WO2017146110A1 - Dispersion for forming ion implantation mask, method for forming ion implantation mask, and method for manufacturing semiconductor device - Google Patents

Dispersion for forming ion implantation mask, method for forming ion implantation mask, and method for manufacturing semiconductor device Download PDF

Info

Publication number
WO2017146110A1
WO2017146110A1 PCT/JP2017/006650 JP2017006650W WO2017146110A1 WO 2017146110 A1 WO2017146110 A1 WO 2017146110A1 JP 2017006650 W JP2017006650 W JP 2017006650W WO 2017146110 A1 WO2017146110 A1 WO 2017146110A1
Authority
WO
WIPO (PCT)
Prior art keywords
ion implantation
dispersion
forming
implantation mask
substrate
Prior art date
Application number
PCT/JP2017/006650
Other languages
French (fr)
Japanese (ja)
Inventor
淳史 添田
池田 吉紀
Original Assignee
帝人株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2016091863A external-priority patent/JP6842841B2/en
Priority claimed from JP2016176809A external-priority patent/JP6842864B2/en
Application filed by 帝人株式会社 filed Critical 帝人株式会社
Priority to CN201780013284.XA priority Critical patent/CN108701595A/en
Priority to KR1020187020187A priority patent/KR20180118609A/en
Publication of WO2017146110A1 publication Critical patent/WO2017146110A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/26Bombardment with radiation
    • H01L21/263Bombardment with radiation with high-energy radiation
    • H01L21/265Bombardment with radiation with high-energy radiation producing ion implantation
    • H01L21/266Bombardment with radiation with high-energy radiation producing ion implantation using masks

Definitions

  • the present invention relates to a dispersion for forming an ion implantation mask, a method for forming an ion implantation mask using the dispersion, and a method for manufacturing a semiconductor device.
  • SiC power device In order to manufacture a SiC power device, it is necessary to implant ions into a desired portion in SiC and dope carriers. In ion doping of SiC, since the diffusion coefficient of SiC dopant is small and it is difficult to apply a thermal diffusion method, a doping method by ion implantation is widely used.
  • the crystallinity of the substrate is restored at the same time as the ion implantation, thereby preventing the deterioration of the electrical characteristics of the device.
  • the law is known.
  • a photoresist material used for ion implantation at room temperature such as ion implantation into silicon, for example, chemically amplified photo, is used as an ion implantation mask layer.
  • the resist cannot be used.
  • an inorganic film such as SiO 2 having sufficient heat resistance at the substrate temperature in the ion implantation process for example, chemical vapor deposition (CVD) (CVD: Chemical Vapor Deposition ( It has been proposed to use an inorganic film such as SiO 2 deposited by CVD)) (for example, Patent Document 1).
  • CVD chemical vapor deposition
  • Patent Document 1 By previously patterning such a heat-resistant ion implantation mask on the semiconductor SiC, carrier doping can be performed in a desired region in the semiconductor SiC through the opening of the ion implantation mask.
  • a dry process such as a wet etching method or a reactive ion etching method (RIE) using a photoresist as a mask is used.
  • RIE reactive ion etching method
  • an SiC substrate (2) having an SiC epitaxial film (1) is provided (FIG. 2 (a)), and an SiO 2 film (3) is deposited on the SiC epitaxial film (1) by a CVD method or the like. (FIG. 2 (b)).
  • a photosensitive resist (4) is formed on the SiO 2 film (3) (FIG. 2C).
  • patterning exposure and development which are normal photolithography processes, are performed to form a photosensitive resist pattern (FIG. 2D).
  • the SiO 2 film is removed by hydrofluoric acid or the like to obtain a desired SiO 2 film pattern having a mask pattern opening (12) (FIG. 2E).
  • the photosensitive resist is removed by O 2 ashing (FIG. 2F).
  • ion implantation is performed at a high temperature of 200 ° C. or higher by using a dopant ion beam (7) to form an ion implantation region (6) (FIG. 2 (g)), and hydrofluoric acid or the like is used.
  • the SiO 2 film is peeled off by a wet process (FIG. 2 (h)).
  • This ion implantation process has many steps, is complicated, and is a high-cost process. Therefore, simplification of the process is required.
  • Patent Document 2 a method of performing ion implantation at room temperature using a chemically amplified photoresist as an ion implantation mask has been proposed (for example, Patent Document 2).
  • ion implantation is performed at a high temperature such as 400 ° C. using a siloxane-containing photoresist baking pattern formed by baking after patterning a photoresist containing siloxane as an ion implantation mask.
  • a technique for performing this has been proposed (for example, Patent Document 3).
  • a low-energy secondary ion shower having a polarity opposite to that of the implanted ions is supplied to the surface of the base material.
  • a method of neutralizing the charge for example, Patent Document 5
  • a method of previously covering an insulating ion implantation mask with a conductive antistatic film such as a metal film or a doped semiconductor film when performing ion implantation is used.
  • a technique for example, Patent Document 6) is known.
  • Patent Documents for the purpose of improving the performance of the ion implantation mask as an ion blocking layer, a method of using a metal thin film such as titanium or molybdenum having a high density and high ion shielding performance as an ion implantation mask has been proposed (for example, Patent Documents). 7).
  • Patent Document 1 that uses a SiO 2 film grown by a CVD method as an ion implantation mask is excellent in heat resistance and enables ion implantation at a high temperature, but is complicated in forming the SiO 2 film. Since the CVD method is used, the cost is high. In addition, since a photolithography method is used for patterning the SiO 2 film, complicated processes such as patterning exposure and development steps are required, and the cost is high.
  • Patent Document 2 The method of using a chemically amplified photoresist as an ion implantation mask described in Patent Document 2 has a problem that a high temperature ion implantation process cannot be applied because of its low heat resistance. Moreover, since complicated processes, such as patterning exposure and a development process, are required, it is expensive.
  • the method of forming an ion implantation mask layer on a base material or a substrate by the inkjet method described in Patent Document 4 does not include a vacuum process or a patterning exposure process on the base material or the substrate, it is a process-saving process.
  • the pattern resolution that can be reached by the ink jet method is 50 ⁇ m to 100 ⁇ m at most, which is insufficient for forming a SiC power device.
  • the present invention has been made in view of the background as described above. In particular, it has high-temperature heat resistance and conductivity, and there is no fear of generating metal impurities with respect to the semiconductor substrate.
  • Disclosed is a dispersion for forming an ion implantation mask, a method for forming an ion implantation mask, and a method for manufacturing a semiconductor device, which can be patterned and can be applied to a high-temperature ion implantation process at low cost.
  • a dispersion for forming an ion implantation mask which includes a dispersion medium and particles dispersed in the dispersion medium.
  • the dispersion according to ⁇ 1> further including a heat-resistant binder-forming component.
  • the dispersion according to ⁇ 2>, wherein the heat-resistant binder-forming component is siloxane.
  • the particles are conductive and / or semiconductor particles, and / or the resistivity of the conductive and / or semiconductor particles is 1 ⁇ 10 3 ⁇ cm or less.
  • ⁇ 7> The dispersion according to any one of ⁇ 1> to ⁇ 6>, wherein the particles are silicon particles.
  • ⁇ 8> The dispersion according to ⁇ 7>, wherein the silicon particles contain boron or phosphorus as a dopant.
  • ⁇ 9> The dispersion according to any one of ⁇ 1> to ⁇ 8>, wherein the particles are contained in the range of 1% to 90% by weight of the dispersion.
  • a particle film having a thickness of 500 nm is obtained, and Al + ions having a kinetic energy of 40 keV are added to the particle film.
  • Al + ions passing through the particle film are 1% or less of the number of incident ions when incident at a number density of 1 ⁇ 10 14 cm ⁇ 2.
  • the dispersion according to item. ⁇ 11> An ion implantation mask containing particles and a heat-resistant binder. ⁇ 12> The ion implantation mask according to ⁇ 11>, wherein the sheet resistance is 10 12 ⁇ / ⁇ or less.
  • ⁇ 13> The ion implantation mask according to ⁇ 11> or ⁇ 12>, wherein the particles are silicon particles.
  • the dispersion according to any one of ⁇ 1> to ⁇ 10> is contained in the dispersion by applying the dispersion to the semiconductor layer or the substrate directly or via a transfer substrate.
  • ⁇ 15> The method according to ⁇ 14>, wherein the dispersion is applied by a printing method.
  • ⁇ 16> In the step of forming the pattern of the film on the semiconductor layer or the substrate, the surface of the semiconductor layer or the substrate is previously coated with an inorganic thin film coating or a polymer coating, ⁇ 14> or The method according to ⁇ 15>.
  • ⁇ 17> a step of forming an ion implantation mask by the method according to any one of ⁇ 14> to ⁇ 16> above, A method for manufacturing a semiconductor device, comprising: a step of implanting ions into the semiconductor layer or substrate through a pattern opening of the ion implantation mask; and a step of removing the mask for ion implantation.
  • a method of forming an ion implantation mask having an opening on a semiconductor layer or a substrate including at least the following steps: (A) A particle film is formed by applying a particle dispersion containing at least particles and a dispersion medium directly or via a transfer substrate to the entire surface or part of the semiconductor layer or substrate. And (b) forming the opening by irradiating a part of the particle film with light and removing the light-irradiated part of the particle film.
  • the light irradiation is laser irradiation.
  • the ion implantation mask contains particles and a heat-resistant binder.
  • ⁇ 4> The method according to any one of ⁇ 1> to ⁇ 3>, wherein the ion implantation mask has a sheet resistance of 10 12 ⁇ / ⁇ or less.
  • ⁇ 5> The method according to any one of ⁇ 1> to ⁇ 4>, wherein the particle dispersion contains a heat-resistant binder-forming component.
  • ⁇ 6> The method according to ⁇ 5> above, wherein the heat-resistant binder-forming component is siloxane.
  • ⁇ 7> The method according to any one of ⁇ 1> to ⁇ 6>, wherein the particle dispersion further contains a temporary binder-forming component.
  • ⁇ 8> The method according to ⁇ 7>, wherein the temporary binder-forming component is a polymer.
  • the particles are conductive and / or semiconductor particles, and / or the resistivity of the conductive and / or semiconductor particles is 1 ⁇ 10 3 ⁇ cm or less.
  • ⁇ 10> The method according to ⁇ 9>, wherein the particles are silicon particles.
  • ⁇ 11> The method according to ⁇ 10>, wherein the silicon particles contain boron or phosphorus as a dopant.
  • ⁇ 12> The method according to any one of ⁇ 1> to ⁇ 11>, wherein the proportion of the particles in the particle dispersion is in the range of 1% to 90% by weight.
  • the ion implantation mask forming dispersion of the present invention enables formation of an ion implantation mask having high heat resistance. Further, the dispersion for forming an ion implantation mask of the present invention is particularly capable of forming a pattern shape by a printing process and exhibits excellent ion implantation mask performance, and therefore has higher productivity and yield than the conventional method. A low-cost power semiconductor manufacturing process can be provided.
  • the method of the present invention for forming an ion implantation mask makes it possible to form an ion implantation mask layer having high heat resistance and conductivity.
  • the method of the present invention relating to the second embodiment for forming an ion implantation mask forms a pattern by light irradiation, the ion implantation mask can be produced with higher productivity and lower cost than the conventional method. Can be formed.
  • FIG. 1 is a schematic diagram of a first embodiment of an ion implantation process according to the present invention.
  • FIG. 2 is a schematic view of a conventional ion implantation process.
  • FIG. 3 is a schematic view of a second embodiment of the ion implantation process in the present invention.
  • the dispersion for forming an ion implantation mask of the present invention contains a dispersion medium and particles dispersed in the dispersion medium.
  • the particles used in the present invention are preferably particles of a material having a melting point exceeding the temperature of the semiconductor layer or the substrate in the ion implantation step.
  • particles of a material having a melting point of 400 ° C. or higher, 600 ° C. or higher, 800 ° C. or higher, 1000 ° C. or higher, 1200 ° C. or higher, or 1500 ° C. or higher can be used as the particles used in the present invention.
  • the average primary particle size of the particles used in the present invention can be 500 nm or less, 200 nm or less, 100 nm or less, 50 nm or less, 20 nm or less, or 5 nm or less.
  • grains used by this invention can be 0.1 nm or more, or 1 nm or more.
  • the average primary particle size of the particles used in the present invention is preferably 200 nm or less, 100 nm or less, 50 nm or less, 20 nm or less, or 5 nm or less in order to reduce pattern distortion caused by the particle size. .
  • the average primary particle diameter of the particles is a projected area circle equivalent diameter directly based on a photographed image by observation with a scanning electron microscope (SEM), a transmission electron microscope (TEM), or the like.
  • the number average primary particle diameter can be obtained by measuring and analyzing a particle group consisting of 100 or more aggregates.
  • a single type of particle may be used, or two or more types of particles may be used in combination.
  • conductive and / or semiconductor material particles as the particles used in the present invention.
  • the conductive and / or semiconductor material is formed by using the dispersion of the present invention to form an ion implantation mask, and the charge generated in the semiconductor layer or substrate and the ion implantation mask when ion implantation is performed (
  • the mask can be selected to have sufficient conductivity to suppress (charge-up).
  • the conductive and / or semiconductor material is 1 ⁇ 10 12 ⁇ m or less, 1 ⁇ 10 9 ⁇ m or less, 1 ⁇ 10 6 ⁇ m or less, 1 ⁇ 10 3 ⁇ m or less, 1 ⁇ 10 3 ⁇ m or less, 1 ⁇ m or less, 1 ⁇ A material having a resistivity of 10 ⁇ 3 ⁇ m or less or 1 ⁇ 10 ⁇ 6 ⁇ m or less can be selected.
  • the conductivity and / or semiconductor material is preferably 1 ⁇ 10 3 ⁇ m or less, more preferably Can be selected from materials having a resistivity of 1 ⁇ m or less, more preferably 1 ⁇ 10 ⁇ 3 ⁇ m or less, and particularly preferably 1 ⁇ 10 ⁇ 6 ⁇ m or less.
  • the sheet resistance of the ion implantation mask layer is 10 12 ⁇ / ⁇ or less, It can also be selected to be 10 11 ⁇ / ⁇ or less, or 10 10 ⁇ / ⁇ or less.
  • particles of metal, metalloid, or a combination thereof may be used.
  • examples of the semimetal include silicon and germanium.
  • the step of performing ion implantation by heating the semiconductor layer or the substrate to a high temperature it is more preferable to use particles of a semiconductor material in order to prevent contamination of the semiconductor layer or the substrate with metal impurities.
  • the particles used in the present invention are silicon (Si), germanium (Ge), diamond (C), silicon carbide (SiC), silicon germanium (SiGe), gallium nitride (GaN), indium phosphide (InP).
  • Particles of a semiconductor material such as gallium arsenide (GaAs), cadmium sulfide (CdS), zinc selenide (ZnSe), or zinc oxide (ZnO).
  • the particles of this semiconductor material may be pre-doped with an impurity dopant and thereby have favorable conductivity.
  • the particles of the semiconductor material may contain at least one element selected from group 13 and group 15 elements as a dopant. That is, the dopant may be p-type or n-type.
  • the dopant may contain a dopant selected from the group consisting of phosphorus (P), arsenic (As), antimony (Sb), or combinations thereof, such as boron or phosphorus.
  • silicon particles contain boron as a dopant
  • boron provides preferable conductivity to silicon particles, while boron is difficult to move from silicon particles to a semiconductor substrate in an ion implantation process. preferable.
  • the concentration of the dopant in the semiconductor particles, particularly silicon particles, may be 10 18 atoms / cm 3 or more, 10 19 atoms / cm 3 or more, or 10 20 atoms / cm 3 or more.
  • the concentration of the metal impurity contained in the semiconductor particles is 100 ppb or less, 50 ppb or less, respectively, in order to prevent contamination of the semiconductor layer or the substrate by metal impurities.
  • Semiconductor particles that are 20 ppb or 10 ppb or less can be used.
  • the “metal impurity” means a metal other than the metal constituting the semiconductor.
  • the particles used in the present invention can be used at an arbitrary concentration as long as an ion implantation mask can be formed.
  • the particles used in the present invention may be 1% by weight or more, 5% by weight or more, 10% by weight or more, 15% by weight or more, or 20% by weight or more based on the dispersion.
  • the particles used in the present invention are 95% by weight or less, 90% by weight or less, 80% by weight or less, 70% by weight or less, 60% by weight or less, 50% by weight or less, 40% by weight or less with respect to the dispersion. Or 30 wt% or less.
  • the particle concentration By setting the particle concentration to the above-described concentration, it is possible to provide a dispersion having a viscosity suitable for patterning by a printing method. Moreover, if it is said density
  • the dispersion of the present invention contains a dispersion medium. Although there is no restriction
  • the boiling point of the dispersion medium contained in the dispersion of the present invention under atmospheric pressure is preferably 100 ° C. to 400 ° C.
  • a dispersion medium having a boiling point of 100 ° C. or higher the dispersion medium evaporates at an appropriate speed when forming the dispersion, and a uniform film can be obtained.
  • a dispersion medium having a boiling point of 400 ° C. or less it is possible to reduce the dispersion medium remaining in the dispersion film after the formation of the dispersion film. A decrease in flatness can be suppressed.
  • this dispersion medium is a non-aqueous dispersion medium such as alcohol, alkane, alkene, alkyne, ketone, ether, ester, aromatic compound, or nitrogen-containing ring compound, particularly isopropyl alcohol (IPA), N-methyl- It may be 2-pyrrolidone (NMP), terpineol or the like.
  • IPA isopropyl alcohol
  • NMP 2-pyrrolidone
  • NMP 2-pyrrolidone
  • glycols (dihydric alcohol) like propylene glycol and ethylene glycol can also be used.
  • grains used by this invention are metal and / or a semiconductor particle, in order to suppress the oxidation of these particle
  • the dispersion of the present invention may further contain a heat-resistant binder-forming component for the purpose of binding particles and forming a stable ion implantation mask.
  • the heat-resistant binder forming component means a component capable of forming a stable binder in an atmosphere in which ion implantation is performed using an ion implantation mask, for example, a reduced pressure atmosphere at a temperature of 400 ° C.
  • the heat-resistant binder forming component is preferably dissolved in the dispersion medium of the dispersion of the present invention in terms of uniformity, but may be dispersed without dissolving. Further, this heat-resistant binder forming component is chemically changed even when the heat-resistant binder is formed by chemically changing during drying and / or firing of the dispersion film of the present invention. Instead, only the shape may be changed to form a heat-resistant binder.
  • Such a heat-resistant binder-forming component is an organic binder-forming component that forms an organic binder such as a fluorine-based polymer, even if it is an inorganic binder-forming component that forms an inorganic binder such as silica, sodium phosphate, or sodium silicate.
  • an organic binder-forming component that forms an organic binder such as a fluorine-based polymer
  • an inorganic binder-forming component that forms an inorganic binder such as silica, sodium phosphate, or sodium silicate.
  • the inorganic binder forming component include a siloxane compound, sodium phosphate, and sodium silicate
  • examples of the organic binder forming component include a fluorine-based polymer.
  • the heat-resistant binder forming component When the heat-resistant binder forming component is used, it is preferable to perform firing for the purpose of firing the heat-resistant binder forming component after forming the dispersion layer.
  • the particles constituting the ion implantation mask layer are bound to each other, and a stable ion implantation mask can be formed.
  • by performing baking contamination in the ion implantation apparatus and a decrease in the degree of vacuum due to the gas released from the ion implantation mask in the ion implantation process can be prevented.
  • the heat-resistant binder is a material that is dissolved by an acid or the like
  • the heat-resistant binder-forming component is siloxane and the glassy material as the heat-resistant binder is formed by baking
  • the ions are implanted after ion implantation.
  • the heat-resistant binder is a material that melts or decomposes by heating at a temperature higher than that of ion implantation
  • the heat-resistant binder is a fluoropolymer
  • the ion implantation mask is further heat-treated after ion implantation. Therefore, the removability of the ion implantation mask can be improved.
  • the dispersion of the present invention may further contain a temporary binder forming component for the purpose of stably forming the dispersion film and the pattern of the film to be formed.
  • the temporary binder forming component is for stably forming a particle film formed in the process of forming the ion implantation mask, and is heated when forming the final ion implantation mask. Etc. are removed.
  • This temporary binder forming component is preferably dissolved in the dispersion medium of the dispersion of the present invention in terms of uniformity, but may be dispersed without dissolving.
  • the temporary binder-forming component is chemically changed when the dispersion film of the present invention is dried to form a temporary binder. Only a change may be made to form a temporary binder.
  • Such a temporary binder forming component may be an organic binder forming component that forms an organic binder such as a polymer.
  • organic binder forming component include organic polymers such as ethyl cellulose.
  • the temporary binder forming component When the temporary binder forming component is used, after the role of the temporary binder for stably forming and / or maintaining the film of particles is finished, firing for the purpose of removing the temporary binder may be performed. preferable. By removing the temporary binder, it is possible to prevent contamination in the ion implantation apparatus and a decrease in the degree of vacuum due to the gas released from the ion implantation mask in the ion implantation process.
  • the ion implantation mask of the present invention contains particles and an optional heat resistant binder.
  • Examples of the particles contained in the ion implantation mask of the present invention and the optional heat-resistant binder include those described for the dispersion of the present invention.
  • Al + ions having a kinetic energy of 40 keV when incident at a number density of 1 ⁇ 10 14 cm ⁇ 2 , Al + ions passing through the dispersion film are It may be 1% or less of the number.
  • the sheet resistance of the ion implantation mask of the present invention may be 10 12 ⁇ / ⁇ or less, 10 11 ⁇ / ⁇ or less, or 10 10 ⁇ / ⁇ or less.
  • a method of forming an ion implantation mask comprises applying a dispersion of the present invention to a semiconductor layer or substrate, for example, by a printing method, directly or via a transfer substrate.
  • a dispersion of the present invention to a semiconductor layer or substrate, for example, by a printing method, directly or via a transfer substrate.
  • the method may further include drying and / or baking the pattern of the film of particles formed on the semiconductor layer or the substrate and / or the pattern of the film of particles formed on the transfer substrate. it can.
  • the method of the present invention for forming an ion implantation mask comprises applying a particle dispersion to a semiconductor layer or substrate, for example, by a coating method, directly or via a transfer substrate.
  • the particle film pattern is removed by performing light irradiation, particularly laser irradiation, on the particle film to remove a part of the particle film.
  • This method may further include a step of drying and / or baking the particle film formed on the semiconductor layer or the substrate and / or the particle film formed on the transfer substrate.
  • the method of the present invention for manufacturing a semiconductor device includes the following steps: Forming a mask for ion implantation on a semiconductor layer or substrate by the method of the present invention for forming a mask for ion implantation, or providing a mask for ion implantation of the present invention on a semiconductor layer or substrate; A step of implanting ions into the semiconductor layer or the substrate through a pattern opening of the mask for ion implantation, and a step of removing the mask for ion implantation.
  • the ion implantation mask is formed by the ion implantation mask forming method according to the first embodiment of the present invention.
  • a SiC substrate (2) having a SiC epitaxial film (1) is provided, and as shown in FIG. 1 (b), it is contained in the dispersion of the present invention.
  • a film (11) of particles is formed on the epitaxial film (1) of the SiC substrate by any printing method.
  • membrane of the dispersion which has a mask pattern opening part (12) is formed on a SiC base material (2).
  • An ion implantation region (6) is formed by performing ion implantation into the SiC epitaxial film (1) on the surface of the SiC substrate (2) with a beam (7) of dopant ions.
  • the semiconductor layer or the substrate to be ion-implanted is heated, for example, heated to a temperature of 200 ° C. or higher, and the ion implantation step can be performed.
  • the ion implantation mask (11) can be removed by means such as immersion in a dissolvable chemical solution.
  • the ion implantation mask is formed by the ion implantation mask forming method according to the second embodiment of the present invention.
  • an SiC substrate (2) having an SiC epitaxial film (1) is provided, and as shown in FIG. 3 (b), particles contained in the particle dispersion are provided.
  • the constituted particle film (11) is formed on the SiC-based epitaxial film (1) by an arbitrary method.
  • the part of the particle film that has been irradiated with light is removed and patterned to obtain an ion implantation mask.
  • the ion implantation mask having the mask pattern opening (12) is formed on the SiC substrate (2) having the SiC epitaxial film (1).
  • the dopant is passed through the mask pattern opening (12) of the ion implantation mask (11) using an ion implantation apparatus.
  • An ion implantation region (6) is formed by performing ion implantation into the SiC epitaxial film (1) on the surface of the SiC substrate (2) with an ion beam (7).
  • the ion implantation process can be performed by heating the semiconductor layer or the substrate to be ion-implanted to a temperature of 200 ° C. or higher.
  • the ion implantation mask (11) can be removed by means such as immersion in a dissolvable chemical solution.
  • any semiconductor layer or substrate intended to diffuse the dopant can be used.
  • silicon Si
  • germanium Ge
  • diamond C
  • silicon carbide SiC
  • silicon germanium SiGe
  • gallium nitride GaN
  • indium phosphide InP
  • examples include, but are not limited to, gallium arsenide (GaAs), cadmium sulfide (CdS), zinc selenide (ZnSe), zinc oxide (ZnO), and particularly silicon carbide (SiC).
  • the semiconductor layer or the substrate may be composed of a single layer or a laminate composed of two or more types of layers including one or more semiconductor layers.
  • the semiconductor layer or substrate may be a semiconductor layer or substrate having an impurity dopant of 10 16 cm ⁇ 3 or less, and may be pre-doped to a concentration exceeding 10 16 cm ⁇ 3 with the impurity dopant.
  • a metal film or a metal wiring pattern may be formed in advance on the semiconductor layer or the substrate.
  • the method of the present invention relating to a first embodiment for forming an ion implantation mask comprises applying the dispersion of the present invention to a semiconductor layer or substrate, for example by printing, directly or via a transfer substrate.
  • grains contained in a dispersion on a semiconductor layer or a base material is included.
  • the step of forming the pattern of the particle film contained in the dispersion on the semiconductor layer or the substrate is performed by any means capable of forming the patterned particle film on the semiconductor layer or the substrate.
  • Such means include a screen printing method, a gravure printing method, a gravure offset printing, a flat plate offset printing, a lithographic printing method, a resin relief printing method, a flexographic printing method, a microcontact printing method, and the like. Any method that is not limited can be selected, and in particular, a lithographic printing method such as a parallel lithographic printing method, or a microcontact printing method can be selected. According to this, the dispersion of this invention does not need to contain the components which are difficult to handle, such as the photosensitive resin used for the conventional patterning.
  • one or a plurality of arbitrary substrates may be used as a transfer substrate in a method of forming a film pattern of particles on a semiconductor layer or substrate by transfer, particularly in a microcontact printing method. it can.
  • a film of uniform particles is formed on the first transfer substrate, and the film of the uniform particles may be a stamp of a polymer such as polysiloxane, for example.
  • the particle film pattern can be formed on the second transfer substrate, and the particle film pattern can be transferred onto the semiconductor layer or substrate.
  • a technique capable of patterning at a resolution of 10 ⁇ m or less such as a lithographic printing method such as a parallel lithographic printing method or a microcontact printing method Is preferably used.
  • the method of the present invention relating to a second embodiment for forming an ion implantation mask comprises applying a particle dispersion to a semiconductor layer or substrate, for example by coating, directly or via a transfer substrate, followed by light irradiation. And removing the dispersion particles by applying to the particle film, and forming a pattern of the particle film on the semiconductor layer or the substrate.
  • the step of forming the particle film composed of the particles contained in the dispersion on the semiconductor layer or substrate is performed by any means capable of forming this film on the semiconductor layer or substrate.
  • Such means include spin coating, gravure offset coating, ink jet, screen-in printing, slit die coating, screen printing, gravure printing, gravure offset printing, flat plate offset printing, lithographic printing method, Resin letterpress printing method, flexographic printing method, microcontact printing method and the like can be mentioned.
  • a laminating method or the like in which a produced particle film previously formed on another substrate by an arbitrary method is transferred onto a semiconductor substrate can be exemplified.
  • any method not limited to these can be selected.
  • a method capable of forming a particle film at an arbitrary position on a semiconductor layer or a substrate examples include a screen printing method, a gravure printing method, a gravure offset printing, a flat plate offset printing, a lithographic printing method, a resin relief printing method, a flexographic printing method, a microcontact printing method, and the like. Any method that is not limited can be selected.
  • the area for light irradiation can be reduced.
  • a transfer substrate, semiconductor substrate, or semiconductor having a patterned particle film or a pre-patterned particle film The layer can be heated.
  • an arbitrary heating method such as an oven, a hot plate, or infrared rays can be used.
  • the heating temperature of the transfer substrate, semiconductor substrate, or semiconductor layer is set, and the binder-forming material forms the binder and exhibits its binding performance. It can be set as the temperature which can be performed.
  • the step of heating the semiconductor layer or the substrate to a temperature at which the heat-resistant binder-forming material forms a binder and can exhibit its binding performance is as follows. Further, it may be performed after the step of forming the particle film on the semiconductor layer or the substrate, or may be performed after the patterning step by light irradiation to the dispersion particles.
  • the ion implantation mask formation process does not need to contain components that are difficult to handle, such as the photosensitive resin that has been used for conventional patterning, and has been used for conventional patterning. It is not necessary to include complicated and expensive processes such as photolithography.
  • the light-irradiated part of this film is removed, thereby patterning the semiconductor particle film and forming an ion implantation mask.
  • the light irradiation means in this case include laser processing, flash lamp processing through a photomask, maser processing, and the like, but any method not limited thereto can be selected.
  • the laser light source used for laser processing a laser light source that emits a wavelength at which particles constituting the ion implantation mask have absorption can be suitably used.
  • the wavelength of the laser light source may be, for example, 1500 nm or less, 1200 nm or less, 600 nm or less, or 550 nm or less, and 100 nm or more and 200 nm or more. Or 350 nm or more.
  • the condensing diameter of the laser light source used for laser processing can be 10,000 ⁇ m or less, 1000 ⁇ m or less, 100 ⁇ m or less, 50 ⁇ m or less, 20 ⁇ m or less, 10 ⁇ m or less, 5 ⁇ m or less, 2 ⁇ m or less, or 1 ⁇ m or less.
  • a plurality of laser light sources having different condensing diameters can be used in combination from the viewpoint of increasing the efficiency of the semiconductor manufacturing process.
  • the energy density of laser light used for laser processing is, for example, 1 mJ / cm 2 or more, 10 mJ / cm 2 or more, 50 mJ / cm 2 or more, or 100 mJ / cm 2 or more when laser light having a wavelength of 532 nm is used as a laser light source. It may be 100 J / cm 2 or less, 10 J / cm 2 or less, 1 J / cm 2 or less, 500 mJ / cm 2 or less, 300 mJ / cm 2 or less, preferably 0.1 to 10 J / cm A range of 2 can be used. If it is in said range, there exists an advantage which can form the mask for ion implantation by patterning the particle film comprised by the semiconductor particle etc. by making the damage given to a semiconductor layer or a base material to the minimum.
  • the film thickness of the particle film constituting the ion implantation mask an arbitrary thickness can be selected.
  • the film thickness varies depending on the composition of the dispersion, the printing conditions, the printing method, and the like.
  • the film can be printed or applied so that the film thickness of the particle film is 0.1 ⁇ m to 100 ⁇ m.
  • the film thickness be sufficient as the mask layer for ion implantation. Therefore, for example, in consideration of factors that affect the penetration depth of ion implantation, such as the temperature of the SiC base material, the acceleration voltage of ions, and the dopant ion species during ion implantation, the obtained ion implantation mask has sufficient ions.
  • the film thickness of the particle film can be selected so that the film thickness has a stopping power.
  • the semiconductor substrate or the semiconductor layer can be heated to a temperature at which the temporary binder can be removed for the purpose of removing the temporary binder.
  • ions are implanted into the semiconductor layer or the substrate through the pattern opening of the ion implantation mask.
  • the ion implantation mask is preferably applied to a semiconductor device manufacturing process including ion implantation into a SiC layer or substrate having an ion implantation temperature of 200 to 1000 ° C.
  • the ion implantation temperature is 200 ° C. or higher, 250 ° C. or higher, 300 ° C. or higher, or 350 ° C. or higher, and this temperature is 1000 ° C. or lower, 800 ° C. or lower, 700 ° C. or lower, 600 ° C. or lower, or 500 ° C. or lower. is there.
  • the semiconductor layer or base material is a SiC layer or base material
  • the ion implantation temperature is lower than 200 ° C.
  • the injection layer becomes a continuous amorphous state, and good recrystallization proceeds even if high-temperature annealing is performed. Therefore, there is a concern that a low resistance layer cannot be formed.
  • the ion implantation temperature is higher than 1000 ° C., thermal oxidation or step bunching of SiC occurs, and it is necessary to remove those portions after ion implantation.
  • the resolution when forming an ion implantation mask by the dispersion or method of the present invention is preferably 7 ⁇ m or less, more preferably 5 ⁇ m or less, still more preferably 3 ⁇ m or less, and particularly preferably 1 ⁇ m or less.
  • the ion implantation mask is removed after the ion implantation process.
  • the removal method include, but are not limited to, a wet process using hydrofluoric acid, buffered hydrofluoric acid, hydrofluoric acid, or TMAH, a dry process such as plasma treatment, and the like.
  • a wet process is preferable from the viewpoint of low cost.
  • Examples 1 to 4 relating to the first embodiment for forming a mask for ion implantation, a dispersion containing a dispersion medium and particles dispersed in the dispersion medium is prepared, and a microcontact printing method is used. Using, after forming a film pattern of particles on a SiC substrate, the solvent was removed by heating, thereby forming a mask pattern for ion implantation. Further, these examples and comparative examples were evaluated for the possibility of pattern formation of the particle film, the presence or absence of problems due to charging during ion implantation, and the ion shielding performance of the particle film.
  • Example 1 (Preparation of boron (B) doped silicon particles) Silicon nanoparticles were produced by a laser pyrolysis (LP) method using a carbon dioxide laser using monosilane gas as a raw material. At this time, diborane (B 2 H 6 ) gas was introduced together with monosilane gas to obtain boron-doped silicon particles. The doping concentration of the obtained boron-doped silicon particles was 1 ⁇ 10 21 atoms / cm 3 .
  • the metal impurity content of the obtained boron-doped silicon particles was measured using an inductively coupled plasma mass spectrometer (ICP-MS), the Fe content was 15 ppb, the Cu content was 18 ppb, and the Ni content was The amount was 10 ppb, the content of Cr was 21 ppb, the content of Co was 13 ppb, the content of Na was 20 ppb, and the content of Ca was 10 ppb.
  • ICP-MS inductively coupled plasma mass spectrometer
  • a boron-doped silicon particle-containing dispersion was prepared by mixing 75% by weight of propylene glycol (PG) and 25% by weight of silicon nanoparticles prepared by the above method.
  • a thin film of negative photoresist (CTP-100T, manufactured by Merck & Co., Inc.) was subjected to patterning exposure on a silicon substrate to obtain a photoresist pattern having a height of 1 ⁇ m and 5 ⁇ m line and space.
  • PDMS dimethylpolysiloxane
  • the boron-doped silicon particle-containing dispersion was formed on a silicon substrate by spin coating to obtain a particle film. Thereafter, the PDMS printing plate was brought into contact with the particle film, and the particle film was transferred only to the convex portions of the printing plate to form a particle film pattern.
  • the printing plate is removed from the SiC substrate, the particle film pattern on the printing plate is transferred to the SiC substrate, and 600 By baking at ° C., a patterned mask pattern for ion implantation was obtained on the SiC substrate.
  • Ion implantation Ions were implanted into the SiC substrate through the mask pattern opening of the ion implantation mask under the following conditions: Ion species: Al, Energy amount: 40 keV, Injection temperature: 400 ° C Dose amount: 1 ⁇ 10 14 Ions / cm 2
  • the ion implantation mask was removed by immersing the base material in a mixed solution of buffered hydrofluoric acid and concentrated nitric acid. Then, the depth dependence from the SiC base material surface of Al concentration was measured using the secondary ion mass spectrometry (SIMS) apparatus.
  • SIMS secondary ion mass spectrometry
  • the SIMS measurement was performed on the surface of the SiC substrate in which the ion-implanted SiC substrate was covered with the particle film pattern at the time of Al ion implantation and in the region that was the opening of the ion implantation mask. .
  • the Al ion concentration at a point at a depth of 50 nm from the surface of the region covered with the particle film pattern at the time of Al ion implantation is ion implantation.
  • the particle film pattern is judged to have a performance as an ion implantation mask layer when the Al ion concentration is not more than 1/100 times the Al ion concentration at a point at a depth of 50 nm from the surface of the SiC substrate in the region that was the opening of the mask. did.
  • Example 2 A dispersion was prepared in the same manner as in Example 1 except that 80% by weight of propylene glycol and 20% by weight of silicon particles were mixed instead of mixing 75% by weight of propylene glycol and 25% by weight of silicon particles. And a particle film pattern was obtained. Further, in the same manner as in Example 1, the possibility of forming a particle film pattern, the presence or absence of problems due to charging during ion implantation, and the ion shielding performance of the particle film pattern were evaluated.
  • Example 3 In the same manner as in Example 1, except that 75% by weight of propylene glycol and 25% by weight of silicon particles were mixed as a dispersion, and 85% by weight of propylene glycol and 15% by weight of silicon particles were mixed. And a particle film pattern was obtained. Further, in the same manner as in Example 1, the possibility of forming a particle film pattern, the presence or absence of problems due to charging during ion implantation, and the ion shielding performance of the particle film pattern were evaluated.
  • Example 4 In the same manner as in Example 1, except that 75% by weight of propylene glycol and 25% by weight of silicon particles were mixed as a dispersion, 90% by weight of propylene glycol and 10% by weight of silicon particles were mixed. And a particle film pattern was obtained. Further, in the same manner as in Example 1, the possibility of forming a particle film pattern, the presence or absence of problems due to charging during ion implantation, and the ion shielding performance of the particle film pattern were evaluated.
  • Example 5 As a dispersion, instead of mixing 75% by weight of propylene glycol and 25% by weight of silicon nanoparticles, 75% by weight of propylene glycol, 20% by weight of silicon particles, and 5% by weight of an organosiloxane compound as a heat-resistant binder forming component were mixed. Except for this, a dispersion was prepared in the same manner as in Example 1 to obtain a particle film pattern. Further, in the same manner as in Example 1, the possibility of forming a particle film pattern, the presence or absence of problems due to charging during ion implantation, and the ion shielding performance of the particle film pattern were evaluated.
  • Example 6 As a dispersion, instead of mixing 75% by weight of propylene glycol and 25% by weight of silicon nanoparticles, 75% by weight of propylene glycol, 20% by weight of silicon particles, and 5% by weight of ethyl cellulose as a temporary binder forming component were mixed. Except for this, a dispersion was prepared in the same manner as in Example 1 to obtain a particle film pattern. Further, in the same manner as in Example 1, the possibility of forming a particle film pattern, the presence or absence of problems due to charging during ion implantation, and the ion shielding performance of the particle film pattern were evaluated.
  • Example 7 A spin-on glass (manufactured by Tokyo Ohka Kogyo Co., Ltd., 12000-T) diluted with isopropyl alcohol is spin-coated on a SiC substrate, and baked at 800 ° C., thereby spin-on having a thickness of 50 nm on the SiC substrate.
  • a particle film pattern was obtained in the same manner as in Example 1 except that a glass film was previously formed. Further, in the same manner as in Example 1, the possibility of forming a particle film pattern, the presence or absence of problems due to charging during ion implantation, and the ion shielding performance of the particle film pattern were evaluated.
  • Example 8 In the production process of silicon particles, instead of introducing diborane gas together with monosilane gas, phosphine gas (PH3) was introduced to obtain phosphorus-doped silicon particles, and the particle film pattern was formed in the same manner as in Example 1. Obtained. Further, in the same manner as in Example 1, the possibility of forming a particle film pattern, the presence or absence of problems due to charging during ion implantation, and the ion shielding performance of the particle film pattern were evaluated.
  • phosphine gas PH3
  • these binder-forming components can also be added by adding a heat-resistant binder-forming component (Example 5) or a temporary binder-forming component (Example 6) to the dispersion.
  • a heat-resistant binder-forming component Example 5
  • a temporary binder-forming component Example 6
  • the dispersion has preferable printability, and the formed particle film pattern can be used as an ion implantation mask layer without charging problems.
  • Examples 9 to 13 relating to the second embodiment for forming an ion implantation mask, a dispersion medium and a particle dispersion containing particles dispersed in the dispersion medium are prepared, and a screen printing method is performed. Using this method, a particle film was formed on a SiC substrate, heated to remove the dispersion medium, and then light irradiation was performed on a part of the particle film to form an ion implantation mask pattern. Moreover, about these Examples, the possibility of pattern formation of a particle film, the presence or absence of a problem due to charging during ion implantation, and the ion shielding performance of the particle film were evaluated.
  • Example 9 Boron (B) doped silicon particles were produced in the same manner as in Example 1.
  • a boron-doped silicon particle-containing dispersion was prepared by mixing 90% by weight of propylene glycol and 10% by weight of silicon nanoparticles prepared by the above method.
  • a boron-doped silicon particle film having a thickness of 1.5 ⁇ m was obtained by printing the boron-doped silicon particle-containing dispersion on a SiC substrate by a screen printing method.
  • the dispersion medium remaining on the boron-doped silicon particle film was removed by baking at 600 ° C.
  • Formation of boron-doped silicon particle film pattern By irradiating the boron-doped silicon particle film with a laser beam having a wavelength of 532 nm, an energy density of 4.0 J / cm 2 and a pulse width of 100 ns as a light source for light irradiation, the film is irradiated with laser light. The removed portion was removed to obtain a boron-doped silicon particle film pattern.
  • Ion implantation Ions were implanted into the SiC substrate through the mask pattern opening of the ion implantation mask under the following conditions: Ion species: Al, Energy amount: 40 keV, Injection temperature: 400 ° C Dose amount: 1 ⁇ 10 14 Ions / cm 2
  • the ion implantation mask was removed by immersing the base material in a mixed solution of buffered hydrofluoric acid and concentrated nitric acid. Then, the depth dependence from the SiC base material surface of Al concentration was measured using the secondary ion mass spectrometry (SIMS) apparatus.
  • SIMS secondary ion mass spectrometry
  • the SIMS measurement is performed on the surface of the SiC substrate in which the ion-implanted SiC substrate was covered with the particle film pattern at the time of Al ion implantation and the region that was the opening of the ion implantation mask. It was.
  • the Al ion concentration at a point at a depth of 50 nm from the surface of the region covered with the particle film pattern at the time of Al ion implantation is ion implantation.
  • the particle film pattern has a performance as a mask layer for ion implantation when it is 1/100 times or less of the Al ion concentration at a point of a depth of 50 nm from the surface of the SiC substrate in the region that was the opening of the mask for ion implantation. I decided.
  • Example 10 As a dispersion, 90% by weight of propylene glycol and 10% by weight of silicon nanoparticles were mixed, and 90% by weight of propylene glycol, 5% by weight of silicon particles, and 5% by weight of an organosiloxane compound as a heat-resistant binder forming component were mixed. Except for this, a dispersion was prepared in the same manner as in Example 9 to obtain a particle film pattern. Further, as in Example 9, the possibility of forming a particle film pattern, the presence or absence of a problem due to charging during ion implantation, and the ion shielding performance of the particle film pattern were evaluated.
  • Example 11> Instead of mixing 90% by weight of propylene glycol and 10% by weight of silicon nanoparticles as a dispersion, 90% by weight of propylene glycol, 5% by weight of silicon particles, and 5% by weight of ethyl cellulose as a temporary binder forming component were mixed.
  • the heating temperature for the purpose of removing the dispersion medium from the particle dispersion after the step of forming the dispersion particle film was 250 ° C .;
  • a dispersion was prepared in the same manner as in Example 9, except that firing was performed in the atmosphere at 600 ° C. for the purpose of temporary binder removal. A particle film pattern was obtained.
  • Example 9 Furthermore, in the same manner as in Example 9, the possibility of forming a particle film pattern, the presence or absence of problems due to charging during ion implantation, and the ion shielding performance of the particle film pattern were evaluated.
  • Example 12 A spin-on glass (manufactured by Tokyo Ohka Kogyo Co., Ltd., 12000-T) diluted with isopropyl alcohol is spin-coated on a SiC substrate, and baked at 800 ° C., thereby spin-on having a thickness of 50 nm on the SiC substrate.
  • a particle film pattern was obtained in the same manner as in Example 9 except that a glass film was previously formed. Further, as in Example 9, the possibility of forming a particle film pattern, the presence or absence of a problem due to charging during ion implantation, and the ion shielding performance of the particle film pattern were evaluated.
  • Example 13> Instead of using a laser beam having a wavelength of 532 nm and an energy density of 4.0 J / cm 2 as a light source for light irradiation, it has a wavelength of 532 nm, an energy density of 0.5 J / cm 2 and a pulse width of A dispersion was prepared in the same manner as in Example 9 except that 1.0 ns laser light was used, and a particle film pattern was obtained. Further, as in Example 9, the possibility of forming a particle film pattern, the presence or absence of a problem due to charging during ion implantation, and the ion shielding performance of the particle film pattern were evaluated.
  • Example 14 a particle dispersion containing a dispersion medium and particles dispersed in the dispersion medium is prepared, a particle film is formed on a glass substrate using a screen printing method, and heated. After removing the dispersion medium, light irradiation was performed on a part of the particle film to form a particle film pattern, and the sheet resistance of the particle film pattern was measured.
  • Example 9 instead of using a SiC substrate as a substrate, a dispersion was prepared in the same manner as in Example 9 except that a glass substrate was used, and a particle film pattern was obtained. Therefore, the obtained particle film itself is substantially the same as the particle film obtained in Examples 9, 12 and 13 (the substrates are different). Thereafter, an aluminum electrode for the purpose of measuring the resistivity of the particle film pattern was formed on the mask layer pattern using a vacuum evaporation method through a shadow mask.
  • an electrode pattern in which 1000 ⁇ m sides of a pair of rectangular electrodes having a size of 1000 ⁇ m ⁇ 200 ⁇ m are opposed to each other at an interval of 200 ⁇ m is used. It was.
  • the sheet resistance of the mask layer was determined by measuring the potential drop between the aluminum electrodes when a constant current of 1 ⁇ A was applied between the deposited aluminum electrodes, and found to be 20 G ⁇ / ⁇ .
  • these binder-forming components were not used by adding a heat-resistant binder-forming component (Example 10) or a temporary binder-forming component (Example 11) to the dispersion.
  • a heat-resistant binder-forming component Example 10
  • a temporary binder-forming component Example 11
  • the dispersion has preferable printability, and the formed particle film pattern can be used as a mask layer for ion implantation without charging problems.
  • the dispersion film was It can be understood that the formed particle film pattern having preferred patterning properties can be used as a mask layer for ion implantation without charging problems.
  • the pattern of the formed particle film has a sheet resistance that can be used as a mask layer for ion implantation without charging problems.

Landscapes

  • Physics & Mathematics (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Thin Film Transistor (AREA)

Abstract

Provided are a dispersion for forming an ion implantation mask used in an ion implantation step during a semiconductor manufacturing process, and a method for manufacturing a semiconductor device which uses the dispersion. The dispersion for forming an ion implantation mask according to the present invention contains a dispersion medium, particles dispersed in the dispersion medium, and an optional heat-resistant binder-forming component. The method for manufacturing a semiconductor device according to the present invention comprises: a step for forming a film pattern of the dispersion according to the present invention on a semiconductor layer or on a substrate; a step for forming an ion implantation mask (13) by drying and/or baking the film pattern; a step for implanting ions (7) into the semiconductor layer or the substrate (2) through a pattern opening (12) of the mask for ion implantation; and a step for removing the ion implantation mask.

Description

イオン注入マスク形成用分散体、イオン注入マスクの形成方法及び半導体デバイス製造方法Dispersion for forming ion implantation mask, method for forming ion implantation mask, and method for manufacturing semiconductor device
 本発明は、イオン注入マスク形成用分散体、並びにこの分散体を用いたイオン注入マスクの形成方法及び半導体デバイス製造方法に関する。 The present invention relates to a dispersion for forming an ion implantation mask, a method for forming an ion implantation mask using the dispersion, and a method for manufacturing a semiconductor device.
 現在のパワー半導体デバイスのほとんどは、半導体Siを用いて製造されている。Siを用いたパワー半導体デバイスにおいては、Siの材料物性に起因する性能の限界に近付いている。半導体材料として半導体SiCを用いた場合、半導体Siを大きく上回る耐電圧特性、高飽和電子移動度、高い熱伝導度を有することから、パワー半導体デバイスの性能向上や、低損失化、及びデバイス冷却機構を簡略化によるシステムの小型化が可能であるため、次世代のパワー半導体材料として有望である。 Most of the current power semiconductor devices are manufactured using semiconductor Si. In power semiconductor devices using Si, the limit of performance due to the material properties of Si is approaching. When semiconductor SiC is used as a semiconductor material, it has a withstand voltage characteristic, high saturation electron mobility, and high thermal conductivity that greatly exceed that of semiconductor Si, thus improving performance of power semiconductor devices, reducing loss, and device cooling mechanism. Therefore, it is promising as a next-generation power semiconductor material.
 SiCパワーデバイスの製造のためには、SiC中の所望の部分にイオンを注入しキャリアをドープすることが必要である。SiCへのイオンドープにおいては、SiCのドーパントの拡散係数が小さく、熱拡散法の適用は困難であるため、イオン注入によるドーピング法が広く用いられる。 In order to manufacture a SiC power device, it is necessary to implant ions into a desired portion in SiC and dope carriers. In ion doping of SiC, since the diffusion coefficient of SiC dopant is small and it is difficult to apply a thermal diffusion method, a doping method by ion implantation is widely used.
 SiCをイオン注入により低抵抗化する工程においては、高ドーズのイオン注入を行う必要がある。しかし室温で高濃度のイオン注入を行うと、SiCのアモルファス化が起きるため、期待するデバイス性能が得られない。また、一旦アモルファス化したSiCは、熱焼成などによっても、イオン注入前と同等の結晶性をもつ同多形の構造に復元することは困難である。 In the process of reducing the resistance of SiC by ion implantation, it is necessary to perform ion implantation at a high dose. However, when high-concentration ion implantation is performed at room temperature, SiC becomes amorphous, so that expected device performance cannot be obtained. Further, once amorphous SiC is obtained, it is difficult to restore the polymorphic structure having the same crystallinity as that before ion implantation, even by thermal firing.
 そこで、SiCへのイオン注入工程において基材を200℃以上の高温に保持することにより、イオン注入と同時に基材の結晶性の回復を図り、デバイスの電気的特性の低下を防ぐ、高温イオン注入法が知られている。 Therefore, by maintaining the substrate at a high temperature of 200 ° C. or higher in the ion implantation process to SiC, the crystallinity of the substrate is restored at the same time as the ion implantation, thereby preventing the deterioration of the electrical characteristics of the device. The law is known.
 上記の高温イオン注入法では、イオン注入を200℃以上の高温で行うため、イオン注入マスク層として、シリコンに対するイオン注入のような室温でのイオン注入で用いられるフォトレジスト材料、例えば化学増幅型フォトレジストを利用することができない。 In the above high-temperature ion implantation method, since ion implantation is performed at a high temperature of 200 ° C. or higher, a photoresist material used for ion implantation at room temperature such as ion implantation into silicon, for example, chemically amplified photo, is used as an ion implantation mask layer. The resist cannot be used.
 したがって、上記の高温イオン注入法においては、イオン注入マスクとして、イオン注入工程の基材温度で十分な耐熱性を有するSiO等の無機膜、例えば化学気相堆積法(CVD:Chemical Vapor Deposition(CVD))などで堆積されたSiO等の無機膜を用いることが提案されている(例えば特許文献1)。このような耐熱性のイオン注入マスクを半導体SiC上に予めパターニングすることにより、イオン注入マスクの開口部を通じて、半導体SiC中の所望の領域にキャリアドーピングを行うことができる。 Therefore, in the above high temperature ion implantation method, as an ion implantation mask, an inorganic film such as SiO 2 having sufficient heat resistance at the substrate temperature in the ion implantation process, for example, chemical vapor deposition (CVD) (CVD: Chemical Vapor Deposition ( It has been proposed to use an inorganic film such as SiO 2 deposited by CVD)) (for example, Patent Document 1). By previously patterning such a heat-resistant ion implantation mask on the semiconductor SiC, carrier doping can be performed in a desired region in the semiconductor SiC through the opening of the ion implantation mask.
 このような耐熱性のイオン注入マスクのパターニングには、フォトレジストをマスクとして用いた、ウェットエッチング法、反応性イオンエッチング法(RIE)などのドライプロセスが利用される。 For the patterning of such a heat-resistant ion implantation mask, a dry process such as a wet etching method or a reactive ion etching method (RIE) using a photoresist as a mask is used.
 上記のイオン注入マスク形成工程及びイオン注入工程の例を、図2を用いて説明する。 Examples of the above ion implantation mask forming step and ion implantation step will be described with reference to FIG.
 まず、SiCエピタキシャル膜(1)を有するSiC基材(2)を提供し(図2(a))、このSiCエピタキシャル膜(1)上に、CVD法等によりSiO膜(3)を堆積させる(図2(b))。次に、SiO膜(3)上に感光性レジスト(4)を製膜する(図2(c))。その後、通常のフォトリソ工程である、パターニング露光及び現像を行い、感光性レジストのパターン形成を行う(図2(d))。その後、フッ化水素酸などにより、SiO膜の除去を行い、マスクパターン開口部(12)を有する所望のSiO膜パターンを得る(図2(e))。次いで、Oアッシングにより感光性レジストの剥離を行う(図2(f))。その後、ドーパントイオンのビーム(7)を用いて、200℃以上の高温でイオン注入を行って、イオン注入領域(6)を形成し(図2(g))、そしてフッ化水素酸などを用いたウェットプロセスでSiO膜を剥離する(図2(h))。 First, an SiC substrate (2) having an SiC epitaxial film (1) is provided (FIG. 2 (a)), and an SiO 2 film (3) is deposited on the SiC epitaxial film (1) by a CVD method or the like. (FIG. 2 (b)). Next, a photosensitive resist (4) is formed on the SiO 2 film (3) (FIG. 2C). Thereafter, patterning exposure and development, which are normal photolithography processes, are performed to form a photosensitive resist pattern (FIG. 2D). Thereafter, the SiO 2 film is removed by hydrofluoric acid or the like to obtain a desired SiO 2 film pattern having a mask pattern opening (12) (FIG. 2E). Next, the photosensitive resist is removed by O 2 ashing (FIG. 2F). Thereafter, ion implantation is performed at a high temperature of 200 ° C. or higher by using a dopant ion beam (7) to form an ion implantation region (6) (FIG. 2 (g)), and hydrofluoric acid or the like is used. The SiO 2 film is peeled off by a wet process (FIG. 2 (h)).
 このイオン注入プロセスは工程数が多く、煩雑で高コストプロセスであるため、プロセスの簡略化が求められている。 This ion implantation process has many steps, is complicated, and is a high-cost process. Therefore, simplification of the process is required.
 プロセスを簡略化するために、化学増幅型フォトレジストをイオン注入マスクとして利用して、室温においてイオン注入を行う手法が提案されている(例えば特許文献2)。 In order to simplify the process, a method of performing ion implantation at room temperature using a chemically amplified photoresist as an ion implantation mask has been proposed (for example, Patent Document 2).
 また、プロセスを簡略化するために、シロキサンを含有するフォトレジストをパターニング後、焼成し形成された、シロキサン含有フォトレジスト焼成パターンをイオン注入マスクとして利用して、400℃等の高温においてイオン注入を行う手法が提案されている(例えば特許文献3)。 In addition, in order to simplify the process, ion implantation is performed at a high temperature such as 400 ° C. using a siloxane-containing photoresist baking pattern formed by baking after patterning a photoresist containing siloxane as an ion implantation mask. A technique for performing this has been proposed (for example, Patent Document 3).
 また、真空プロセスと、基材又は基板上にパターニング露光する工程を省略し、簡便にイオン注入マスク層を形成する手法としては、イオン注入マスク材料が溶解した溶液を、インクジェット法を用いて基板又は基材上にパターニングすることで、イオン注入マスクパターンを得る手法が提案されている(例えば特許文献4)。 In addition, as a method for easily forming an ion implantation mask layer by omitting a vacuum process and a patterning exposure process on a base material or a substrate, a solution in which an ion implantation mask material is dissolved is obtained by using an inkjet method on a substrate or a substrate. A technique for obtaining an ion implantation mask pattern by patterning on a substrate has been proposed (for example, Patent Document 4).
 なお、基材及びイオン注入マスクに発生する帯電(チャージアップ)の問題を解決するために、注入イオンと逆の極性を持つ低エネルギーの2次イオンシャワーを基材表面に供給し、基材の帯電の中和を図る手法(例えば特許文献5)、イオン注入を行う際、絶縁性のイオン注入マスクを金属膜やドープされた半導体膜などの導電性帯電防止膜で予め被覆する手法を利用する手法(例えば特許文献6)が知られている。 In order to solve the problem of charging (charge-up) generated in the base material and the ion implantation mask, a low-energy secondary ion shower having a polarity opposite to that of the implanted ions is supplied to the surface of the base material. A method of neutralizing the charge (for example, Patent Document 5), or a method of previously covering an insulating ion implantation mask with a conductive antistatic film such as a metal film or a doped semiconductor film when performing ion implantation is used. A technique (for example, Patent Document 6) is known.
 また、イオン注入マスクのイオンブロッキング層としての性能向上を目的として、密度が大きくイオン遮蔽性能の高い、チタンやモリブデンなどの金属薄膜をイオン注入マスクとして利用する手法が提案されている(例えば特許文献7)。 Further, for the purpose of improving the performance of the ion implantation mask as an ion blocking layer, a method of using a metal thin film such as titanium or molybdenum having a high density and high ion shielding performance as an ion implantation mask has been proposed (for example, Patent Documents). 7).
特開2006-324585号公報JP 2006-324585 A 特開2008-108869号公報JP 2008-108869 A 国際公開第2013/099785号International Publication No. 2013/099785 国際公開第2001/011426号International Publication No. 2001/011426 特開平6-295700号公報JP-A-6-295700 特開平7-58053号公報Japanese Patent Laid-Open No. 7-58053 特開2007-42803号公報JP 2007-42803 A
 特許文献1に記載された、CVD法で成長したSiO膜をイオン注入マスクとして利用する手法は、耐熱性に優れ、高温でのイオン注入が可能であるが、SiO膜の形成に煩雑なCVD法を使用するため高コストである。また、SiO膜のパターニングにフォトリソグラフィー法を用いるため、パターニング露光や現像工程等の煩雑なプロセスが必要であり、高コストである。 The technique described in Patent Document 1 that uses a SiO 2 film grown by a CVD method as an ion implantation mask is excellent in heat resistance and enables ion implantation at a high temperature, but is complicated in forming the SiO 2 film. Since the CVD method is used, the cost is high. In addition, since a photolithography method is used for patterning the SiO 2 film, complicated processes such as patterning exposure and development steps are required, and the cost is high.
 特許文献2に記載された、化学増幅型フォトレジストをイオン注入マスクとして利用する手法は、耐熱性が低いため、高温イオン注入プロセスを適用できない課題がある。また、パターニング露光や現像工程等の煩雑なプロセスが必要であるため高コストである。 The method of using a chemically amplified photoresist as an ion implantation mask described in Patent Document 2 has a problem that a high temperature ion implantation process cannot be applied because of its low heat resistance. Moreover, since complicated processes, such as patterning exposure and a development process, are required, it is expensive.
 特許文献3に記載された、パターニングされたシロキサン含有フォトレジストをイオン注入マスクとして利用する手法は、高い耐熱性を有するため、高温イオン注入プロセスを適用できるが、パターニング露光や現像工程、高温での焼成工程等の煩雑なプロセスが必要であるため高コストである。 The technique of using a patterned siloxane-containing photoresist described in Patent Document 3 as an ion implantation mask has high heat resistance, and therefore, a high temperature ion implantation process can be applied. However, patterning exposure and development processes, Since complicated processes such as a firing step are required, the cost is high.
 特許文献4に記載された、インクジェット法によって基材又は基板上にイオン注入マスク層を形成する手法は、真空プロセスや、基材または基板上にパターニング露光する工程を含まないため省プロセスであるが、インクジェット法で到達可能なパターン解像度は高くても50μm~100μmであり、SiCパワーデバイスの形成に不十分である。 Although the method of forming an ion implantation mask layer on a base material or a substrate by the inkjet method described in Patent Document 4 does not include a vacuum process or a patterning exposure process on the base material or the substrate, it is a process-saving process. The pattern resolution that can be reached by the ink jet method is 50 μm to 100 μm at most, which is insufficient for forming a SiC power device.
 本発明では、上述のような背景を鑑みてなされたものであり、特に、高温耐熱性かつ導電性を有し、半導体基材に対して金属不純物を生じる懸念がなく、1μm級の高解像度のパターン形成が可能で、かつ低コストで高温のイオン注入プロセスに適用できる、イオン注入マスク形成用分散体、イオン注入マスクの形成方法及び半導体デバイス製造方法を提供する。 The present invention has been made in view of the background as described above. In particular, it has high-temperature heat resistance and conductivity, and there is no fear of generating metal impurities with respect to the semiconductor substrate. Disclosed is a dispersion for forming an ion implantation mask, a method for forming an ion implantation mask, and a method for manufacturing a semiconductor device, which can be patterned and can be applied to a high-temperature ion implantation process at low cost.
 上記の課題に対して、本件の発明者らは下記の本発明に想到した。 In response to the above problems, the inventors of the present invention have come up with the following present invention.
 〈1〉分散媒、及び上記分散媒中に分散している粒子を含有している、イオン注入マスク形成用分散体。
 〈2〉耐熱性バインダー形成成分を更に含有している、上記〈1〉に記載の分散体。
 〈3〉上記耐熱性バインダー形成成分が、シロキサンである、上記〈2〉に記載の分散体。
 〈4〉一時的バインダー形成成分を更に含有している、上記〈1〉~〈3〉のいずれか一項に記載の分散体。
 〈5〉上記一時的バインダー形成成分が、ポリマーである、上記〈4〉に記載の分散体。
 〈6〉上記粒子が、導電性及び/又は半導体粒子であり、かつ/又は
 上記導電性及び/又は半導体粒子の材料の抵抗率が1×10Ωcm以下である、
上記〈1〉~〈5〉のいずれか一項に記載の分散体。
 〈7〉上記粒子が、シリコン粒子である、上記〈1〉~〈6〉のいずれか一項に記載の分散体。
 〈8〉上記シリコン粒子が、ホウ素又はリンをドーパントとして含有している、上記〈7〉に記載の分散体。
 〈9〉上記粒子を上記分散体の1重量%~90重量%の範囲で含有している、上記〈1〉~〈8〉のいずれか一項に記載の分散体。
 〈10〉上記分散体の膜を形成し、そして上記分散媒を乾燥させて除去することによって、500nmの厚みを有する粒子膜を得、そしてこの粒子膜に40keVの運動エネルギーを有するAlイオンを1×1014cm-2の数密度で入射した際に、粒子膜を通過するAlイオンが、入射したイオンの数の1%以下である、上記〈1〉~〈9〉のいずれか一項に記載の分散体。
 〈11〉粒子、及び耐熱性バインダーを含有している、イオン注入マスク。
 〈12〉シート抵抗が1012Ω/□以下である、上記〈11〉に記載のイオン注入マスク。
 〈13〉上記粒子が、シリコン粒子である、上記〈11〉又は〈12〉に記載のイオン注入マスク。
 〈14〉上記〈1〉~〈10〉のいずれか一項に記載の分散体を、直接に又は転写基材を介して、半導体層又は基材に適用することによって、上記分散体に含有される粒子の膜のパターンを、半導体層又は基材上に形成する工程を含む、イオン注入用マスクの形成方法。
 〈15〉上記分散体の適用を、印刷法によって行う、上記〈14〉に記載の方法。
 〈16〉上記膜のパターンを半導体層又は基材上に形成する工程において、上記半導体層又は基材の表面が、予め、無機薄膜被膜又は高分子被膜で被覆されている、上記〈14〉又は〈15〉に記載の方法。
 〈17〉上記〈14〉~〈16〉のいずれか一項に記載の方法でイオン注入用マスクを形成する工程、
 上記イオン注入用マスクのパターン開口部を通して、上記半導体層又は基材にイオンを注入する工程、及び
 上記イオン注入用マスクを除去する工程
を含む、半導体デバイスの製造方法。
<1> A dispersion for forming an ion implantation mask, which includes a dispersion medium and particles dispersed in the dispersion medium.
<2> The dispersion according to <1>, further including a heat-resistant binder-forming component.
<3> The dispersion according to <2>, wherein the heat-resistant binder-forming component is siloxane.
<4> The dispersion according to any one of <1> to <3>, further including a temporary binder-forming component.
<5> The dispersion according to <4>, wherein the temporary binder-forming component is a polymer.
<6> The particles are conductive and / or semiconductor particles, and / or the resistivity of the conductive and / or semiconductor particles is 1 × 10 3 Ωcm or less.
The dispersion according to any one of <1> to <5> above.
<7> The dispersion according to any one of <1> to <6>, wherein the particles are silicon particles.
<8> The dispersion according to <7>, wherein the silicon particles contain boron or phosphorus as a dopant.
<9> The dispersion according to any one of <1> to <8>, wherein the particles are contained in the range of 1% to 90% by weight of the dispersion.
<10> By forming a film of the dispersion and drying and removing the dispersion medium, a particle film having a thickness of 500 nm is obtained, and Al + ions having a kinetic energy of 40 keV are added to the particle film. Any one of the above items <1> to <9>, wherein Al + ions passing through the particle film are 1% or less of the number of incident ions when incident at a number density of 1 × 10 14 cm −2. The dispersion according to item.
<11> An ion implantation mask containing particles and a heat-resistant binder.
<12> The ion implantation mask according to <11>, wherein the sheet resistance is 10 12 Ω / □ or less.
<13> The ion implantation mask according to <11> or <12>, wherein the particles are silicon particles.
<14> The dispersion according to any one of <1> to <10> is contained in the dispersion by applying the dispersion to the semiconductor layer or the substrate directly or via a transfer substrate. A method for forming a mask for ion implantation, including a step of forming a film pattern of particles to be formed on a semiconductor layer or a substrate.
<15> The method according to <14>, wherein the dispersion is applied by a printing method.
<16> In the step of forming the pattern of the film on the semiconductor layer or the substrate, the surface of the semiconductor layer or the substrate is previously coated with an inorganic thin film coating or a polymer coating, <14> or The method according to <15>.
<17> a step of forming an ion implantation mask by the method according to any one of <14> to <16> above,
A method for manufacturing a semiconductor device, comprising: a step of implanting ions into the semiconductor layer or substrate through a pattern opening of the ion implantation mask; and a step of removing the mask for ion implantation.
 〈1〉下記工程を少なくとも含む、開口部を有するイオン注入用マスクを半導体層又は基材上に形成する方法:
 (a)粒子、及び分散媒を少なくとも含有している粒子分散体を、直接に又は転写基材を介して上記半導体層又は基材の全面又は一部に適用することによって、粒子膜を形成する工程;並びに
 (b)上記粒子膜の一部に光照射を行って、上記粒子膜の光照射された部分を除去することによって、上記開口部を形成する工程。
 〈2〉上記光照射がレーザー照射である、上記〈1〉項に記載の方法。
 〈3〉上記イオン注入用マスクが、粒子、及び耐熱性バインダーを含有している、上記〈1〉又は〈2〉項に記載の方法。
 〈4〉上記イオン注入用マスクのシート抵抗が、1012Ω/□以下である、上記〈1〉~〈3〉項のいずれか一項に記載の方法。
 〈5〉上記粒子分散体が耐熱性バインダー形成成分を含有している、上記〈1〉~〈4〉項のいずれか一項に記載の方法。
 〈6〉上記耐熱性バインダー形成成分が、シロキサンである、上記〈5〉項に記載の方法。
 〈7〉上記粒子分散体が一時的バインダー形成成分を更に含有している、上記〈1〉~〈6〉項のいずれか一項に記載の方法。
 〈8〉上記一時的バインダー形成成分が、ポリマーである、上記〈7〉項に記載の方法。
 〈9〉上記粒子が、導電性及び/又は半導体粒子であり、かつ/又は
 上記導電性及び/又は半導体粒子の材料の抵抗率が1×10Ωcm以下である、
上記〈1〉~〈8〉項のいずれか一項に記載の方法。
 〈10〉上記粒子が、シリコン粒子である、上記〈9〉項に記載の方法。
 〈11〉上記シリコン粒子が、ホウ素又はリンをドーパントとして含有している、上記〈10〉項に記載の方法。
 〈12〉上記粒子分散体のうち上記粒子の占める割合が、1重量%~90重量%の範囲である、上記〈1〉~〈11〉項のいずれか一項に記載の方法。
 〈13〉上記イオン注入用マスクの上記粒子膜に40keVの運動エネルギーを有するAlイオンを1×1014cm-2の数密度で入射した際に、粒子膜を通過するAlイオンが、入射したイオンの数の1%以下である、上記〈1〉~〈12〉項のいずれか一項に記載の方法。
 〈14〉上記〈1〉~〈13〉項のいずれか一項に記載の方法で形成したイオン注入用マスクの開口部を通じて、上記半導体層又は基材にイオンを注入する工程を含む、半導体デバイスの製造方法。
<1> A method of forming an ion implantation mask having an opening on a semiconductor layer or a substrate, including at least the following steps:
(A) A particle film is formed by applying a particle dispersion containing at least particles and a dispersion medium directly or via a transfer substrate to the entire surface or part of the semiconductor layer or substrate. And (b) forming the opening by irradiating a part of the particle film with light and removing the light-irradiated part of the particle film.
<2> The method according to <1>, wherein the light irradiation is laser irradiation.
<3> The method according to <1> or <2>, wherein the ion implantation mask contains particles and a heat-resistant binder.
<4> The method according to any one of <1> to <3>, wherein the ion implantation mask has a sheet resistance of 10 12 Ω / □ or less.
<5> The method according to any one of <1> to <4>, wherein the particle dispersion contains a heat-resistant binder-forming component.
<6> The method according to <5> above, wherein the heat-resistant binder-forming component is siloxane.
<7> The method according to any one of <1> to <6>, wherein the particle dispersion further contains a temporary binder-forming component.
<8> The method according to <7>, wherein the temporary binder-forming component is a polymer.
<9> The particles are conductive and / or semiconductor particles, and / or the resistivity of the conductive and / or semiconductor particles is 1 × 10 3 Ωcm or less.
The method according to any one of the above items <1> to <8>.
<10> The method according to <9>, wherein the particles are silicon particles.
<11> The method according to <10>, wherein the silicon particles contain boron or phosphorus as a dopant.
<12> The method according to any one of <1> to <11>, wherein the proportion of the particles in the particle dispersion is in the range of 1% to 90% by weight.
<13> When Al + ions having a kinetic energy of 40 keV are incident on the particle film of the ion implantation mask at a number density of 1 × 10 14 cm −2 , Al + ions passing through the particle film are incident The method according to any one of <1> to <12>, wherein the number is 1% or less of the number of ions formed.
<14> A semiconductor device comprising a step of implanting ions into the semiconductor layer or substrate through an opening of an ion implantation mask formed by the method according to any one of <1> to <13> above Manufacturing method.
 本発明のイオン注入マスク形成用分散体は、高耐熱性を有するイオン注入マスク形成の可能にする。また、本発明のイオン注入マスク形成用分散体は、特に、印刷プロセスによるパターン形状の形成が可能で、優れたイオン注入マスク性能を示すため、従来法と比較して、生産性及び歩留まりが高く、低コストなパワー半導体の製造プロセスを提供できる。 The ion implantation mask forming dispersion of the present invention enables formation of an ion implantation mask having high heat resistance. Further, the dispersion for forming an ion implantation mask of the present invention is particularly capable of forming a pattern shape by a printing process and exhibits excellent ion implantation mask performance, and therefore has higher productivity and yield than the conventional method. A low-cost power semiconductor manufacturing process can be provided.
 イオン注入用マスクを形成する本発明の方法は、高耐熱性を有し、かつ導電性を有するイオン注入用マスク層の形成を可能にする。また特に、イオン注入用マスクを形成する第2の実施態様に関する本発明の方法は、光照射によってパターンを形成するので、従来法と比較して、高い生産性及び低コストでイオン注入用マスクを形成することができる。 The method of the present invention for forming an ion implantation mask makes it possible to form an ion implantation mask layer having high heat resistance and conductivity. In particular, since the method of the present invention relating to the second embodiment for forming an ion implantation mask forms a pattern by light irradiation, the ion implantation mask can be produced with higher productivity and lower cost than the conventional method. Can be formed.
図1は、本発明におけるイオン注入のプロセスの第1の実施態様の模式図である。FIG. 1 is a schematic diagram of a first embodiment of an ion implantation process according to the present invention. 図2は、従来技術におけるイオン注入のプロセスの模式図である。FIG. 2 is a schematic view of a conventional ion implantation process. 図3は、本発明におけるイオン注入のプロセスの第2の実施態様の模式図である。FIG. 3 is a schematic view of a second embodiment of the ion implantation process in the present invention.
 《イオン注入マスク形成用分散体》
 本発明のイオン注入マスク形成用分散体は、分散媒、及び分散媒中に分散している粒子を含有している。
<Dispersion for ion implantation mask formation>
The dispersion for forming an ion implantation mask of the present invention contains a dispersion medium and particles dispersed in the dispersion medium.
 〈粒子〉
 イオン注入工程におけるパターン形状を安定にする観点から、本発明で用いられる粒子は、イオン注入工程における半導体層又は基材の温度を超える融点を有する材料の粒子であることが好ましい。
<particle>
From the viewpoint of stabilizing the pattern shape in the ion implantation step, the particles used in the present invention are preferably particles of a material having a melting point exceeding the temperature of the semiconductor layer or the substrate in the ion implantation step.
 したがって、例えば本発明で用いられる粒子としては、例えば400℃以上、600℃以上、800℃以上、1000℃以上、1200℃以上、1500℃以上の融点を有する材料の粒子を用いることができる。 Therefore, for example, particles of a material having a melting point of 400 ° C. or higher, 600 ° C. or higher, 800 ° C. or higher, 1000 ° C. or higher, 1200 ° C. or higher, or 1500 ° C. or higher can be used as the particles used in the present invention.
 本発明で用いられる粒子の平均一次粒径は、500nm以下、200nm以下、100nm以下、50nm以下、20nm以下、又は5nm以下にすることができる。また、本発明で用いられる粒子の一次粒径は0.1nm以上、又は1nm以上とすることができる。 The average primary particle size of the particles used in the present invention can be 500 nm or less, 200 nm or less, 100 nm or less, 50 nm or less, 20 nm or less, or 5 nm or less. Moreover, the primary particle diameter of the particle | grains used by this invention can be 0.1 nm or more, or 1 nm or more.
 また、本発明で用いられる粒子の平均一次粒径は、粒子の粒径に起因するパターンの歪みを低減するため、200nm以下、100nm以下、50nm以下、20nm以下、又は5nm以下とすることが好ましい。 In addition, the average primary particle size of the particles used in the present invention is preferably 200 nm or less, 100 nm or less, 50 nm or less, 20 nm or less, or 5 nm or less in order to reduce pattern distortion caused by the particle size. .
 ここで、本発明においては、粒子の平均一次粒子径は、走査型電子顕微鏡(SEM)、透過型電子顕微鏡(TEM)等による観察によって、撮影した画像を元に直接に投影面積円相当径を計測し、集合数100以上からなる粒子群を解析することで、数平均一次粒子径として求めることができる。 Here, in the present invention, the average primary particle diameter of the particles is a projected area circle equivalent diameter directly based on a photographed image by observation with a scanning electron microscope (SEM), a transmission electron microscope (TEM), or the like. The number average primary particle diameter can be obtained by measuring and analyzing a particle group consisting of 100 or more aggregates.
 本発明で用いられる粒子としては、単一の種類の粒子を用いてもよいし、2種類以上の粒子を組み合わせて使用してもよい。 As the particles used in the present invention, a single type of particle may be used, or two or more types of particles may be used in combination.
 イオン注入マスクのような絶縁体膜で覆われた半導体へ高密度イオン注入を行う場合、基材及びイオン注入マスクに発生する帯電(チャージアップ)が問題となる。イオン注入工程中に基材及びイオン注入マスクが帯電すると、半導体中のイオン注入がなされた領域、イオン注入マスクなどの絶縁体、及び半導体基材の間で電位差が生じ、放電現象が生じることがある。また、帯電により発生した空間電場により、注入されるイオン密度の不均一化が発生することがある。このような原因により、絶縁体膜で覆われた半導体へ高密度イオン注入を行う場合には、半導体デバイスの性能及び歩留まりの低下を招くことが知られている。この帯電現象は、特に半導体表面がSiOをはじめとした絶縁体膜で覆われている場合に顕著である。 When high-density ion implantation is performed on a semiconductor covered with an insulator film such as an ion implantation mask, charging (charge-up) generated in the base material and the ion implantation mask becomes a problem. When the substrate and the ion implantation mask are charged during the ion implantation process, a potential difference occurs between the region in the semiconductor where the ion implantation is performed, the insulator such as the ion implantation mask, and the semiconductor substrate, and a discharge phenomenon may occur. is there. Further, the density of implanted ions may be uneven due to the space electric field generated by charging. For these reasons, it is known that when high-density ion implantation is performed on a semiconductor covered with an insulator film, the performance and yield of the semiconductor device are reduced. This charging phenomenon is particularly remarkable when the semiconductor surface is covered with an insulator film such as SiO 2 .
 したがって、イオン注入マスクに導電性を付与し、帯電の問題の解決を図る観点からは、本発明で用いられる粒子としては、導電性及び/又は半導体材料の粒子を用いることが好ましい。 Therefore, from the viewpoint of imparting conductivity to the ion implantation mask and solving the problem of charging, it is preferable to use conductive and / or semiconductor material particles as the particles used in the present invention.
 導電性及び/又は半導体材料は、本発明の分散体を用いてイオン注入用マスクを形成し、そしてイオン注入を行ったときに、半導体層又は基材、及びイオン注入用マスクに発生する帯電(チャージアップ)を抑制するのに十分な導電性をマスクが有するように選択することができる。 The conductive and / or semiconductor material is formed by using the dispersion of the present invention to form an ion implantation mask, and the charge generated in the semiconductor layer or substrate and the ion implantation mask when ion implantation is performed ( The mask can be selected to have sufficient conductivity to suppress (charge-up).
 具体的には、この導電性及び/又は半導体材料としては、例えば1×1012Ωm以下、1×10Ωm以下、1×10Ωm以下、1×10Ωm以下、1Ωm以下、1×10-3Ωm以下、又は1×10-6Ωm以下の抵抗率を有する材料を選ぶことができる。 Specifically, for example, the conductive and / or semiconductor material is 1 × 10 12 Ωm or less, 1 × 10 9 Ωm or less, 1 × 10 6 Ωm or less, 1 × 10 3 Ωm or less, 1 × 10 3 Ωm or less, 1Ωm or less, 1 × A material having a resistivity of 10 −3 Ωm or less or 1 × 10 −6 Ωm or less can be selected.
 これらのうち、100mA級の高ビーム密度で行われる高スループットのイオン注入工程においても帯電を防止する観点からは、この導電性及び/又は半導体材料として、好ましくは1×10Ωm以下、より好ましくは1Ωm以下、さらに好ましくは1×10-3Ωm以下、特に好ましくは1×10-6Ωm以下の抵抗率を有する材料を選ぶことができる。 Among these, from the viewpoint of preventing charging even in a high-throughput ion implantation step performed at a high beam density of 100 mA class, the conductivity and / or semiconductor material is preferably 1 × 10 3 Ωm or less, more preferably Can be selected from materials having a resistivity of 1 Ωm or less, more preferably 1 × 10 −3 Ωm or less, and particularly preferably 1 × 10 −6 Ωm or less.
 また、導電性及び/又は半導体材料は、膜厚0.5μmの粒子膜で形成されたイオン注入マスク層を得たときに、このイオン注入マスク層のシート抵抗が、1012Ω/□以下、1011Ω/□以下、又は1010Ω/□以下であるように選択することもできる。 In addition, when the ion implantation mask layer formed of a particle film having a film thickness of 0.5 μm is obtained as the conductive and / or semiconductor material, the sheet resistance of the ion implantation mask layer is 10 12 Ω / □ or less, It can also be selected to be 10 11 Ω / □ or less, or 10 10 Ω / □ or less.
 本発明で用いられる粒子としては、金属、半金属、又はそれらの組合せの粒子を使用してもよい。ここで、半金属としては、ケイ素、ゲルマニウム等を挙げることができる。 As the particles used in the present invention, particles of metal, metalloid, or a combination thereof may be used. Here, examples of the semimetal include silicon and germanium.
 半導体層又は基材を高温に加熱してイオン注入を行う工程において、金属不純物による半導体層又は基材の汚染を防ぐために、半導体材料の粒子を用いることがさらに好ましい。 In the step of performing ion implantation by heating the semiconductor layer or the substrate to a high temperature, it is more preferable to use particles of a semiconductor material in order to prevent contamination of the semiconductor layer or the substrate with metal impurities.
 したがって、例えば本発明で用いられる粒子は、シリコン(Si)、ゲルマニウム(Ge)、ダイヤモンド(C)、炭化シリコン(SiC)、シリコンゲルマニウム(SiGe)、窒化ガリウム(GaN)、リン化インジウム(InP)、ヒ化ガリウム(GaAs)、硫化カドミウム(CdS)、セレン化亜鉛(ZnSe)、酸化亜鉛(ZnO)などの半導体材料の粒子であってよい。 Thus, for example, the particles used in the present invention are silicon (Si), germanium (Ge), diamond (C), silicon carbide (SiC), silicon germanium (SiGe), gallium nitride (GaN), indium phosphide (InP). , Particles of a semiconductor material such as gallium arsenide (GaAs), cadmium sulfide (CdS), zinc selenide (ZnSe), or zinc oxide (ZnO).
 この半導体材料の粒子、特にシリコン粒子は、不純物ドーパントによって予めドーピングされ、それによって好ましい導電性を有していてもよい。 The particles of this semiconductor material, especially silicon particles, may be pre-doped with an impurity dopant and thereby have favorable conductivity.
 この場合の半導体材料の粒子、特にシリコン粒子は、13族及び15族元素のうち少なくとも一種類の元素をドーパントとして含有していてよい。すなわち、ドーパントはp型であってもn型であってもよく、例えば、ホウ素(B)、アルミニウム(Al)、ガリウム(Ga)、インジウム(In)、チタン(Ti)、鉄(Fe)、リン(P)、ヒ素(As)、アンチモン(Sb)、又はそれらの組み合わせからなる群より選択されるドーパント、例えばホウ素又はリンをドーパントを含有していてよい。 In this case, the particles of the semiconductor material, particularly the silicon particles, may contain at least one element selected from group 13 and group 15 elements as a dopant. That is, the dopant may be p-type or n-type. For example, boron (B), aluminum (Al), gallium (Ga), indium (In), titanium (Ti), iron (Fe), The dopant may contain a dopant selected from the group consisting of phosphorus (P), arsenic (As), antimony (Sb), or combinations thereof, such as boron or phosphorus.
 特に、シリコン粒子が、ホウ素をドーパントとして含有している場合、ホウ素がシリコン粒子に好ましい導電性を提供する一方で、イオン注入工程においては、ホウ素がシリコン粒子から半導体基材に移動しにくい点で好ましい。 In particular, when silicon particles contain boron as a dopant, boron provides preferable conductivity to silicon particles, while boron is difficult to move from silicon particles to a semiconductor substrate in an ion implantation process. preferable.
 半導体粒子、特にシリコン粒子におけるドーパントの濃度は、1018atoms/cm以上、1019atoms/cm以上、又は1020atoms/cm以上であってよい。 The concentration of the dopant in the semiconductor particles, particularly silicon particles, may be 10 18 atoms / cm 3 or more, 10 19 atoms / cm 3 or more, or 10 20 atoms / cm 3 or more.
 半導体層又は基材を高温に加熱してイオン注入を行う工程において、金属不純物による半導体層又は基材の汚染を防ぐため、半導体粒子に含まれる金属不純物の濃度がそれぞれ、100ppb以下、50ppb以下、20ppb、又は10ppb以下である半導体粒子を用いることができる。ここで、半導体が金属を構成要素として含む化合物半導体である場合、「金属不純物」は、半導体を構成する金属以外の金属を意味している。 In the step of performing ion implantation by heating the semiconductor layer or the substrate to a high temperature, the concentration of the metal impurity contained in the semiconductor particles is 100 ppb or less, 50 ppb or less, respectively, in order to prevent contamination of the semiconductor layer or the substrate by metal impurities. Semiconductor particles that are 20 ppb or 10 ppb or less can be used. Here, when the semiconductor is a compound semiconductor containing a metal as a constituent element, the “metal impurity” means a metal other than the metal constituting the semiconductor.
 本発明で用いられる粒子は、イオン注入用マスクを形成できる範囲で任意の濃度で用いることができる。例えば、本発明で用いられる粒子は、分散体に対して、1重量%以上、5重量%以上、10重量%以上、15重量%以上、又は20重量%以上であってよい。また、本発明で用いられる粒子は、分散体に対して、95重量%以下、90重量%以下、80重量%以下、70重量%以下、60重量%以下、50重量%以下、40重量%以下、又は30重量%以下であってよい。 The particles used in the present invention can be used at an arbitrary concentration as long as an ion implantation mask can be formed. For example, the particles used in the present invention may be 1% by weight or more, 5% by weight or more, 10% by weight or more, 15% by weight or more, or 20% by weight or more based on the dispersion. Further, the particles used in the present invention are 95% by weight or less, 90% by weight or less, 80% by weight or less, 70% by weight or less, 60% by weight or less, 50% by weight or less, 40% by weight or less with respect to the dispersion. Or 30 wt% or less.
 粒子の濃度を上記の濃度とすることで、印刷法でパターニングを行うために好適な粘度を有する分散体を提供することができる。また、上記の濃度範囲であれば、分散体の印刷によって、イオン注入工程において十分なイオン遮蔽能を有するイオン注入用マスクパターンを形成することができる。 By setting the particle concentration to the above-described concentration, it is possible to provide a dispersion having a viscosity suitable for patterning by a printing method. Moreover, if it is said density | concentration range, the mask pattern for ion implantation which has sufficient ion shielding ability in an ion implantation process can be formed by printing a dispersion.
 〈分散媒〉
 本発明の分散体は分散媒を含有する。分散媒の種類に特に制限はないが、本発明で用いる粒子を均一に分散できる分散媒を選択することが好ましい。また、この分散媒は、分散体に含まれる随意の他の成分、例えば耐熱性バインダー形成成分を溶解させることが好ましい。
<Dispersion medium>
The dispersion of the present invention contains a dispersion medium. Although there is no restriction | limiting in particular in the kind of dispersion medium, It is preferable to select the dispersion medium which can disperse | distribute the particle | grains used by this invention uniformly. Moreover, it is preferable that this dispersion medium dissolves other optional components contained in the dispersion, for example, a heat-resistant binder-forming component.
 本発明の分散体に含有される分散媒の大気圧下での沸点は、100℃~400℃であることが好ましい。沸点が100℃以上の分散媒を選択することで、分散体の製膜時に適切な速度で分散媒が蒸発し、均一な膜が得られる。また沸点が400℃以下の分散媒を選択することで、分散体の膜の製膜後に、分散体の膜に残存する分散媒を少なくすることができるため、焼成時の膜収縮によるクラックや表面平坦性の低下を抑制することができる。 The boiling point of the dispersion medium contained in the dispersion of the present invention under atmospheric pressure is preferably 100 ° C. to 400 ° C. By selecting a dispersion medium having a boiling point of 100 ° C. or higher, the dispersion medium evaporates at an appropriate speed when forming the dispersion, and a uniform film can be obtained. Also, by selecting a dispersion medium having a boiling point of 400 ° C. or less, it is possible to reduce the dispersion medium remaining in the dispersion film after the formation of the dispersion film. A decrease in flatness can be suppressed.
 具体的な分散媒としては、本発明で用いる粒子と反応しない有機分散媒を用いることができる。具体的にはこの分散媒は、非水系分散媒、例えばアルコール、アルカン、アルケン、アルキン、ケトン、エーテル、エステル、芳香族化合物、又は含窒素環化合物、特にイソプロピルアルコール(IPA)、N-メチル-2-ピロリドン(NMP)、テルピネオール等であってよい。また、アルコールとしては、プロピレングリコール、エチレングリコールのようなグリコール(2価アルコール)を用いることもできる。なお、本発明で用いる粒子が金属及び/又は半導体の粒子である場合、これらの粒子の酸化を抑制するために、脱水分散媒であることが好ましい。 As a specific dispersion medium, an organic dispersion medium that does not react with the particles used in the present invention can be used. Specifically, this dispersion medium is a non-aqueous dispersion medium such as alcohol, alkane, alkene, alkyne, ketone, ether, ester, aromatic compound, or nitrogen-containing ring compound, particularly isopropyl alcohol (IPA), N-methyl- It may be 2-pyrrolidone (NMP), terpineol or the like. Moreover, as alcohol, glycols (dihydric alcohol) like propylene glycol and ethylene glycol can also be used. In addition, when the particle | grains used by this invention are metal and / or a semiconductor particle, in order to suppress the oxidation of these particle | grains, it is preferable that it is a dehydration dispersion medium.
 〈耐熱性バインダー形成成分〉
 本発明の分散体は、粒子同士を結着させ、安定なイオン注入マスクを形成することを目的として、耐熱性バインダー形成成分を更に含有してもよい。
<Heat-resistant binder forming component>
The dispersion of the present invention may further contain a heat-resistant binder-forming component for the purpose of binding particles and forming a stable ion implantation mask.
 ここで、本発明に関して、耐熱性バインダー形成成分は、イオン注入マスクを使用してイオン注入を行う雰囲気、例えば400℃の温度の減圧雰囲気において安定なバインダーを形成できる成分を意味している。この耐熱性バインダー形成成分は、本発明の分散体の分散媒に溶解していることが均一性に関して好ましいが、溶解せずに分散していてもよい。また、この耐熱性バインダー形成成分は、本発明の分散体の膜の乾燥及び/又は焼成の際に化学的に変化して、耐熱性バインダーを形成するものであっても、化学的には変化せずに形状のみが変化して耐熱性バインダーを形成するものであってもよい。 Here, regarding the present invention, the heat-resistant binder forming component means a component capable of forming a stable binder in an atmosphere in which ion implantation is performed using an ion implantation mask, for example, a reduced pressure atmosphere at a temperature of 400 ° C. The heat-resistant binder forming component is preferably dissolved in the dispersion medium of the dispersion of the present invention in terms of uniformity, but may be dispersed without dissolving. Further, this heat-resistant binder forming component is chemically changed even when the heat-resistant binder is formed by chemically changing during drying and / or firing of the dispersion film of the present invention. Instead, only the shape may be changed to form a heat-resistant binder.
 このような耐熱性バインダー形成成分は、シリカ、リン酸ナトリウム、ケイ酸ナトリウム等の無機バインダーを形成する無機バインダー形成成分であっても、フッ素系ポリマー等の有機バインダーを形成する有機バインダー形成成分であってもよい。無機バインダー形成成分としては、シロキサン化合物、リン酸ナトリウム、ケイ酸ナトリウム等を挙げることができ、また有機バインダー形成成分としては、フッ素系ポリマー等を挙げることができる。 Such a heat-resistant binder-forming component is an organic binder-forming component that forms an organic binder such as a fluorine-based polymer, even if it is an inorganic binder-forming component that forms an inorganic binder such as silica, sodium phosphate, or sodium silicate. There may be. Examples of the inorganic binder forming component include a siloxane compound, sodium phosphate, and sodium silicate, and examples of the organic binder forming component include a fluorine-based polymer.
 耐熱性バインダー形成成分を用いる場合には、分散体の層を形成した後に、耐熱性バインダー形成成分の焼成を目的とした、焼成を行うことが好ましい。焼成を行うことにより、イオン注入マスク層を構成する粒子同士を結着させ、安定なイオン注入マスクを形成することができる。また、焼成を行うことにより、イオン注入工程における、イオン注入マスクからの放出ガスによる、イオン注入装置内の汚染及び真空度の低下を防ぐことができる。 When the heat-resistant binder forming component is used, it is preferable to perform firing for the purpose of firing the heat-resistant binder forming component after forming the dispersion layer. By performing the baking, the particles constituting the ion implantation mask layer are bound to each other, and a stable ion implantation mask can be formed. In addition, by performing baking, contamination in the ion implantation apparatus and a decrease in the degree of vacuum due to the gas released from the ion implantation mask in the ion implantation process can be prevented.
 なお、耐熱性バインダーが、酸等によって溶解される材料である場合、例えば耐熱性バインダー形成成分がシロキサンであり、その焼成によって耐熱性バインダーとしてのガラス質材料が形成される場合、イオン注入後にイオン注入マスクを酸等で処理することによって、イオン注入マスクの除去性を向上させることができる。また、耐熱性バインダーが、イオン注入よりも高い温度での加熱によって融解又は分解する材料である場合、例えば耐熱性バインダーがフッ素系ポリマーである場合、イオン注入後にイオン注入マスクを更に加熱処理することによって、イオン注入マスクの除去性を向上させることができる。 When the heat-resistant binder is a material that is dissolved by an acid or the like, for example, when the heat-resistant binder-forming component is siloxane and the glassy material as the heat-resistant binder is formed by baking, the ions are implanted after ion implantation. By treating the implantation mask with acid or the like, the removability of the ion implantation mask can be improved. In addition, when the heat-resistant binder is a material that melts or decomposes by heating at a temperature higher than that of ion implantation, for example, when the heat-resistant binder is a fluoropolymer, the ion implantation mask is further heat-treated after ion implantation. Therefore, the removability of the ion implantation mask can be improved.
 〈一時的バインダー形成成分〉
 本発明の分散体は、形成される分散体の膜及び膜のパターンを安定に形成することを目的として、一時的バインダー形成成分を更に含有してもよい。
<Temporary binder forming component>
The dispersion of the present invention may further contain a temporary binder forming component for the purpose of stably forming the dispersion film and the pattern of the film to be formed.
 ここで、本発明に関して、一時的バインダー形成成分は、イオン注入マスクを形成する過程において形成される粒子膜を安定に形成するためのものであり、最終的なイオン注入マスクを形成する際に加熱等によって除去されるものである。この一時的バインダー形成成分は、本発明の分散体の分散媒に溶解していることが均一性に関して好ましいが、溶解せずに分散していてもよい。また、この一時的バインダー形成成分は、本発明の分散体の膜の乾燥の際に化学的に変化して、一時的バインダーを形成するものであっても、化学的には変化せずに形状のみが変化して一時的バインダーを形成するものであってもよい。 Here, in the present invention, the temporary binder forming component is for stably forming a particle film formed in the process of forming the ion implantation mask, and is heated when forming the final ion implantation mask. Etc. are removed. This temporary binder forming component is preferably dissolved in the dispersion medium of the dispersion of the present invention in terms of uniformity, but may be dispersed without dissolving. Further, the temporary binder-forming component is chemically changed when the dispersion film of the present invention is dried to form a temporary binder. Only a change may be made to form a temporary binder.
 このような一時的バインダー形成成分は、ポリマー等の有機バインダーを形成する有機バインダー形成成分であってよい。有機バインダー形成成分としては、エチルセルロース等の有機ポリマーを挙げることができる。 Such a temporary binder forming component may be an organic binder forming component that forms an organic binder such as a polymer. Examples of the organic binder forming component include organic polymers such as ethyl cellulose.
 一時的バインダー形成成分を用いる場合には、粒子の膜を安定に形成及び/又は維持するという一時的バインダーの役割が終わった後で、一時的バインダーの除去を目的とした、焼成を行うことが好ましい。一時的バインダーの除去を行うことにより、イオン注入工程において、イオン注入マスクからの放出ガスによる、イオン注入装置内の汚染及び真空度の低下を防ぐことができる。 When the temporary binder forming component is used, after the role of the temporary binder for stably forming and / or maintaining the film of particles is finished, firing for the purpose of removing the temporary binder may be performed. preferable. By removing the temporary binder, it is possible to prevent contamination in the ion implantation apparatus and a decrease in the degree of vacuum due to the gas released from the ion implantation mask in the ion implantation process.
 《イオン注入用マスク》
 本発明のイオン注入用マスクは、粒子、及び随意の耐熱性バインダーを含有している。
<Ion implantation mask>
The ion implantation mask of the present invention contains particles and an optional heat resistant binder.
 本発明のイオン注入用マスクが含有している粒子及び随意の耐熱性バインダーとしては、本発明の分散体に関して説明したものを挙げることができる。 Examples of the particles contained in the ion implantation mask of the present invention and the optional heat-resistant binder include those described for the dispersion of the present invention.
 本発明のイオン注入用マスクは、40keVの運動エネルギーを有するAlイオンを1×1014cm-2の数密度で入射した際に、分散体膜を通過するAlイオンが、入射したイオンの数の1%以下であってよい。また、本発明のイオン注入用マスクのシート抵抗は、1012Ω/□以下、1011Ω/□以下、又は1010Ω/□以下であってよい。 In the ion implantation mask of the present invention, when Al + ions having a kinetic energy of 40 keV are incident at a number density of 1 × 10 14 cm −2 , Al + ions passing through the dispersion film are It may be 1% or less of the number. The sheet resistance of the ion implantation mask of the present invention may be 10 12 Ω / □ or less, 10 11 Ω / □ or less, or 10 10 Ω / □ or less.
 《イオン注入用マスクの形成方法、及び半導体デバイスの製造方法》
 本発明の第1の実施態様において、イオン注入用マスクを形成する方法は、本発明の分散体を、例えば印刷法によって、直接に又は転写基材を介して、半導体層又は基材に適用することによって、分散体に含有される粒子の膜のパターンを、半導体層又は基材上に形成する工程を含む。この方法では、半導体層又は基材上に形成された粒子の膜のパターン、及び/又は転写基材上に形成された粒子の膜のパターンを、乾燥及び/又は焼成する工程を更に含むことができる。
<< Method for Forming Ion Implantation Mask and Method for Manufacturing Semiconductor Device >>
In a first embodiment of the present invention, a method of forming an ion implantation mask comprises applying a dispersion of the present invention to a semiconductor layer or substrate, for example, by a printing method, directly or via a transfer substrate. By this, the process of forming the pattern of the film | membrane of the particle | grains contained in a dispersion on a semiconductor layer or a base material is included. The method may further include drying and / or baking the pattern of the film of particles formed on the semiconductor layer or the substrate and / or the pattern of the film of particles formed on the transfer substrate. it can.
 本発明の第2の実施態様において、イオン注入用マスクを形成する本発明の方法は、粒子分散体を、例えば塗布法によって、直接に又は転写基材を介して半導体層又は基材に適用して分散体に含有されている粒子膜を得た後、この粒子膜に対して光照射、特にレーザー照射を行って、粒子膜の一部を除去することによって、粒子膜のパターンを半導体層又は基材上に形成する工程を含む。この方法では、半導体層又は基材上に形成された粒子膜、及び/又は転写基材上に形成された粒子膜を、乾燥及び/又は焼成する工程を更に含むことができる。 In a second embodiment of the present invention, the method of the present invention for forming an ion implantation mask comprises applying a particle dispersion to a semiconductor layer or substrate, for example, by a coating method, directly or via a transfer substrate. After obtaining the particle film contained in the dispersion, the particle film pattern is removed by performing light irradiation, particularly laser irradiation, on the particle film to remove a part of the particle film. Forming on a substrate. This method may further include a step of drying and / or baking the particle film formed on the semiconductor layer or the substrate and / or the particle film formed on the transfer substrate.
 また、半導体デバイスを製造する本発明の方法は、以下の工程を含む:
 イオン注入用マスクを形成する本発明の方法で半導体層又は基材上にイオン注入用マスクを形成する工程、又は本発明のイオン注入用マスクを半導体層又は基材上に提供する工程、
 イオン注入用マスクのパターン開口部を通して、半導体層又は基材にイオンを注入する工程、及び
 イオン注入用マスクを除去する工程。
Also, the method of the present invention for manufacturing a semiconductor device includes the following steps:
Forming a mask for ion implantation on a semiconductor layer or substrate by the method of the present invention for forming a mask for ion implantation, or providing a mask for ion implantation of the present invention on a semiconductor layer or substrate;
A step of implanting ions into the semiconductor layer or the substrate through a pattern opening of the mask for ion implantation, and a step of removing the mask for ion implantation.
 半導体デバイスを製造する本発明の方法の第1の例について、図1を参照して下記で説明する。ここでは、本発明の第1の実施態様によるイオン注入用マスクの形成方法によって、イオン注入マスクを形成している。 A first example of the method of the present invention for manufacturing a semiconductor device will be described below with reference to FIG. Here, the ion implantation mask is formed by the ion implantation mask forming method according to the first embodiment of the present invention.
 まず、図1(a)に示すように、SiCエピタキシャル膜(1)を有するSiC基材(2)を提供し、そして図1(b)に示すように、本発明の分散体に含有される粒子の膜(11)を、SiC基材のエピタキシャル膜(1)上に任意の印刷法で形成する。これによれば、図1(b)に示すように、SiC基材(2)上に、マスクパターン開口部(12)を有する分散体の膜のパターンが形成される。 First, as shown in FIG. 1 (a), a SiC substrate (2) having a SiC epitaxial film (1) is provided, and as shown in FIG. 1 (b), it is contained in the dispersion of the present invention. A film (11) of particles is formed on the epitaxial film (1) of the SiC substrate by any printing method. According to this, as shown in FIG.1 (b), the pattern of the film | membrane of the dispersion which has a mask pattern opening part (12) is formed on a SiC base material (2).
 その後、粒子の膜を乾燥及び焼成する随意の工程の後で、図1(c)に示すように、イオン注入装置を用い、イオン注入用マスク(11)のマスクパターン開口部(12)を通して、ドーパントイオンのビーム(7)でSiC基材(2)の表面のSiCエピタキシャル膜(1)中にイオン注入を行うことによって、イオン注入領域(6)が形成される。このとき、イオン注入される半導体層又は基材を加熱して、例えば200℃以上の温度に加熱して、イオン注入の工程を行うことができる。 Thereafter, after an optional step of drying and firing the film of particles, as shown in FIG. 1 (c), using an ion implanter, through the mask pattern opening (12) of the ion implantation mask (11), An ion implantation region (6) is formed by performing ion implantation into the SiC epitaxial film (1) on the surface of the SiC substrate (2) with a beam (7) of dopant ions. At this time, the semiconductor layer or the substrate to be ion-implanted is heated, for example, heated to a temperature of 200 ° C. or higher, and the ion implantation step can be performed.
 その後、図1(d)に示すように、イオン注入用マスク(11)を溶解可能な薬液への浸漬等の手段によって、除去することができる。 Thereafter, as shown in FIG. 1 (d), the ion implantation mask (11) can be removed by means such as immersion in a dissolvable chemical solution.
 半導体デバイスを製造する本発明の方法の第2の例について、図3を参照して下記で説明する。ここでは、本発明の第2の実施態様によるイオン注入用マスクの形成方法によって、イオン注入マスクを形成している。 A second example of the method of the present invention for manufacturing a semiconductor device will be described below with reference to FIG. Here, the ion implantation mask is formed by the ion implantation mask forming method according to the second embodiment of the present invention.
 まず、図3(a)に示すように、SiCエピタキシャル膜(1)を有するSiC基材(2)を提供し、そして図3(b)に示すように、粒子分散体に含有される粒子で構成されている粒子膜(11)を、SiC基材のエピタキシャル膜(1)上に任意の方法で形成する。光照射(5)を粒子膜の任意の部分に行うことによって、光照射がなされた部分の粒子膜を除去して粒子膜パターニングし、イオン注入用マスクを得る。これによれば、図3(c)に示すように、SiCエピタキシャル膜(1)を有するSiC基材(2)上に、マスクパターン開口部(12)を有するイオン注入用マスクが形成される。 First, as shown in FIG. 3 (a), an SiC substrate (2) having an SiC epitaxial film (1) is provided, and as shown in FIG. 3 (b), particles contained in the particle dispersion are provided. The constituted particle film (11) is formed on the SiC-based epitaxial film (1) by an arbitrary method. By performing light irradiation (5) on an arbitrary part of the particle film, the part of the particle film that has been irradiated with light is removed and patterned to obtain an ion implantation mask. According to this, as shown in FIG. 3C, the ion implantation mask having the mask pattern opening (12) is formed on the SiC substrate (2) having the SiC epitaxial film (1).
 その後、粒子膜を乾燥及び焼成する随意の工程の後で、図3(d)に示すように、イオン注入装置を用い、イオン注入用マスク(11)のマスクパターン開口部(12)を通して、ドーパントイオンのビーム(7)でSiC基材(2)の表面のSiCエピタキシャル膜(1)中にイオン注入を行うことによって、イオン注入領域(6)が形成される。このとき、イオン注入される半導体層又は基材を、200℃以上の温度に加熱して、イオン注入の工程を行うことができる。 Thereafter, after an optional step of drying and baking the particle film, as shown in FIG. 3D, the dopant is passed through the mask pattern opening (12) of the ion implantation mask (11) using an ion implantation apparatus. An ion implantation region (6) is formed by performing ion implantation into the SiC epitaxial film (1) on the surface of the SiC substrate (2) with an ion beam (7). At this time, the ion implantation process can be performed by heating the semiconductor layer or the substrate to be ion-implanted to a temperature of 200 ° C. or higher.
 その後、図3(e)に示すように、イオン注入用マスク(11)を溶解可能な薬液への浸漬等の手段によって、除去することができる。 Thereafter, as shown in FIG. 3 (e), the ion implantation mask (11) can be removed by means such as immersion in a dissolvable chemical solution.
 〈半導体層又は基材〉
 半導体層又は基材としては、ドーパントを拡散させることを意図した任意の半導体層又は基材を用いることができる。
<Semiconductor layer or substrate>
As the semiconductor layer or substrate, any semiconductor layer or substrate intended to diffuse the dopant can be used.
 したがって、半導体層又は基材としては、シリコン(Si)、ゲルマニウム(Ge)、ダイヤモンド(C)、炭化シリコン(SiC)、シリコンゲルマニウム(SiGe)、窒化ガリウム(GaN)、リン化インジウム(InP)、ヒ化ガリウム(GaAs)、硫化カドミウム(CdS)、セレン化亜鉛(ZnSe)、酸化亜鉛(ZnO)、特に炭化シリコン(SiC)などが挙げられるが、これらに限定されない。 Therefore, as a semiconductor layer or substrate, silicon (Si), germanium (Ge), diamond (C), silicon carbide (SiC), silicon germanium (SiGe), gallium nitride (GaN), indium phosphide (InP), Examples include, but are not limited to, gallium arsenide (GaAs), cadmium sulfide (CdS), zinc selenide (ZnSe), zinc oxide (ZnO), and particularly silicon carbide (SiC).
 また、半導体層又は基材は、単一の層で構成されていてもよいし、1つ以上の半導体層を含む2種類以上の層で構成された積層体であってもよい。 Further, the semiconductor layer or the substrate may be composed of a single layer or a laminate composed of two or more types of layers including one or more semiconductor layers.
 半導体層又は基材は、不純物ドーパントが1016cm-3以下の半導体層又は基材でもよく、不純物ドーパントで1016cm-3を超える濃度に予めドープされていてもよい。 The semiconductor layer or substrate may be a semiconductor layer or substrate having an impurity dopant of 10 16 cm −3 or less, and may be pre-doped to a concentration exceeding 10 16 cm −3 with the impurity dopant.
 半導体層又は基材上に、金属膜や、金属の配線パターンが予め形成されていてもよい。 A metal film or a metal wiring pattern may be formed in advance on the semiconductor layer or the substrate.
 〈イオン注入用マスクの形成方法〉
 〈第1の実施態様〉
 イオン注入用マスクを形成する第1の実施態様に関する本発明の方法は、本発明の分散体を、例えば印刷法によって、直接に又は転写基材を介して、半導体層又は基材に適用することによって、分散体に含有される粒子の膜のパターンを、半導体層又は基材上に形成する工程を含む。
<Method of forming ion implantation mask>
<First Embodiment>
The method of the present invention relating to a first embodiment for forming an ion implantation mask comprises applying the dispersion of the present invention to a semiconductor layer or substrate, for example by printing, directly or via a transfer substrate. The process of forming the pattern of the film | membrane of the particle | grains contained in a dispersion on a semiconductor layer or a base material is included.
 分散体に含有される粒子の膜のパターンを半導体層又は基材上に形成する工程は、パターニングされた粒子の膜を半導体層又は基材上に形成することが可能な任意の手段で行うことができる。このような手段としては、例えば、スクリーン印刷法、グラビア印刷法、グラビアオフセット印刷、平板オフセット印刷、平版印刷法、樹脂凸版印刷法、フレキソ印刷法、マイクロコンタクト印刷法等が挙げられるが、これらに限定されない任意の手法を選択でき、特に並行平版印刷法のような平版印刷法、又はマイクロコンタクト印刷法を選択できる。これによれば、本発明の分散体は、従来のパターニングに用いられてきたに用いられてきた感光性樹脂等の取り扱いが難しい成分を含有しなくてもよい。 The step of forming the pattern of the particle film contained in the dispersion on the semiconductor layer or the substrate is performed by any means capable of forming the patterned particle film on the semiconductor layer or the substrate. Can do. Examples of such means include a screen printing method, a gravure printing method, a gravure offset printing, a flat plate offset printing, a lithographic printing method, a resin relief printing method, a flexographic printing method, a microcontact printing method, and the like. Any method that is not limited can be selected, and in particular, a lithographic printing method such as a parallel lithographic printing method, or a microcontact printing method can be selected. According to this, the dispersion of this invention does not need to contain the components which are difficult to handle, such as the photosensitive resin used for the conventional patterning.
 これらの印刷方法のうちで、転写によって粒子の膜のパターンを半導体層又は基材上に形成する方法、特にマイクロコンタクト印刷法では、転写基材として1又は複数の任意の基材を用いることができる。具体的には例えば、第1の転写基材に均一な粒子の膜を形成し、この均一な粒子の膜を、例えばポリシロキサン等のポリマーのスタンプであってよい第2の転写基材の表面の付着性部分にのみ転写して、粒子の膜のパターンを第2の転写基材上に形成し、そしてこの粒子の膜のパターンを半導体層又は基材上に転写することができる。 Among these printing methods, one or a plurality of arbitrary substrates may be used as a transfer substrate in a method of forming a film pattern of particles on a semiconductor layer or substrate by transfer, particularly in a microcontact printing method. it can. Specifically, for example, a film of uniform particles is formed on the first transfer substrate, and the film of the uniform particles may be a stamp of a polymer such as polysiloxane, for example. The particle film pattern can be formed on the second transfer substrate, and the particle film pattern can be transferred onto the semiconductor layer or substrate.
 上記の印刷のうち、パワー半導体の製造で用いられる高解像度のパターニングを行う観点からは、並行平版印刷法のような平版印刷法、マイクロコンタクト印刷法等の10μm以下の解像度でパターニングが可能な手法を用いることが好ましい。 Among the printing methods described above, from the viewpoint of performing high-resolution patterning used in the production of power semiconductors, a technique capable of patterning at a resolution of 10 μm or less, such as a lithographic printing method such as a parallel lithographic printing method or a microcontact printing method Is preferably used.
 〈第2の実施態様〉
 イオン注入用マスクを形成する第2の実施態様に関する本発明の方法は、粒子分散体を、例えば塗布法によって、直接に又は転写基材を介して半導体層又は基材に適用した後、光照射を粒子膜に行うことによって分散体粒子の除去を行い、粒子膜のパターンを半導体層又は基材上に形成する工程を含む。
<Second Embodiment>
The method of the present invention relating to a second embodiment for forming an ion implantation mask comprises applying a particle dispersion to a semiconductor layer or substrate, for example by coating, directly or via a transfer substrate, followed by light irradiation. And removing the dispersion particles by applying to the particle film, and forming a pattern of the particle film on the semiconductor layer or the substrate.
 分散体に含有されている粒子で構成されている粒子膜を半導体層又は基材上に形成する工程は、この膜を半導体層又は基材上に形成することが可能な任意の手段で行うことができる。このような手段としては、例えば、スピンコート法、グラビアオフセットコート法、インクジェット法、スクリーンイン印刷法、スリットダイコート法、スクリーン印刷法、グラビア印刷法、グラビアオフセット印刷、平板オフセット印刷、平版印刷法、樹脂凸版印刷法、フレキソ印刷法、マイクロコンタクト印刷法等が挙げられる。また、このような手段としては、予め別の基材上に任意の手法で形成した作製した粒子膜を半導体基材上に転写するラミネート法等を挙げることもできる。ただし、このような手段としては、これらに限定されない任意の手法を選択できる。 The step of forming the particle film composed of the particles contained in the dispersion on the semiconductor layer or substrate is performed by any means capable of forming this film on the semiconductor layer or substrate. Can do. Examples of such means include spin coating, gravure offset coating, ink jet, screen-in printing, slit die coating, screen printing, gravure printing, gravure offset printing, flat plate offset printing, lithographic printing method, Resin letterpress printing method, flexographic printing method, microcontact printing method and the like can be mentioned. Moreover, as such a means, a laminating method or the like in which a produced particle film previously formed on another substrate by an arbitrary method is transferred onto a semiconductor substrate can be exemplified. However, as such means, any method not limited to these can be selected.
 上記の手法のうち、半導体デバイスの製造を効率的に行う観点からは、粒子膜を半導体層又は基材上の任意の位置に形成できる手法を用いることが好ましい。このような手段としては、例えば、スクリーン印刷法、グラビア印刷法、グラビアオフセット印刷、平板オフセット印刷、平版印刷法、樹脂凸版印刷法、フレキソ印刷法、マイクロコンタクト印刷法等が挙げられるが、これらに限定されない任意の手法を選択できる。 Of the above methods, from the viewpoint of efficiently producing a semiconductor device, it is preferable to use a method capable of forming a particle film at an arbitrary position on a semiconductor layer or a substrate. Examples of such means include a screen printing method, a gravure printing method, a gravure offset printing, a flat plate offset printing, a lithographic printing method, a resin relief printing method, a flexographic printing method, a microcontact printing method, and the like. Any method that is not limited can be selected.
 粒子膜を半導体層又は基材上の任意の位置に形成する手法によれば、光照射によって粒子膜のパターンを形成する工程において、光照射を行う面積を小さくすることができるため、半導体デバイスの製造を効率的に行うことができる利点がある。 According to the method of forming the particle film at an arbitrary position on the semiconductor layer or the base material, in the step of forming the pattern of the particle film by light irradiation, the area for light irradiation can be reduced. There exists an advantage which can manufacture efficiently.
 第1及び第2の実施態様において、粒子の膜に含まれる分散媒の除去を目的として、パターニングされた粒子の膜又はパターニングされる前の粒子の膜を有する転写基材、半導体基板、又は半導体層を加熱することができる。分散媒の加熱除去の手法としては、オーブン、ホットプレート、赤外線など任意の加熱が可能な方法を用いることができる。 In the first and second embodiments, for the purpose of removing the dispersion medium contained in the particle film, a transfer substrate, semiconductor substrate, or semiconductor having a patterned particle film or a pre-patterned particle film The layer can be heated. As a method for heating and removing the dispersion medium, an arbitrary heating method such as an oven, a hot plate, or infrared rays can be used.
 粒子分散体が耐熱性又は一時的バインダー形成材料を含有する場合には、転写基材、半導体基板、又は半導体層の加熱温度を、バインダー形成材料がバインダーを形成して、その結着性能を発揮できる温度とすることができる。 When the particle dispersion contains a heat-resistant or temporary binder-forming material, the heating temperature of the transfer substrate, semiconductor substrate, or semiconductor layer is set, and the binder-forming material forms the binder and exhibits its binding performance. It can be set as the temperature which can be performed.
 なお、粒子分散体が耐熱性バインダー形成材料を含有する場合には、上記の耐熱性バインダー形成材料がバインダーを形成してその結着性能を発揮できる温度に半導体層又は基材を加熱する工程は、粒子膜を半導体層又は基材上に形成する工程の後に行ってもよいし、分散体粒子への光照射によるパターニング工程の後に行ってもよい。 When the particle dispersion contains a heat-resistant binder-forming material, the step of heating the semiconductor layer or the substrate to a temperature at which the heat-resistant binder-forming material forms a binder and can exhibit its binding performance is as follows. Further, it may be performed after the step of forming the particle film on the semiconductor layer or the substrate, or may be performed after the patterning step by light irradiation to the dispersion particles.
〈粒子膜のパターニングによるイオン注入用マスク形成工程〉
 イオン注入用マスクを形成する第2の実施態様に関する本発明の方法では、その後、光照射を粒子膜の任意の部分に行うことによって、光照射がなされた部分の粒子膜を除去する。これによれば、イオン注入用マスク形成工程は、従来のパターニングに用いられてきたに用いられてきた感光性樹脂等の取り扱いが難しい成分を含有しなくてもよく、従来のパターニングに用いられてきたフォトリソグラフィー法等、複雑で高コストなプロセスを含まなくてもよい。
<Ion implantation mask formation process by patterning of particle film>
In the method of the present invention relating to the second embodiment for forming a mask for ion implantation, light irradiation is then performed on an arbitrary part of the particle film, thereby removing the part of the particle film that has been irradiated with light. According to this, the ion implantation mask formation process does not need to contain components that are difficult to handle, such as the photosensitive resin that has been used for conventional patterning, and has been used for conventional patterning. It is not necessary to include complicated and expensive processes such as photolithography.
 光照射を粒子膜の任意の部分に行うことにより、この膜の光照射された部分を除去することによって、半導体粒子膜をパターニングし、イオン注入用マスクを形成する。この際の光照射の手段としては、例えば、レーザー加工、フォトマスク等を通じたフラッシュランプ加工、メーザー加工等が挙げられるが、これらに限定されない任意の手法を選択できる。 By performing light irradiation on an arbitrary part of the particle film, the light-irradiated part of this film is removed, thereby patterning the semiconductor particle film and forming an ion implantation mask. Examples of the light irradiation means in this case include laser processing, flash lamp processing through a photomask, maser processing, and the like, but any method not limited thereto can be selected.
 これらの手段のうち、パワー半導体の製造で用いられる高解像度のパターニングを行う観点からは、レーザー加工等の10μm以下の解像度でパターニングが可能な手法を用いることが好ましい。 Of these means, from the viewpoint of performing high-resolution patterning used in the production of power semiconductors, it is preferable to use a technique capable of patterning with a resolution of 10 μm or less, such as laser processing.
 レーザー加工に用いるレーザー光源に特に制限はないが、イオン注入用マスクを構成する粒子が吸収を有する波長を放出するレーザー光源を、好適に用いることができる。分散体に含有される粒子として、例えば、シリコン粒子を用いた場合、レーザー光源の波長は、例えば、1500nm以下、1200nm以下、600nm以下、又は550nm以下であってもよく、また100nm以上、200nm以上、又は350nm以上であってもよい。 Although there is no particular limitation on the laser light source used for laser processing, a laser light source that emits a wavelength at which particles constituting the ion implantation mask have absorption can be suitably used. For example, when silicon particles are used as the particles contained in the dispersion, the wavelength of the laser light source may be, for example, 1500 nm or less, 1200 nm or less, 600 nm or less, or 550 nm or less, and 100 nm or more and 200 nm or more. Or 350 nm or more.
 レーザー加工に用いるレーザー光源の集光径は、10000μm以下、1000μm以下、100μm以下、50μm以下、20μm以下、10μm以下、5μm以下、2μm以下、1μm以下とすることができる。また、半導体製造プロセスの効率化の観点から異なる集光径をもつ複数のレーザー光源を組みあわせて用いることができる。 The condensing diameter of the laser light source used for laser processing can be 10,000 μm or less, 1000 μm or less, 100 μm or less, 50 μm or less, 20 μm or less, 10 μm or less, 5 μm or less, 2 μm or less, or 1 μm or less. In addition, a plurality of laser light sources having different condensing diameters can be used in combination from the viewpoint of increasing the efficiency of the semiconductor manufacturing process.
 レーザー加工に用いるレーザー光のエネルギー密度は、例えば532nmの波長のレーザー光をレーザー光源として用いる場合、1mJ/cm以上、10mJ/cm以上、50mJ/cm以上、又は100mJ/cm以上であってもよく、100J/cm以下、10J/cm以下、1J/cm以下、500mJ/cm以下、300mJ/cm以下であってもよいが、好ましくは0.1~10J/cmの範囲とすることができる。上記の範囲内であれば、半導体層又は基材に与える損傷を最小限にして、半導体粒子等で構成されている粒子膜をパターニングし、イオン注入用マスクを形成できる利点がある。 The energy density of laser light used for laser processing is, for example, 1 mJ / cm 2 or more, 10 mJ / cm 2 or more, 50 mJ / cm 2 or more, or 100 mJ / cm 2 or more when laser light having a wavelength of 532 nm is used as a laser light source. It may be 100 J / cm 2 or less, 10 J / cm 2 or less, 1 J / cm 2 or less, 500 mJ / cm 2 or less, 300 mJ / cm 2 or less, preferably 0.1 to 10 J / cm A range of 2 can be used. If it is in said range, there exists an advantage which can form the mask for ion implantation by patterning the particle film comprised by the semiconductor particle etc. by making the damage given to a semiconductor layer or a base material to the minimum.
 (イオン注入用マスクの膜厚)
 イオン注入用マスクを構成する粒子の膜の膜厚は、任意の厚さを選択することができる。膜厚は、分散体の組成、印刷条件、印刷方法などによって異なるが、例えば、粒子の膜の膜厚が0.1μm~100μmとなるように印刷又は塗布することできる。
(Thickness of ion implantation mask)
As the film thickness of the particle film constituting the ion implantation mask, an arbitrary thickness can be selected. The film thickness varies depending on the composition of the dispersion, the printing conditions, the printing method, and the like. For example, the film can be printed or applied so that the film thickness of the particle film is 0.1 μm to 100 μm.
 パターニングされた粒子の膜を、イオン注入のマスク層として利用する観点からは、イオン注入のマスク層として十分な膜厚とすることが好ましい。したがって、例えば、イオン注入時の、SiC基材の温度、イオンの加速電圧、ドーパントイオン種などのイオン注入の侵入長に影響を与える要素を勘案して、得られるイオン注入用マスクが十分なイオン阻止能を有する膜厚であるように、粒子の膜の膜厚を選択することができる。 From the viewpoint of using the patterned particle film as a mask layer for ion implantation, it is preferable that the film thickness be sufficient as the mask layer for ion implantation. Therefore, for example, in consideration of factors that affect the penetration depth of ion implantation, such as the temperature of the SiC base material, the acceleration voltage of ions, and the dopant ion species during ion implantation, the obtained ion implantation mask has sufficient ions. The film thickness of the particle film can be selected so that the film thickness has a stopping power.
 〈一時的バインダー除去を目的とした焼成〉
 粒子組成物に一時的バインダーが含まれる場合には、一時的バインダーの除去を目的として、半導体基板、又は半導体層を、一時的バインダーの除去が可能な温度に加熱することができる。
<Baking for the purpose of temporary binder removal>
When a temporary binder is contained in the particle composition, the semiconductor substrate or the semiconductor layer can be heated to a temperature at which the temporary binder can be removed for the purpose of removing the temporary binder.
 〈イオン注入工程〉
 本発明の方法では次に、イオン注入用マスクのパターン開口部を通して、半導体層又は基材にイオンを注入する。
<Ion implantation process>
Next, in the method of the present invention, ions are implanted into the semiconductor layer or the substrate through the pattern opening of the ion implantation mask.
 イオン注入用マスクは、イオン注入温度が200~1000℃であるSiC層又は基材へのイオン注入を含む半導体デバイスの製造プロセスに好ましく適用される。イオン注入温度は、200℃以上、250℃以上、300℃以上、又は350℃以上であり、またこの温度は、1000℃以下、800℃以下、700℃以下、600℃以下、又は500℃以下である。 The ion implantation mask is preferably applied to a semiconductor device manufacturing process including ion implantation into a SiC layer or substrate having an ion implantation temperature of 200 to 1000 ° C. The ion implantation temperature is 200 ° C. or higher, 250 ° C. or higher, 300 ° C. or higher, or 350 ° C. or higher, and this temperature is 1000 ° C. or lower, 800 ° C. or lower, 700 ° C. or lower, 600 ° C. or lower, or 500 ° C. or lower. is there.
 半導体層又は基材がSiC層又は基材である場合、イオン注入温度が200℃より低いと、注入層が連続的な非晶質となり、高温アニールを行っても良好な再結晶化が進行せず、低抵抗層が形成できないという懸念がある。また、この場合、イオン注入温度が1000℃より高いと、SiCの熱酸化やステップバンチングが起こるため、それらの部分をイオン注入後に除去する必要が生じる。 When the semiconductor layer or base material is a SiC layer or base material, if the ion implantation temperature is lower than 200 ° C., the injection layer becomes a continuous amorphous state, and good recrystallization proceeds even if high-temperature annealing is performed. Therefore, there is a concern that a low resistance layer cannot be formed. In this case, if the ion implantation temperature is higher than 1000 ° C., thermal oxidation or step bunching of SiC occurs, and it is necessary to remove those portions after ion implantation.
 本発明の分散体又は方法でイオン注入マスクを形成する際の解像度は好ましくは、7μm以下、より好ましくは5μm以下、さらに好ましくは3μm以下、特に好ましくは1μm以下である。 The resolution when forming an ion implantation mask by the dispersion or method of the present invention is preferably 7 μm or less, more preferably 5 μm or less, still more preferably 3 μm or less, and particularly preferably 1 μm or less.
 〈イオン注入マスク除去工程〉
 イオン注入マスクは、イオン注入工程後に除去される。除去法としては、フッ化水素酸、バッファードフッ酸、フッ硝酸、又はTMAHなどを用いたウェットプロセス、プラズマ処理などのドライプロセスなどが挙げられるが、これらに限定されない。低コストという観点から、ウェットプロセスが好ましい。
<Ion implantation mask removal process>
The ion implantation mask is removed after the ion implantation process. Examples of the removal method include, but are not limited to, a wet process using hydrofluoric acid, buffered hydrofluoric acid, hydrofluoric acid, or TMAH, a dry process such as plasma treatment, and the like. A wet process is preferable from the viewpoint of low cost.
 《実施例1~4》
 イオン注入用マスクを形成するための第1の実施態様に関する実施例1~4では、分散媒及び分散媒中に分散している粒子を含有している分散体を調製し、マイクロコンタクト印刷法を用いて、SiC基材上に粒子の膜のパターンを形成した後、加熱して溶媒を除去し、それによってイオン注入用マスクのパターンを形成した。また、これらの実施例及び比較例について、粒子の膜のパターン形成の可否、イオン注入時の帯電による問題の有無、及び粒子の膜のイオン遮蔽性能について評価した。
<< Examples 1 to 4 >>
In Examples 1 to 4 relating to the first embodiment for forming a mask for ion implantation, a dispersion containing a dispersion medium and particles dispersed in the dispersion medium is prepared, and a microcontact printing method is used. Using, after forming a film pattern of particles on a SiC substrate, the solvent was removed by heating, thereby forming a mask pattern for ion implantation. Further, these examples and comparative examples were evaluated for the possibility of pattern formation of the particle film, the presence or absence of problems due to charging during ion implantation, and the ion shielding performance of the particle film.
 〈実施例1〉
 (ホウ素(B)ドープシリコン粒子の作製)
 シリコンナノ粒子は、モノシランガスを原料として、二酸化炭素レーザーを用いたレーザー熱分解(LP:Laser pyrolysis)法により作製した。このとき、モノシランガスと共に、ジボラン(B)ガスを導入して、ホウ素ドープシリコン粒子を得た。得られたホウ素ドープシリコン粒子のドーピング濃度は1×1021atom/cmであった。また、得られたホウ素ドープシリコン粒子の金属不純物含有量を誘導結合プラズマ質量分析計(ICP-MS)を用いて測定したところ、Feの含有量は15ppb、Cuの含有量は18ppb、Niの含有量は10ppb、Crの含有量は21ppb、Coの含有量は13ppb、Naの含有量は20ppb、及びCaの含有量は10ppbであった。
<Example 1>
(Preparation of boron (B) doped silicon particles)
Silicon nanoparticles were produced by a laser pyrolysis (LP) method using a carbon dioxide laser using monosilane gas as a raw material. At this time, diborane (B 2 H 6 ) gas was introduced together with monosilane gas to obtain boron-doped silicon particles. The doping concentration of the obtained boron-doped silicon particles was 1 × 10 21 atoms / cm 3 . Further, when the metal impurity content of the obtained boron-doped silicon particles was measured using an inductively coupled plasma mass spectrometer (ICP-MS), the Fe content was 15 ppb, the Cu content was 18 ppb, and the Ni content was The amount was 10 ppb, the content of Cr was 21 ppb, the content of Co was 13 ppb, the content of Na was 20 ppb, and the content of Ca was 10 ppb.
 (ホウ素ドープシリコン粒子含有分散体の調製)
 プロピレングリコール(PG)75重量%と、上記手法で作製したシリコンナノ粒子25重量%とを混合することにより、ホウ素ドープシリコン粒子含有分散体を調製した。
(Preparation of boron-doped silicon particle-containing dispersion)
A boron-doped silicon particle-containing dispersion was prepared by mixing 75% by weight of propylene glycol (PG) and 25% by weight of silicon nanoparticles prepared by the above method.
 (印刷版の作製)
 シリコン基板上で、ネガ型フォトレジスト(CTP-100T、メルク社製)の薄膜をパターニング露光することにより、高さ1μm、5μmラインアンドスペースを有する、フォトレジストパターンを得た。
(Preparation of printing plate)
A thin film of negative photoresist (CTP-100T, manufactured by Merck & Co., Inc.) was subjected to patterning exposure on a silicon substrate to obtain a photoresist pattern having a height of 1 μm and 5 μm line and space.
 その後、フォトレジストパターン上にジメチルポリシロキサン(PDMS)(KE106、信越化学工業製)を塗布し、硬化させたのち、フォトレジストパターンから剥離することにより、表面に凹凸のパターンを有するPDMS印刷版を得た。 Thereafter, dimethylpolysiloxane (PDMS) (KE106, manufactured by Shin-Etsu Chemical Co., Ltd.) is applied onto the photoresist pattern, cured, and then peeled off from the photoresist pattern to obtain a PDMS printing plate having an uneven pattern on the surface. Obtained.
 (ホウ素ドープシリコン粒子の膜のパターンの印刷)
 シリコン基板上に、上記ホウ素ドープシリコン粒子含有分散体をスピンコート法に製膜し、粒子の膜を得た。その後、上記粒子膜に上記のPDMS印刷版を接触させて、印刷版の凸部にのみ、粒子膜を転写して、粒子膜のパターンを形成した。
(Printing of boron-doped silicon particle film pattern)
The boron-doped silicon particle-containing dispersion was formed on a silicon substrate by spin coating to obtain a particle film. Thereafter, the PDMS printing plate was brought into contact with the particle film, and the particle film was transferred only to the convex portions of the printing plate to form a particle film pattern.
 その後、SiC基材上に、粒子膜のパターンを有する印刷版を接触させた後、印刷版をSiC基材上から取り除き、印刷版上の粒子膜のパターンをSiC基材に転写し、そして600℃で焼成することにより、パターニングされたイオン注入用マスクパターンをSiC基材上に得た。 Thereafter, after contacting a printing plate having a particle film pattern on the SiC substrate, the printing plate is removed from the SiC substrate, the particle film pattern on the printing plate is transferred to the SiC substrate, and 600 By baking at ° C., a patterned mask pattern for ion implantation was obtained on the SiC substrate.
 (光学顕微鏡による観察)
 イオン注入用マスクパターンを、光学顕微鏡を用いて観察し、5μmラインアンドスペースのパターン形成の可否を確認した。
(Observation with an optical microscope)
The mask pattern for ion implantation was observed using an optical microscope, and whether or not a 5 μm line and space pattern could be formed was confirmed.
 (イオン注入)
 下記の条件で、イオン注入用マスクのマスクパターン開口部を通してSiC基材にイオン注入を行った:
 イオン種:Al、
 エネルギー量:40keV、
 注入温度:400℃、
 ドーズ量:1×1014Ions/cm
(Ion implantation)
Ions were implanted into the SiC substrate through the mask pattern opening of the ion implantation mask under the following conditions:
Ion species: Al,
Energy amount: 40 keV,
Injection temperature: 400 ° C
Dose amount: 1 × 10 14 Ions / cm 2
 イオン注入の間帯電による問題は生じず、帯電に起因するイオン密度の不均一性や、イオン注入部位形状の異常は生じなかった。 ¡There was no problem with charging during ion implantation, and ion density non-uniformity and ion implantation site shape abnormality due to charging did not occur.
 Alイオン注入後、基材をバッファードフッ酸と濃硝酸の混合液に浸漬することにより、イオン注入用マスクを除去した。その後、Al濃度のSiC基材表面からの深さ依存性を、二次イオン質量分析(SIMS)装置を用いて測定した。 After the Al ion implantation, the ion implantation mask was removed by immersing the base material in a mixed solution of buffered hydrofluoric acid and concentrated nitric acid. Then, the depth dependence from the SiC base material surface of Al concentration was measured using the secondary ion mass spectrometry (SIMS) apparatus.
 SIMS測定は、イオン注入を行ったSiC基材のうち、Alイオン注入時に粒子膜パターンに被覆されていた領域、及びイオン注入マスクの開口部であった領域のSiC基材表面に対して行った。 The SIMS measurement was performed on the surface of the SiC substrate in which the ion-implanted SiC substrate was covered with the particle film pattern at the time of Al ion implantation and in the region that was the opening of the ion implantation mask. .
 なお、SIMS測定によって得られた、Alイオン濃度の深さ依存性プロファイルにおいて、Alイオン注入時に粒子膜パターンに被覆されていた領域の表面から50nmの深さの点におけるAlイオン濃度が、イオン注入マスクの開口部であった領域のSiC基材表面から50nmの深さの点におけるAlイオン濃度の1/100倍以下である場合に、粒子膜パターンはイオン注入マスク層としての性能を有すると判断した。 In the depth dependence profile of the Al ion concentration obtained by SIMS measurement, the Al ion concentration at a point at a depth of 50 nm from the surface of the region covered with the particle film pattern at the time of Al ion implantation is ion implantation. The particle film pattern is judged to have a performance as an ion implantation mask layer when the Al ion concentration is not more than 1/100 times the Al ion concentration at a point at a depth of 50 nm from the surface of the SiC substrate in the region that was the opening of the mask. did.
 〈実施例2〉
 分散体としてプロピレングリコール75重量%、シリコン粒子25重量%を混合する代わりに、プロピレングリコール80重量%、シリコン粒子20重量%を混合したことを除いて、実施例1と同様にして、分散体を調製し、粒子膜パターンを得た。さらに、実施例1と同様に、粒子膜パターン形成の可否、イオン注入時の帯電による問題の有無、及び粒子膜パターンのイオン遮蔽性能について評価した。
<Example 2>
A dispersion was prepared in the same manner as in Example 1 except that 80% by weight of propylene glycol and 20% by weight of silicon particles were mixed instead of mixing 75% by weight of propylene glycol and 25% by weight of silicon particles. And a particle film pattern was obtained. Further, in the same manner as in Example 1, the possibility of forming a particle film pattern, the presence or absence of problems due to charging during ion implantation, and the ion shielding performance of the particle film pattern were evaluated.
 〈実施例3〉
 分散体としてプロピレングリコール75重量%、シリコン粒子25重量%を混合する代わりに、プロピレングリコール85重量%、シリコン粒子15重量%を混合したことを除いて、実施例1と同様にして、分散体を調製し、粒子膜パターンを得た。さらに、実施例1と同様に、粒子膜パターン形成の可否、イオン注入時の帯電による問題の有無、及び粒子膜パターンのイオン遮蔽性能について評価した。
<Example 3>
In the same manner as in Example 1, except that 75% by weight of propylene glycol and 25% by weight of silicon particles were mixed as a dispersion, and 85% by weight of propylene glycol and 15% by weight of silicon particles were mixed. And a particle film pattern was obtained. Further, in the same manner as in Example 1, the possibility of forming a particle film pattern, the presence or absence of problems due to charging during ion implantation, and the ion shielding performance of the particle film pattern were evaluated.
 〈実施例4〉
 分散体としてプロピレングリコール75重量%、シリコン粒子25重量%を混合する代わりに、プロピレングリコール90重量%、シリコン粒子10重量%を混合したことを除いて、実施例1と同様にして、分散体を調製し、粒子膜パターンを得た。さらに、実施例1と同様に、粒子膜パターン形成の可否、イオン注入時の帯電による問題の有無、及び粒子膜パターンのイオン遮蔽性能について評価した。
<Example 4>
In the same manner as in Example 1, except that 75% by weight of propylene glycol and 25% by weight of silicon particles were mixed as a dispersion, 90% by weight of propylene glycol and 10% by weight of silicon particles were mixed. And a particle film pattern was obtained. Further, in the same manner as in Example 1, the possibility of forming a particle film pattern, the presence or absence of problems due to charging during ion implantation, and the ion shielding performance of the particle film pattern were evaluated.
 〈実施例5〉
 分散体として、プロピレングリコール75重量%、シリコンナノ粒子25重量%を混合する代わりに、プロピレングリコール75重量%、シリコン粒子20重量%、耐熱性バインダー形成成分としての有機シロキサン化合物5重量%を混合したことを除いて、実施例1と同様にして、分散体を調製し、粒子膜パターンを得た。さらに、実施例1と同様に、粒子膜パターン形成の可否、イオン注入時の帯電による問題の有無、及び粒子膜パターンのイオン遮蔽性能について評価した。
<Example 5>
As a dispersion, instead of mixing 75% by weight of propylene glycol and 25% by weight of silicon nanoparticles, 75% by weight of propylene glycol, 20% by weight of silicon particles, and 5% by weight of an organosiloxane compound as a heat-resistant binder forming component were mixed. Except for this, a dispersion was prepared in the same manner as in Example 1 to obtain a particle film pattern. Further, in the same manner as in Example 1, the possibility of forming a particle film pattern, the presence or absence of problems due to charging during ion implantation, and the ion shielding performance of the particle film pattern were evaluated.
 〈実施例6〉
 分散体として、プロピレングリコール75重量%、シリコンナノ粒子25重量%を混合する代わりに、プロピレングリコール75重量%、シリコン粒子20重量%、一時的バインダー形成成分としてのエチルセルロース5重量%を混合したことを除いて、実施例1と同様にして、分散体を調製し、粒子膜パターンを得た。さらに、実施例1と同様に、粒子膜パターン形成の可否、イオン注入時の帯電による問題の有無、及び粒子膜パターンのイオン遮蔽性能について評価した。
<Example 6>
As a dispersion, instead of mixing 75% by weight of propylene glycol and 25% by weight of silicon nanoparticles, 75% by weight of propylene glycol, 20% by weight of silicon particles, and 5% by weight of ethyl cellulose as a temporary binder forming component were mixed. Except for this, a dispersion was prepared in the same manner as in Example 1 to obtain a particle film pattern. Further, in the same manner as in Example 1, the possibility of forming a particle film pattern, the presence or absence of problems due to charging during ion implantation, and the ion shielding performance of the particle film pattern were evaluated.
 〈実施例7〉
 SiC基材上に、スピンオングラス(東京応化製、12000-T)をイソプロピルアルコールで希釈した溶液をスピンコートし、800℃での焼成を行うことによって、SiC基材上に50nmの厚みを有するスピンオングラス膜を予め形成したこと除いて、実施例1と同様にして、粒子膜パターンを得た。さらに、実施例1と同様に、粒子膜パターン形成の可否、イオン注入時の帯電による問題の有無、及び粒子膜パターンのイオン遮蔽性能について評価した。
 〈実施例8〉
 シリコン粒子の製造工程において、モノシランガスと共に、ジボランガスを導入する代わりに、ホスフィンガス(PH3)を導入して、リンドープシリコン粒子を得たこと除いて、実施例1と同様にして、粒子膜パターンを得た。さらに、実施例1と同様に、粒子膜パターン形成の可否、イオン注入時の帯電による問題の有無、及び粒子膜パターンのイオン遮蔽性能について評価した。
<Example 7>
A spin-on glass (manufactured by Tokyo Ohka Kogyo Co., Ltd., 12000-T) diluted with isopropyl alcohol is spin-coated on a SiC substrate, and baked at 800 ° C., thereby spin-on having a thickness of 50 nm on the SiC substrate. A particle film pattern was obtained in the same manner as in Example 1 except that a glass film was previously formed. Further, in the same manner as in Example 1, the possibility of forming a particle film pattern, the presence or absence of problems due to charging during ion implantation, and the ion shielding performance of the particle film pattern were evaluated.
<Example 8>
In the production process of silicon particles, instead of introducing diborane gas together with monosilane gas, phosphine gas (PH3) was introduced to obtain phosphorus-doped silicon particles, and the particle film pattern was formed in the same manner as in Example 1. Obtained. Further, in the same manner as in Example 1, the possibility of forming a particle film pattern, the presence or absence of problems due to charging during ion implantation, and the ion shielding performance of the particle film pattern were evaluated.
 実施例1~8についての実験条件及び結果を、下記の表1にまとめている。 The experimental conditions and results for Examples 1 to 8 are summarized in Table 1 below.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 〈評価結果〉
 実施例1~8の結果からは、形成した粒子膜のパターンが、帯電の問題なくイオン注入マスク層としての利用が可能であることが理解できる。
<Evaluation results>
From the results of Examples 1 to 8, it can be understood that the pattern of the formed particle film can be used as an ion implantation mask layer without a problem of charging.
 実施例1、5及び6の結果からは、分散体に、耐熱性バインダー形成成分(実施例5)又は一時的バインダー形成成分(実施例6)を添加することによっても、これらのバインダー形成成分を用いない実施例1の場合と同様に、分散体が好ましい印刷性を有し、かつ形成した粒子膜のパターンが、帯電の問題なくイオン注入マスク層としての利用が可能であることが理解できる。 From the results of Examples 1, 5 and 6, these binder-forming components can also be added by adding a heat-resistant binder-forming component (Example 5) or a temporary binder-forming component (Example 6) to the dispersion. As in the case of Example 1 that is not used, it can be understood that the dispersion has preferable printability, and the formed particle film pattern can be used as an ion implantation mask layer without charging problems.
 実施例1及び5の比較からは、分散体に、耐熱性バインダー形成成分(実施例5)を添加することによって、最終的に得られたイオン注入マスク層の形状安定性が改良されていることが観察された。また、実施例1及び6の比較からは、分散体に、一時的バインダー形成成分(実施例6)を添加することによって、PDMS印刷版上の粒子の層の形状安定性が改良されていることが観察された。 From the comparison of Examples 1 and 5, it was confirmed that the shape stability of the finally obtained ion implantation mask layer was improved by adding the heat-resistant binder forming component (Example 5) to the dispersion. Was observed. In addition, from the comparison of Examples 1 and 6, it was confirmed that the shape stability of the layer of particles on the PDMS printing plate was improved by adding a temporary binder forming component (Example 6) to the dispersion. Was observed.
 実施例1及び7の結果からは、予め基材上に剥離層(実施例7)を形成しておくことで、イオン注入後の剥離性の向上をも図った場合においても、分散体が好ましい印刷性を有し、かつ形成した粒子膜パターンが、帯電の問題なくイオン注入マスク層としての利用が可能であることが理解できる。 From the results of Examples 1 and 7, a dispersion is preferable even when the release layer (Example 7) is formed on a substrate in advance to improve the peelability after ion implantation. It can be understood that the particle film pattern having printability can be used as an ion implantation mask layer without a problem of charging.
 実施例1及び7の比較からは、予め基材上に剥離層(実施例7)を形成しておくことによって、Alイオン注入後のイオン注入用マスクの除去が促進されることが観察された。 From the comparison of Examples 1 and 7, it was observed that the removal of the ion implantation mask after Al ion implantation was promoted by previously forming the release layer (Example 7) on the substrate. .
 実施例1及び8の結果からは、粒子がドーパントを含み、それによって粒子が好ましい導電性を持つことによって、形成した粒子膜のパターンが帯電の問題なくイオン注入マスク層としての利用が可能であることが理解できる。 From the results of Examples 1 and 8, it is possible to use the pattern of the formed particle film as an ion implantation mask layer without a problem of charging because the particle contains a dopant and thereby the particle has preferable conductivity. I understand that.
 《実施例9~13》
 イオン注入用マスクを形成するための第2の実施態様に関する実施例9~13では、分散媒及び分散媒中に分散している粒子を含有している粒子分散体を調製し、スクリーン印刷法を用いて、SiC基材上に粒子膜を形成し、加熱して分散媒を除去した後、光照射を粒子膜の一部に行うことによってイオン注入用マスクのパターンを形成した。また、これらの実施例について、粒子膜のパターン形成の可否、イオン注入時の帯電による問題の有無、及び粒子膜のイオン遮蔽性能について評価した。
<< Examples 9 to 13 >>
In Examples 9 to 13 relating to the second embodiment for forming an ion implantation mask, a dispersion medium and a particle dispersion containing particles dispersed in the dispersion medium are prepared, and a screen printing method is performed. Using this method, a particle film was formed on a SiC substrate, heated to remove the dispersion medium, and then light irradiation was performed on a part of the particle film to form an ion implantation mask pattern. Moreover, about these Examples, the possibility of pattern formation of a particle film, the presence or absence of a problem due to charging during ion implantation, and the ion shielding performance of the particle film were evaluated.
 〈実施例9〉
 ホウ素(B)ドープシリコン粒子の作製は、実施例1と同様にして行った。
<Example 9>
Boron (B) doped silicon particles were produced in the same manner as in Example 1.
 (ホウ素ドープシリコン粒子含有分散体の調製)
 プロピレングリコール90重量%と、上記手法で作製したシリコンナノ粒子10重量%とを混合することにより、ホウ素ドープシリコン粒子含有分散体を調製した。
(Preparation of boron-doped silicon particle-containing dispersion)
A boron-doped silicon particle-containing dispersion was prepared by mixing 90% by weight of propylene glycol and 10% by weight of silicon nanoparticles prepared by the above method.
 (ホウ素ドープシリコン粒子膜の形成)
 SiC基材上に、上記ホウ素ドープシリコン粒子含有分散体をスクリーン印刷法によって印刷することにより、1.5μmの厚さを有する、ホウ素ドープシリコン粒子膜を得た。
(Formation of boron-doped silicon particle film)
A boron-doped silicon particle film having a thickness of 1.5 μm was obtained by printing the boron-doped silicon particle-containing dispersion on a SiC substrate by a screen printing method.
 そして600℃で焼成することにより、ホウ素ドープシリコン粒子膜に残留した分散媒の除去を行った。 Then, the dispersion medium remaining on the boron-doped silicon particle film was removed by baking at 600 ° C.
 (ホウ素ドープシリコン粒子膜パターンの形成)
 光照射の光源として、波長532nmであり、4.0J/cmのエネルギー密度を有し、パルス幅が100nsのレーザー光を、ホウ素ドープシリコン粒子膜に照射することにより、この膜のレーザー照射された部分を除去して、ホウ素ドープシリコン粒子膜のパターンを得た。
(Formation of boron-doped silicon particle film pattern)
By irradiating the boron-doped silicon particle film with a laser beam having a wavelength of 532 nm, an energy density of 4.0 J / cm 2 and a pulse width of 100 ns as a light source for light irradiation, the film is irradiated with laser light. The removed portion was removed to obtain a boron-doped silicon particle film pattern.
 (光学顕微鏡による観察)
 イオン注入用マスクパターンを、光学顕微鏡を用いて観察し、5μmラインアンドスペースのパターン形成の可否を確認した。
(Observation with an optical microscope)
The mask pattern for ion implantation was observed using an optical microscope, and whether or not a 5 μm line and space pattern could be formed was confirmed.
 (イオン注入)
 下記の条件で、イオン注入用マスクのマスクパターン開口部を通してSiC基材にイオン注入を行った:
 イオン種:Al、
 エネルギー量:40keV、
 注入温度:400℃、
 ドーズ量:1×1014Ions/cm
(Ion implantation)
Ions were implanted into the SiC substrate through the mask pattern opening of the ion implantation mask under the following conditions:
Ion species: Al,
Energy amount: 40 keV,
Injection temperature: 400 ° C
Dose amount: 1 × 10 14 Ions / cm 2
 Alイオン注入後、基材をバッファードフッ酸と濃硝酸の混合液に浸漬することにより、イオン注入用マスクを除去した。その後、Al濃度のSiC基材表面からの深さ依存性を、二次イオン質量分析(SIMS)装置を用いて測定した。 After the Al ion implantation, the ion implantation mask was removed by immersing the base material in a mixed solution of buffered hydrofluoric acid and concentrated nitric acid. Then, the depth dependence from the SiC base material surface of Al concentration was measured using the secondary ion mass spectrometry (SIMS) apparatus.
 SIMS測定は、イオン注入を行ったSiC基材のうち、Alイオン注入時に粒子膜パターンに被覆されていた領域、及びイオン注入用マスクの開口部であった領域のSiC基材表面に対して行った。 The SIMS measurement is performed on the surface of the SiC substrate in which the ion-implanted SiC substrate was covered with the particle film pattern at the time of Al ion implantation and the region that was the opening of the ion implantation mask. It was.
 なお、SIMS測定によって得られた、Alイオン濃度の深さ依存性プロファイルにおいて、Alイオン注入時に粒子膜パターンに被覆されていた領域の表面から50nmの深さの点におけるAlイオン濃度が、イオン注入用マスクの開口部であった領域のSiC基材表面から50nmの深さの点におけるAlイオン濃度の1/100倍以下である場合に、粒子膜パターンはイオン注入用マスク層としての性能を有すると判断した。 In the depth dependence profile of the Al ion concentration obtained by SIMS measurement, the Al ion concentration at a point at a depth of 50 nm from the surface of the region covered with the particle film pattern at the time of Al ion implantation is ion implantation. The particle film pattern has a performance as a mask layer for ion implantation when it is 1/100 times or less of the Al ion concentration at a point of a depth of 50 nm from the surface of the SiC substrate in the region that was the opening of the mask for ion implantation. I decided.
 〈実施例10〉
 分散体として、プロピレングリコール90重量%、シリコンナノ粒子10重量%を混合する代わりに、プロピレングリコール90重量%、シリコン粒子5重量%、耐熱性バインダー形成成分としての有機シロキサン化合物5重量%を混合したことを除いて、実施例9と同様にして、分散体を調製し、粒子膜パターンを得た。さらに、実施例9と同様に、粒子膜パターン形成の可否、イオン注入時の帯電による問題の有無、及び粒子膜パターンのイオン遮蔽性能について評価した。
<Example 10>
As a dispersion, 90% by weight of propylene glycol and 10% by weight of silicon nanoparticles were mixed, and 90% by weight of propylene glycol, 5% by weight of silicon particles, and 5% by weight of an organosiloxane compound as a heat-resistant binder forming component were mixed. Except for this, a dispersion was prepared in the same manner as in Example 9 to obtain a particle film pattern. Further, as in Example 9, the possibility of forming a particle film pattern, the presence or absence of a problem due to charging during ion implantation, and the ion shielding performance of the particle film pattern were evaluated.
 〈実施例11〉
 分散体として、プロピレングリコール90重量%、シリコンナノ粒子10重量%を混合する代わりに、プロピレングリコール90重量%、シリコン粒子5重量%、一時的バインダー形成成分としてのエチルセルロース5重量%を混合したこと、
 分散体粒子膜の形成工程の後の粒子分散体からの分散媒除去を目的とした加熱の温度を250℃としたこと、
 さらに、レーザー光照射による分散体粒子膜のパターニング後、一時的バインダー除去を目的として600℃の大気中で焼成を行ったこと
を除いて、実施例9と同様にして、分散体を調製し、粒子膜パターンを得た。
<Example 11>
Instead of mixing 90% by weight of propylene glycol and 10% by weight of silicon nanoparticles as a dispersion, 90% by weight of propylene glycol, 5% by weight of silicon particles, and 5% by weight of ethyl cellulose as a temporary binder forming component were mixed.
The heating temperature for the purpose of removing the dispersion medium from the particle dispersion after the step of forming the dispersion particle film was 250 ° C .;
Furthermore, after patterning the dispersion particle film by laser light irradiation, a dispersion was prepared in the same manner as in Example 9, except that firing was performed in the atmosphere at 600 ° C. for the purpose of temporary binder removal. A particle film pattern was obtained.
 さらに、実施例9と同様に、粒子膜パターン形成の可否、イオン注入時の帯電による問題の有無、及び粒子膜パターンのイオン遮蔽性能について評価した。 Furthermore, in the same manner as in Example 9, the possibility of forming a particle film pattern, the presence or absence of problems due to charging during ion implantation, and the ion shielding performance of the particle film pattern were evaluated.
 〈実施例12〉
 SiC基材上に、スピンオングラス(東京応化製、12000-T)をイソプロピルアルコールで希釈した溶液をスピンコートし、800℃での焼成を行うことによって、SiC基材上に50nmの厚みを有するスピンオングラス膜を予め形成したこと除いて、実施例9と同様にして、粒子膜パターンを得た。さらに、実施例9と同様に、粒子膜パターン形成の可否、イオン注入時の帯電による問題の有無、及び粒子膜パターンのイオン遮蔽性能について評価した。
<Example 12>
A spin-on glass (manufactured by Tokyo Ohka Kogyo Co., Ltd., 12000-T) diluted with isopropyl alcohol is spin-coated on a SiC substrate, and baked at 800 ° C., thereby spin-on having a thickness of 50 nm on the SiC substrate. A particle film pattern was obtained in the same manner as in Example 9 except that a glass film was previously formed. Further, as in Example 9, the possibility of forming a particle film pattern, the presence or absence of a problem due to charging during ion implantation, and the ion shielding performance of the particle film pattern were evaluated.
 〈実施例13〉
 光照射の光源として、波長532nmであり、4.0J/cmのエネルギー密度を有するレーザー光を用いる代わりに、波長532nmであり、0.5J/cmのエネルギー密度を有し、パルス幅が1.0nsのレーザー光を用いたことを除いて、実施例9と同様にして、分散体を調製し、粒子膜パターンを得た。さらに、実施例9と同様に、粒子膜パターン形成の可否、イオン注入時の帯電による問題の有無、及び粒子膜パターンのイオン遮蔽性能について評価した。
<Example 13>
Instead of using a laser beam having a wavelength of 532 nm and an energy density of 4.0 J / cm 2 as a light source for light irradiation, it has a wavelength of 532 nm, an energy density of 0.5 J / cm 2 and a pulse width of A dispersion was prepared in the same manner as in Example 9 except that 1.0 ns laser light was used, and a particle film pattern was obtained. Further, as in Example 9, the possibility of forming a particle film pattern, the presence or absence of a problem due to charging during ion implantation, and the ion shielding performance of the particle film pattern were evaluated.
 〈実施例14〉
 実施例14では、分散媒及び分散媒中に分散している粒子を含有している粒子分散体を調製し、スクリーン印刷法を用いて、ガラス基材上に粒子膜を形成し、加熱して分散媒を除去した後、光照射を粒子膜の一部に行うことによって粒子膜パターンを形成し、粒子膜パターンのシート抵抗の測定を行った。
<Example 14>
In Example 14, a particle dispersion containing a dispersion medium and particles dispersed in the dispersion medium is prepared, a particle film is formed on a glass substrate using a screen printing method, and heated. After removing the dispersion medium, light irradiation was performed on a part of the particle film to form a particle film pattern, and the sheet resistance of the particle film pattern was measured.
 具体的には、基材としてSiC基材を用いる代わりに、ガラス基材を用いたことを除いて実施例9と同様にして、分散体を調製し、粒子膜パターンを得た。したがって、得られた粒子膜自体は、実施例9、12及び13で得られた粒子膜と実質的に同じである(基材は異なっている)。その後、シャドウマスクを通じて、粒子膜パターンの抵抗率測定を目的としたアルミニウム電極を、マスク層のパターン上に真空蒸着法を用いて形成した。 Specifically, instead of using a SiC substrate as a substrate, a dispersion was prepared in the same manner as in Example 9 except that a glass substrate was used, and a particle film pattern was obtained. Therefore, the obtained particle film itself is substantially the same as the particle film obtained in Examples 9, 12 and 13 (the substrates are different). Thereafter, an aluminum electrode for the purpose of measuring the resistivity of the particle film pattern was formed on the mask layer pattern using a vacuum evaporation method through a shadow mask.
 抵抗率測定を目的としたアルミニウム電極のパターンとしては、1000μm×200μmの大きさを有する一組の矩形の電極の1000μmの辺同士が、200μmの間隔で対向するように配置された電極パターンを用いた。 As an aluminum electrode pattern for the purpose of resistivity measurement, an electrode pattern in which 1000 μm sides of a pair of rectangular electrodes having a size of 1000 μm × 200 μm are opposed to each other at an interval of 200 μm is used. It was.
 その後、蒸着したアルミニウム電極間に1μAの定電流を印加した時の、アルミニウム電極間での電位降下を測定することにより、マスク層のシート抵抗を求めたところ、20GΩ/□であった。 Thereafter, the sheet resistance of the mask layer was determined by measuring the potential drop between the aluminum electrodes when a constant current of 1 μA was applied between the deposited aluminum electrodes, and found to be 20 GΩ / □.
 実施例9~13についての実験条件及び結果を、下記の表2にまとめている。 The experimental conditions and results for Examples 9 to 13 are summarized in Table 2 below.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 〈評価結果〉
 実施例9~13の結果からは、形成した粒子膜のパターンが、帯電の問題なくイオン注入用マスク層としての利用が可能であることが理解できる。
<Evaluation results>
From the results of Examples 9 to 13, it can be understood that the formed particle film pattern can be used as a mask layer for ion implantation without problems of charging.
 実施例9~11の結果からは、分散体に、耐熱性バインダー形成成分(実施例10)又は一時的バインダー形成成分(実施例11)を添加することによっても、これらのバインダー形成成分を用いない実施例9の場合と同様に、分散体が好ましい印刷性を有し、かつ形成した粒子膜のパターンが、帯電の問題なくイオン注入用マスク層としての利用が可能であることが理解できる。 From the results of Examples 9 to 11, these binder-forming components were not used by adding a heat-resistant binder-forming component (Example 10) or a temporary binder-forming component (Example 11) to the dispersion. As in the case of Example 9, it can be understood that the dispersion has preferable printability, and the formed particle film pattern can be used as a mask layer for ion implantation without charging problems.
 実施例9及び10の比較からは、分散体に、耐熱性バインダー形成成分(実施例10)を添加することによって、最終的に得られたイオン注入用マスク層の形状安定性が改良されていることが観察された。また、実施例9及び11の比較からは、分散体に、一時的バインダー形成成分(実施例11)を添加することによって、レーザーの照射による粒子膜のパターニング工程における、粒子の層の形状安定性が改良されていることが観察された。 From the comparison of Examples 9 and 10, the shape stability of the finally obtained ion implantation mask layer is improved by adding the heat-resistant binder forming component (Example 10) to the dispersion. It was observed. Further, from the comparison of Examples 9 and 11, it was found that by adding a temporary binder forming component (Example 11) to the dispersion, the shape stability of the particle layer in the patterning process of the particle film by laser irradiation. Was observed to be improved.
 実施例9及び12の結果からは、予め基材上に剥離層(実施例12)を形成しておくことで、イオン注入後の剥離性の向上を図った場合においても、分散体の膜が好ましいパターニング性を有し、かつ形成した粒子膜パターンが、帯電の問題なくイオン注入用マスク層としての利用が可能であることが理解できる。 From the results of Examples 9 and 12, even when the release layer (Example 12) was previously formed on the substrate to improve the peelability after ion implantation, the dispersion film was It can be understood that the formed particle film pattern having preferred patterning properties can be used as a mask layer for ion implantation without charging problems.
 実施例9及び12の比較からは、予め基材上に剥離層(実施例12)を形成しておくことによって、Alイオン注入後のイオン注入用マスクの除去が促進されることが観察された。 From the comparison between Examples 9 and 12, it was observed that the removal of the ion implantation mask after Al ion implantation was promoted by previously forming the release layer (Example 12) on the substrate. .
 実施例14の結果からは、形成した粒子膜のパターンが、帯電の問題なくイオン注入用マスク層としての利用が可能なシート抵抗を有することが理解できる。 From the result of Example 14, it can be understood that the pattern of the formed particle film has a sheet resistance that can be used as a mask layer for ion implantation without charging problems.
 1  SiCエピタキシャル膜
 2  SiC基材
 3  SiO
 4  感光性レジスト
 5  レーザー光
 6  イオン注入領域
 7  ドーパントイオンのビーム
 11  イオン注入用マスク/粒子の膜
 12  マスクパターン開口部
1 SiC epitaxial film 2 SiC substrate 3 SiO 2 film 4 photosensitive resist 5 film 12 mask pattern openings of the laser beam 6 ion implantation region 7 dopant ions of the beam 11 ion implantation mask / particles

Claims (20)

  1.  分散媒、及び前記分散媒中に分散している粒子を含有している、イオン注入マスク形成用分散体。 Dispersion for forming an ion implantation mask containing a dispersion medium and particles dispersed in the dispersion medium.
  2.  耐熱性バインダー形成成分を更に含有している、請求項1に記載の分散体。 The dispersion according to claim 1, further comprising a heat-resistant binder-forming component.
  3.  前記耐熱性バインダー形成成分が、シロキサンである、請求項2に記載の分散体。 The dispersion according to claim 2, wherein the heat-resistant binder-forming component is siloxane.
  4.  一時的バインダー形成成分を更に含有している、請求項1~3のいずれか一項に記載の分散体。 The dispersion according to any one of claims 1 to 3, further comprising a temporary binder-forming component.
  5.  前記一時的バインダー形成成分が、ポリマーである、請求項4に記載の分散体。 The dispersion according to claim 4, wherein the temporary binder-forming component is a polymer.
  6.  前記粒子が、導電性及び/又は半導体粒子であり、かつ/又は
     上記導電性及び/又は半導体粒子の材料の抵抗率が1×10Ωcm以下である、
    請求項1~5のいずれか一項に記載の分散体。
    The particles are conductive and / or semiconductor particles, and / or the resistivity of the conductive and / or semiconductor particles is 1 × 10 3 Ωcm or less.
    The dispersion according to any one of claims 1 to 5.
  7.  前記粒子が、シリコン粒子である、請求項1~6のいずれか一項に記載の分散体。 The dispersion according to any one of claims 1 to 6, wherein the particles are silicon particles.
  8.  前記シリコン粒子が、ホウ素又はリンをドーパントとして含有している、請求項7に記載の分散体。 The dispersion according to claim 7, wherein the silicon particles contain boron or phosphorus as a dopant.
  9.  前記粒子を前記分散体の1重量%~90重量%の範囲で含有している、請求項1~8のいずれか一項に記載の分散体。 The dispersion according to any one of claims 1 to 8, wherein the particles are contained in the range of 1% by weight to 90% by weight of the dispersion.
  10.  前記分散体の膜を形成し、そして前記分散媒を乾燥させて除去することによって、500nmの厚みを有する粒子膜を得、そしてこの粒子膜に40keVの運動エネルギーを有するAlイオンを1×1014cm-2の数密度で入射した際に、粒子膜を通過するAlイオンが、入射したイオンの数の1%以下である、請求項1~9のいずれか一項に記載の分散体。 By forming a film of the dispersion and drying and removing the dispersion medium, a particle film having a thickness of 500 nm is obtained, and Al + ions having a kinetic energy of 40 keV are added to the particle film by 1 × 10 The dispersion according to any one of claims 1 to 9, wherein Al + ions passing through the particle film when incident at a number density of 14 cm -2 are 1% or less of the number of incident ions. .
  11.  粒子、及び耐熱性バインダーを含有している、イオン注入マスク。 ・ Ion implantation mask containing particles and heat-resistant binder.
  12.  シート抵抗が1012Ω/□以下である、請求項11に記載のイオン注入マスク。 The ion implantation mask according to claim 11, wherein the sheet resistance is 10 12 Ω / □ or less.
  13.  前記粒子が、シリコン粒子である、請求項11又は12に記載のイオン注入マスク。 The ion implantation mask according to claim 11 or 12, wherein the particles are silicon particles.
  14.  請求項1~10のいずれか一項に記載の分散体を、直接に又は転写基材を介して、半導体層又は基材に適用することによって、前記分散体に含有される粒子の膜のパターンを、半導体層又は基材上に形成する工程を含む、イオン注入用マスクの形成方法。 A pattern of a film of particles contained in the dispersion by applying the dispersion according to any one of claims 1 to 10 to a semiconductor layer or a substrate directly or via a transfer substrate. A method for forming a mask for ion implantation, including a step of forming a mask on a semiconductor layer or a substrate.
  15.  前記分散体の適用を、印刷法によって行う、請求項14に記載の方法。 The method according to claim 14, wherein the dispersion is applied by a printing method.
  16.  前記膜のパターンを半導体層又は基材上に形成する工程において、前記半導体層又は基材の表面が、予め、無機薄膜被膜又は高分子被膜で被覆されている、請求項14又は15に記載の方法。 16. The step of forming a pattern of the film on a semiconductor layer or a base material, the surface of the semiconductor layer or the base material is previously coated with an inorganic thin film film or a polymer film. Method.
  17.  請求項14~16のいずれか一項に記載の方法で半導体層又は基材上にイオン注入用マスクを形成する工程、
     前記イオン注入用マスクのパターン開口部を通して、前記半導体層又は基材にイオンを注入する工程、及び
     前記イオン注入用マスクを除去する工程
    を含む、半導体デバイスの製造方法。
    Forming an ion implantation mask on the semiconductor layer or the substrate by the method according to any one of claims 14 to 16,
    A method for manufacturing a semiconductor device, comprising: a step of implanting ions into the semiconductor layer or a substrate through a pattern opening of the ion implantation mask; and a step of removing the ion implantation mask.
  18.  下記工程を少なくとも含む、開口部を有するイオン注入用マスクを半導体層又は基材上に形成する方法:
     請求項1~10のいずれか一項に記載の分散体を、直接に又は転写基材を介して前記半導体層又は基材の全面又は一部に適用することによって、粒子膜を形成する工程;並びに
     前記粒子膜の一部に光照射を行って、前記粒子膜の光照射された部分を除去することによって、前記開口部を形成する工程。
    A method of forming an ion implantation mask having an opening on a semiconductor layer or a substrate, including at least the following steps:
    A step of forming a particle film by applying the dispersion according to any one of claims 1 to 10 to the entire surface or a part of the semiconductor layer or the substrate directly or via a transfer substrate; And a step of forming the opening by irradiating a part of the particle film with light to remove the light irradiated part of the particle film.
  19.  前記光照射がレーザー照射である、請求項18に記載の方法。 The method according to claim 18, wherein the light irradiation is laser irradiation.
  20.  請求項18又は19に記載の方法で形成したイオン注入用マスクの開口部を通じて、前記半導体層又は基材にイオンを注入する工程を含む、半導体デバイスの製造方法。 A method for manufacturing a semiconductor device, comprising a step of implanting ions into the semiconductor layer or substrate through an opening of an ion implantation mask formed by the method according to claim 18 or 19.
PCT/JP2017/006650 2016-02-25 2017-02-22 Dispersion for forming ion implantation mask, method for forming ion implantation mask, and method for manufacturing semiconductor device WO2017146110A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201780013284.XA CN108701595A (en) 2016-02-25 2017-02-22 Ion implanting mask, which is formed, uses dispersion, the forming method of ion implanting mask and method, semi-conductor device manufacturing method
KR1020187020187A KR20180118609A (en) 2016-02-25 2017-02-22 Dispersion for forming ion implantation mask, method for forming ion implantation mask, and method for manufacturing semiconductor device

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2016-034841 2016-02-25
JP2016034841 2016-02-25
JP2016091863A JP6842841B2 (en) 2016-04-28 2016-04-28 Ion implantation mask forming method and semiconductor device manufacturing method
JP2016-091863 2016-04-28
JP2016176809A JP6842864B2 (en) 2016-02-25 2016-09-09 Dispersion for forming ion implantation mask and semiconductor device manufacturing method
JP2016-176809 2016-09-09

Publications (1)

Publication Number Publication Date
WO2017146110A1 true WO2017146110A1 (en) 2017-08-31

Family

ID=59685184

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/006650 WO2017146110A1 (en) 2016-02-25 2017-02-22 Dispersion for forming ion implantation mask, method for forming ion implantation mask, and method for manufacturing semiconductor device

Country Status (1)

Country Link
WO (1) WO2017146110A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5831521A (en) * 1981-08-19 1983-02-24 Toshiba Corp Manufacture of semiconductor device
JPS59195822A (en) * 1983-04-20 1984-11-07 Sanyo Electric Co Ltd Formation of impurity region
JP2006269522A (en) * 2005-03-22 2006-10-05 Sanken Electric Co Ltd Method of manufacturing semiconductor device, and mask
JP2007329402A (en) * 2006-06-09 2007-12-20 Toshiba Corp Method of manufacturing soi substrate
WO2015146749A1 (en) * 2014-03-26 2015-10-01 東レ株式会社 Method for manufacturing semiconductor device and semiconductor device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5831521A (en) * 1981-08-19 1983-02-24 Toshiba Corp Manufacture of semiconductor device
JPS59195822A (en) * 1983-04-20 1984-11-07 Sanyo Electric Co Ltd Formation of impurity region
JP2006269522A (en) * 2005-03-22 2006-10-05 Sanken Electric Co Ltd Method of manufacturing semiconductor device, and mask
JP2007329402A (en) * 2006-06-09 2007-12-20 Toshiba Corp Method of manufacturing soi substrate
WO2015146749A1 (en) * 2014-03-26 2015-10-01 東レ株式会社 Method for manufacturing semiconductor device and semiconductor device

Similar Documents

Publication Publication Date Title
WO2012077797A1 (en) Semiconductor laminate, semiconductor device, method for producing semiconductor laminate, and method for manufacturing semiconductor device
US8912082B2 (en) Implant alignment through a mask
WO2013147202A1 (en) Semiconductor laminate and method for manufacturing same, method for manufacturing semiconductor device, semiconductor device, dopant composition, dopant injection layer, and method for forming doped layer
US9887313B2 (en) Method for producing differently doped semiconductors
US8153466B2 (en) Mask applied to a workpiece
US20150235864A1 (en) Method for processing a layer and a method for manufacturing an electronic device
TWI647863B (en) Preparation of solar cell emitter region using self-aligned implant and cover
CN108475014B (en) Photosensitive resin composition and method for manufacturing semiconductor device
TW200830380A (en) Method for manufacturing silicon carbide semiconductor device
WO2004097914A1 (en) Method for manufacturing semiconductor device
WO2017146110A1 (en) Dispersion for forming ion implantation mask, method for forming ion implantation mask, and method for manufacturing semiconductor device
JP6842841B2 (en) Ion implantation mask forming method and semiconductor device manufacturing method
JP6842864B2 (en) Dispersion for forming ion implantation mask and semiconductor device manufacturing method
US8921149B2 (en) Aligning successive implants with a soft mask
JP5253561B2 (en) Semiconductor device manufacturing method, semiconductor device, and dispersion
KR20180118609A (en) Dispersion for forming ion implantation mask, method for forming ion implantation mask, and method for manufacturing semiconductor device
JP6076545B2 (en) Manufacturing method of semiconductor device
JP2018006644A (en) Thin film ntc thermistor with semiconductor particle sintered body and manufacturing method thereof
JP2016163036A (en) Doping method, and laminate for doping
EP1396880A2 (en) Doping method and semiconductor device fabricated using the method
JP2016163033A (en) Doping method, and laminate for doping

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 20187020187

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17756548

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17756548

Country of ref document: EP

Kind code of ref document: A1