    发送单元,用于向无线接入网的控制器发送所述生成单元生成的测量报告,以便所述无线接入网的控制器根据所述测量报告更新所述第二TP集合。
  47. 如权利要求46所述的TP,其特征在于,所述UE的工作模式为非小区模式,所述UE支持的工作模式包括小区模式和非小区模式,所述小区模式是基于UE对下行参考信号的测量进行移动性管理的工作模式,所述非小区模式是通过测量UE发送的上行参考信号进行移动性管理的工作模式。
  48. 如权利要求47所述的TP,其特征在于,所述目标TP还包括:
    接收单元,用于在所述UE通过所述目标TP发起随机接入过程之后,从所述UE接收所述UE的参数,所述UE的参数包括所述UE的类型、所述UE的移动速度、所述UE的位置、所述UE的业务、所述UE支持的工作模式以及所述UE的能力中的至少一种;
    所述发送单元还用于向所述无线接入网的控制器发送所述UE的参数,以便所述无线接入网的控制器基于所述UE的参数确定所述UE的工作模式;
    所述接收单元还用于接收所述无线接入网的控制器发送的指示所述UE的工作模式为非小区模式的信息。
  49. 如权利要求46-48中任一项所述的TP,其特征在于,所述第一DUI与所述上行 参考信号占用的时频资源具有对应关系,
    所述接收单元还用于接收所述无线接入网的控制器发送的所述第一DUI;
    所述测量单元具体用于根据所述第一DUI,通过所述对应关系,确定所述时频资源;在所述时频资源上检测所述上行参考信号。
  50. 如权利要求46-49中任一项所述的TP,其特征在于,所述目标TP为所述第二TP集合中的TP,所述目标TP还包括:
    接收单元,用于接收所述无线网络控制器发送的所述第一DUI;
    数据通信单元,用于根据所述第一DUI与所述UE进行数据通信。
  51. 如权利要求50所述的TP,其特征在于,所述数据通信单元具体用于从数据锚点接收所述UE的下行数据,所述数据锚点用于对所述UE的下行数据进行加密;向所述UE发送经过所述数据锚点加密后的所述下行数据。
  52. 如权利要求51所述的TP,其特征在于,所述目标TP还包括:
    接收单元,用于接收所述无线接入网的控制器发送的通知消息,所述通知消息用于通知所述目标TP已从所述UE的第二TP集合中删除;
    确定单元,用于确定是否存在所述UE的未发送成功的下行数据;
    所述发送单元具体用于当存在所述未发送成功的下行数据时,向所述数据锚点发送所述未发送成功的下行数据,以便所述数据锚点通过所述第二TP集合中的其它TP将所述未发送成功的下行数据转发至所述UE。
  53. 如权利要求46-52中任一项所述的TP,其特征在于,所述第二TP集合为所述第一TP集合的子集。
  54. 如权利要求46-53中任一项所述的TP,其特征在于,所述第一DUI用于所述第一TP集合中的TP接收所述UE发送的上行参考信号,和/或所述第一DUI用于所述第二TP集合中的TP与所述UE进行数据通信。
PCT/CN2017/075372 2016-03-03 2017-03-02 应用于超级小区的通信方法和装置 WO2017148399A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP17759250.8A EP3413623B1 (en) 2016-03-03 2017-03-02 Communication method and apparatus applied to super cell
US16/119,861 US10420004B2 (en) 2016-03-03 2018-08-31 Communication method and apparatus applied to hyper cell

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610122160.2A CN107155200B (zh) 2016-03-03 2016-03-03 应用于超级小区的通信方法和装置
CN201610122160.2 2016-03-03

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/119,861 Continuation US10420004B2 (en) 2016-03-03 2018-08-31 Communication method and apparatus applied to hyper cell

Publications (1)

Publication Number Publication Date
WO2017148399A1 true WO2017148399A1 (zh) 2017-09-08

Family

ID=59742533

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/075372 WO2017148399A1 (zh) 2016-03-03 2017-03-02 应用于超级小区的通信方法和装置

Country Status (4)

Country Link
US (1) US10420004B2 (zh)
EP (1) EP3413623B1 (zh)
CN (1) CN107155200B (zh)
WO (1) WO2017148399A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019170398A1 (en) * 2018-03-07 2019-09-12 Nokia Solutions And Networks Oy Methods and apparatus for adjusting a carrier aggregation operation in a wireless communication system
WO2019240238A1 (ja) * 2018-06-15 2019-12-19 本田技研工業株式会社 制御装置及びプログラム
CN110831021A (zh) * 2018-08-07 2020-02-21 中国移动通信有限公司研究院 一种信号传输方法及通信设备

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10820294B2 (en) * 2015-03-09 2020-10-27 Hewlett Packard Enterprise Development Lp Predicting available access points
EP4429296A2 (en) * 2016-08-09 2024-09-11 Samsung Electronics Co., Ltd Method and apparatus for managing user plane operation in wireless communication system
US10764798B2 (en) * 2016-11-16 2020-09-01 Corning Optical Communications LLC Discovery of neighbor radio access systems by a user mobile communications device serviced by a radio access network (RAN) for reporting discovered systems to a serving system in the RAN
WO2018127389A1 (en) * 2017-01-05 2018-07-12 Sony Mobile Communications Inc. Uplink signal based handover control, handover cancellation and handover expiration
CN108337708B (zh) * 2017-01-19 2021-07-27 北京小米移动软件有限公司 移动性管理方法及装置
CN109819392B (zh) * 2017-11-20 2021-01-12 华为技术有限公司 一种位置信息的上报方法和装置
US10652691B2 (en) * 2018-07-20 2020-05-12 Qualcomm Incorporated Optimized positioning method for mobile devices
US11711709B2 (en) * 2018-08-23 2023-07-25 Tracfone Wireless, Inc. System and process for using cellular connectivity analysis to determine optimal wireless equipment and service for a geographical area
US10757598B2 (en) 2018-12-04 2020-08-25 Apple Inc. Reference frequency for UI signal bar display
US10701655B1 (en) * 2018-12-14 2020-06-30 Asustek Computer Inc. Method and apparatus for applying time alignment timer length for preconfigured uplink resources in a wireless communication system
US12096508B2 (en) 2019-05-03 2024-09-17 Lg Electronics Inc. Method for transmitting uplink through preconfigured uplink resource in wireless communication system, and device therefor
WO2022141099A1 (zh) * 2020-12-29 2022-07-07 华为技术有限公司 一种上行定位方法及通信装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103052161A (zh) * 2011-10-11 2013-04-17 普天信息技术研究院有限公司 宏小区与微小区共享小区标识情况下配置tp的方法
CN103428723A (zh) * 2012-05-25 2013-12-04 上海贝尔股份有限公司 多点协作中测量srs的方法与设备
EP2741539A1 (en) * 2011-08-05 2014-06-11 Panasonic Corporation Terminal, base station, transmission method and reception method
CN105340315A (zh) * 2013-06-28 2016-02-17 华为技术有限公司 使用ue中心探测的基于网络上行链路测量的操作的方法和系统

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101659911B1 (ko) * 2010-04-27 2016-09-26 삼성전자주식회사 다중 셀 그룹 내의 서빙 마이크로 기지국, 인접 마이크로 기지국, 매크로 기지국 및 차량 이동 단말의 통신 방법
US20120071200A1 (en) * 2010-09-22 2012-03-22 Infineon Technologies Ag Method and device for selecting a serving base station, mobile communication network, base station, and method for determining transmission characteristics
US20130166644A1 (en) * 2011-12-23 2013-06-27 Futurewei Technologies, Inc. System and Method for Resource Management in Multiple Communications Point Operation
EP2862385B1 (en) * 2012-06-19 2017-08-09 Telefonaktiebolaget LM Ericsson (publ) Method and controlling node for controlling measurements by a user equipment
GB2503923A (en) * 2012-07-12 2014-01-15 Nec Corp Coordinated multipoint transmissions to a relay node
EP2884800B1 (en) * 2013-06-29 2017-09-06 Huawei Technologies Co., Ltd. Signal measurement method and device
CN110213809B (zh) * 2013-11-21 2021-01-15 华为技术有限公司 用于非蜂窝式无线接入的系统和方法
US9913191B2 (en) * 2013-12-20 2018-03-06 Intel IP Corporation Base station and method for early handover using uplink channel characteristics
US10462836B2 (en) * 2014-08-06 2019-10-29 Lg Electronics Inc. Method and apparatus for supporting amorphous cell in wireless communication system
US9749103B2 (en) * 2015-07-31 2017-08-29 Futurewei Technologies, Inc. System and method for transmitting beamformed reference/control signals

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2741539A1 (en) * 2011-08-05 2014-06-11 Panasonic Corporation Terminal, base station, transmission method and reception method
CN103052161A (zh) * 2011-10-11 2013-04-17 普天信息技术研究院有限公司 宏小区与微小区共享小区标识情况下配置tp的方法
CN103428723A (zh) * 2012-05-25 2013-12-04 上海贝尔股份有限公司 多点协作中测量srs的方法与设备
CN105340315A (zh) * 2013-06-28 2016-02-17 华为技术有限公司 使用ue中心探测的基于网络上行链路测量的操作的方法和系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3413623A4 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019170398A1 (en) * 2018-03-07 2019-09-12 Nokia Solutions And Networks Oy Methods and apparatus for adjusting a carrier aggregation operation in a wireless communication system
US10887072B2 (en) 2018-03-07 2021-01-05 Nokia Solutions and Network OY Methods and apparatus for adjusting a carrier aggregation operation in a wireless communication system
WO2019240238A1 (ja) * 2018-06-15 2019-12-19 本田技研工業株式会社 制御装置及びプログラム
CN110831021A (zh) * 2018-08-07 2020-02-21 中国移动通信有限公司研究院 一种信号传输方法及通信设备
CN110831021B (zh) * 2018-08-07 2023-03-28 中国移动通信有限公司研究院 一种信号传输方法及通信设备

Also Published As

Publication number Publication date
CN107155200B (zh) 2020-07-28
EP3413623B1 (en) 2020-05-13
US10420004B2 (en) 2019-09-17
EP3413623A4 (en) 2019-06-05
EP3413623A1 (en) 2018-12-12
CN107155200A (zh) 2017-09-12
US20180368046A1 (en) 2018-12-20

Similar Documents

Publication Publication Date Title
WO2017148399A1 (zh) 应用于超级小区的通信方法和装置
WO2017148403A1 (zh) 应用于超级小区的通信方法和装置
US11134532B2 (en) Radio communication system, base station apparatus, and radio terminal
US11356924B2 (en) Radio communication system, base station, mobile station, communication control method, and computer readable medium
US11051219B2 (en) Method and apparatus for controlling mobility for cell having small cell service area in mobile communication system
JP6474891B2 (ja) サービス固有のエアインターフェース選択
AU2015381633B2 (en) Signaling optimization method and device
EP3487218B1 (en) Inter-cell handover method and controller
EP3562207B1 (en) Data transmission method, network device and terminal device
EP3809756B1 (en) Mobility management methods, apparatus, communications system and computer-readable storage medium
KR102242295B1 (ko) 무선 통신 시스템에서 이중 연결에서의 e-rab 전환 문제를 처리하기 위한 방법 및 장치
WO2018033136A1 (zh) 用于小区切换的方法、用户设备及网络设备
EP2993939B1 (en) Cell handover method and base station for user equipment (ue) handover in carrier aggregation mode
CA3037476A1 (en) Core network awareness of user equipment, ue, state
JP2016036175A (ja) 動作周波数の変更を調整する方法および装置
CN105580427A (zh) 移动通信系统中的切换过程
KR102301836B1 (ko) 이동 통신 시스템에서 SCell의 동적 제어 방법 및 장치
US20150078342A1 (en) Method for configuring multiflow, base station, radio network controller, and user equipment
JPWO2017026441A1 (ja) 通信方法、セルラ基地局及び無線lan終端ノード
WO2017148379A1 (zh) 应用于超级小区的通信方法和装置

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2017759250

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2017759250

Country of ref document: EP

Effective date: 20180906

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17759250

Country of ref document: EP

Kind code of ref document: A1