WO2017146311A1 - Evaluation device of voltage transformer comparator - Google Patents

Evaluation device of voltage transformer comparator Download PDF

Info

Publication number
WO2017146311A1
WO2017146311A1 PCT/KR2016/006317 KR2016006317W WO2017146311A1 WO 2017146311 A1 WO2017146311 A1 WO 2017146311A1 KR 2016006317 W KR2016006317 W KR 2016006317W WO 2017146311 A1 WO2017146311 A1 WO 2017146311A1
Authority
WO
WIPO (PCT)
Prior art keywords
resistor
switch
voltage transformer
error
comparator
Prior art date
Application number
PCT/KR2016/006317
Other languages
French (fr)
Korean (ko)
Inventor
정재갑
김규태
Original Assignee
한국표준과학연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국표준과학연구원 filed Critical 한국표준과학연구원
Publication of WO2017146311A1 publication Critical patent/WO2017146311A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R35/00Testing or calibrating of apparatus covered by the other groups of this subclass
    • G01R35/02Testing or calibrating of apparatus covered by the other groups of this subclass of auxiliary devices, e.g. of instrument transformers according to prescribed transformation ratio, phase angle, or wattage rating
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R15/00Details of measuring arrangements of the types provided for in groups G01R17/00 - G01R29/00, G01R33/00 - G01R33/26 or G01R35/00
    • G01R15/14Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks
    • G01R15/18Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks using inductive devices, e.g. transformers
    • G01R15/183Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks using inductive devices, e.g. transformers using transformers with a magnetic core

Definitions

  • the present invention relates to a measuring apparatus, and relates to an evaluation apparatus for a voltage transformer comparator.
  • a voltage transformer (VT) is commonly used in the power industry for high voltage and power loss measurements. These voltage transformers convert high voltage to low voltage for safe and precise measurement of high voltage.
  • the secondary side voltage is connected to the measuring device such as the voltmeter and the watt hour meter and the protection relay, and is used for the power quality verification and the power amount measurement. Therefore, the secondary side voltage of the voltage converter must match the primary side voltage with the correct conversion ratio. There should also be no displacement.
  • a voltage transformer test set (VTTS) (or a voltage transformer test set) is used to measure the ratio error and phase error of the voltage transformer. That is, the voltage transformer comparator compares the secondary voltage of the measured voltage transformer with the secondary voltage of the standard voltage transformer, and measures the error and phase error of the measured voltage transformer.
  • the apparatus for evaluating a voltage transformer comparator includes a ratio error evaluation circuit for measuring a bias error of a voltage transformer comparator, a phase error evaluation circuit for measuring a phase error of the voltage transformer comparator, And a switch for connecting one of the error evaluation circuit and the phase error evaluation circuit.
  • the error-rate evaluation circuit includes a power supply unit for supplying power, a variable resistor having one end connected to the power supply unit and having a variable resistance, and one end connected to the variable resistor, And a fixed resistor whose one end is connected to the contact.
  • the switch unit may include a first switch for connecting one end of a first resistor of the voltage transformer comparator to the power supply unit and a ground terminal of the variable resistor, a second switch for connecting one end of the first resistor to the variable resistor And a third switch for connecting one end of a second resistor of the voltage transformer comparator to a contact of the variable resistor and the fixed resistor, and a second switch for connecting the other end of the first resistor to the contact of the fixed resistor, And a fourth switch for connecting a contact of another end of the two resistors to a contact between the fixed resistor and the ground terminal.
  • the third switch is turned off while the second switch is turned on to measure the offset of the error, and the second switch is turned off while the third switch is turned on.
  • the first resistor is a primary resistor connected to the standard voltage transformer and the second resistor is a secondary resistor connected to the voltage transformer for testing in a bias error measurement according to negative polarity.
  • the first resistor is a secondary resistance connected to the voltage transformer for testing
  • the second resistor is a primary resistance connected to the standard voltage transformer in the measurement of the error according to the positive polarity.
  • the variable resistor is adjusted to a resistance of 0.01 ohms to 200 ohms, and the fixed resistor has a resistance of 2 kilo ohms.
  • the phase error evaluating circuit includes a power supply unit for supplying power, a variable resistor having one end connected to the power supply unit and having a variable resistance, and one end connected to the variable resistor, And a capacitor whose one end is connected to the contact.
  • the switch unit may include a first switch for connecting one end of a first resistor of the voltage transformer comparator to the power supply unit and a ground terminal of the variable resistor, a second switch for connecting one end of the first resistor to the variable resistor A second switch connected to the contact of the capacitor, a third switch for connecting one end of a second resistor of the voltage transformer comparator to the contact of the variable resistor and the capacitor, and a third switch for connecting the other end of the first resistor and the second resistor And a fourth switch for connecting the other end of the contact to the contact between the capacitor and the ground terminal.
  • the third switch is turned off while the second switch is turned on to measure the offset of the error, and the second switch is turned off while the third switch is turned on.
  • the first resistor is a primary resistor connected to the standard voltage transformer and the second resistor is a secondary resistor connected to the voltage transformer for testing in a bias error measurement according to negative polarity.
  • the first resistor is a secondary resistance connected to the voltage transformer for testing
  • the second resistor is a primary resistance connected to the standard voltage transformer in the measurement of the error according to the positive polarity.
  • variable resistor is adjusted to a resistance from 0.01 ohms to 200 ohms, and the capacitor has a capacitance of 2 uF.
  • the evaluation apparatus of the present invention can be implemented to be movable for evaluation of a voltage transformer comparator by having a simple structure implemented by a series connection of a variable resistor and a fixed resistor or a series connection of a variable resistor and a capacitor.
  • FIG. 1 is an exemplary illustration of a voltage transformer comparator in accordance with the present invention
  • FIG. 2 is a diagram illustrating an exemplary evaluation device of a voltage transformer comparator according to the present invention
  • FIG. 3 is a diagram exemplarily showing a ratio error evaluation circuit of an evaluation apparatus according to the present invention
  • FIG. 4 is a diagram exemplarily showing a phase error evaluation circuit of an evaluation apparatus according to the present invention.
  • FIG. 5 is a diagram illustrating a phase according to the phase error measurement according to the present invention.
  • Figure 6 is an exemplary illustration of the evaluation of the error error offset of an evaluation device according to the present invention.
  • FIG. 7 is an exemplary illustration of a bias error evaluation corresponding to a calibration point for a negative polarity of an evaluation device according to the present invention.
  • FIG. 10 is a diagram illustrating exemplary calibration of error error according to the present invention.
  • FIG. 11 is a diagram illustrating an exemplary phase error calibration according to the present invention.
  • FIG. 1 is a view showing the best mode for carrying out the present invention.
  • the present invention provides an evaluation device implemented to be movable to evaluate a voltage transformer test set (VTTS).
  • the evaluation apparatus of the present invention can be used for evaluating a voltage transformer comparator (VTTS) (or a voltage transformer test set) used for evaluating a ratio error and a phase error of a voltage transformer (VT) It is equipment used for. Therefore, the evaluation apparatus performs the evaluation operation of the error and phase error of the voltage transformer comparator according to the calibration of the error and phase error.
  • VTTS voltage transformer comparator
  • VT voltage transformer test set
  • Figure 1 is an exemplary illustration of a voltage transformer comparator.
  • FIG. 1 there is shown a power quality and power amount evaluation using a voltage transformer 20 in a voltage transformer comparator 10.
  • a standard voltage transformer (STD) is placed on the primary side, and a test device TEST (e.g., voltmeter, watt hour meter) for evaluation is connected to the secondary side.
  • the voltage transformer 20 includes a power supply unit 21 capable of outputting a high voltage (HV).
  • One end of the standard voltage transformer STD is connected to the power source unit 21 and the other end of the standard voltage transformer STD is connected to the other end of the power source unit 21 through a contact with the test device TEST.
  • the voltage transformer comparator 10 includes a Burden (B) connected in parallel to the test device TEST.
  • the voltage transformer comparator 10 includes a first resistor Rx connected to the primary side and a second resistor Rn connected to the secondary side.
  • rx and rn represent impedance values.
  • the voltage transformer comparator 10 compares the output voltage between the test device TEST and the standard voltage transformer STD after applying the same excitation voltage to both the test device TEST and the standard voltage transformer STD To determine errors.
  • the voltage transformer comparator 10 can operate as a current comparator. Can operate on the principle of magnetic flux created by the magnetomotive force exerted on the magnetic cores of two windows (with respect to each of rx and rn sides) of opposite polarity. The magnetic flux is canceled, and the current comparator is balanced.
  • the input impedances rx, rn may have a relatively large value.
  • the voltage transformer 20 calculates the error ratio ) And phase error ( ).
  • kn is the ratio of the denaturation ratio
  • Up is the actual main voltage of the test device TEST
  • Us is the actual secondary voltage. Is a mains voltage phasor, Is a secondary voltage phasor.
  • the error of the voltage comparator comparator 10 can be expressed by the following equation (2).
  • U X is the secondary voltage of the test device TEST and U N is the secondary voltage of the standard voltage transformer STD.
  • Is the secondary voltage phase of the test device TEST Is the secondary voltage phase of the standard voltage transformer (STD).
  • STD secondary voltage transformer Represents the ratio between the secondary voltages of the test device TEST and the standard voltage transformer STD. Represents the difference between the secondary voltage phases of the test device TEST and the standard voltage transformer STD.
  • FIG. 2 is a diagram illustrating an exemplary evaluation apparatus of a voltage transformer comparator according to the present invention.
  • the evaluation apparatus 100 includes a ratio error evaluation circuit 110, a phase error evaluation circuit 120, and a switch unit 130.
  • the error error evaluation circuit 110 when connected to the voltage transformer comparator 10 via the switch unit 130, performs a calibration operation for evaluation of error error.
  • the error ratio evaluation circuit 110 includes a first node N1 to a third node N3 for connection to the voltage comparator comparator 10.
  • the error ratio evaluation circuit 120 is constituted by a series circuit of a variable resistor and a fixed resistor.
  • the phase error evaluating circuit 120 performs a calibration operation for measuring the phase error when the voltage comparator 10 is connected to the comparator 10 via the switch unit 130.
  • the phase error evaluation circuit 120 includes fourth to sixth nodes N4 to N6 for connection to the voltage comparator comparator 10.
  • the phase error evaluation circuit 120 is constituted by a series circuit of a variable resistor and a capacitor.
  • the switch unit 130 includes the first switch SW3 to the eighth switch SW8.
  • the first switch SW1 is turned on or off between the first measuring node N1 and the first node 11 connected to the second resistor Rn.
  • the second switch SW2 is turned on or off between the second measurement node N2 and the first node 11.
  • the third switch SW3 is turned on or off between the second measuring node N2 and the second node N12 connected to the first resistor Rx.
  • the fourth switch SW4 is turned on or off between the third measuring node N3 and the third node N13 connected to the node between the first resistor Rx and the second resistor Rn.
  • the fifth switch SW5 is turned on or off between the fourth measuring node N4 and the first node N11
  • the seventh switch SW7 is turned on or off between the fifth measuring node N5 and the second node N12.
  • the eighth switch SW8 is turned on or off between the sixth measuring node N6 and the third node N13.
  • the error of the voltage comparator comparator 10 is measured by the ON operation of the first switch SW1 to the fourth switch SW4. At this time, only one of the first switch SW1 and the second switch SW2 is selectively turned on. That is, when the first switch SW1 is turned on, the second switch SW2 is turned off, and when the second switch SW2 is turned on, the first switch SW1 is turned off.
  • the phase error of the voltage-shifter comparator 10 is measured by the ON operation of the fifth switch SW5 and the eighth switch SW8. Again, only one of the fifth switch SW5 and the sixth switch SW6, such as the first switch SW1 and the second switch SW2, is selectively turned on.
  • the evaluation apparatus 100 shows the error and phase error measurement according to the negative polarity, and the error and phase error according to the positive polarity change the positions of the first resistor Rx and the second resistor Rn Can be measured through a combined node.
  • the operation of the first switch SW1 through the eighth switches SW8 included in the switch unit 130 may be controlled by a user control signal generated by a user control or a switch generated through a separate control unit And can be controlled by a control signal or the like.
  • the voltage transformer comparator 10 can measure the voltage components of the two inputs (U X , U N ) at the same ground point.
  • the voltage level of U X is provided by the term of the voltage level of U N in phase with quadrature.
  • FIG. 3 is a diagram exemplarily showing a ratio error evaluation circuit of an evaluation apparatus according to the present invention.
  • the error-ratio evaluation circuit 110 includes a power supply unit 111, a first variable resistor Rv1, and a fixed resistor R.
  • the first switch SW1 of the switch unit 130 is turned on to connect the first measurement node N1 to the first node N11 and the third switch SW3 is turned on to connect the second measurement node N2 ) To the second node N12, and the fourth switch SW4 is turned on to connect the third measurement node N3 and the third node N13. At this time, the second switch SW2 is turned off.
  • the first variable resistor Rv1 is connected at one end to the power supply unit 111 and at the other end to the fixed resistor R. [ One end of the fixed resistor R is connected to the first variable resistor Rv1 and the other end is connected to the contact point between the power supply part 111 and the ground terminal. Thereby, the first variable resistor Rv1 and the fixed resistor R are serially connected for the estimation of the error.
  • Resistors including the function of a voltage divider are considered as inductors and resistors connected in series, but commercially available non-inductive resistors can be used. Accordingly, the error-error evaluation circuit 110 may have the function of a resistance voltage divider.
  • the voltages applied to the input voltages U N and U X in the voltage transformer comparator 10 are the same for a voltage drop across the input resistance of the voltage transformer comparator 10.
  • RV is the actual resistance (resistance value) of the first variable resistor Rv1.
  • the resistance of the first variable resistor Rv1 changes for calibration for the measurement of the bias error.
  • Z X is the actual impedance value of the fixed resistor R connected in parallel to the input impedance rx, and the error error can be theoretically expressed by the following equation (3).
  • Equation (3) shows the error in the region of the negative polarity.
  • Z N is the actual impedance value of the fixed resistor R connected in parallel to the input impedance rn. Therefore, by the resistance change of the first variable resistor Rv1, the theoretical error for the calibration point is measured in the negative and positive polarities.
  • FIG. 4 is a diagram exemplarily showing a phase error evaluation circuit of an evaluation apparatus according to the present invention.
  • the phase error evaluation circuit 120 includes a power supply unit 121, a second variable resistor Rv2, and a capacitor C.
  • the fifth switch SW5 of the switch unit 130 is turned on to connect the fourth measurement node N4 to the first node N11 and the seventh switch SW5 is turned on to connect the fifth measurement node N5 ) To the second node N12, and the eighth switch SW8 is turned on to connect the sixth measuring node N6 and the third node N13. At this time, the sixth switch SW6 is turned off.
  • the second variable resistor Rv2 has one end connected to the power supply unit 121 and the other end connected to the capacitor C. [ One end of the capacitor C is connected to the second variable resistor Rv2 and the other end is connected to the contact between the power supply 121 and the ground terminal. Thereby, the second variable resistor Rv2 and the capacitor C are connected in series for phase error evaluation.
  • a non-inductive resistor and a dissipation capacitor with a value less than 1 x 10 < -3 > may be used.
  • the phase error estimating circuit 120 may have the function of a quadrature RC divider.
  • the evaluation of the phase error of the voltage-shifting comparator 10 is based on the phase difference between the terminals formed with U X and U N.
  • phase error of the voltage comparator comparator 10 can be expressed as shown in FIG. 5 below.
  • the lower part of the voltage divider can be regarded as an even serial circuit.
  • FIG. 5 is a diagram illustrating a phase according to the phase error measurement according to the present invention.
  • FIG. 5 (a) schematically illustrates a phase error evaluation circuit 120 implemented with a resistor-capacitor voltage divider.
  • the second variable resistor Rv2 and the capacitance Cc of the capacitor C are connected in series.
  • the first resistor Rx one end of which is connected to the contact between the second variable resistor Rv2 and the capacitor C, and the other end of which is connected to the ground terminal, is connected in parallel to the capacitor C.
  • the voltage U N applied to the resistor Rv and the voltage U X applied in the capacitance direction are shown.
  • (b) shows a series circuit equivalent to (a).
  • the second variable resistor Rv2 is connected to a resistor Rxeq having a resistance of rxeq at the other end to which a voltage UN is applied at one end.
  • the resistor Rxeq is connected at one end to a second variable resistor Rv2 and at the other end to a capacitor Cceq having a capacitance Xceq.
  • the voltage U X is applied to the resistor Rxeq through the contact point with the second variable resistor Rv2.
  • the resistor Rx and the capacitor C connected in parallel in FIG. 5A may be an equivalent circuit to a parallel circuit of a resistor Rxeq and a capacitor Cceq connected in series.
  • the vertical axis represents the capacitance Xceq, and the horizontal axis represents rxeq + Rv.
  • the points (U X , U N ) where the voltages are applied are shown.
  • the phase error value can be expressed by the following Equation (6).
  • Equation (7) represents the phase error value according to the negative polarity.
  • Equation (8) represents a resistance (rneq) and a capacitance (Xceq) according to a phase error value.
  • FIG. 6 is a diagram illustrating an exemplary evaluation of the error error offset of the evaluation apparatus according to the present invention.
  • the calibration for the error error evaluation is made in two steps.
  • An evaluation device (100) for evaluating the offset of the error is connected to a voltage transformer comparator (10).
  • the second switch SW2 to the fourth switch SW4 are turned on.
  • the second measuring node N2 is connected to the first node N11 and the second node N12
  • the third measuring node N3 is connected to the third node N13.
  • the offset values caused by both the input impedances (rx and rn) and possible impedances are evaluated. (First node N11 and second node N12) outputting the same voltage of U X and U N are connected with the same potential, the voltage comparator comparator 10 detects the zero value of the error do. However, the evaluation apparatus 100 may detect a non-zero value due to a difference in input impedance of the voltage transformer comparator 10.
  • Fig. 7 is an exemplary diagram illustrating a non-error evaluation corresponding to a calibration point for a negative polarity of an evaluation apparatus according to the present invention.
  • the first switch SW1, the third switch SW3, and the fourth switch SW4 are turned on. Thereby, the first measurement node N1 is connected to the first node N11, the second measurement node N2 is connected to the second node N12, the third measurement node N3 is connected to the third node N12, (N13).
  • the calibration can be performed by varying the value of the first variable resistor Rv1.
  • the measured error value can be measured by subtracting the measured error value in FIG. 6 from the error value.
  • U X and U N may be changed and connected to the evaluation apparatus 100 to measure the error with respect to the positive polarity.
  • the first variable resistor Rv1 is about 0.01 About 200
  • the fixed resistor R can be adjusted to a value in the range of about 2 kilo ohms (k ).
  • FIG. 8 is an exemplary diagram illustrating evaluation of the phase error offset of the evaluation apparatus according to the present invention.
  • phase error evaluation is performed in two steps, such as a bias error.
  • Lt; RTI ID 0.0 > 100 < / RTI > and a voltage transformer comparator 10 for evaluating the offset of the phase error.
  • An evaluation device (100) for evaluating the offset of the phase error and a voltage transformer comparator (10) are connected.
  • the sixth switch SW6 to the eighth switch SW8 are turned on.
  • the fifth measuring node N4 is connected to the first node N11 and the second node N12
  • the sixth measuring node N3 is connected to the third node N13.
  • First node N11 and second node N12 outputting the same voltage of U X and U N are connected at the same potential so that a zero value of the phase error is detected in the voltage transformer comparator 10 do.
  • the evaluation apparatus 100 may detect a non-zero value due to a difference in input impedance of the voltage transformer comparator 10.
  • FIG. 9 is an exemplary diagram illustrating a phase error evaluation corresponding to a calibration point for a negative characteristic of an evaluation apparatus according to the present invention.
  • the fifth switch SW5, the seventh switch SW7, and the eighth switch SW8 are turned on.
  • the fourth measuring node N4 is connected to the first node N11
  • the fifth measuring node N5 is connected to the second node N12
  • the sixth measuring node N6 is connected to the third node N11, (N13).
  • the calibration can be performed by varying the value of the second variable resistor Rv2.
  • the measured phase error value can be measured by subtracting the phase error value measured in FIG.
  • a series of quadrature circuits evaluates the phase error.
  • the phase error reading can be performed up to about +/- 14crad by the use of a fixed capacitor having a value of 2 microfarads (uF), and the second variable resistor Rv2 is capable of reading the first variable resistor Rv1 ). ≪ / RTI > Therefore, the second variable resistor Rv2 is about 0.01 About 200 To < / RTI >
  • the theoretical value requires the actual values of the input impedances as well as the actual values of the divider resistances and capacitance components, and the input-input-impedance measurement of the amplifier-comparator 10 during the evaluation is very important.
  • the input impedance rx of the voltage transformer comparator 10 on the X side can be determined by the negative bias error measurement while the first variable resistor Rv1 is changing.
  • Equation (3) can be expressed as Equation (9) below.
  • Equation (4) can be expressed as Equation (11) below.
  • Equation (4) can be expressed as Equation (11) below.
  • the calibration value for the error as a function of the variable resistor Rv, that is, the function of the first variable resistor Rv1, in the negative polarity obtained from the equation (3) is shown in the second row of Table 1.
  • the measurement results for the error are shown with errors.
  • the error represents the absolute value of the difference between the calculated value and the measured value. It can be seen that the overall range in the negative range of the error is less than 10 x 10 -6 .
  • the calibration value for the error as a function of the variable resistor Rv, i.e., the function of the first variable resistor Rv1, in the negative polarity obtained from the equation (4) is shown in the second row of Table 1. It can be seen that the overall range is less than 10 x 10 -6 in the positive range of the error, excluding the calculated error of 11.08%, corresponding to the absolute value error of 0.01%.
  • the phase error is measured by variation of the variable resistor Rv, that is, the second variable resistor Rv2 within the range of 0.044 to 192.510.
  • rx 13154
  • Xc 1325.6 And Equation 5
  • xreq and Xceq are 132.23 And 1312.2 Respectively.
  • Table 3 the calibration result of the phase error in the negative polarity of the voltage transformer is shown in Table 3 below.
  • phase error in the negative polarity is calculated by Equation 6 and is shown in the second row of Table 3. [ The measurement results for the phase error are shown with errors. The in-phase errors obtained for the full range of phase values are calculated to be 0.001 crad, excluding the calculated phase error of the phase error of -14.22 crad, corresponding to an absolute value error of 0.02 crad.
  • the evaluation for the positive polarity is performed in the same way after the exchange between the U X and U N inputs.
  • rn 13205
  • Xc 1325.6
  • Equation 8 rneq and Xceq are 131.73 And 1312.3 Respectively.
  • the phase error at the positive polarity is calculated by equation (7).
  • the calibration result of the phase error in the negative polarity of the voltage transformer is shown in Table 4 below. It can be seen that the total positive phase error is less than 0.003crad, except that the calculated phase error of 6.56crad and 14.22crad is 0.01crad.
  • Table 5 lists the sources of uncertainty, composite standard uncertainty and extended uncertainty.
  • a voltage comparator comparator described in Tables 1 to 6 is referred to as A, and a voltage comparator comparator of another manufacturer is referred to as B.
  • FIG. 10 is a diagram illustrating exemplary calibration of error error according to the present invention.
  • the solid line shows the specification of the manufacturer.
  • the vertical axis represents the error within the ratio, and the horizontal axis represents the calculated error.
  • FIG. 11 is a diagram illustrating an exemplary phase error calibration according to the present invention.
  • the solid line is a specification of the manufacturer.
  • the vertical axis represents the in-phase error, and the horizontal axis represents the calculated phase error.
  • the evaluation apparatus can be implemented to be movable for evaluation of a voltage transformer comparator by having a simple structure implemented by a series connection of a variable resistor and a fixed resistor, or a series connection of a variable resistor and a capacitor.
  • the present invention relates to a measuring apparatus, and it is possible to provide an apparatus for evaluating a voltage transformer comparator implemented to be movable.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Measuring Phase Differences (AREA)

Abstract

The present invention relates to an evaluation circuit. The evaluation circuit of the present invention comprises: a ratio error evaluation circuit for measuring a ratio error of a voltage transformer comparator; a phase error evaluation circuit for measuring a phase error of the voltage transformer comparator; and a switch for connecting one of the ratio error evaluation circuit and the phase error evaluation circuit to the voltage transformer comparator, wherein the phase error evaluation circuit consists of a series circuit of a variable resistor and a fixed resistor and the ratio error evaluation circuit consists of a series circuit of a variable resistor and a capacitor.

Description

[규칙 제26조에 의한 보정 19.07.2016] 전압 변성기 비교기의 평가 장치[Calibration according to Rule 26, 19.07.2016] Evaluation device of voltage transformer comparator
본 발명은 측정 장치에 관련된 것으로서, 전압 변성기 비교기의 평가 장치에 관한 것이다.The present invention relates to a measuring apparatus, and relates to an evaluation apparatus for a voltage transformer comparator.
전압 변성기(VT: Voltage Transformer)는 고전압과 전원 손실 측정을 위해 전력 산업에서 일반적으로 사용된다. 이러한 전압 변성기는 고전압을 안전하고 정밀하게 측정하기 위해 고전압을 낮은 전압으로 변환한다.A voltage transformer (VT) is commonly used in the power industry for high voltage and power loss measurements. These voltage transformers convert high voltage to low voltage for safe and precise measurement of high voltage.
전압 변성기는 2차측 전압에는 전압계와 전력량계 등의 측정기기와 보호 계전기 등이 연결되어 전력품질 검증 및 전력량 측정 등에 사용됨으로 전압 변환기의 2차측 전압은 1차측 전압과 정확한 변환비로 일치하여야 하며, 위상의 변위 또한 없어야 한다.In the voltage transformer, the secondary side voltage is connected to the measuring device such as the voltmeter and the watt hour meter and the protection relay, and is used for the power quality verification and the power amount measurement. Therefore, the secondary side voltage of the voltage converter must match the primary side voltage with the correct conversion ratio. There should also be no displacement.
이러한 전압 변성기의 비오차(ratio error)와 위상 오차(phase error)를 측정하기 위해서 전압 변성기 비교기(VTTS: Voltage Transformer Test Set)(또는, 전압 변성기 테스트 셋)이 사용된다. 즉, 전압 변성기 비교기는 피측정 전압 변성기의 2차측 전압을 표준 전압 변성기의 2차측 전압과 비교하여 피측정 전압 변성기의 비오차와 위상 오차를 측정하는 기기이다.A voltage transformer test set (VTTS) (or a voltage transformer test set) is used to measure the ratio error and phase error of the voltage transformer. That is, the voltage transformer comparator compares the secondary voltage of the measured voltage transformer with the secondary voltage of the standard voltage transformer, and measures the error and phase error of the measured voltage transformer.
기존의 전압 변성기 비교기는 비오차(ratio error)와 위상 오차(phase error)를 평가를 위한 평가 기기들은 복잡한 구조, 부피, 및 무게를 가지고 있었다. 이에 기존의 전압 변성기 비교기를 평가하는 평가 기기를 이동시켜, 전압 변성기 비교기를 평가할 수 없는 문제점이 있었다.Conventional voltage transformer comparators have complex structures, volumes, and weights for evaluation instruments for evaluating ratio and phase errors. Therefore, there is a problem that the evaluation device for evaluating the conventional voltage transformer comparator is moved, and the voltage transformer comparator can not be evaluated.
본 발명의 목적은 이동 가능한 전압 변성기 비교기의 평가 장치를 제공함에 있다.It is an object of the present invention to provide an apparatus for evaluating a movable voltage transformer comparator.
본 발명에 따른 전압 변성기 비교기의 평가 장치는 전압 변성기 비교기의 비오차를 측정하기 위한 비오차 평가 회로, 상기 전압 변성기 비교기의 위상 오차를 측정하기 위한 위상 오차 평가 회로, 및 상기 전압 변성기 비교기에 상기 비오차 평가 회로와 상기 위상 오차 평가 회로 중 하나를 연결하는 스위치를 포함한다.The apparatus for evaluating a voltage transformer comparator according to the present invention includes a ratio error evaluation circuit for measuring a bias error of a voltage transformer comparator, a phase error evaluation circuit for measuring a phase error of the voltage transformer comparator, And a switch for connecting one of the error evaluation circuit and the phase error evaluation circuit.
이 실시예에 있어서, 상기 비오차 평가 회로는 전원을 공급하는 전원부, 상기 전원부에 일단이 연결되고, 가변되는 레지스턴스를 갖는 가변 저항, 및 상기 가변 저항에 일단이 연결되고, 상기 전원부와 접지단의 접점에 일단이 연결되는 고정 저항을 포함한다.In this embodiment, the error-rate evaluation circuit includes a power supply unit for supplying power, a variable resistor having one end connected to the power supply unit and having a variable resistance, and one end connected to the variable resistor, And a fixed resistor whose one end is connected to the contact.
이 실시예에 있어서, 상기 스위치부는 상기 전압 변성기 비교기의 제 1 저항의 일단을 상기 전원부와 상기 가변 저항의 접지단에 연결하는 제 1 스위치, 오프셋 측정을 위해 상기 제 1 저항의 일단을 상기 가변 저항과 상기 고정 저항의 접점에 연결하는 제 2 스위치, 상기 전압 변성기 비교기의 제 2 저항의 일단을 상기 가변 저항과 상기 고정 저항의 접점에 연결하는 제 3 스위치, 및 상기 제 1 저항의 다른 일단과 제 2 저항의 다른 일단의 접점을 상기 고정 저항과 상기 접지단 사이의 접점에 연결하는 제 4 스위치를 포함한다.In this embodiment, the switch unit may include a first switch for connecting one end of a first resistor of the voltage transformer comparator to the power supply unit and a ground terminal of the variable resistor, a second switch for connecting one end of the first resistor to the variable resistor And a third switch for connecting one end of a second resistor of the voltage transformer comparator to a contact of the variable resistor and the fixed resistor, and a second switch for connecting the other end of the first resistor to the contact of the fixed resistor, And a fourth switch for connecting a contact of another end of the two resistors to a contact between the fixed resistor and the ground terminal.
이 실시예에 있어서, 상기 제 2 스위치가 온 동작하는 동안 상기 제 3 스위치가 오프 동작하여 비오차의 오프셋을 측정한 후, 상기 제 3 스위치가 온 동작하는 동안 상기 제 2 스위치가 오프 동작한다.In this embodiment, the third switch is turned off while the second switch is turned on to measure the offset of the error, and the second switch is turned off while the third switch is turned on.
이 실시예에 있어서, 네거티브 극성에 따른 비오차 측정 시 상기 제 1 저항은 표준 전압 변성기에 연결되는 1차측 저항이고, 상기 제 2 저항은 테스트를 위한 전압 변성기에 연결되는 2차측 저항이다.In this embodiment, the first resistor is a primary resistor connected to the standard voltage transformer and the second resistor is a secondary resistor connected to the voltage transformer for testing in a bias error measurement according to negative polarity.
이 실시예에 있어서, 포지티브 극성에 따른 비오차 측정 시 상기 제 1 저항은 테스트를 위한 전압 변성기에 연결되는 2차측 저항이고, 상기 제 2 저항은 표준 전압 변성기에 연결되는 1차측 저항이다.In this embodiment, the first resistor is a secondary resistance connected to the voltage transformer for testing, and the second resistor is a primary resistance connected to the standard voltage transformer in the measurement of the error according to the positive polarity.
이 실시예에 있어서, 상기 비오차의 캘리브레이션을 위해 상기 가변 저항은 0.01옴부터 200옴까지의 레지스턴스로 조절되고, 상기 고정 저항은 2킬로옴의 레지스턴스를 갖는다.In this embodiment, to calibrate the bias error, the variable resistor is adjusted to a resistance of 0.01 ohms to 200 ohms, and the fixed resistor has a resistance of 2 kilo ohms.
이 실시예에 있어서, 상기 위상 오차 평가 회로는 전원을 공급하는 전원부, 상기 전원부에 일단이 연결되고, 가변되는 레지스턴스를 갖는 가변 저항, 및 상기 가변 저항에 일단이 연결되고, 상기 전원부와 접지단의 접점에 일단이 연결되는 커패시터를 포함한다.In this embodiment, the phase error evaluating circuit includes a power supply unit for supplying power, a variable resistor having one end connected to the power supply unit and having a variable resistance, and one end connected to the variable resistor, And a capacitor whose one end is connected to the contact.
이 실시예에 있어서, 상기 스위치부는 상기 전압 변성기 비교기의 제 1 저항의 일단을 상기 전원부와 상기 가변 저항의 접지단에 연결하는 제 1 스위치, 오프셋 측정을 위해 상기 제 1 저항의 일단을 상기 가변 저항과 상기 커패시터의 접점에 연결하는 제 2 스위치, 상기 전압 변성기 비교기의 제 2 저항의 일단을 상기 가변 저항과 상기 커패시터의 접점에 연결하는 제 3 스위치, 및 상기 제 1 저항의 다른 일단과 제 2 저항의 다른 일단의 접점을 상기 커패시터와 상기 접지단 사이의 접점에 연결하는 제 4 스위치를 포함한다.In this embodiment, the switch unit may include a first switch for connecting one end of a first resistor of the voltage transformer comparator to the power supply unit and a ground terminal of the variable resistor, a second switch for connecting one end of the first resistor to the variable resistor A second switch connected to the contact of the capacitor, a third switch for connecting one end of a second resistor of the voltage transformer comparator to the contact of the variable resistor and the capacitor, and a third switch for connecting the other end of the first resistor and the second resistor And a fourth switch for connecting the other end of the contact to the contact between the capacitor and the ground terminal.
이 실시예에 있어서, 상기 제 2 스위치가 온 동작하는 동안 상기 제 3 스위치가 오프 동작하여 비오차의 오프셋을 측정한 후, 상기 제 3 스위치가 온 동작하는 동안 상기 제 2 스위치가 오프 동작한다.In this embodiment, the third switch is turned off while the second switch is turned on to measure the offset of the error, and the second switch is turned off while the third switch is turned on.
이 실시예에 있어서, 네거티브 극성에 따른 비오차 측정 시 상기 제 1 저항은 표준 전압 변성기에 연결되는 1차측 저항이고, 상기 제 2 저항은 테스트를 위한 전압 변성기에 연결되는 2차측 저항이다.In this embodiment, the first resistor is a primary resistor connected to the standard voltage transformer and the second resistor is a secondary resistor connected to the voltage transformer for testing in a bias error measurement according to negative polarity.
이 실시예에 있어서, 포지티브 극성에 따른 비오차 측정 시 상기 제 1 저항은 테스트를 위한 전압 변성기에 연결되는 2차측 저항이고, 상기 제 2 저항은 표준 전압 변성기에 연결되는 1차측 저항이다.In this embodiment, the first resistor is a secondary resistance connected to the voltage transformer for testing, and the second resistor is a primary resistance connected to the standard voltage transformer in the measurement of the error according to the positive polarity.
이 실시예에 있어서, 상기 비오차의 캘리브레이션을 위해 상기 가변 저항은 0.01옴부터 200옴까지의 레지스턴스로 조절되고, 상기 커패시터는 2uF의 커패시턴스를 갖는다.In this embodiment, for the calibration of the error, the variable resistor is adjusted to a resistance from 0.01 ohms to 200 ohms, and the capacitor has a capacitance of 2 uF.
본 발명의 평가 장치는 가변저항과 고정저항의 직렬 연결, 또는 가변 저항과 커패시터의 직렬 연결로 구현된 간단한 구조를 가짐으로써, 전압 변성기 비교기의 평가를 위해 이동 가능하게 구현할 수 있다.The evaluation apparatus of the present invention can be implemented to be movable for evaluation of a voltage transformer comparator by having a simple structure implemented by a series connection of a variable resistor and a fixed resistor or a series connection of a variable resistor and a capacitor.
도 1은 본 발명에 따른 전압 변성기 비교기를 예시적으로 도시한 도면,1 is an exemplary illustration of a voltage transformer comparator in accordance with the present invention,
도 2는 본 발명에 따른 전압 변성기 비교기의 평가 장치를 예시적으로 도시한 도면,2 is a diagram illustrating an exemplary evaluation device of a voltage transformer comparator according to the present invention,
도 3은 본 발명에 따른 평가 장치의 비오차 평가 회로를 예시적으로 도시한 도면,3 is a diagram exemplarily showing a ratio error evaluation circuit of an evaluation apparatus according to the present invention,
도 4는 본 발명에 따른 평가 장치의 위상 오차 평가 회로를 예시적으로 도시한 도면,4 is a diagram exemplarily showing a phase error evaluation circuit of an evaluation apparatus according to the present invention,
도 5는 본 발명에 따른 위상 오차 측정에 따른 위상을 도시한 도면,5 is a diagram illustrating a phase according to the phase error measurement according to the present invention,
도 6은 본 발명에 따른 평가 장치의 비오차 오프셋 평가를 예시적으로 도시한 도면,Figure 6 is an exemplary illustration of the evaluation of the error error offset of an evaluation device according to the present invention;
도 7은 본 발명에 따른 평가 장치의 네거티브 극성을 위한 캘리브레이션 포인트에 대응되는 비오차 평가를 예시적으로 도시한 도면,FIG. 7 is an exemplary illustration of a bias error evaluation corresponding to a calibration point for a negative polarity of an evaluation device according to the present invention;
도 8은 본 발명에 따른 평가 장치의 위상 오차 오프셋 평가를 예시적으로 도시한 도면,8 is an exemplary illustration of evaluation of the phase error offset of an evaluation device according to the present invention,
도 9는 본 발명에 따른 평가 장치의 네거티브 그성을 위한 캘리브레이션 포인트에 대응되는 위상 오차 평가를 예시적으로 도시한 도면,9 is an exemplary illustration of a phase error evaluation corresponding to a calibration point for the negative nature of the evaluation device according to the invention,
도 10은 본 발명에 따른 비오차 캘리브레이션을 예시적으로 도시한 도면, 및FIG. 10 is a diagram illustrating exemplary calibration of error error according to the present invention, and FIG.
도 11은 본 발명에 따른 위상 오차 캘리브레이션을 예시적으로 도시한 도면이다.11 is a diagram illustrating an exemplary phase error calibration according to the present invention.
본 발명의 실시를 위한 최선의 형태를 보여주는 도면은 도 1이다.BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a view showing the best mode for carrying out the present invention. Fig.
이하, 본 발명에 따른 바람직한 실시 예를 첨부한 도면을 참조하여 상세히 설명한다. 하기의 설명에서는 본 발명에 따른 동작을 이해하는데 필요한 부분만이 설명되며 그 이외 부분의 설명은 본 발명의 요지를 모호하지 않도록 하기 위해 생략될 것이라는 것을 유의하여야 한다.Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings. In the following description, only parts necessary for understanding the operation according to the present invention will be described, and descriptions of other parts will be omitted in order to avoid obscuring the gist of the present invention.
본 발명은 전압 변성기 비교기(VTTS: Voltage Transformer Test Set)를 평가하기 위해 이동 가능하도록 구현된 평가 장치를 제공한다. 본 발명의 평가 장치는 전압 변성기(VT: Voltage Transformer)의 비오차(ratio error)와 위상 오차(phase error)를 평가하기 위해서 사용되는 전압 변성기 비교기(VTTS)(또는, 전압 변성기 테스트 셋)의 평가를 위해 사용되는 장비이다. 따라서, 평가 장치는 비오차와 위상 오차의 캘리브레이션에 따라 전압 변성기 비교기의 비오차와 위상 오차의 평가 동작을 한다.The present invention provides an evaluation device implemented to be movable to evaluate a voltage transformer test set (VTTS). The evaluation apparatus of the present invention can be used for evaluating a voltage transformer comparator (VTTS) (or a voltage transformer test set) used for evaluating a ratio error and a phase error of a voltage transformer (VT) It is equipment used for. Therefore, the evaluation apparatus performs the evaluation operation of the error and phase error of the voltage transformer comparator according to the calibration of the error and phase error.
도 1은 전압 변성기 비교기를 예시적으로 도시한 도면이다.Figure 1 is an exemplary illustration of a voltage transformer comparator.
도 1을 참조하면, 전압 변성기 비교기(10)에서 전압 변성기(20)를 이용한 전력 품질 및 전력량 평가를 도시한다.Referring to FIG. 1, there is shown a power quality and power amount evaluation using a voltage transformer 20 in a voltage transformer comparator 10.
전압 변성기(20)는 1차측에는 표준 전압 변성기(STD: Standard Voltage Trnasformer)가 위치하고, 2차측에는 평가를 위한 테스트 기기(TEST)(일예로, 전압계, 전력량계) 등의 장비가 연결된다. 또한, 전압 변성기(20)는 고전압(HV:High Voltage)을 출력할 수 있는 전원부(21)를 포함한다. 이때, 표준 전압 변성기(STD)의 일단은 전원부(21)에 연결되고, 다른 일단은 테스트 기기(TEST)와의 접점을 통해 전원부(21)의 다른 일단에 연결된다.In the voltage transformer 20, a standard voltage transformer (STD) is placed on the primary side, and a test device TEST (e.g., voltmeter, watt hour meter) for evaluation is connected to the secondary side. The voltage transformer 20 includes a power supply unit 21 capable of outputting a high voltage (HV). One end of the standard voltage transformer STD is connected to the power source unit 21 and the other end of the standard voltage transformer STD is connected to the other end of the power source unit 21 through a contact with the test device TEST.
전압 변성기 비교기(10)는 테스트 기기(TEST)에 병렬로 연결되는 버든(B: Burden)을 포함한다. 전압 변성기 비교기(10)는 1차측에 연결되는 제 1 저항(Rx)과 2차측에 연결되는 제 2 저항(Rn)을 포함한다. 여기서, rx과 rn은 임피던스 값을 나타낸다. 전압 변성기 비교기(10)는 테스트 기기(TEST)와 표준 전압 변성기(STD)에 모두 동일한 여기 전압(excitation voltage)을 인가한 후에 테스트 기기(TEST)와 표준 전압 변성기(STD) 사이의 출력 전압 비교에 의해 에러들을 결정할 수 있다.The voltage transformer comparator 10 includes a Burden (B) connected in parallel to the test device TEST. The voltage transformer comparator 10 includes a first resistor Rx connected to the primary side and a second resistor Rn connected to the secondary side. Here, rx and rn represent impedance values. The voltage transformer comparator 10 compares the output voltage between the test device TEST and the standard voltage transformer STD after applying the same excitation voltage to both the test device TEST and the standard voltage transformer STD To determine errors.
전압 변성기 비교기(10)는 전류 비교기(current comparator)로 동작할 수 있다. 반대 극성을 갖는 두 개의 윈도우들(rx와 rn측 각각에 대한)의 자기적 코어 상에 부가된 기자력(magnetomotive force)에 의해 생성된 자속(magnetic flux)의 원리로 동작할 수 있다. 자속이 상쇄되고, 전류 비교기는 균형을 이룬다.The voltage transformer comparator 10 can operate as a current comparator. Can operate on the principle of magnetic flux created by the magnetomotive force exerted on the magnetic cores of two windows (with respect to each of rx and rn sides) of opposite polarity. The magnetic flux is canceled, and the current comparator is balanced.
입력 임피던스들(rx, rn)은 상대적으로 큰 값을 가질 수 있다. 이때, 전압 변성기(20)는 하기의 수학식 1에 따른 비오차(
Figure PCTKR2016006317-appb-I000001
)와 위상 오차(
Figure PCTKR2016006317-appb-I000002
)를 가질 수 있다.
The input impedances rx, rn may have a relatively large value. At this time, the voltage transformer 20 calculates the error ratio
Figure PCTKR2016006317-appb-I000001
) And phase error (
Figure PCTKR2016006317-appb-I000002
).
Figure PCTKR2016006317-appb-M000001
Figure PCTKR2016006317-appb-M000001
Figure PCTKR2016006317-appb-I000003
Figure PCTKR2016006317-appb-I000003
여기서, kn은 변성비의 비율이고, Up는 테스트 기기(TEST)의 실제 주 전압이고, Us는 실제 2차 전압이다.
Figure PCTKR2016006317-appb-I000004
는 주 전압 페이저(phasor)이고,
Figure PCTKR2016006317-appb-I000005
는 2차 전압 페이저이다.
Here, kn is the ratio of the denaturation ratio, Up is the actual main voltage of the test device TEST, and Us is the actual secondary voltage.
Figure PCTKR2016006317-appb-I000004
Is a mains voltage phasor,
Figure PCTKR2016006317-appb-I000005
Is a secondary voltage phasor.
전압이 테스트 기기(TEST)와 표준 전압 변성기(STD) 모두에 주 전압으로 적용되고, 표준 전압 변성기(STD)의 에러가 없다고 가정하면, 단일 변성비에서 에러들은 2차 전압에만 관련된다. 따라서, 전압 변성기 비교기(10)의 에러는 하기의 수학식 2와 같이 나타낼 수 있다.Assuming that the voltage is applied as the main voltage to both the test device TEST and the standard voltage transformer STD and that there is no error in the standard voltage transformer STD, the errors in the single modulation ratio are related only to the secondary voltage. Therefore, the error of the voltage comparator comparator 10 can be expressed by the following equation (2).
Figure PCTKR2016006317-appb-M000002
Figure PCTKR2016006317-appb-M000002
Figure PCTKR2016006317-appb-I000006
Figure PCTKR2016006317-appb-I000006
여기서, UX는 테스트 기기(TEST)의 2차 전압이고, UN은 표준 전압 변성기(STD)의 2차 전압이다.
Figure PCTKR2016006317-appb-I000007
는 테스트 기기(TEST)의 2차 전압 위상이고,
Figure PCTKR2016006317-appb-I000008
는 표준 전압 변성기(STD)의 2차 전압 위상이다.
Figure PCTKR2016006317-appb-I000009
는 테스트 기기(TEST)와 표준 전압 변성기(STD)의 2차 전압들 사이의 비율을 나타낸다.
Figure PCTKR2016006317-appb-I000010
는 테스트 기기(TEST)와 표준 전압 변성기(STD)의 2차 전압 위상들 사이의 차이를 나타낸다.
Where U X is the secondary voltage of the test device TEST and U N is the secondary voltage of the standard voltage transformer STD.
Figure PCTKR2016006317-appb-I000007
Is the secondary voltage phase of the test device TEST,
Figure PCTKR2016006317-appb-I000008
Is the secondary voltage phase of the standard voltage transformer (STD).
Figure PCTKR2016006317-appb-I000009
Represents the ratio between the secondary voltages of the test device TEST and the standard voltage transformer STD.
Figure PCTKR2016006317-appb-I000010
Represents the difference between the secondary voltage phases of the test device TEST and the standard voltage transformer STD.
도 2는 본 발명에 따른 전압 변성기 비교기의 평가 장치를 예시적으로 도시한 도면이다.2 is a diagram illustrating an exemplary evaluation apparatus of a voltage transformer comparator according to the present invention.
도 2를 참조하면, 평가 장치(100)는 비오차 평가 회로(110)와 위상 오차 평가 회로(120), 및 스위치부(130)를 포함한다.Referring to FIG. 2, the evaluation apparatus 100 includes a ratio error evaluation circuit 110, a phase error evaluation circuit 120, and a switch unit 130.
비오차 평가 회로(110)는 전압 변성기 비교기(10)에 스위치부(130)를 통해 연결되면, 비오차 평가를 위한 캘리브레이션 동작을 수행한다. 비오차 평가 회로(110)는 전압 변성기 비교기(10)와의 연결을 위한 제 1 노드(N1) 내지 제 3 노드(N3)를 포함한다. 예를 들면, 비오차 평가 회로(120)는 가변 저항과 고정 저항의 직렬 회로로 구성된다. 위상 오차 평가 회로(120)는 전압 변성기 비교기(10)에 스위치부(130)를 통해 연결되면, 위상 오차 측정을 위한 캘리브레이션 동작을 수행한다. 위상 오차 평가 회로(120)는 전압 변성기 비교기(10)와의 연결을 위한제 4 노드(N4) 내지 제 6 노드(N6)를 포함한다. 예를 들면, 위상 오차 평가 회로(120)는 가변 저항과 커패시터의 직렬 회로로 구성된다.The error error evaluation circuit 110, when connected to the voltage transformer comparator 10 via the switch unit 130, performs a calibration operation for evaluation of error error. The error ratio evaluation circuit 110 includes a first node N1 to a third node N3 for connection to the voltage comparator comparator 10. [ For example, the error ratio evaluation circuit 120 is constituted by a series circuit of a variable resistor and a fixed resistor. The phase error evaluating circuit 120 performs a calibration operation for measuring the phase error when the voltage comparator 10 is connected to the comparator 10 via the switch unit 130. The phase error evaluation circuit 120 includes fourth to sixth nodes N4 to N6 for connection to the voltage comparator comparator 10. [ For example, the phase error evaluation circuit 120 is constituted by a series circuit of a variable resistor and a capacitor.
스위치부(130)는 제 1 스위치(SW3) 내지 제 8 스위치(SW8)포함한다. 제 1 스위치(SW1)는 제 1 측정 노드(N1)와 제 2 저항(Rn)에 연결된 제 1 노드(11) 사이에서 온(ON) 또는 오프(OFF) 동작한다. 제 2 스위치(SW2)는 제 2 측정 노드(N2)와 제 1 노드(11) 사이에서 온 또는 오프 동작한다. 제 3 스위치(SW3)는 제 2 측정 노드(N2)와 제 1 저항(Rx)에 연결된 제 2 노드(N12) 사이에서 온 또는 오프 동작한다. 제 4 스위치(SW4)는 제 3 측정 노드(N3)와, 제 1 저항(Rx)과 제 2 저항(Rn) 사이의 접점에 연결된 제 3 노드(N13) 사이에서 온 또는 오프 동작한다.The switch unit 130 includes the first switch SW3 to the eighth switch SW8. The first switch SW1 is turned on or off between the first measuring node N1 and the first node 11 connected to the second resistor Rn. The second switch SW2 is turned on or off between the second measurement node N2 and the first node 11. [ The third switch SW3 is turned on or off between the second measuring node N2 and the second node N12 connected to the first resistor Rx. The fourth switch SW4 is turned on or off between the third measuring node N3 and the third node N13 connected to the node between the first resistor Rx and the second resistor Rn.
이와 같이, 제 5 스위치(SW5)는 제 4 측정 노드(N4)와 제 1 노드(N11) 사이에서 온 또는 오프 동작하고, 제 6 스위치(SW6)는 제 5 측정 노드(N5)와 제 1 노드(N11) 사이에서 온 또는 오프 동작한다. 제 7 스위치(SW7)는 제 5 측정 노드(N5)와 제 2 노드(N12) 사이에서 온 또는 오프 동작한다. 제 8 스위치(SW8)는 제 6 측정 노드(N6)와 제 3 노드(N13) 사이에서 온 또는 오프 동작한다.Thus, the fifth switch SW5 is turned on or off between the fourth measuring node N4 and the first node N11, the sixth switch SW6 is turned on or off between the fifth measuring node N5 and the first node N11, Lt; RTI ID = 0.0 > N11. ≪ / RTI > The seventh switch SW7 is turned on or off between the fifth measuring node N5 and the second node N12. The eighth switch SW8 is turned on or off between the sixth measuring node N6 and the third node N13.
제 1 스위치(SW1) 내지 제 4 스위치(SW4)의 온 동작에 의해 전압 변성기 비교기(10)의 비오차를 측정한다. 이때, 제 1 스위치(SW1)와 제 2 스위치(SW2) 중 하나만이 선택적으로 온 동작한다. 즉, 제 1 스위치(SW1)가 온 동작하면, 제 2 스위치(SW2)는 오프 동작하고, 제 2 스위치(SW2)가 온 동작 하면 제 1 스위치(SW1)가 오프 동작한다. 또한, 제 5 스위치(SW5)와 제 8 스위치(SW8)의 온 동작에 의해 전압 변성기 비교기(10)의 위상 오차를 측정한다. 여기서도, 제 5 스위치(SW5)와 제 6 스위치(SW6)는 제 1 스위치(SW1)와 제 2 스위치(SW2) 같이 하나만이 선택적으로 온 동작한다.And the error of the voltage comparator comparator 10 is measured by the ON operation of the first switch SW1 to the fourth switch SW4. At this time, only one of the first switch SW1 and the second switch SW2 is selectively turned on. That is, when the first switch SW1 is turned on, the second switch SW2 is turned off, and when the second switch SW2 is turned on, the first switch SW1 is turned off. The phase error of the voltage-shifter comparator 10 is measured by the ON operation of the fifth switch SW5 and the eighth switch SW8. Again, only one of the fifth switch SW5 and the sixth switch SW6, such as the first switch SW1 and the second switch SW2, is selectively turned on.
위에서는, 평가 장치(100)가 네거티브 극성에 따른 비오차와 위상 오차 측정을 도시하고, 포지티브 극성에 따른 비오차와 위상 오차는 제 1 저항(Rx)과 제 2 저항(Rn)의 위치를 바뀌어 결합된 노드를 통해 측정될 수 있다.In the above, the evaluation apparatus 100 shows the error and phase error measurement according to the negative polarity, and the error and phase error according to the positive polarity change the positions of the first resistor Rx and the second resistor Rn Can be measured through a combined node.
이와 같은 스위치부(130)에 포함된 제 1 스위치(SW1) 내지 제 8 스위치들(SW8)의 동작 제어는 사용자 제어에 의해 발생된 사용자 제어 신호 또는 별도의 제어부(미도시)를 통해 생성된 스위치 제어 신호 등에 의해 제어될 수 있다.The operation of the first switch SW1 through the eighth switches SW8 included in the switch unit 130 may be controlled by a user control signal generated by a user control or a switch generated through a separate control unit And can be controlled by a control signal or the like.
한편, 전압 변성기 비교기(10)는 동일한 접지점에서 두 개의 입력들(UX, UN)의 전압 컴포넌트들을 측정할 수 있다. 또한, UX의 전압 레벨은 동위상과 직교위상에서 UN의 전압 레벨의 텀(term)에 의해 제공된다.On the other hand, the voltage transformer comparator 10 can measure the voltage components of the two inputs (U X , U N ) at the same ground point. In addition, the voltage level of U X is provided by the term of the voltage level of U N in phase with quadrature.
도 3은 본 발명에 따른 평가 장치의 비오차 평가 회로를 예시적으로 도시한 도면이다.3 is a diagram exemplarily showing a ratio error evaluation circuit of an evaluation apparatus according to the present invention.
도 3을 참조하면, 비오차 평가 회로(110)는 전원부(111), 제 1 가변 저항(Rv1), 및 고정 저항(R)을 포함한다. 이때, 스위치부(130)의 제 1 스위치(SW1)는 제 1 측정 노드(N1)와 제 1 노드(N11)를 연결하기 위해 온 동작하고, 제 3 스위치(SW3)는 제 2 측정 노드(N2)를 제 2 노드(N12)로 연결하고, 제 4 스위치(SW4)는 제 3 측정 노드(N3)와 제 3 노드(N13)를 연결하기 위해 온 동작한다. 이때, 제 2 스위치(SW2)는 오프 동작한다.3, the error-ratio evaluation circuit 110 includes a power supply unit 111, a first variable resistor Rv1, and a fixed resistor R. [ The first switch SW1 of the switch unit 130 is turned on to connect the first measurement node N1 to the first node N11 and the third switch SW3 is turned on to connect the second measurement node N2 ) To the second node N12, and the fourth switch SW4 is turned on to connect the third measurement node N3 and the third node N13. At this time, the second switch SW2 is turned off.
제 1 가변 저항(Rv1)은 일단이 전원부(111)에 연결되고, 다른 일단은 고정 저항(R)에 연결된다. 고정 저항(R)은 일단이 제 1 가변 저항(Rv1)에 연결되고, 다른 일단은 전원부(111)와 접지단 사이의 접점에 연결된다. 이를 통해, 제 1 가변 저항(Rv1)과 고정 저항(R)은 비오차 평가를 위해 직렬 연결된다. 전압 분배기의 기능을 포함한 레지스터들은 인덕터들과 저항들이 직렬로 연결된 것으로서 고려되지만, 상업적으로 이용가능한 무유도 저항들(non-inductive register)이 사용될 수 있다. 따라서, 비오차 평가 회로(110)는 저항 전압 분배기의 기능을 가질 수 있다.The first variable resistor Rv1 is connected at one end to the power supply unit 111 and at the other end to the fixed resistor R. [ One end of the fixed resistor R is connected to the first variable resistor Rv1 and the other end is connected to the contact point between the power supply part 111 and the ground terminal. Thereby, the first variable resistor Rv1 and the fixed resistor R are serially connected for the estimation of the error. Resistors including the function of a voltage divider are considered as inductors and resistors connected in series, but commercially available non-inductive resistors can be used. Accordingly, the error-error evaluation circuit 110 may have the function of a resistance voltage divider.
이때, 전압 변성기 비교기(10) 내에서 입력 전압들(UN과 UX)에 적용된 전압은 전압 변성기 비교기(10)의 입력 레지스턴스에 교차하는 전압 강하(voltage drop)를 위해 동일하다.At this time, the voltages applied to the input voltages U N and U X in the voltage transformer comparator 10 are the same for a voltage drop across the input resistance of the voltage transformer comparator 10.
UX 지점에서의 전압은 UN 지점에서 대비 (RV+ZX)/ZX의 비율로 감소한다. RV는 제 1 가변 저항(Rv1)의 실제 레지스턴스(저항값)이다. 제 1 가변 저항(Rv1)의 레지스턴스는 비오차 측정을 위한 캘리브레이션을 위해 변화한다. ZX는 입력 임피던스(rx)에 병렬로 연결된 고정 저항(R)의 실제 임피던스 값이고, 비오차는 이론적으로 하기의 수학식 3과 같이 나타낼 수 있다.The voltage at point U X decreases at the ratio of (R V + Z X ) / Z X at the point U N. RV is the actual resistance (resistance value) of the first variable resistor Rv1. The resistance of the first variable resistor Rv1 changes for calibration for the measurement of the bias error. Z X is the actual impedance value of the fixed resistor R connected in parallel to the input impedance rx, and the error error can be theoretically expressed by the following equation (3).
Figure PCTKR2016006317-appb-M000003
Figure PCTKR2016006317-appb-M000003
수학식 3은 네거티브 극성의 영역에서 비오차를 나타낸다.Equation (3) shows the error in the region of the negative polarity.
포지티브 극성 영역에서는 UX와 UN의 노드들 사이의 연결을 교환하여 획득할 수 있다. 이때, 양의 극성에서의 비오차는 이론적으로 하기의 수학식 4와 같이 나타낼 수 있다.In the positive polarity region, the connection between the nodes of U X and U N can be obtained by exchanging. In this case, the error in the positive polarity can be expressed theoretically as shown in the following equation (4).
Figure PCTKR2016006317-appb-M000004
Figure PCTKR2016006317-appb-M000004
여기서, ZN은 입력 임피던스(rn)에 병렬로 연결된 고정 저항(R)의 실제 임피던스 값이다. 그러므로, 제 1 가변 저항(Rv1)의 레지스턴스 변화에 의해, 네거티브와 포지티브 극성들에서 캘리브레이션 포인트를 위한 이론적인 비오차를 측정한다.Where Z N is the actual impedance value of the fixed resistor R connected in parallel to the input impedance rn. Therefore, by the resistance change of the first variable resistor Rv1, the theoretical error for the calibration point is measured in the negative and positive polarities.
도 4는 본 발명에 따른 평가 장치의 위상 오차 평가 회로를 예시적으로 도시한 도면이다.4 is a diagram exemplarily showing a phase error evaluation circuit of an evaluation apparatus according to the present invention.
도 4를 참조하면, 위상 오차 평가 회로(120)는 전원부(121), 제 2 가변 저항(Rv2), 및 커패시터(C)를 포함한다. 이때, 스위치부(130)의 제 5 스위치(SW5)는 제 4 측정 노드(N4)와 제 1 노드(N11)를 연결하기 위해 온 동작하고, 제 7 스위치(SW5)는 제 5 측정 노드(N5)를 제 2 노드(N12)로 연결하고, 제 8 스위치(SW8)는 제 6 측정 노드(N6)와 제 3 노드(N13)를 연결하기 위해 온 동작한다. 이때, 제 6 스위치(SW6)는 오프 동작한다.Referring to FIG. 4, the phase error evaluation circuit 120 includes a power supply unit 121, a second variable resistor Rv2, and a capacitor C. The fifth switch SW5 of the switch unit 130 is turned on to connect the fourth measurement node N4 to the first node N11 and the seventh switch SW5 is turned on to connect the fifth measurement node N5 ) To the second node N12, and the eighth switch SW8 is turned on to connect the sixth measuring node N6 and the third node N13. At this time, the sixth switch SW6 is turned off.
제 2 가변 저항(Rv2)은 일단이 전원부(121)에 연결되고, 다른 일단은 커패시터(C)에 연결된다. 커패시터(C)는 일단이 제 2 가변 저항(Rv2)에 연결되고, 다른 일단은 전원부(121)와 접지단 사이의 접점에 연결된다. 이를 통해, 제 2 가변 저항(Rv2)과 커패시터(C)는 위상 오차 평가를 위해 직렬 연결된다. 무유도 저항(non-inductive register)과 1x10- 3미만의 값을 갖는 디시패이션 커패시터(dissipation capacitor)이 사용될 수 있다. 따라서, 위상 오차 평가 회로(120)는 직각 위상(quadrature)의 R-C 전압 분배기(quadrature R-C divider)의 기능을 가질 수 있다.The second variable resistor Rv2 has one end connected to the power supply unit 121 and the other end connected to the capacitor C. [ One end of the capacitor C is connected to the second variable resistor Rv2 and the other end is connected to the contact between the power supply 121 and the ground terminal. Thereby, the second variable resistor Rv2 and the capacitor C are connected in series for phase error evaluation. A non-inductive resistor and a dissipation capacitor with a value less than 1 x 10 < -3 > may be used. Thus, the phase error estimating circuit 120 may have the function of a quadrature RC divider.
전압 변성 비교기(10)의 위상 오차의 평가는 UX와 UN이 형성된 단자들 사이의 위상차에 근거한다.The evaluation of the phase error of the voltage-shifting comparator 10 is based on the phase difference between the terminals formed with U X and U N.
이때, 전압 변성기 비교기(10)의 위상 오차는 하기의 도 5와 같이 나타낼 수 있다. 전압 분배기의 아래쪽 부분은 균등한 직렬 회로로 간주될 수 있다.At this time, the phase error of the voltage comparator comparator 10 can be expressed as shown in FIG. 5 below. The lower part of the voltage divider can be regarded as an even serial circuit.
도 5는 본 발명에 따른 위상 오차 측정에 따른 위상을 도시한 도면이다.5 is a diagram illustrating a phase according to the phase error measurement according to the present invention.
도 5를 참조하면, (a)에서 저항-캐패시터 전압 분배기로 구현된 위상 오차 평가 회로(120)를 개략적으로 도시한다. 제 2 가변 저항(Rv2)과 커패시터(C)의 커패시턴스(Xc)가 직렬 연결된다. 여기서, 제 2 가변 저항(Rv2)과 커패시터(C) 사이의 접점에 일단이 연결되고, 접지단에 일단이 연결된 제 1 저항(Rx)은 커패시터(C)에 병렬로 연결된다. 저항(Rv)으로 인가되는 전압(UN)과 커패시턴스 방향으로 인가되는 전압(UX)이 도시된다.Referring to FIG. 5, (a) schematically illustrates a phase error evaluation circuit 120 implemented with a resistor-capacitor voltage divider. The second variable resistor Rv2 and the capacitance Cc of the capacitor C are connected in series. Here, the first resistor Rx, one end of which is connected to the contact between the second variable resistor Rv2 and the capacitor C, and the other end of which is connected to the ground terminal, is connected in parallel to the capacitor C. The voltage U N applied to the resistor Rv and the voltage U X applied in the capacitance direction are shown.
(b)는 (a)와 균등한 직렬 회로를 도시한다. 제 2 가변 저항(Rv2)은 일단에 전압(UN)이 인가되고, 다른 일단에 rxeq의 레지스턴스를 갖는 저항(Rxeq)이 연결된다. 저항(Rxeq)은 일단에 제 2 가변 저항(Rv2)이 연결되고, 다른 일단에 커패시턴스(Xceq)를 갖는 커패시터(Cceq)가 연결된다. 저항(Rxeq)에 제 2 가변 저항(Rv2)과의 접점을 통해 전압(UX)이 인가된다.(b) shows a series circuit equivalent to (a). The second variable resistor Rv2 is connected to a resistor Rxeq having a resistance of rxeq at the other end to which a voltage UN is applied at one end. The resistor Rxeq is connected at one end to a second variable resistor Rv2 and at the other end to a capacitor Cceq having a capacitance Xceq. The voltage U X is applied to the resistor Rxeq through the contact point with the second variable resistor Rv2.
(a)에서 병렬로 연결된 저항(Rx)과 커패시터(C)는 직렬로 연결된 저항(Rxeq)과 커패시터(Cceq)의 병렬 회로와 균등한 회로일 수 있다.the resistor Rx and the capacitor C connected in parallel in FIG. 5A may be an equivalent circuit to a parallel circuit of a resistor Rxeq and a capacitor Cceq connected in series.
(b)에서 레지스턴스(rxeq)와 커패시턴스(Xceq)는 하기의 수학식 5와 같이 나타낼 수 있다.(b), the resistance rxeq and the capacitance Xceq can be expressed by the following Equation (5).
Figure PCTKR2016006317-appb-M000005
Figure PCTKR2016006317-appb-M000005
Figure PCTKR2016006317-appb-I000011
Figure PCTKR2016006317-appb-I000011
(c)에서 위상을 도시한다. 세로축은 커패시턴스(Xceq)를 나타내고, 가로축은 rxeq + Rv를 도시한다. 이때, 전압들이 인가되는 지점(UX, UN)이 도시된다. 이때, 위상 에러값은 하기의 수학식 6과 같이 나타낼 수 있다.(c). The vertical axis represents the capacitance Xceq, and the horizontal axis represents rxeq + Rv. At this time, the points (U X , U N ) where the voltages are applied are shown. At this time, the phase error value can be expressed by the following Equation (6).
Figure PCTKR2016006317-appb-M000006
Figure PCTKR2016006317-appb-M000006
하기의 수학식 7은 네거티브 극성에 따른 위상 에러값을 나타낸다.Equation (7) below represents the phase error value according to the negative polarity.
Figure PCTKR2016006317-appb-M000007
Figure PCTKR2016006317-appb-M000007
하기의 수학식 8은 위상 에러값에 따른 레지스턴스(rneq)와 커패시턴스(Xceq)를 나타낸다.Equation (8) represents a resistance (rneq) and a capacitance (Xceq) according to a phase error value.
Figure PCTKR2016006317-appb-M000008
Figure PCTKR2016006317-appb-M000008
Figure PCTKR2016006317-appb-I000012
Figure PCTKR2016006317-appb-I000012
도 6은 본 발명에 따른 평가 장치의 비오차 오프셋 평가를 예시적으로 도시한 도면이다.6 is a diagram illustrating an exemplary evaluation of the error error offset of the evaluation apparatus according to the present invention.
도 6을 참조하면, 비오차 평가를 위한 캘리브레이션은 2단계로 이루어진다. 비오차의 오프셋 평가를 위한 평가 장치(100)와 전압 변성기 비교기(10)가 연결된다. 이를 위해, 제 2 스위치(SW2) 내지 제 4 스위치(SW4)가 온 동작한다. 이를 통해, 제 2 측정 노드(N2)는 제 1 노드(N11)와 제 2 노드(N12)에 연결되고, 제 3 측정 노드(N3)는 제 3 노드(N13)에 연결된다.Referring to FIG. 6, the calibration for the error error evaluation is made in two steps. An evaluation device (100) for evaluating the offset of the error is connected to a voltage transformer comparator (10). To this end, the second switch SW2 to the fourth switch SW4 are turned on. Thereby, the second measuring node N2 is connected to the first node N11 and the second node N12, and the third measuring node N3 is connected to the third node N13.
입력 임피던스(rx 및 rn)들과 가능한 임피던스 모두에 의해 야기된 오프셋 값을 평가한다. UX와 UN의 동일한 전압을 출력하는 단자들(제 1 노드(N11)와 제 2 노드(N12))이 동일한 포텐셜로 연결된 상태에서 전압 변성기 비교기(10)에서 비오차의 제로 값을 검출하도록 한다. 하지만, 평가 장치(100)는 전압 변성기 비교기(10)의 입력 임피던스의 차이로 인해 제로값이 아닌값이 검출될 수도 있다.The offset values caused by both the input impedances (rx and rn) and possible impedances are evaluated. (First node N11 and second node N12) outputting the same voltage of U X and U N are connected with the same potential, the voltage comparator comparator 10 detects the zero value of the error do. However, the evaluation apparatus 100 may detect a non-zero value due to a difference in input impedance of the voltage transformer comparator 10.
다음 단계는 하기의 도 7을 참조하여 설명하기로 한다.The next step will be described with reference to Fig. 7 below.
도 7은 본 발명에 따른 평가 장치의 네거티브 극성을 위한 캘리브레이션 포인트에 대응되는 비오차 평가를 예시적으로 도시한 도면이다.Fig. 7 is an exemplary diagram illustrating a non-error evaluation corresponding to a calibration point for a negative polarity of an evaluation apparatus according to the present invention.
도 7을 참조하면, 제 1 스위치(SW1), 제 3 스위치(SW3), 및 제 4 스위치(SW4)가 온 동작한다. 이를 통해, 제 1 측정 노드(N1)는 제 1 노드(N11)에 연결되고, 제 2 측정 노드(N2)는 제 2 노드(N12)에 연결되고, 제 3 측정 노드(N3)는 제 3 노드(N13)에 연결된다.Referring to Fig. 7, the first switch SW1, the third switch SW3, and the fourth switch SW4 are turned on. Thereby, the first measurement node N1 is connected to the first node N11, the second measurement node N2 is connected to the second node N12, the third measurement node N3 is connected to the third node N12, (N13).
이때, 제 1 가변 저항(Rv1)의 값의 가변에 의해 캘리브레이션을 수행할 수 있다. 이를 통해, 측정된 비오차 값은 도 6에서 측정된 비오차 값을 감산하여 비오차값을 측정할 수 있다.At this time, the calibration can be performed by varying the value of the first variable resistor Rv1. Thus, the measured error value can be measured by subtracting the measured error value in FIG. 6 from the error value.
도 6과 도 7에서 설명된 네거티브 극성의 비오차 측정과 같이, UX와 UN를 바꾸어 평가 장치(100)에 연결하여 포지티브 극성에 대한 비오차를 측정할 수도 있다.As in the case of the negative polarity error measurement described with reference to FIGS. 6 and 7, U X and U N may be changed and connected to the evaluation apparatus 100 to measure the error with respect to the positive polarity.
이때, 제 1 가변 저항(Rv1)은 약 0.01
Figure PCTKR2016006317-appb-I000013
부터 약 200
Figure PCTKR2016006317-appb-I000014
까지의 범위의 값으로 조절될 수 있고, 고정 저항(R)은 약 2킬로옴(k
Figure PCTKR2016006317-appb-I000015
)으로 설정된다.
At this time, the first variable resistor Rv1 is about 0.01
Figure PCTKR2016006317-appb-I000013
About 200
Figure PCTKR2016006317-appb-I000014
And the fixed resistor R can be adjusted to a value in the range of about 2 kilo ohms (k
Figure PCTKR2016006317-appb-I000015
).
도 8은 본 발명에 따른 평가 장치의 위상 오차 오프셋 평가를 예시적으로 도시한 도면이다.8 is an exemplary diagram illustrating evaluation of the phase error offset of the evaluation apparatus according to the present invention.
도 8을 참조하면, 위상 오차 평가를 위한 캘리브레이션도 비오차와 같이 2개의 단계로 수행된다. 위상 오차의 오프셋 평가를 위한 평가 장치(100)와 전압 변성기 비교기(10) 간의 연결을 도시한다.Referring to FIG. 8, calibration for phase error evaluation is performed in two steps, such as a bias error. Lt; RTI ID = 0.0 > 100 < / RTI > and a voltage transformer comparator 10 for evaluating the offset of the phase error.
위상 오차의 오프셋 평가를 위한 평가 장치(100)와 전압 변성기 비교기(10)가 연결된다. 이를 위해, 제 6 스위치(SW6) 내지 제 8 스위치(SW8)가 온 동작한다. 이를 통해, 제 5 측정 노드(N4)는 제 1 노드(N11)와 제 2 노드(N12)에 연결되고, 제 6 측정 노드(N3)는 제 3 노드(N13)에 연결된다. UX와 UN의 동일한 전압을 출력하는 단자들(제 1 노드(N11)와 제 2 노드(N12))이 동일한 포텐셜로 연결된 상태에서 전압 변성기 비교기(10)에서 위상 오차의 제로 값을 검출하도록 한다. 하지만, 평가 장치(100)는 전압 변성기 비교기(10)의 입력 임피던스의 차이로 인해 제로값이 아닌값이 검출될 수도 있다.An evaluation device (100) for evaluating the offset of the phase error and a voltage transformer comparator (10) are connected. To this end, the sixth switch SW6 to the eighth switch SW8 are turned on. Thus, the fifth measuring node N4 is connected to the first node N11 and the second node N12, and the sixth measuring node N3 is connected to the third node N13. (First node N11 and second node N12) outputting the same voltage of U X and U N are connected at the same potential so that a zero value of the phase error is detected in the voltage transformer comparator 10 do. However, the evaluation apparatus 100 may detect a non-zero value due to a difference in input impedance of the voltage transformer comparator 10.
도 9는 본 발명에 따른 평가 장치의 네거티브 그성을 위한 캘리브레이션 포인트에 대응되는 위상 오차 평가를 예시적으로 도시한 도면이다.FIG. 9 is an exemplary diagram illustrating a phase error evaluation corresponding to a calibration point for a negative characteristic of an evaluation apparatus according to the present invention.
도 9를 참조하면, 제 5 스위치(SW5), 제 7 스위치(SW7), 및 제 8 스위치(SW8)가 온 동작한다. 이를 통해, 제 4 측정 노드(N4)는 제 1 노드(N11)에 연결되고, 제 5 측정 노드(N5)는 제 2 노드(N12)에 연결되고, 제 6 측정 노드(N6)은 제 3 노드(N13)에 연결된다.Referring to Fig. 9, the fifth switch SW5, the seventh switch SW7, and the eighth switch SW8 are turned on. Thereby, the fourth measuring node N4 is connected to the first node N11, the fifth measuring node N5 is connected to the second node N12, the sixth measuring node N6 is connected to the third node N11, (N13).
이때, 제 2 가변 저항(Rv2)의 값의 가변에 의해 캘리브레이션을 수행할 수 있다. 이를 통해, 측정된 위상 오차 값은 도 8에서 측정된 위상 오차 값을 감산하여 비오차값을 측정할 수 있다.At this time, the calibration can be performed by varying the value of the second variable resistor Rv2. Thus, the measured phase error value can be measured by subtracting the phase error value measured in FIG.
직렬의 직교 회로(quadrature circuit)는 위상 에러를 평가한다. 2마이크로패럿(uF)의 값을 갖는 고정 커패시터의 이용에 의해 약 +/-14crad까지 위상 에러 리딩을 할 수 있고, 제 2 가변 저항(Rv2)은 비오차 측정에 사용된 제 1 가변 저항(Rv1)과 동일한 저항을 사용한다. 따라서, 제 2 가변 저항(Rv2)은 약 0.01
Figure PCTKR2016006317-appb-I000016
부터 약 200
Figure PCTKR2016006317-appb-I000017
까지의 범위의 값으로 조절될 수 있다.
A series of quadrature circuits evaluates the phase error. The phase error reading can be performed up to about +/- 14crad by the use of a fixed capacitor having a value of 2 microfarads (uF), and the second variable resistor Rv2 is capable of reading the first variable resistor Rv1 ). ≪ / RTI > Therefore, the second variable resistor Rv2 is about 0.01
Figure PCTKR2016006317-appb-I000016
About 200
Figure PCTKR2016006317-appb-I000017
To < / RTI >
이론적인 값은 분배기 레지스턴스와 커패시턴스 성분들의 실제 값뿐만 아니라 입력 임피던스들의 실제값을 필요로 하고, 평가를 수행하는 동안 전안 변성기 비교기(10)의 입력 입피던스 측정은 매우 중요하다.The theoretical value requires the actual values of the input impedances as well as the actual values of the divider resistances and capacitance components, and the input-input-impedance measurement of the amplifier-comparator 10 during the evaluation is very important.
전압 변성기 비교기(10)의 X측의 입력 임피던스(rx)는 제 1 가변 저항(Rv1)이 변화하는 동안 네거티브 비오차 측정에 의해 결정될 수 있다.The input impedance rx of the voltage transformer comparator 10 on the X side can be determined by the negative bias error measurement while the first variable resistor Rv1 is changing.
수학식 3은 하기의 수학식 9와 같이 나타낼 수 있다.Equation (3) can be expressed as Equation (9) below.
Figure PCTKR2016006317-appb-M000009
Figure PCTKR2016006317-appb-M000009
제 1 가변 저항(Rv1)의 레지스턴스의 기능으로 비오차가 측정될 때, 데이터를 위한 최적의 직선의 기울기는 -(1/ZX)을 따른다. 이러한 기울기의 측정으로부터 입력 임피던스 rx는 하기의 수학식 10과 같이 결정된다.When the error is measured by the function of the resistance of the first variable resistor Rv1, the slope of the optimal straight line for the data follows - (1 / Z X ). From this measurement of the tilt, the input impedance rx is determined as shown in Equation (10) below.
Figure PCTKR2016006317-appb-M000010
Figure PCTKR2016006317-appb-M000010
네거티브 비오차 측정과 유사하게, 전압 변성기 비교기(10)의 N측의 입력 임피던스(rn)는 포지티브 극성에서 기울기 측정에 의해 결정될 수 있다. 이때, 수학식 4는 하기의 수학식 11과 같이 나타낼 수 있다.Similar to the negative bias error measurement, the input impedance rn of the N side of the voltage transformer comparator 10 can be determined by the slope measurement at the positive polarity. At this time, Equation (4) can be expressed as Equation (11) below.
네거티브 비오차 측정과 유사하게, 전압 변성기 비교기(10)의 N측의 입력 임피던스(rn)는 포지티브 극성에서 기울기 측정에 의해 결정될 수 있다. 이때, 수학식 4는 하기의 수학식 11과 같이 나타낼 수 있다.Similar to the negative bias error measurement, the input impedance rn of the N side of the voltage transformer comparator 10 can be determined by the slope measurement at the positive polarity. At this time, Equation (4) can be expressed as Equation (11) below.
Figure PCTKR2016006317-appb-M000011
Figure PCTKR2016006317-appb-M000011
제 1 가변 저항(Rv1)의 레지스턴스의 기능으로 비오차가 측정될 때, 데이터를 위한 최적의 직선의 기울기는 (1/ZN)을 따른다. 이러한 기울기의 측정으로부터, 입력 임피던스 rn은 하기의 수학식 12와 같이 결정된다.The first time the non-error measurement as a function of the resistance of the variable resistor (Rv1), the slope of the best straight line for the data is to be in accordance with (1 / Z N). From the measurement of the slope, the input impedance rn is determined as shown in Equation (12) below.
Figure PCTKR2016006317-appb-M000012
Figure PCTKR2016006317-appb-M000012
일예로, +/-10% 및 +/-14crad까지의 범위에서 비오차와 위상 오차 측정을 위해 60헤르쯔(Hz)에서 100볼트(V)의 적용에 의해 캘리브레이션이 수행될 수 있다. 오프셋 측정 이후에, 0.037
Figure PCTKR2016006317-appb-I000018
부터 192.502
Figure PCTKR2016006317-appb-I000019
까지의 범위에서 가변 저항(Rv), 즉 제 1 가변 저항(Rv1)이 변화하는 동안 비오차가 측정될 수 있다. 데이터로부터 맞춰진 직선의 기울기는 수학식 9로부터 -(1/ZX)에 따른 값 -0.000576
Figure PCTKR2016006317-appb-I000020
-1이다. 획득된 입력 임피던스(rx)는 수학식 10의 Zx=1.737.06
Figure PCTKR2016006317-appb-I000021
과 R = 2001.34
Figure PCTKR2016006317-appb-I000022
를 사용하여 13154
Figure PCTKR2016006317-appb-I000023
로 결정된다.
For example, a calibration can be performed by application of 100 volts (V) at 60 Hz (Hz) for measurement of error and phase error in the range of +/- 10% and +/- 14crad. After the offset measurement, 0.037
Figure PCTKR2016006317-appb-I000018
From 192.502
Figure PCTKR2016006317-appb-I000019
The error can be measured while the variable resistor Rv, that is, the first variable resistor Rv1, is changed. The slope of the straight line fitted from the data is -0.000576 according to - (1 / ZX) from equation (9)
Figure PCTKR2016006317-appb-I000020
-1 . The obtained input impedance (rx) is given by Zx = 1.737.06
Figure PCTKR2016006317-appb-I000021
And R = 2001.34
Figure PCTKR2016006317-appb-I000022
Using 13154
Figure PCTKR2016006317-appb-I000023
.
예를 들어, 전압 변성기 비교기의 네거티브 극성에서 비오차의 캘리브레이션 결과를 하기의 표 1에 도시한다.For example, the calibration results of the bias error in the negative polarity of the voltage transformer comparator are shown in Table 1 below.
Figure PCTKR2016006317-appb-T000001
Figure PCTKR2016006317-appb-T000001
수학식 3으로부터 획득된 네거티브 극성에서 가변 저항(Rv), 즉 제 1 가변 저항(Rv1)의 기능으로서 비오차를 위한 캘리브레이션 값은 표 1의 두 번째 행에 도시된다. 비오차를 위한 측정 결과는 에러와 함께 나타나있다. 에러는 계산된 값과 측정된 값 사이의 차의 절대값을 나타낸다. 네거티브 비오차 영역에서 전체 범위는 10 x 10-6보다 적은 것을 확인할 수 있다.The calibration value for the error as a function of the variable resistor Rv, that is, the function of the first variable resistor Rv1, in the negative polarity obtained from the equation (3) is shown in the second row of Table 1. The measurement results for the error are shown with errors. The error represents the absolute value of the difference between the calculated value and the measured value. It can be seen that the overall range in the negative range of the error is less than 10 x 10 -6 .
네거티브 극성과 유사하게, 포지티브 극성을 위한 평가가 UX와 UN 입력단 사이의 교환 후에 동일한 방법으로 수행된다. 입력 임피던스(rn)는 수학식 11과 수학식 12로부터 ZN = 1737.94
Figure PCTKR2016006317-appb-I000024
및 R = 2001.34
Figure PCTKR2016006317-appb-I000025
을 사용하여 13205
Figure PCTKR2016006317-appb-I000026
로 확인될 수 있다.
Similar to the negative polarity, the evaluation for the positive polarity is performed in the same way after the exchange between the U X and U N inputs. The input impedance rn can be calculated from Equation (11) and Equation (12) by ZN = 1737.94
Figure PCTKR2016006317-appb-I000024
And R = 2001.34
Figure PCTKR2016006317-appb-I000025
Using 13205
Figure PCTKR2016006317-appb-I000026
. ≪ / RTI >
Figure PCTKR2016006317-appb-T000002
Figure PCTKR2016006317-appb-T000002
수학식 4로부터 획득된 네거티브 극성에서 가변 저항(Rv), 즉 제 1 가변 저항(Rv1)의 기능으로서 비오차를 위한 캘리브레이션 값은 표 1의 두 번째 행에 도시된다. 0.01%인 절대값 에러에 해당하는, 11.08%의 계산된 비오차를 제외한 포지티브 비오차 영역에서 전체 범위는 10 x 10-6보다 적은 것을 확인할 수 있다.The calibration value for the error as a function of the variable resistor Rv, i.e., the function of the first variable resistor Rv1, in the negative polarity obtained from the equation (4) is shown in the second row of Table 1. It can be seen that the overall range is less than 10 x 10 -6 in the positive range of the error, excluding the calculated error of 11.08%, corresponding to the absolute value error of 0.01%.
오프셋 측정 이후에, 0.044부터 192.510까지의 범위 내에서 가변 저항(Rv), 즉 제 2 가변 저항(Rv2)의 변화에 의해 위상 에러가 측정된다. rx = 13154
Figure PCTKR2016006317-appb-I000027
, Xc = 1325.6
Figure PCTKR2016006317-appb-I000028
과 수학식 5를 사용하여, xreq와 Xceq는 132.23
Figure PCTKR2016006317-appb-I000029
과 1312.2
Figure PCTKR2016006317-appb-I000030
으로 각각 결정된다. 예를 들어, 전압 변성기의 네거티브 극성에서 위상 오차의 캘리브레이션 결과를 하기의 표 3에 도시한다.
After the offset measurement, the phase error is measured by variation of the variable resistor Rv, that is, the second variable resistor Rv2 within the range of 0.044 to 192.510. rx = 13154
Figure PCTKR2016006317-appb-I000027
, Xc = 1325.6
Figure PCTKR2016006317-appb-I000028
And Equation 5, xreq and Xceq are 132.23
Figure PCTKR2016006317-appb-I000029
And 1312.2
Figure PCTKR2016006317-appb-I000030
Respectively. For example, the calibration result of the phase error in the negative polarity of the voltage transformer is shown in Table 3 below.
Figure PCTKR2016006317-appb-T000003
Figure PCTKR2016006317-appb-T000003
네거티브 극성에서 위상 오차는 수학식 6에 의해 계산되고, 표 3의 두 번째 행에 도시된다. 위상 오차를 위한 측정 결과는 에러와 함께 도시된다. 위상 값의 전체 범위를 위해 획득된 위상 내 에러들은 0.02crad인 절대값 에러에 해당하는, -14.22crad의 위상 에러의 계산된 위상 오차를 제외하고 0.001crad가 계산된다.The phase error in the negative polarity is calculated by Equation 6 and is shown in the second row of Table 3. [ The measurement results for the phase error are shown with errors. The in-phase errors obtained for the full range of phase values are calculated to be 0.001 crad, excluding the calculated phase error of the phase error of -14.22 crad, corresponding to an absolute value error of 0.02 crad.
네거티브 극성과 유사하게, 포지티브 극성을 위한 평가가 UX와 UN 입력단 사이의 교환 후에 동일한 방법으로 수행된다. rn = 13205
Figure PCTKR2016006317-appb-I000031
, Xc = 1325.6
Figure PCTKR2016006317-appb-I000032
과 수학식 8을 사용하면, rneq와 Xceq는 131.73
Figure PCTKR2016006317-appb-I000033
과 1312.3
Figure PCTKR2016006317-appb-I000034
으로 각각 결정된다. 포지티브 극성에서 위상 오차는 수학식 7에 의해 계산된다. 예를 들어, 전압 변성기의 네거티브 극성에서 위상 오차의 캘리브레이션 결과를 하기의 표 4에 도시한다. 6.56crad와 14.22crad의 계산된 위상 에러가 0.01crad인 것을 제외한 전체 포지티브 위상 오차는 0.003crad보다 적은 것을 확인할 수 있다.
Similar to the negative polarity, the evaluation for the positive polarity is performed in the same way after the exchange between the U X and U N inputs. rn = 13205
Figure PCTKR2016006317-appb-I000031
, Xc = 1325.6
Figure PCTKR2016006317-appb-I000032
And Equation 8, rneq and Xceq are 131.73
Figure PCTKR2016006317-appb-I000033
And 1312.3
Figure PCTKR2016006317-appb-I000034
Respectively. The phase error at the positive polarity is calculated by equation (7). For example, the calibration result of the phase error in the negative polarity of the voltage transformer is shown in Table 4 below. It can be seen that the total positive phase error is less than 0.003crad, except that the calculated phase error of 6.56crad and 14.22crad is 0.01crad.
Figure PCTKR2016006317-appb-T000004
Figure PCTKR2016006317-appb-T000004
전압 변성기 비교기 캘리브레이션 내 조사된 비오차 범위를 위한 측정 불확도가 하기의 표 5로 나타낼 수 있다. 표 5는 불확실성의 소스들, 합성 표준 불확도와 확장된 불확도를 나타낸다.The measurement uncertainty for the investigated error range in the voltage transformer comparator calibration can be shown in Table 5 below. Table 5 lists the sources of uncertainty, composite standard uncertainty and extended uncertainty.
Figure PCTKR2016006317-appb-T000005
Figure PCTKR2016006317-appb-T000005
비오차와 유사하게, 전압 변성기 비교기 캘리브레이션 내 조사된 위상 오차 범위를 위한 측정 불확도가 하기의 표 6으로 나타낼 수 있다.Similar to the bias error, the measurement uncertainty for the investigated phase error range in the voltage transformer comparator calibration can be shown in Table 6 below.
Figure PCTKR2016006317-appb-T000006
Figure PCTKR2016006317-appb-T000006
표 1 내지 표 6에서 설명된 전압 변성기 비교기를 A라 하고, 다른 제조사의 전압 변성기 비교기를 B라고 한다.A voltage comparator comparator described in Tables 1 to 6 is referred to as A, and a voltage comparator comparator of another manufacturer is referred to as B.
도 10은 본 발명에 따른 비오차 캘리브레이션을 예시적으로 도시한 도면이다.10 is a diagram illustrating exemplary calibration of error error according to the present invention.
도 10을 참조하면, 실선은 제조회사의 스펙을 나타낸 것이다. 세로축은 비(ratio) 내 오차를 나타내고, 가로축은 계산된 비오차를 나타낸다.Referring to Fig. 10, the solid line shows the specification of the manufacturer. The vertical axis represents the error within the ratio, and the horizontal axis represents the calculated error.
도 11은 본 발명에 따른 위상 오차 캘리브레이션을 예시적으로 도시한 도면이다.11 is a diagram illustrating an exemplary phase error calibration according to the present invention.
도 11을 참조하면, 실선은 제조회사의 스펙을 타난낸 것이다. 세로축은 위상 내 오차를 나타내고, 가로축은 계산된 위상 오차를 나타낸다.Referring to Fig. 11, the solid line is a specification of the manufacturer. The vertical axis represents the in-phase error, and the horizontal axis represents the calculated phase error.
이에 따라, 본 발명에 따른 평가 장치는 가변저항과 고정저항의 직렬 연결, 또는 가변 저항과 커패시터의 직렬 연결로 구현된 간단한 구조를 가짐으로써, 전압 변성기 비교기의 평가를 위해 이동 가능하게 구현할 수 있다.Accordingly, the evaluation apparatus according to the present invention can be implemented to be movable for evaluation of a voltage transformer comparator by having a simple structure implemented by a series connection of a variable resistor and a fixed resistor, or a series connection of a variable resistor and a capacitor.
한편, 본 발명의 상세한 설명에서는 구체적인 실시 예에 관하여 설명하였으나, 본 발명의 범위에서 벗어나지 않는 한도 내에서 여러 가지 변형이 가능함은 물론이다. 그러므로 본 발명의 범위는 상술한 실시 예에 국한되어 정해져서는 안되며 후술하는 특허청구범위뿐만 아니라 이 발명의 특허청구범위와 균등한 것들에 의해 정해져야 한다.While the invention has been shown and described with reference to certain preferred embodiments thereof, it will be understood by those skilled in the art that various changes and modifications may be made therein without departing from the spirit and scope of the invention. Therefore, the scope of the present invention should not be limited to the above-described embodiments, but should be determined by the equivalents of the claims of the present invention as well as the claims of the following.
본 발명은 측정 장치에 관련된 것으로서, 이동이 가능하도록 구현된 전압 변성기 비교기의 평가 장치를 제공할 수 있다.The present invention relates to a measuring apparatus, and it is possible to provide an apparatus for evaluating a voltage transformer comparator implemented to be movable.

Claims (13)

  1. 전압 변성기 비교기의 비오차를 측정하기 위한 비오차 평가 회로;A bias error evaluation circuit for measuring a bias error of the voltage transformer comparator;
    상기 전압 변성기 비교기의 위상 오차를 측정하기 위한 위상 오차 평가 회로; 및A phase error evaluation circuit for measuring a phase error of said voltage transformer comparator; And
    상기 전압 변성기 비교기에 상기 비오차 평가 회로와 상기 위상 오차 평가 회로 중 하나를 연결하는 스위치를 포함하는 평가 회로.And a switch that couples the voltage error comparator to one of the error error evaluation circuit and the phase error evaluation circuit.
  2. 제 1 항에 있어서,The method according to claim 1,
    상기 비오차 평가 회로는The error ratio evaluation circuit
    전원을 공급하는 전원부;A power supply for supplying power;
    상기 전원부에 일단이 연결되고, 가변되는 레지스턴스를 갖는 가변 저항; 및A variable resistor having one end connected to the power supply unit and having a variable resistance; And
    상기 가변 저항에 일단이 연결되고, 상기 전원부와 접지단의 접점에 일단이 연결되는 고정 저항을 포함하는 평가 회로.And a fixed resistor whose one end is connected to the variable resistor and whose one end is connected to the contact of the power supply portion and the ground terminal.
  3. 제 2 항에 있어서,3. The method of claim 2,
    상기 스위치부는The switch unit
    상기 전압 변성기 비교기의 제 1 저항의 일단을 상기 전원부와 상기 가변 저항의 접지단에 연결하는 제 1 스위치;A first switch for connecting one end of a first resistor of the voltage transformer comparator to a ground terminal of the power supply unit and the variable resistor;
    오프셋 측정을 위해 상기 제 1 저항의 일단을 상기 가변 저항과 상기 고정 저항의 접점에 연결하는 제 2 스위치;A second switch for connecting one end of the first resistor to the contact of the variable resistor and the fixed resistor for offset measurement;
    상기 전압 변성기 비교기의 제 2 저항의 일단을 상기 가변 저항과 상기 고정 저항의 접점에 연결하는 제 3 스위치; 및A third switch for connecting one end of a second resistor of the voltage transformer comparator to a contact of the variable resistor and the fixed resistor; And
    상기 제 1 저항의 다른 일단과 제 2 저항의 다른 일단의 접점을 상기 고정 저항과 상기 접지단 사이의 접점에 연결하는 제 4 스위치를 포함하는 평가 회로.And a fourth switch for connecting the other end of the first resistor and the other end of the second resistor to a contact between the fixed resistor and the ground terminal.
  4. 제 3 항에 있어서,The method of claim 3,
    상기 제 2 스위치가 온 동작하는 동안 상기 제 3 스위치가 오프 동작하여 비오차의 오프셋을 측정한 후, 상기 제 3 스위치가 온 동작하는 동안 상기 제 2 스위치가 오프 동작하는 평가 회로.The third switch is turned off while the second switch is turned on to measure the offset of the error, and the second switch is turned off while the third switch is turned on.
  5. 제 3 항에 있어서,The method of claim 3,
    네거티브 극성에 따른 비오차 측정 시 상기 제 1 저항은 표준 전압 변성기에 연결되는 1차측 저항이고, 상기 제 2 저항은 테스트를 위한 전압 변성기에 연결되는 2차측 저항인 평가 장치.Wherein the first resistor is a primary resistor connected to the standard voltage transformer and the second resistor is a secondary resistor connected to a voltage transformer for testing.
  6. 제 3 항에 있어서,The method of claim 3,
    포지티브 극성에 따른 비오차 측정 시 상기 제 1 저항은 테스트를 위한 전압 변성기에 연결되는 2차측 저항이고, 상기 제 2 저항은 표준 전압 변성기에 연결되는 1차측 저항인 평가 장치.Wherein the first resistance is a secondary resistance connected to a voltage transformer for testing and the second resistance is a primary resistance connected to a standard voltage transformer when measuring a bias according to positive polarity.
  7. 제 2 항에 있어서,3. The method of claim 2,
    상기 비오차 캘리브레이션을 위해 상기 가변 저항은 0.01옴부터 200옴까지의 레지스턴스로 조절되고, 상기 고정 저항은 2킬로옴의 레지스턴스를 갖는 평가 장치. Wherein the variable resistor is adjusted to a resistance from 0.01 ohms to 200 ohms for the non-error calibration, and the fixed resistor has a resistance of 2 kilo ohms.
  8. 제 1 항에 있어서,The method according to claim 1,
    상기 위상 오차 평가 회로는The phase error evaluation circuit
    전원을 공급하는 전원부;A power supply for supplying power;
    상기 전원부에 일단이 연결되고, 가변되는 레지스턴스를 갖는 가변 저항; 및A variable resistor having one end connected to the power supply unit and having a variable resistance; And
    상기 가변 저항에 일단이 연결되고, 상기 전원부와 접지단의 접점에 일단이 연결되는 커패시터를 포함하는 평가 회로.And a capacitor whose one end is connected to the variable resistor and whose one end is connected to the contact of the power supply part and the ground terminal.
  9. 제 8 항에 있어서,9. The method of claim 8,
    상기 스위치부는The switch unit
    상기 전압 변성기 비교기의 제 1 저항의 일단을 상기 전원부와 상기 가변 저항의 접지단에 연결하는 제 1 스위치;A first switch for connecting one end of a first resistor of the voltage transformer comparator to a ground terminal of the power supply unit and the variable resistor;
    오프셋 측정을 위해 상기 제 1 저항의 일단을 상기 가변 저항과 상기 커패시터의 접점에 연결하는 제 2 스위치;A second switch for connecting one end of the first resistor to the contact of the variable resistor and the capacitor for offset measurement;
    상기 전압 변성기 비교기의 제 2 저항의 일단을 상기 가변 저항과 상기 커패시터의 접점에 연결하는 제 3 스위치; 및A third switch for connecting one end of a second resistor of the voltage transformer comparator to the contact of the variable resistor and the capacitor; And
    상기 제 1 저항의 다른 일단과 제 2 저항의 다른 일단의 접점을 상기 커패시터와 상기 접지단 사이의 접점에 연결하는 제 4 스위치를 포함하는 평가 회로.And a fourth switch for connecting the other end of the first resistor and the other end of the second resistor to a contact between the capacitor and the ground terminal.
  10. 제 9 항에 있어서,10. The method of claim 9,
    상기 제 2 스위치가 온 동작하는 동안 상기 제 3 스위치가 오프 동작하여 비오차의 오프셋을 측정한 후, 상기 제 3 스위치가 온 동작하는 동안 상기 제 2 스위치가 오프 동작하는 평가 회로.The third switch is turned off while the second switch is turned on to measure the offset of the error, and the second switch is turned off while the third switch is turned on.
  11. 제 9 항에 있어서,10. The method of claim 9,
    네거티브 극성에 따른 비오차 측정 시 상기 제 1 저항은 표준 전압 변성기에 연결되는 1차측 저항이고, 상기 제 2 저항은 테스트를 위한 전압 변성기에 연결되는 2차측 저항인 평가 장치.Wherein the first resistor is a primary resistor connected to the standard voltage transformer and the second resistor is a secondary resistor connected to a voltage transformer for testing.
  12. 제 9 항에 있어서,10. The method of claim 9,
    포지티브 극성에 따른 비오차 측정 시 상기 제 1 저항은 테스트를 위한 전압 변성기에 연결되는 2차측 저항이고, 상기 제 2 저항은 표준 전압 변성기에 연결되는 1차측 저항인 평가 장치.Wherein the first resistance is a secondary resistance connected to a voltage transformer for testing and the second resistance is a primary resistance connected to a standard voltage transformer when measuring a bias according to positive polarity.
  13. 제 9 항에 있어서,10. The method of claim 9,
    상기 비오차 캘리브레이션을 위해 상기 가변 저항은 0.01옴부터 200옴까지의 레지스턴스로 조절되고, 상기 커패시터는 2uF의 커패시턴스를 갖는 평가 장치.Wherein the variable resistor is adjusted to a resistance of 0.01 ohms to 200 ohms for the calibration of the bias error, and the capacitor has a capacitance of 2 uF.
PCT/KR2016/006317 2016-02-23 2016-06-14 Evaluation device of voltage transformer comparator WO2017146311A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020160021482A KR101851968B1 (en) 2016-02-23 2016-02-23 Evaluation apparatus of voltage transformer test set
KR10-2016-0021482 2016-02-23

Publications (1)

Publication Number Publication Date
WO2017146311A1 true WO2017146311A1 (en) 2017-08-31

Family

ID=59685779

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/006317 WO2017146311A1 (en) 2016-02-23 2016-06-14 Evaluation device of voltage transformer comparator

Country Status (2)

Country Link
KR (1) KR101851968B1 (en)
WO (1) WO2017146311A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108267707A (en) * 2017-12-13 2018-07-10 广东电网有限责任公司揭阳供电局 Phase correction method, device and system for capacitive equipment leakage current transformer

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3327788B2 (en) * 1996-10-17 2002-09-24 中部電力株式会社 Device to prevent malfunction of ground fault overcurrent relay
KR100737403B1 (en) * 2005-11-28 2007-07-09 한국표준과학연구원 Evaluation Method for Burden Characteristics and Uncertainty for Potential Transformer
KR20080014295A (en) * 2006-08-10 2008-02-14 한국표준과학연구원 Evaluation device of burden for current transformer using current transformer comparator and precise shunt resistor and method thereof
KR100805891B1 (en) * 2006-06-02 2008-02-20 한국표준과학연구원 Evaluation device of PT ratio error measuring device using A wide ratio error potential transformer which have same values in nominal ? theoretical ratios
JP2008292192A (en) * 2007-05-22 2008-12-04 Nippon Denki Keiki Kenteisho Transformer tester

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3327788B2 (en) * 1996-10-17 2002-09-24 中部電力株式会社 Device to prevent malfunction of ground fault overcurrent relay
KR100737403B1 (en) * 2005-11-28 2007-07-09 한국표준과학연구원 Evaluation Method for Burden Characteristics and Uncertainty for Potential Transformer
KR100805891B1 (en) * 2006-06-02 2008-02-20 한국표준과학연구원 Evaluation device of PT ratio error measuring device using A wide ratio error potential transformer which have same values in nominal ? theoretical ratios
KR20080014295A (en) * 2006-08-10 2008-02-14 한국표준과학연구원 Evaluation device of burden for current transformer using current transformer comparator and precise shunt resistor and method thereof
JP2008292192A (en) * 2007-05-22 2008-12-04 Nippon Denki Keiki Kenteisho Transformer tester

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108267707A (en) * 2017-12-13 2018-07-10 广东电网有限责任公司揭阳供电局 Phase correction method, device and system for capacitive equipment leakage current transformer
CN108267707B (en) * 2017-12-13 2023-08-01 广东电网有限责任公司揭阳供电局 Phase correction method, device and system for leakage current transformer of capacitive equipment

Also Published As

Publication number Publication date
KR20170099466A (en) 2017-09-01
KR101851968B1 (en) 2018-04-26

Similar Documents

Publication Publication Date Title
JPH0743390A (en) Self-calibrating method for current probe device and self-calibating type current probe device
US20080018324A1 (en) Voltage-impressed current measuring apparatus and current buffers with switches used therefor
EP2273277B1 (en) Internal self-check resistance bridge and method
WO2018216954A1 (en) Current measurement apparatus including charge/discharge means and current measurement method using same
CN110501572A (en) A kind of test method of Wheatstone bridge resistance
WO2017146311A1 (en) Evaluation device of voltage transformer comparator
US11454554B2 (en) Temperature detection device and method using sets of DC voltages
US4697151A (en) Method and apparatus for testing operational amplifier leakage current
WO2017164502A1 (en) Direct current voltage function calibration device and method
WO2020005025A1 (en) Current sensor diagnosis apparatus and method
US3928795A (en) Contact tester
US6825653B2 (en) Load compensating power supply having minimally invasive device current analyzer
JP3197309B2 (en) Electrical measuring device
JP5118206B2 (en) Voltage detection measurement unit with minimum common mode error
WO2018124316A1 (en) Calibration device for resistance value and measurement device resistance measuring function using binary-multiple resistance increase, and resistance calibration method using same
JP2005003596A (en) Resistance measuring instrument, integrated circuit for measuring resistance, and method of measuring resistance
JPS6249525A (en) Voltage setting circuit
WO2018236106A1 (en) Source and measurement unit for measuring semiconductor device
Filipski et al. Ac-dc current transfer standards and calibrations at NRC
JPS649594B2 (en)
Solve et al. The leakage resistance to ground of a NIST Programmable Josephson Voltage Standard
KR100352598B1 (en) Apparatus for automatical controlling input of digital mult imeter
WO2018131940A1 (en) Apparatus and method for calibrating direct current function
JP2565866Y2 (en) IC tester parallel connected device power supply
US3358228A (en) Resistance measuring circuit having spurious resistance compensating means

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16891715

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 16891715

Country of ref document: EP

Kind code of ref document: A1