WO2017147987A1 - 一种标准光源对色观察箱 - Google Patents

一种标准光源对色观察箱 Download PDF

Info

Publication number
WO2017147987A1
WO2017147987A1 PCT/CN2016/079510 CN2016079510W WO2017147987A1 WO 2017147987 A1 WO2017147987 A1 WO 2017147987A1 CN 2016079510 W CN2016079510 W CN 2016079510W WO 2017147987 A1 WO2017147987 A1 WO 2017147987A1
Authority
WO
WIPO (PCT)
Prior art keywords
light source
halogen lamp
observation
standard
tungsten halogen
Prior art date
Application number
PCT/CN2016/079510
Other languages
English (en)
French (fr)
Inventor
邱迦易
崔桂华
李长军
詹应胜
林坚
邓达平
Original Assignee
温州佳易仪器有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 温州佳易仪器有限公司 filed Critical 温州佳易仪器有限公司
Priority to US15/546,338 priority Critical patent/US10222264B2/en
Priority to EP16885451.1A priority patent/EP3324160B1/en
Publication of WO2017147987A1 publication Critical patent/WO2017147987A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/46Measurement of colour; Colour measuring devices, e.g. colorimeters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • G01J3/0205Optical elements not provided otherwise, e.g. optical manifolds, diffusers, windows
    • G01J3/0237Adjustable, e.g. focussing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • G01J3/10Arrangements of light sources specially adapted for spectrometry or colorimetry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/46Measurement of colour; Colour measuring devices, e.g. colorimeters
    • G01J3/50Measurement of colour; Colour measuring devices, e.g. colorimeters using electric radiation detectors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • G01J3/10Arrangements of light sources specially adapted for spectrometry or colorimetry
    • G01J2003/102Plural sources
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/46Measurement of colour; Colour measuring devices, e.g. colorimeters
    • G01J2003/466Coded colour; Recognition of predetermined colour; Determining proximity to predetermined colour

Definitions

  • the invention relates to a detection structure, in particular to a standard light source color observation box.
  • the current market for standard light source color observation box or light box standard D illuminator of the daylight source has a variety of brands of fluorescent tubes and the use of halogen lamps through the filter to make the irradiated light simulate the D illuminator specified by the CIE standard.
  • the relative spectral power distribution of the irradiated light source passing through the filter with the tungsten halogen lamp can reach the level D level of the D illuminant metamerism index specified by the CIE standard, but its function is irradiated to the light source due to the influence of materials and manufacturing process technology.
  • the relative spectral power distribution technical index is difficult to achieve the CIE D standard illuminant ⁇ 0.2 A-level metamerism index quality level, which will gradually deteriorate during long-term use, and even exceed 0.25 metamerism index, only > Level B of 0.25 to 0.50. Due to the difference in material composition of the same specification of tungsten halogen lamps, the relative spectral power distribution of the emitted light is unlikely to have a relatively consistent quality.
  • the filter of the colored optical glass is also arranged, because of the material, the transmitted radiation.
  • the relative spectral power distribution of the illumination will also vary, and the combination of a filter and a tungsten halogen lamp can only form a single-size CIE standard D illuminator.
  • the CIE standard illuminating body is divided into D65, D75, D55, D50, etc. Standard. It is difficult to ensure that the standard light source continues to have a stable spectral power distribution after a long period of use, and the replacement of the tungsten halogen lamp or the filter will cause a difference, thereby affecting the accuracy of the test.
  • the spectral power distribution of the tungsten halogen lamp through the filter is difficult to solve the sawtooth shape of different wavelengths. Therefore, the highest quality SpectraLightQC standard light source color observation box (new product introduced into the market in 2013) is recognized as the light source in the market.
  • the mass spectroscopic isochrome index of the quality index according to CIE15:2004 can only reach the A or B level of 0.20--0.30.
  • This standard D daylight source uses a tungsten halogen lamp that uses a tungsten wire and an inert gas containing a halide or a halogen element in the lamp for a long time.
  • the process gradually produces a change in efficiency and a variation in the material (chemical material) of the colored optical glass used in the filter, which mutates the relative spectral power distribution of the light source. Therefore, the metachromatic index of the light source gradually increases from 0.21 to 0.25--0.30 during use, and can only be maintained at the B level. Although the illuminance is still very high, the illuminating area formed by the tungsten wire in the tube has different spacings at different lengths, and the illuminating energy emitted by the illuminating body is different. Therefore, the illumination uniformity of the object placed in the light source box is only uniform. Can reach a quality level of about 90%.
  • a multi-segment narrow-wavelength LED is used to combine the illuminating light to illuminate the spectral power distribution close to the D illuminant specification specified by the CIE standard, but the relative spectral power distribution of the illuminating light in the color light box at the object placement position is uneven. Sex.
  • an LED-based intelligent color light box has been introduced, which uses at least one LED white light source and a plurality of single-color LEDs as illumination main bodies.
  • a special filter is used to emit light from a tungsten halogen lamp to supplement the radiant energy of the entire visible light.
  • Electronic technology monitoring is used to intelligently adjust the energy of each LED to emit light.
  • the combined light emitted by the LED can simulate the color temperature index of the CIE standard D illuminator, the main peak energy of the light spectrum emitted by various LEDs is prominent, and the emitted light is emitted.
  • the relative spectral power distribution parameters of the light are unlikely to reach the index for each band specified by the CIE standard. As long as the measured measured data of the relative spectral power distribution of the emitted light is compared with the relative spectral power distribution parameter of the D illuminant specified by the CIE standard, the difference is obvious.
  • the color temperature value measured by the current universal color temperature measuring instrument can reach the D light source index specified by the CIE standard.
  • the source of the light emitted by the homochromatic index is difficult to reach the A-level level, and this uses a plurality of different monochromatic LEDs to configure the white LED as the main body of the radiant energy of the light source, but uses the tungsten halogen lamp to configure the filter.
  • the transmitted light is supplemented by the irradiance energy, and the uniformity of the radiation is still difficult to have good uniformity on the surface of the sample to be tested.
  • the commonly used technical means for standard light source color observation box or light box color test is visual observation or color measurement instrument measurement.
  • the naked eye visually observes that the standard sample and the batch sample are placed in the standard light source color observation box and the trained technicians visually compare the difference between the two and make a judgment as to whether or not the requirements are met.
  • Color measurement instrument measurement will use the instrument to obtain the respective colorimetric parameters of the standard sample and the batch sample, calculate the color difference between the two, and make a judgment as to whether the requirements are met.
  • Visual inspection by the naked eye is performed by a trained skilled technician in a standard light source color observation box that complies with the international CIE standard, but the standard light source that is subject to visual observation is accurate in spectral relative power distribution to the surface of the object.
  • the color presented has a direct influence, plus the influence of the observer's emotions, physiological and psychological factors, so the subjectivity is strong and the repeatability is very poor.
  • Different observers have different judgment results in the color observation box of different standard light sources. Even the same observer, the observation results in different periods are very different, so the production, sales and consumption of the tested items In the supply chain, there are many disputes due to the difference in visual judgment.
  • the measurement method of the color measuring instrument can minimize the influence of human factors and give reliable objective and repeatable measurement and identification results, the traditional color measuring instrument cannot measure the color image due to the limitation of the principle and structure of the instrument itself. Or surface roughness, uneven color, uneven coloration or irregular surface color of the object.
  • the object of the present invention is to overcome the deficiencies of the prior art and provide a standard light source color observation box with a simple structure, stable analog D illumination body and guaranteed test accuracy.
  • a standard light source color observation box including a box body, one side of the box body is open and the inner space forms an observation cavity
  • a standard light source is arranged at the top of the observation cavity
  • the standard light source includes a tungsten halogen lamp and a tungsten halogen lamp.
  • the lower part is provided with a filter
  • the top of the observation cavity is also provided with a narrow-wave LED light source.
  • the tungsten halogen lamp transmits light through the filter and mixes with the light of the narrow-wave LED light source.
  • the narrow-wave LED light source provides light energy within 20% of the total irradiation energy.
  • the narrow-wave LED light source is arranged in groups, the group has a plurality of narrow-wavelength LED light sources of different wavelengths, and when adjusting the brightness of a plurality of narrow-wavelength LED light sources of different wavelengths, compensating the tungsten halogen lamp to pass through the filter The light.
  • the standard light source also includes a UV ultraviolet lamp that compensates for ultraviolet energy when working with a tungsten halogen lamp or a narrow wave LED light source.
  • the tungsten halogen lamp and the filter are two groups, which are arranged at the left and right positions symmetrically at the top of the observation cavity; the narrow wave LED light sources are corresponding to the two groups, respectively disposed on the outer side of the filter; the UV ultraviolet lamp corresponds to The two groups are respectively disposed on the front and rear sides of the filter.
  • a narrow-wavelength LED light source arranged in groups is provided with a diffuse diffused light-shielded lamp cover.
  • a diffuse-scattering and homogenizing glass plate is disposed between the observation cavity and the standard light source; the top of the observation cavity is provided with a mirror-reflecting reflector surface, and the light emitted by the standard light source is reflected by the reflector surface.
  • the tungsten halogen lamp is a uniform-scattering tungsten halogen lamp
  • the surface of the tungsten halogen lamp tube has a sandblasting layer
  • the tungsten halogen lamp has a mirror-reflecting aluminum plate
  • the specular reflection aluminum plate covers the periphery of the tungsten halogen lamp.
  • the top of the observation cavity is further provided with a digital camera
  • the bottom of the observation cavity has a storage substrate facing the digital camera; when the digital camera is disposed at the middle of the top of the observation cavity, the digital camera lens faces directly below, the storage substrate
  • the bottom plate of the box body or the board body disposed parallel to the bottom plate of the box; when the digital camera is disposed at the top of the viewing chamber near the opening of the box body, the orientation of the digital camera lens is 45 degrees with the bottom plate of the box body, and the storage substrate and the box body
  • the bottom plate is set at 45 degrees and faces the digital camera.
  • the opening of the box body is provided with an openable and closable curtain, and the inner layer of the curtain, the inner wall of the box, and the substrate of the storage body adopt the same or similar neutral color background.
  • standard light sources also include incandescent, sunset and fluorescent lamps; incandescent lamps are two groups. They are symmetrically arranged on the inner side of the filter; the sunset lights are four groups, each set of filters is symmetrically arranged on the front and rear sides, and the sunset light is placed on the side near the middle of the observation cavity with a semi-enclosed sunset lampshade; the fluorescent lamp is Two groups are symmetrically placed on the front and rear sides of the filter.
  • the invention has the beneficial effects of: illuminating the pre-irradiated light by the light passing through the filter of the tungsten halogen lamp; setting the narrow-wave LED light source to emit the compensating light; compensating the pre-irradiated light and compensating the light to be mixed in the color observation box to become compensation Irradiating light; coloring the measured object in the color observation box by the compensated irradiated light.
  • the light emitted by the tungsten halogen lamp as the main irradiation light can have a more gradual spectral power distribution curve, and compensates for the insufficient energy of the tungsten halogen lamp through the low-power narrow-wave LED light source, and can simulate high precision.
  • the CIE standard D illuminator can have a more gradual spectral power distribution curve, and compensates for the insufficient energy of the tungsten halogen lamp through the low-power narrow-wave LED light source, and can simulate high precision.
  • the combination of the tungsten halogen lamp configuration filter and the narrow-wave LED light source can simulate different sizes of D illumination bodies, namely D65, D75, D55, D50, etc., as long as the brightness of the narrow-wavelength LED light source is adjusted.
  • the quality of the compensated light source is ⁇ 0.2A level according to the CIE standard D illuminant, which is difficult to achieve by the original light source; and the stability of the light source is improved, so no radiation is generated during the use of the light source.
  • the change of the color temperature of the light through the automatic monitoring to adjust the compensation light, so that the color temperature of the irradiated light meets the standard, ensuring the accuracy of the long-term color test result.
  • Figure 1 is a bottom plan view of the color viewing box of the present invention going to the bottom.
  • Figure 2 is a perspective view of the color observation box of the present invention.
  • Figure 3 is a side elevational cross-sectional view of the color observation box of the present invention.
  • Figure 4 is a side elevational cross-sectional view of the color observation box of the present invention.
  • Figure 5 is a comparison diagram of the spectral power distribution curve standards D65, D65, D65+LED, D65+LED+UV of the present invention.
  • Figure 6 is a comparison of spectral power distribution curve standards D65 and D65 of the present invention.
  • Figure 7 is a comparison of spectral power distribution curve standards D65, D65, D65+LED of the present invention.
  • Figure 8 is a comparison diagram of the spectral power distribution curve standards D65, D65, D65 + LED + UV of the present invention.
  • FIG. 1 it is a specific embodiment of the standard light source color observation box of the present invention.
  • This embodiment includes a case 1 in which one side of the case 1 is open and an internal space forms an observation cavity 11.
  • the top of the observation cavity 11 is provided with a standard light source 2
  • the standard light source 2 includes a tungsten halogen lamp 21, and the lower portion of the tungsten halogen lamp 21 is provided with a filter.
  • the optical device 12, the top of the observation cavity 11 is further provided with a narrow-wave LED light source 22, the narrow-wavelength LED light source 22 has a narrow wavelength range of 350 nm to 850 nm, and the tungsten halogen lamp 21 transmits the light from the filter 12 and the narrow-wave LED light source 22 With light mixing, the narrow-wave LED source 22 provides illumination energy that is less than 20% of the total radiant energy.
  • the daylight source is an important source for testing color, but the existing method of halogen lamp 21 plus filter 12 simulating the daylight source will still produce a change in the relative spectral power distribution of the source after a period of use, resulting in a color test.
  • the error occurs and is getting larger and larger; and a tungsten halogen lamp 21 can only simulate a standard D illuminator, and the spectral power distribution between the tungsten halogen lamps 21 is different, and the error is also caused after replacement.
  • the adjustable narrow-wave LED light source 22 is matched with the tungsten halogen lamp 21, so that the light mixing compensation of the two can be tested to meet the standard D illumination body light source; adjusting the brightness of the narrow-wave LED light source 22 can simulate different specifications.
  • the D illuminating body is D65, D75, D55, D50, etc.; after using for a period of time, after testing, if the mixed light source is found to be inconsistent with the standard, the narrow wave LED can be debugged.
  • the light source 22 compensates, so that the relative spectral power distribution of the compensated hybrid light source re-complies with the CIE standard, and the tungsten halogen lamp 21 has uniform outgoing light energy, which improves the accuracy of the color light of the standard light source to the color observation box.
  • the simulated D65 light emitted from the tungsten halogen lamp 21 through the filter 12 as the main irradiation light can have a relatively gentle spectral power distribution curve and pass the low-power narrow-wave LED light source.
  • the illumination energy of the narrow-wave LED light source 22 is only within 20% of the total irradiation energy, and can be simulated into a high-precision CIE standard D65, the same color of the light source
  • the heterogeneous index can reach the A level in the range of 0.10-0.18, and its color rendering index can exceed the quality index of 97.5.
  • the above embodiment has a better effect of simulating a standard D illuminant compared to a method in which other light sources are used alone as an irradiation main body or other light sources, thereby making the color test data more accurate.
  • the narrow-wave LED light sources 22 are arranged in groups, the group having a plurality of narrow-wavelength LED light sources 22 of different wavelengths, and adjusting the brightness of the plurality of narrow-wavelength LED light sources 22 of different wavelengths to compensate for halogen
  • the tungsten lamp 21 transmits the light emitted from the filter 12.
  • the standard light source 2 further includes a UV ultraviolet lamp 26 that compensates for ultraviolet energy when operating with the tungsten halogen lamp 21 and the narrow wave LED light source 22.
  • the tungsten-light lamp 21 transmits light through the filter 12, and its 360--390 nm near-ultraviolet spectral energy can only reach about 20% of the energy specified by the CIE standard D illuminator.
  • the standard light source 2 is provided with a UV ultraviolet lamp 26 of 365 nm main wavelength, which regulates the energy of the UV ultraviolet lamp 26, and can supplement the ultraviolet energy of the halogen light source 21, and the UV ultraviolet lamp 26 is turned on simultaneously with the tungsten halogen lamp 21 and the narrow wave LED light source 22. It can simulate the relative spectral power distribution curve of a more standard D illuminator, making the test results more accurate.
  • the tungsten halogen lamp 21 and the filter 12 are two groups, which are disposed at the top left and right positions of the observation cavity 11; the narrow wave LED light source 22 is corresponding to the two groups, respectively disposed in the filter The outer side of 12; the UV ultraviolet lamp 26 is a corresponding two groups, which are respectively disposed on the front and rear sides of the filter 12.
  • the tungsten halogen lamp 21 and the narrow-wave LED light source 22 are designed to be disposed at two positions on the left and right sides, and the position of the UV ultraviolet lamp 26 on the front and rear sides, after the light source is illuminated from above, the whole The light in the observation chamber 11 is more uniform, so that the whole object to be tested placed in the observation chamber 11 is uniformly illuminated, and the color test is to test a plurality of points on the object to be tested, and the position of the light is different, and there are subtle differences in the above settings.
  • the method can make the test result more accurate; avoid the defect that the traditional intermediate setting light source makes the middle of the light strong and weak, and avoid the large error between the middle and the two sides of the color data of the measured object.
  • the narrow-wavelength LED light source 22 disposed in groups is externally provided with a diffuse diffused light-receiving lamp cover 221 .
  • the light of the plurality of different wavelengths of the narrow-wavelength LED light source 22 can be sufficiently mixed into the diffuse scattered light in the diffuse diffused light-shading lampshade 221, and can be better penetrated with the tungsten halogen lamp 21 through the diffuser of the filter 12 after being emitted from the lampshade.
  • the light is mixed to compensate for the unevenness of the light in the chamber observation chamber 11, thereby improving the overall test accuracy.
  • a diffuse-scattering and homogenizing glass plate 13 is disposed between the observation chamber 11 and the standard light source 2; a mirror-reflecting reflector surface 14 is disposed at the top of the observation chamber 11, and the light emitted by the standard light source 2 is The reflector surface 14 is reflected.
  • the whole standard light source 2 is disposed behind the diffuse diffused light-splitting glass plate 13, and the light passes through the diffuse-scattering and homogenizing glass plate 13 to more uniformly illuminate the chamber observation chamber 11 to further uniformly project the light onto the object to be tested. Improve the accuracy of the test.
  • the reflector surface 14 is disposed, and part of the light is reflected by the diffuse diffused glass plate 13 to reach the reflector surface 14, and the reflector surface 14 reflects the light to make full use of the light energy. And fully mix with other light in the space to achieve a uniform light mixing effect.
  • the tungsten halogen lamp 21 is a uniform scattering tungsten halogen lamp, and the tungsten halogen lamp 21 lamp
  • the surface of the tube has a sandblasted layer, and the tungsten halogen lamp 21 is covered with a specularly reflective aluminum plate 211, and the specularly reflective aluminum plate 211 covers the periphery of the tungsten halogen lamp 21.
  • the tungsten wire has a certain length, and the spacing around the molding may be more or less different. Therefore, the light emitted by the entire tungsten halogen lamp 21 at different lengths may also have a strong difference; a sandblasted layer is disposed on the surface of the lamp tube.
  • the lamp tube is made into a diffusely scattered glass structure, and the light is reflected in one of the light-emitting segments of the tungsten halogen lamp 21, and finally the light emitted is more uniform.
  • the specularly reflecting aluminum plate 211 is disposed so that the light emitted from the tungsten halogen lamp 21 is sufficiently reflected and mixed in the space above the filter 12 to make the energy of the irradiated light more uniform.
  • the top of the viewing chamber 11 is further provided with a digital camera 3 having a substrate 4 facing the digital camera 3 at the bottom of the viewing chamber 11; when the digital camera 3 is disposed at the top of the top of the viewing chamber 11 When the digital camera 3 lens faces downward, the storage substrate 4 is a bottom plate of the casing 1 or a plate body disposed in parallel with the bottom plate of the casing 1; when the digital camera 3 is disposed at the top of the observation chamber 11 near the middle of the opening of the casing 1, The orientation of the lens of the digital camera 3 is 45 degrees with the bottom plate of the casing 1, and the storage substrate 4 is disposed at 45 degrees with the bottom plate of the casing 1 and faces the digital camera 3.
  • the object to be tested is placed on the substrate 4, uniformly illuminated from above by the standard light source 2, and the image color data of the measured object is obtained by the digital camera 3 of the upper opposite substrate 4, which is directly compared by computer calculation.
  • the color difference between the standard sample and the batch sample of the tested object excludes the human influence factor observed by the naked eye, and the test result is more accurate and reliable than the naked eye observation method.
  • the image color data obtained by the digital camera 3 can measure the color of the color image, the curved surface or the unevenness, the color mixing, the uneven coloring or the irregular surface color of the object which can not be detected by the conventional color measuring instrument, and the use range is wider.
  • the opening of one side of the box body 1 is convenient for picking up and dropping standard and batch samples of the tested object and the standard color card; if necessary, the digital camera 3 can be automatically tested or the tester can perform visual inspection through the opening to meet different testing needs.
  • the digital camera 3 can be arranged in various positions. When the middle position of the top of the observation chamber 11 has a suitable installation space, the standard light source 2 is symmetrically disposed on the periphery of the digital camera 3 so that the observation chamber 11 is inside. The uniform illumination reduces the influence of the light source on the color test of the measured object itself.
  • the digital camera 3 directly collects the image color data of the object to be tested placed directly below, with less error and less external interference.
  • the bottom plate of the casing 1 can be directly used as the storage substrate 4 or an additional plate body can be placed as needed to place the object to be tested, thereby improving the flexibility of the inspection cavity 11 and matching different items to be tested.
  • Another arrangement is to place the digital camera 3 at the opening to simulate the viewing direction of a conventional human eye.
  • the angle of the standard light source 2 and the measured object is set to 45 degrees according to the standard illumination observation conditions specified by the CIE, and at the same time, the direct relationship between the digital camera 3 and the measured object is ensured, so that the tested data meets the CIE standard.
  • the tilting disposed substrate 4 facilitates the tester to observe the object to be tested, can perform better visual inspection, and provides a better structure to select a test method according to needs.
  • the image color data of the measured object is obtained by a digital camera, and the color difference between the standard sample and the batch sample of the measured object is directly compared by the calculation of the computer, and the human influence factor of the naked eye observation is excluded, and the test result is more accurate than the naked eye observation method. more reliable.
  • the image color data obtained by the digital camera can measure the color of the color image, the curved surface or the unevenness, the color mixing, the uneven coloring or the irregular surface color of the object which can not be detected by the traditional color measuring instrument, and the use range is wider.
  • the opening of the casing 1 is provided with an openable and closable curtain 5, and the inner layer of the curtain 5, the inner wall of the casing 1, and the substrate 4 are made of the same or similar neutral colors.
  • an openable and closable curtain 5 is provided.
  • the curtain 5 is lowered to form a closed opaque space of the observation chamber 11, thereby reducing the interference of external light on the color test. And influence to make the test results more accurate.
  • the curtain 5 can be rolled up when it is not used or needs to be visually observed, and can be used like a conventional instrument and is easy to replace the object to be tested. Set the test environment to a uniform neutral background, reducing the impact of the instrument on the test and improving the test accuracy.
  • the standard light source 2 further includes an incandescent lamp 23, a sunset light 24, and Fluorescent lamp 25; incandescent lamp 23 is two groups, respectively arranged symmetrically on the inner side of the filter 12; the sunset lights 24 are four groups, each set of filter 12 is symmetrically arranged one set on the front and rear sides, and the sunset light 24 is close to the observation cavity One side of the middle portion of the 11 is provided with a semi-enclosed sunset shade 241; the fluorescent lamps 25 are two sets, symmetrically disposed on the front and rear sides of the filter 12.
  • the standard light source color observation box of the present invention meets the testing requirements of different items by arranging other standard light sources.
  • Each light source has a reasonable symmetrical arrangement, so that the entire observation chamber 11 has uniform illumination, thereby improving the accuracy of the test. It is more reasonable to use different position settings for each light source depending on the nature.
  • a semi-enclosed sunset shade 241 is provided to ensure uniform illumination of the sunset light 24.
  • UV UV lamp 26 can be used with other light sources to test certain special color items.
  • the fluorescent lamp 25 can be provided with one or more of U30, TL84, and CWF to increase the test range of the color observation box, or to set other types of fluorescent lamps according to the test requirements of different countries.

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Spectrometry And Color Measurement (AREA)

Abstract

一种标准光源对色观察箱,该对色观察箱包括箱体(1),箱体(1)内部空间形成观察腔(11),观察腔(11)的顶部设置标准光源(2),标准光源(2)包括卤钨灯(21),卤钨灯(21)的下部设置有滤光器(12),观察腔(11)的顶部还设置有LED光源(22),卤钨灯(21)透过滤光器(12)射出光线与LED灯(22)的光线混合,窄波LED光源(22)提供的光照能量占总辐照能量的20%以内。补偿后的光源质量按CIE标准D照明体规定的同色异谱指数<0.2A级水平,由补偿后光线对被测物品进行颜色测试,保证长时间颜色测试结果的准确性。

Description

一种标准光源对色观察箱 技术领域
本发明涉及一种检测结构,尤其是涉及一种标准光源对色观察箱。
背景技术
当前市场用于标准光源对色观察箱或灯箱的标准D照明体的日光光源有多种品牌的荧光灯管和采用卤钨灯透过滤光器使辐照的光线模拟CIE标准规定的D照明体。用卤钨灯通过滤光器的辐照光源的相对光谱功率分布能达到CIE标准规定的D照明体同色异谱指数A级水平,但由于材质和制造工艺技术的影响,其功能对光源辐照的相对光谱功率分布技术指标很难达到CIE D标准照明体<0.2的A级同色异谱指数质量水平,在长时间的使用过程中还会逐渐变差,甚至会超过0.25同色异谱指数,只有>0.25~0.50级的B级水平。由于同一规格的卤钨灯存在材质成分的差异,其发射出的光线相对光谱功率分布不可能有相对一致的质量,配置的有色光学玻璃的滤光器,也因为材质原因,对透过的辐照光相对光谱功率分布也会产生变异,而且一种滤光器和卤钨灯的组合只能形成单一规格的CIE标准D照明体,CIE标准照明体分D65、D75、D55、D50等多种标准规格。现有技术难以保证标准光源在长时间使用后继续拥有稳定的光谱功率分布,更换卤钨灯或者滤光器都会产生差异,从而影响到测试的准确性。
卤钨灯透过滤光器的光线其光谱功率分布难以解决不同波长段的锯齿形态,因此在目前市场认定最高质量的SpectraLightQC标准光源对色观察箱(2013年才推入市场的新产品)其光源质量按CIE15:2004规定的质量指标光源同色异谱指数只能达到0.20--0.30的A或B级水平。这种标准D日光光源,采用的卤钨灯灯管因采用的钨丝和含有卤化物、卤族元素的惰性气体在灯管的长时间使 用过程中逐渐产生了效率的变化和用于滤光器的有色光学玻璃其材质(化学材料)产生的变异,使光源的相对光谱功率分布产生变异。因此在使用过程中其光源的同色异谱指数从0.21逐渐上升至0.25--0.30只能维持在B级水平。虽然其照度依然很高,但灯管内钨丝卷成的发光区域在不同长度的间距存在差异,其发射出来的光照能量也会不相同,因此对光源箱体内放置物体部位的照明均匀程度只能达到90%左右的质量水平。
近几年由于LED光源节省耗电、发光效率高而且使用寿命长等优点,多家光源研究单位推出了采用LED来模拟CIE标准D光源。由于LED发出光线的光谱分布只能处于窄波波长段,而且每种LED发出的光谱主峰窄成尖峰,虽然可以用红绿蓝三种窄波的光线组成一体发射出白光,但其光谱功率分布存在缺陷。因此采用多段窄波LED来组合发光使其照射出光谱功率分布接近CIE标准规定的D照明体规格要求,但其在标准光源对色灯箱内照射在物体放置位置光线的相对光谱功率分布存在不均匀性。近期有人推出一种基于LED的智能对色灯箱,采用的方法至少用一只LED白光光源和多只单色LED为照明主体。用卤钨灯配置特殊的滤光片发射光线来补充整体可见光线的辐射能量。采用电子技术监控实现智能化调整各只LED发射光线的能量,虽然其发射出的组合光线可模拟CIE标准D照明体的色温指数,但各种LED发射的光线光谱主峰能量突出,其发射出的光线相对光谱功率分布参数不可能达到CIE标准规定的每个波段的指标。只要分析其发射光线的相对光谱功率分布的实测数据与CIE标准规定的D照明体的相对光谱功率分布参数进行比对,即可明白其差异很明显。虽然用目前通用的测色温仪器测定其色温量值能达到CIE标准规定的D光源指标。但其发射出的光线的光源同色异谱指数很难达到A级水平,而且这种采用以多只不同单色LED配置白光LED作为光源辐射能量的主体,却用卤钨灯配置滤光片 透射的光线作为辐照能量的补充,辐射均匀程度仍然很难在被测样品的表面有良好的均匀性。
目前市场用于标准光源对色观察箱或灯箱颜色测试常用的技术手段是肉眼目视观察或测色仪器测量。肉眼目视观察即将标准样和批次样放置于标准光源对色观察箱内由经过培训的熟练技术人员肉眼比对两者之间的差异,并做出是否符合要求的判断。测色仪器测量即将标准样和批次样分别使用仪器获取各自的色度学参数,计算两者之间的色差,并做出是否符合要求的判断。肉眼目视观察是在符合国际CIE标准规定的标准光源对色观察箱内由经过培训的熟练技术人员完成,但是目视观察法易受使用的标准光源其光谱相对功率分布的精确程度对物体表面呈现的颜色有直接影响,加上观察者的情绪,生理和心理因素等影响,因而主观性很强,重复性很差。不同的观察者在不同的标准光源对色观察箱内给出的评判结果差异很大,即使是同一观察者,不同时期的观察结果也有很大的差别,故此在被测物品生产、销售、消费供应链上,因为目视评判的差异性会产生诸多的纠纷。测色仪器测量的方式虽然可以尽量减少人为因素的影响,给出可靠的客观的和可重复的测量鉴定结果,但传统的测色仪器因仪器本身原理和结构的限制,无法测量彩色图像,曲面或凹凸不平、颜色混合、着色不均匀或不规则的物体表面颜色。
发明内容
本发明的目的是克服现有技术的不足,提供一种结构简单,实现稳定模拟D照明体,保证测试准确性的标准光源对色观察箱。
本发明采用以下技术方案:一种标准光源对色观察箱,包括箱体,箱体的一边开口而内部空间形成观察腔,观察腔的顶部设置标准光源,标准光源包括卤钨灯,卤钨灯的下部设置有滤光器,观察腔的顶部还设置有窄波LED光源, 卤钨灯透过滤光器射出光线与窄波LED光源的光线混合,窄波LED光源提供的光照能量占总辐照能量的20%以内。
作为一种改进,窄波LED光源成组的设置,该组具有多个不同波长的窄波LED光源,当调节多个不同波长的窄波LED光源的亮度,补偿卤钨灯透过滤光器射出的光线。
作为一种改进,标准光源还包括UV紫外灯,UV紫外灯与卤钨灯、窄波LED光源一起工作时补偿紫外能量。
作为一种改进,卤钨灯和滤光器为两组,设置在观察腔顶部对称的左右位置;窄波LED光源为对应的两组,分别设置在滤光器的外侧;UV紫外灯为对应的两组,分别设置于滤光器的前后侧。
作为一种改进,成组设置的窄波LED光源外部设置有漫散射匀光灯罩。
作为一种改进,观察腔和标准光源之间设置有漫散射匀光玻璃板;观察腔的顶部设置有镜面反射的反光板面,标准光源射出的光线由反光板面反射。
作为一种改进,卤钨灯为匀散射卤钨灯,卤钨灯灯管表面具有喷砂层,卤钨灯上方罩有一镜面反射铝板,镜面反射铝板罩住卤钨灯的四周。
作为一种改进,观察腔的顶部还设置有数码相机,观察腔底部具有与数码相机正对的置物基板;当数码相机设置于观察腔顶部的中间位置时,数码相机镜头朝向正下方,置物基板为箱体底板或者与箱体底板平行设置的板体;当数码相机设置于观察腔顶部靠近箱体开口处的中部时,数码相机镜头的朝向与箱体底板呈45度,置物基板与箱体底板呈45度设置并正对数码相机。
作为一种改进,箱体的开口处设置有可开闭的窗帘,窗帘的内层、箱体的内壁、置物基板采用相同或相近中性颜色的背景。
作为一种改进,标准光源还包括白炽灯、日落灯和荧光灯;白炽灯为两组, 分别对称的设置在滤光器的内侧;日落灯为四组,每组滤光器前后侧各对称的设置一组,日落灯靠近观察腔中部的一侧设置有半包围的日落灯罩;荧光灯为两组,对称的设置于滤光器前后侧。
本发明的有益效果:通过卤钨灯的光线透过滤光器射出补偿前辐照光线;设置窄波LED光源射出补偿光线;补偿前辐照光线和补偿光线在对色观察箱中混合成为补偿后辐照光线;由补偿后辐照光线对对色观察箱中的被测物品进行颜色测试。以卤钨灯射出的光线作为主体辐照光线,可以具有更加平缓的光谱功率分布曲线,并通过小功率的窄波LED光源补偿卤钨灯透过滤光器存在的不足能量,能模拟成高精度的CIE标准的D照明体。卤钨灯配置滤光器和窄波LED光源的组合可以模拟不同规格的D照明体即D65、D75、D55、D50等,只要通过调整窄波LED光源的亮度即可实现。补偿后的光源质量按CIE标准D照明体规定的同色异谱指数<0.2A级水平,这是原来光源难以实现的;并且提高了光源的稳定性,因此在光源使用过程中不会产生辐照光线色温的变化,通过自动监控来调整补偿光线,使得辐照光线的色温符合标准,保证长时间颜色测试结果的准确性。
附图说明
图1是本发明对色观察箱去底部的仰视图。
图2是本发明对色观察箱的立体结构图。
图3是本发明对色观察箱的侧面局部剖视图一。
图4是本发明对色观察箱的侧面局部剖视图二。
图5是本发明的光谱功率分布曲线标准D65、D65、D65+LED、D65+LED+UV的比较图。
图6是本发明的光谱功率分布曲线标准D65和D65的比较图。
图7是本发明的光谱功率分布曲线标准D65、D65、D65+LED的比较图。
图8是本发明的光谱功率分布曲线标准D65、D65、D65+LED+UV的比较图。
图中:1、箱体;11、观察腔;12、滤光器;13、漫散射匀光玻璃板;14、反光板面;2、标准光源;21、卤钨灯;211、镜面反射铝板;22、窄波LED光源;221、漫散射匀光灯罩;23、白炽灯;24、日落灯;241、日落灯罩;25、荧光灯;26、UV紫外灯;3、数码相机;4、置物基板;5、窗帘。
具体实施方式
以下结合附图对本发明的具体实施例做详细说明。
如图1、2、3、4、5、6、7、8所示,为本发明标准光源对色观察箱的具体实施例。该实施例包括箱体1,箱体1的一边开口而内部空间形成观察腔11,观察腔11的顶部设置标准光源2,标准光源2包括卤钨灯21,卤钨灯21的下部设置有滤光器12,观察腔11的顶部还设置有窄波LED光源22,窄波LED光源22的窄波段范围为350nm-850nm,卤钨灯21透过滤光器12射出光线与窄波LED光源22的光线混合,窄波LED光源22提供的光照能量占总辐照能量的20%以内。日光光源是测试颜色的重要光源,但现有的卤钨灯21加滤光器12模拟日光光源的方式还是会在使用一段时间后产生光源的相对光谱功率分布变化的情况,从而导致颜色测试的误差发生并且越来越大;并且一个卤钨灯21仅能模拟一种标准D照明体,卤钨灯21之间的光谱功率分布又不相同,更换后也会带来误差。设置了可调节的窄波LED光源22与卤钨灯21配合,可以使两者的光线混合补偿成为符合标准的D照明体光源进行测试;调节窄波LED光源22的亮度可以做到模拟不同规格的D照明体即D65、D75、D55、D50等;当使用一段时间后,经过测试若发现混合的光源不符合标准了,可以通过调试窄波LED 光源22进行补偿,令补偿后的混合光源的相对光谱功率分布重新符合CIE标准,卤钨灯21具有均匀的出射光线能量,提高标准光源对色观察箱对被测物品颜色测试的准确性。如图5、6、7所示,以卤钨灯21透过滤光器12射出的模拟D65光线作为主体辐照光线,可以具有较平缓的光谱功率分布曲线,并通过小功率的窄波LED光源22补偿卤钨灯21透过滤光器12存在的不足能量,窄波LED光源22的光照能量只在总辐照能量的20%以内,能模拟成高精度的CIE标准的D65,其光源的同色异谱指数可达0.10-0.18范围内的A级水平,其显色指数可超过97.5质量指标。以上实施方式,相比较于以其他光源单独作为辐照主体或者其他光源组合使用的方式,具有更好的模拟标准D照明体的效果,从而使颜色测试的数据更加准确。
作为一种改进的具体实施方式,窄波LED光源22成组的设置,该组具有多个不同波长的窄波LED光源22,当调节多个不同波长的窄波LED光源22的亮度,补偿卤钨灯21透过滤光器12射出的光线。通过设置多个不同波长的窄波LED光源22,实现更灵活的调试光源,调试出的补偿光源更接近标准D照明体的光谱功率分布,提高测试准确性;实现灵活模拟不同标准D照明体,由一台仪器完成原来多台仪器的测试功能。
作为一种改进的具体实施方式,标准光源2还包括UV紫外灯26,UV紫外灯26与卤钨灯21、窄波LED光源22一起工作时补偿紫外能量。如图5、6、7、8所示,卤钨灯21透过滤光器12后的光线其360--390nm近紫外光谱能量只能达到CIE标准D照明体规定的能量的20%左右,在标准光源2中配置365nm主波长的UV紫外灯26,调控UV紫外灯26能量,可以补充卤钨灯21光源的紫外能量,UV紫外灯26与卤钨灯21、窄波LED光源22同时开启工作时能够模拟更加标准的D照明体相对光谱功率分布曲线,使测试结果更加准确。
作为一种改进的具体实施方式,卤钨灯21和滤光器12为两组,设置在观察腔11顶部对称的左右位置;窄波LED光源22为对应的两组,分别设置在滤光器12的外侧;UV紫外灯26为对应的两组,分别设置于滤光器12的前后侧。为进一步提高颜色测试的准确性,将卤钨灯21和窄波LED光源22设计成两组分设在左右两侧的位置,UV紫外灯26在前后侧的位置,光源从上方照下来之后,整个观察腔11内的光线更加均匀,使放在观察腔11内的被测物品整体光照均匀,颜色测试要测试被测物品上的多个点,其位置不同光照也会存在细微的差异,以上设置方式可以使测试结果更加准确;避免传统中间设置光源令光线中间强两边弱的缺陷,避免被测物品颜色数据中间与两边的较大误差。
作为一种改进的具体实施方式,成组设置的窄波LED光源22外部设置有漫散射匀光灯罩221。多个不同波长的窄波LED光源22的光线可以在漫散射匀光灯罩221之中充分混合成漫散射光线,射出灯罩之后可以更好的与卤钨灯21透过滤光器12漫散射处的光线混合进行补偿,避免箱体观察腔11内的光线不均匀,提高整体的测试准确性。
作为一种改进的具体实施方式,观察腔11和标准光源2之间设置有漫散射匀光玻璃板13;观察腔11的顶部设置有镜面反射的反光板面14,标准光源2射出的光线由反光板面14反射。整体标准光源2设置在漫散射匀光玻璃板13后面,光线透过漫散射匀光玻璃板13后可以更均匀的照向箱体观察腔11,进一步使光线均匀的投射在被测物品上,提高测试的准确性。为使光源发射的能量能够充分的利用,设置反光板面14,部分光线被漫散射匀光玻璃板13反射之后到达反光板面14,反光板面14再反射光线,使光线能量能够充分的利用以及充分的与空间内的其他光线混合,达到混光均匀的效果。
作为一种改进的具体实施方式,卤钨灯21为匀散射卤钨灯,卤钨灯21灯 管表面具有喷砂层,卤钨灯21上方罩有一镜面反射铝板211,镜面反射铝板211罩住卤钨灯21的四周。钨丝具有一定的长度,其环绕成型的间距会有或多或少的差异,因此整根卤钨灯21不同长度位置上发出的光也会存在强弱差异;在灯管表面设置喷砂层之后,使灯管成为漫散射的玻璃结构,光线在卤钨灯21灯管中个发光段产生反射,最后射出的光线均匀性更好。设置镜面反射铝板211使卤钨灯21中射出的光线在滤光器12上方的空间中充分反射混合,使辐照光线的能量更加均匀。
作为一种改进的具体实施方式,观察腔11的顶部还设置有数码相机3,观察腔11底部具有与数码相机3正对的置物基板4;当数码相机3设置于观察腔11顶部的中间位置时,数码相机3镜头朝向正下方,置物基板4为箱体1底板或者与箱体1底板平行设置的板体;当数码相机3设置于观察腔11顶部靠近箱体1开口处的中部时,数码相机3镜头的朝向与箱体1底板呈45度,置物基板4与箱体1底板呈45度设置并正对数码相机3。测试时,将被测物品放置于置物基板4上,通过标准光源2由上方均匀照射,并通过上方正对置物基板4的数码相机3获取被测物品的图像颜色数据,经过计算机的计算直接对比被测物品标准样与批次样的色差,排除了肉眼观察的人为影响因数,比肉眼观察的方式测试结果准确度更高更可靠。通过数码相机3获取图像颜色数据的方式能够对传统测色仪器所不能检测的彩色图像、曲面或凹凸不平、颜色混合、着色不均匀或不规则的物体表面颜色进行测量,使用范围更加广泛。箱体1的一边开口,便于被测物品标准样与批次样以及标准色卡的取放;根据需要可以采用数码相机3自动测试或者测试人员通过开口进行肉眼测试,满足不同的测试需要。数码相机3可以有多种位置的设置方式,当观察腔11顶部的中间位置具有合适的设置空间时,将标准光源2对称的设置于数码相机3的周边,使观察腔11内 的光照均匀,减少光源对被测物品本身颜色测试的影响,数码相机3直接采集放置于正下方被测物品的图像颜色数据,误差较小,外界的干扰较小。可以根据需要直接将箱体1底板作为置物基板4或者设置额外的板体放置被测物品,提高观察腔11测试的灵活性,匹配不同的被测物品。另一种设置方式是将数码相机3设置于开口处,模拟传统人眼的观察方向。结构上按照CIE规定的标准照明观测条件将标准光源2和被测物品的角度设置为45度,并同时保证数码相机3和被测物品的正对关系,使测试出的数据满足CIE规定的标准。倾斜设置的置物基板4便于测试人员观察被测物品,可以更好的进行肉眼测试,提供更好的结构根据需要选择测试方式。通过数码相机获取被测物品的图像颜色数据,经过计算机的计算直接对比被测物品标准样与批次样的色差,排除了肉眼观察的人为影响因数,比肉眼观察的方式测试结果准确度更高更可靠。通过数码相机获取图像颜色数据的方式能够对传统测色仪器所不能检测的彩色图像、曲面或凹凸不平、颜色混合、着色不均匀或不规则的物体表面颜色进行测量,使用范围更加广泛。
作为一种改进的具体实施方式,箱体1的开口处设置有可开闭的窗帘5,窗帘5的内层、箱体1的内壁、置物基板4采用相同或相近中性颜色的背景。为进一步提高颜色测试的准确性,设置可开闭的窗帘5,在进行数码相机3颜色测试时,将窗帘5放下使观察腔11形成密闭不透光空间,从而减少外界光线对颜色测试的干扰和影响,使测试结果更加准确。窗帘5在不使用或者需要肉眼进行观察测试时可以将其卷起,可以像传统仪器一样使用,且便于更换被测物品。将测试的环境设置成统一的中性背景,减少仪器对测试的影响,提高测试准确性。
作为一种改进的具体实施方式,标准光源2还包括白炽灯23、日落灯24和 荧光灯25;白炽灯23为两组,分别对称的设置在滤光器12的内侧;日落灯24为四组,每组滤光器12前后侧各对称的设置一组,日落灯24靠近观察腔11中部的一侧设置有半包围的日落灯罩241;荧光灯25为两组,对称的设置于滤光器12前后侧。本发明的标准光源对色观察箱通过布置其他标准光源,满足不同物品的测试需求。各光源均通过合理的对称布置,使整个观察腔11内均有均匀的光照,提高测试的准确性。各光源根据性质的不同,采用不同的位置设置更加合理。其中为避免日落灯24靠近箱体中间位置的光照太强,设置了半包围的日落灯罩241,保证日落灯24的光照均匀。同时UV紫外灯26可以和其他光源配合使用,测试某些特殊颜色的物品。荧光灯25可以设置U30、TL84、CWF中的一种或多种来提高对色观察箱的测试范围,或者根据不同国家的测试需求来设置其他型号的荧光灯。

Claims (10)

  1. 一种标准光源对色观察箱,包括箱体(1),所述箱体(1)的一边开口而内部空间形成观察腔(11),所述观察腔(11)的顶部设置标准光源(2),其特征在于:所述标准光源(2)包括卤钨灯(21),所述卤钨灯(21)的下部设置有滤光器(12),所述观察腔(11)的顶部还设置有窄波LED光源(22),所述卤钨灯(21)透过滤光器(12)射出光线与窄波LED光源(22)的光线混合,所述窄波LED光源(22)提供的光照能量占总辐照能量的20%以内。
  2. 根据权利要求1所述的一种标准光源对色观察箱,其特征在于:所述窄波LED光源(22)成组的设置,该组具有多个不同波长的窄波LED光源(22),当调节多个不同波长的窄波LED光源(22)的亮度,补偿卤钨灯(21)透过滤光器(12)射出的光线。
  3. 根据权利要求2所述的一种标准光源对色观察箱,其特征在于:所述标准光源(2)还包括UV紫外灯(26),所述UV紫外灯(26)与卤钨灯(21)、窄波LED光源(22)一起工作时补偿紫外能量。
  4. 根据权利要求3所述的一种标准光源对色观察箱,其特征在于:所述卤钨灯(21)和滤光器(12)为两组,设置在观察腔(11)顶部对称的左右位置;所述窄波LED光源(22)为对应的两组,分别设置在滤光器(12)的外侧;所述UV紫外灯(26)为对应的两组,分别设置于滤光器(12)的前后侧。
  5. 根据权利要求4所述的一种标准光源对色观察箱,其特征在于:成组设置的窄波LED光源(22)外部设置有漫散射匀光灯罩(221)。
  6. 根据权利要求1-5中任一项所述的一种标准光源对色观察箱,其特征在于:所述观察腔(11)和标准光源(2)之间设置有漫散射匀光玻璃板(13);观察腔(11)的顶部设置有镜面反射的反光板面(14),所述标准光源(2)射出的光线由反光板面(14)反射。
  7. 根据权利要求1-5中任一项所述的一种标准光源对色观察箱,其特征在于:所述卤钨灯(21)为匀散射卤钨灯,卤钨灯(21)灯管表面具有喷砂层,卤钨灯(21)上方罩有一镜面反射铝板(211),所述镜面反射铝板(211)罩住卤钨灯(21)的四周。
  8. 根据权利要求1-5中任一项所述的一种标准光源对色观察箱,其特征在于:所述观察腔(11)的顶部还设置有数码相机(3),所述观察腔(11)底部具有与数码相机(3)正对的置物基板(4);当所述数码相机(3)设置于观察腔(11)顶部的中间位置时,数码相机(3)镜头朝向正下方,所述置物基板(4)为箱体(1)底板或者与箱体(1)底板平行设置的板体;当所述数码相机(3)设置于观察腔(11)顶部靠近箱体(1)开口处的中部时,数码相机(3)镜头的朝向与箱体(1)底板呈45度,所述置物基板(4)与箱体(1)底板呈45度设置并正对数码相机(3)。
  9. 根据权利要求8所述的一种标准光源对色观察箱,其特征在于:所述箱体(1)的开口处设置有可开闭的窗帘(5),所述窗帘(5)的内层、箱体(1)的内壁、置物基板(4)采用相同或相近的中性颜色的背景。
  10. 根据权利要求4或5所述的一种标准光源对色观察箱,其特征在于:所述标准光源(2)还包括白炽灯(23)、日落灯(24)和荧光灯(25);所述白炽灯(23)为两组,分别对称的设置在滤光器(12)的内侧;所述日落灯(24)为四组,每组滤光器(12)前后侧各对称的设置一组,所述日落灯(24)靠近观察腔(11)中部的一侧设置有半包围的日落灯罩(241);所述荧光灯(25)为两组,对称的设置于滤光器(12)前后侧。
PCT/CN2016/079510 2016-03-04 2016-04-15 一种标准光源对色观察箱 WO2017147987A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US15/546,338 US10222264B2 (en) 2016-03-04 2016-04-15 Standard light source color matching observation box
EP16885451.1A EP3324160B1 (en) 2016-03-04 2016-04-15 Standard illuminant color matching box

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610123958.9A CN105588639B (zh) 2016-03-04 2016-03-04 一种标准光源对色观察箱
CN201610123958.9 2016-03-04

Publications (1)

Publication Number Publication Date
WO2017147987A1 true WO2017147987A1 (zh) 2017-09-08

Family

ID=55928392

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/079510 WO2017147987A1 (zh) 2016-03-04 2016-04-15 一种标准光源对色观察箱

Country Status (4)

Country Link
US (1) US10222264B2 (zh)
EP (1) EP3324160B1 (zh)
CN (1) CN105588639B (zh)
WO (1) WO2017147987A1 (zh)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9715242B2 (en) 2012-08-28 2017-07-25 Delos Living Llc Systems, methods and articles for enhancing wellness associated with habitable environments
EP3754588B1 (en) 2014-02-28 2023-08-16 Delos Living LLC Systems, methods, and articles for enhancing wellness associated with habitable environments
USD912882S1 (en) * 2017-06-01 2021-03-09 Wenzhoujiayi Instruments Co. Ltd Standard light source color matching observation box
WO2019046580A1 (en) 2017-08-30 2019-03-07 Delos Living Llc SYSTEMS, METHODS AND ARTICLES FOR EVALUATING AND / OR IMPROVING HEALTH AND WELL-BEING
US11002605B2 (en) * 2018-05-04 2021-05-11 Crestron Electronics, Inc. System and method for calibrating a light color sensor
EP3837468A1 (en) * 2018-08-17 2021-06-23 Avalon St Sàrl Solar simulator
WO2020055872A1 (en) 2018-09-14 2020-03-19 Delos Living Llc Systems and methods for air remediation
CN111050444B (zh) * 2019-02-01 2021-04-09 靳鹏 一种多通道led模拟cie标准照明体的方法和照明系统
WO2020176503A1 (en) 2019-02-26 2020-09-03 Delos Living Llc Method and apparatus for lighting in an office environment
US11898898B2 (en) 2019-03-25 2024-02-13 Delos Living Llc Systems and methods for acoustic monitoring
CN110159973A (zh) * 2019-05-20 2019-08-23 上海权测新能源科技有限公司 一种太阳光模拟器

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201464043U (zh) * 2009-06-29 2010-05-12 杭州立威化工涂料有限公司 一种专用于油漆对色的暗箱
CN101883971A (zh) * 2007-09-11 2010-11-10 韦里维德有限公司 颜色测定装置和方法
CN203024866U (zh) * 2012-12-06 2013-06-26 上海艾登印刷有限公司 一种色彩检测装置
CN203259249U (zh) * 2013-02-27 2013-10-30 中国计量学院 一种包含led白光光源的标准光源比色灯箱
US8592748B2 (en) * 2009-09-10 2013-11-26 Just Normlicht Gmbh Vertrieb + Produktion Method and arrangement for simulation of high-quality daylight spectra
CN104748848A (zh) * 2015-04-13 2015-07-01 杭州远方光电信息股份有限公司 一种基于led的智能对色灯箱
CN105651386A (zh) * 2016-03-04 2016-06-08 温州佳易仪器有限公司 一种利用标准光源对色观察箱进行颜色测试的方法
CN205384086U (zh) * 2016-03-04 2016-07-13 温州佳易仪器有限公司 一种标准光源对色观察箱

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4812904A (en) * 1986-08-11 1989-03-14 Megatronics, Incorporated Optical color analysis process
US8459814B2 (en) * 2010-05-12 2013-06-11 National Taiwan University Of Science And Technology White-light emitting devices with stabilized dominant wavelength
CN201955217U (zh) * 2010-12-03 2011-08-31 西安大昱光电科技有限公司 一种太阳辐射试验装置
CN201957281U (zh) * 2010-12-06 2011-08-31 西安中科麦特电子技术设备有限公司 一种太阳光谱模拟光源
CN102359819B (zh) * 2011-09-21 2013-10-02 温州佳易仪器有限公司 多光源彩色影像颜色检测方法及其所用的颜色采集箱

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101883971A (zh) * 2007-09-11 2010-11-10 韦里维德有限公司 颜色测定装置和方法
CN201464043U (zh) * 2009-06-29 2010-05-12 杭州立威化工涂料有限公司 一种专用于油漆对色的暗箱
US8592748B2 (en) * 2009-09-10 2013-11-26 Just Normlicht Gmbh Vertrieb + Produktion Method and arrangement for simulation of high-quality daylight spectra
CN203024866U (zh) * 2012-12-06 2013-06-26 上海艾登印刷有限公司 一种色彩检测装置
CN203259249U (zh) * 2013-02-27 2013-10-30 中国计量学院 一种包含led白光光源的标准光源比色灯箱
CN104748848A (zh) * 2015-04-13 2015-07-01 杭州远方光电信息股份有限公司 一种基于led的智能对色灯箱
CN105651386A (zh) * 2016-03-04 2016-06-08 温州佳易仪器有限公司 一种利用标准光源对色观察箱进行颜色测试的方法
CN205384086U (zh) * 2016-03-04 2016-07-13 温州佳易仪器有限公司 一种标准光源对色观察箱

Also Published As

Publication number Publication date
US20180120161A1 (en) 2018-05-03
EP3324160B1 (en) 2023-10-18
EP3324160A1 (en) 2018-05-23
CN105588639B (zh) 2018-03-23
US10222264B2 (en) 2019-03-05
CN105588639A (zh) 2016-05-18
EP3324160A4 (en) 2019-04-03

Similar Documents

Publication Publication Date Title
WO2017147987A1 (zh) 一种标准光源对色观察箱
WO2017147988A1 (zh) 一种利用标准光源对色观察箱进行颜色测试的方法
CN105136432B (zh) 基于主客观实验数据的led照明质量评价方法及系统
US7532324B2 (en) Equipment and method for LED&#39;s total luminous flux measurement with a narrow beam standard light source
CN102359819B (zh) 多光源彩色影像颜色检测方法及其所用的颜色采集箱
CN106353264B (zh) 适用于绘画色彩保护照明的白光led光谱获取方法
CN105938016A (zh) 一种颜色测量装置
US20090103075A1 (en) Method For Measuring Chroma Value By a Colorimeter
CN205384086U (zh) 一种标准光源对色观察箱
CN104931237A (zh) 一种用于照明效果观察的光箱
CN202710183U (zh) 一种物体色度测量系统
CN111060204A (zh) 一种色彩分析仪的定标装置及方法
RU91761U1 (ru) Эталонное устройство для передачи размера единиц координат цветности самосветящихся объектов
CN114061768B (zh) 一种积分球式光源色温校准装置及色温表校准方法
CN205748642U (zh) 一种颜色测量装置
CN205402398U (zh) 一种对色标准光源箱
CN205175555U (zh) 一种led照明器具颜色空间分布测试装置
CN211291747U (zh) 一种色彩分析仪的定标装置
Lahti et al. Realization of the luminous-flux unit using a LED scanner for the absolute integrating-sphere method
CN113932931B (zh) 一种对称式色温校准装置及色温表校准方法
CN215112182U (zh) 一种基于led的月光模拟灯箱
CN216349110U (zh) 一种均匀面光源
CN205402602U (zh) 一种标准光源对色观察箱的光源布置结构
CN220932746U (zh) 一种采用led模拟d65光源的新型棉花色泽测量仪
CN203203573U (zh) 一种红绿蓝三色led光测量装置

Legal Events

Date Code Title Description
REEP Request for entry into the european phase

Ref document number: 2016885451

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 15546338

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE