WO2017147828A1 - 电能源远程无线传输充电储能的方法 - Google Patents

电能源远程无线传输充电储能的方法 Download PDF

Info

Publication number
WO2017147828A1
WO2017147828A1 PCT/CN2016/075392 CN2016075392W WO2017147828A1 WO 2017147828 A1 WO2017147828 A1 WO 2017147828A1 CN 2016075392 W CN2016075392 W CN 2016075392W WO 2017147828 A1 WO2017147828 A1 WO 2017147828A1
Authority
WO
WIPO (PCT)
Prior art keywords
carrier
electric energy
data
energy
mgbtl
Prior art date
Application number
PCT/CN2016/075392
Other languages
English (en)
French (fr)
Inventor
诸葛瑞
赵群仙
Original Assignee
诸葛瑞
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 诸葛瑞 filed Critical 诸葛瑞
Priority to PCT/CN2016/075392 priority Critical patent/WO2017147828A1/zh
Publication of WO2017147828A1 publication Critical patent/WO2017147828A1/zh

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/28Arrangements for balancing of the load in a network by storage of energy

Definitions

  • the present invention discloses a method for remotely charging and storing energy energy of an electric energy source, and the present invention relates to a high-speed rotation of a large-area electric energy long-distance microwave beam power carrier in a power field, and pushing a high-speed (laser speed) perpendicular to the earth surface.
  • Variable rotating electric energy carrier cutting the NS magnetic pole on the earth surface, applying the natural law of positive and negative phase absorption of electric energy, remote wireless transmission, applying magnetic sensor to convert magnetic force into electric energy, applying super capacitor to store electric energy, collecting electric energy charging in geospatial space The method of energy storage.
  • the present invention provides an electric energy remote wireless transmission charging energy storage system and method, which is provided with a storage
  • the energy system can be used to supply energy to the energy storage system by wireless power supply.
  • the energy storage system supplies power to the power grid in reverse, so that the load of the power grid can be balanced.
  • the technical solution adopted by the present invention to solve the technical problem is: a method for remotely transmitting and charging energy energy of an electric energy source, wherein the method uses a frequency-modulated microwave carrier beam that is rotating at a high speed and a high speed, that is, MGbTl-T-4, where M is 24 00Ghz ⁇ 7200Ghz standard FM carrier, MGan is 49Khz big data electric energy carrier, including none
  • MGbTl-T-4 where M is 24 00Ghz ⁇ 7200Ghz standard FM carrier, MGan is 49Khz big data electric energy carrier, including none
  • the line transmitting/receiving compatible reference big data electric energy board, the transmitting/receiving CPU processor electric board, and the transmitting/receiving compatible antenna array technology control electric board are composed.
  • the technical solution adopted by the present invention to solve the technical problem thereof further includes:
  • the CPU processor board includes a combination of a phase shift rate data command X, a voltage serial data command Z, a current parallel data command R, and a transmit/receive address data command G to become a big data electric energy carrier reference transmitting power.
  • Board ie ZGRX.
  • the rotary big data electric energy that is, the MGan microwave carrier group is combined by a group of mutually perpendicular microwave carrier groups MGan.bTl-T4, and the MGbTl-T4 is a high-speed rotation of the front and back around the X-axis direction.
  • Microwave beam carrier group, frequency is Tl: 4Khz, T2: 8Khz, T3: 16Khz, T4 : 32Khz, large-wave wave dynamic carrier combination with amplitude 2.8 V symmetric high-speed rotation, power rotation frequency of each stage carrier: Tl: 4Mh z, T2: 8Mhz, T3: 16Mhz, T4: 32Mhz, the four-stage carrier frequency is 2400Ghz ⁇ 7200Ghz.
  • the group of electric energy carriers is rotated around the Y axis, that is, the MGan amplitude is 2.8V big data electric energy carrier, the frequency is constant at 49 kz, and the carrier frequency is 1800 Ghz to 7200 Ghz.
  • Rotating the microwave beam carrier around the X-axis is called a power carrier, and the amplitude is 2.8V, which is represented by MGbTl-4:
  • the frequency of the four-stage carrier of M GbTl-4 is Tl: 4k z., T2: 8Khz, T3 : 16Khz, T4: 32k z ;
  • Method 1 Apply phase adjustment principle.
  • the system command MGbTl-T4 rotates around the X axis.
  • the software programmable phase shifting technology has set the rotation frequency from 16Mhz to 1800Ghz.
  • the system B continuously increases or decreases continuously.
  • the microwave beam power carrier continuously changes the phase according to the system B command, that is, the MGbTl-4 high speed rotation pushes the right front smooth pin.
  • the MGan big data electric energy carrier rotated by the counter-twisting needle runs to the right front quickly; or the second method: the big data energy MGan ⁇ ⁇ ⁇ rotation and reverse ⁇ ⁇ rotation, the force generated by MGbTl-4 is different, the system A single MGbTl rotation has been set in advance to push the frequency of the MGan in two different directions.
  • the system instructs the remaining three-stage rotating carriers of MGbT2-T4 to be arranged step by step. Into MGbT2-4 beam to vector.
  • L is an MGan big data energy carrier
  • the system B adjusts the data perpendicular to the NS magnetic pole direction of the earth surface, and always corrects the NS magnetic pole ⁇ or the reverse needle perpendicular to the earth surface.
  • Rotation, rotation frequency is transmitted by system A.
  • L data is fine-tuned to correct the energy carrier and the surface of the earth. Degree.
  • the vertical direction of the NS magnetic pole is positioned by the GPS satellite, and then transmitted to the system A, the system A sends the L adjustment data to the system B, and the system B then corrects the verticality of the MGLan carrier and the NS magnetic pole of the earth surface.
  • the carrier alternating frequency of the magnetic pole that rotates and cuts the surface of the earth is completely synchronized with the frequency of the electric energy carrier. Both 49Khz and the electric energy carrier MGLan phase are completely synchronized.
  • the high-speed rotation cutting electromagnetic pole When the electric energy carrier is perpendicular to the earth surface, the high-speed rotation cutting electromagnetic pole The frequency phase of the generated magnetic energy is completely synchronized with the MGLan carrier, and the cutting obtains the same phase of the electric energy and the same voltage.
  • the electric energy obtained by the rotary cutting in the earth magnetic pole is synchronously superimposed and synthesized in the MGLan carrier, and is called the magnetic energy collecting method.
  • the series voltage Z is a standard 2.8v big data power carrier, the frequency is 49KHz, the parallel current R data is 50-200ma/time big data power standard carrier D, the transmission/reception address code G For 9 digits, each different data represents a different transmit/receive address data code, and the high-speed rotating MGbTl-4 carrier bundle is composed of each set of vertically independent big data electric energy carriers, wherein the MGLan carrier is a cistern or a reverse The needles are alternately transformed, the transformation frequency is perpendicular to the earth NS magnetic pole, and the high-speed rotary cutting electric energy carrier is generated at 49 kz to generate large-data electromagnetic energy of 49 kz, and the MGLan carrier is provided with transmission and reception address Gn data and GPS positioning signal data,
  • the MGbTl-4 carrier has an amplitude of 2.8V, the phase is -90 degrees with the M Gan carrier, and the delay is (1/F1) s.
  • the F1 is the MGbTl-4 dynamic carrier frequency of 4Khz ⁇ 32kz.
  • the MGbTl-T4 vector In the left direction of the MGan carrier, parallel to the X-axis, perpendicular to the left side of the MGan, the four-stage rotation drives the MGan to the right front.
  • the MGan is 2.8v amplitude, and the alternating electromagnetic field rotating around the Y-axis is high-speed.
  • Load The MGan crossover frequency is 49k z
  • the MGbTl-T4 rotation frequency is affected by the resistance of the transmission medium, and the system A is monitored by the system A.
  • the system B automatically adjusts the number of push connections of the MGbTl-T4 rotation, from T1 to T4.
  • the MG bTl-T4 high speed ⁇ pin rotates to the right (right), the MGbTl rotates in the direction of the ⁇ or reverse ⁇ , controlled by system B,
  • the MGbTl is -90 degrees in the left direction of the MGanY axis, and is perpendicular to each other, and the M GbTl-4 rotation frequency is determined by the system B according to the charging efficiency data received by the MGan received by the terminal, and the MGbTl-4 carrier is automatically adjusted.
  • the direction of rotation of the ⁇ b or reverse ⁇ , MGbTl-T4 reverse ⁇ pin rotation direction function adjust MGbTl-4 forward to the right transmission direction, so that remote transmission MGbTl-4 according to system B transmission G command GPS positioning, MGbTl- 4 Transmission in the direction of the shortest distance of the receiving instruction address to maximize transmission efficiency, applying GPRS general packet technology to big data power supply wireless transmission MGa
  • the big data electric energy packet is packaged, and the fast wireless transmission receives the big data power.
  • the receiving board automatically transmits the received data command according to the destination address according to the related G destination address data of the packetized microwave beam carrier.
  • phase reset, demodulation and rectification to DC-3.0V DC according to the received data, the restored electric energy is superimposed on the corresponding G address command data terminal load, and the received charge and energy storage data is wirelessly transmitted back to the system A platform through the sensor.
  • the transmitting and receiving power carriers are both set with a positive and negative phase electromagnetic field (1, 0) potential, that is, a phase transmission data command, and the end of the voltage of the data command is + end, the receiving is - End-to-end, start-up with the high-end (ie 1) of the current carrier as the starting point of the emission, and delay backward (1/F2) s, F2 is the big data energy carrier, MGan frequency 49Khz, constitute nl- and n2+ docking
  • the mutual attraction principle technology of transmitting and receiving a remote big data electromagnetic field carrier, the phase is [+, -], that is, (1, 0) attracting the closed end strange natural law.
  • the system B transmits the high-speed rotating microwave beam to the spatial propagation, and the system B applies the array antenna pattern shaping to adjust the antenna pattern zero point to implement the microwave beam shaping method, which is different from the traditional method.
  • the beam of the main lobe of the array antenna has stronger directivity.
  • the system B can adjust the transmission direction of the antenna beam, and realize the remote high-efficiency wireless transmission of the microwave beam big data power.
  • the receiving board has the reverse transmitting function, the transmitting power is the same as the receiving power, and the receiving board reversely transmits the big data electrical energy address data by the system B, and the reversed address data is received by the system base station.
  • the transmission transmits large data power, and the base station transmits a large data energy charging energy storage reference carrier board.
  • the antenna array is fully compatible with the software program technology in transmitting and receiving, and does not need to add any reverse transmission transmission distance equipment.
  • the technology of the present invention can balance the peaks and valleys of the power grid, reduce the load on the grid, and save energy.
  • FIG. 1 is a schematic view of a rotary power of the present invention.
  • T is a driving force and F is a rotation frequency.
  • FIG. 2 is a schematic view of a microwave carrier bundle of the present invention.
  • FIG. 3 is a schematic diagram of energy emission and reception according to the present invention.
  • FIG. 4 is a schematic view showing the cutting of the earth magnetic pole carrier of the present invention.
  • This embodiment is a preferred embodiment of the present invention, and other principles and basic structures are the same as or similar to those of the present embodiment, and are all within the scope of the present invention.
  • the present invention uses a rotary electric energy carrier to transmit energy, there is no closed circuit during transmission, so no current is generated, no current will have no radiation, and the present invention uses electric energy less than 2.8 w each time.
  • the present invention adopts an electric vehicle as a main unit to meet different terminal mobile video and Internet of Things monitoring and other objects for wireless transmission, fast charging and energy storage, and base station data command according to different base station receiving device power requirements.
  • the popularity of electric vehicles for the green environment of the earth will promote the development of the energy Internet, and set off a huge revolution in the history of big data energy remote wireless mobile charging energy storage.
  • the electric vehicle is not only a vehicle, but also a terminal load with the largest amount of remote wireless mobile power, and the same is the most convenient facility for mobile energy storage.
  • the invention has no interface connection wireless dynamic charging energy storage, and the electric vehicle can store 92KWh of electric energy (as in the case of Tesla electric vehicles), and the electric vehicle can pass through the system during the interaction with the power grid.
  • Set the lowest price of the electricity price at any position within the coverage area, and the small hydropower stations, wind power, solar power, etc., which are difficult to connect to the grid, are all set in the system for wireless mobile charging and energy storage.
  • the shared system provides charging and energy storage in the trough of the grid. It does not require external high-priced electric energy.
  • the system effectively participates in the peak shift of the huge gap between the peak of the grid and the trough.
  • the load of Pingheng Power Grid fully and fully apply the power storage and energy storage in the low valley period and the reverse wireless transmission of big data power, greatly improving the efficiency of energy-saving applications and reducing the cost of electricity.
  • the electric energy carrier rotates wirelessly to cut the NS magnetic pole on the surface of the earth, and the collected electric energy is superimposed and added to the transmitted energy carrier, so that the electrical energy loss of the remote transmission big data is reduced, almost zero!
  • the invention simultaneously drives the development of small hydropower stations and wind power, cosmic magnetoelectric energy and solar energy in various industrial chains related to wireless data transmission and energy storage of big data power sources.
  • the present invention can realize that in any stage, it can be used by the system to function as an automatic reverse power supply of the energy storage facility, and is used in the mobile wireless dynamic proximity rather than the static charging energy storage power supply.
  • the present invention is mainly a vertical vertical positive and negative rotating electric energy carrier wirelessly cuts the earth surface magnetic pole to transmit electrical energy and collect electrical energy.
  • the two innovative technical methods a positive and negative rotating microwave beam in the air to push the target at high speed Accurate and fast-running big data electric energy carriers, these microwave beams are combined into a group of mutually perpendicular electric energy carrier groups by a plurality of FM carrier groups, and each group of electric energy carrier groups is provided with transmission receiving address data and GPS positioning data.
  • the big data electric energy carrier microwave beam rotates forward and backward at a high speed and moves to the right in the X axis.
  • the power generated by the high-speed rotating carrier beam pushes the positive and negative rotating electric energy carrier to move quickly to the target, maximizing the improvement of the big data electric energy carrier wireless cutting transmission s efficiency!
  • the high-speed rotating carrier's own forward and reverse rotation rate and the perpendicular angle of the alternating cutting perpendicular to the NS magnetic pole of the earth's surface, phase synchronization and other factors combine to produce a wonderful cutting electromagnetic field operation law of the universe, so that the big data magnetoelectric energy Acquiring electrical energy from space to supplement long-distance transmission of electrical energy losses.
  • the theoretical value of the present invention is: When the frequency of the big data electric energy carrier wave and the alternating and reverse high-speed rotating carrier alternating cutting the earth NS magnetic pole frequency reaches or is close to the laser speed, it can effectively transmit tens of thousands of kilometers, enabling large data magnetoelectric The loss of wireless transmission of the energy carrier is almost zero, and a large amount of magnetic energy can be obtained and superimposed on the wireless transmission electric energy carrier.
  • the long-distance high-speed forward-reverse rotation of the microwave beam, the large data energy carrier can enhance the transmission cutting power in the transmission air medium during the process of wirelessly cutting the magnetic pole of the earth surface, effectively improving the power speed of the carrier forward running, and making the cutting transmission
  • the distance is transmitted over a long distance, and the energy carrier is in the process of rotating and cutting the earth magnetic pole
  • the collected part of the magnetic energy compensates for the loss of long-distance transmission, so that the loss of fast transmission of power over a long distance is almost zero!
  • the network system used in the present invention is as follows:
  • the present invention specially sets the system A and the system B to form a large network command system which is convenient for unified management.
  • System A is responsible for overall operation and overall management of client resources, and actually sends various charging and energy storage data commands to B system and collects charging energy storage data!
  • the system A When the system A receives the client charging information, and then accurately makes a positioning comparison, the system B sends a charging data command and a client-related address and a data resource for charging and storing energy.
  • System B is an execution system: In order to ensure the safe and efficient charging and energy storage efficiency of the network system, the system B implements the monitoring system A wireless cutting transmission of the big data power carrier various instructions.
  • the invention simultaneously drives the development of small hydropower stations, wind power stations, cosmic magnetoelectric energy, and solar energy in various industrial chains related to wireless data transmission and energy storage of big data power sources.
  • the inexhaustible magnetoelectric energy and solar energy in the universe will be transmitted to the earth wirelessly by applying the technology of the present invention. It will be a new cosmic energy. world.
  • the earth magnetoelectric energy can be gradually applied, and the solar power will also be efficiently transmitted from the universe to the earth wirelessly!

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

采用正反高速旋转大数据微波束载体,即MGbT1-T4分四级高速旋转载体逐级推动着相互垂直的高速旋转的电能量载体MGan高速运行、远距离无线传输大数据电能源的方法。其核心技术包括:电能源远程传输、损耗几乎为零。设计四级波束、逐级推动电能量载体高速运行。动力载体与电能载体相互垂直正反高速旋转。应用大自然宇宙地球N-S磁极、载体垂直于地球表面高速旋转切割磁极转换为交变大数据电能。应用切割磁极采集电能频相同步、正负相吸异步合成原理技术,实现补偿无线传输电能量损耗。并且电能量载体为无线开路传输、空气中不产生任何电流、辐射为零。

Description

说明书 发明名称:电能源远程无线传输充电储能的方法 技术领域
[0001] 本发明公幵一种电能源远程无线传输充电储能的方法, 本发明涉及电力领域大 数据电能源远距离微波束动力载体高速旋转, 推动着垂直于地球表面高速 (激 光速) 交变旋转的电能载体, 切割地球表面 N-S磁极, 应用电能正负相吸的大自 然规律, 远程无线传输, 应用磁力传感器将磁力转换为电能后、 应用超级电容 存储电能量釆集地球宇宙空间电能充电储能的方法。
背景技术
[0002] 随着石油、 煤炭等资源的日渐枯竭, 以及人们对环保的进一步认识, 石油、 煤 炭等在人们生活中的应用越来越少, 取而代之的是太阳能、 风能、 电能等清洁 能源。 以汽车为例, 目前, 各大汽车生产厂商都争相研究电动能源汽车, 但是 , 其面临一个巨大的问题, 就是电动汽车充电难的问题。 加之目前的电力系统 中, 有用电高峰期和低谷期, 即高峰期用电量大, 电网负荷也大, 低谷期用电 量小, 电网负荷也小, 为了平衡这一问题, 普遍采用的措施为实行差异电价, 即高峰期电价贵, 低谷期电价便宜, 这仍然是一个治标不治本的做法。
技术问题
[0003] 针对上述提到的现有技术中的用电高峰期和低谷期对电网负荷的要求不同的缺 点, 本发明提供一种电能源远程无线传输充电储能系统及方法, 其设立有储能 系统, 用电低谷期吋, 电网通过无线方式给储能系统供电, 进行电能存储, 当 用电高峰期吋, 储能系统通过无线方式给电网逆向供电, 从而可实现平衡电网 负荷的目的。
问题的解决方案
技术解决方案
[0004] 本发明解决其技术问题采用的技术方案是: 一种电能源远程无线传输充电储能 的方法, 该方法采用正反高速旋转的调频微波载体束即 MGbTl-T-4, 其中 M为 24 00Ghz~7200Ghz标准调频载波, MGan为 49Khz大数据电能量载体, 其中包括无 线发射 /接收兼容基准大数据电能量板、 发射 /接收 CPU处理器电板、 发射 /接收兼 容天线阵列技术控制电板组成。
[0005] 本发明解决其技术问题采用的技术方案进一步还包括:
[0006] 所述的 CPU处理器电板包含移相速率数据指令 X、 电压串联数据指令 Z、 电流 并联数据指令 R和发射 /接收地址数据指令 G等功能组合成为大数据电能量载体基 准发射电板, 即 ZGRX。
[0007] 所述的旋转式大数据电能量, 即 MGan微波载体群由一组组相互垂直的微波载 体群 MGan.bTl-T4相组合, MGbTl-T4是围绕 X轴方向正反高速旋转的四级微波 束载体群, 频率由 Tl : 4Khz、 T2: 8Khz、 T3: 16Khz、 T4: 32Khz, 幅值为 2.8 V对称高速旋转的大数据波动力载体组合, 每级载体的动力旋转频率: Tl : 4Mh z、 T2: 8Mhz、 T3: 16Mhz、 T4: 32Mhz, 四级载波频率均为 2400Ghz~7200Ghz 变化。
[0008] 围绕着 Y轴旋转电能量载体群, 即 MGan幅值为 2.8V大数据电能量载体, 频率恒 定为 49k z, 载波频率为 1800Ghz~7200Ghz变化。
[0009] 围绕着 X轴旋转微波束载体称为动力载体, 幅值为 2.8V、 用 MGbTl-4表示: M GbTl-4的四级载体频率分别为 Tl : 4k z.、 T2: 8Khz、 T3: 16Khz、 T4: 32k z ; 方法一: 应用相位调整原理系统指令 MGbTl-T4围绕 X轴旋转, 采用软件可编 程移相技术已设定旋转频率 16Mhz~1800Ghz, 由系统 B不断地连续增加或减少来 改变 X移相数据指令, 并实吋发送指令到 MXGbTl-4动力载体, 使微波束动力载 体连续不停地按照系统 B指令改变相位, 即实现 MGbTl-4高速旋转推动着右前方 顺吋针或逆吋针旋转的 MGan大数据电能量载体快速向右前方运行; 或者方法二 : 大数据能量 MGan顺吋针旋转及逆吋针旋转, 由 MGbTl-4推动所产生的力是不 同的、 系统预先已设定单一 MGbTl旋转推动 MGan两个不同方向的频率, 当需要 加速推动 MGan载体动力吋, 系统指令 MGbT2-T4其余三级旋转载体再逐步的排 列加入到 MGbT2-4载体束中去。
[0010] 所述的 MGLan中 L为 MGan大数据能量载体, 由系统 B实吋调整垂直于地球表面 N-S磁极方向的数据, 并始终校正垂直于地球表面 N-S磁极顺吋针或者逆吋针交 变旋转, 旋转频率由系统 A实吋发送 L数据微调校正能量载体与地球表面的垂直 度。
[0011] 监测地球表面 N-S磁极垂直方向由 GPS卫星定位后, 实吋传输给系统 A, 系统 A 实吋发送 L调整数据给系统 B, 系统 B随吋校正 MGLan载体与地球表面 N-S磁极保 持垂直度为 90度, 旋转切割地球表面的磁极的载体交变频率与电能量载体频率 完全同步, 均为 49Khz同吋与电能量载体 MGLan相位完全同步, 当电能量载体垂 直地球表面高速旋转切割电磁极所产生磁电能的频率相位与 MGLan载体完全同 步吋, 切割获取电能量相位相同、 电压相同吋, 在地球磁极中旋转切割获取的 电能量同步叠加合成于 MGLan载体中, 称磁电能采集方法。
[0012] 所述的串联电压 Z为标准的 2.8v大数据电源载体, 频率为 49KHz, 并联电流 R数 据为 50-200ma/次的大数据电源标准载体 D, 所述的传输 /接收地址码 G为 9个数字 表示, 每一个不同数据表示不同发射 /接收地址数据码, 高速旋转 MGbTl-4载体 束由每组相互垂直独立的大数据电能量载体组成, 其中 MGLan载体为顺吋针或 逆吋针交替变换, 变换频率在 49k z垂直于地球 N-S磁极高速旋转切割电能量载 体, 产生出 49k z的大数据电磁能量, 并且 MGLan载体设置有传输与接收地址 Gn 数据以及 GPS定位信号数据, 所述的 MGbTl-4载体幅值为 2.8V、 相位与所述的 M Gan载体相位为 -90度, 延迟 (1/F1) s, F1为 MGbTl-4动力载体频率 4Khz~32k z , MGbTl-T4载体在 MGan载体左方向, 平行 X轴, 垂直于 MGan左方分四级旋转 着推动 MGan向右前方快速运行, 所述的 MGan为 2.8v幅值, 围绕着 Y轴正反高速 旋转的交变电磁场载体, MGan交变频率为 49k z, MGbTl-T4旋转频率受传输介 质阻力影响, 而由系统 A实吋监测, 由系统 B实吋自动调整 MGbTl-T4旋转的推 动连接的数量, 从 T1到 T4连接推动实际数量由系统 B实吋监测调整, 所述的 MG bTl-T4高速顺吋针旋转向 (右) 前行的, MGbTl旋转方向顺吋针或者逆吋针, 受控于系统 B, 所述的 MGbTl为 -90度相位在 MGanY轴左方向, 并相互垂直, M GbTl-4旋转频率, 由系统 B根据终端接收到的 MGan反馈回的充电效率数据, 实 吋自动调整 MGbTl-4载体的顺吋针或者逆吋针的旋转方向, MGbTl-T4逆吋针旋 转的方向功能为; 调整 MGbTl-4前行向右传输方向, 使远程传输 MGbTl-4按系 统 B传输 G指令 GPS定位, MGbTl-4按接收指令地址最短距离的直线方向传输, 使传输效率达到最大化, 将 GPRS通用分组技术应用于大数据电源无线传输 MGa n微波束中, 实现大数据电能量分组打包快速无线传输接收大数据电源, 所述的 接收板根据传输接收到的分组微波束载体的相关 G目的地址数据, 按目的地址传 输接收数据指令自动分组, 相位复位, 解调整流为 DC-3.0V直流电, 按接收数据 还原电能量叠加到相应 G地址指令数据终端负载中, 并通过传感器将接收到的电 量充电储能数据无线回传到系统 A平台。
[0013] 所述的发射与接收的电源载体均设定有正负相吸电磁场 (1、 0) 电位, 即相位 传输数据指令, 并按数据指令的电压的起始为 +端发, 接收为-端对收、 发射起始 以带电流载体的高端 (即 1 ) 为发射起点, 并向后延迟 (1/F2) s , F2为大数据能 量载体, MGan频率 49Khz, 构成 nl-与 n2+对接相互产生一种远程大数据电磁场 载体的传输接收的相互吸引的原理技术, 相位为 〔+, -〕 , 即 (1、 0) 相互吸引 闭合端奇特大自然规律。
[0014] 应用天线阵列技术方法, 由系统 B将高速旋转微波束发射到空间传播, 系统 B 应用阵列天线图赋形可调整天线方向图零点来实现微波束赋形方法, 该方法有 别于传统的阵列天线主瓣的波束, 具有更强方向性, 根据系统 A返馈回来的充电 数据流量图, 系统 B可实吋调整天线束发射方向, 对实现远程高效率无线传输微 波束大数据电能不可少的方法, 所述的接收板同吋具备逆向发射功能, 发射功 率大小与接收功率相同, 接收板逆向发射大数据电能量地址数据由系统 B发出, 并由系统基站接收后按逆向的地址数据发射传输大数据电能, 基站发射大数据 电能充电储能基准载体板, 天线阵列在发射与接收中使用软件程序技术完全兼 容, 不需要再增加任何逆向发射传输距设备。
发明的有益效果
有益效果
[0015] 通过本发明技术可平衡电网用电高峰和低谷, 减小电网的负荷, 并能很好的节 约能源。
对附图的简要说明
附图说明
[0016] 图 1是本发明旋转动力示意图。
[0017] T
Figure imgf000006_0001
2 , T 1=F!; [0018] F 4=8F! , F 3=4F! , F 2=2F!;
[0019] 其中, T为推动力, F为旋转频率。
[0020] 图 2是本发明微波载体束示意图。
[0021] 图 3是本发明能量发射、 接收示意图。
[0022] 图 4是本发明地球磁极载体切割示意图。
[0023] 当 STn相位, 频率同步吻合吋,
[0024] 总电能量 Man+STn=MasTn。
实施该发明的最佳实施例
本发明的最佳实施方式
[0025] 本实施例为本发明优选实施方式, 其他凡其原理和基本结构与本实施例相同或 近似的, 均在本发明保护范围之内。
[0026] 由于本发明应用旋转式电能量载体传输能量, 因此, 在传输过程中没有闭合电 路, 因此不产生电流, 没有电流就不会有辐射, 另外本发明采用每次小于 2.8w 的电能量载体发射与接收, 符合国际无线传输小于 3.0w的安全标准。
[0027] 本发明采用以电动汽车为主同吋满足不同的终端移动视频以及物联网监控等目 标物进行无线传输、 快速充电储能, 对每个终端接收装置电力需求不同的基站 按系统数据指令自动调节电压及电流发射传输; 在全球推行绿色环保电动汽车 作为一种移动分布式的充电储能设施, 体现能源互联网的关键特点, 并成为能 源互联网的重要支柱。 电动汽车在为地球绿色环保的普及将推动着能源互联网 的发展, 掀起大数据能源远程无线移动充电储能领域创造历史的巨大变革。
[0028] 其中电动汽车既是交通工具, 也是远程无线移动用电数量最大的终端负载, 同 吋也是移动储能最方便的设施。 应用本发明无接口的连接无线动态充电储能, 电动汽车用电容量最大可以存储 92KWh的电能量 (以特斯拉电动汽车为例) , 电动汽车在与电网的交互过程中, 既可以通过系统在覆盖范围之内任何位置、 任何吋段设定电价最低吋段数据以及与并网难度大的小型水电站、 风能电、 太 阳能电等全部就近设定在系统内无线移动充电储能, 同吋可共享系统提供在电 网低谷负荷吋充电储能, 不需要外部高价电能, 只需由系统向系统内部电网无 接口逆向反送电力充电, 系统有效的参与电网高峰到低谷之间巨大落差的调峰 及平恒电网负荷, 自动大幅度充分应用低谷期电力充电储能以及就近逆向无线 传输大数据电源, 大大提高了节能应用效率及降低用电成本。 此外, 电能量载 体高速旋转无线切割地球表面 N-S磁极, 采集到的部分电能量叠加补充到传输的 能量载体中, 使远程传输大数据电能量损耗减少, 几乎为零!
[0029] 本发明同吋带动大数据电源无线传输充电储能的相关产业链各地的小型水电站 及风能电、 宇宙磁电能以及太阳电能的大力发展。
[0030] 不久的将来、 宇宙空间取之不尽用之不完的磁电能、 太阳电能都将通过应用本 发明源源不断的把新的宇宙空间电能源无线传输回地球, 那将是全新宇宙能量 的世界!
[0031] 本发明可实现在任何的吋段里它都可以由系统发挥储能设施的自动逆向反供电 的作用, 并且是移动无线动态就近使用, 而不是静止充电储能供电使用。
[0032] 本发明主要为一种相互垂直正反旋转电能量载体无线切割地球表面磁极传输电 能量并采集电能量双重创新的技术方法: 一种在空气中正反旋转微波束高速推 动着向目标准确快速运行的大数据电能量载体, 这些微波束由许多调频载体群 组合为一组组相互垂直的电能量载体群, 每一组电能量载体群均设置有传输接 收地址数据以及 GPS定位数据, 大数据电能量载体微波束正反高速旋转着向 X轴 右方向快速移动。 正反高速旋转大数据电能量载体在无线切割传输过程中, 由 高速旋转载体束所产生动力推着正反旋转的电能量载体快速向目标移动, 最大 化的提高大数据电能量载体无线切割传输的效率! 同吋又与高速旋转载体自身 正反旋转速率以及交变切割垂直于地球表面 N-S磁极的垂直角度, 相位同步等因 素相结合, 产生出宇宙空间奇妙的切割电磁场运行规律, 使大数据磁电能量从 宇宙空间获取电能补充远距离传输电能损耗。 本发明的理论值为: 当大数据电 能量载体波的频率以及正反高速旋转载体交变切割地球 N-S磁极频率达到或接近 于激光速吋, 可有效传输上万公里, 能使大数据磁电能量载体无线传输的损耗 几乎为零, 并能获取到大量的磁电能合成叠加于无线传输电能量载体中。
[0033] 远距离高速正反旋转的微波束, 大数据能量载体在无线切割地球表面磁极的过 程中可增强传输空气介质中的传输切割动力, 有效提高载体向前运行的动力速 度, 使切割传输距离达到远距离传输, 且能量载体在旋转切割地球磁极过程中 采集到的部分磁电能补偿了远距离传输的损耗使远距离快速传输电能的损耗几 乎为零的神奇效果!
[0034] 本发明中采用的网络系统如下:
[0035] 为保障无线传输大数据电源的覆盖面积广, 传输距离远, 本发明特设定系统 A 及系统 B来组建一个庞大的便于统一管理的网络指挥系统。 其中, 系统 A为负责 全面运营及客户端资源全面管理, 并实吋向 B系统发送各项充电储能数据指令及 收集充电储能数据!
[0036] 当系统 A收到客户端充电信息, 实吋准确作出定位比较后, 向系统 B发出充电 数据指令及客户端相关地址以及充电储能的数据资枓。
[0037] 系统 B为执行系统: 为保障网络系统安全高效充电储能效率, 系统 B实吋监测 执行系统 A无线切割传输大数据电源载体各项指令。
[0038] 本发明同吋带动大数据电源无线传输充电储能的相关产业链中各地的小型水电 站、 风能电站、 宇宙磁电能以及太阳电能等的大力发展。 不久的将来、 宇宙空 间取之不尽用之不完的磁电能、 太阳电能都将通过应用本发明技术, 源源不断 的把新的宇宙空间电能源无线传输回地球, 那将是全新宇宙能量的世界。 使用 本发明的发展, 可使地球磁电能被逐渐应用, 太阳能电也将被高效率的从宇宙 外无线传回地球!

Claims

权利要求书
[权利要求 1] 一种电能源远程无线传输充电储能的方法, 其特征是: 所述的方法采 用正反高速旋转的调频微波载体束即 MGbTl-T-4, 其中 M为 2400Ghz~ 7200Ghz标准调频载波, MGan为 49Khz大数据电能量载体, 其中包括 无线发射 /接收兼容基准大数据电能量板、 发射 /接收 CPU处理器电板 、 发射 /接收兼容天线阵列技术控制电板组成。
[权利要求 2] 根据权利要求 1所述的电能源远程无线传输充电储能的方法, 其特征 是: 所述的 CPU处理器电板包含移相速率数据指令 X、 电压串联数据 指令 Z、 电流并联数据指令 R和发射 /接收地址数据指令 G等功能组合 成为大数据电能量载体基准发射电板, 即 ZGRX。
[权利要求 3] 根据权利要求 1所述的电能源远程无线传输充电储能的方法, 其特征 是: 所述的旋转式大数据电能量, 即 MGan微波载体群由一组组相互 垂直的微波载体群 MGan.bTl-T4相组合, MGbTl-T4是围绕 X轴方向 正反高速旋转的四级微波束载体群, 频率由 Tl : 4Khz、 T2: 8Khz、 T3: 16Khz、 T4: 32Khz, 幅值为 2.8V对称高速旋转的大数据波动力 载体组合, 每级载体的动力旋转频率: Tl : 4Mhz、 T2: 8Mhz、 T3: 16Mhz、 T4: 32Mhz, 四级载波频率均为 2400Ghz~7200Ghz变化。
[权利要求 4] 根据权利要求 3所述的电能源远程无线传输充电储能的方法, 其特征 是: 围绕着 Y轴旋转电能量载体群, 即 MGan幅值为 2.8V大数据电能 量载体, 频率恒定为 49k z, 载波频率为 1800Ghz~7200Ghz变化。
[权利要求 5] 根据权利要求 3所述的电能源远程无线传输充电储能的方法, 其特征 是: 围绕着 X轴旋转微波束载体称为动力载体, 幅值为 2.8V、 用 MGb T1-4表示: MGbTl-4的四级载体频率分别为 Tl : 4k z.、 T2: 8Khz、 T3: 16Khz、 T4: 32k z; 方法一: 应用相位调整原理系统指令 MGbT 1-T4围绕 X轴旋转, 采用软件可编程移相技术已设定旋转频率 16Mhz~ ISOOGhz, 由系统 B不断地连续增加或减少来改变 X移相数据指令, 并 实吋发送指令到 MXGbTl-4动力载体, 使微波束动力载体连续不停地 按照系统 B指令改变相位, 即实现 MGbTl-4高速旋转推动着右前方顺 吋针或逆吋针旋转的 MGan大数据电能量载体快速向右前方运行; 或 者方法二: 大数据能量 MGan顺吋针旋转及逆吋针旋转, 由 MGbTl-4 推动所产生的力是不同的、 系统预先已设定单一 MGbTl旋转推动 MG an两个不同方向的频率, 当需要加速推动 MGan载体动力吋, 系统指 令 MGbT2-T4其余三级旋转载体再逐步的排列加入到 MGbT2-4载体束 中去。
[权利要求 6] 根据权利要求 5所述的电能源远程无线传输充电储能的方法, 其特征 是: 所述的 MGLan中 L为 MGan大数据能量载体, 由系统 B实吋调整垂 直于地球表面 N-S磁极方向的数据, 并始终校正垂直于地球表面 N-S 磁极顺吋针或者逆吋针交变旋转, 旋转频率由系统 A实吋发送 L数据 微调校正能量载体与地球表面的垂直度。
[权利要求 7] 根据权利要求 6所述的电能源远程无线传输充电储能的方法, 其特征 是: 监测地球表面 N-S磁极垂直方向由 GPS卫星定位后, 实吋传输给 系统 A, 系统 A实吋发送 L调整数据给系统 B, 系统 B随吋校正 MGLan 载体与地球表面 N-S磁极保持垂直度为 90度, 旋转切割地球表面的磁 极的载体交变频率与电能量载体频率完全同步, 均为 49Khz同吋与电 能量载体 MGLan相位完全同步, 当电能量载体垂直地球表面高速旋 转切割电磁极所产生磁电能的频率相位与 MGLan载体完全同步吋, 切割获取电能量相位相同、 电压相同吋, 在地球磁极中旋转切割获取 的电能量同步叠加合成于 MGLan载体中, 称磁电能采集方法。
[权利要求 8] 根据权利要求 2所述的电能源远程无线传输充电储能的方法, 其特征 是: 所述的串联电压 Z为标准的 2.8v大数据电源载体, 频率为 49KHz , 并联电流 R数据为 50-200ma/次的大数据电源标准载体 D, 所述的传 输 /接收地址码 G为 9个数字表示, 每一个不同数据表示不同发射 /接收 地址数据码, 高速旋转 MGbTl-4载体束由每组相互垂直独立的大数据 电能量载体组成, 其中 MGLan载体为顺吋针或逆吋针交替变换, 变 换频率在 49k z垂直于地球 N-S磁极高速旋转切割电能量载体, 产生出 49k z的大数据电磁能量, 并且 MGLan载体设置有传输与接收地址 Gn 数据以及 GPS定位信号数据, 所述的 MGbTl-4载体幅值为 2.8V、 相位 与所述的 MGan载体相位为 -90度, 延迟 (1/F1) s, F1为 MGbTl-4动 力载体频率 4Khz~32k z, MGbTl-T4载体在 MGan载体左方向, 平行 X 轴, 垂直于 MGan左方分四级旋转着推动 MGan向右前方快速运行, 所述的 MGan为 2.8v幅值, 围绕着 Y轴正反高速旋转的交变电磁场载体 , MGan交变频率为 49k z, MGbTl-T4旋转频率受传输介质阻力影响 , 而由系统 A实吋监测, 由系统 B实吋自动调整 MGbTl-T4旋转的推动 连接的数量, 从 T1到 T4连接推动实际数量由系统 B实吋监测调整, 所 述的 MGbTl-T4高速顺吋针旋转向 (右) 前行的, MGbTl旋转方向 顺吋针或者逆吋针, 受控于系统 B, 所述的 MGbTl为 -90度相位在 MG anY轴左方向, 并相互垂直, MGbTl-4旋转频率, 由系统 B根据终端 接收到的 MGan反馈回的充电效率数据, 实吋自动调整 MGbTl-4载体 的顺吋针或者逆吋针的旋转方向, MGbTl-T4逆吋针旋转的方向功能 为; 调整 MGbTl-4前行向右传输方向, 使远程传输 MGbTl-4按系统 B 传输 G指令 GPS定位, MGbTl-4按接收指令地址最短距离的直线方向 传输, 使传输效率达到最大化, 将 GPRS通用分组技术应用于大数据 电源无线传输 MGan微波束中, 实现大数据电能量分组打包快速无线 传输接收大数据电源, 所述的接收板根据传输接收到的分组微波束载 体的相关 G目的地址数据, 按目的地址传输接收数据指令自动分组, 相位复位, 解调整流为 DC-3.0V直流电, 按接收数据还原电能量叠加 到相应 G地址指令数据终端负载中, 并通过传感器将接收到的电量充 电储能数据无线回传到系统 A平台。
[权利要求 9] 根据权利要求 8所述的电能源远程无线传输充电储能的方法, 其特征 是: 所述的发射与接收的电源载体均设定有正负相吸电磁场 (1、 0) 电位, 即相位传输数据指令, 并按数据指令的电压的起始为 +端发, 接收为-端对收、 发射起始以带电流载体的高端 (即 1) 为发射起点, 并向后延迟 (1/F2) s, F2为大数据能量载体, MGan频率 49Khz, 构 成 nl-与 n2+对接相互产生一种远程大数据电磁场载体的传输接收的相 互吸引的原理技术, 相位为 〔+, -〕 , 即 (1、 0) 相互吸引闭合端奇 特大自然规律。
[权利要求 10] 根据权利要求 2所述的电能源远程无线传输充电储能的方法, 其特征 是: 应用天线阵列技术方法, 由系统 B将高速旋转微波束发射到空间 传播, 系统 B应用阵列天线图赋形可调整天线方向图零点来实现微波 束赋形方法, 该方法有别于传统的阵列天线主瓣的波束, 具有更强方 向性, 根据系统 A返馈回来的充电数据流量图, 系统 B可实吋调整天 线束发射方向, 对实现远程高效率无线传输微波束大数据电能不可少 的方法, 所述的接收板同吋具备逆向发射功能, 发射功率大小与接收 功率相同, 接收板逆向发射大数据电能量地址数据由系统 B发出, 并 由系统基站接收后按逆向的地址数据发射传输大数据电能, 基站发射 大数据电能充电储能基准载体板, 天线阵列在发射与接收中使用软件 程序技术完全兼容, 不需要再增加任何逆向发射传输距设备。
PCT/CN2016/075392 2016-03-03 2016-03-03 电能源远程无线传输充电储能的方法 WO2017147828A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/075392 WO2017147828A1 (zh) 2016-03-03 2016-03-03 电能源远程无线传输充电储能的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/075392 WO2017147828A1 (zh) 2016-03-03 2016-03-03 电能源远程无线传输充电储能的方法

Publications (1)

Publication Number Publication Date
WO2017147828A1 true WO2017147828A1 (zh) 2017-09-08

Family

ID=59742466

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/075392 WO2017147828A1 (zh) 2016-03-03 2016-03-03 电能源远程无线传输充电储能的方法

Country Status (1)

Country Link
WO (1) WO2017147828A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102355067A (zh) * 2011-07-04 2012-02-15 东南大学 一种无线传感器网络节点的移动式无线充供电方法
CN103887898A (zh) * 2014-03-25 2014-06-25 天津工业大学 基于频率控制的磁耦合电能无线传输系统
CN104967155A (zh) * 2015-06-02 2015-10-07 李高山 车辆道路移动充电系统
CN105162179A (zh) * 2015-06-26 2015-12-16 诸葛瑞 一种大数据电源无线传输充电系统

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102355067A (zh) * 2011-07-04 2012-02-15 东南大学 一种无线传感器网络节点的移动式无线充供电方法
CN103887898A (zh) * 2014-03-25 2014-06-25 天津工业大学 基于频率控制的磁耦合电能无线传输系统
CN104967155A (zh) * 2015-06-02 2015-10-07 李高山 车辆道路移动充电系统
CN105162179A (zh) * 2015-06-26 2015-12-16 诸葛瑞 一种大数据电源无线传输充电系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ZHOU, FANGZU ET AL., ELECTROMAGNETIC INDUCTION, 31 July 1987 (1987-07-31) *

Similar Documents

Publication Publication Date Title
Sabarish et al. An Energy Efficient Microwave Based Wireless Solar Power Transmission System
CN204312246U (zh) 一种利用波浪能的发电装置
CN105552556A (zh) 轨道角动量涡旋波束产生装置及方法
Dziadak et al. Survey of energy harvesting systems for wireless sensor networks in environmental monitoring
Akter et al. Design and performance analysis of 10-stage voltage doublers RF energy harvesting circuit for wireless sensor network
CN103490668A (zh) 一种基于压电效应的风能利用装置
CN107329153A (zh) 一种基于LoRa的多模融合定位装置
CN102270694B (zh) 柔性衬底硅基薄膜太阳能电池集成内联组件的制备方法
Maqsood et al. Wireless electricity (Power) transmission using solar based power satellite technology
Bikrat et al. Electronic and computer system for monitoring a photovoltaic station
Mehrotra Cut the cord: wireless power transfer, its applications, and its limits
CN204442232U (zh) 一种光伏发电无线充电系统
CN104943876A (zh) 一种空间太阳能电站太阳翼二维展开装置及其展开方法
WO2017147828A1 (zh) 电能源远程无线传输充电储能的方法
CN204425355U (zh) 基于北斗卫星的地质环境实时监测系统
CN105896748B (zh) 辐射式无线电能传输系统中多个接收端调度方法
WO2012042407A3 (en) Solar energy production
Ashi et al. A PV solar tracking system: Design, implementation and algorithm evaluation
CN103713047A (zh) 一种高压电缆检测装置及其使用方法
CN105576679A (zh) 电能源远程无线传输充电储能的方法
Lyu et al. Harvesting weak ocean current energy for resident unmanned underwater vehicles
CN204721104U (zh) 一种利用微波的充电系统
Peng et al. Application design of a sun-tracking system
Elanzeery et al. Frequency survey simulation for developing novel radio frequency energy harvesting model
CN204476653U (zh) 一种海洋能中的波浪能发电装置

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16892019

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 17.01.2019)

122 Ep: pct application non-entry in european phase

Ref document number: 16892019

Country of ref document: EP

Kind code of ref document: A1