WO2017148385A1 - 汽车智能蓄电池 - Google Patents

汽车智能蓄电池 Download PDF

Info

Publication number
WO2017148385A1
WO2017148385A1 PCT/CN2017/075319 CN2017075319W WO2017148385A1 WO 2017148385 A1 WO2017148385 A1 WO 2017148385A1 CN 2017075319 W CN2017075319 W CN 2017075319W WO 2017148385 A1 WO2017148385 A1 WO 2017148385A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery pack
control unit
battery
switch
positive electrode
Prior art date
Application number
PCT/CN2017/075319
Other languages
English (en)
French (fr)
Inventor
赖泽康
练春霞
Original Assignee
深圳市银盾科技开发有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市银盾科技开发有限公司 filed Critical 深圳市银盾科技开发有限公司
Publication of WO2017148385A1 publication Critical patent/WO2017148385A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R16/00Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for
    • B60R16/02Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements
    • B60R16/03Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements for supply of electrical power to vehicle subsystems or for
    • B60R16/033Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements for supply of electrical power to vehicle subsystems or for characterised by the use of electrical cells or batteries
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H7/00Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions
    • H02H7/18Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for batteries; for accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • H01M10/4257Smart batteries, e.g. electronic circuits inside the housing of the cells or batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • H01M2010/4271Battery management systems including electronic circuits, e.g. control of current or voltage to keep battery in healthy state, cell balancing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the invention relates to a power supply device for automobiles, and in particular to an intelligent battery for automobiles.
  • Motor vehicles are generally equipped with batteries, which cooperate with the engine (generator) to provide electrical energy for the various electrical devices on the vehicle.
  • the engine generator
  • the car can not be started. Common examples are: forget to turn off the lights, stop the fire to listen to the sound, lightning rain and night alarm, car line leakage, long time parking and many more. At this time, it is often inconvenient to need a rescue vehicle to set fire to start the car.
  • a vehicle intelligent battery includes a battery casing, a battery pack in the casing, and a positive electrode and a negative electrode connected to the battery pack, wherein the positive electrode and the negative electrode are used to connect the circuit of the automobile to supply power or receive charging of the automobile.
  • the auxiliary circuit comprising a control unit and a controlled switch, the control unit being connected to the positive electrode and the negative electrode, the control unit being used for Monitoring the voltage of the battery pack, and when the voltage of the battery pack is detected to be less than the second threshold, controlling the controlled switch to disconnect the power supply of the battery pack to the positive electrode and the control unit, so that the battery pack enters sleep power saving a state in which one end of the reset switch is connected to the positive pole of the battery pack, and the reset switch is closed when subjected to an external force for restoring the battery pack by the closing of the battery pack when the battery pack is in a sleep power saving state Powering the control unit, and then controlling, by the control unit, the controlled switch to restore power supply of the battery pack to the positive electrode, thereby causing the battery pack to be sleeping Electricity is awakened state.
  • the control unit turns off the battery pack output, and the battery pack enters a sleep power saving state.
  • you need to start the vehicle again you only need to manually press the reset switch to return the battery to normal operation (equivalent to the self-contained starter power function). There is no need to wait for the rescue vehicle to catch fire, which saves electricity and environmental protection, and can solve the problem of waste of rescue vehicle resources.
  • FIG. 1 is a block diagram showing the structure of a vehicle smart battery in an embodiment
  • FIG. 2 is a structural block diagram of a vehicle smart battery in another embodiment
  • FIG. 3 is a circuit schematic diagram of a smart battery of an automobile in an embodiment
  • FIG. 4a-4g are partial enlarged views of portions of Fig. 3;
  • FIG. 5 is a circuit schematic diagram of a smart battery of a vehicle in another embodiment
  • Figure 6 is a partial enlarged view of the controlled switch of Figure 5.
  • a smart battery for a vehicle comprising a battery casing, an upper cover covering the outer casing, a battery pack located in the upper cover and the outer casing, and an auxiliary circuit connected to the battery pack, extending from the upper cover into the upper cover and connected to the battery pack
  • the positive electrode and the negative electrode (the positive electrode is connected to the positive electrode of the battery pack, the negative electrode is connected to the negative electrode of the battery pack), and the reset switch is exposed outside the outer casing.
  • the automobile intelligent battery is bidirectionally connected with the circuit of the automobile through the positive electrode and the negative electrode, and the basic functions of charging, storing electricity and power supply are completed.
  • 1 is a block diagram showing the structure of a vehicle smart battery in an embodiment.
  • the automotive smart battery is electrically connected to the engine of the automobile through a positive electrode, and the auxiliary circuit includes a control unit 30 and a controlled switch 20.
  • the control unit 30 is connected to the positive electrode and the negative electrode for monitoring the voltage of the battery pack, and controls the controlled switch 20 to disconnect the battery pack from the positive electrode and the control unit 30 when detecting that the voltage of the battery pack is less than the second threshold.
  • Power is supplied to put the battery pack into a sleep power saving state.
  • One end of the reset switch S is connected to the positive B+ of the battery pack, and the reset switch S is closed when subjected to an external force (human operation).
  • the driver can restore the power supply to the control unit 30 by closing the reset switch S (provided outside the battery casing in this embodiment), and then controlled by the control unit 30.
  • the switch 20 restores the power supply to the positive electrode of the battery pack, thereby causing the battery pack to be woken up by the sleep power saving state.
  • the control unit 30 turns off the battery output. , let the battery pack go to sleep.
  • the reset switch S set on the battery casing to return the battery to normal operation (equivalent to the self-contained standby power supply function). There is no need to wait for the rescue vehicle to catch fire, which saves electricity and environmental protection, and can solve the problem of waste of rescue vehicle resources.
  • the auxiliary circuit further includes a capacitor C and a capacitor switch Q.
  • Capacitor C is used for hybrid power supply with the battery pack, so a large-capacity capacitor is used, and in one embodiment, a capacitor array is used.
  • Capacitor C is connected in series with capacitor switch Q to the positive electrode, and capacitor C and capacitor switch Q connected in series are connected in parallel with the battery pack.
  • the control unit 30 is further configured to detect a voltage of the battery pack, and control the capacitive switch Q to be turned on when the voltage of the battery pack is higher than the first threshold, so that the capacitor C is connected to the positive electrode and the negative electrode for power supply/charge, and controls the controlled switch.
  • the control unit 30 controls the controlled switch 20 to close when the voltage of the positive electrode is less than the first voltage, thereby restoring the power supply of the battery pack to the positive electrode, and then disconnecting the capacitor switch Q separates the capacitor C from the negative electrode, thereby stopping the charging and discharging of the capacitor C.
  • the first threshold is an empirical value, that is, determining that the engine disconnects the battery pack from the positive electrode after fully charging the battery pack.
  • the first voltage may be an empirical value, or may be the current voltage of the battery pack, that is, after the engine of the automobile is turned off, the voltage of the capacitor C may decrease, and by setting the first voltage, the voltage of the capacitor C is lowered to a certain extent. After that, the circuit switches to supply power through the battery pack.
  • the above-mentioned automobile intelligent battery uses a battery pack shunt capacitor in combination to reduce the internal impedance of the battery output.
  • the battery pack When the engine is started, the battery pack is used in parallel with the capacitor, and the energy is output at the same time.
  • the battery connected in parallel is more favorable for the high-current and short-time ignition of the engine.
  • the control unit will be disconnected after the battery pack is fully charged, so that the battery pack is separated from the positive electrode. After separation, only the capacitor is used to cooperate with the automobile engine (generator) to supply power to the whole vehicle.
  • the capacitor voltage is judged. After the first voltage is lower, switch to the battery pack.
  • the battery pack uses lithium iron phosphate battery as the main energy storage material, which replaces the traditional lead-acid battery, has the advantages of long life and light weight, and has obvious environmental protection benefits.
  • the reset switch S can be placed in the cab and connected to the car smart battery via an extension cord (wire).
  • a reset switch interface (which may be a socket, a corresponding plug for insertion at the end of the extension cable) is provided on the battery casing, and the reset switch S is connected to the auxiliary circuit in the casing through the reset switch interface.
  • the auxiliary circuit further includes an overcurrent detecting unit 40 connected to the control unit 30.
  • the control unit 30 also needs to determine whether the overcurrent detecting unit detects that the current output by the battery pack is greater than a fourth threshold, and if so, determines that the short circuit does not reset the battery pack.
  • the fourth threshold is an empirical value, and the fourth threshold is set to protect the circuit from overcurrent and short circuit.
  • the over-current detecting unit 40 controls the controlled switch 20 to turn off the battery output in time, reducing the possibility of burning the vehicle due to the short circuit of the line, and ensuring the safety of the personnel and the vehicle.
  • FIG. 3 is a circuit schematic diagram of an automobile intelligent battery in an embodiment
  • FIGS. 4a to 4g are partial enlarged views of portions of FIG. 3, including a battery pack 110, a capacitor 120, an overcharge and over discharge protection circuit 10, a controlled switch 20,
  • control unit 30 is a microcontroller U8.
  • the single chip microcomputer U8 cooperates with the overcharge and overdischarge protection circuit 10 to overcharge and discharge the battery pack 110.
  • the capacitor switch 122 is connected to the capacitor 120, and the capacitor switch 122 includes an N-channel MOSFET Q2, MOSFET.
  • the gate of Q2 is connected to the pin 9 of the single chip U8 in the control unit 30, the source of the MOS transistor Q2 is connected to the negative electrode, and the drain is connected to the negative terminal of the capacitor C1 in the capacitor array 120.
  • the control unit 30 intermittently scans the voltage of the battery pack 110. When it is determined that the battery pack voltage continues to slowly decrease for a certain period of time, it is determined that the vehicle is in a parked state, and the control capacitor switch 122 turns off the power supply of the capacitor 120 to the positive electrode.
  • the voltage switch of the voltage of the battery pack 110 is continuously detected within a second time period (or during a certain number of scans) and the capacitance switch is controlled each time the detected decrease amplitude is less than a third threshold.
  • 122 disconnects capacitor 120 from supplying power to the positive electrode.
  • the second duration and the third threshold are both empirical values.
  • Disconnecting the capacitor 120 when the vehicle is in the parked state can reduce the storage time of the battery pack 110 due to self-leakage of the capacitor 120. Moreover, since the capacitor 120 is disconnected and does not participate in the work, the life of the capacitor can be prolonged.
  • the single chip U8 also controls the capacitive switch 122 to be turned off while the battery pack 110 is in a sleep state to further save power.
  • the voltage regulator 80 includes a voltage regulator chip U7.
  • the output pin OUT of the voltage regulator chip U7 ie, the output of the voltage regulator 80
  • the power supply pin VDD of the single chip U8 provides the working power.
  • the input pin IN of the voltage regulator chip U7 (ie, the input terminal of the voltage regulator 80) is connected to the first freewheeling diode D1, and the first freewheeling diode D1 includes two cathodes connected together as a diode of the D1 output terminal, and one of them
  • the anode of the diode is connected to the positive electrode VCC-OUT, and the anode of the other diode is connected in series with the reset switch S2 and connected to the positive B+ of the battery pack.
  • the reset switch S2 is manually closed, the output pin OUT of the voltage regulator chip U7 supplies power to the power supply pin VDD of the microcontroller U8, so that the battery pack 110 is woken up by the sleep power saving state.
  • the reset switch S2 is a switch that is closed after being pressed and is in an open state when the force is not applied, such as a button, a tact switch, a contact switch having a spring return structure, and the like. Therefore, when the reset operation is performed by pressing the reset switch S2, a short press is performed.
  • control unit 30 is further configured to control the controlled switch 20 to turn off the power supply of the battery pack 110 to the positive electrode after the reset switch S2 is in the closed state for more than the first duration (ie, pressing the first duration without letting go). Put the battery pack into a sleep power saving state.
  • the control unit 30 is further configured to control the controlled switch 20 to turn off the power supply of the battery pack 110 to the positive electrode after the reset switch S2 is in the closed state for more than the first duration (ie, pressing the first duration without letting go). Put the battery pack into a sleep power saving state.
  • the function of long pressing the reset switch S2 to put the battery pack 110 into a sleep state is suitable for the case where the vehicle needs to be parked for a long time, so as to avoid battery damage caused by excessive power loss.
  • the first duration is an empirical value, the purpose of which is to distinguish the "long press” from the wake-up operation (short press) that the driver needs to return the battery pack 110 to normal operation, in one embodiment the first duration is 10 seconds.
  • the reset switch S2 and the switch that controls the battery pack 110 to enter the sleep state may also be independently set.
  • the reset detecting pin 3 of the control unit 30 is connected between the reset switch S2 and the freewheeling diode D1 (Switch port).
  • the reset switch S2 provides a closing signal to the reset detecting leg 3 when the external force is closed, and the control unit 30 determines the closing time of the reset switch S2 by the closing signal, and when the closing time of the reset switch S2 is detected to exceed the first time length, the control unit 30 controls The controlled switch 20 is turned off, causing the battery pack 110 to enter a sleep power saving state.
  • the reset unit 60 further includes a resistor R18 and R19 connected in series between the diode anode and the negative electrode of the freewheeling diode D1 connected to the reset switch S2, and the closing signal is obtained by dividing the voltage divider resistor R19. High level signal.
  • the automotive smart battery also includes a sensing unit 50.
  • the sensing unit 50 includes an acceleration sensing switch S1, which is normally in a closed state, and is turned off when detecting that its own acceleration is greater than a fifth threshold, and the control unit 30 (this In the embodiment, the pin 2 of the single chip U8 receives the shutdown signal (ie, the signal changes from the high level to the 0), and the control unit 30 controls the controlled switch 20 to disconnect the power supply of the battery pack 110 to the positive electrode.
  • the sensing unit 50 further includes a thermistor t connected in series with the resistor R16 and connected to the negative electrode. The pin 2 of the single chip U8 can obtain the thermistor according to the voltage drop divided by the thermistor t. The temperature is such that the temperature state of the corresponding component/position within the car is known.
  • the acceleration sensor switch S1 When the vehicle is in danger of overturning, falling weight loss or strong impact of the battery, the acceleration sensor switch S1 will be disconnected, and the control unit 30 will immediately turn off the battery output after sensing, to avoid oil leakage after the accident, and then cause a fire due to a short circuit. Second damage.
  • the controlled switch 20 includes a magnetic holding relay K1, a first charging capacitor C2, a second charging capacitor C3, and a half bridge pull-up circuit.
  • the half-bridge pull-up and pull-down circuit includes a PMOS transistor Q1 and an NMOS transistor Q3 connected in series with each other (ie, the drain of the PMOS transistor Q1 is connected to the drain of the NMOS transistor Q3).
  • the first charging capacitor C2 and the second charging capacitor C3 are connected in series, and one end of the second charging capacitor C3 not connected to the first charging capacitor is connected to the negative pole of the battery pack 110, and the first charging capacitor C2 is not connected to the second charging.
  • One end of the capacitor C3 is connected to the positive B+ of the battery pack.
  • One end of the magnetic holding relay K1 is connected to the positive electrode, and the other end is connected to the positive B+ of the battery pack.
  • One end of the coil of the magnetic holding relay K1 is connected to the connection point of C2 and C3, and the other end is connected to the connection point of the upper bridge and the lower bridge of the half bridge pull-up circuit (ie, the drains of the PMOS transistor Q1 and the NMOS transistor Q3).
  • the pull-up end of the half-bridge pull-up circuit (the source of the PMOS transistor Q1) is connected between the contact of the magnetic holding relay K1 and the positive electrode, and the pull-down terminal is connected to the negative electrode.
  • the control unit 30 pulls up and down the coil potential of the magnetic holding relay K1 by a half bridge pull-up circuit to open and close the relay.
  • the magnetic holding relay K1 is controlled to open and close by using the first charging capacitor C2, the second charging capacitor C3, and the half bridge pull-up circuit.
  • the magnetic holding relay K1 may be opened and closed by means of a full bridge, but the cost is higher.
  • the controlled switch 20 further includes a freewheeling diode D2, resistors R1, R4, R20.
  • the capacitors C2 and C3 are connected in series to the positive B+ of the battery pack, and are connected to an anode (2 feet) of the freewheeling diode D2 and the contact of the magnetic holding relay K1, and the other end of the magnetic holding relay K1 is connected to the positive electrode VCC- OUT, the negative pole of capacitor C3 is connected to the negative B- of the battery pack.
  • the source of the MOS transistor Q3 is connected to the negative B- of the battery pack via a resistor R20, the drain is connected to the drain of the MOS transistor Q2 and one end of the coil of the magnetic holding relay K1, and the other end of the coil of the magnetic holding relay K1 is connected between the capacitors C2 and C3.
  • the gate of the MOS transistor Q3 is connected to the gate of the MOS transistor Q1 after the series resistors R4 and R1. Between the resistors R4 and R1 is the VM port, and the signal is sent to the 6 pin of the U8 of the microcontroller.
  • the source of the MOS transistor Q1 is connected to the cathode of the freewheeling diode D2.
  • the MOS transistors Q1 and Q3 form a half-bridge upper-pull-down circuit, and the resistor R20 uses a resistor with a small resistance (for example, 2 ohms) to cancel the impact at the moment when the MOS tube Q1 and Q3 switch transition periods are simultaneously open. Current.
  • the relay in this embodiment selects the magnetic holding relay K1, and only one pulse voltage is needed for driving, and then the working state of the relay is maintained by the permanent magnet.
  • Capacitors C2 and C3 serve as the source of pulse energy for the magnetic holding relay K1.
  • the MOS transistor Q1 When the port VM is at a low level, the MOS transistor Q1 is turned on, Q3 is turned off, and one end of the coil of the magnetic holding relay K1 connected between the MOS transistors Q1 and Q3 is turned on. Pulled to a high potential, the other end of the magnetic holding relay K1 connected between the capacitors C2 and C3 is 0V, thereby forming a forward drive. Then, the positive voltage from the freewheeling diode D2 is charged through the MOS transistor Q1 and the coil of the magnetic holding relay K1 to charge the capacitor C3.
  • the positive and negative voltages of C3 rise from 0V to VDD, and the positive and negative voltages of the capacitor C2 are 0.
  • the MOS transistor Q3 is turned on, Q1 is turned off, and the energy stored in the capacitor C3 is pulled down by the MOS transistor Q3 to the battery pack negative pole B- through the magnetic holding relay K1 to form a loop, and the capacitor C2 is added.
  • the positive and negative poles are charged and stored from 0V to 0V to VDD, thereby driving the magnetic holding relay K1 to reverse pulse operation.
  • the function of the freewheeling diode D2 is that when the battery pack 110 is in a low-energy state and cannot resume operation after the relay K1 is turned off, it is necessary to supply energy from the outside (for example, an automobile engine) through the positive electrode VCC-OUT.
  • the external positive voltage supplies energy to the MOS transistor Q1 through the 3 pin of the freewheeling diode D2, and the voltage scan of the positive VDD of the capacitor 120 (the potential is equal to the positive electrode VCC-OUT) can be judged by the single chip U8 to determine whether the external charger is in the After sensing that the external charging power supply is stable, the single-chip microcomputer U8 issues a command to the relay K1 through the 12-pin, and turns on the magnetic holding relay K1 to charge the battery pack 110.
  • control unit 30 when the control unit 30 detects that the reset switch S2 is closed after power-on, it is also necessary to determine whether the voltage of the battery pack 110 is lower than a seventh threshold, and if so, the battery pack 110 is not reset and awake.
  • the battery pack 110 has two wake-up modes after entering the sleep power-saving state, one way is to wake up by short pressing the reset switch S2; the other is to externally supply the positive electrode VCC-OUT and the negative electrode to the battery pack 110. Charging.
  • the MCU U8 first determines whether the circuit is short-circuited by the overcurrent detecting unit 40 after power-on. If not, it detects whether the reset switch S2 is closed by the reset detecting pin 3, and if the reset switch S2 is closed (the reset detecting pin 3 receives the closing signal), Then, it is determined that the reset wakes up. If the voltage of the battery pack 110 is higher than the seventh threshold, the single chip U8 controls the controlled switch 20 and the capacitive switch 122 to be closed.
  • the single chip U8 controls the capacitive switch 122 to be closed, and when it is detected that the voltage VDD of the capacitor 120 is higher than the eighth threshold, the controlled switch 20 is closed.
  • the battery pack 110 is charged.
  • the automotive smart battery further includes a status indicating circuit 70 including a light emitting diode capable of displaying a plurality of colors for indicating the off state of the battery pack 110.
  • the green light is used to indicate that the battery pack 110 is normally turned off
  • the red light indicates that the output is short-circuited
  • the yellow light indicates that the battery is weakly turned off.
  • the indicating circuit 70 performs light emission control by the control unit 30. When the battery pack 110 is woken up, if the voltage of the battery pack 110 is lower than the seventh threshold, the yellow light is used to remind the battery pack 110 without waking up.
  • the battery protection chip U3 monitors the voltage of the battery through the VDD pin 3 and the VSS pin 5, and then controls the controlled switch 20 by connecting a NOR gate U1 through the CO pin and the DO pin.
  • the CO pin and the DO pin each output a single pull-down signal in a single or parallel connection.
  • each battery in series is correspondingly equipped with a battery protection chip; in other embodiments, the battery group 110 may also include multiple groups of batteries, and the groups are connected in series, and each battery in each group is connected in parallel. Then install a battery protection chip for each battery pack.
  • the vehicle intelligent battery further includes a battery voltage balance circuit 12 connected to the overcharge and over discharge protection circuit 10 and the battery pack 110.
  • the battery voltage balance circuit 12 is configured to detect that the battery voltage in the battery pack 110 is greater than the overcharge and over discharge protection circuit 10
  • the voltage of each battery is balanced at the sixth threshold.
  • the value of the sixth threshold is related to the chip used by the overcharge and overdischarge protection circuit 10.
  • the battery voltage balancing circuit 12 includes a switching transistor (N-channel MOSFET in this embodiment). Q4).
  • the input end of the switch tube (the drain of the MOS tube) is connected to the positive pole of a battery in the battery pack 110, and the output end of the switch tube (the source of the MOS tube) is connected to the positive pole of another battery in series with the negative pole of the battery, and the switch tube
  • the control terminal (the gate of the MOS transistor) is connected to the power balance pin CB of the battery protection chip U3, and the battery protection chip U3 is controlled by the power balance pin when detecting that the potential difference between the input terminal and the output terminal of the switch transistor is greater than the sixth threshold.
  • the switch tube is turned on.
  • the controlled switch further includes a third charging capacitor C1.
  • the third charging capacitor C1 is connected in parallel with the first charging capacitor C17 and the second charging capacitor C39 connected in series. Setting the third charging capacitor C1 can supply enough energy to re-drive the magnetic holding relay K1 after the circuit is short-circuited.

Abstract

一种汽车智能蓄电池,包括设于蓄电池外壳内的辅助电路和露于外壳外的复位开关(S),辅助电路包括控制单元(30)和受控开关(20),控制单元(30)与正电极、负电极连接,控制单元(30)用于对电池组的电压进行监测,当检测到电池组的电压小于第二阈值时控制受控开关(20)断开电池组对正电极和控制单元(30)的供电,使电池组进入睡眠状态;复位开关(S)一端连接电池组的正极,在电池组处于睡眠状态时受外力闭合使得电池组恢复对控制单元30的供电,使得电池组由睡眠省电状态被唤醒。该汽车智能蓄电池既省电环保,又能解决救援车辆资源浪费问题。

Description

汽车智能蓄电池
【技术领域】
本发明涉及汽车的供电装置,特别是涉及一种汽车智能蓄电池。
【背景技术】
机动车一般配备有蓄电池,配合发动机(发电机)为车上的各用电设备提供电能。汽车在使用过程中,会出现各种原因导致的蓄电池电量下降而无法起动汽车的情况,常见例子有:忘记关车灯、停车熄火听音响、雷电大雨连夜响警报、汽车线路漏电、长时间停放等等。这时往往需要救援车辆来搭火,才能启动汽车,极为不便。
【发明内容】
基于此,有必要针对蓄电池能量下降而无法起动汽车的问题,提供一种汽车智能蓄电池。
一种汽车智能蓄电池,包括蓄电池外壳、外壳内的电池组、以及与电池组连接的正电极和负电极,所述正电极和负电极用于连接汽车的电路对汽车进行供电或接受充电,其特征在于,还包括复位开关和设于所述外壳内的辅助电路,所述辅助电路包括控制单元和受控开关,所述控制单元与所述正电极、负电极连接,所述控制单元用于对所述电池组的电压进行监测,当检测到电池组的电压小于第二阈值时控制所述受控开关断开电池组对所述正电极和控制单元的供电,使电池组进入睡眠省电状态;所述复位开关一端连接所述电池组的正极,且所述复位开关在受外力时闭合,用于在所述电池组处于睡眠省电状态时通过自身的闭合使得电池组恢复对所述控制单元的供电,再由控制单元控制所述受控开关恢复电池组对正电极的供电,从而使得所述电池组由睡眠省电状态被唤醒。
上述汽车智能蓄电池,当电池组电压下降到小于第二阈值时,控制单元关闭电池组输出,让电池组进入睡眠省电状态。当需要再次起动车辆时,只需要手动按压一下复位开关,即可让电池恢复正常工作(相当于自带备用起动电源功能)。无需等待救援车辆来搭火,无形中既省电环保,又能解决救援车辆资源浪费问题。
【附图说明】
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他实施例的附图。
图1是一实施例中汽车智能蓄电池的结构框图;
图2是另一实施例中汽车智能蓄电池的结构框图;
图3是一实施例中汽车智能蓄电池的电路原理图;
图4a~4g是图3各部分的局部放大图;
图5是另一实施例中汽车智能蓄电池的电路原理图;
图6是图5中受控开关的局部放大图。
【具体实施方式】
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
除非另有定义,本文所使用的所有的技术和科学术语与属于本发明的技术领域的技术人员通常理解的含义相同。本文中在本发明的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本发明。本文所使用的术语“及/或”包括一个或多个相关的所列项目的任意的和所有的组合。
一种汽车智能蓄电池,包括蓄电池外壳,盖合于外壳的上盖,位于上盖和外壳内的电池组和与电池组连接的辅助电路,从上盖外伸进上盖内与电池组连接的正电极和负电极(正电极连接电池组正极,负电极连接电池组负极),以及露于外壳外的复位开关。汽车智能蓄电池通过正电极和负电极与汽车的电路双向连接,完成充电、蓄电、供电的基本功能。图1是一实施例中汽车智能蓄电池的结构框图。汽车智能蓄电池通过正电极与汽车的发动机电性连接,辅助电路包括控制单元30和受控开关20。控制单元30与正电极、负电极连接,用于对电池组的电压进行监测,当检测到电池组的电压小于第二阈值时控制受控开关20断开电池组对正电极和控制单元30的供电,使电池组进入睡眠省电状态。复位开关S一端连接电池组的正极B+,且复位开关S在受外力(人为操作)时闭合。在电池组处于睡眠省电状态时,驾驶员可以通过闭合复位开关S(在本实施例中设于蓄电池外壳外),使得电池组恢复对控制单元30的供电,再由控制单元30控制受控开关20恢复电池组对正电极的供电,从而使得电池组由睡眠省电状态被唤醒。
汽车在使用过程中,会出现各种原因导致的蓄电池电量下降而无法起动汽车的情况,常见例子有:忘记关车灯、停车熄火听音响、雷电大雨连夜响警报、汽车线路漏电、长时间停放等等。上述汽车智能蓄电池,当电池组电压下降到小于第二阈值时(第二阈值为一个经验值,在其中一个实施例中设置为电池充满时电压的1/4),控制单元30关闭电池组输出,让电池组进入睡眠状态。当需要再次起动车辆时,只需要手动按压一下设置在蓄电池外壳上的复位开关S,即可让电池恢复正常工作(相当于自带备用起动电源功能)。无需等待救援车辆来搭火,无形中既省电环保,又能解决救援车辆资源浪费问题。
在图1所示实施例中,辅助电路还包括电容器C和电容开关Q。电容器C用于与电池组配合进行复合供电,因此要采用大容量的电容,在其中一个实施例中采用电容阵列。电容器C与电容开关Q串联后接至正电极,且串联的电容器C和电容开关Q与蓄电池电池组并联。控制单元30还用于检测电池组的电压,在电池组的电压高于第一阈值时控制电容开关Q导通,使得电容器C接入正电极和负电极进行供电/充电,并控制受控开关20断开电池组通过正电极进行的供电/充电;控制单元30在正电极的电压小于第一电压时控制受控开关20闭合,从而恢复电池组对正电极的供电,再通过断开电容开关Q把电容器C与负电极分离,从而停止电容器C的充放电。其中,第一阈值是一个经验值,即判定发动机给电池组充满电后断开电池组与正电极的连接。第一电压可以是一个经验值,也可以是电池组当前的电压,即在汽车发动机熄火后,电容器C的电压会下降,通过对第一电压的设定,使得电容器C的电压下降至一定程度后,电路切换为通过电池组供电。
上述汽车智能蓄电池将电池组并联电容器复合使用,能够降低电池输出内部阻抗。在发动机起动时,电池组与电容器并联使用,同时输出能量,并联后的蓄电池更有利于发动机大电流短时间点火启动工作。控制单元会在电池组充满电后断开,使电池组与正电极分离,分离后仅通过电容器配合汽车发动机(发电机)为全车供电,当发动机停止发电(汽车熄火),判断出电容器电压低于第一电压后,切换为电池组供电。这一巧妙设计使得电池组与电容器在不同状态下交替使用,为电池组寿命延长提供了良好的条件,基本达到了一车一颗蓄电池,直到车辆报费。而传统的车辆使用蓄电池10年大约需要更换4次,使用上述汽车智能蓄电池的环保效益明显。
在其中一个实施例中,蓄电池电池组采用磷酸铁锂电池作为主要蓄能材料,代替传统的铅酸蓄电池,具有长寿命、轻量化的优点,且环保效益明显。
由于将复位开关S设置在蓄电池外壳上还是不太方便,驾驶员还要打开引擎盖才能对复位开关S进行操作。在其中一个实施例中,可以将复位开关S设置于驾驶室内,并通过一根延长线(电线)连接到汽车智能蓄电池。相应地,在蓄电池外壳上设置复位开关接口(可以是插口,延长线末端相应设置插头进行插接),通过复位开关接口将复位开关S接入外壳内的辅助电路。
参见图2,在该实施例中,辅助电路还包括与控制单元30连接的过流检测单元40。用于在电池组输出的电流大于第四阈值时使受控开关20断开电池组对正电极的供电。控制单元30在上电后还需要判定过流检测单元是否检测到电池组输出的电流大于第四阈值,若是,则判定为短路且不对电池组进行复位唤醒。第四阈值为一经验值,设置第四阈值对电路进行过流和短路保护。当电池组外部连接的线路发生短路时,过流检测单元40会控制受控开关20及时关闭蓄电池输出,降低因线路短路引起车辆燃烧的可能性,保障人员和车辆的安全。
图3是一实施例中汽车智能蓄电池的电路原理图,图4a~4g是图3各部分的局部放大图,包括电池组110、电容器120、过充过放保护电路10、受控开关20、控制单元30、过流检测单元40、传感单元50、复位单元60、状态指示电路70、稳压器80以及电容开关122。在图3所示实施例中,控制单元30是单片机U8。单片机U8配合过充过放保护电路10对电池组110进行过充过放保护。
参见图4e,电容开关122与电容器120连接,电容开关122包括N沟道MOSFET Q2,MOSFET Q2的栅极与控制单元30中的单片机U8的引脚9连接,MOS管Q2的源极连接负电极、漏极接电容阵列120中的电容C1负极。控制单元30对电池组110的电压进行间歇性扫描,当测得电池组电压在一定时间内持续缓慢下降时,判断车辆为停放状态,控制电容开关122断开电容器120对正电极的供电。在其中一个实施例中,是在第二时长内(或者扫描达到一定次数的过程中)连续检测到电池组110电压的电压下降且每次检测到的下降幅度小于第三阈值时,控制电容开关122断开电容器120对正电极的供电。其中第二时长和第三阈值均为经验值。
在车辆为停放状态时将电容器120断开,可以减少电容器120因自漏电而影响到电池组110的存电时间。且因电容器120断开后不参与工作,同时也能够延长电容器的使用寿命。
在图3所示实施例中,单片机U8在电池组110进入睡眠状态的同时,还要控制电容开关122断开,以进一步节省电能。
参见图4f,稳压器80包括稳压芯片U7,稳压芯片U7的输出引脚OUT(即稳压器80的输出端)提供稳定的5V直流电压给辅助电路中的一些元器件,包括为单片机U8的电源脚VDD提供工作电源。稳压芯片U7的输入引脚IN(即稳压器80的输入端)与第一续流二极管D1连接,第一续流二极管D1包括两个阴极连在一起作为D1输出端的二极管,且其中一个二极管的阳极连接正电极VCC-OUT,另一个二极管的阳极串联复位开关S2后连接电池组的正极B+。复位开关S2被人为闭合时稳压芯片U7的输出引脚OUT向单片机U8的电源脚VDD供电,从而使得电池组110由睡眠省电状态被唤醒。
在其中一个实施例中,复位开关S2为被按下后闭合、不受力时为断开状态的开关,例如按钮、轻触开关、有弹簧复位结构的触点开关等。故通过按压复位开关S2进行复位操作时是进行短按。
在其中一个实施例中,控制单元30还用于在复位开关S2处于闭合状态超过第一时长(即按压第一时长不放手)后控制受控开关20断开电池组110对正电极的供电,使电池组进入睡眠省电状态。想再次起动车辆时,只需要按压一下复位开关S2即可让电池组110恢复正常工作。长按复位开关S2使电池组110进入睡眠状态的功能适用于车辆需要长期停放的情况,避免因过度亏电而导致蓄电池损坏。第一时长是一个经验值,目的是将“长按”与驾驶员需要让电池组110恢复正常工作的唤醒操作(短按)相区分,在其中一个实施例中第一时长为10秒。在其他实施例中,还可以将复位开关S2和控制电池组110进入睡眠状态的开关分别独立设置。
在本实施例中,控制单元30的复位检测脚3接于复位开关S2与续流二极管D1之间(Switch端口)。复位开关S2受外力闭合时向复位检测脚3提供闭合信号,控制单元30通过该闭合信号判断复位开关S2的闭合时长,当检测到复位开关S2的闭合时长超过第一时长时,控制单元30控制受控开关20断开,使得电池组110进入睡眠省电状态。在本实施例中,复位单元60还包括串联接于续流二极管D1连接复位开关S2的二极管阳极与所述负电极之间的电阻R18、R19,闭合信号是经分压电阻R19分压后得到的高电平信号。
汽车智能蓄电池还包括传感单元50。参见图4g,在该实施例中,传感单元50包括加速度传感开关S1,加速度传感开关S1平时为闭合状态,在检测到自身的加速度大于第五阈值时断开,控制单元30(本实施例中为单片机U8的2脚)收到关断信号(即信号从高电平变为0),由控制单元30控制受控开关20断开电池组110对正电极的供电。在该实施例中,传感单元50还包括一个和电阻R16串联并连接负电极的热敏电阻t,单片机U8的2脚根据热敏电阻t上分得的压降可以得到热敏电阻t的温度,从而得知汽车内相应部件/位置的温度状态。
当车辆发生翻车、坠落失重或电池受到强烈撞击等危险时,加速度传感开关S1会被断开,控制单元30感知后及时关闭电池输出,避免事故发生后漏油,再因电线短路起火而造成二次伤害。
参见图4d,受控开关20包括磁保持继电器K1、第一充能电容C2、第二充能电容C3及半桥式上拉下拉电路。在本实施例中,半桥式上拉下拉电路包括相互串联的PMOS管Q1和NMOS管Q3,(即PMOS管Q1的漏极连接NMOS管Q3的漏极)。第一充能电容C2和第二充能电容C3串联,第二充能电容C3未连接所述第一充能电容的一端连接电池组110的负极,第一充能电容C2未连接第二充能电容C3的一端连接电池组正极B+。磁保持继电器K1的触点一端连接正电极、另一端连接电池组正极B+。磁保持继电器K1的线圈一端连接C2、C3连接点,另一端连接半桥式上拉下拉电路上桥和下桥的连接点(即PMOS管Q1和NMOS管Q3的漏极)。半桥式上拉下拉电路的上拉端(PMOS管Q1的源极)接于磁保持继电器K1的触点与正电极之间、下拉端连接负电极。控制单元30通过半桥式上拉下拉电路将磁保持继电器K1的线圈电位上拉和下拉对继电器进行开闭控制。
在本实施例中,是采用第一充能电容C2、第二充能电容C3及半桥式上拉下拉电路的方案对磁保持继电器K1进行开闭控制。在其他实施例中,也可以采用全桥的方式对磁保持继电器K1进行开闭控制,但成本更高。
在图4d所示实施例中,受控开关20还包括续流二极管D2,电阻R1、R4、R20。电容C2和C3串联后接到电池组正极B+,并连接续流二极管D2的一阳极(2脚)和磁保持继电器K1的触点,磁保持继电器K1的触点另一端接至正电极VCC-OUT,电容C3的负极连接电池组负极B-。MOS管Q3的源极通过电阻R20连接电池组负极B-,漏极连接MOS管Q2的漏极和磁保持继电器K1线圈的一端,磁保持继电器K1线圈的另一端接到电容C2和C3之间,MOS管Q3的栅极串联电阻R4、R1后连接MOS管Q1的栅极。电阻R4和R1之间为VM端口,将信号送至单片机U8的6脚。MOS管Q1的源极连接续流二极管D2的阴极。
MOS管Q1和Q3形成了半桥式上-下拉电路,电阻R20采用一个阻值很小的电阻(例如2欧姆),作用是抵消在MOS管Q1和Q3开关过渡期同时处于打开的瞬间的冲击电流。为了减少电路能耗,延长停车待开时间,本实施例中的继电器选用了磁保持继电器K1,驱动时只需要一个脉冲电压即可,随后由永磁铁保持继电器的工作状态。
电容C2和C3作为磁保持继电器K1的脉冲能量来源,当端口VM为低电平时,MOS管Q1导通、Q3关闭,连接在MOS管Q1和Q3之间的磁保持继电器K1线圈的一端被上拉到高电位,连接在电容C2和C3之间的磁保持继电器K1线圈另一端为0V,从而形成了正向驱动。随后来自续流二极管D2的正电压经过MOS管Q1、再经过磁保持继电器K1的线圈对电容C3进行充电,充电过程中C3的正负极电压由0V上升至VDD,电容C2正负极电压为0。当端口VM处于高电平时,MOS管Q3导通、Q1关闭,存储在电容C3中的能量通过磁保持继电器K1被MOS管Q3向电池组负极B-下拉而形成回路,再加上电容C2的正负极由0V向0V至VDD间充电蓄能,从而驱动磁保持继电器K1反向脉冲工作。
续流二极管D2的作用是当继电器K1被断开后,电池组110处于低能量状态而无法自行恢复工作时,需要来自外部的电能(例如汽车发动机)通过正电极VCC-OUT补充能量,这时候外来的正电压通过续流二极管D2的3脚给MOS管Q1提供能量,同时通过单片机U8对电容器120正极VDD(电位与正电极VCC-OUT相等)的电压扫描可以判断出是否外接充电器,在感知到外接充电电源稳定后,单片机U8通过12脚向继电器K1发出指令,接通磁保持继电器K1对电池组110进行充电。
在其中一个实施例中,控制单元30在上电后检测到复位开关S2闭合时,还需要判断电池组110的电压是否低于第七阈值,若是,则不对电池组110进行复位唤醒。
电池组110在进入睡眠省电状态后有两种唤醒方式,一种方式是通过短按复位开关S2进行唤醒;另一种是给正电极VCC-OUT和负电极外接电源,给电池组110进行充电。单片机U8在上电后首先通过过流检测单元40判断电路是否短路,若否,则通过复位检测脚3检测复位开关S2是否闭合,若复位开关S2闭合(复位检测脚3接收到闭合信号),则判定为复位唤醒,若电池组110的电压高于第七阈值,则单片机U8控制受控开关20和电容开关122闭合。若复位开关S2未闭合,则说明是外接了电源进行充电,此时单片机U8控制电容开关122闭合,并在检测到电容器120的电压VDD高于第八阈值时,控制受控开关20闭合,对电池组110进行充电。
在图3所示实施例中,汽车智能蓄电池还包括状态指示电路70,包括能够显示多种颜色的发光二极管,用于指示电池组110的关闭状态。在本实施例中,是用绿灯指示电池组110正常待机关闭,红灯指示输出短路关闭,黄灯指示电池弱电关闭。指示电路70是通过控制单元30进行发光控制。对电池组110进行唤醒时,如果电池组110的电压低于第七阈值,在不对电池组110进行唤醒的同时通过黄灯进行提醒。
请参见图4b,电池保护芯片U3通过VDD脚3和VSS脚5监测电池的电压,再通过CO引脚和DO引脚连接一个或非门U1来对受控开关20进行控制。CO引脚和DO引脚各输出的是单个或并联多颗的下拉信号。在该实施例中,每个串联的电池相应配备一个电池保护芯片;在其他实施例中,电池组110也可以包括多组电池,组与组之间串联,每组电池中的各个电池并联,然后为每一组电池配备一个电池保护芯片。
汽车智能蓄电池还包括与过充过放保护电路10和电池组110连接的电池电压平衡电路12,电池电压平衡电路12用于在过充过放保护电路10检测到电池组110中的电池电压大于第六阈值时平衡各电池的电压。第六阈值的取值与过充过放保护电路10采用的芯片有关。
参见图4b,在该实施例中,电池电压平衡电路12包括开关管(本实施例中为N沟道MOSFET Q4)。开关管的输入端(MOS管的漏极)连接电池组110中一电池的正极,开关管的输出端(MOS管的源极)连接与该电池的负极串联的另一电池的正极,开关管的控制端(MOS管的栅极)与电池保护芯片U3的电量均衡引脚CB连接,电池保护芯片U3在检测到开关管的输入端和输出端电势差大于第六阈值时通过电量均衡引脚控制开关管导通。
图5是另一实施例中辅助电路的电路原理图,其相对于图3所示实施例的主要改进在于受控开关20的部分,另外还将一部分逻辑判断和过充过放保护电路10的功能集成进了单片机中。请一并参见图6,在此着重对受控开关进行介绍。在该实施例中,受控开关还包括第三充能电容C1。第三充能电容C1与串联的第一充能电容C17、第二充能电容C39并联。设置第三充能电容C1可以为电路短路后重新驱动磁保持继电器K1提供足够的能量。
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。

Claims (10)

  1. 一种汽车智能蓄电池,包括蓄电池外壳、外壳内的电池组、以及与电池组连接的正电极和负电极,所述正电极和负电极用于连接汽车的电路对汽车进行供电或接受充电,所述汽车智能蓄电池还包括复位开关和设于所述外壳内的辅助电路,所述辅助电路包括控制单元和受控开关,所述控制单元与所述正电极、负电极连接,所述控制单元用于对所述电池组的电压进行监测,当检测到电池组的电压小于第二阈值时控制所述受控开关断开电池组对所述正电极和控制单元的供电,使电池组进入睡眠省电状态;所述复位开关一端连接所述电池组的正极,且所述复位开关在受外力时闭合,用于在所述电池组处于睡眠省电状态时通过自身的闭合使得电池组恢复对所述控制单元的供电,再由控制单元控制所述受控开关恢复电池组对正电极的供电,从而使得所述电池组由睡眠省电状态被唤醒。
  2. 根据权利要求1所述的汽车智能蓄电池,其特征在于,所述辅助电路还包括稳压器,所述稳压器的输出端与所述控制单元的电源脚连接,为所述控制单元提供工作电源,所述稳压器的输入端与第一续流二极管连接,所述第一续流二极管包括两个阴极连在一起作为第一续流二极管的输出端的二极管,且其中一个二极管的阳极连接所述正电极,另一个二极管的阳极串联所述复位开关后连接所述电池组的正极;所述复位开关在受外力闭合时,所述电池组的正极是通过所述稳压器的输出端向控制单元的电源脚提供工作电压,从而使得所述电池组由所述睡眠省电状态被唤醒。
  3. 根据权利要求2所述的汽车智能蓄电池,其特征在于,所述复位开关为被按下后闭合、不受力时为断开状态的开关,所述控制单元还用于在复位开关处于闭合状态超过第一时长后控制所述受控开关断开所述电池组对正电极的供电,使电池组进入所述睡眠省电状态。
  4. 根据权利要求3所述的汽车智能蓄电池,其特征在于,所述控制单元的复位检测脚接于所述复位开关与续流二极管之间,所述复位开关受外力闭合时向所述复位检测脚提供闭合信号,所述控制单元通过所述闭合信号判断复位开关的闭合时长,当检测到复位开关的闭合时长超过所述第一时长时,所述控制单元控制所述受控开关断开,使得所述电池组进入所述睡眠省电状态。
  5. 根据权利要求2所述的汽车智能蓄电池,其特征在于,所述辅助电路还包括与所述控制单元连接的过流检测单元,用于在所述电池组输出的电流大于第四阈值时使所述受控开关断开电池组对正电极的供电;所述控制单元在上电后还需要判定过流检测单元是否检测到电池组输出的电流大于第四阈值,若是则判定为短路且不对电池组进行复位唤醒。
  6. 根据权利要求1所述的汽车智能蓄电池,其特征在于,所述辅助电路还包括加速度传感开关,所述加速度传感开关在检测到自身的加速度大于第五阈值时向所述控制单元发送关断信号,由所述控制单元控制所述受控开关断开所述电池组对正电极的供电。
  7. 根据权利要求1所述的汽车智能蓄电池,其特征在于,还包括延长电线和设于所述外壳上的复位开关接口,所述复位开关设于汽车的驾驶室内,通过所述延长电线和复位开关接口接入所述辅助电路。
  8. 根据权利要求5所述的汽车智能蓄电池,其特征在于,所述受控开关包括磁保持继电器、第一充能电容、第二充能电容及半桥式上拉下拉电路,所述第一充能电容和第二充能电容串联,所述第二充能电容未连接所述第一充能电容的一端连接电池组负极,所述第一充能电容未连接所述第二充能电容的一端连接所述电池组的正极;所述磁保持继电器的触点一端连接所述正电极、另一端连接所述电池组正极,所述磁保持继电器的线圈一端连接第一、第二充能电容的连接点、另一端连接所述半桥式上拉下拉电路上桥和下桥的连接点;所述半桥式上拉下拉电路的上拉端接于所述触点与正电极之间、下拉端连接所述负电极,所述控制单元通过所述半桥式上拉下拉电路将所述磁保持继电器的线圈电位上拉和下拉对继电器进行开闭控制。
  9. 根据权利要求8所述的汽车智能蓄电池,其特征在于,所述受控开关还包括第二续流二极管,所述第二续流二极管的输出端连接所述上拉端,所述第二续流二极管包括两个阴极连在一起作为第二续流二极管的输出端的二极管,且其中一个二极管的阳极连接所述正电极,另一个二极管的阳极连接所述电池组的正极;所述的控制单元在上电后通过所述复位检测脚检测复位开关是否闭合,若否,则判定为外接充电,所述控制单元控制所述磁保持继电器的触点闭合从而对电池组进行充电。
  10. 根据权利要求9所述的汽车智能蓄电池,其特征在于,所述受控开关还包括第三充能电容,所述第三充能电容与串联的第一、第二充能电容并联。
PCT/CN2017/075319 2016-03-02 2017-03-01 汽车智能蓄电池 WO2017148385A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610119374.4 2016-03-02
CN201610119374.4A CN105905055B (zh) 2016-03-02 2016-03-02 汽车智能蓄电池

Publications (1)

Publication Number Publication Date
WO2017148385A1 true WO2017148385A1 (zh) 2017-09-08

Family

ID=56745138

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/075319 WO2017148385A1 (zh) 2016-03-02 2017-03-01 汽车智能蓄电池

Country Status (2)

Country Link
CN (1) CN105905055B (zh)
WO (1) WO2017148385A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108288867A (zh) * 2018-03-20 2018-07-17 汽-大众汽车有限公司 一种蓄电池过放电保护装置及汽车
CN112698981A (zh) * 2021-01-08 2021-04-23 重庆长安新能源汽车科技有限公司 一种防止单片机复位信号失效的保护电路及方法
CN113183898A (zh) * 2021-05-06 2021-07-30 重庆长安汽车股份有限公司 防止暗电流过大造成亏电的装置、方法及车辆
CN113238155A (zh) * 2021-06-24 2021-08-10 国网山西省电力公司晋中供电公司 一种基于冲击放电的电池故障或失效检测方法
CN108288867B (zh) * 2018-03-20 2024-04-26 一汽-大众汽车有限公司 一种蓄电池过放电保护装置及汽车

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105905055B (zh) * 2016-03-02 2018-11-09 深圳市银盾科技开发有限公司 汽车智能蓄电池
CN110718897A (zh) * 2018-07-12 2020-01-21 士林电机厂股份有限公司 具自动侦测功能的电压控制装置
US20230122499A1 (en) * 2019-10-11 2023-04-20 Ariens Company Power source and control system for a lawn mower
CN113246755A (zh) * 2020-02-11 2021-08-13 武汉路特斯汽车有限公司 一种电动汽车低压电池交流充电控制系统
CN111332229B (zh) * 2020-03-11 2021-11-23 上海度普新能源科技有限公司 一种车辆控制方法、装置、存储介质及电子设备
CN112061056B (zh) * 2020-09-02 2024-01-09 湖北衡拓新能源科技有限公司 一种降低整车静态电流的处理方法
CN112234856B (zh) * 2020-09-30 2021-09-28 重庆辉腾能源股份有限公司 一种智能切换交流直流的便携式电源及其控制方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4641041A (en) * 1984-07-10 1987-02-03 Robert Bosch Gmbh Circuit arrangement for registering false release signals for a restraint system
US20020195290A1 (en) * 2001-05-18 2002-12-26 Hiroyuki Hayakawa Motor vehicle that acquires driving power for running from high voltage power supply
CN102765363A (zh) * 2012-06-19 2012-11-07 常州瑞恩动力科技有限公司 一种新能源汽车撞车自动保护器
CN202863177U (zh) * 2012-09-28 2013-04-10 浙江吉利汽车研究院有限公司杭州分公司 汽车蓄电池电量保护装置
CN203596609U (zh) * 2013-11-28 2014-05-14 四川天壹科技发展有限公司 汽车蓄电池过放保护装置
CN204271684U (zh) * 2014-11-21 2015-04-15 何远强 一种新型高保障的启动电池组
CN105905055A (zh) * 2016-03-02 2016-08-31 深圳市银盾科技开发有限公司 汽车智能蓄电池
CN205632365U (zh) * 2016-03-02 2016-10-12 深圳市银盾科技开发有限公司 汽车智能蓄电池

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4059838B2 (ja) * 2003-11-14 2008-03-12 ソニー株式会社 バッテリパック、バッテリ保護処理装置、およびバッテリ保護処理装置の制御方法
JP4782072B2 (ja) * 2007-05-18 2011-09-28 パナソニック株式会社 電源装置
CN102593909A (zh) * 2012-03-02 2012-07-18 宁德新能源科技有限公司 电池均衡电路可靠性检测系统

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4641041A (en) * 1984-07-10 1987-02-03 Robert Bosch Gmbh Circuit arrangement for registering false release signals for a restraint system
US20020195290A1 (en) * 2001-05-18 2002-12-26 Hiroyuki Hayakawa Motor vehicle that acquires driving power for running from high voltage power supply
CN102765363A (zh) * 2012-06-19 2012-11-07 常州瑞恩动力科技有限公司 一种新能源汽车撞车自动保护器
CN202863177U (zh) * 2012-09-28 2013-04-10 浙江吉利汽车研究院有限公司杭州分公司 汽车蓄电池电量保护装置
CN203596609U (zh) * 2013-11-28 2014-05-14 四川天壹科技发展有限公司 汽车蓄电池过放保护装置
CN204271684U (zh) * 2014-11-21 2015-04-15 何远强 一种新型高保障的启动电池组
CN105905055A (zh) * 2016-03-02 2016-08-31 深圳市银盾科技开发有限公司 汽车智能蓄电池
CN205632365U (zh) * 2016-03-02 2016-10-12 深圳市银盾科技开发有限公司 汽车智能蓄电池

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108288867A (zh) * 2018-03-20 2018-07-17 汽-大众汽车有限公司 一种蓄电池过放电保护装置及汽车
CN108288867B (zh) * 2018-03-20 2024-04-26 一汽-大众汽车有限公司 一种蓄电池过放电保护装置及汽车
CN112698981A (zh) * 2021-01-08 2021-04-23 重庆长安新能源汽车科技有限公司 一种防止单片机复位信号失效的保护电路及方法
CN112698981B (zh) * 2021-01-08 2023-05-23 重庆长安新能源汽车科技有限公司 一种防止单片机复位信号失效的保护电路及方法
CN113183898A (zh) * 2021-05-06 2021-07-30 重庆长安汽车股份有限公司 防止暗电流过大造成亏电的装置、方法及车辆
CN113183898B (zh) * 2021-05-06 2023-05-12 重庆长安汽车股份有限公司 防止暗电流过大造成亏电的装置、方法及车辆
CN113238155A (zh) * 2021-06-24 2021-08-10 国网山西省电力公司晋中供电公司 一种基于冲击放电的电池故障或失效检测方法
CN113238155B (zh) * 2021-06-24 2024-04-26 国网山西省电力公司晋中供电公司 一种基于冲击放电的电池故障或失效检测方法

Also Published As

Publication number Publication date
CN105905055A (zh) 2016-08-31
CN105905055B (zh) 2018-11-09

Similar Documents

Publication Publication Date Title
WO2017148385A1 (zh) 汽车智能蓄电池
CN102694403B (zh) 一种充电器及其控制方法
CN106532801A (zh) 一种电池管理系统的充电唤醒电路
CN207747773U (zh) 电动汽车蓄电池亏电自充电系统及电动汽车
CN111660871A (zh) 一种新能源汽车的新型电源供电系统及其供电方法
CN206180614U (zh) 一种电池管理系统的充电唤醒电路
CN206742879U (zh) 用于智能电动设备的电池装置
CN102163866A (zh) 一种可定时手机电池充电器
WO2021258367A1 (zh) 控制电路、电池管理系统及电化学装置
CN105914805B (zh) 一种汽车智能蓄电池
CN109808547A (zh) 一种低功耗动力蓄电池点火上电控制电路及控制方法
CN212304824U (zh) 一种新型bms控正极充电激活电路
CN205632365U (zh) 汽车智能蓄电池
CN210053235U (zh) 一种动力锂电池的休眠保护系统
CN201298743Y (zh) 一种助动车充电器节能装置
CN114142567A (zh) 电池管理电路及电池装置
CN203438958U (zh) 一种内置式蓄电池断电保护器
CN209088580U (zh) 一种车辆便携式启动电源
CN2437531Y (zh) 电动自行车蓄电池过放电保护器
CN205725143U (zh) 一种用于新能源汽车的双电源控制装置
CN216374189U (zh) 基于单片机控制的高压预充控制装置
CN116247781B (zh) 一种高压锂电池bms低功耗供电电路
CN219435951U (zh) 一种电动自行车bms电路
CN219980448U (zh) 一种新型带48v常电输出功能锂电池系统
CN219740000U (zh) 一种电气控制系统的dc-dc输入电路

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17759236

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 17/01/2019)

122 Ep: pct application non-entry in european phase

Ref document number: 17759236

Country of ref document: EP

Kind code of ref document: A1