WO2017146247A1 - Conductive material and method for producing same, and bioelectrode - Google Patents

Conductive material and method for producing same, and bioelectrode Download PDF

Info

Publication number
WO2017146247A1
WO2017146247A1 PCT/JP2017/007280 JP2017007280W WO2017146247A1 WO 2017146247 A1 WO2017146247 A1 WO 2017146247A1 JP 2017007280 W JP2017007280 W JP 2017007280W WO 2017146247 A1 WO2017146247 A1 WO 2017146247A1
Authority
WO
WIPO (PCT)
Prior art keywords
pts
conductive material
electrode
base material
pedot
Prior art date
Application number
PCT/JP2017/007280
Other languages
French (fr)
Japanese (ja)
Inventor
鳥光 慶一
Original Assignee
国立大学法人東北大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人東北大学 filed Critical 国立大学法人東北大学
Publication of WO2017146247A1 publication Critical patent/WO2017146247A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/25Bioelectric electrodes therefor

Definitions

  • the present invention relates to a conductive material, a manufacturing method thereof, and a biological electrode.
  • Coated conductive fibers have been developed by the present inventors (see, for example, Patent Documents 1 and 2 or Non-Patent Document 1).
  • the conductive fibers described in Patent Document 1 and Non-Patent Document 1 use PEDOT-PSS (Poly (3,4-ethylenedioxythiophene) -polystyrenesulfonate) as a conductive polymer.
  • PEDOT-PSS Poly (3,4-ethylenedioxythiophene) -polystyrenesulfonate
  • PEDOT-PSS adhering to the base fiber by dipping the base fiber in a conductive solution containing OT-PSS and running between the electrodes while pulling up the base fiber vertically from the conductive solution. Is produced by utilizing a so-called electrolytic polymerization method in which the polymer is electrochemically immobilized.
  • the conductive fiber described in Patent Document 2 uses PEDOT-PSS as a conductive polymer, and a resin composition obtained by mixing PEDOT-PSS and a binder resin is attached to a base fiber, followed by drying and heating. It is manufactured by solidifying or polymerizing by heating or the like.
  • PEDOT-pTS poly (3,4-ethylene-dioxythiophene) -p-toluenesulfonate
  • PEDOT-PSS poly (3,4-ethylene-dioxythiophene) -p-toluenesulfonate
  • a conductive material having a conductive polymer uniformly attached to the surface of a base material and having a lower resistance value, a method for producing the same, and a biological electrode are provided.
  • the purpose is to provide.
  • the conductive material according to the present invention has PEDOT-pTS attached to a substrate made of silk fiber or nylon fiber, or a substrate coated with sericin or fibroin. It is characterized by being.
  • the adhesion to the substrate includes adhesion on the surface of the substrate, adhesion on the inside of the substrate, and both.
  • the materials of the base material it is not limited as long as sericin or fibroin is contained, except for nylon fibers, even if it is silk that originally contains these proteins, Those added with these proteins may also be used.
  • Base materials for coating sericin or fibroin include polyamide fibers (including nylon fibers), polyester fibers, acrylic fibers, aramid fibers, polyurethane fibers, carbon fibers, etc .; plant materials such as cotton, hemp, jute In addition to the above-mentioned silk, animal fibers such as wool and collagen fibers; or mixed fibers thereof can be widely used. It may be a dyed fiber.
  • “covering” is an action of covering the surface of an object with a covering component in appearance, and its specific mode is not limited. For example, any form of “attachment”, “containing”, and “penetration” of the coating component to the object to be coated may be used.
  • Both sericin and fibroline can be obtained from silk (raw silk) by a known method, and are also commercially available.
  • Sericin is a protein component that forms the outside of raw silk, and can be recovered from raw silk by, for example, the method disclosed in JP-A-11-131318, and is also commercially available (for example, stocks) Company plateau company).
  • Fibroin is a protein component that forms the core of raw silk, and can be obtained, for example, by dissolving silk fiber with an alkaline solution and dialyzing it by the method disclosed in JP-A-6-70702, Commercially available (Silkgen G Solvel KE: Ichimaru Falcos Co., Ltd.).
  • sericin or fibroin can be produced basically by immersing the object to be coated (including yarn and fabric) in aqueous sericin or fibroin, drying, and washing to form a film. Yes (Patent Document 3). It is also possible to outsource such coating work to obtain a desired sericin coated substrate [for example, Art Co., Ltd. (Kiryu City, Gunma Prefecture): http://art-silk.jp/ ].
  • the above “silk fiber” means “silk or a fiber mainly composed thereof”.
  • the silk fiber may be a single silk, but if necessary, a mixed fiber with other fibers can be used.
  • the “other fibers” include synthetic fibers, plant fibers, and animal fibers other than silk, which are exemplified as the objects to be coated with sericin or fibroin.
  • silk is obtained from ordinary silkworm silk, wild silk thread, natural silk derived from silkworms and bees, and silk obtained using genetic recombination technology, such as silkworms obtained by incorporating a gene encoding a fluorescent protein. It is also possible to use “silk” or the like.
  • Nylon is a kind of “polyamide”, which is a polymer in which a large number of monomers are bonded by an amide bond, and generally includes an aliphatic skeleton, and is originally a name derived from a trademark of DuPont (USA).
  • the name “nylon” is used for the definition of the invention.
  • Nylon 6 (monomer: ⁇ -caprolactam), nylon 11 (monomer: undecane lactam), nylon 12 (monomer: lauryl lactam), nylon 66 (monomer: hexamethylenediamine) can be used as a base material in the present invention.
  • nylon 610 (monomer: hexamethylenediamine and sebacic acid), nylon 6T (monomer: hexamethylenediamine and terephthalic acid), nylon 6I (monomer: hexamethylenediamine and isophthalic acid), nylon 9T (monomer: nonanediamine) And terephthalic acid), nylon M5T (nonanediamine and terephthalic acid), nylon 612 (monomer: caprolactam and lauryl lactam), and the like.
  • the base material is preferably “linear” or “planar”.
  • the linear shape means a thread-like, string-like, cloth-like or ribbon-like vascular bundle, etc.
  • the planar shape means a cloth-like, film-like, film-like, or sheet-like shape.
  • a “gel” base material can also be used.
  • a typical example of the linear substrate is a yarn
  • a typical example of the planar substrate is a woven fabric (plain weave, satin weave, etc.).
  • the electrical resistance value of the conductive portion of the conductive material according to the present invention is: (A) When the substrate is a linear member, it is preferably 50 k ⁇ / cm or less, particularly preferably 20 k ⁇ / cm or less at a cross-sectional area of about 2.5 ⁇ 10 ⁇ 4 cm 2 . (B) In cases other than (a) including the case where the substrate is a planar member, it is preferably 50 k ⁇ / cm or less, particularly preferably 20 k ⁇ / cm or less.
  • the conductive portion means a region of the base material where conductive treatment, specifically, PEDOT-pTS is attached.
  • PEDOT-pTS is attached to only a part of the base material
  • the PEDOT-pTS attached region corresponds to the “conductive portion”.
  • the electrical resistance value of the linear electroconductive material of this invention is a value which detected the electrical resistance value per linear length 1cm with the tester.
  • the cross-sectional area of about 2.5 ⁇ 10 ⁇ 4 cm 2 is the cross-sectional area of a standard thickness silk thread. “About” means that the number after the second decimal place of “2.5” is rounded off. Since the cross-sectional area is inversely proportional to the resistance value, the resistance value corresponding to the cross-sectional area can be easily calculated. If the cross-sectional area of the linear base material increases, the cross-sectional area of PEDOT-pTS is expected to increase accordingly, and it is easy to compare the conductive materials of the present invention with each other or with other conductive materials.
  • the electrical resistance value in the entire conductive region of the linear conductive material is measured, and the comparison is made by converting the electrical resistance value to the 1 cm length and the above cross-sectional area. Can do.
  • the shape of the substrate is other than a linear shape, typically in the case of a planar member such as a woven fabric, it cannot be determined simply by the cross-sectional area of the substrate.
  • the total cross-sectional area of the conductive member is larger than the cross-sectional area of one linear member. Therefore, when the shape of the substrate is other than a linear shape, the electrical resistance value at a length of 1 cm in the conductive portion is obtained, and this is referred to as “the electrical resistance value per 1 cm ( ⁇ or k ⁇ / cm)”.
  • the preferred range and the optimum range of the linear member can be defined as the characteristics of the conductive material of the present invention.
  • the electrical resistance values of the 10 electrode elements produced were all less than 1.6 k ⁇ / cm.
  • the electrical resistance value in the conductive region of the conductive material is measured, and the comparison is made by converting the electrical resistance value to a length of 1 cm. be able to.
  • the manufacturing method of the electroconductive material which concerns on this invention is a manufacturing method of an electroconductive material characterized by including the following process (1) and (2).
  • An adhesion step in which a pTS solution containing an oxidizing component and pTS (p-toluenesulfonate) is adhered to a substrate made of silk fiber or nylon fiber, or a substrate coated with sericin or fibroin.
  • EDOT (3,4-ethylenedioxythiophene) is further attached to the base material to which the oxidizing component and pTS are attached in the attaching step (1), and PEDOT-pTS (poly (3,4-ethylene) is attached to the base material.
  • -Dioxythiophene) -p-toluenesulfonate is allowed to proceed to form a PEDOT-pTS adhesion state on the substrate by proceeding with the polymerization reaction.
  • the adhesion of the oxidizing component and pTS in the adhesion step (1) is preferably performed by immersing the base material in the pTS solution, or by printing the pTS solution on the base material.
  • the polymerization step (2) it is preferable to promote the polymerization reaction to PEDOT-pTS by attaching EDOT and heating. Further, after the polymerization step (2), it is preferable to further perform a step of washing and drying the substrate to which PEDOT-pTS is adhered.
  • the washing means is preferably water washing, and in this case, it is more preferred to use distilled water or deionized water.
  • the drying means include drying in a thermostatic bath, drying with hot air or warm air, drying with sunlight, etc., but drying in a thermostatic bath, drying with hot air or warm air is preferable.
  • the drying temperature in the thermostatic bath is preferably 50 to 80 ° C., particularly preferably 60 to 70 ° C.
  • the surface temperature of the object by drying with hot air or hot air is also preferably 50 to 80 ° C., particularly preferably 60 to 70 ° C. It is.
  • PTS and EDOT are both available as commercial products.
  • PEDOT-pTS which is a conductive polymer superior in conductivity to PEDOT-PSS
  • a base material compared to the case of using a conventional electrolytic polymerization method or the like.
  • the electrical resistance value of the conductive material manufactured by the conductive material manufacturing method according to the present invention is as described above.
  • the method for producing a conductive material according to the present invention is suitable for producing the conductive material according to the present invention, and can produce a conductive material having excellent conductivity and a lower resistance value. it can.
  • PEDOT-PSS when PEDOT-PSS is used as the conductive polymer, the PEDOT-PSS cannot be uniformly and uniformly adhered to the substrate even if the conductive material manufacturing method according to the present invention is used. It is difficult to reduce the resistance value as compared with the conductive material manufactured by using the electrolytic polymerization method.
  • the base material is preferably subjected to enzyme refining (mainly by a proteolytic enzyme), acid refining or alkali refining.
  • the heating step is preferably performed at 50 to 100 ° C. for 10 minutes to 60 minutes, more preferably at 50 to 80 ° C. for 10 to 40 minutes, very preferably. Is 60 to 80 ° C. for 10 to 30 minutes.
  • the oxidation component is preferably a transition metal ion. Specifically, iron, cerium, or molybdenum ions, particularly ferric ions are preferably included. In this case, PEDOT-pTS can be generated efficiently.
  • the bioelectrode according to the present invention includes the conductive material according to the present invention.
  • the element of the biological electrode is a conductive material according to the present invention, and examples of the form of the element include a surface electrode and a puncture electrode.
  • the surface electrode punctures the action potential and brain wave transmitted by volume conduction from the skin, directly from the surface of muscles, brain, and other organs (hereinafter these surfaces are also referred to as “body tissue surfaces”). It is an electrode that is led out without accompanying, and is a biological electrode that is used by being attached to the muscle abdomen or head. This can also be used as a stimulation electrode for derivation of evoked potentials or treatment.
  • the contactable area of the electrode element with the body tissue surface is preferably 0.0004 to 100 cm 2 , particularly preferably 0.0004 to 25 cm 2. It is. Even if the contact area exceeds 25 cm 2 , it can be used as a surface electrode. However, even if the contact area between the body tissue surface and the electrode element is significantly reduced, action potentials or evoked potentials, and brain waves The feature of the electrode of the present invention that “it can be derived well” is not fully utilized. If the contactable area is smaller than 0.0004 cm 2 , it is difficult to sufficiently derive an action potential or an evoked potential, and an electroencephalogram. However, if the performance of the myoelectric measurement system or electroencephalogram measurement system is improved in the future, even if the contactable area is smaller than 0.0004 cm 2 , there is a possibility that it can be used favorably as the surface electrode.
  • the “area that can be contacted with the body tissue surface” is an area that can contact the body tissue surface when a conductive material is used as the electrode element of the surface electrode.
  • the electrode element is planar. In this case, it is the area of the sheet surface. In the case of such a planar electrode element, 0.25 to 100 cm 2 is particularly preferable, and 0.25 to 25 cm 2 is more preferable.
  • the electrode element is linear
  • the area of the surface area of the linear electrode element that is expected to be in contact with the body surface is the area that can come into contact with the body tissue surface.
  • 0.0004 to 0.02 cm 2 is particularly preferable, and 0.0004 to 0.005 cm 2 is more preferable.
  • the contactable area is a single electrode element. For example, in the case where a plurality of electrode elements are provided in a single surface electrode without contact with each other, the area of each electrode element.
  • the puncture electrode is an electrode that literally brings an electrode element into contact with the living body by puncturing to derive a desired biological signal, and includes a needle electrode and a wire electrode. This can also be used as a stimulation electrode for derivation of evoked potentials or treatment.
  • Accessible surface area of the biological tissue of a living body electrode element of this embodiment is preferably a 0.0004 ⁇ 0.02 cm 2, particularly preferably a 0.0004 ⁇ 0.002 cm 2. This has a very small surface area as a puncture electrode as compared with the conventional case, but at the same time, an excellent bioelectrode function can be exhibited due to good conductive properties.
  • the conductive material according to the present invention can be suitably used as a bioelectrode because of its low resistance value, good touch, excellent durability and water resistance, and flexibility.
  • the base material since the base material uses a biomaterial such as silk or silk thread, it can be suitably used as a bioelectrode.
  • the biomedical electrode according to the present invention can be used, for example, as an electrode for measuring an electric potential inside a muscle, an electrode for measuring an electrocardiogram, or the like.
  • a multipoint electrode in which two or more electrode elements are arranged on one carrier (cloth or the like) is one of the preferred embodiments of the bioelectrode of the present invention.
  • a conductive material having a conductive polymer uniformly attached to the surface of a base material and having a lower resistance value it is possible to provide a conductive material having a conductive polymer uniformly attached to the surface of a base material and having a lower resistance value, a method for producing the same, and a biological electrode.
  • FIG. 4 is a chemical reaction formula showing a PEDOT-pTS production reaction in the method for producing a conductive material according to the embodiment of the present invention. It is a graph which shows the resistance value of each electroconductive material manufactured using the base material (silk thread) from which the refining method differs with the manufacturing method of the electroconductive material of embodiment of this invention.
  • the method for producing a conductive material of the embodiment of the present invention (a) raw silk, (b) soap smelting yarn, (c) soaping scouring yarn, (d) phosphoric acid smelting yarn, (e) enzyme smelting yarn are used. It is an electron micrograph of each electroconductive material manufactured in this way.
  • FIG. 5 is a micrograph of normal light observation and (d) fluorescence observation when culturing the brain cells of a chicken embryo on a cover glass coated with PEDOT-pTS. It is the (a) schematic diagram of the measurement condition which shows the electric potential measurement inside the muscle of a chicken embryo using the electroconductive material of embodiment of this invention, (b) It is a graph of the measurement result of the electric potential inside a muscle. It is drawing which shows the result of having examined the resistance value of the electroconductive material of this invention which used the sericin covering fabric as a base material. It is drawing which shows the result of having examined especially the washing
  • A Schematic diagram of a multi-point surface electrode using the conductive material of the embodiment of the present invention
  • (A) Schematic diagram of a multipoint surface electrode for electroencephalogram measurement using the conductive material of the embodiment of the present invention (b) Schematic diagram of mounting the multipoint surface electrode on the surface of a chicken embryo brain, (c) It is a graph of the measurement result of the electroencephalogram potential in the actual brain surface.
  • FIG. 1 shows a conductive material and a method for manufacturing the conductive material according to the embodiment of the present invention.
  • the conductive material of the embodiment of the present invention has PEDOT-pTS attached to the base material, and is manufactured by the conductive material manufacturing method of the first or second embodiment of the present invention described below. .
  • an oxidizing component and pTS as a dopant are dissolved in an organic solvent solution, and the base is based on the organic solvent solution. Dip the silk or silk of the material.
  • An organic solvent that can be a solvent for pTS is capable of dissolving pTS, an oxidizing component, and the like, and preferably has good compatibility with an aqueous solvent.
  • Specific examples include monovalent lower alcohols having 1 to 6 carbon atoms, such as methanol, ethanol, propyl alcohol, isopropyl alcohol, butanol, pentanol, or hexanol.
  • the skeleton of carbon atoms constituting these monovalent lower alcohols may be linear, branched or cyclic, and may be a combination of two or more. Moreover, you may dilute and use with water suitably.
  • monovalent lower alcohols having 1 to 4 carbon atoms specifically, methanol, ethanol, propyl alcohol, isopropyl alcohol, or butanol are suitable as the organic solvent for the pTS solution.
  • the oxidizing component contained in the pTS solution is not particularly limited as long as it can activate the polymerization reaction to PEDOT-pTS when pTS and EDOT are brought into contact, and examples thereof include transition elements and halogens. .
  • Transition elements include first transition elements such as iron, titanium, chromium, manganese, cobalt, nickel, and zinc; second transition elements such as molybdenum, silver, zirconium, and cadmium; third transition elements such as cerium, platinum, and gold Is exemplified. Among these, it is preferable to use a first transition element such as iron or zinc.
  • the content of the oxidizing component in the pTS solution varies depending on the type of the oxidizing component used, and is not particularly limited as long as it is an amount that can activate the above polymerization reaction.
  • ferric ion (Fe 3+ ) used in the examples of the present specification 1 to 10% by mass is preferable as ferric chloride with respect to the pTS solution, and more preferably 3%. -7% by mass. If the amount is too large, the polymerization reaction proceeds rapidly, but it is difficult to remove iron in the subsequent step. If the amount is too small, the polymerization reaction proceeds slowly.
  • the content of pTS acting as a dopant in the pTS solution is preferably 0.1 to 10% by mass, more preferably 0.15 to 7% by mass, and particularly preferably 1 to 6% by mass with respect to the solution. %, Most preferably 2-5% by weight.
  • EDOT is 50 to 100 ° C., preferably 10 to 60 minutes, more preferably 50 to 80 ° C. for 10 to 40 minutes, very preferably 60 to Heat at 80 ° C. for 10-30 minutes.
  • the substrate is taken out of the solution, preferably washed with water, more preferably distilled water or deionized water, and then dried in a thermostatic bath, hot air or warm air, sunlight, or the like.
  • EDOT is liquid and water-soluble at room temperature, and can be appropriately diluted with an aqueous solvent such as water.
  • EDOT 10: 1 to 100: 1, preferably 20: 1 to 40: 1 in volume ratio.
  • an oxidizing component and pTS as a dopant are dissolved in an organic solvent solution, and the organic solvent solution is used as a base. Print on the material.
  • An organic solvent that can be a solvent for pTS is capable of dissolving pTS, an oxidizing component, and the like, and preferably has good compatibility with an aqueous solvent.
  • Specific examples include monovalent lower alcohols having 1 to 6 carbon atoms, such as methanol, ethanol, propyl alcohol, isopropyl alcohol, butanol, pentanol, or hexanol.
  • the skeleton of carbon atoms constituting these monovalent lower alcohols may be linear, branched or cyclic, and may be a combination of two or more. Moreover, you may dilute and use with water suitably.
  • monovalent lower alcohols having 1 to 4 carbon atoms specifically, methanol, ethanol, propyl alcohol, isopropyl alcohol, or butanol are suitable as the organic solvent for the pTS solution.
  • the oxidizing component contained in the pTS solution is not particularly limited as long as it can activate the polymerization reaction to PEDOT-pTS when pTS and EDOT are brought into contact.
  • Examples include transition element ions and halogens. Is done.
  • Transition elements include first transition elements such as iron, titanium, chromium, manganese, cobalt, nickel, and zinc; second transition elements such as molybdenum, silver, zirconium, and cadmium; third transition elements such as cerium, platinum, and gold Is exemplified. Among these, it is preferable to use a first transition element such as iron or zinc.
  • the content of the oxidizing component in the pTS solution varies depending on the type of the oxidizing component used, and is not particularly limited as long as it is an amount that can activate the above polymerization reaction.
  • ferric ion (Fe 3+ ) used in the examples of the present specification 1 to 10% by mass is preferable as ferric chloride with respect to the pTS solution, and more preferably 3%. -7% by mass. If the amount is too large, the polymerization reaction proceeds rapidly, but it is difficult to remove iron in the subsequent step. If the amount is too small, the polymerization reaction proceeds slowly.
  • the content of pTS acting as a dopant in the pTS solution is preferably 0.1 to 10% by mass, more preferably 0.15 to 7% by mass, and particularly preferably 1 to 6% by mass with respect to the solution. %, Most preferably 2-5% by weight.
  • EDOT is 50 to 100 ° C., preferably 10 to 60 minutes, more preferably 50 to 80 ° C. for 10 to 40 minutes, very preferably 60 to Heat at 80 ° C. for 10-30 minutes.
  • the substrate is taken out of the solution, preferably washed with water, more preferably distilled water or deionized water, and then dried in a thermostatic bath, hot air or warm air, sunlight, or the like.
  • EDOT is liquid and water-soluble at room temperature, and can be appropriately diluted with an aqueous solvent such as water.
  • EDOT 10: 1 to 100: 1, preferably 20: 1 to 40: 1 in volume ratio.
  • Adhesion of the pTS-EDOT mixed liquid to the base material and the finished conductive material used in the pTS solution and / or EDOT used in the first and second embodiments of the present invention As long as the effects of the present invention are not impaired quantitatively or qualitatively, such as not impairing the electrical conductivity, other components can be blended as necessary.
  • glycerin polyethylene glycol-polyprene glycol polymer, ethylene glycol, sorbitol, sphingosine, phosphatidylcholine and the like, preferably glycerol, polyethylene glycol-polyprene glycol polymer, sorbitol and the like.
  • surfactants, binders, natural polysaccharides, thickeners such as CMC (carboxymethylcellulose), and emulsion stabilizers are exemplified as other components.
  • FIG. 1 shows a PEDOT-pTS production reaction by the conductive material manufacturing method according to the first and second embodiments of the present invention.
  • the base material uses silk or silk thread, it is not limited to these.
  • Fe 3+ as an oxidizing component is an example, and the present invention is not limited to this.
  • the conductive material of the present invention can be suitably manufactured by the manufacturing method of the present invention.
  • the PEDOT-pTS production reaction can be accelerated by the heating step, and the polymerization of PEDOT-pTS onto the substrate can be accelerated.
  • the conductive range is formed in an arbitrary shape. Can do.
  • the electroconductive material which has the shape in which the range which has electroconductivity was suitable for a use or use environment can be manufactured.
  • PEDOT-pTS which is a conductive polymer
  • PEDOT-pTS is evenly uneven on the surface of the substrate as compared with the case of using a conventional electrolytic polymerization method or the like. It can be made to adhere, and a resistance value can be reduced. Moreover, it is less time-consuming than using a conventional electrolytic polymerization method or the like, and the conductive material can be easily manufactured.
  • This ease which is the merit of the method for producing a conductive material (chemical polymerization method) according to the embodiment of the present invention, is a fiber or a substrate made of this material by a technique that cannot be realized by an electrolytic polymerization method such as printing or spraying. The conductivity can be realized.
  • the conductive material according to the embodiment of the present invention has a good touch, excellent durability and water resistance, flexibility, low resistance value, and high biocompatibility. It can be used as an electrode for measuring potential from the inside of a muscle or the skin surface, an electrode for measuring an electrocardiogram, an electrode for measuring an electroencephalogram, a biological electrode for clinical treatment, and the like.
  • a silk thread (silk thread) was used as a base material, and a test was conducted as to whether or not the resistance value of the conductive material changed due to a difference in the refining method of the silk thread.
  • 168 denier silk thread cross-sectional area: about 2.5 ⁇ 10 ⁇ 4 cm 2
  • Silk yarn used for the test is raw silk (unrefined: the same applies below), phosphoric acid refined yarn (acid refined), soaping refined yarn (soap refined), soap refined yarn (alkali refined), enzyme refined yarn (proteolytic enzyme) Refining).
  • the conductive material was manufactured by the method for manufacturing the conductive material according to the embodiment of the present invention described below. Specifically, first, a butanol solution containing iron (III) ions of transition metal and pTS (“CLEVIOS CB 40 V2” manufactured by Heraeus Co., Ltd .: about 4% by mass as iron (III) p-toluenesulfonate). 6.3 ml of “CLEVIOS” is a registered trademark), and silk thread was immersed therein.
  • a butanol solution containing iron (III) ions of transition metal and pTS (“CLEVIOS CB 40 V2” manufactured by Heraeus Co., Ltd .: about 4% by mass as iron (III) p-toluenesulfonate).
  • 6.3 ml of “CLEVIOS” is a registered trademark
  • the resistance value of the conductive material manufactured using each silk thread was measured, and the result is shown in FIG. As shown in FIG. 2, it was confirmed that the conductive material manufactured with the enzyme smelting yarn had the lowest resistance value, and the conductive material manufactured with the phosphoric acid smelting yarn also had the low resistance value.
  • the electrical resistance value is a value obtained by measuring the electrical resistance value of 1 cm length of each yarn by a tester (the same applies hereinafter).
  • FIG. 3 shows electron micrographs of the surface of each of the above-mentioned silk threads with different refining methods.
  • the surface of the enzyme refined yarn is the smoothest and the surface of the phosphate refined yarn is also relatively smooth. From this, it is considered that the good surface condition of the enzyme refined yarn and the phosphate refined yarn is one of the causes of the low resistance value of the conductive material. That is, by producing a conductive material using a base material having a smooth surface such as an enzyme refined yarn or an acid refined yarn, PEDOT-pTS adheres tightly to the surface of the substrate and reduces the resistance value. it is conceivable that.
  • the conductive material manufactured by the method for manufacturing the conductive material according to the embodiment of the present invention (hereinafter referred to as “chemical polymerization method”) disclosed in the above-mentioned “examination of the substrate”, and Patent Document 1
  • the conductive materials manufactured by using the electrolytic polymerization method described in Non-Patent Document 1 were compared. In both the conductive materials, the raw silk used in the above “examination of the base material” was used as the base material.
  • the conductive material produced by the electrolytic polymerization method was produced by the methods described in Patent Document 1 and Non-Patent Document 1. Specifically, first, the raw silk of the base material was immersed overnight in a mixed solution obtained by adding EDOT at a mass ratio of 0.1% to the PEDOT-PSS solution. Next, the Ag / AgCl electrode of the reference electrode and the Pt electrode of the counter electrode were immersed in the mixed solution, and both ends of the raw silk were sandwiched by clips connected to the working electrode while the central portion of the raw silk was immersed in the mixed solution. . Using a potentiostat, a polymerization potential (0.8 V vs.
  • the conductive material manufactured by the chemical polymerization method the one manufactured by performing the heating condition at 70 ° C. for 20 minutes in the above “examination of the base material” was used.
  • the resistance values of the conductive material produced by the above chemical polymerization method and the conductive material produced by the electrolytic polymerization method were measured, and the results are shown in FIG. As shown in FIG. 4, it was confirmed that the resistance value of the conductive material manufactured by the chemical polymerization method is about 4 digits lower than that of the conductive material manufactured by the electrolytic polymerization method. Thus, since the conductive material manufactured by the chemical polymerization method has excellent conductivity and lower resistance value, noise can be reduced when this is used as an electrode, and more accurate measurement is performed. be able to.
  • FIG. 5 shows electron micrographs of the conductive material produced by the chemical polymerization method and the conductive material produced by the electrolytic polymerization method.
  • PEDOT-PSS adheres to a part of the surface of the substrate, whereas as shown in FIG. 5 (b).
  • PEDOT-pTS was uniformly and uniformly attached to the entire surface of the base material in the conductive material produced by the chemical polymerization method.
  • the larger the surface area of PEDOT covering the surface of the base material the higher the conductivity and the lower the resistance value. Therefore, the difference in the adhesion method of PEDOT shown in FIG. It is considered a thing.
  • PEDOT-pTS was dropped on the surface of the cover glass and spin-coated to prepare a thin film of PEDOT-pTS, on which primary culture of chicken embryo brain cells was performed.
  • chicken embryo brain was first immersed in trypsin solution for about 10 minutes and pipetted about 10 times, then 300 ⁇ l was transferred to a 35 mm culture dish, 2% B27 supplement, 0.074 mg / ml L-glutamine, 25 ⁇ M. 2 ml of a culture medium consisting of Neurobasal medium containing glutamate and 20 ng / ml NGF was added.
  • 6 (a) and 6 (b) are photomicrographs of normal light observation and fluorescence observation when culturing the brain cells of a chicken embryo on a cover glass.
  • FIGS. 6 (c) and (d) Shows normal light observation and fluorescence observation when culturing the brain cells of a chicken embryo on a cover glass coated with PEDOT-pTS used in the method for producing a conductive material according to the embodiment of the present invention.
  • PEDOT-pTS has high biocompatibility and there is almost no rejection from living tissue.
  • a conductive material is produced by the following steps of the method for producing a conductive material of the present invention. did. Specifically, first, a butanol solution containing iron (III) ions of transition metal and pTS (“CLEVIOS CB 40 V2” manufactured by Heraeus Co., Ltd .: about 4% by mass as iron (III) p-toluenesulfonate). 10 ml of “CLEVIOS” is a registered trademark), and each sericin-coated fabric was immersed therein.
  • a butanol solution containing iron (III) ions of transition metal and pTS (“CLEVIOS CB 40 V2” manufactured by Heraeus Co., Ltd .: about 4% by mass as iron (III) p-toluenesulfonate). 10 ml of “CLEVIOS” is a registered trademark), and each sericin-coated fabric was immersed therein.
  • EDOT EDOT
  • CLEVIOS MV2 manufactured by Heraeus Co., Ltd .: about 98.5% by mass of EDOT, “CLEVIOS” is a registered trademark
  • a thermostatic bath at 70 ° C. for 30 minutes. Heating was performed. After the heating, the sericin-coated fabric was taken out from the solution, washed with shaking with deionized water twice for about 1 hour, and then dried in a constant temperature bath at 70 ° C.
  • the resistance value of the conductive material manufactured as described above was measured with a potentiostat by clipping at intervals of 2 cm in width using a flat clip, and the resistance value per 1 cm length was calculated. The results are shown in FIG. 8 (the unit of resistance value on the vertical axis is “ ⁇ / cm”). As shown in FIG. 8, various sericin-coated fabrics had a maximum value in the vicinity of 20 k ⁇ / cm, and the minimum value was in the vicinity of 5.2 k ⁇ / cm. Thereby, it became clear that a sericin covering fabric is suitable as a base material of the electroconductive material of this invention. In addition, it is considered that the resistance value of the sericin-coated fabric using the hexagonal double fabric (silk) is relatively high because the thickness of the fabric is much thinner than others.
  • nylon fabric (Toray Industries, Inc .: nylon 6, nylon 66, or However, it is unclear at the time of the verification of this example, but it is expected that substantially the same result can be obtained by using any of these types of nylon. .), (2) Acetate fabric (acetylcellulose / Mitsubishi Rayon), (3) Polyester fabric, and (4) Silk fabric (Double Satin), respectively, by the steps of the production method of the present invention shown below. Manufactured.
  • a butanol solution containing iron (III) ions of transition metal and pTS (“CLEVIOS CB 40 V2” manufactured by Heraeus Co., Ltd .: about 4% by mass as iron (III) p-toluenesulfonate). 10 ml of “CLEVIOS” is a registered trademark), and each fabric was immersed therein.
  • 310 ⁇ l of EDOT (“CLEVIOS MV2” manufactured by Heraeus Co., Ltd .: about 98.5% by mass of EDOT, “CLEVIOS” is a registered trademark) was added to the solution, and then in a thermostatic bath at 70 ° C. for 30 minutes. Heating was performed.
  • the resistance values of the conductive material manufactured as described above before and after cleaning are measured with a potentiostat by clipping at a width of 2 cm using a flat clip, and the resistance per 1 cm length is measured. The value was calculated. The results are shown in FIG. 9 (the unit of resistance value on the vertical axis is “ ⁇ / cm”).
  • the left bar indicates “resistance value before washing”, and the right bar indicates “resistance value after washing” for each fabric. Only nylon fabric and silk cloth had lower resistance after washing than before washing. It was clear that silk fabrics showed the best washing resistance, but nylon fabrics also showed sufficient washing resistance for practical use.
  • a ribbon-like silk cloth having a width of 1 cm and a length of 10 cm (a plain weaved silk fabric made of a proteolytic enzyme refining enzyme) is used as a base material.
  • the manufacturing method (chemical polymerization method) under the above heating conditions was applied to manufacture a conductive material, and the conductive material was further cut into 1 cm square (area 1 cm 2 ) to manufacture 10 surface electrode elements of the size.
  • the electric resistance values between the ends of these ten flat plate-like conductive materials were measured with a tester, they were all less than 1.6 k ⁇ .
  • the unit element of the multipoint electrode for surface was created by connecting by sewing. It is even easier to pierce the linear part of the unit element with a sewing needle from the perpendicular direction to the silk fabric surface (a plain weave silk fabric made of proteolytic enzyme refining). Sewed. The area of the cloth surface was 10 cm square (area 100 cm 2 ), and nine unit elements were sewn so as to be equidistant at intervals of 0.5 cm. Thus, the multipoint electrode for surfaces was produced (FIG. 10 (a)).
  • the surface multipoint electrode is fixed in a state where the surface electrode element exposed side and the subject's arm are in contact with each other, and the change in potential due to the movement of the subject's hand is measured with a commercially available wireless muscle. Measurement was carried out using an electric meter (ID3PAD: manufactured by Osaka Electronics) (FIG. 10B). In the measurement, a substance for reducing impedance such as gel was not applied between the surface multipoint electrode and the skin, and the electrode was directly brought into contact with the skin.
  • a manufacturing method for heating conditions of 70 ° C. for 20 minutes disclosed in the above “examination of base material” for silk yarn having a diameter of 0.2 mm (silk yarn subjected to enzyme refining with a proteolytic enzyme)
  • the linear electrode element which uses the said silk thread as a base material was manufactured.
  • a 20 mm square (area 400 mm 2 ) silk cloth (a plain weave silk fabric made of proteolytic enzyme refining) is used as an insulator, and the linear electrode element is pierced from the vertical direction of the back surface.
  • the front end portion of the pierced linear electrode element is pierced again with respect to the cloth surface so that a line length of 1 mm is exposed on the cloth surface, and sewing is performed as the first linear electrode element. Then, the sewing was fixed in the same manner so as to be orthogonal to the 1 mm exposed portion of the first linear electrode element in the vicinity of the sewing fixing portion of the first linear electrode element.
  • the two linear electrode elements sewn and fixed orthogonally in this way were used as a unit element of a set of multipoint electrodes for the surface. As described above, since there are two pieces of 1 mm of 0.2 mm-wide silk thread, the electrode area of the set is 0.004 cm 2 .
  • the unit element was sewed on the 20 mm square cloth surface so that each of the unit elements was equidistant at intervals of 5 mm. In this way, a multipoint electrode for the surface for electroencephalogram measurement was created (FIG. 11 (a)).
  • the surface of the multipoint electrode for electroencephalogram measurement is brought into contact with the surface of the brain from which the skull of a chicken embryo (embryonic day 19) has been removed, thereby bringing the cranial nerve activity into a commercially available RZ5 bioamplifier.
  • TDT was measured by wire connection (FIG. 11 (b)).
  • a substance for reducing impedance was not applied between the multipoint electrode for surface and the skin, and the electrode was directly brought into contact with the brain.
  • the conductive material of the embodiment of the present invention is excellent in biocompatibility and can be sufficiently used as a bioelectrode.
  • the base material is made of silk fiber, it can be suitably used as a bioelectrode.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Medical Informatics (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Physics & Mathematics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Measurement And Recording Of Electrical Phenomena And Electrical Characteristics Of The Living Body (AREA)

Abstract

[Problem] To provide a conductive material that has a conductive polymer adhered uniformly on the surface of a base material so as to achieve a lower resistance value. [Solution] Specifically, provided is a conductive material which is obtained by adhering, as a conductive polymer, PEDOT-pTS to a nylon base material or a base material chiefly consisting of silk or a silk-derived component. Also provided by the present invention are: a method for producing said conductive material, the method comprising (1) an adhesion step for adhering a pTS solution containing an oxidative component and p-toluenesulfonate (pTS) to a base material formed of silk fiber or nylon fiber or a base material coated with sericin or fibroin, and (2) a polymerization step for further adhering 3,4-ethylenedioxythiophene (EDOT) to said base material, to which the oxidative component and pTS have been adhered in the adhesion step, so as to cause a polymerization reaction for generating poly(3,4-ethylene-dioxythiophene)-p-toluenesulfonate (PEDDOT-pTS) to occur in the base material to create a state in which PEDDOT-pTS is adhered to said base material; and a bioelectrode that includes the conductive material.

Description

導電性材及びその製造方法、ならびに生体電極Conductive material, method for producing the same, and bioelectrode
 本発明は、導電性材及びその製造方法、ならびに生体電極に関する。 The present invention relates to a conductive material, a manufacturing method thereof, and a biological electrode.
 医学と工学との融合分野である医工学分野において盛んに行われているものの一つとして、身体機能の代替デバイスの作製があり、そのためには、まず、生体の電位を正確に計測することが必要不可欠である。この生体電位の測定のうち、例えば、筋電位の計測では、筋肉外部からのアプローチだけでなく、内部から電位を測定することで、より正確に筋肉の働きを再現することが可能になると考えられる。 One of the active efforts in the field of medical engineering, which is a fusion field of medicine and engineering, is the creation of an alternative device for bodily functions. For this purpose, first, the potential of a living body must be accurately measured. Indispensable. Among the bioelectric potential measurements, for example, in the measurement of myoelectric potential, it is considered that not only the approach from the outside of the muscle but also the action of the muscle can be reproduced more accurately by measuring the electric potential from the inside. .
 そこで、フレキシブルで筋肉の動きに追従が可能であり、筋肉の内部から電位を測定するための電極として使用可能なものとして、生体材料である絹(シルク)などの繊維に、導電性高分子をコーティングした導電性の繊維が、本発明者等によって開発されている(例えば、特許文献1、2又は非特許文献1参照)。 Therefore, it is flexible and can follow the movement of muscles, and can be used as an electrode for measuring electric potential from the inside of muscles. Coated conductive fibers have been developed by the present inventors (see, for example, Patent Documents 1 and 2 or Non-Patent Document 1).
 特許文献1及び非特許文献1に記載の導電性の繊維は、導電性高分子としてPEDOT-PSS(Poly(3,4-ethylenedioxythiophene)-polystyrenesulfonate)を用い、PED
OT-PSSを含む導電性の溶液に基材繊維を浸漬し、基材繊維を導電性の溶液から垂直に引き上げながら電極間で走行させて通電することにより、基材繊維に付着したPEDOT-PSSを電気化学的に重合固定する、いわゆる電解重合法を利用して製造されている。また、特許文献2に記載の導電性の繊維は、導電性高分子としてPEDOT-PSSを用い、PEDOT-PSSとバインダー樹脂とを混合した樹脂組成物を基材繊維に付着させ、乾燥、加温、加熱等により固化又は重合させることにより製造されている。
The conductive fibers described in Patent Document 1 and Non-Patent Document 1 use PEDOT-PSS (Poly (3,4-ethylenedioxythiophene) -polystyrenesulfonate) as a conductive polymer.
PEDOT-PSS adhering to the base fiber by dipping the base fiber in a conductive solution containing OT-PSS and running between the electrodes while pulling up the base fiber vertically from the conductive solution. Is produced by utilizing a so-called electrolytic polymerization method in which the polymer is electrochemically immobilized. Further, the conductive fiber described in Patent Document 2 uses PEDOT-PSS as a conductive polymer, and a resin composition obtained by mixing PEDOT-PSS and a binder resin is attached to a base fiber, followed by drying and heating. It is manufactured by solidifying or polymerizing by heating or the like.
 なお、PEDOT-PSSよりも導電性に優れた導電性高分子として、PEDOT-pTS(poly(3,4-ethylene-dioxythiophene)-p-toluenesulfonate)が知られている(例えば、非特許文献2参照)。 Note that PEDOT-pTS (poly (3,4-ethylene-dioxythiophene) -p-toluenesulfonate) is known as a conductive polymer that is more conductive than PEDOT-PSS (see, for example, Non-Patent Document 2). ).
国際公開WO2013/073673号International Publication WO2013 / 073673 特開2014-108134号公報JP 2014-108134 A 特開2003-171874号公報JP 2003-171874 A
 特許文献1、2及び非特許文献1に記載の導電性の繊維は、肌触りが良く、耐久性及び耐水性に優れ、柔軟性もあることから、筋肉の内部から電位を測定するための電極等とし
て使用することができる。しかしながら、この従来の導電性の繊維は、基材繊維の表面に導電性高分子であるPEDOT-PSSがまばらに付着しているため、比較的抵抗値が高く、電極として使用したときにノイズが大きくなってしまうという課題があった。
Since the conductive fibers described in Patent Documents 1 and 2 and Non-Patent Document 1 have a good touch, are excellent in durability and water resistance, and have flexibility, electrodes for measuring potential from the inside of the muscle, and the like Can be used as However, this conventional conductive fiber has a relatively high resistance value because PEDOT-PSS, which is a conductive polymer, is sparsely adhered to the surface of the base fiber, and noise is generated when it is used as an electrode. There was a problem of becoming larger.
 本発明は、このような課題に着目してなされたもので、基材の表面に導電性高分子が均一に付着し、より抵抗値が低い導電性材及びその製造方法、ならびに生体用電極を提供することを目的とする。 The present invention has been made paying attention to such a problem. A conductive material having a conductive polymer uniformly attached to the surface of a base material and having a lower resistance value, a method for producing the same, and a biological electrode are provided. The purpose is to provide.
 上記目的を達成するために、本発明に係る導電性材は、絹繊維、又は、ナイロン繊維を材料とする基材、あるいは、セリシン若しくはフィブロインを被覆した基材に、PEDOT-pTSが付着していることを特徴とする。基材への付着は、基材の表面における付着と、基材の内部における付着と、これらの両者を含むものである。 In order to achieve the above object, the conductive material according to the present invention has PEDOT-pTS attached to a substrate made of silk fiber or nylon fiber, or a substrate coated with sericin or fibroin. It is characterized by being. The adhesion to the substrate includes adhesion on the surface of the substrate, adhesion on the inside of the substrate, and both.
 上記基材の材料を総括すると、ナイロン繊維を除き、セリシン又はフィブロインが含まれている限り限定されるものではなく、本来的にこれらのタンパク質を本来的に含む絹であっても、事後的にこれらのタンパク質を付加したものであってもよい。 To summarize the materials of the base material, it is not limited as long as sericin or fibroin is contained, except for nylon fibers, even if it is silk that originally contains these proteins, Those added with these proteins may also be used.
 セリシン又はフィブロインを被覆する基材の材料としては、ポリアミド繊維(ナイロン繊維を含む)、ポリエステル繊維、アクリル繊維、アラミド繊維、ポリウレタン繊維、炭素繊維等の合成繊維;綿、麻、ジュート等の植物性繊維;上記の絹の他、羊毛、コラーゲン繊維等の動物性繊維;或いは、これらの混合繊維を広く用いることができる。染色を施した繊維であってもよい。なお、「被覆」は、外見上被覆成分で対象物の表面を覆う行為であり、その具体的な態様は問わないこととする。例えば、被覆成分の被覆対象物への「付着」、「含有」、「染み込み」のいずれの態様であってもよい。 Base materials for coating sericin or fibroin include polyamide fibers (including nylon fibers), polyester fibers, acrylic fibers, aramid fibers, polyurethane fibers, carbon fibers, etc .; plant materials such as cotton, hemp, jute In addition to the above-mentioned silk, animal fibers such as wool and collagen fibers; or mixed fibers thereof can be widely used. It may be a dyed fiber. Note that “covering” is an action of covering the surface of an object with a covering component in appearance, and its specific mode is not limited. For example, any form of “attachment”, “containing”, and “penetration” of the coating component to the object to be coated may be used.
 セリシン、フィブロリン共に、公知の方法により絹(生糸)より得ることが可能であり、かつ、市販もなされている。セリシンは、生糸の外側をなすタンパク質成分であり、例えば、特開平11-131318号公報に開示された方法により、生糸から回収することが可能であり、かつ、市販もなされている(例えば、株式会社高原社等)。フィブロインは、生糸の芯部分をなすタンパク質成分であり、例えば、特開平6-70702号公報に開示された方法により、絹繊維をアルカリ溶液で溶解し、透析することにより得ることが可能であり、市販もなされている(シルクゲンGソルブルKE:一丸ファルコス株式会社)。これらのセリシン又はフィブロインは、基本的には被覆の対象(糸や布地を含む)を水溶液状のセリシン又はフィブロインに浸し、乾燥させた後、洗浄することで皮膜を形成加工させて作出することができる(特許文献3)。また、このような被覆の作業を外注して、所望のセリシンの被覆基材を得ることも可能である[例えば、株式会社アート(群馬県桐生市):http://art-silk.jp/]。 Both sericin and fibroline can be obtained from silk (raw silk) by a known method, and are also commercially available. Sericin is a protein component that forms the outside of raw silk, and can be recovered from raw silk by, for example, the method disclosed in JP-A-11-131318, and is also commercially available (for example, stocks) Company plateau company). Fibroin is a protein component that forms the core of raw silk, and can be obtained, for example, by dissolving silk fiber with an alkaline solution and dialyzing it by the method disclosed in JP-A-6-70702, Commercially available (Silkgen G Solvel KE: Ichimaru Falcos Co., Ltd.). These sericin or fibroin can be produced basically by immersing the object to be coated (including yarn and fabric) in aqueous sericin or fibroin, drying, and washing to form a film. Yes (Patent Document 3). It is also possible to outsource such coating work to obtain a desired sericin coated substrate [for example, Art Co., Ltd. (Kiryu City, Gunma Prefecture): http://art-silk.jp/ ].
 上記の「絹繊維」とは、「絹(シルク)又はこれを主体とする繊維」を意味するものである。絹繊維は、絹単体であってもよいが、必要に応じて他の繊維との混合繊維を用いることが可能である。ここで「他の繊維」とは、上記のセリシン又はフィブロインを被覆する対象として例示した、合成繊維、植物性繊維、絹以外の動物性繊維が挙げられる。また、絹は、通常の家蚕糸や野蚕糸、蜘蛛や蜂由来の天然絹の他、遺伝子組み換え技術を用いて得られる絹、例えば、蛍光タンパク質をコードする遺伝子を組み込んだ蚕から得られる「光る絹」等を用いることも可能である。 The above “silk fiber” means “silk or a fiber mainly composed thereof”. The silk fiber may be a single silk, but if necessary, a mixed fiber with other fibers can be used. Here, the “other fibers” include synthetic fibers, plant fibers, and animal fibers other than silk, which are exemplified as the objects to be coated with sericin or fibroin. In addition, silk is obtained from ordinary silkworm silk, wild silk thread, natural silk derived from silkworms and bees, and silk obtained using genetic recombination technology, such as silkworms obtained by incorporating a gene encoding a fluorescent protein. It is also possible to use “silk” or the like.
 ナイロンは、アミド結合によって多数のモノマーが結合したポリマーである「ポリアミド」の一種であり、一般に脂肪族骨格を含むもので、元々はデュポン社(米国)の商標に由来する名称である。本明細書においては、この「ナイロン」の名称を発明の規定のため
に用いる。本発明において基材として用いることができるナイロンとしては、ナイロン6(モノマー:ε-カプロラクタム)、ナイロン11(モノマー:ウンデカンラクタム)、ナイロン12(モノマー:ラウリルラクタム)、ナイロン66(モノマー:ヘキサメチレンジアミンとアジピン酸)、ナイロン610(モノマー:ヘキサメチレンジアミンとセバシン酸)、ナイロン6T(モノマー:ヘキサメチレンジアミンとテレフタル酸)、ナイロン6I(モノマー:ヘキサメチレンジアミンとイソフタル酸)、ナイロン9T(モノマー:ノナンジアミンとテレフタル酸)、ナイロンM5T(ノナンジアミンとテレフタル酸)、ナイロン612(モノマー:カプロラクタムとラウリルラクタム)等が挙げられる。テトロン等の他の合成繊維は、本発明の製造方法の工程を施してもPEDOT-pTSが付着しづらいのに対して、ナイロン繊維の場合はPEDOT-pTSが容易に付着して、低減された電気抵抗を実現可能である。ナイロンと他の合成繊維との混合繊維も基材として用いることができるが、ナイロンのみのものが好ましい。また、ナイロンと絹繊維を組合せた繊維や、上記したナイロンにセリシン又はフィブロインを被覆した繊維は、基材の材料として好ましい。
Nylon is a kind of “polyamide”, which is a polymer in which a large number of monomers are bonded by an amide bond, and generally includes an aliphatic skeleton, and is originally a name derived from a trademark of DuPont (USA). In this specification, the name “nylon” is used for the definition of the invention. Nylon 6 (monomer: ε-caprolactam), nylon 11 (monomer: undecane lactam), nylon 12 (monomer: lauryl lactam), nylon 66 (monomer: hexamethylenediamine) can be used as a base material in the present invention. And adipic acid), nylon 610 (monomer: hexamethylenediamine and sebacic acid), nylon 6T (monomer: hexamethylenediamine and terephthalic acid), nylon 6I (monomer: hexamethylenediamine and isophthalic acid), nylon 9T (monomer: nonanediamine) And terephthalic acid), nylon M5T (nonanediamine and terephthalic acid), nylon 612 (monomer: caprolactam and lauryl lactam), and the like. Other synthetic fibers such as Tetron are less likely to adhere to PEDOT-pTS even when subjected to the production method of the present invention, whereas in the case of nylon fibers, PEDOT-pTS is easily attached and reduced. Electrical resistance can be realized. A mixed fiber of nylon and other synthetic fibers can also be used as the substrate, but only nylon is preferred. Moreover, the fiber which combined nylon and silk fiber, and the fiber which coat | covered the above-mentioned nylon with sericin or fibroin are preferable as a base material.
 上記基材は、「線状」又は「平面状」であることが好適である。線状とは、糸状、紐状、布若しくはリボン状の維管束等を意味するものであり、平面状とは、布状、膜状、フィルム状、又は、シート状等を意味するものである。これらの「線状」又は「平面状」の他、例えば、「ゲル状」の基材を用いることも可能である。線状基材の典型例として、糸が挙げられ、平面状基材の典型例として、織物(平織り、サテン織り等)が挙げられる。 The base material is preferably “linear” or “planar”. The linear shape means a thread-like, string-like, cloth-like or ribbon-like vascular bundle, etc., and the planar shape means a cloth-like, film-like, film-like, or sheet-like shape. . In addition to these “linear” or “planar”, for example, a “gel” base material can also be used. A typical example of the linear substrate is a yarn, and a typical example of the planar substrate is a woven fabric (plain weave, satin weave, etc.).
 本発明に係る導電性材の導電部分の電気抵抗値は、
(a) 基材が線状部材の場合は、好ましくは断面積約2.5x10-4cmにおいて50kΩ/cm以下、であり、特に好ましくは同20kΩ/cm以下である。
(b) 基材が平面状部材の場合を含む(a)以外の場合は、好ましくは50kΩ/cm以下、特に好ましくは20kΩ/cm以下である。
The electrical resistance value of the conductive portion of the conductive material according to the present invention is:
(A) When the substrate is a linear member, it is preferably 50 kΩ / cm or less, particularly preferably 20 kΩ / cm or less at a cross-sectional area of about 2.5 × 10 −4 cm 2 .
(B) In cases other than (a) including the case where the substrate is a planar member, it is preferably 50 kΩ / cm or less, particularly preferably 20 kΩ / cm or less.
 「導電部分」とは、基材において導電処理、具体的にはPEDOT-pTSの付着がなされている領域のことを意味するものである。例えば、基材の一部のみにPEDOT-pTSが付着している場合には、当該PEDOT-pTS付着領域が「導電部分」に該当する。 “The conductive portion” means a region of the base material where conductive treatment, specifically, PEDOT-pTS is attached. For example, when PEDOT-pTS is attached to only a part of the base material, the PEDOT-pTS attached region corresponds to the “conductive portion”.
 上記(a)について、後述する実施例に示すように、本発明の線状の導電性材の電気抵抗値は、線状長さ1cm当たりの電気抵抗値をテスターで検出した値である。断面積の約2.5x10-4cmは、標準的な太さの絹糸の断面積である。「約」とは、「2.5」の小数点第2位以降の数字は四捨五入されることを意味している。断面積は抵抗値と反比例するので、断面積に応じた抵抗値を容易に算出することができる。線状基材の断面積が増加すれば、それに応じてPEDOT-pTSの断面積も増加することが見込まれ、本発明の導電性材同士、又は、他の導電性材との比較検討が容易に可能であり、本発明における適切な電気抵抗値のパラメータである。1cmの長さが確保できない場合は、当該線状の導電性材の全導電領域における電気抵抗値を計測して、その電気抵抗値を1cm長と上記断面積に換算することにより比較をすることができる。 About (a), as shown in the Example mentioned later, the electrical resistance value of the linear electroconductive material of this invention is a value which detected the electrical resistance value per linear length 1cm with the tester. The cross-sectional area of about 2.5 × 10 −4 cm 2 is the cross-sectional area of a standard thickness silk thread. “About” means that the number after the second decimal place of “2.5” is rounded off. Since the cross-sectional area is inversely proportional to the resistance value, the resistance value corresponding to the cross-sectional area can be easily calculated. If the cross-sectional area of the linear base material increases, the cross-sectional area of PEDOT-pTS is expected to increase accordingly, and it is easy to compare the conductive materials of the present invention with each other or with other conductive materials. This is a parameter of an appropriate electrical resistance value in the present invention. When the length of 1 cm cannot be secured, the electrical resistance value in the entire conductive region of the linear conductive material is measured, and the comparison is made by converting the electrical resistance value to the 1 cm length and the above cross-sectional area. Can do.
 上記(b)について、基材の形状が線状以外の場合、典型的には織物等の平面状部材の場合には、単純に基材の断面積のみで判断することはできないが、一般的に総合的な導電断面積換算としては、一本の線状部材の断面積よりも大きくなる。よって、基材の形状が線状以外の場合には、導電部分における1cm長における電気抵抗値を求め、これを「1cm当たりの電気抵抗値(Ω又はkΩ/cm)」として、上記(a)の線状部材の好適範囲、及び、最適範囲を、本発明の導電性材の特徴として規定することができる。 Regarding (b) above, when the shape of the substrate is other than a linear shape, typically in the case of a planar member such as a woven fabric, it cannot be determined simply by the cross-sectional area of the substrate. In addition, the total cross-sectional area of the conductive member is larger than the cross-sectional area of one linear member. Therefore, when the shape of the substrate is other than a linear shape, the electrical resistance value at a length of 1 cm in the conductive portion is obtained, and this is referred to as “the electrical resistance value per 1 cm (Ω or kΩ / cm)”. The preferred range and the optimum range of the linear member can be defined as the characteristics of the conductive material of the present invention.
 後述する図10に示す実施例の1cm×1cmの絹布の当該電気抵抗値は、作出した10枚の電極素子の当該電気抵抗値は、いずれも1.6kΩ/cm未満であった。なお、線状基材と同様に1cmの長さが確保できない場合は、当該導電性材の導電領域における電気抵抗値を計測して、その電気抵抗値を1cm長に換算することにより比較をすることができる。 As for the electrical resistance value of the 1 cm × 1 cm silk cloth of the example shown in FIG. 10 described later, the electrical resistance values of the 10 electrode elements produced were all less than 1.6 kΩ / cm. In addition, when the length of 1 cm cannot be ensured similarly to the linear base material, the electrical resistance value in the conductive region of the conductive material is measured, and the comparison is made by converting the electrical resistance value to a length of 1 cm. be able to.
 本発明に係る導電性材の製造方法は、下記の工程(1)及び(2)を含むことを特徴とする、導電性材の製造方法である。
(1) 酸化成分とpTS(p-toluenesulfonate)とを含むpTS溶液を、絹繊維、又は、ナイロン繊維を材料とする基材、あるいは、セリシン若しくはフィブロインを被覆した基材、に付着させる付着工程。
(2) 付着工程(1)において酸化成分とpTSを付着させた基材に、さらにEDOT(3,4-ethylenedioxythiophene)を付着させて、当該基材においてPEDOT-pTS(poly(3,4-ethylene-dioxythiophene)-p-toluenesulfonate)を生成する重合反応を進行させて、当該基材にPEDOT-pTSの付着状態を形成する、重合工程。
The manufacturing method of the electroconductive material which concerns on this invention is a manufacturing method of an electroconductive material characterized by including the following process (1) and (2).
(1) An adhesion step in which a pTS solution containing an oxidizing component and pTS (p-toluenesulfonate) is adhered to a substrate made of silk fiber or nylon fiber, or a substrate coated with sericin or fibroin.
(2) EDOT (3,4-ethylenedioxythiophene) is further attached to the base material to which the oxidizing component and pTS are attached in the attaching step (1), and PEDOT-pTS (poly (3,4-ethylene) is attached to the base material. -Dioxythiophene) -p-toluenesulfonate) is allowed to proceed to form a PEDOT-pTS adhesion state on the substrate by proceeding with the polymerization reaction.
 付着工程(1)における酸化成分とpTSの付着は、pTS溶液に基材を浸漬させることにより行われ、又は、pTS溶液を基材に印刷することにより行われる、ことが好適である。 The adhesion of the oxidizing component and pTS in the adhesion step (1) is preferably performed by immersing the base material in the pTS solution, or by printing the pTS solution on the base material.
 重合工程(2)において、EDOTの付着を行うと共に加熱を行って、PEDOT-pTSへの重合反応を促進させることが好適である。また重合工程(2)の後、さらに、PEDOT-pTSが付着した基材を洗浄及び乾燥させる工程を行うことが好適である。洗浄手段は水洗が好適であり、この場合の水は蒸留水又は脱イオン水を用いることがさらに好適である。乾燥手段は、恒温槽における乾燥、熱風若しくは温風による乾燥、天日による乾燥等が例示されるが、恒温槽における乾燥、熱風若しくは温風による乾燥が好適である。恒温槽における乾燥温度は50~80℃が好ましく、特に好ましくは60~70℃であり、熱風若しくは温風による乾燥による対象物の表面温度も50~80℃が好ましく、特に好ましくは60~70℃である。 In the polymerization step (2), it is preferable to promote the polymerization reaction to PEDOT-pTS by attaching EDOT and heating. Further, after the polymerization step (2), it is preferable to further perform a step of washing and drying the substrate to which PEDOT-pTS is adhered. The washing means is preferably water washing, and in this case, it is more preferred to use distilled water or deionized water. Examples of the drying means include drying in a thermostatic bath, drying with hot air or warm air, drying with sunlight, etc., but drying in a thermostatic bath, drying with hot air or warm air is preferable. The drying temperature in the thermostatic bath is preferably 50 to 80 ° C., particularly preferably 60 to 70 ° C., and the surface temperature of the object by drying with hot air or hot air is also preferably 50 to 80 ° C., particularly preferably 60 to 70 ° C. It is.
 pTSとEDOTは、共に市販品として提供されている。 PTS and EDOT are both available as commercial products.
 本発明に係る導電性材の製造方法によれば、従来の電解重合法等を利用する場合と比べ、基材に、PEDOT-PSSよりも導電性に優れた導電性高分子であるPEDOT-pTSを均一にむらなく付着させることが可能であり、導電性材の電気抵抗値を著しく低下させることができる。このため、電極として使用したときにノイズを低減することが可能である。本発明に係る導電性材の製造方法により製造された導電性材の電気抵抗値は、上記した通りである。 According to the method for producing a conductive material according to the present invention, PEDOT-pTS, which is a conductive polymer superior in conductivity to PEDOT-PSS, is used as a base material compared to the case of using a conventional electrolytic polymerization method or the like. Can be uniformly adhered, and the electric resistance value of the conductive material can be significantly reduced. For this reason, it is possible to reduce noise when used as an electrode. The electrical resistance value of the conductive material manufactured by the conductive material manufacturing method according to the present invention is as described above.
 従来の電解重合法等では、基材の表面にPEDOT-pTSをほとんど付着させることができず、導電性のものを得ることはできなかったが、本発明に係る導電性材の製造方法により、基材の表面にPEDOT-pTSを均一に付着させることができるようになった。このように、本発明に係る導電性材の製造方法は、本発明に係る導電性材を製造するのに適しており、導電性に優れ、より抵抗値が低い導電性材を製造することができる。 In the conventional electropolymerization method or the like, PEDOT-pTS could hardly be adhered to the surface of the base material, and a conductive material could not be obtained, but by the method for producing a conductive material according to the present invention, PEDOT-pTS can be uniformly attached to the surface of the substrate. As described above, the method for producing a conductive material according to the present invention is suitable for producing the conductive material according to the present invention, and can produce a conductive material having excellent conductivity and a lower resistance value. it can.
 なお、導電性高分子としてPEDOT-PSSを使用する場合、本発明に係る導電性材の製造方法を利用しても、基材にPEDOT-PSSを均一にむらなく付着させることはできないため、従来の電解重合法等を利用して製造された導電性材よりも抵抗値を低下させることは困難である。 Note that when PEDOT-PSS is used as the conductive polymer, the PEDOT-PSS cannot be uniformly and uniformly adhered to the substrate even if the conductive material manufacturing method according to the present invention is used. It is difficult to reduce the resistance value as compared with the conductive material manufactured by using the electrolytic polymerization method.
 本発明に係る導電性材及び導電性材の製造方法で、基材は、酵素精錬(主にタンパク質分解酵素による)、酸精錬又はアルカリ精錬されていることが好ましい。 In the conductive material and the method for producing a conductive material according to the present invention, the base material is preferably subjected to enzyme refining (mainly by a proteolytic enzyme), acid refining or alkali refining.
 本発明に係る導電性材の製造方法で、前記加熱工程は、50~100℃で10分~60分間の加熱を行うことが好ましく、さらに好ましくは50~80℃で10~40分間、極めて好ましくは60~80℃で10~30分間である。この加熱工程により、基材の表面にPEDOT-pTSをより速くより密に付着させることができ、抵抗値をさらに低下させることができる。また、本発明に係る導電性材の製造方法で、前記酸化成分は遷移金属イオンであることが好ましい。具体的には、鉄、セリウム、又はモリブデンのイオン、特に第二鉄のイオンを含むことが好ましい。この場合、PEDOT-pTSを効率良く生成することができる。 In the method for producing a conductive material according to the present invention, the heating step is preferably performed at 50 to 100 ° C. for 10 minutes to 60 minutes, more preferably at 50 to 80 ° C. for 10 to 40 minutes, very preferably. Is 60 to 80 ° C. for 10 to 30 minutes. By this heating step, PEDOT-pTS can be more quickly and densely attached to the surface of the substrate, and the resistance value can be further reduced. In the method for producing a conductive material according to the present invention, the oxidation component is preferably a transition metal ion. Specifically, iron, cerium, or molybdenum ions, particularly ferric ions are preferably included. In this case, PEDOT-pTS can be generated efficiently.
 本発明に係る生体電極は、本発明に係る導電性材を含むことを特徴とする。 The bioelectrode according to the present invention includes the conductive material according to the present invention.
 当該生体電極の素子は、本発明に係わる導電性材であり、当該素子の形態としては、表面用電極、穿刺用電極等、が挙げられる。 The element of the biological electrode is a conductive material according to the present invention, and examples of the form of the element include a surface electrode and a puncture electrode.
 表面用電極は、容積伝導により伝わって来る活動電位や脳波を皮膚の上や、直接筋肉や脳、その他の臓器の表面(以下、これらの表面を「体組織表面」ともいう)から電極の穿刺を伴わずに導出する電極であり、筋腹や頭部に貼り付けて使用する生体電極である。これを誘発電位導出用や治療用の刺激電極とすることもできる。 The surface electrode punctures the action potential and brain wave transmitted by volume conduction from the skin, directly from the surface of muscles, brain, and other organs (hereinafter these surfaces are also referred to as “body tissue surfaces”). It is an electrode that is led out without accompanying, and is a biological electrode that is used by being attached to the muscle abdomen or head. This can also be used as a stimulation electrode for derivation of evoked potentials or treatment.
 本発明の電極が表面用電極である場合、当該電極素子の体組織表面との接触可能面積は、0.0004~100cmであることが好適であり、特に好適には0.0004~25cmである。25cmを超える接触可能面積であっても表面用電極として用いることは可能であるが、「体組織表面と電極素子との接触面積を著しく少なくしても、活動電位又は誘発電位、さらに脳波を良好に導出することができる」、という本発明の電極の特徴を十分に活かすことにならない。接触可能面積が0.0004cmより狭いと、十分に活動電位又は誘発電位、さらに脳波を導出することが困難になる。ただし、今後筋電計測システムや脳波計測システムの性能が向上すれば、0.0004cmより狭い接触可能面積であっても表面用電極として良好に用いることができる可能性がある。 When the electrode of the present invention is a surface electrode, the contactable area of the electrode element with the body tissue surface is preferably 0.0004 to 100 cm 2 , particularly preferably 0.0004 to 25 cm 2. It is. Even if the contact area exceeds 25 cm 2 , it can be used as a surface electrode. However, even if the contact area between the body tissue surface and the electrode element is significantly reduced, action potentials or evoked potentials, and brain waves The feature of the electrode of the present invention that “it can be derived well” is not fully utilized. If the contactable area is smaller than 0.0004 cm 2 , it is difficult to sufficiently derive an action potential or an evoked potential, and an electroencephalogram. However, if the performance of the myoelectric measurement system or electroencephalogram measurement system is improved in the future, even if the contactable area is smaller than 0.0004 cm 2 , there is a possibility that it can be used favorably as the surface electrode.
 なお、「体組織表面との接触可能面積」とは、導電性材を表面用電極の電極素子として用いた場合に、体組織表面と接触し得る面積であり、例えば、電極素子が平面状の場合には、当該シート面の面積である。このような平面状の電極素子の場合には、特に0.25~100cmが好適であり、さらに0.25~25cmが好適である。電極素子が線状の場合には、当該線状電極素子の体表面との接触を予定する表面積の半分の面積(当該面積は、例えば線状材料の直径を一辺、体表面との接触を予定する長さを他の一辺とする「長方形の面積」として近似することができる)が体組織表面と接触し得る面積である。このような線状の電極素子の場合には、特に0.0004~0.02cmが好適であり、さらに0.0004~0.005cmが好適である。他の形状の場合であっても、現実的に体組織表面に接触し得る面積であり、当業者であれば容易に把握することが可能である。また、当該接触可能面積は、1個のまとまった電極素子である。例えば、1個の表面用電極の中に、複数個の電極素子同士が接触せずに設けられている場合には、各々の電極素子における面積である。 The “area that can be contacted with the body tissue surface” is an area that can contact the body tissue surface when a conductive material is used as the electrode element of the surface electrode. For example, the electrode element is planar. In this case, it is the area of the sheet surface. In the case of such a planar electrode element, 0.25 to 100 cm 2 is particularly preferable, and 0.25 to 25 cm 2 is more preferable. If the electrode element is linear, the area of the surface area of the linear electrode element that is expected to be in contact with the body surface (the area is, for example, the diameter of the linear material is one side and the contact with the body surface is expected) The length that can be approximated as a “rectangular area” with the other side as the other side) is the area that can come into contact with the body tissue surface. In the case of such a linear electrode element, 0.0004 to 0.02 cm 2 is particularly preferable, and 0.0004 to 0.005 cm 2 is more preferable. Even in the case of other shapes, it is an area that can actually come into contact with the surface of the body tissue and can be easily understood by those skilled in the art. The contactable area is a single electrode element. For example, in the case where a plurality of electrode elements are provided in a single surface electrode without contact with each other, the area of each electrode element.
 穿刺用電極は、文字通りに生体内に電極素子を穿刺により接触させて所望の生体シグナルを導出する電極であり、針電極やワイヤー電極を含むものである。これを誘発電位導出用や治療用の刺激電極とすることもできる。この態様の生体電極素子の生体組織との接触可能表面積は、好適には0.0004~0.02cmであり、特に好適には0.0004~0.002cmである。これは穿刺用電極として、従来に比べて非常に小さい表面積であるが、同時に良好な導電特性ゆえに優れた生体電極機能を発揮することができる。 The puncture electrode is an electrode that literally brings an electrode element into contact with the living body by puncturing to derive a desired biological signal, and includes a needle electrode and a wire electrode. This can also be used as a stimulation electrode for derivation of evoked potentials or treatment. Accessible surface area of the biological tissue of a living body electrode element of this embodiment is preferably a 0.0004 ~ 0.02 cm 2, particularly preferably a 0.0004 ~ 0.002 cm 2. This has a very small surface area as a puncture electrode as compared with the conventional case, but at the same time, an excellent bioelectrode function can be exhibited due to good conductive properties.
 本発明に係る導電性材は、抵抗値が低く、肌触りが良く、耐久性及び耐水性に優れ、柔軟性もあるため、生体電極として好適に使用することができる。特に、基材が、絹や絹糸などの生体材料を用いているので、生体用電極として好適に使用することができる。本発明に係る生体用電極は、例えば、筋肉の内部の電位測定用の電極や心電図測定用の電極などに使用することができる。後述する実施例に示すように、2個以上の電極素子を一つの担体(布等)上に配置した多点電極は、本発明の生体電極の好適な態様の一つである。 The conductive material according to the present invention can be suitably used as a bioelectrode because of its low resistance value, good touch, excellent durability and water resistance, and flexibility. In particular, since the base material uses a biomaterial such as silk or silk thread, it can be suitably used as a bioelectrode. The biomedical electrode according to the present invention can be used, for example, as an electrode for measuring an electric potential inside a muscle, an electrode for measuring an electrocardiogram, or the like. As shown in the examples described later, a multipoint electrode in which two or more electrode elements are arranged on one carrier (cloth or the like) is one of the preferred embodiments of the bioelectrode of the present invention.
 本発明によれば、基材の表面に導電性高分子が均一に付着し、より抵抗値が低い導電性材及びその製造方法、ならびに生体用電極を提供することができる。 According to the present invention, it is possible to provide a conductive material having a conductive polymer uniformly attached to the surface of a base material and having a lower resistance value, a method for producing the same, and a biological electrode.
本発明の実施の形態の導電性材の製造方法での、PEDOT-pTSの生成反応を示す化学反応式である。4 is a chemical reaction formula showing a PEDOT-pTS production reaction in the method for producing a conductive material according to the embodiment of the present invention. 本発明の実施の形態の導電性材の製造方法により、精錬方法が異なる基材(絹糸)を用いて製造した各導電性材の抵抗値を示すグラフである。It is a graph which shows the resistance value of each electroconductive material manufactured using the base material (silk thread) from which the refining method differs with the manufacturing method of the electroconductive material of embodiment of this invention. 本発明の実施の形態の導電性材の製造方法により、(a)生糸、(b)石けん精錬糸、(c)ソーピング精錬糸、(d)リン酸精錬糸、(e)酵素精錬糸を用いて製造した各導電性材の電子顕微鏡写真である。According to the method for producing a conductive material of the embodiment of the present invention, (a) raw silk, (b) soap smelting yarn, (c) soaping scouring yarn, (d) phosphoric acid smelting yarn, (e) enzyme smelting yarn are used. It is an electron micrograph of each electroconductive material manufactured in this way. 本発明の実施の形態の導電性材の製造方法(化学重合法)で製造された導電性材、及び、電解重合法を利用して製造された導電性材の抵抗値を示すグラフである。It is a graph which shows the resistance value of the electroconductive material manufactured by the electroconductive material manufactured by the manufacturing method (chemical polymerization method) of the electroconductive material of embodiment of this invention, and the electrolytic polymerization method. (a)電解重合法を利用して製造された導電性材、(b)本発明の実施の形態の導電性材の製造方法(化学重合法)で製造された導電性材の電子顕微鏡写真である。(A) Conductive material manufactured using electrolytic polymerization method, (b) Electron micrograph of conductive material manufactured by the conductive material manufacturing method (chemical polymerization method) according to the embodiment of the present invention. is there. (a)カバーガラスの上で鶏胚の脳細胞を培養したときの通常光観察、(b)蛍光観察での顕微鏡写真、(c)本発明の実施の形態の導電性材の製造方法で使用するPEDOT-pTSを塗布したカバーガラスの上で鶏胚の脳細胞を培養したときの通常光観察、(d)蛍光観察での顕微鏡写真である。(A) Ordinary light observation when cultivating brain cells of chicken embryo on a cover glass, (b) Micrograph in fluorescence observation, (c) Used in the method for producing a conductive material of the embodiment of the present invention FIG. 5 is a micrograph of normal light observation and (d) fluorescence observation when culturing the brain cells of a chicken embryo on a cover glass coated with PEDOT-pTS. 本発明の実施の形態の導電性材を用いた、鶏胚の筋肉内部の電位測定を示す(a)測定状況の模式図、(b)筋肉内部の電位の測定結果のグラフである。It is the (a) schematic diagram of the measurement condition which shows the electric potential measurement inside the muscle of a chicken embryo using the electroconductive material of embodiment of this invention, (b) It is a graph of the measurement result of the electric potential inside a muscle. 基材としてセリシン被覆布地を用いた本発明の導電性材の抵抗値を検討した結果を示す図面である。It is drawing which shows the result of having examined the resistance value of the electroconductive material of this invention which used the sericin covering fabric as a base material. 基材としてナイロン布地を用いた本発明の導電性材における、特に耐洗浄性を検討した結果を示す図面である。It is drawing which shows the result of having examined especially the washing | cleaning resistance in the electroconductive material of this invention which used the nylon fabric as a base material. (a)本発明の実施の形態の導電性材を用いた多点表面電極の模式図、(b)当該多点表面電極を被験者において装着した模式図、(c)実際の皮膚表面における運動に伴う電位の測定結果のグラフである。(A) Schematic diagram of a multi-point surface electrode using the conductive material of the embodiment of the present invention, (b) Schematic diagram in which the multi-point surface electrode is worn by a subject, (c) Actual movement on the skin surface It is a graph of the measurement result of an accompanying electric potential. (a)本発明の実施の形態の導電性材を用いた脳波測定用の多点表面電極の模式図、(b)当該多点表面電極を鶏胚脳表面において装着した模式図、(c)実際の脳表面における脳波電位の測定結果のグラフである。(A) Schematic diagram of a multipoint surface electrode for electroencephalogram measurement using the conductive material of the embodiment of the present invention, (b) Schematic diagram of mounting the multipoint surface electrode on the surface of a chicken embryo brain, (c) It is a graph of the measurement result of the electroencephalogram potential in the actual brain surface.
 以下、図面に基づき、本発明の実施の形態について説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
 図1は、本発明の実施の形態の導電性材及び導電性材の製造方法を示している。 FIG. 1 shows a conductive material and a method for manufacturing the conductive material according to the embodiment of the present invention.
 本発明の実施の形態の導電性材は、基材にPEDOT-pTSが付着しており、以下に示す第1又は第2の本発明の実施の形態の導電性材の製造方法により製造される。 The conductive material of the embodiment of the present invention has PEDOT-pTS attached to the base material, and is manufactured by the conductive material manufacturing method of the first or second embodiment of the present invention described below. .
 すなわち、第1の本発明の実施の形態の導電性材の製造方法では、まず、(1)有機溶媒性溶液に、酸化成分と、ドーパントとしてのpTSとを溶かし、その有機溶媒性溶液に基材の絹又は絹糸を浸漬させる。 That is, in the method for producing a conductive material according to the first embodiment of the present invention, first, (1) an oxidizing component and pTS as a dopant are dissolved in an organic solvent solution, and the base is based on the organic solvent solution. Dip the silk or silk of the material.
 pTSの溶媒となり得る有機溶媒は、pTSと酸化成分等を溶解することが可能であり、かつ、好適には水性溶媒との相溶性が良好であるものである。具体的には、炭素原子数が1~6の1価の低級アルコール、具体的には、メタノール、エタノール、プロピルアルコール、イソプロピルアルコール、ブタノール、ペンタノール、又は、ヘキサノールが挙げられる。これらの1価の低級アルコールを構成する炭素原子の骨格は、直鎖状、分枝状、環状のいずれであってもよく、1種のみならず2種以上を組み合わせてもよい。また、適宜水で希釈して用いてもよい。これらの中で、炭素原子数が1~4の1価の低級アルコール、具体的には、メタノール、エタノール、プロピルアルコール、イソプロピルアルコール、又は、ブタノール、がpTS溶液の有機溶媒として好適である。 An organic solvent that can be a solvent for pTS is capable of dissolving pTS, an oxidizing component, and the like, and preferably has good compatibility with an aqueous solvent. Specific examples include monovalent lower alcohols having 1 to 6 carbon atoms, such as methanol, ethanol, propyl alcohol, isopropyl alcohol, butanol, pentanol, or hexanol. The skeleton of carbon atoms constituting these monovalent lower alcohols may be linear, branched or cyclic, and may be a combination of two or more. Moreover, you may dilute and use with water suitably. Among these, monovalent lower alcohols having 1 to 4 carbon atoms, specifically, methanol, ethanol, propyl alcohol, isopropyl alcohol, or butanol are suitable as the organic solvent for the pTS solution.
 pTS溶液中に含有させる酸化成分は、pTSとEDOTを接触させた際のPEDOT-pTSへの重合反応を活性化させることが可能である限り特に限定されず、遷移元素、ハロゲン等が例示される。 The oxidizing component contained in the pTS solution is not particularly limited as long as it can activate the polymerization reaction to PEDOT-pTS when pTS and EDOT are brought into contact, and examples thereof include transition elements and halogens. .
 遷移元素としては、鉄、チタン、クロム、マンガン、コバルト、ニッケル、亜鉛等の第一遷移元素;モリブデン、銀、ジルコニウム、カドミウム等の第二遷移元素;セリウム、白金、金等の第三遷移元素が例示される。これらの中でも、鉄、亜鉛等の第一遷移元素を用いることが好適である。 Transition elements include first transition elements such as iron, titanium, chromium, manganese, cobalt, nickel, and zinc; second transition elements such as molybdenum, silver, zirconium, and cadmium; third transition elements such as cerium, platinum, and gold Is exemplified. Among these, it is preferable to use a first transition element such as iron or zinc.
 pTS溶液中の酸化成分の含有量は、用いる酸化成分の種類によっても異なり、上記の重合反応を活性化できる量であれば、特に限定されない。例えば、本明細書の実施例で用いている第二鉄イオン(Fe3+)であれば、塩化第二鉄として、pTS溶液に対して1~10質量%が好適であり、さらに好適には3~7質量%である。この配合量が多すぎると重合反応の進行は速いが、後工程での鉄の除去が困難になり、少なすぎると重合反応の進行が遅くなる。 The content of the oxidizing component in the pTS solution varies depending on the type of the oxidizing component used, and is not particularly limited as long as it is an amount that can activate the above polymerization reaction. For example, in the case of ferric ion (Fe 3+ ) used in the examples of the present specification, 1 to 10% by mass is preferable as ferric chloride with respect to the pTS solution, and more preferably 3%. -7% by mass. If the amount is too large, the polymerization reaction proceeds rapidly, but it is difficult to remove iron in the subsequent step. If the amount is too small, the polymerization reaction proceeds slowly.
 pTS溶液中のドーパントとして働くpTSの含有量は、当該溶液に対して0.1~10質量%が好適であり、さらに好適には0.15~7質量%、特に好適には1~6質量%、最も好適には2~5質量%である。 The content of pTS acting as a dopant in the pTS solution is preferably 0.1 to 10% by mass, more preferably 0.15 to 7% by mass, and particularly preferably 1 to 6% by mass with respect to the solution. %, Most preferably 2-5% by weight.
 次に、(2)その溶液に、モノマーのEDOTを添加した後、50~100℃で、好ましくは10分~60分間、さらに好ましくは50~80℃で10~40分間、極めて好ましくは60~80℃で10~30分間の加熱を行う。加熱後、溶液から基材を取り出し、好ましくは水、さらに好適には蒸留水又は脱イオン水で洗浄した後、恒温槽、熱風若しくは温風、天日等により乾燥させる。EDOTは、常温で液体で水溶性であり、適宜水等の水性溶媒に希釈して用いることができる。 Next, (2) after adding the monomer EDOT to the solution, it is 50 to 100 ° C., preferably 10 to 60 minutes, more preferably 50 to 80 ° C. for 10 to 40 minutes, very preferably 60 to Heat at 80 ° C. for 10-30 minutes. After heating, the substrate is taken out of the solution, preferably washed with water, more preferably distilled water or deionized water, and then dried in a thermostatic bath, hot air or warm air, sunlight, or the like. EDOT is liquid and water-soluble at room temperature, and can be appropriately diluted with an aqueous solvent such as water.
 上記のpTS溶液とEDOTの使用量比は、容積比でpTS溶液:EDOT=10:1~100:1、好適には20:1~40:1である。 The use ratio of the above-mentioned pTS solution to EDOT is pTS solution: EDOT = 10: 1 to 100: 1, preferably 20: 1 to 40: 1 in volume ratio.
 また、第2の本発明の実施の形態の導電性材の製造方法では、まず、(1)有機溶媒性溶液に、酸化成分と、ドーパントとしてのpTSとを溶かし、その有機溶媒性溶液を基材に印刷する。 In the method for producing a conductive material according to the second embodiment of the present invention, first, (1) an oxidizing component and pTS as a dopant are dissolved in an organic solvent solution, and the organic solvent solution is used as a base. Print on the material.
 pTSの溶媒となり得る有機溶媒は、pTSと酸化成分等を溶解することが可能であり、かつ、好適には水性溶媒との相溶性が良好であるものである。具体的には、炭素原子数が1~6の1価の低級アルコール、具体的には、メタノール、エタノール、プロピルアルコール、イソプロピルアルコール、ブタノール、ペンタノール、又は、ヘキサノールが挙げられる。これらの1価の低級アルコールを構成する炭素原子の骨格は、直鎖状、分枝状、環状のいずれであってもよく、1種のみならず2種以上を組み合わせてもよい。また、適宜水で希釈して用いてもよい。これらの中で、炭素原子数が1~4の1価の低級アルコール、具体的には、メタノール、エタノール、プロピルアルコール、イソプロピルアルコール、又は、ブタノール、がpTS溶液の有機溶媒として好適である。 An organic solvent that can be a solvent for pTS is capable of dissolving pTS, an oxidizing component, and the like, and preferably has good compatibility with an aqueous solvent. Specific examples include monovalent lower alcohols having 1 to 6 carbon atoms, such as methanol, ethanol, propyl alcohol, isopropyl alcohol, butanol, pentanol, or hexanol. The skeleton of carbon atoms constituting these monovalent lower alcohols may be linear, branched or cyclic, and may be a combination of two or more. Moreover, you may dilute and use with water suitably. Among these, monovalent lower alcohols having 1 to 4 carbon atoms, specifically, methanol, ethanol, propyl alcohol, isopropyl alcohol, or butanol are suitable as the organic solvent for the pTS solution.
 pTS溶液中に含有させる酸化成分は、pTSとEDOTを接触させた際のPEDOT-pTSへの重合反応を活性化させることが可能である限り特に限定されず、遷移元素のイオン、ハロゲン等が例示される。 The oxidizing component contained in the pTS solution is not particularly limited as long as it can activate the polymerization reaction to PEDOT-pTS when pTS and EDOT are brought into contact. Examples include transition element ions and halogens. Is done.
 遷移元素としては、鉄、チタン、クロム、マンガン、コバルト、ニッケル、亜鉛等の第一遷移元素;モリブデン、銀、ジルコニウム、カドミウム等の第二遷移元素;セリウム、白金、金等の第三遷移元素が例示される。これらの中でも、鉄、亜鉛等の第一遷移元素を用いることが好適である。 Transition elements include first transition elements such as iron, titanium, chromium, manganese, cobalt, nickel, and zinc; second transition elements such as molybdenum, silver, zirconium, and cadmium; third transition elements such as cerium, platinum, and gold Is exemplified. Among these, it is preferable to use a first transition element such as iron or zinc.
 pTS溶液中の酸化成分の含有量は、用いる酸化成分の種類によっても異なり、上記の重合反応を活性化できる量であれば、特に限定されない。例えば、本明細書の実施例で用いている第二鉄イオン(Fe3+)であれば、塩化第二鉄として、pTS溶液に対して1~10質量%が好適であり、さらに好適には3~7質量%である。この配合量が多すぎると重合反応の進行は速いが、後工程での鉄の除去が困難になり、少なすぎると重合反応の進行が遅くなる。 The content of the oxidizing component in the pTS solution varies depending on the type of the oxidizing component used, and is not particularly limited as long as it is an amount that can activate the above polymerization reaction. For example, in the case of ferric ion (Fe 3+ ) used in the examples of the present specification, 1 to 10% by mass is preferable as ferric chloride with respect to the pTS solution, and more preferably 3%. -7% by mass. If the amount is too large, the polymerization reaction proceeds rapidly, but it is difficult to remove iron in the subsequent step. If the amount is too small, the polymerization reaction proceeds slowly.
 pTS溶液中のドーパントとして働くpTSの含有量は、当該溶液に対して0.1~10質量%が好適であり、さらに好適には0.15~7質量%、特に好適には1~6質量%、最も好適には2~5質量%である。 The content of pTS acting as a dopant in the pTS solution is preferably 0.1 to 10% by mass, more preferably 0.15 to 7% by mass, and particularly preferably 1 to 6% by mass with respect to the solution. %, Most preferably 2-5% by weight.
 次に、(2)その溶液に、モノマーのEDOTを添加した後、50~100℃で、好ましくは10分~60分間、さらに好ましくは50~80℃で10~40分間、極めて好ましくは60~80℃で10~30分間の加熱を行う。加熱後、溶液から基材を取り出し、好ましくは水、さらに好適には蒸留水又は脱イオン水で洗浄した後、恒温槽、熱風若しくは温風、天日等により乾燥させる。EDOTは、常温で液体で水溶性であり、適宜水等の水性溶媒に希釈して用いることができる。 Next, (2) after adding the monomer EDOT to the solution, it is 50 to 100 ° C., preferably 10 to 60 minutes, more preferably 50 to 80 ° C. for 10 to 40 minutes, very preferably 60 to Heat at 80 ° C. for 10-30 minutes. After heating, the substrate is taken out of the solution, preferably washed with water, more preferably distilled water or deionized water, and then dried in a thermostatic bath, hot air or warm air, sunlight, or the like. EDOT is liquid and water-soluble at room temperature, and can be appropriately diluted with an aqueous solvent such as water.
 上記のpTS溶液とEDOTの使用量比は、容積比でpTS溶液:EDOT=10:1~100:1、好適には20:1~40:1である。 The use ratio of the above-mentioned pTS solution to EDOT is pTS solution: EDOT = 10: 1 to 100: 1, preferably 20: 1 to 40: 1 in volume ratio.
 上記の第1及び第2の本発明の実施の形態で用いる、pTS溶液とEDOTの双方、又は、いずれか一方に、pTS-EDOT混合液の基材への付着性と、出来上がった導電性材の導電性を損なわない等、本発明の効果を量的又は質的に損なわない限り、必要に応じて他の成分を配合することができる。 Adhesion of the pTS-EDOT mixed liquid to the base material and the finished conductive material used in the pTS solution and / or EDOT used in the first and second embodiments of the present invention As long as the effects of the present invention are not impaired quantitatively or qualitatively, such as not impairing the electrical conductivity, other components can be blended as necessary.
 例えば、グリセリン、ポリエチレングリコール-ポリプレングリコールポリマー、エチレングリコール、ソルビトール、スフィンゴシン、フォスファチジルコリン等、好ましくは、グリセロール、ポリエチレングリコール-ポリプレングリコールポリマー、ソルビトール等が挙げられる。これらの成分を配合することにより、導電性材の濡れ特性を調整し、柔軟性を付与することによって、生体電極としての使用時における、生体組織、特に皮膚との親和性を向上させることができる。その他、界面活性剤、バインダー、天然多糖類、CMC(カルボキシメチルセルロース)等の増粘剤、乳化安定剤等が、他の成分として例示される。 For example, glycerin, polyethylene glycol-polyprene glycol polymer, ethylene glycol, sorbitol, sphingosine, phosphatidylcholine and the like, preferably glycerol, polyethylene glycol-polyprene glycol polymer, sorbitol and the like. By blending these components, the wettability characteristics of the conductive material can be adjusted and flexibility can be imparted, thereby improving the affinity with biological tissue, particularly skin, when used as a biological electrode. . In addition, surfactants, binders, natural polysaccharides, thickeners such as CMC (carboxymethylcellulose), and emulsion stabilizers are exemplified as other components.
 上記の第1及び第2の本発明の実施の形態の導電性材の製造方法によるPEDOT-pTSの生成反応を、図1に示す。なお、基材は、絹又は絹糸を用いているが、これらに限定されるものではない。さらに上述のように酸化成分としてのFe3+は例示であり、これに限定されるものではない。 FIG. 1 shows a PEDOT-pTS production reaction by the conductive material manufacturing method according to the first and second embodiments of the present invention. In addition, although the base material uses silk or silk thread, it is not limited to these. Further, as described above, Fe 3+ as an oxidizing component is an example, and the present invention is not limited to this.
 このように、本発明の導電性材は、本発明の製造方法によって好適に製造することができる。本発明の実施の形態の導電性材の製造方法は、加熱工程により、PEDOT-pTSの生成反応を加速させ、PEDOT-pTSの基材への重合を早めることができる。また、有機溶媒性溶液への浸漬又は印刷工程で、基材の任意の範囲を溶液に浸漬させたり、印刷などにより塗布したりすることにより、導電性を有する範囲を任意の形状に形成することができる。これにより、導電性を有する範囲が用途や使用環境に適した形状を有する導電性材を製造することができる。 Thus, the conductive material of the present invention can be suitably manufactured by the manufacturing method of the present invention. In the method for producing a conductive material according to the embodiment of the present invention, the PEDOT-pTS production reaction can be accelerated by the heating step, and the polymerization of PEDOT-pTS onto the substrate can be accelerated. In addition, by immersing an arbitrary range of a substrate in a solution or applying it by printing or the like in an organic solvent-based solution or printing process, the conductive range is formed in an arbitrary shape. Can do. Thereby, the electroconductive material which has the shape in which the range which has electroconductivity was suitable for a use or use environment can be manufactured.
 また、本発明の実施の形態の導電性材の製造方法によれば、従来の電解重合法等を利用する場合と比べ、基材の表面に導電性高分子であるPEDOT-pTSを均一にむらなく付着させることができ、抵抗値を低下させることができる。また、従来の電解重合法等を利用する場合と比べて手間がかからず、容易に導電性材を製造することができる。本発明の実施の形態の導電性材の製造方法(化学重合法)のメリットであるこの容易さは、印刷や吹きつけなどの電解重合法では実現できない手法により繊維又はこれを材料とする基材の導電性化を実現することができる。 In addition, according to the method for manufacturing a conductive material of the embodiment of the present invention, PEDOT-pTS, which is a conductive polymer, is evenly uneven on the surface of the substrate as compared with the case of using a conventional electrolytic polymerization method or the like. It can be made to adhere, and a resistance value can be reduced. Moreover, it is less time-consuming than using a conventional electrolytic polymerization method or the like, and the conductive material can be easily manufactured. This ease, which is the merit of the method for producing a conductive material (chemical polymerization method) according to the embodiment of the present invention, is a fiber or a substrate made of this material by a technique that cannot be realized by an electrolytic polymerization method such as printing or spraying. The conductivity can be realized.
 本発明の実施の形態の導電性材は、肌触りが良く、耐久性及び耐水性に優れ、柔軟性もあり、抵抗値が低く、生体適合性が高いため、例えば、ヘルスケア用のウェアラブル電極や、筋肉の内部や皮膚表面からの電位測定用の電極、心電図測定用の電極、脳波測定用の電極、臨床治療用の生体電極などに使用することができる。 The conductive material according to the embodiment of the present invention has a good touch, excellent durability and water resistance, flexibility, low resistance value, and high biocompatibility. It can be used as an electrode for measuring potential from the inside of a muscle or the skin surface, an electrode for measuring an electrocardiogram, an electrode for measuring an electroencephalogram, a biological electrode for clinical treatment, and the like.
 以下に、本発明の実施の形態の導電性材の抵抗値や生体適合性等について試験を行い、その結果に基づいて評価・検討を行った。 Hereinafter, tests were conducted on the resistance value, biocompatibility, and the like of the conductive material according to the embodiment of the present invention, and evaluation and examination were performed based on the results.
[基材についての検討]
 基材として絹糸(シルク糸)を用い、絹糸の精錬方法の違いにより、導電性材の抵抗値が変化するかどうかについて試験を行った。試験には、21中8本片で、168デニールの絹糸(断面積:約2.5×10-4cm)を用いた。また、試験に使用する絹糸は、生糸(未精錬:以下同様)、リン酸精錬糸(酸精錬)、ソーピング精錬糸(ソーピング精錬)、石けん精錬糸(アルカリ精錬)、酵素精錬糸(タンパク質分解酵素による精錬)の5種類とした。
[Examination of base material]
A silk thread (silk thread) was used as a base material, and a test was conducted as to whether or not the resistance value of the conductive material changed due to a difference in the refining method of the silk thread. In the test, 168 denier silk thread (cross-sectional area: about 2.5 × 10 −4 cm 2 ) was used with 8 pieces in 21 pieces. Silk yarn used for the test is raw silk (unrefined: the same applies below), phosphoric acid refined yarn (acid refined), soaping refined yarn (soap refined), soap refined yarn (alkali refined), enzyme refined yarn (proteolytic enzyme) Refining).
 5種類の絹糸を使用し、それぞれ以下に示す本発明の実施の形態の導電性材の製造方法により導電性材を製造した。具体的には、まず、遷移金属の鉄(III)イオンとpTSと
を含むブタノール溶液(Heraeus社製「CLEVIOS C-B 40 V2」:p-トルエンスルホン酸鉄(III)として約4質量%である。「CLEVIOS」は登録商標)を6.3ml準備し、そこに絹糸を浸漬させた。次に、その溶液に、EDOT(Heraeus社製「CLEVIOS MV2」:EDOT約98.5質量%である。「CLEVIOS」は登録商標)を220μl添加した後、50~100℃で、10分~60分間の恒温槽における加熱を行った。加熱後、溶液から絹糸を取り出し、脱イオン水による洗浄を3回行い、次いで、70℃の恒温槽内で乾燥させた。上記の条件範囲のうち、70℃、20分間の加熱条件で調製した導電性材を下記の精錬方法別の試験において用いた。
Five types of silk thread were used, and the conductive material was manufactured by the method for manufacturing the conductive material according to the embodiment of the present invention described below. Specifically, first, a butanol solution containing iron (III) ions of transition metal and pTS (“CLEVIOS CB 40 V2” manufactured by Heraeus Co., Ltd .: about 4% by mass as iron (III) p-toluenesulfonate). 6.3 ml of “CLEVIOS” is a registered trademark), and silk thread was immersed therein. Next, 220 μl of EDOT (“CLEVIOS MV2” manufactured by Heraeus, about 98.5% by mass, “CLEVIOS” is a registered trademark) is added to the solution, and then at 50 to 100 ° C. for 10 minutes to 60 minutes. Heating was performed in a thermostatic bath for minutes. After heating, the silk thread was taken out from the solution, washed with deionized water three times, and then dried in a constant temperature bath at 70 ° C. Of the above condition range, the conductive material prepared under the heating condition of 70 ° C. for 20 minutes was used in the following tests for each refining method.
 各絹糸を用いて製造した導電性材の抵抗値を測定し、その結果を図2に示す。図2に示すように、酵素精錬糸で製造した導電性材が最も抵抗値が低く、リン酸精錬糸で製造した導電性材も抵抗値が低いことが確認された。電気抵抗値は、各々の糸の1cm長の電気抵抗値をテスターで計測した結果の値である(以下、同様である)。 The resistance value of the conductive material manufactured using each silk thread was measured, and the result is shown in FIG. As shown in FIG. 2, it was confirmed that the conductive material manufactured with the enzyme smelting yarn had the lowest resistance value, and the conductive material manufactured with the phosphoric acid smelting yarn also had the low resistance value. The electrical resistance value is a value obtained by measuring the electrical resistance value of 1 cm length of each yarn by a tester (the same applies hereinafter).
 精錬方法が異なる上記各絹糸の表面の電子顕微鏡写真を、図3に示す。図3に示すように、酵素精錬糸の表面が最も滑らかであり、リン酸精錬糸の表面も比較的滑らかであることがわかる。このことから、酵素精錬糸やリン酸精錬糸の表面状態の良さが、導電性材の抵抗値の低さの一因であると考えられる。すなわち、酵素精錬糸や酸精錬糸などの表面が滑らかな基材を使用して導電性材を製造することにより、基材の表面にPEDOT-pTSが密に付着し、抵抗値を低下させるものと考えられる。 FIG. 3 shows electron micrographs of the surface of each of the above-mentioned silk threads with different refining methods. As shown in FIG. 3, it can be seen that the surface of the enzyme refined yarn is the smoothest and the surface of the phosphate refined yarn is also relatively smooth. From this, it is considered that the good surface condition of the enzyme refined yarn and the phosphate refined yarn is one of the causes of the low resistance value of the conductive material. That is, by producing a conductive material using a base material having a smooth surface such as an enzyme refined yarn or an acid refined yarn, PEDOT-pTS adheres tightly to the surface of the substrate and reduces the resistance value. it is conceivable that.
[製造方法について]
 以下は実施例の1つであり、本発明がこれに限定されるわけではない。
[Production method]
The following is one example, and the present invention is not limited to this.
 上記の「基材についての検討」において開示した、本発明の実施の形態の導電性材の製造方法(以下、「化学重合法」と呼ぶ)で製造された導電性材、及び、特許文献1や非特許文献1に記載の電解重合法を利用して製造された導電性材について比較を行った。なお、どちらの導電性材も、基材として上記の「基材についての検討」において用いた生糸を用いた。 The conductive material manufactured by the method for manufacturing the conductive material according to the embodiment of the present invention (hereinafter referred to as “chemical polymerization method”) disclosed in the above-mentioned “examination of the substrate”, and Patent Document 1 In addition, the conductive materials manufactured by using the electrolytic polymerization method described in Non-Patent Document 1 were compared. In both the conductive materials, the raw silk used in the above “examination of the base material” was used as the base material.
 電解重合法で製造された導電性材は、特許文献1及び非特許文献1に記載された方法で製造した。具体的には、まず、PEDOT-PSS溶液に質量比0.1%のEDOTを加えた混合溶液に、基材の生糸を一晩浸した。次に、その混合溶液に、参照電極のAg/AgCl電極と対極のPt電極とを浸し、生糸の中央部を混合溶液に浸したまま、作用電極に接続されたクリップで生糸の両端を挟んだ。ポテンショスタットを用いて、生糸の両端から重合電位(0.8V vs. Ag/AgCl)を印加し、総電荷が76.8μCに達するまで電解重合を行った。その後、混合溶液から生糸を引き上げて、70℃の恒温槽で乾燥させた。 The conductive material produced by the electrolytic polymerization method was produced by the methods described in Patent Document 1 and Non-Patent Document 1. Specifically, first, the raw silk of the base material was immersed overnight in a mixed solution obtained by adding EDOT at a mass ratio of 0.1% to the PEDOT-PSS solution. Next, the Ag / AgCl electrode of the reference electrode and the Pt electrode of the counter electrode were immersed in the mixed solution, and both ends of the raw silk were sandwiched by clips connected to the working electrode while the central portion of the raw silk was immersed in the mixed solution. . Using a potentiostat, a polymerization potential (0.8 V vs. Ag / AgCl) was applied from both ends of the raw silk, and electrolytic polymerization was performed until the total charge reached 76.8 μC. Thereafter, the raw silk was pulled up from the mixed solution and dried in a constant temperature bath at 70 ° C.
 化学重合法で製造された導電性材として、上記の「基材についての検討」において、70℃、20分間の加熱条件を、生糸に対して行って製造したものを用いた。 As the conductive material manufactured by the chemical polymerization method, the one manufactured by performing the heating condition at 70 ° C. for 20 minutes in the above “examination of the base material” was used.
 上記の化学重合法で製造された導電性材及び電解重合法で製造された導電性材の抵抗値を測定し、その結果を図4に示す。図4に示すように、化学重合法で製造された導電性材の方が、電解重合法で製造された導電性材よりも、抵抗値が約4桁低くなっていることが確認された。このように、化学重合法で製造された導電性材は、導電性に優れ、より抵抗値が低いため、これを電極として使用したときにノイズを低減することができ、より正確な測定を行うことができる。 The resistance values of the conductive material produced by the above chemical polymerization method and the conductive material produced by the electrolytic polymerization method were measured, and the results are shown in FIG. As shown in FIG. 4, it was confirmed that the resistance value of the conductive material manufactured by the chemical polymerization method is about 4 digits lower than that of the conductive material manufactured by the electrolytic polymerization method. Thus, since the conductive material manufactured by the chemical polymerization method has excellent conductivity and lower resistance value, noise can be reduced when this is used as an electrode, and more accurate measurement is performed. be able to.
 上記の化学重合法で製造された導電性材及び電解重合法で製造された導電性材の電子顕微鏡写真を、図5に示す。図5(a)に示すように、電解重合法で製造された導電性材では、基材の表面の一部にPEDOT-PSSの付着が認められるのに対し、図5(b)に示すように、化学重合法で製造された導電性材では、基材の表面全体に、PEDOT-pTSが均一にむらなく付着していることが確認された。一般に、基材の表面を覆うPEDOTの表面積が大きいほど、導電性が高くなり、抵抗値が低下すると考えられるため、図5に示すPEDOTの付着の仕方の違いが抵抗値の差を生じているものと考えられる。 FIG. 5 shows electron micrographs of the conductive material produced by the chemical polymerization method and the conductive material produced by the electrolytic polymerization method. As shown in FIG. 5 (a), in the conductive material manufactured by the electrolytic polymerization method, PEDOT-PSS adheres to a part of the surface of the substrate, whereas as shown in FIG. 5 (b). In addition, it was confirmed that PEDOT-pTS was uniformly and uniformly attached to the entire surface of the base material in the conductive material produced by the chemical polymerization method. In general, the larger the surface area of PEDOT covering the surface of the base material, the higher the conductivity and the lower the resistance value. Therefore, the difference in the adhesion method of PEDOT shown in FIG. It is considered a thing.
[生体適合性の検討]
 本発明の実施の形態の導電性材の生体適合性を調べるための試験を行った。まず、カバーガラスの表面にPEDOT-pTSを滴下してスピンコートし、PEDOT-pTSの薄膜を形成したものを準備し、その上で鶏胚の脳細胞の初代培養を行った。培養では、まず、鶏胚の脳をトリプシン溶液中におよそ10分間浸し、10回程ピペッティングした後、300μlを35mm培養皿に移し、2%のB27supplement、0.074 mg/ml L-glutamine、25μM glutamate、20ng/ml NGFを含むNeurobasal mediumからなる培養液を2ml加えた。これを37℃のインキュベーターに入れて、24時間培養した。培養終了後、蛍光色素アクリジンオレンジ(5μg/ml)を用いて細胞を染色し、Arレーザーで励起することにより、生死判定を行った。細胞が死んでいる場合には、蛍光色素は排出されず、蛍光が観察される。なお、比較のため、PEDOT-pTSをスピンコートしていない、カバーガラスのみの場合についても、培養及び蛍光観察を行った。
[Examination of biocompatibility]
A test for examining the biocompatibility of the conductive material according to the embodiment of the present invention was performed. First, PEDOT-pTS was dropped on the surface of the cover glass and spin-coated to prepare a thin film of PEDOT-pTS, on which primary culture of chicken embryo brain cells was performed. In culture, chicken embryo brain was first immersed in trypsin solution for about 10 minutes and pipetted about 10 times, then 300 μl was transferred to a 35 mm culture dish, 2% B27 supplement, 0.074 mg / ml L-glutamine, 25 μM. 2 ml of a culture medium consisting of Neurobasal medium containing glutamate and 20 ng / ml NGF was added. This was placed in a 37 ° C. incubator and cultured for 24 hours. After completion of the culture, the cells were stained with the fluorescent dye acridine orange (5 μg / ml) and excited by an Ar laser to determine viability. If the cell is dead, the fluorescent dye is not excreted and fluorescence is observed. For comparison, culture and fluorescence observation were also performed for the case of only the cover glass without spin coating with PEDOT-pTS.
 その結果を、図6(a)~(d)に示す。図6(a)及び(b)は、カバーガラスの上で鶏胚の脳細胞を培養したときの通常光観察、及び、同蛍光観察での顕微鏡写真であり、図6(c)及び(d)は、本発明の実施の形態の導電性材の製造方法で使用するPEDOT-pTSを塗布したカバーガラスの上で鶏胚の脳細胞を培養したときの通常光観察、及び、同蛍光観察での顕微鏡写真である。図6(b)に示すように、PEDOT-pTSをスピンコートしていないものでは、多くの蛍光が観察され、死細胞が多かったのに対し、図6(d)に示すように、PEDOT-pTSをスピンコートしたものでは、蛍光がほとんど観察されず、細胞が生きたまま培養されていることが確認された。この結果から、PEDOT-pTSが高い生体適合性を有しており、生体組織からの拒絶反応がほとんどないことがわかる。 The results are shown in FIGS. 6 (a) to (d). 6 (a) and 6 (b) are photomicrographs of normal light observation and fluorescence observation when culturing the brain cells of a chicken embryo on a cover glass. FIGS. 6 (c) and (d) ) Shows normal light observation and fluorescence observation when culturing the brain cells of a chicken embryo on a cover glass coated with PEDOT-pTS used in the method for producing a conductive material according to the embodiment of the present invention. FIG. As shown in FIG. 6 (b), in the case where PEDOT-pTS was not spin-coated, a large amount of fluorescence was observed and there were many dead cells, whereas as shown in FIG. 6 (d), PEDOT- In the case where pTS was spin-coated, almost no fluorescence was observed, and it was confirmed that the cells were cultured alive. From this result, it can be seen that PEDOT-pTS has high biocompatibility and there is almost no rejection from living tissue.
 次に、図7(a)に示すように、基材の絹糸の表面にPEDOT-pTSが付着した本発明の実施の形態の導電性材(上記の「基材についての検討」において、70℃、20分間の加熱条件を、生糸に対して行って製造したもの)を生体電極の素子として用いて、鶏胚の筋肉内部の電位測定を行った。その測定結果を、図7(b)に示す。図7(b)に示すように、刺激を与えて筋肉を運動させたとき、その運動に伴う電位変化を測定可能であることが確認された。 Next, as shown in FIG. 7A, in the conductive material according to the embodiment of the present invention in which PEDOT-pTS is attached to the surface of the silk thread of the base material (in the above “examination of the base material”, 70 ° C. In addition, the potential inside the muscles of chicken embryos was measured using a 20-minute heating condition performed on raw silk as a bioelectrode element. The measurement result is shown in FIG. As shown in FIG. 7B, it was confirmed that when a muscle was exercised by applying a stimulus, it was possible to measure a potential change accompanying the exercise.
[セリシン被覆布地の基材としての検討]
(1)セリシン被覆布地の作出
 セリシン被覆布地については、アート株式会社(群馬県桐生市)に委託して作出した。
 布地基材は、六匁羽二重布地(齋栄織物(株))、ナイロン布地(東レ(株))、アセテート布地(アセチルセルロース・三菱レーヨン)、ポリエステル布地、レーヨン布地(セルロース・旭化成)、キュプラ布地(セルロース・旭化成ベンベルグ)である。
[Examination of sericin-coated fabric as a base material]
(1) Production of sericin-coated fabric The sericin-coated fabric was commissioned to Art Co., Ltd. (Kiryu City, Gunma Prefecture).
The fabric base materials are six-row double fabric (Ryoei Textile Co., Ltd.), nylon fabric (Toray Co., Ltd.), acetate fabric (acetylcellulose / Mitsubishi Rayon), polyester fabric, rayon fabric (cellulose / Asahi Kasei), Cupra fabric (cellulose, Asahi Kasei Bemberg).
(2)セリシン被覆布地に対するPEDOT-pTSの付着工程
 準備した各種のセリシン被覆布地(5cm×1cm)に対して、それぞれ以下に示す本発明の導電性材の製造方法の工程により導電性材を製造した。具体的には、まず、遷移金属の鉄(III)イオンとpTSとを含むブタノール溶液(Heraeus社製「CLEVIOS C-B 40 V2」:p-トルエンスルホン酸鉄(III)として約4質量%である。「CLEVIOS」は登録商標)を10ml準備し、そこに各セリシン被覆布地を浸漬させた。次に、その溶液に、EDOT(Heraeus社製「CLEVIOS MV2」:EDOT約98.5質量%である。「CLEVIOS」は登録商標)を310μl添加した後、70℃で、30分間の恒温槽における加熱を行った。加熱後、溶液からセリシン被覆布地を取り出し、脱イオン水による震盪洗浄を1時間程度2回行い、次いで、70℃の恒温槽内で乾燥させた。
(2) Adhesion process of PEDOT-pTS to sericin-coated fabric For each of the prepared sericin-coated fabrics (5 cm × 1 cm), a conductive material is produced by the following steps of the method for producing a conductive material of the present invention. did. Specifically, first, a butanol solution containing iron (III) ions of transition metal and pTS (“CLEVIOS CB 40 V2” manufactured by Heraeus Co., Ltd .: about 4% by mass as iron (III) p-toluenesulfonate). 10 ml of “CLEVIOS” is a registered trademark), and each sericin-coated fabric was immersed therein. Next, 310 μl of EDOT (“CLEVIOS MV2” manufactured by Heraeus Co., Ltd .: about 98.5% by mass of EDOT, “CLEVIOS” is a registered trademark) was added to the solution, and then in a thermostatic bath at 70 ° C. for 30 minutes. Heating was performed. After the heating, the sericin-coated fabric was taken out from the solution, washed with shaking with deionized water twice for about 1 hour, and then dried in a constant temperature bath at 70 ° C.
 上記のように製造した導電性材の抵抗値は、フラットクリップを用いて幅2cmの間隔でクリッピングすることで、ポテンショスタットにより電流計測を行い、1cm長当たりの抵抗値を算出した。その結果を図8に示す(縦軸の抵抗値の単位は、「Ω/cm」である)。図8に示すように、各種のセリシン被覆布地は、最大でも20kΩ/cm近傍であり、最低値は5.2kΩ/cm近傍であった。これにより、セリシン被覆布地は、本発明の導電性材の基材として好適であることが明らかになった。なお、六匁羽二重布地(絹)を用いたセリシン被覆布地の抵抗値が相対的に高いのは、当該布地の厚さが他と比べて非常に薄いためであると考えられる。 The resistance value of the conductive material manufactured as described above was measured with a potentiostat by clipping at intervals of 2 cm in width using a flat clip, and the resistance value per 1 cm length was calculated. The results are shown in FIG. 8 (the unit of resistance value on the vertical axis is “Ω / cm”). As shown in FIG. 8, various sericin-coated fabrics had a maximum value in the vicinity of 20 kΩ / cm, and the minimum value was in the vicinity of 5.2 kΩ / cm. Thereby, it became clear that a sericin covering fabric is suitable as a base material of the electroconductive material of this invention. In addition, it is considered that the resistance value of the sericin-coated fabric using the hexagonal double fabric (silk) is relatively high because the thickness of the fabric is much thinner than others.
[ナイロンの基材としての検討]
 合成繊維布地を基材として用いて作出したPEDOT-pTS付着布地(全て5cm×1cm)における耐洗浄性を評価するために、(1)ナイロン布地(東レ(株):ナイロン6、ナイロン66、又は、ナイロン610のいずれかであると推定されるが、この実施例の検証時点では不明である。ただし、これらいずれの種類のナイロンを用いても実質的に同一の結果が得られると予測される。)、(2)アセテート布地(アセチルセルロース・三菱レーヨン)、(3)ポリエステル布地、(4)絹布地(ダブルサテン)に対して、それぞれ以下に示す本発明の製造方法の工程により導電性材を製造した。具体的には、まず、遷移金属の鉄(III)イオンとpTSとを含むブタノール溶液(Heraeus社製「CLEVIOS C-B 40 V2」:p-トルエンスルホン酸鉄(III)として約4質量%である。「CLEVIOS」は登録商標)を10ml準備し、そこに各布地を浸漬させた。次に、その溶液に、EDOT(Heraeus社製「CLEVIOS MV2」:EDOT約98.5質量%である。「CLEVIOS」は登録商標)を310μl添加した後、70℃で、30分間の恒温槽における加熱を行った。加熱後、溶液から布地を取り出して(洗浄前の布地)、抵抗値を計測した。次いで、脱イオン水による震盪洗浄を1時間程度2回行い、さらに、70℃の恒温槽内で乾燥させて(洗浄後の布地)、電気抵抗値を計測した。
[Examination of nylon as a base material]
In order to evaluate the washing resistance of PEDOT-pTS adhered fabric (all 5 cm × 1 cm) produced using a synthetic fabric as a base material, (1) nylon fabric (Toray Industries, Inc .: nylon 6, nylon 66, or However, it is unclear at the time of the verification of this example, but it is expected that substantially the same result can be obtained by using any of these types of nylon. .), (2) Acetate fabric (acetylcellulose / Mitsubishi Rayon), (3) Polyester fabric, and (4) Silk fabric (Double Satin), respectively, by the steps of the production method of the present invention shown below. Manufactured. Specifically, first, a butanol solution containing iron (III) ions of transition metal and pTS (“CLEVIOS CB 40 V2” manufactured by Heraeus Co., Ltd .: about 4% by mass as iron (III) p-toluenesulfonate). 10 ml of “CLEVIOS” is a registered trademark), and each fabric was immersed therein. Next, 310 μl of EDOT (“CLEVIOS MV2” manufactured by Heraeus Co., Ltd .: about 98.5% by mass of EDOT, “CLEVIOS” is a registered trademark) was added to the solution, and then in a thermostatic bath at 70 ° C. for 30 minutes. Heating was performed. After heating, the fabric was taken out of the solution (fabric before washing), and the resistance value was measured. Next, shaking washing with deionized water was performed twice for about 1 hour, and further dried in a constant temperature bath at 70 ° C. (cloth after washing), and the electric resistance value was measured.
 上記のように製造した導電性材の洗浄前と洗浄後のそれぞれの抵抗値は、フラットクリップを用いて幅2cmの間隔でクリッピングすることで、ポテンショスタットにより電流計測を行い、1cm長当たりの抵抗値を算出した。その結果を図9に示す(縦軸の抵抗値の単位は、「Ω/cm」である)。図9において、左側のバーが「洗浄前の抵抗値」を示しており、それぞれの布地について右側のバーが「洗浄後の抵抗値」を示している。洗浄前よりも、洗浄後の方が低抵抗値であったのは、ナイロン布地と絹布のみであった。最も良好な耐洗浄性が認められたのは絹繊維布地であったが、ナイロン布地も実用に十分な耐洗浄性を有していることが明らかになった。 The resistance values of the conductive material manufactured as described above before and after cleaning are measured with a potentiostat by clipping at a width of 2 cm using a flat clip, and the resistance per 1 cm length is measured. The value was calculated. The results are shown in FIG. 9 (the unit of resistance value on the vertical axis is “Ω / cm”). In FIG. 9, the left bar indicates “resistance value before washing”, and the right bar indicates “resistance value after washing” for each fabric. Only nylon fabric and silk cloth had lower resistance after washing than before washing. It was clear that silk fabrics showed the best washing resistance, but nylon fabrics also showed sufficient washing resistance for practical use.
[表面用多点電極の検討(1)]
 この表面筋電測定の検討内容は、図10の略図と電位測定チャートにより示した。
[Examination of multi-point electrode for surface (1)]
The examination content of this surface myoelectric measurement is shown by the schematic diagram of FIG. 10 and the potential measurement chart.
 1cm幅・10cm長のリボン状の絹布(タンパク質分解酵素による酵素精錬がなされた絹糸からなる平織りの絹織物)を基材として、上記の「基材についての検討」において開示した70℃、20分間の加熱条件の製造方法(化学重合法)を施して導電性材を製造し、さらに当該導電性材を1cm角(面積1cm)に裁断し、当該サイズの表面電極素子を10枚製造した。これらの10枚の平板状の導電性材の端と端の間の電気抵抗値をテスターで計測したところ、全て1.6kΩ未満であった。これらの表面電極素子の一つ一つに、同じく「基材についての検討」において、70℃、20分間の加熱条件を、生糸(未精錬)に対して行って製造した線状電極素子を、縫製により連結し、表面用多点電極の単位素子を作出した。当該単位素子の線状部分を、絶縁体として用いる絹布面(タンパク質分解酵素による酵素精錬がなされた絹糸からなる平織りの絹織物)に対して垂直方向から縫い針を用いて突き通して、さらに簡単な縫い付けを行った。布面の面積は、10cm角(面積100cm)で、当該単位素子を9個、それぞれを0.5cm間隔で等距離になるように縫い付けた。このようにして、表面用多点電極を作出した(図10(a))。 A ribbon-like silk cloth having a width of 1 cm and a length of 10 cm (a plain weaved silk fabric made of a proteolytic enzyme refining enzyme) is used as a base material. The manufacturing method (chemical polymerization method) under the above heating conditions was applied to manufacture a conductive material, and the conductive material was further cut into 1 cm square (area 1 cm 2 ) to manufacture 10 surface electrode elements of the size. When the electric resistance values between the ends of these ten flat plate-like conductive materials were measured with a tester, they were all less than 1.6 kΩ. In each of these surface electrode elements, a linear electrode element manufactured by performing heating conditions for 70 minutes at 70 ° C. for raw silk (unrefined) in the same “examination of substrate”, The unit element of the multipoint electrode for surface was created by connecting by sewing. It is even easier to pierce the linear part of the unit element with a sewing needle from the perpendicular direction to the silk fabric surface (a plain weave silk fabric made of proteolytic enzyme refining). Sewed. The area of the cloth surface was 10 cm square (area 100 cm 2 ), and nine unit elements were sewn so as to be equidistant at intervals of 0.5 cm. Thus, the multipoint electrode for surfaces was produced (FIG. 10 (a)).
 次に、この表面用多点電極を、その表面電極素子が露出している側と被験者の腕を接触させた状態で固定し、被験者の手の運動に伴う電位の変化を、市販のワイヤレス筋電計(ID3PAD:追坂電子製)を用いていて測定した(図10(b))。なお、計測に際し、当該表面用多点電極と皮膚との間には、ジェル等のインピーダンスを低減させるための物質は塗布せず、電極を直接皮膚に接触させた。 Next, the surface multipoint electrode is fixed in a state where the surface electrode element exposed side and the subject's arm are in contact with each other, and the change in potential due to the movement of the subject's hand is measured with a commercially available wireless muscle. Measurement was carried out using an electric meter (ID3PAD: manufactured by Osaka Electronics) (FIG. 10B). In the measurement, a substance for reducing impedance such as gel was not applied between the surface multipoint electrode and the skin, and the electrode was directly brought into contact with the skin.
[表面用多点電極の検討(2)]
 この表面脳波測定の検討内容は、図11の略図と電位測定チャートにより示した。
[Examination of multi-point electrode for surface (2)]
The examination contents of the surface electroencephalogram measurement are shown by the schematic diagram of FIG. 11 and the potential measurement chart.
 直径が0.2mmの絹糸(タンパク質分解酵素による酵素精錬がなされた絹糸)に対して、上記の「基材についての検討」において開示した70℃、20分間の加熱条件の製造方法(化学重合法)を施して、当該絹糸を基材とする線状電極素子を製造した。絶縁体として用いる20mm角(面積400mm)の絹布(タンパク質分解酵素による酵素精錬がなされた絹糸からなる平織りの絹織物)面に対して、当該線状電極素子を裏面の垂直方向から突き通して、さらに線長1mm分が布面表面に露出するように、前記突き通した線状電極素子の先端部分を布表面に対して再び突き通して、第1の線状電極素子として縫い込みを行い、次いで、前記第1の線状電極素子の縫い込み固定部分のごく近傍に、当該第1の線状電極素子の1mmの露出部分と直交するように、同様に縫い込み固定を行った。このように直交して縫い込み固定された2本の線状電極素子を1組の表面用多点電極の単位素子とした。上記のように、0.2mm幅の絹糸1mm分を2本であるから、当該組の電極面積は0.004cmである。上記20mm角の布面で、当該単位素子を9箇所、それぞれを5mm間隔で等距離になるように縫い付けた。このようにして、脳波測定用の表面用多点電極を作出した(図11(a))。 A manufacturing method (chemical polymerization method) for heating conditions of 70 ° C. for 20 minutes disclosed in the above “examination of base material” for silk yarn having a diameter of 0.2 mm (silk yarn subjected to enzyme refining with a proteolytic enzyme) The linear electrode element which uses the said silk thread as a base material was manufactured. A 20 mm square (area 400 mm 2 ) silk cloth (a plain weave silk fabric made of proteolytic enzyme refining) is used as an insulator, and the linear electrode element is pierced from the vertical direction of the back surface. Further, the front end portion of the pierced linear electrode element is pierced again with respect to the cloth surface so that a line length of 1 mm is exposed on the cloth surface, and sewing is performed as the first linear electrode element. Then, the sewing was fixed in the same manner so as to be orthogonal to the 1 mm exposed portion of the first linear electrode element in the vicinity of the sewing fixing portion of the first linear electrode element. The two linear electrode elements sewn and fixed orthogonally in this way were used as a unit element of a set of multipoint electrodes for the surface. As described above, since there are two pieces of 1 mm of 0.2 mm-wide silk thread, the electrode area of the set is 0.004 cm 2 . The unit element was sewed on the 20 mm square cloth surface so that each of the unit elements was equidistant at intervals of 5 mm. In this way, a multipoint electrode for the surface for electroencephalogram measurement was created (FIG. 11 (a)).
 次に、この脳波測定用の表面用多点電極を、鶏胚(胚齢19日)の頭蓋骨を除去した脳の表面に、その電極面を接触させることにより、脳神経活動を市販のRZ5バイオアンプ(TDT社)を有線接続して測定した(図11(b))。なお、計測に際し、当該表面用多点電極と皮膚との間には、何らインピーダンスを低減させるための物質は塗布せず、電極を直接脳に接触させた。 Next, the surface of the multipoint electrode for electroencephalogram measurement is brought into contact with the surface of the brain from which the skull of a chicken embryo (embryonic day 19) has been removed, thereby bringing the cranial nerve activity into a commercially available RZ5 bioamplifier. (TDT) was measured by wire connection (FIG. 11 (b)). In the measurement, a substance for reducing impedance was not applied between the multipoint electrode for surface and the skin, and the electrode was directly brought into contact with the brain.
 このように、本発明の実施の形態の導電性材は、生体適合性に優れており、生体電極として十分に使用可能であるといえる。特に、基材が絹繊維を材料とするものである場合には、生体電極として好適に使用することができる。 Thus, it can be said that the conductive material of the embodiment of the present invention is excellent in biocompatibility and can be sufficiently used as a bioelectrode. In particular, when the base material is made of silk fiber, it can be suitably used as a bioelectrode.

Claims (14)

  1.  絹繊維、又は、ナイロン繊維を材料とする基材、あるいは、セリシン若しくはフィブロインを被覆した基材に、PEDOT-pTS(poly(3,4-ethylene-dioxythiophene)-p-toluenesulfonate)が付着していることを特徴とする、導電性材。 PEDOT-pTS (poly (3,4-ethylene-dioxythiophene) -p-toluenesulfonate) is attached to a substrate made of silk fiber or nylon fiber, or a substrate coated with sericin or fibroin. A conductive material characterized by that.
  2.  前記基材は、線状、又は、平面状、であることを特徴とする、請求項1記載の導電性材。 The conductive material according to claim 1, wherein the base material is linear or planar.
  3.  導電部分の電気抵抗値が、
    (1)基材が線状部材の場合は、断面積約2.5x10-4cmにおいて50kΩ/cm以下であり、
    (2)基材が平面状部材の場合を含む(1)以外の場合は、50kΩ/cm以下であることを特徴とする、請求項1又は2に記載の導電性材。
    The electrical resistance value of the conductive part is
    (1) When the base material is a linear member, the cross-sectional area is about 2.5 × 10 −4 cm 2 and is 50 kΩ / cm or less,
    (2) The conductive material according to claim 1 or 2, wherein the material is 50 kΩ / cm or less in cases other than (1) including the case where the substrate is a planar member.
  4.  請求項1~3のいずれか1項に記載の導電性材を含むことを特徴とする、生体電極。 A biological electrode comprising the conductive material according to any one of claims 1 to 3.
  5.  前記生体電極が、表面用電極であり、かつ、平面状の電極素子の生体組織との接触可能面積は、0.25~100cmであることを特徴とする、請求項4に記載の生体電極。 The biological electrode according to claim 4, wherein the biological electrode is a surface electrode, and an area of the planar electrode element that can contact the biological tissue is 0.25 to 100 cm 2. .
  6.  前記生体電極が、表面用電極であり、かつ、線状の電極素子の生体組織との接触可能面積は、0.0004~0.002cmであることを特徴とする、請求項4に記載の生体電極。 5. The biological electrode according to claim 4, wherein the biological electrode is a surface electrode, and the area of the linear electrode element that can be contacted with the biological tissue is 0.0004 to 0.002 cm 2 . Bioelectrode.
  7.  前記生体電極が、穿刺用電極であり、かつ、電極素子の生体組織との接触可能面積は、0.0004~0.002cmであることを特徴とする、請求項4に記載の生体電極。 The biological electrode according to claim 4, wherein the biological electrode is a puncture electrode, and an area of the electrode element that can contact the biological tissue is 0.0004 to 0.002 cm 2 .
  8.  前記生体電極が、多点電極であることを特徴とする、請求項4~7のいずれか1項に記載の生体電極。 The biological electrode according to any one of claims 4 to 7, wherein the biological electrode is a multipoint electrode.
  9.  下記の工程(1)及び(2)を含むことを特徴とする、導電性材の製造方法。
    (1) 酸化成分とpTS(p-toluenesulfonate)とを含むpTS溶液を、絹繊維、又は、ナイロン繊維を材料とする基材、あるいは、セリシン若しくはフィブロインを被覆した基材、に付着させる付着工程;
    (2) 付着工程(1)において酸化成分とpTSを付着させた基材に、さらにEDOT(3,4-ethylenedioxythiophene)を付着させて、当該基材においてPEDOT-pTS(poly(3,4-ethylene-dioxythiophene)-p-toluenesulfonate)を生成する重合反応を進行させて、当該基材にPEDOT-pTSの付着状態を形成する、重合工程。
    The manufacturing method of an electroconductive material characterized by including the following process (1) and (2).
    (1) An attachment step of attaching a pTS solution containing an oxidizing component and pTS (p-toluenesulfonate) to a substrate made of silk fiber or nylon fiber, or a substrate coated with sericin or fibroin;
    (2) EDOT (3,4-ethylenedioxythiophene) is further attached to the base material to which the oxidizing component and pTS are attached in the attaching step (1), and PEDOT-pTS (poly (3,4-ethylene) is attached to the base material. -Dioxythiophene) -p-toluenesulfonate) is allowed to proceed to form a PEDOT-pTS adhesion state on the substrate by proceeding with the polymerization reaction.
  10.  付着工程(1)における酸化成分とpTSの付着は、pTS溶液に基材を浸漬させることにより行われ、又は、pTS溶液を基材に印刷することにより行われる、ことを特徴とする、請求項9に記載の導電性材の製造方法。 The attachment of the oxidizing component and pTS in the attaching step (1) is performed by immersing the base material in the pTS solution, or by printing the pTS solution on the base material. The method for producing a conductive material according to claim 9.
  11.  重合工程(2)において、EDOTの付着を行うと共に加熱を行って、PEDOT-pTSへの重合反応を促進させることを特徴とする、請求項9又は10に記載の導電性材の製造方法。 The method for producing a conductive material according to claim 9 or 10, wherein in the polymerization step (2), EDOT is adhered and heated to promote polymerization reaction to PEDOT-pTS.
  12.  前記加熱は、50~100℃で、10分~60分間の加熱であることを特徴とする、請求項11に記載の導電性材の製造方法。 The method for producing a conductive material according to claim 11, wherein the heating is performed at 50 to 100 ° C for 10 to 60 minutes.
  13.  重合工程(2)の後、さらに、PEDOT-pTSが付着した基材を洗浄及び乾燥させる工程を行うことを特徴とする、請求項9~12のいずれか1項に記載の導電性材の製造方法。 The production of the conductive material according to any one of claims 9 to 12, further comprising a step of washing and drying the substrate to which PEDOT-pTS is adhered after the polymerization step (2). Method.
  14.  前記酸化成分は、第二鉄イオンであることを特徴とする、請求項9~13のいずれか1項に記載の導電性材の製造方法。 The method for producing a conductive material according to any one of claims 9 to 13, wherein the oxidizing component is ferric ion.
PCT/JP2017/007280 2016-02-28 2017-02-27 Conductive material and method for producing same, and bioelectrode WO2017146247A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016036496A JP6587104B2 (en) 2016-02-28 2016-02-28 Conductive material, method for producing the same, and bioelectrode
JP2016-036496 2016-02-28

Publications (1)

Publication Number Publication Date
WO2017146247A1 true WO2017146247A1 (en) 2017-08-31

Family

ID=59686335

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/007280 WO2017146247A1 (en) 2016-02-28 2017-02-27 Conductive material and method for producing same, and bioelectrode

Country Status (2)

Country Link
JP (1) JP6587104B2 (en)
WO (1) WO2017146247A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7502764B2 (en) 2019-12-14 2024-06-19 ビヨンドエス株式会社 Force sensing surface, load stimulus sensing system having the same, computer program used therefor, and related trained model and inference system
JP7411537B2 (en) * 2020-01-22 2024-01-11 信越化学工業株式会社 Bioelectrode composition, bioelectrode, and method for producing bioelectrode

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006085574A1 (en) * 2005-02-10 2006-08-17 Japan Carlit Co., Ltd. Catalytic electrode for dye sensitized solar cell and dye sensitized solar cell including the same
JP2015037695A (en) * 2011-11-17 2015-02-26 日本電信電話株式会社 Conductive polymer fibers, and biological electrode

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006085574A1 (en) * 2005-02-10 2006-08-17 Japan Carlit Co., Ltd. Catalytic electrode for dye sensitized solar cell and dye sensitized solar cell including the same
JP2015037695A (en) * 2011-11-17 2015-02-26 日本電信電話株式会社 Conductive polymer fibers, and biological electrode

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
HIROSHI SAITO: "Performances for Polyester Fabrics Treated with Sericin and Fibroin", NIPPON SILK GAKKAISHI, vol. 10, 2001, pages 43 - 48 *
KATSUMI YOSHINO: "Conducting polymer and its doping effect", JOURNAL OF THE SOCIETY OF RUBBER INDUSTRY, vol. 61, no. 9, 1988, pages 602 - 615 *
RYLIE A. GREEN: "Conducting polymers for neural interfaces: Challenges in developing an effective long-term implant", BIOMATERIALS, vol. 29, 2008, pages 3393 - 3399, XP022733590, DOI: doi:10.1016/j.biomaterials.2008.04.047 *
TATSUMA SONOBE: "Electrical Measurement of Biological Activity Using Flexible Silk Electrode", DAI 75 KAI JSAP AUTUMN MEETING KOEN YOKOSHU, vol. 17P-A3-12, 17 September 2014 (2014-09-17), pages 137 *

Also Published As

Publication number Publication date
JP6587104B2 (en) 2019-10-09
JP2017148452A (en) 2017-08-31

Similar Documents

Publication Publication Date Title
JP6292643B2 (en) Conductive material, method for producing the same, and bioelectrode
JP6835908B2 (en) Bioelectrode
Tsukada et al. Conductive polymer combined silk fiber bundle for bioelectrical signal recording
Jan et al. Layered carbon nanotube-polyelectrolyte electrodes outperform traditional neural interface materials
Oh et al. Nanofiber web textile dry electrodes for long-term biopotential recording
CN103462602B (en) Preparation method of spinning electrode used for testing electrocardiosignal
Teplenin et al. Functional analysis of the engineered cardiac tissue grown on recombinant spidroin fiber meshes
JPWO2016148249A1 (en) Electrode element, electrode production method, and production of measurement system using the electrode
JP6587104B2 (en) Conductive material, method for producing the same, and bioelectrode
Benny Mattam et al. Conducting polymers: A versatile material for biomedical applications
Sharma et al. Conducting Polymer Composites for Tissue Engineering Scaffolds

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17756681

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17756681

Country of ref document: EP

Kind code of ref document: A1