WO2017147801A1 - 一种调整多深度显示的景深距离的系统及其方法 - Google Patents

一种调整多深度显示的景深距离的系统及其方法 Download PDF

Info

Publication number
WO2017147801A1
WO2017147801A1 PCT/CN2016/075285 CN2016075285W WO2017147801A1 WO 2017147801 A1 WO2017147801 A1 WO 2017147801A1 CN 2016075285 W CN2016075285 W CN 2016075285W WO 2017147801 A1 WO2017147801 A1 WO 2017147801A1
Authority
WO
WIPO (PCT)
Prior art keywords
depth
projector
field
micro
adjusting
Prior art date
Application number
PCT/CN2016/075285
Other languages
English (en)
French (fr)
Inventor
陈台国
蔡宏斌
Original Assignee
陈台国
蔡宏斌
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 陈台国, 蔡宏斌 filed Critical 陈台国
Priority to PCT/CN2016/075285 priority Critical patent/WO2017147801A1/zh
Publication of WO2017147801A1 publication Critical patent/WO2017147801A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays

Definitions

  • the present invention relates to a system and method for adjusting the depth of field of a multi-depth display, and more particularly to a system and method for achieving the effect of multiple depth of field images through multiple light sources or multiple light source angles.
  • smart glasses will open a new mobile computing device usage model. After Google Glass started a topic in the industry, the development trend of smart glasses is continuing to burn. At present, most manufacturers plan to introduce micro-projection display technology to realize a see-through display, and with a simple operation software interface, the product can provide multi-purpose use. To attract consumers to purchase.
  • the mainstream micro-projection display technology can be divided into digital light source processing (DLP), micro-electromechanical system (MEMS) laser, liquid crystal on silicon (LCOS), such as LCoS micro-projection display technology. It is used in micro-projection applications, but it has the advantages of power saving, small size, and virtual screen size. It is suitable for smart glasses products (such as LCoS micro-projection display technology used by Google Glass smart glasses), so that users can get as much as they can. Visual enjoyment of large size screens.
  • DLP digital light source processing
  • MEMS micro-electromechanical system
  • LCOS liquid crystal on silicon
  • LCoS is a CMOS chip that uses CMOS backplane semiconductor process technology. Its main feature is that the substrate is made of single crystal silicon, so it has good electron mobility. In addition, LCoS not only has high resolution, high quality and low cost. The advantages of LCD technology and the inadequacy of LCD, LCoS has many advantages that LCD does not have;
  • the current three-dimensional stereoscopic image usually uses two LCOS optical engines to double-lens two-way synchronous output signals, thereby achieving the purpose of overlapping images, and the use of multiple layers of glass to achieve the depth of field effect, but in order to improve the depth of field effect, The more layers of glass must be used, so the mirror itself will become thicker and thicker. From this, it can be seen that there is a limitation in the effect of using the multi-layer glass to achieve depth of field.
  • the angle of the light path can form a virtual image to achieve the purpose of displaying multiple depth of field images, which will overcome the shortcomings of the conventional three-dimensional image, which should be an optimal solution.
  • the angle can increase the effect of forming a plurality of overlapping focused images to achieve the effect of displaying multiple depth images.
  • the present invention discloses a system for adjusting a depth of field of a multi-depth display and a method thereof, wherein the system for adjusting a depth of field of a multi-depth display using a multi-source or a multi-source angle includes: at least one mirror At least one fixed microprojector projecting a two-dimensional image onto the mirror; one or more adjustable micro-projectors disposed on one side of the fixed micro-projector for transferring a two-dimensional image Projecting onto the mirror; and a reflected beam focusing processor coupled to the fixed pico projector and the adjustable micro projector for controlling the fixed pico projector and the adjustable micro projector Projecting a path of the reflected beam generated on the mirror such that the reflected beam of the mirror intersects in the opposite direction of the reflected beam to form a virtual image to form a multi-overlapping focused imaging and achieve multi-depth image.
  • the fixed pico projector is a silicon-based liquid crystal laser projection device.
  • the adjustable pico projector is a silicon-based liquid crystal laser projection device.
  • the adjustable picoprojector is a movable micro-projection device, a micro-projection device capable of changing the projection direction, or a micro-projection device capable of moving and changing the projection direction.
  • the distance between the adjustable micro-projector and the fixed micro-projector can be controlled to move the virtual image formed by the overlapping focus closer to or away from the mirror to achieve multi-depth image control. effect.
  • the ability to control the angle of the light path produced by the adjustable microprojector enables the virtual image formed by the overlapping focus to move closer to or away from the mirror.
  • the image output position of the adjustable micro projector can be controlled to move the virtual image formed by the overlapping focus closer to or away from the mirror.
  • the further includes more than two mirrors, and the adjustable micro projector and the fixed micro projector can be respectively projected on mirrors at different positions, and mirrors at different positions
  • the separately reflected beams intersect in opposite directions of the reflected beam to form a virtual image.
  • the multi-depth image is a three-dimensional image or a four-dimensional image in which the depth of field changes with time.
  • the fixed pico-projector can be configured with more than one adjustable micro-projector in either or more directions.
  • the fixed pico projector and the two-dimensional output of the adjustable micro projector The pixel values of the image are the same.
  • the reflected beam focusing processor can control the position of the multi-overlapping focus imaging to be formed by different beam paths reaching a single identical eye or after different beam paths respectively reaching different eyes.
  • the light beam reflected by the mirror is reciprocated in the opposite direction of the reflected beam to form a virtual image to form a multi-overlapping focused imaging and achieve multi-depth image.
  • the fixed pico projector and the adjustable micro projector are projection devices using silicon-based liquid crystal laser projection technology.
  • the controlling the distance between the fixed pico-projector and the adjustable micro-projector enables the virtual image formed by overlapping focusing to move closer to or away from the mirror to achieve multi-depth image control effect.
  • the ability to control the angle of the light path produced by the adjustable microprojector enables the virtual image formed by the overlapping focus to move closer to or away from the mirror.
  • the image output position of the adjustable micro projector can be controlled to move the virtual image formed by the overlapping focus closer to or away from the mirror.
  • the adjustable micro-projector and the fixed micro-projector can be respectively projected on mirrors at different positions, and the reflected light beams respectively reflected by the mirrors at different positions are reflected beams.
  • the opposite direction meets to form a virtual image.
  • the multi-depth image is a three-dimensional image or a four-dimensional image in which the depth of field changes with time.
  • the more the number of the fixed micro-projector and the adjustable micro-projector the more the number of times of focusing at the same point, the more the effect of the multi-depth image will be more obvious.
  • the second output of the adjustable micro-projector can be further controlled.
  • Dimensional image such that the pixel position of the virtual image generated by the adjustable micro-projector to the mirror can be superimposed on the reflected beam generated by the fixed micro-projector projected onto the mirror (capable of transmitting control)
  • the distance between the adjustable micro projector and the fixed pico projector, or the angle of the optical path of the adjustable micro projector, the image output position, or the adjustable micro projector and the fixed The miniature projectors are respectively projected on different mirrors to correct the case where the focus cannot be overlapped).
  • the position of the multi-overlapping focus imaging is formed by overlapping different images of different beam paths to a single identical eye or different beam paths respectively reaching different eyes.
  • the present invention can achieve the following technical effects:
  • the method of generating a stereoscopic image does not require a complicated device, and since a stereoscopic virtual image is formed by a plurality of overlapping and focused images, and by further control, the visual sense between the stereoscopic image and the stereoscopic image can be more obvious. Therefore, the user can see the continuous stereoscopic image without being inconspicuous in the continuity of the stereoscopic image and the stereoscopic image as in the conventional technique.
  • FIG. 1 is a schematic structural diagram of a system and method for adjusting a depth of field of a multi-depth display according to the present invention.
  • FIG. 2 is a schematic diagram of an angle reflection of a multi-source or multi-source of a system and method for adjusting a depth of field of a multi-depth display according to the present invention.
  • FIG. 3 is a schematic diagram of virtual image imaging of a system and method for adjusting the depth of field of a multi-depth display according to the present invention.
  • FIG. 4A is a schematic view showing the imaging implementation of a system and method for adjusting the depth of field of a multi-depth display according to the present invention.
  • 4B is a schematic diagram showing the imaging implementation of a system and method for adjusting the depth of field of a multi-depth display according to the present invention.
  • 4C is a schematic diagram of a post-movement imaging state of a system and method for adjusting depth of field of a multi-depth display according to the present invention.
  • FIG. 5 is a schematic flow chart of a system and method for adjusting a depth of field of a multi-depth display according to the present invention.
  • FIG. 6 is a schematic view showing a system for adjusting a depth of field of a multi-depth display and a method thereof according to the present invention.
  • the system for adjusting the depth of field of a multi-depth display includes a fixed pico-projection. 1, one or more adjustable micro-projectors 2, a reflected beam focusing processor 4 and at least one mirror 3, wherein the fixed micro-projector 1 and the adjustable micro-projector 2 are capable of one or two The dimension image is projected onto the mirror 3, and the fixed pico projector 1 can be provided with one or more adjustable micro projectors 2 in any or more directions, and the fixed micro projector 1 and the The adjustable micro projectors 2 are all silicon-based liquid crystal laser projection devices (Lcos projection devices);
  • the adjustable micro-projector 2 is a movable micro-projection device, a micro-projection device capable of changing a projection direction, or a micro-projection device capable of moving and changing a projection direction, so that the reflected beam focusing processor 4 can Moving the adjustable micro-projector 2 (changing the distance between the adjustable micro-projector 2 and the fixed micro-projector 1) or changing the incident angle of the reflected beam focusing processor 4 (generated light) a path of the path for controlling the path of the reflected beam generated by the fixed pico projector 1 and the adjustable micro projector 2 projected onto the mirror 3 for the fixed pico projector 1 and
  • the pixel positions of the image generated by the adjustable microprojector 2 projected onto the mirror 3 can be overlapped (so that the light beams reflected by the mirror intersect in opposite directions of the reflected beam to form a virtual image) to form a plurality of Overlap focus imaging and achieve multi-depth image effects.
  • the image output position of the adjustable micro projector 2 can be controlled, so that even if the distance and angle do not change, since the adjustable micro projector 2 is projected onto the mirror 3
  • the image output position is different, and the virtual image formed by the overlapping focus can also be moved closer to or away from the mirror 3.
  • the mirrors can be different positions.
  • the respectively reflected beams collide in opposite directions of the reflected beam to form a virtual image. Therefore, when the mirror 3 is controlled to be in different positions, the virtual image formed by the overlapping focus can be moved closer to or away from the mirror 3.
  • the multi-light source or multi-light source angle is projected as shown in FIG. 2, because the fixed micro-projector 1 generally matches at least two adjustable micro-projectors 2, so that the fixed micro-projector 1 is facing no matter what Directional projection, at least two adjustable micro-projectors 2 can contain all ranges of the image projected by the fixed pico-projector 1 in any direction, since if only one adjustable micro-projector 2 is used,
  • the adjustment type micro projector 2 has to be moved to the left in order to overlap the image projected by the fixed micro projector 1 on the left side, but once the image intermediate line projected by the fixed micro projector 1 is exceeded,
  • the right image projected by the fixed micro projector 1 may not overlap with the image projected by the adjustable micro projector 2, so in order to avoid a similar situation, at least one adjustable micro is provided on each of the left and right sides. Projector 2 to avoid non-overlapping situations.
  • the adjustable micro projector 2 can set more than one adjustable in one or more directions of the fixed micro projector 1.
  • the micro-projector 2 is such that the image projected by the fixed micro-projector 1 can be overlapped by all the adjustable micro-projectors 2.
  • FIG. 3 and FIG. 4A, and FIGS. 3, 4A-4C are all half-side schematics of the fixed micro-projector 1, so only one fixed micro-projector 1 and one adjustable micro-miniature
  • the projector 2 is described in the following.
  • the mirror 3 has a semi-reflecting mirror surface 31 and a total reflection mirror surface 32, 33.
  • the adjustable micro-projector 2 is moved in the other direction, as shown in FIG. 4B (in order to separate the non-moving adjustable micro-projector from the moved adjustable micro-projector, the un-moved The adjustable pico projector is labeled 2, and the moved non-movable adjustable micro projector is labeled 2'), so when the adjustable micro projector 2' is moved, the adjustable micro projection The two-dimensional image (beam 21') projected by the device 2' is superimposed on the two-dimensional image (light beam 11) projected by the fixed micro-projector 1 and reflected by the mirror 3 to form a virtual image B (three-dimensional image). It can be seen from FIG. 4C that when the adjustable micro projector 2' is moved, the virtual image A closer to the mirror 3 is moved to the virtual image B farther from the mirror 3.
  • the above implementation is only two three-dimensional images, and the above only controls the distance between the fixed micro-projector 1 and the adjustable micro-projector 2 (the adjustable micro-projector 2 must be able to move),
  • the adjustable micro projector 2 can also adjust the angle of the generated light path, and the formed image can not only move far and near, but can change in multiple angles and directions, and add time control factors to make the 3D image.
  • the depth of field changes with time, so the concept of four-dimensional images can be formed;
  • the fixed micro-projector 1 and the two-dimensional image outputted by the adjustable micro-projector 2 can have the same pixel value (the fixed micro-projector 1 and the output of the adjustable micro-projector 2) Wei The image is the same image), but by changing the angle of the light path of the adjustable microprojector 2, the position of the virtual element can be changed.
  • the reflected beam focusing processor 4 can further control the adjustable type.
  • the two-dimensional image output by the micro-projector 2 is such that the pixel position of the image generated by the adjustable micro-projector 2 to the mirror 3 can be superimposed on the fixed micro-projector projection 1 to the mirror
  • the resulting reflected light beam is adjusted by controlling the distance between the adjustable micro projector 2 and the fixed micro projector 1 or changing the angle of the light path of the adjustable micro projector 2,
  • the image output position, or the adjustable micro projector 2 and the fixed micro projector 1 are respectively projected on different mirrors 3 to correct the case where the focus cannot be overlapped).
  • the overlapping positions reach the eye through different beam paths to form an optical focus, so that the overlapping positions of the moving virtual images can be further controlled to achieve different focusing distances;
  • FIG. 6 if it is viewed by both eyes (the left eye 61 of the user and the right eye 62 of the user), a virtual image is respectively in the left eye 61 of the user and the right eye 62 of the user.
  • the front is formed and overlapped as an overlapping virtual image C, the effect of stereo depth can be formed.
  • the present invention is capable of using at least one set of adjustable micro projectors and more than one set of fixed pico projectors, and through the distance between the adjustable pico projector and the fixed pico projector, or changing The angle of the optical path of the adjustable micro-projector, the image output position, or the adjustment of the adjustable micro-projector and the fixed micro-projector to different mirrors, etc., to form more than one
  • the overlapping focused images are used for the purpose of displaying multiple depth of field images, which will overcome the shortcomings of the conventional three-dimensional images.
  • the method for generating a stereoscopic image of the present invention does not require a complicated device, and since the present invention forms a stereoscopic virtual image by using a plurality of overlapping and focused images, and by further controlling, a stereoscopic image and a stereoscopic image can be obtained.
  • the more obvious the visual sense the more the stereoscopic image can be seen by the user, and the situation in which the continuity of the stereoscopic image and the stereoscopic image is not obvious is not the case.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)

Abstract

一种调整多深度显示的景深距离的系统及其方法,包含了至少一个固定式微型投影器(1)与一个以上的可调整式微型投影器(2),该固定式微型投影器(1)与该可调整式微型投影器(2)皆能够将一二维影像分别投影至至少一反射镜(3)上,而该反射镜(3)反射出的光束于该反射光束的相反方向交会后则会形成虚像,之后能够再透过控制该可调整式微型投影器(2)与固定式微型投影器(1)之间的距离、或是改变该可调整式微型投影器(2)的光路径的角度、影像输出位置、亦或是将可调整式微型投影器(2)与固定式微型投影器(1)分别投影于不同的反射镜(3)上,则能够增加形成多个重叠聚焦的影像,当单眼所视时能够形成光学聚焦,应用于双眼时,于双眼所视的虚像合并则能够得到立体景深的效果,以达到显示多景深影像的目的。

Description

一种调整多深度显示的景深距离的系统及其方法 技术领域
本发明关于一种调整多深度显示的景深距离的系统及其方法,特别是指一种能够透过多光源或多光源角度、来达成多景深影像的效果的系统及其方法。
背景技术
目前,智慧眼镜将开创新的行动运算装置使用模式。Google Glass在业界掀起话题后,智慧眼镜开发热潮正持续延烧,目前大多制造商皆计画导入微投影显示技术,进而实现可透视的显示器,并配合简单操作的软体介面,让产品提供多功能用途,吸引消费者采购。
目前主流的微投影显示技术可分为数位光源处理(DLP)、微机电系统(MEMS)雷射、液晶覆硅(LCOS,Liquid Crystal on Silicon)微型投影机等,其中,LCoS微投影显示技术原先应用于微投影应用,不过其因具有省电、体积小、虚拟萤幕尺寸优势,适合应用在智慧眼镜产品(例如Google Glass智慧眼镜采用的便是LCoS微投影显示技术),让使用者能够获得犹如大尺寸画面的视觉享受。
其中LCoS是一种CMOS晶片,采用CMOS backplane半导体制程技术,其最大特色在于基底所使用的材质为单晶硅,故具有良好的电子移动率;此外,LCoS不仅具有高解析、高品质及低成本的优势,更继承了LCD技术的优点,并克服LCD的不足之处,因此LCoS拥有诸多LCD所不具备的优点;
然而,目前的三维立体影像通常采用两台LCOS光学引擎双镜头两路同步输出信号,从而达到画面重叠的目的,而习用有使用多层玻璃以达到景深的效果,但为了提高景深的效果,则必须使用越多层玻璃,因此反射镜本身则会越来越厚,由此可知,习用透过多层玻璃来达到景深的效果是有缺限存在的。
因此,若能够使用至少一组可调整式微型投影器与一组以上的固定式微型投影器,并进行控制一可调整式微型投影器与一固定式微型投影器之间的距离或/及改变光路径的角度,则能够形成虚像以达到显示多景深影像的目的,如此将能够克服习用三维立体影像产生的缺点,如此应为一最佳解决方案。
发明内容
本发明的目的在于提供一种调整多深度显示的景深距离的系统及其方法,能够透过控制一可调整式微型投影器与一固定式微型投影器之间的距离或/及改变光路径的角度,则能够增加形成多个重叠聚焦的影像,以达到显示多景深影像的效果。
为实现上述目的,本发明公开了一种调整多深度显示的景深距离的系统及其方法,其中该使用多光源或多光源角度来调整多深度显示的景深距离的系统,包含:至少一反射镜;至少一个固定式微型投影器,将一二维影像投影至该反射镜上;一个以上的可调整式微型投影器,设置于该固定式微型投影器的一侧,用以将一二维影像投影至该反射镜上;以及一反射光束聚焦处理器,与该固定式微型投影器及该可调整式微型投影器相连接,用以控制该固定式微型投影器及该可调整式微型投影器投影至该反射镜上所产生的反射光束的路径,以使该反射镜反射出的光束于该反射光束的相反方向交会而形成虚像,以形成多重叠聚焦成像、并达到多景深影像的效果。
更具体的说,所述固定式微型投影器为一硅基液晶雷射投影装置。
更具体的说,所述可调整式微型投影器为一硅基液晶雷射投影装置。
更具体的说,所述可调整式微型投影器为一能够移动的微型投影设备、一能够改变投射方向的微型投影设备或是一能够移动及改变投射方向的微型投影设备。
更具体的说,所述能够控制该可调整式微型投影器与该固定式微型投影器之间的距离,能够使重叠聚焦形成的虚像移动靠近或远离该反射镜,以达到多景深影像控制的效果。
更具体的说,所述能够控制该可调整式微型投影器所产生的光路径的角度,能够使重叠聚焦形成的虚像移动靠近或远离该反射镜。
更具体的说,所述能够控制该可调整式微型投影器的影像输出位置,能够使重叠聚焦形成的虚像移动靠近或远离该反射镜。
更具体的说,所述更包含有两个以上的反射镜,而该可调整式微型投影器与该固定式微型投影器能够分别投射在不同位置的反射镜上,并由不同位置的反射镜分别反射出的光束在反射光束的相反方向交会而形成虚像。
更具体的说,所述多景深影像为三维影像或是景深随时间改变的四维影像。
更具体的说,所述固定式微型投影器能够于任一或多个方向可设置一个以上的可调整式微型投影器。
更具体的说,所述可调整式微型投影器数量越多,能够同时形成的重叠聚焦会越多,则多景深影像的效果会越明显。
更具体的说,所述固定式微型投影器与该可调整式微型投影器所输出的二维 影像的像素值为相同。
更具体的说,所述反射光束聚焦处理器能够控制该多重叠聚焦成像的位置为不同光束路径到达单一相同眼睛所形成、或是不同光束路径分别到达不同眼睛后的虚像再重叠形成。
而本发明的使用多光源或多光源角度来调整多深度显示的景深距离的方法,其步骤为:
(1)透过至少一个固定式微型投影器与一个以上的可调整式微型投影器,将一二维影像分别投影至至少一反射镜上;以及
(2)再使该反射镜反射出的光束于该反射光束的相反方向交会而形成虚像,以形成多重叠聚焦成像、并达到多景深影像的效果。
更具体的说,所述固定式微型投影器及该可调整式微型投影器为一种使用硅基液晶雷射投影技术的投影设备。
更具体的说,所述控制该固定式微型投影器及该可调整式微型投影器之间的距离,能够使重叠聚焦形成的虚像移动靠近或远离该反射镜,以达到多景深影像控制的效果。
更具体的说,所述能够控制该可调整式微型投影器所产生的光路径的角度,能够使重叠聚焦形成的虚像移动靠近或远离该反射镜。
更具体的说,所述能够控制该可调整式微型投影器的影像输出位置,能够使重叠聚焦形成的虚像移动靠近或远离该反射镜。
更具体的说,所述更能够将该可调整式微型投影器与该固定式微型投影器能够分别投射在不同位置的反射镜上,并由不同位置的反射镜分别反射出的光束在反射光束的相反方向交会而形成虚像。
更具体的说,所述多景深影像为三维影像或是景深随时间改变的四维影像。
更具体的说,所述固定式微型投影器及该可调整式微型投影器的数量越多,同点形成聚焦次数越多,则多景深影像的效果会越明显。
更具体的说,所述固定式微型投影器及该可调整式微型投影器投影至该反射镜上所产生的反射光束无法重叠聚焦时,能够进一步控制该可调整式微型投影器所输出的二维影像,来使该可调整式微型投影器至该反射镜上所产生的虚像的画素位置能重叠于该固定式微型投影器投影至该反射镜上所产生的反射光束上(能够透过控制该可调整式微型投影器与固定式微型投影器之间的距离、或是改变该可调整式微型投影器的光路径的角度、影像输出位置、亦或是将可调整式微型投影器与固定式微型投影器分别投影于不同的反射镜上,来修正无法重叠聚焦的情况)。
更具体的说,更能够控制该可调整式微型投影器输出光线或影像接近或远离 该固定式微型投影器的时间,而时间越短或是可调整式微型投影器的影像接近或远离该固定式微型投影器输出的影像的每一距离越短,则形成的重叠聚焦的影像则会越多、且影像之间改变景深的连续变化会越清楚。
更具体的说,所述固定式微型投影器及该可调整式微型投影器的数量越多,用以能够形成不同点同时聚焦的多重景深同时出现。
更具体的说,所述多重叠聚焦成像的位置为不同光束路径到达单一相同眼睛所形成、或是不同光束路径分别到达不同眼睛后的虚像再重叠形成。
通过上述技术方案,本发明能实现如下技术效果:
1.使用至少一组可调整式微型投影器与一组以上的固定式微型投影器,并透过该可调整式微型投影器与固定式微型投影器之间的距离、或是改变该可调整式微型投影器的光路径的角度、影像输出位置、亦或是将可调整式微型投影器与固定式微型投影器分别投影于不同的反射镜上等调整方式,来形成以个以上的重叠聚焦的影像,以达到显示多景深影像的目的,如此将能够克服习用三维立体影像产生的缺点。
2.产生立体影像的方式不需复杂的装置,且由于藉由多个重叠聚焦的影像来形成立体虚像,并藉由进一步控制,则能够使立体影像与立体影像之间的可视感越明显,因此能让使用者看到连续的立体影像,而不至于如习用技术一般,立体影像与立体影像的连续性不明显的情况发生。
附图说明
图1:本发明一种调整多深度显示的景深距离的系统及其方法的架构示意图。
图2:本发明一种调整多深度显示的景深距离的系统及其方法的多光源或多光源角度反射示意图。
图3:本发明一种调整多深度显示的景深距离的系统及其方法的虚像成像示意图。
图4A:本发明一种调整多深度显示的景深距离的系统及其方法的成像实施示意图。
图4B:本发明一种调整多深度显示的景深距离的系统及其方法的成像实施示意图。
图4C:本发明一种调整多深度显示的景深距离的系统及其方法的移动后成像状态示意图。
图5:本发明一种调整多深度显示的景深距离的系统及其方法的流程示意图。
图6:本发明一种调整多深度显示的景深距离的系统及其方法的双眼所视示意图。
具体实施方式
有关于本发明其他技术内容、特点与功效,在以下配合参考图式的较佳实施例的详细说明中,将可清楚的呈现。
请参阅图1,为本发明一种调整多深度显示的景深距离的系统及其方法的架构示意图,由图中可知,该一种调整多深度显示的景深距离的系统包含了一固定式微型投影器1、一个以上的可调整式微型投影器2、一反射光束聚焦处理器4及至少一反射镜3,其中该固定式微型投影器1及该可调整式微型投影器2皆能够将一二维影像投影至该反射镜3上,而于该固定式微型投影器1能够于任一或多个方向皆设置一个以上的可调整式微型投影器2,而该固定式微型投影器1及该可调整式微型投影器2皆为硅基液晶雷射投影装置(Lcos投影装置);
因此该可调整式微型投影器2为一能够移动的微型投影设备、一能够改变投射方向的微型投影设备或是一能够移动及改变投射方向的微型投影设备,因此该反射光束聚焦处理器4能够进行移动该可调整式微型投影器2(改变该可调整式微型投影器2与该固定式微型投影器1之间的距离)或是改变该反射光束聚焦处理器4的入射角度(产生的光路径的角度),以进行控制该固定式微型投影器1及该可调整式微型投影器2投影至该反射镜3上所产生的反射光束的路径,用以使该固定式微型投影器1及该可调整式微型投影器2投影至该反射镜3上所产生的影像的画素位置能重叠(以使该反射镜反射出的光束于该反射光束的相反方向交会而形成虚像),以形成多重叠聚焦成像、并达到多景深影像的效果。
而除了控制距离跟角度之外,更能够控制该可调整式微型投影器2的影像输出位置,因此即使距离跟角度都不变动,由于该可调整式微型投影器2投射至该反射镜3上的影像输出位置不同,亦能够使重叠聚焦形成的虚像移动靠近或远离该反射镜3。
另外,亦能够使用两个以上的反射镜3,而当该可调整式微型投影器2与该固定式微型投影器1分别投射在不同位置的反射镜3上时,能够由不同位置的反射镜3分别反射出的光束在反射光束的相反方向交会而形成虚像,因此当控制该反射镜3为不同位置时,亦能够达到使重叠聚焦形成的虚像移动靠近或远离该反射镜3。
而多光源或多光源角度投影出来如图2所示,由于固定式微型投影器1一般情况下会搭配至少两个可调整式微型投影器2,以使该固定式微型投影器1不论朝什么方向投影,至少两个可调整式微型投影器2能够包含该固定式微型投影器1不论朝什么方向所投影的影像的所有范围,由于若只使用一个可调整式微型投影器2,当该可调整式微型投影器2为了与左边的固定式微型投影器1所投影的影像重叠,则必须往左边移动,但是一旦超过该固定式微型投影器1所投影的影像中间线时, 该固定式微型投影器1所投影的右边影像则很可能会无法与可调整式微型投影器2所投影的影像重叠,故为了避免类似的情况发生,于左右边至少各设置一个可调整式微型投影器2,以避免有不重叠的情况发生。
但上下亦有可能有这种情况发生,故该可调整式微型投影器2除了两个的外,更能够于该固定式微型投影器1任一或多个方向皆能够设置一个以上的可调整式微型投影器2,以使该固定式微型投影器1所投影的影像皆能够受到所有的可调整式微型投影器2重叠。
而实际的投影情况如图3及图4A所示,图3、4A~4C中皆是固定式微型投影器1的半边示意,因此仅以一个固定式微型投影器1及一个的可调整式微型投影器2进行实施说明,先由图3来看,反射镜3内部具有半反射镜面31、全反射镜面32,33,当该固定式微型投影器1及该可调整式微型投影器2所投射出的光束11,21,其中光束11,21碰到该反射镜3的全反射镜面32会再反射至该全反射镜面33,之后再反射至该半反射镜面31后,该反射镜3的半反射镜面31反射出的光束会于该反射光束的相反方向交会而形成虚像A。
再由图4A中可知,当该固定式微型投影器1及该可调整式微型投影器2皆投射二维影像(光束11,21)于该反射镜3上时,由于该固定式微型投影器1及该可调整式微型投影器2经由该反射镜3反射后,会于反射光束的相反方向交会重叠以形成使用者的眼睛5能够看到的虚像A(三维影像);
然而当该可调整式微型投影器2朝向另一方向移动时,如图4B所示(为了区隔未移动的可调整式微型投影器与已移动的可调整式微型投影器,将未移动的可调整式微型投影器标号为2、将已移动的未移动的可调整式微型投影器标号为2’),因此当该可调整式微型投影器标号2’移动后,该可调整式微型投影器标号2’所投射二维影像(光束21’)会再与该固定式微型投影器1所投射二维影像(光束11)重叠经过该反射镜3反射后会形成虚像B(三维影像),再由图4C中可以发现,当该可调整式微型投影器标号2’移动后,离该反射镜3较近的虚像A则会移动到离该反射镜3较远的虚像B。
而上述的实施仅是两个三维影像,而上述仅是控制该固定式微型投影器1及该可调整式微型投影器2之间的距离(可调整式微型投影器2必须能够可以移动),该可调整式微型投影器2亦能够可以调整产生的光路径角度,而所形成的影像就不只能够远近移动,而是能够多角度多方向的变动,并加入时间控制的因素,使三维影像的景深随时间改变,故能够形成四维影像的概念;
因此,该固定式微型投影器1与该可调整式微型投影器2所输出的二维影像的像素值能够相同(该固定式微型投影器1与该可调整式微型投影器2所输出的二维 影像是相同影像),但经由改变可调整式微型投影器2的光路径角度,则能够使得虚素位置有所改变。
且上述的实施例中,更有以下情况会发生:
(1)当固定式微型投影器1与可调整式微型投影器2皆为一个时,由于能够控制该可调整式微型投影器2输出光线或影像接近或远离该固定式微型投影器1的时间,因此当时间越短或是可调整式微型投影器2的影像接近或远离该固定式微型投影器1输出的影像的每一距离越短,则形成的重叠聚焦的影像则会越多、且影像之间改变景深的连续变化会越清楚;
(2)当固定式微型投影器1为一个、而该可调整式微型投影器2不只一个时,同时与该固定式微型投影器1所投射二维影像形成的重叠聚焦数量则会越多,因此当该可调整式微型投影器2的数量越多,则多景深影像的效果会越明显;
(3)当该固定式微型投影器1及该可调整式微型投影器2皆不只一个时,如上所述,将能够形成更多不同位置聚焦,因此则会形成多重景深同时出现。
另外,其中该固定式微型投影器1及该可调整式微型投影器2投影至该反射镜3上所产生的反射光束无法重叠聚焦时,该反射光束聚焦处理器4能够进一步控制该可调整式微型投影器2所输出的二维影像,来使该可调整式微型投影器2至该反射镜3上所产生的影像的画素位置能重叠于该固定式微型投影器投影1至该反射镜上所产生的反射光束上(其调整是透过控制该可调整式微型投影器2与固定式微型投影器1之间的距离、或是改变该可调整式微型投影器2的光路径的角度、影像输出位置、亦或是将可调整式微型投影器2与固定式微型投影器1分别投影于不同的反射镜3上,来修正无法重叠聚焦的情况)。
另外,本发明的调整多深度显示的景深距离的流程示意图,如图5所示,流程如下:
(1)透过至少一个固定式微型投影器与一个以上的可调整式微型投影器,将一二维影像分别投影至至少一反射镜上401;以及
(2)再使该反射镜反射出的光束于该反射光束的相反方向交会而形成虚像,以形成多重叠聚焦成像、并达到多景深影像的效果402。
由单眼来看,如图4A及图4B所示,其重叠位置经由不同光束路径到达眼睛而会形成光学聚焦(optical focus),如此则能够进一步控制移动虚像重叠的聚焦位置来达到不同聚焦距离;如图6所示,但若是为两眼所视时(使用者的左眼61、使用者的右眼62),当一虚像分别皆于该使用者的左眼61及使用者的右眼62的前方形成且重叠为一重叠虚像C时,则能够形成立体景深(stereo depth)的效果。
本发明所提供的一种调整多深度显示的景深距离的系统及其方法,与其他习用技术相互比较时,其优点如下:
1.本发明能够使用至少一组可调整式微型投影器与一组以上的固定式微型投影器,并透过该可调整式微型投影器与固定式微型投影器之间的距离、或是改变该可调整式微型投影器的光路径的角度、影像输出位置、亦或是将可调整式微型投影器与固定式微型投影器分别投影于不同的反射镜上等调整方式,来形成以个以上的重叠聚焦的影像,以达到显示多景深影像的目的,如此将能够克服习用三维立体影像产生的缺点。
2.本发明产生立体影像的方式不需复杂的装置,且由于本发明是藉由多个重叠聚焦的影像来形成立体虚像,并藉由进一步控制,则能够使立体影像与立体影像之间的可视感越明显,因此能让使用者看到连续的立体影像,而不至于如习用技术一般,立体影像与立体影像的连续性不明显的情况发生。
本发明已透过上述的实施例揭露如上,然其并非用以限定本发明,任何熟悉此一技术领域具有通常知识者,在了解本发明前述的技术特征及实施例,并在不脱离本发明的精神和范围内,当可作些许的更动与润饰,因此本发明的专利保护范围须视本说明书所附的权利要求所界定者为准。

Claims (26)

  1. 一种调整多深度显示的景深距离的系统,其特征在于包含:
    至少一反射镜;
    至少一个固定式微型投影器,将一二维影像投影至该反射镜上;
    一个以上的可调整式微型投影器,设置于该固定式微型投影器的一侧,用以将一二维影像投影至该反射镜上;以及
    一反射光束聚焦处理器,与该固定式微型投影器及该可调整式微型投影器相连接,用以控制该固定式微型投影器及该可调整式微型投影器投影至该反射镜上所产生的反射光束的路径,以使该反射镜反射出的光束于该反射光束的相反方向交会而形成虚像,以形成多重叠聚焦成像并达到多景深影像的效果。
  2. 如权利要求1所述的一种调整多深度显示的景深距离的系统,其特征在于,该固定式微型投影器为一硅基液晶雷射投影装置。
  3. 如权利要求1所述的一种调整多深度显示的景深距离的系统,其特征在于,该可调整式微型投影器为一硅基液晶雷射投影装置。
  4. 如权利要求1所述的一种调整多深度显示的景深距离的系统,其特征在于,该可调整式微型投影器为一能够移动的微型投影设备、一能够改变投射方向的微型投影设备或一能够移动及改变投射方向的微型投影设备。
  5. 如权利要求1所述的一种调整多深度显示的景深距离的系统,其特征在于,所述反射光束聚焦处理器控制该可调整式微型投影器与该固定式微型投影器之间的距离,能够使重叠聚焦形成的虚像移动靠近或远离该反射镜。
  6. 如权利要求1所述的一种调整多深度显示的景深距离的系统,其特征在于,所述反射光束聚焦处理器控制该可调整式微型投影器所产生的光路径的角度,能够使重叠聚焦形成的虚像移动靠近或远离该反射镜。
  7. 如权利要求1所述的一种调整多深度显示的景深距离的系统,其特征在于,所述反射光束聚焦处理器控制该可调整式微型投影器的影像输出位置,能够使重叠聚焦形成的虚像移动靠近或远离该反射镜。
  8. 如权利要求1所述的一种调整多深度显示的景深距离的系统,其特征在于,更包含有两个以上的反射镜,而该可调整式微型投影器与该固定式微型投影器能够分别投射在不同位置的反射镜上,并由不同位置的反射镜分别反射出的光束在反射光束的相反方向交会而形成虚像。
  9. 如权利要求1所述的一种调整多深度显示的景深距离的系统,其特征在于,该多景深影像为三维影像或是景深随时间改变的四维影像。
  10. 如权利要求1所述的一种调整多深度显示的景深距离的系统,其特征在于,该固定式微型投影器能够于任一或多个方向设置一个以上的可调整式微型投影器。
  11. 如权利要求1所述的一种调整多深度显示的景深距离的系统,其特征在于,该可调整式微型投影器数量越多,能够同时形成的重叠聚焦会越多,则多景深影像的效果会越明显。
  12. 如权利要求1所述的一种调整多深度显示的景深距离的系统,其特征在于,该固定式微型投影器与该可调整式微型投影器所输出的二维影像的像素值相同。
  13. 如权利要求1所述的一种调整多深度显示的景深距离的系统,其特征在于,该反射光束聚焦处理器控制该多重叠聚焦成像的位置为不同光束路径到达单一相同眼睛所形成、或是不同光束路径分别到达不同眼睛后的虚像再重叠形成。
  14. 一种调整多深度显示的景深距离的方法,其特征在于步骤为:
    透过至少一个固定式微型投影器与一个以上的可调整式微型投影器,将一二维影像分别投影至至少一反射镜上;
    再使该反射镜反射出的光束于该反射光束的相反方向交会而形成虚像,以形成多重叠聚焦成像并达到多景深影像的效果。
  15. 如权利要求14所述的一种调整多深度显示的景深距离的方法,其特征在于,该固定式微型投影器及该可调整式微型投影器为一种使用硅基液晶雷射投影技术的投影设备。
  16. 如权利要求14所述的一种调整多深度显示的景深距离的方法,其特征在于,控制该固定式微型投影器及该可调整式微型投影器之间的距离,能够使重叠聚焦形成的虚像靠近或远离该反射镜移动。
  17. 如权利要求14所述的一种调整多深度显示的景深距离的方法,其特征在于,控制该可调整式微型投影器所产生的光路径的角度,能够使重叠聚焦形成的虚像移动靠近或远离该反射镜移动。
  18. 如权利要求14所述的一种调整多深度显示的景深距离的方法,其特征在于,控制该可调整式微型投影器的影像输出位置,能够使重叠聚焦形成的虚像移动靠近或远离该反射镜。
  19. 如权利要求14所述的一种调整多深度显示的景深距离的方法,其特征在于,将该可调整式微型投影器与该固定式微型投影器能够分别投射在不同位置的反射镜上,并由不同位置的反射镜分别反射出的光束在反射光束的相反方向交会而形成虚像。
  20. 如权利要求14所述的一种调整多深度显示的景深距离的方法,其特征在于,多景深影像为三维影像或是景深随时间改变的四维影像。
  21. 如权利要求14所述的一种调整多深度显示的景深距离的方法,其特征在于,该固定式微型投影器及该可调整式微型投影器的数量越多,同点形成聚焦次数越多,则多景深影像的效果会越明显。
  22. 如权利要求14所述的一种调整多深度显示的景深距离的方法,其特征在于,该固定式微型投影器及该可调整式微型投影器投影至该反射镜上所产生的反射光束无法重叠聚焦时,能够进一步微调该可调整式微型投影器所输出的二维影像,来使该可调整式微型投影器至该反射镜上所产生的虚像的画素位置能够进一步重叠于该固定式微型投影器投影至该反射镜上所产生的反射光束上。
  23. 如权利要求14所述的一种调整多深度显示的景深距离的方法,其特征在于,控制该可调整式微型投影器输出光线或影像接近或远离该固定式微型投影器的时间,而时间越短或是可调整式微型投影器的影像接近或远离该固定式微型投影器输出的影像的每一距离越短,则形成的重叠聚焦的影像则会越多、且影像之间改变景深的连续变化会越清楚。
  24. 如权利要求14所述的一种调整多深度显示的景深距离的方法,其特征在于,该固定式微型投影器及该可调整式微型投影器的数量越多,用以能够形成不同点同时聚焦的多重景深同时出现。
  25. 如权利要求14所述的一种调整多深度显示的景深距离的方法,其特征在于,该反射镜的数量越多,不论该可调整式微型投影器与该固定式微型投影器是投射在不同或相同位置的反射镜上,皆能够用以形成不同点同时聚焦的多重景深同时出现。
  26. 如权利要求14所述的一种调整多深度显示的景深距离的方法,其特征在于,该多重叠聚焦成像的位置为不同光束路径到达单一相同眼睛所形成、或是不同光束路径分别到达不同眼睛后的虚像再重叠形成。
PCT/CN2016/075285 2016-03-02 2016-03-02 一种调整多深度显示的景深距离的系统及其方法 WO2017147801A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/075285 WO2017147801A1 (zh) 2016-03-02 2016-03-02 一种调整多深度显示的景深距离的系统及其方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/075285 WO2017147801A1 (zh) 2016-03-02 2016-03-02 一种调整多深度显示的景深距离的系统及其方法

Publications (1)

Publication Number Publication Date
WO2017147801A1 true WO2017147801A1 (zh) 2017-09-08

Family

ID=59743367

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/075285 WO2017147801A1 (zh) 2016-03-02 2016-03-02 一种调整多深度显示的景深距离的系统及其方法

Country Status (1)

Country Link
WO (1) WO2017147801A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113238379A (zh) * 2021-05-19 2021-08-10 上海天马微电子有限公司 抬头显示系统、抬头显示系统的驱动方法及交通工具
CN114304994A (zh) * 2020-09-29 2022-04-12 青岛海尔特种电冰柜有限公司 基于人感投影的冷柜

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102122072A (zh) * 2011-03-16 2011-07-13 北京理工大学 头戴式微投影立体视觉显示器
CN102937745A (zh) * 2012-11-13 2013-02-20 京东方科技集团股份有限公司 开放式头戴显示装置及其显示方法
US20130106674A1 (en) * 2011-11-02 2013-05-02 Google Inc. Eye Gaze Detection to Determine Speed of Image Movement
CN103487938A (zh) * 2013-08-28 2014-01-01 成都理想境界科技有限公司 头戴显示装置
US20140055867A1 (en) * 2012-08-23 2014-02-27 Canon Kabushiki Kaisha Observation optical system
CN104865701A (zh) * 2014-02-24 2015-08-26 广达电脑股份有限公司 头戴式显示装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102122072A (zh) * 2011-03-16 2011-07-13 北京理工大学 头戴式微投影立体视觉显示器
US20130106674A1 (en) * 2011-11-02 2013-05-02 Google Inc. Eye Gaze Detection to Determine Speed of Image Movement
US20140055867A1 (en) * 2012-08-23 2014-02-27 Canon Kabushiki Kaisha Observation optical system
CN102937745A (zh) * 2012-11-13 2013-02-20 京东方科技集团股份有限公司 开放式头戴显示装置及其显示方法
CN103487938A (zh) * 2013-08-28 2014-01-01 成都理想境界科技有限公司 头戴显示装置
CN104865701A (zh) * 2014-02-24 2015-08-26 广达电脑股份有限公司 头戴式显示装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114304994A (zh) * 2020-09-29 2022-04-12 青岛海尔特种电冰柜有限公司 基于人感投影的冷柜
CN113238379A (zh) * 2021-05-19 2021-08-10 上海天马微电子有限公司 抬头显示系统、抬头显示系统的驱动方法及交通工具
CN113238379B (zh) * 2021-05-19 2022-11-15 上海天马微电子有限公司 抬头显示系统、抬头显示系统的驱动方法及交通工具

Similar Documents

Publication Publication Date Title
US10422997B2 (en) Head-mounted display device
US10409064B2 (en) See-through type display apparatus
US10409066B2 (en) Head-mounted display device with waveguide elements
CN107870438B (zh) 增强现实的装置、光引擎部件和方法
CN115516366A (zh) 扩大可视空间的影像显示系统及其方法
TWI498598B (zh) 立體裸視投影裝置及顯示裝置
US20220311992A1 (en) System and method for displaying an object with depths
TW201631358A (zh) 立體光場建立裝置
US20230152592A1 (en) Augmented reality display device
KR102682123B1 (ko) 투시형 디스플레이 장치 및 그 동작 방법
WO2017147801A1 (zh) 一种调整多深度显示的景深距离的系统及其方法
TWI594019B (zh) A system and method for adjusting the depth of field of multi-depth display
JP2010160362A (ja) 3次元表示装置、3次元表示方法、3次元表示物体、3次元画像作成装置、3次元画像作成方法、プログラムおよび記録媒体
US20180143435A1 (en) Displaying device and method thereof
TWI614524B (zh) 頭戴式顯示裝置
TW202318072A (zh) 頭戴式裝置之光學系統
TWI717912B (zh) 頭戴式顯示裝置
Ochiai et al. Air mounted eyepiece: design methods for aerial optical functions of near-eye and see-through display using transmissive mirror device
TW201307896A (zh) 立體顯示裝置
CN108152951B (zh) 头戴式显示装置
TWI802826B (zh) 顯示一個具有景深的物體的系統與方法
TWM474154U (zh) 頭戴式3d立體成像顯示裝置
TW202107158A (zh) 具有雙對焦平面的虛擬實境光學裝置
TWI764763B (zh) 頭戴式顯示裝置
TWI442097B (zh) 用於一投影裝置之極化轉換元件組及投影裝置

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16891992

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 16891992

Country of ref document: EP

Kind code of ref document: A1