WO2017146083A1 - Light-emitting element and polymer compound used for said light-emitting element - Google Patents

Light-emitting element and polymer compound used for said light-emitting element Download PDF

Info

Publication number
WO2017146083A1
WO2017146083A1 PCT/JP2017/006523 JP2017006523W WO2017146083A1 WO 2017146083 A1 WO2017146083 A1 WO 2017146083A1 JP 2017006523 W JP2017006523 W JP 2017006523W WO 2017146083 A1 WO2017146083 A1 WO 2017146083A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
formula
compound
substituent
ring
Prior art date
Application number
PCT/JP2017/006523
Other languages
French (fr)
Japanese (ja)
Inventor
茉由 吉岡
星一郎 横家
元章 臼井
浩平 浅田
敦資 麻野
一栄 大内
Original Assignee
住友化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友化学株式会社 filed Critical 住友化学株式会社
Priority to JP2018501726A priority Critical patent/JP6881430B2/en
Publication of WO2017146083A1 publication Critical patent/WO2017146083A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/12Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers

Definitions

  • the present invention relates to a light emitting element and a polymer compound used for the light emitting element.
  • Light-emitting elements can be used for display and lighting applications, and research and development are actively conducted.
  • This light-emitting element has an organic layer such as a light-emitting layer and a charge transport layer.
  • Patent Documents 1 and 2 describe, for example, a light emitting element in which a light emitting layer containing a phosphorescent compound is stacked on a light emitting layer containing a polymer compound containing an arylamine structural unit represented by the following formula. ing.
  • an object of the present invention is to provide a light-emitting element that is excellent in external quantum efficiency.
  • Another object of the present invention is to provide a polymer compound useful for producing a light emitting device having excellent external quantum efficiency.
  • the present invention provides the following [1] to [15].
  • a 2nd light emitting layer contains at least 1 sort (s) chosen from the group which consists of a high molecular compound containing the structural unit represented by Formula (1), and the crosslinked body of the said high molecular compound.
  • a 1 , a 2 and a 3 each independently represents an integer of 0 or more and 5 or less. When a plurality of a 3 are present, they may be the same or different.
  • Ring S 1 represents an aromatic hydrocarbon ring or an aromatic heterocyclic ring, and these rings may have a substituent other than R A1 . When a plurality of the substituents are present, they may be the same or different.
  • R A1 represents an alkyl group, a cycloalkyl group, an alkoxy group, a cycloalkoxy group, an aryl group, an aryloxy group, a monovalent heterocyclic group, a substituted amino group, or a halogen atom, and these groups have a substituent. It may be.
  • Ar A1 represents an arylene group or a divalent heterocyclic group, and these groups optionally have a substituent.
  • Ar A2 , Ar A3 and Ar A4 each independently represent an arylene group, a divalent heterocyclic group, or a divalent group in which an arylene group and a divalent heterocyclic group are directly bonded, and these groups May have a substituent.
  • Ar A2 , Ar A3 and Ar A4 they may be the same or different.
  • R A3 , R A4 , R A5 and R A6 each independently represents an aryl group or a monovalent heterocyclic group, and these groups optionally have a substituent.
  • R A4 , R A5 and R A6 are present, they may be the same or different.
  • R A2 represents an alkyl group, a cycloalkyl group, an alkoxy group, a cycloalkoxy group, an aryl group, an aryloxy group, a monovalent heterocyclic group, a substituted amino group, or a halogen atom, and these groups have a substituent. It may be. ] [3] The light emitting device according to [1] or [2], wherein the polymer compound containing the structural unit represented by the formula (1) or a crosslinked product of the polymer compound further contains a phosphorescent structural unit. . [4] The light emitting device according to [1] or [2], wherein the second light emitting layer further contains a phosphorescent compound.
  • L H1 represents an arylene group, a divalent heterocyclic group, or a group represented by — [C (R H11 ) 2 ] n H11 —, and these groups optionally have a substituent. When a plurality of L H1 are present, they may be the same or different.
  • n H11 represents an integer of 1 to 10.
  • R H11 represents a hydrogen atom, an alkyl group, a cycloalkyl group, an alkoxy group, a cycloalkoxy group, an aryl group, or a monovalent heterocyclic group, and these groups may have a substituent.
  • a plurality of R H11 may be the same or different, and may be bonded to each other to form a ring together with the carbon atom to which each is bonded.
  • L H2 represents a group represented by —N (—L H21 —R H21 ) —. When a plurality of L H2 are present, they may be the same or different.
  • L H21 represents a single bond, an arylene group or a divalent heterocyclic group, and these groups optionally have a substituent.
  • R H21 represents a hydrogen atom, an alkyl group, a cycloalkyl group, an aryl group, or a monovalent heterocyclic group, and these groups optionally have a substituent.
  • a polymer compound comprising the structural unit represented by the formula (1) and a phosphorescent structural unit.
  • M 1G represents a group formed by removing one hydrogen atom from a phosphorescent compound.
  • L 1 represents an oxygen atom, a sulfur atom, a group represented by —N (R A ) —, a group represented by —C (R B ) 2 —, —C (R B ) ⁇ C (R B ) —
  • R A represents a hydrogen atom, an alkyl group, a cycloalkyl group, an aryl group, or a monovalent heterocyclic group, and these groups may have a substituent.
  • R B represents a hydrogen atom, an alkyl group, a cycloalkyl group, an alkoxy group, a cycloalkoxy group, an aryl group, or a monovalent heterocyclic group, and these groups may have a substituent.
  • a plurality of R B may be the same or different, and may be bonded to each other to form a ring together with the carbon atoms to which they are bonded.
  • L 1 When a plurality of L 1 are present, they may be the same or different.
  • n a1 represents an integer of 0 to 10. ] [Where: M 1G has the same meaning as described above.
  • L 2 and L 3 each independently represents an oxygen atom, a sulfur atom, a group represented by —N (R A ) —, a group represented by —C (R B ) 2 —, or —C (R B ) Represents a group represented by ⁇ C (R B ) —, a group represented by —C ⁇ C—, an arylene group or a divalent heterocyclic group, and these groups optionally have a substituent.
  • R A and R B have the same meaning as described above.
  • n b1 and n c1 each independently represents an integer of 0 to 10. A plurality of n b1 may be the same or different.
  • Ar 1M represents an aromatic hydrocarbon group or a heterocyclic group, and these groups optionally have a substituent.
  • M 2G represents a group formed by removing two hydrogen atoms from a phosphorescent compound.
  • L 2 and n b1 have the same meaning as described above.
  • M 3G represents a group formed by removing three hydrogen atoms from a phosphorescent compound.
  • L 2 and n b1 have the same meaning as described above.
  • the polymer compound according to [9], wherein the phosphorescent compound is a compound represented by the formula (2).
  • M 2 represents a rhodium atom, a palladium atom, an iridium atom or a platinum atom.
  • n 3 represents an integer of 1 or more
  • n 4 represents an integer of 0 or more
  • n 3 + n 4 is 2 or 3.
  • M is a rhodium atom or an iridium atom
  • n 3 + n 4 is 3.
  • M is a palladium atom or a platinum atom
  • n 3 + n 4 is 2.
  • E 3 and E 4 each independently represents a carbon atom or a nitrogen atom. However, at least one of E 3 and E 4 is a carbon atom.
  • Ring L 1 represents an aromatic heterocyclic ring, and this ring may have a substituent.
  • substituents When a plurality of such substituents are present, they may be the same or different, and may be bonded to each other to form a ring together with the atoms to which each is bonded.
  • rings L 1 When a plurality of rings L 1 are present, they may be the same or different.
  • the ring L 2 represents an aromatic hydrocarbon ring or an aromatic heterocyclic ring, and these rings may have a substituent.
  • substituents When a plurality of such substituents are present, they may be the same or different, and may be bonded to each other to form a ring together with the atoms to which each is bonded.
  • rings L 2 When a plurality of rings L 2 are present, they may be the same or different.
  • a 3 -G 2 -A 4 represents an anionic bidentate ligand.
  • a 3 and A 4 each independently represent a carbon atom, an oxygen atom or a nitrogen atom, and these atoms may be atoms constituting a ring.
  • G 2 represents a single bond or an atomic group constituting a bidentate ligand together with A 3 and A 4 .
  • n 11 and n 12 each independently represents an integer of 1 or more, and n 11 + n 12 is 2 or 3.
  • M is a rhodium atom or iridium atom
  • n 11 + n 12 is 3
  • M is a palladium atom or platinum atom
  • n 11 + n 12 is 2.
  • R 11B , R 12B , R 13B , R 14B , R 15B , R 16B , R 17B , R 18B , R 21B , R 22B , R 23B and R 24B are each independently a hydrogen atom, an alkyl group or a cycloalkyl group Represents an alkoxy group, a cycloalkoxy group, an aryl group, an aryloxy group, a monovalent heterocyclic group, a substituted amino group, or a halogen atom, and these groups optionally have a substituent.
  • R 11B , R 12B , R 13B , R 14B , R 15B , R 16B , R 17B , R 18B , R 21B , R 22B , R 23B and R 24B they may be the same or different. Good.
  • R 11B and R 12B , R 12B and R 13B , R 13B and R 14B , R 13B and R 15B , R 15B and R 16B , R 16B and R 17B , R 17B and R 18B , R 18B and R 21B , R 11B And R 21B , R 21B and R 22B , R 22B and R 23B , and R 23B and R 24B may be bonded to each other to form a ring together with the atoms to which they are bonded.
  • R 11B , R 12B , R 13B , R 14B , R 21B , R 22B , R 23B, and R 24B is represented by formula (DA), formula ( The polymer compound according to [12], which is a group represented by DB) or formula (DC).
  • DA formula
  • m DA1 , m DA2 and m DA3 each independently represent an integer of 0 to 10.
  • GDA represents a nitrogen atom, an aromatic hydrocarbon group, or a heterocyclic group, and these groups may have a substituent.
  • Ar DA1 , Ar DA2 and Ar DA3 each independently represent an arylene group or a divalent heterocyclic group, and these groups optionally have a substituent.
  • T DA represents an aryl group or a monovalent heterocyclic group, and these groups optionally have a substituent.
  • a plurality of TDA may be the same or different. ] [Where: m DA1, m DA2, m DA3 , G DA, Ar DA1, Ar DA2, Ar DA3 and T DA is the same as defined above.
  • m DA4 , m DA5 , m DA6 and m DA7 each independently represent an integer of 0 to 10.
  • Ar DA4 , Ar DA5 , Ar DA6 and Ar DA7 each independently represent an arylene group or a divalent heterocyclic group, and these groups optionally have a substituent.
  • Ar DA4 , Ar DA5 , Ar DA6 and Ar DA7 may be the same or different.
  • m DA1 , Ar DA1 and T DA have the same meaning as described above.
  • the polymer compound including the structural unit represented by the formula (1) includes a crosslinked structural unit having at least one crosslinking group selected from the crosslinking group A group. The high molecular compound in any one.
  • R XL represents a methylene group, an oxygen atom or a sulfur atom
  • n XL represents an integer of 0 to 5.
  • R XL represents a methylene group, an oxygen atom or a sulfur atom
  • n XL represents an integer of 0 to 5.
  • * 1 represents a binding position.
  • These crosslinking groups may have a substituent.
  • the polymer compound according to [14], wherein the crosslinked structural unit is a structural unit represented by formula (3) or formula (4).
  • nA represents an integer of 0 to 5
  • n represents 1 or 2.
  • Ar 1 represents an aromatic hydrocarbon group or a heterocyclic group, and these groups optionally have a substituent.
  • L A represents an alkylene group, a cycloalkylene group, an arylene group, a divalent heterocyclic group, a group represented by —NR′—, an oxygen atom or a sulfur atom, and these groups have a substituent. Also good.
  • R ′ represents a hydrogen atom, an alkyl group, a cycloalkyl group, an aryl group, or a monovalent heterocyclic group, and these groups optionally have a substituent. When a plurality of LA are present, they may be the same or different.
  • X represents a crosslinking group selected from the crosslinking group A group.
  • X When two or more X exists, they may be the same or different. When a plurality of nA are present, they may be the same or different. ] [Where: mA represents an integer of 0 to 5, m represents an integer of 1 to 4, and c represents 0 or 1. When a plurality of mA are present, they may be the same or different.
  • Ar 3 represents an aromatic hydrocarbon group, a heterocyclic group, or a group in which an aromatic hydrocarbon group and a heterocyclic group are directly bonded, and these groups may have a substituent.
  • Ar 2 and Ar 4 each independently represent an arylene group or a divalent heterocyclic group, and these groups optionally have a substituent.
  • Ar 2 , Ar 3 and Ar 4 are each bonded to a group other than the group bonded to the nitrogen atom to which the group is bonded, directly or via an oxygen atom or sulfur atom to form a ring.
  • K A represents an alkylene group, a cycloalkylene group, an arylene group, a divalent heterocyclic group, a group represented by —NR ′′ —, an oxygen atom or a sulfur atom, and these groups have a substituent.
  • R ′′ represents a hydrogen atom, an alkyl group, a cycloalkyl group, an aryl group, or a monovalent heterocyclic group, and these groups optionally have a substituent.
  • X ′ represents a bridging group selected from the bridging group A, a hydrogen atom, an alkyl group, a cycloalkyl group, an aryl group, or a monovalent heterocyclic group, and these groups may have a substituent. .
  • X ′ is a cross-linking group selected from the cross-linking group A group.
  • a light emitting device having excellent external quantum efficiency can be provided.
  • Me represents a methyl group
  • Et represents an ethyl group
  • Bu represents a butyl group
  • i-Pr represents an isopropyl group
  • t-Bu represents a tert-butyl group.
  • the hydrogen atom may be a deuterium atom or a light hydrogen atom.
  • the solid line representing the bond with the central metal means a covalent bond or a coordinate bond.
  • the “polymer compound” means a polymer having a molecular weight distribution and having a polystyrene-equivalent number average molecular weight of 1 ⁇ 10 3 to 1 ⁇ 10 8 .
  • the polymer compound may be any of a block copolymer, a random copolymer, an alternating copolymer, and a graft copolymer, or other embodiments.
  • the terminal group of the polymer compound is preferably stable because if the polymerization active group remains as it is, the light emission characteristics or external quantum efficiency may decrease when the polymer compound is used in the production of a light emitting device. It is a group.
  • the terminal group is preferably a group conjugated to the main chain, and examples thereof include a group bonded to an aryl group or a monovalent heterocyclic group via a carbon-carbon bond.
  • Low molecular weight compound means a compound having no molecular weight distribution and a molecular weight of 1 ⁇ 10 4 or less.
  • “Structural unit” means one or more units present in a polymer compound.
  • the “alkyl group” may be linear or branched.
  • the number of carbon atoms of the straight chain alkyl group is usually 1 to 50, preferably 3 to 30, and more preferably 4 to 20, excluding the number of carbon atoms of the substituent.
  • the number of carbon atoms of the branched alkyl group is usually 3 to 50, preferably 3 to 30, more preferably 4 to 20, excluding the number of carbon atoms of the substituent.
  • the alkyl group may have a substituent, for example, methyl group, ethyl group, propyl group, isopropyl group, butyl group, 2-butyl group, isobutyl group, tert-butyl group, pentyl group, isoamyl group, 2-ethylbutyl, hexyl, heptyl, octyl, 2-ethylhexyl, 3-propylheptyl, decyl, 3,7-dimethyloctyl, 2-ethyloctyl, 2-hexyldecyl, dodecyl And a group in which a hydrogen atom in these groups is substituted with a cycloalkyl group, an alkoxy group, a cycloalkoxy group, an aryl group, a fluorine atom, etc., for example, a trifluoromethyl group, a pentafluoroethyl group,
  • the number of carbon atoms of the “cycloalkyl group” is usually 3 to 50, preferably 3 to 30, and more preferably 4 to 20, excluding the number of carbon atoms of the substituent.
  • the cycloalkyl group may have a substituent, and examples thereof include a cyclohexyl group, a cyclohexylmethyl group, and a cyclohexylethyl group.
  • Aryl group means an atomic group remaining after removing one hydrogen atom directly bonded to a carbon atom constituting a ring from an aromatic hydrocarbon.
  • the number of carbon atoms of the aryl group is usually 6 to 60, preferably 6 to 20, more preferably 6 to 10, not including the number of carbon atoms of the substituent.
  • the “alkoxy group” may be linear or branched.
  • the number of carbon atoms of the straight-chain alkoxy group is usually 1 to 40, preferably 4 to 10, excluding the number of carbon atoms of the substituent.
  • the number of carbon atoms of the branched alkoxy group is usually 3 to 40, preferably 4 to 10, excluding the number of carbon atoms of the substituent.
  • the alkoxy group may have a substituent, for example, methoxy group, ethoxy group, propyloxy group, isopropyloxy group, butyloxy group, isobutyloxy group, tert-butyloxy group, pentyloxy group, hexyloxy group, Heptyloxy group, octyloxy group, 2-ethylhexyloxy group, nonyloxy group, decyloxy group, 3,7-dimethyloctyloxy group, lauryloxy group, and the hydrogen atom in these groups is a cycloalkyl group, an alkoxy group, And a group substituted with a cycloalkoxy group, an aryl group, a fluorine atom, or the like.
  • a substituent for example, methoxy group, ethoxy group, propyloxy group, isopropyloxy group, butyloxy group, isobutyloxy group, tert-buty
  • the number of carbon atoms of the “cycloalkoxy group” is usually 3 to 40, preferably 4 to 10, not including the number of carbon atoms of the substituent.
  • the cycloalkoxy group may have a substituent, and examples thereof include a cyclohexyloxy group.
  • the number of carbon atoms of the “aryloxy group” is usually 6 to 60, preferably 6 to 48, not including the number of carbon atoms of the substituent.
  • the aryloxy group may have a substituent, for example, a phenoxy group, 1-naphthyloxy group, 2-naphthyloxy group, 1-anthracenyloxy group, 9-anthracenyloxy group, 1- Examples include a pyrenyloxy group and a group in which a hydrogen atom in these groups is substituted with an alkyl group, a cycloalkyl group, an alkoxy group, a cycloalkoxy group, a fluorine atom, or the like.
  • the “p-valent heterocyclic group” (p represents an integer of 1 or more) is p of hydrogen atoms directly bonded to a carbon atom or a hetero atom constituting a ring from a heterocyclic compound. This means the remaining atomic group excluding the hydrogen atom. Among the p-valent heterocyclic groups, it is the remaining atomic group obtained by removing p hydrogen atoms from the hydrogen atoms directly bonded to the carbon atoms or heteroatoms constituting the ring from the aromatic heterocyclic compound. A “p-valent aromatic heterocyclic group” is preferable.
  • Aromatic heterocyclic compounds '' are oxadiazole, thiadiazole, thiazole, oxazole, thiophene, pyrrole, phosphole, furan, pyridine, pyrazine, pyrimidine, triazine, pyridazine, quinoline, isoquinoline, carbazole, dibenzophosphole, etc.
  • a compound in which the ring itself exhibits aromaticity, and a heterocyclic ring such as phenoxazine, phenothiazine, dibenzoborol, dibenzosilol, benzopyran itself does not exhibit aromaticity, but the aromatic ring is condensed to the heterocyclic ring Means a compound.
  • the number of carbon atoms of the monovalent heterocyclic group is usually 2 to 60, preferably 4 to 20, excluding the number of carbon atoms of the substituent.
  • the monovalent heterocyclic group may have a substituent, for example, thienyl group, pyrrolyl group, furyl group, pyridinyl group, piperidinyl group, quinolinyl group, isoquinolinyl group, pyrimidinyl group, triazinyl group, and these And a group in which the hydrogen atom in the group is substituted with an alkyl group, a cycloalkyl group, an alkoxy group, a cycloalkoxy group, or the like.
  • Halogen atom means a fluorine atom, a chlorine atom, a bromine atom or an iodine atom.
  • the “amino group” may have a substituent, and a substituted amino group is preferable.
  • a substituent which an amino group has an alkyl group, a cycloalkyl group, an aryl group, or a monovalent heterocyclic group is preferable.
  • the substituted amino group include a dialkylamino group, a dicycloalkylamino group, and a diarylamino group.
  • the amino group include dimethylamino group, diethylamino group, diphenylamino group, bis (4-methylphenyl) amino group, bis (4-tert-butylphenyl) amino group, bis (3,5-di-tert- Butylphenyl) amino group.
  • the “alkenyl group” may be linear or branched.
  • the number of carbon atoms of the straight-chain alkenyl group is usually 2-30, preferably 3-20, excluding the number of carbon atoms of the substituent.
  • the number of carbon atoms of the branched alkenyl group is usually 3 to 30, preferably 4 to 20, not including the number of carbon atoms of the substituent.
  • the number of carbon atoms of the “cycloalkenyl group” is usually 3 to 30, preferably 4 to 20, not including the number of carbon atoms of the substituent.
  • the alkenyl group and the cycloalkenyl group may have a substituent, for example, a vinyl group, a 1-propenyl group, a 2-propenyl group, a 2-butenyl group, a 3-butenyl group, a 3-pentenyl group, a 4-pentenyl group, Examples include a pentenyl group, a 1-hexenyl group, a 5-hexenyl group, a 7-octenyl group, and groups in which these groups have a substituent.
  • the “alkynyl group” may be linear or branched.
  • the number of carbon atoms of the alkynyl group is usually 2 to 20, preferably 3 to 20, not including the carbon atom of the substituent.
  • the number of carbon atoms of the branched alkynyl group is usually from 4 to 30, and preferably from 4 to 20, not including the carbon atom of the substituent.
  • the number of carbon atoms of the “cycloalkynyl group” is usually 4 to 30, preferably 4 to 20, not including the carbon atom of the substituent.
  • the alkynyl group and the cycloalkynyl group may have a substituent, for example, an ethynyl group, a 1-propynyl group, a 2-propynyl group, a 2-butynyl group, a 3-butynyl group, a 3-pentynyl group, 4- Examples include a pentynyl group, 1-hexynyl group, 5-hexynyl group, and groups in which these groups have a substituent.
  • the “arylene group” means an atomic group remaining after removing two hydrogen atoms directly bonded to a carbon atom constituting a ring from an aromatic hydrocarbon.
  • the number of carbon atoms of the arylene group is usually 6 to 60, preferably 6 to 30, and more preferably 6 to 18, excluding the number of carbon atoms of the substituent.
  • the arylene group may have a substituent, for example, phenylene group, naphthalenediyl group, anthracenediyl group, phenanthrene diyl group, dihydrophenanthenediyl group, naphthacene diyl group, fluorenediyl group, pyrenediyl group, perylene diyl group, Examples include chrysenediyl groups and groups in which these groups have substituents, and groups represented by formulas (A-1) to (A-20) are preferable.
  • the arylene group includes a group in which a plurality of these groups are bonded.
  • R and R a each independently represents a hydrogen atom, an alkyl group, a cycloalkyl group, an aryl group or a monovalent heterocyclic group.
  • a plurality of R and R a may be the same or different, and R a may be bonded to each other to form a ring together with the atoms to which they are bonded.
  • the number of carbon atoms of the divalent heterocyclic group is usually 2 to 60, preferably 3 to 20, and more preferably 4 to 15 excluding the number of carbon atoms of the substituent.
  • the divalent heterocyclic group may have a substituent, for example, pyridine, diazabenzene, triazine, azanaphthalene, diazanaphthalene, carbazole, dibenzofuran, dibenzothiophene, dibenzosilol, phenoxazine, phenothiazine, acridine, Divalent acridine, furan, thiophene, azole, diazole, and triazole include divalent groups obtained by removing two hydrogen atoms from hydrogen atoms directly bonded to carbon atoms or heteroatoms constituting the ring, and preferably Is a group represented by formula (AA-1) to formula (AA-34).
  • the divalent heterocyclic group includes a group in which a plurality of these groups
  • crosslinking group is a group capable of generating a new bond by being subjected to heating, ultraviolet irradiation, near ultraviolet irradiation, visible light irradiation, infrared irradiation, radical reaction, etc.
  • “Substituent” means a halogen atom, cyano group, alkyl group, cycloalkyl group, aryl group, monovalent heterocyclic group, alkoxy group, cycloalkoxy group, aryloxy group, amino group, substituted amino group, alkenyl group. Represents a cycloalkenyl group, an alkynyl group or a cycloalkynyl group.
  • the substituent may be a crosslinking group.
  • Dendrimer means a group having a regular dendritic branch structure (ie, a dendrimer structure) having an atom or ring as a branch point.
  • dendrimer examples include, for example, International Publication No. 02/066733, Japanese Patent Application Laid-Open No. 2003-231692, International Publication No. 2003/079736, International Publication No. 2006/097717 And the structure described in the literature.
  • the dendron is preferably a group represented by the formula (DA) or a group represented by the formula (DB), and more preferably a group represented by the formula (DA).
  • m DA1 to m DA7 are preferably integers of 5 or less, more preferably integers of 2 or less, and even more preferably 0 or 1.
  • m DA2 to m DA7 are preferably the same integer, and m DA1 to m DA7 are more preferably the same integer.
  • G DA is preferably a group represented by the formula (GDA-11) ⁇ (GDA -15), more preferably a group represented by the formula (GDA-11) ⁇ (GDA -14), further A group represented by formula (GDA-11) or (GDA-14) is preferred, and a group represented by formula (GDA-11) is particularly preferred.
  • R DA represents a hydrogen atom, an alkyl group, a cycloalkyl group, an alkoxy group, a cycloalkoxy group, an aryl group, or a monovalent heterocyclic group, and these groups may further have a substituent. When there are a plurality of RDA , they may be the same or different. ]
  • R DA is preferably a hydrogen atom, an alkyl group, a cycloalkyl group, an alkoxy group or a cycloalkoxy group, more preferably a hydrogen atom, an alkyl group or a cycloalkyl group, and these groups have a substituent. May be.
  • Ar DA1, Ar DA2, Ar DA3 , Ar DA4, Ar DA5, Ar DA6 and Ar DA7 are preferably a phenylene group, a fluorenediyl group or a carbazole-diyl group, more preferably the formula (A-1) ⁇ Formula (A-3), Formula (A-8), Formula (A-9), Formula (AA-10), Formula (AA-11), Formula (AA-33), or Formula (AA-34) And more preferably a group represented by formula (ArDA-1) to formula (ArDA-5).
  • R DA represents the same meaning as described above.
  • R DB represents a hydrogen atom, an alkyl group, a cycloalkyl group, an aryl group or a monovalent heterocyclic group, and these groups may have a substituent. When there are a plurality of RDBs , they may be the same or different. ]
  • R DB is preferably an alkyl group, a cycloalkyl group, an aryl group or a monovalent heterocyclic group, more preferably an aryl group, and these groups optionally have a substituent.
  • T DA is preferably a group represented by the formula (TDA-1) ⁇ (TDA -3), more preferably a group represented by the formula (TDA-1).
  • R DA and R DB represent the same meaning as described above.
  • the group represented by the formula (DA) is preferably a group represented by the formula (D-A1) to (D-A4), more preferably in the formula (D-A1) or the formula (D-A3). It is a group represented.
  • R p1 , R p2 , R p3 and R p4 each independently represents an alkyl group, a cycloalkyl group, an alkoxy group, a cycloalkoxy group or a fluorine atom.
  • R p1 , R p2 and R p4 may be the same or different.
  • np1 represents an integer of 0 to 5
  • np2 represents an integer of 0 to 3
  • np3 represents 0 or 1
  • np4 represents an integer of 0 to 4.
  • a plurality of np1 may be the same or different.
  • the group represented by the formula (D-B) is preferably a group represented by the formulas (D-B1) to (D-B3), more preferably a group represented by the formula (D-B1).
  • R p1 , R p2 and R p3 each independently represents an alkyl group, a cycloalkyl group, an alkoxy group, a cycloalkoxy group or a fluorine atom.
  • R p1 and R p2 they may be the same or different.
  • np1 represents an integer of 0 to 5
  • np2 represents an integer of 0 to 3
  • np3 represents 0 or 1.
  • np1 and np2 may be the same or different.
  • the group represented by the formula (D-C) is preferably a group represented by the formulas (D-C1) to (D-C4), more preferably a group represented by the formula (D-C1).
  • R p4 , R p5 and R p6 each independently represents an alkyl group, a cycloalkyl group, an alkoxy group, a cycloalkoxy group or a fluorine atom. When there are a plurality of R p4 , R p5 and R p6 , they may be the same or different.
  • np4 represents an integer of 0 to 4
  • np5 represents an integer of 0 to 5
  • np6 represents an integer of 0 to 5.
  • Np1 is preferably 0 or 1, more preferably 1.
  • np2 is preferably 0 or 1, more preferably 0.
  • np3 is preferably 0.
  • np4 is preferably an integer of 0 to 2.
  • np5 is preferably an integer of 1 to 3.
  • np6 is preferably an integer of 0 to 2.
  • R p1 , R p2 , R p3 , R p4 , R p5 and R p6 are preferably alkyl groups or cycloalkyl groups, more preferably methyl groups, ethyl groups, isopropyl groups, tert-butyl groups, hexyl groups, 2-ethylhexyl group, cyclohexyl group, methoxy group, 2-ethylhexyloxy group, tert-octyl group or cyclohexyloxy group, more preferably methyl group, ethyl group, isopropyl group, tert-butyl group, hexyl group, 2 -Ethylhexyl group or tert-octyl group.
  • Examples of the group represented by the formula (D-A) include groups represented by the formulas (DA-1) to (DA-12).
  • R D represents a methyl group, an ethyl group, an isopropyl group, a tert-butyl group, a hexyl group, a 2-ethylhexyl group, a tert-octyl group, a cyclohexyl group, a methoxy group, a 2-ethylhexyloxy group, or a cyclohexyloxy group. Represents a group. When two or more RD exists, they may be the same or different. ]
  • Examples of the group represented by the formula (D-B) include groups represented by the formulas (DB-1) to (DB-4).
  • R D represents the same meaning as described above.
  • Examples of the group represented by the formula (D-C) include groups represented by the formulas (DC-1) to (DC-13).
  • R D represents the same meaning as described above.
  • R D is preferably a methyl group, an ethyl group, an isopropyl group, a tert-butyl group, a hexyl group, a 2-ethylhexyl group or a tert-octyl group.
  • the light emitting device of the present invention is a light emitting device having an anode, a cathode, a first light emitting layer provided between the anode and the cathode, and a second light emitting layer provided between the anode and the cathode.
  • the second light-emitting layer contains at least one selected from the group consisting of a polymer compound containing the structural unit represented by the formula (1) and a crosslinked product of the polymer compound, It is.
  • the first light emitting layer is a layer containing a light emitting material.
  • a light emitting material is classified into a low molecular compound and a high molecular compound, and a low molecular compound is preferable, and these compounds may have a crosslinking group.
  • Examples of the low molecular weight compound include naphthalene and derivatives thereof, anthracene and derivatives thereof, perylene and derivatives thereof, and phosphorescent compounds having iridium, platinum, palladium, rhodium, or europium as a central metal.
  • the light emitting material preferably contains a phosphorescent compound.
  • the first light-emitting layer preferably contains two or more phosphorescent compounds because the external quantum efficiency of the light-emitting device according to this embodiment is excellent.
  • the phosphorescent compound is a compound having phosphorescence.
  • a compound having a high emission quantum yield at room temperature for example, 25 ° C.
  • room temperature for example, 25 ° C.
  • the phosphorescent compound examples include a phosphorescent compound represented by the above formula (2) and a metal complex represented by the following formula.
  • the phosphorescent compound represented by the above formula (2) is used. It is a luminescent compound.
  • the phosphorescent compound contained in the first light emitting layer is preferably a phosphorescent compound represented by the formula (2), and among these, at least one of the phosphorescent compounds contained in the first light emitting layer. It is preferable that the phosphorescent compound represented by Formula (5) is contained as a seed.
  • M 1 represents a rhodium atom, a palladium atom, an iridium atom or a platinum atom.
  • n 1 represents an integer of 1 or more
  • n 2 represents an integer of 0 or more
  • n 1 + n 2 is 2 or 3.
  • M 1 is a rhodium atom or an iridium atom
  • n 1 + n 2 is 3.
  • M 1 is a palladium atom or a platinum atom
  • n 1 + n 2 is 2.
  • E 1 and E 2 each independently represent a carbon atom or a nitrogen atom. However, at least one of E 1 and E 2 is a carbon atom.
  • Ring R 1 represents a 5-membered aromatic heterocyclic ring, and this ring may have a substituent. When a plurality of such substituents are present, they may be the same or different, and may be bonded to each other to form a ring together with the atoms to which each is bonded. When a plurality of rings R 1 are present, they may be the same or different.
  • Ring R 2 represents an aromatic hydrocarbon ring or an aromatic heterocyclic ring, and these rings may have a substituent. When a plurality of such substituents are present, they may be the same or different, and may be bonded to each other to form a ring together with the atoms to which each is bonded.
  • a 1 -G 1 -A 2 represents an anionic bidentate ligand.
  • a 1 and A 2 each independently represents a carbon atom, an oxygen atom or a nitrogen atom, and these atoms may be atoms constituting a ring.
  • G 1 represents a single bond or an atomic group constituting a bidentate ligand together with A 1 and A 2 .
  • M 1 is preferably an iridium atom or a platinum atom, and more preferably an iridium atom.
  • E 1 and E 2 are preferably carbon atoms.
  • the ring R 1 is preferably a 5-membered aromatic heterocyclic ring having 1 to 3 nitrogen atoms as constituent atoms, more preferably an imidazole ring or a triazole ring. These rings may have a substituent.
  • ring R 2 is preferably a 6-membered aromatic hydrocarbon ring, or a 5-membered or 6-membered aromatic heterocycle, and is a benzene ring, a pyridine ring or a pyrimidine ring. More preferably, these rings may have a substituent.
  • Examples of the substituent that the ring R 1 and the ring R 2 may have include an alkyl group, a cycloalkyl group, an alkoxy group, a cycloalkoxy group, an aryl group, an aryloxy group, a monovalent heterocyclic group, a halogen atom,
  • a dendron is preferable, an alkyl group, a cycloalkyl group, an aryl group, a halogen atom or a dendron is more preferable, and these groups may further have a substituent.
  • examples of the anionic bidentate ligand represented by A 1 -G 1 -A 2 include a ligand represented by the following formula. However, the anionic bidentate ligand represented by A 1 -G 1 -A 2 is different from the ligand whose number is defined by the subscript n 1 .
  • the phosphorescent compound represented by the formula (5) is preferably a phosphorescent compound represented by the formula (5-A1) to the formula (5-A4).
  • R 11A , R 12A , R 13A , R 21A , R 22A , R 23A and R 24A are each independently a hydrogen atom, alkyl group, cycloalkyl group, alkoxy group, cycloalkoxy group, aryl group, aryloxy group, It represents a monovalent heterocyclic group, a substituted amino group, or a halogen atom, and these groups may have a substituent.
  • R 11A , R 12A , R 13A , R 21A , R 22A , R 23A and R 24A they may be the same or different.
  • R 11A and R 12A , R 12A and R 13A , R 11A and R 21A , R 21A and R 22A , R 22A and R 23A , and R 23A and R 24A are bonded to each other together with the atoms to which they are bonded.
  • a ring may be formed.
  • R 11A , R 12A , R 13A , R 21A , R 22A , R 23A and R 24A are each preferably an alkyl group, a cycloalkyl group, an aryl group, a monovalent heterocyclic group or a substituted amino group, and a hydrogen atom More preferably an alkyl group or a cycloalkyl group.
  • R 11A , R 12A , R 13A , R 21A , R 22A , R 23A, and R 24A are an aryl group, a monovalent heterocyclic group, or a substituted amino group
  • the external quantum efficiency of the light emitting device is more excellent, so that dendron
  • a group represented by the formula (DA), formula (DB) or formula (DC) is preferable, and the group represented by the formula (DA) or formula (DC) is preferred. More preferred are the groups
  • Examples of the phosphorescent compounds represented by the formulas (5-A1) to (5-A4) include phosphorescent compounds represented by the following formulas.
  • the first light emitting layer has excellent external quantum efficiency of the light emitting device according to this embodiment, in addition to the phosphorescent compound represented by the formula (5), the following formulas (2-B1) to (2- It is preferable to contain the phosphorescent compound represented by B5).
  • Examples of the phosphorescent compound used for forming the first light-emitting layer include Japanese Unexamined Patent Publication No. 2004-530254, Japanese Unexamined Patent Application Publication No. 2008-179617, Japanese Unexamined Patent Application Publication No. 2011-105701, Japanese Unexamined Patent Publication No. 2007-504272, They can be synthesized according to the methods described in JP2013-147449A and JP2013-147450A.
  • the first light emitting layer is composed of a phosphorescent compound, a hole injecting property, a hole transporting property, an electron injecting property, and an electron transporting property.
  • a host material having at least one of the following functions.
  • the host material may be one kind alone or two or more kinds.
  • the total content of the phosphorescent compound is usually 0.
  • the amount is 1 to 50 parts by mass, preferably 5 to 40 parts by mass.
  • the lowest excited triplet state (T 1 ) of the host material has excellent external quantum efficiency of the light emitting device according to this embodiment, it is equivalent to T 1 of the phosphorescent compound used for forming the first light emitting layer. It is preferable that the energy level is higher or higher.
  • the light-emitting element according to this embodiment can be manufactured by a solution coating process, it exhibits solubility in a solvent capable of dissolving the phosphorescent compound used for forming the first light-emitting layer. It is preferable.
  • the host material is classified into a low molecular compound (hereinafter referred to as “low molecular host”) and a high molecular compound (hereinafter referred to as “polymer host”), and a low molecular host is preferable.
  • low molecular host a low molecular compound
  • polymer host a high molecular compound
  • the low molecular host is preferably a compound represented by the formula (H-1).
  • Ar H1 and Ar H2 are phenyl group, fluorenyl group, spirobifluorenyl group, pyridyl group, pyrimidinyl group, triazinyl group, quinolinyl group, isoquinolinyl group, thienyl group, benzothienyl group, dibenzothienyl group, furyl group, benzofuryl Group, dibenzofuryl group, pyrrolyl group, indolyl group, azaindolyl group, carbazolyl group, azacarbazolyl group, diazacarbazolyl group, phenoxazinyl group or phenothiazinyl group, phenyl group, spirobifluorenyl group, It is more preferably a pyridyl group, pyrimidinyl group, triazinyl group, dibenzothienyl group, dibenzofuryl group, carbazolyl group or azacarbazo
  • Ar H1 and Ar H2 may have, a halogen atom, an alkyl group, a cycloalkyl group, an alkoxy group, a cycloalkoxy group, an aryl group, or a monovalent heterocyclic group is preferable.
  • Alkyl groups are more preferred, and these groups may further have a substituent.
  • n H1 is preferably 1.
  • n H2 is preferably 0.
  • n H3 is preferably an integer of 1 to 3, more preferably 1.
  • n H11 is preferably an integer of 1 to 5, more preferably an integer of 1 to 3, and still more preferably 1.
  • R H11 is preferably a hydrogen atom, an alkyl group, a cycloalkyl group, an aryl group or a monovalent heterocyclic group, more preferably a hydrogen atom or an alkyl group, and these groups have a substituent. It may be.
  • L H1 is preferably an arylene group or a divalent heterocyclic group.
  • L H1 represents formulas (A-1) to (A-3), formulas (A-8) to (A-10), formulas (AA-1) to (AA-6), formulas (AA-10) to A group represented by formula (AA-21) or formulas (AA-24) to (AA-34) is preferred, and the formula (A-1), formula (A-2), formula (AA-2), A group represented by formula (AA-4) or (AA-14) is more preferable.
  • L H1 may have, a halogen atom, an alkyl group, a cycloalkyl group, an alkoxy group, a cycloalkoxy group, an aryl group, or a monovalent heterocyclic group is preferable, and an alkyl group, an alkoxy group, an aryl group A group or a monovalent heterocyclic group is more preferable, and these groups may further have a substituent.
  • L H21 is preferably a single bond or an arylene group, and this arylene group may have a substituent.
  • the definition and examples of the arylene group or divalent heterocyclic group represented by L H21 are the same as the definitions and examples of the arylene group or divalent heterocyclic group represented by L H1 .
  • R H21 is preferably an aryl group or a monovalent heterocyclic group, and these groups may have a definition of the aryl group and monovalent heterocyclic group represented by R H21 and Examples are the same as the definitions and examples of the aryl group and monovalent heterocyclic group represented by Ar H1 and Ar H2 .
  • Definition and examples of the substituent which may be R H21 optionally has are the same as definitions and examples of the substituent may have Ar H1 and Ar H2 is.
  • the compound represented by the formula (H-1) is preferably a compound represented by the formula (H-2).
  • Examples of the compound represented by the formula (H-1) include compounds represented by the formulas (H-101) to (H-118).
  • the polymer host is preferably a polymer compound containing a structural unit represented by the formula (Y).
  • Ar Y1 represents an arylene group, a divalent heterocyclic group, or a divalent group in which an arylene group and a divalent heterocyclic group are directly bonded, and these groups have a substituent. It may be.
  • Arylene group represented by Ar Y1 is more preferably the formula (A-1), formula (A-2), the formula (A-6) - (A -10), formula (A-19) or Formula ( A-20), and these groups may have a substituent.
  • the divalent heterocyclic group represented by Ar Y1 is more preferably a formula (AA-1)-(AA-4), a formula (AA-10)-(AA-15), a formula (AA-18) -(AA-21), a group represented by formula (AA-33) or formula (AA-34), and these groups may have a substituent.
  • more preferable ranges and further preferable ranges of the arylene group and the divalent heterocyclic group are the above-mentioned Ar. This is the same as the more preferable range and further preferable range of the arylene group and divalent heterocyclic group represented by Y1 .
  • Examples of the “divalent group in which an arylene group and a divalent heterocyclic group are directly bonded” include groups represented by the following formulas, and these groups may have a substituent.
  • R XX represents a hydrogen atom, an alkyl group, a cycloalkyl group, an aryl group or a monovalent heterocyclic group, and these groups optionally have a substituent.
  • R XX is preferably an alkyl group, a cycloalkyl group, or an aryl group, and these groups optionally have a substituent.
  • the substituent that the group represented by Ar Y1 may have is preferably an alkyl group, a cycloalkyl group, or an aryl group, and these groups may further have a substituent.
  • Examples of the structural unit represented by the formula (Y) include structural units represented by the formulas (Y-1)-(Y-10).
  • R Y1 represents a hydrogen atom, an alkyl group, a cycloalkyl group, an alkoxy group, a cycloalkoxy group, an aryl group, or a monovalent heterocyclic group, and these groups optionally have a substituent.
  • a plurality of R Y1 may be the same or different, and adjacent R Y1 may be bonded to each other to form a ring together with the carbon atom to which each is bonded.
  • R Y1 is preferably a hydrogen atom, an alkyl group, a cycloalkyl group, or an aryl group, and these groups optionally have a substituent.
  • R Y1 represents the same meaning as described above.
  • X Y1 is, -C (R Y2) 2 -
  • R Y2 represents a hydrogen atom, an alkyl group, a cycloalkyl group, an alkoxy group, a cycloalkoxy group, an aryl group, or a monovalent heterocyclic group, and these groups may have a substituent.
  • a plurality of R Y2 may be the same or different, and R Y2 may be bonded to each other to form a ring together with the carbon atom to which each is bonded. ]
  • R Y2 is preferably an alkyl group, a cycloalkyl group, an aryl group, or a monovalent heterocyclic group, and these groups optionally have a substituent.
  • the combination of two R Y2 in the group represented by —C (R Y2 ) 2 — is preferably an alkyl group or a cycloalkyl group, both an aryl group, and both are monovalent complex A cyclic group, or one is an alkyl group or a cycloalkyl group, and the other is an aryl group or a monovalent heterocyclic group, and these groups may have a substituent.
  • Two R Y2 s may be bonded to each other to form a ring together with the atoms to which they are bonded.
  • the group represented by —C (R Y2 ) 2 — Is preferably a group represented by the formula (Y-A1)-(Y-A5), and these groups may have a substituent.
  • the combination of two R Y2 in the group represented by —C (R Y2 ) ⁇ C (R Y2 ) — is preferably such that both are alkyl groups or cycloalkyl groups, or one is an alkyl group Alternatively, a cycloalkyl group and the other is an aryl group, and these groups optionally have a substituent.
  • R Y2 in the group represented by —C (R Y2 ) 2 —C (R Y2 ) 2 — are preferably an alkyl group or a cycloalkyl group which may have a substituent. It is. A plurality of R Y2 may be bonded to each other to form a ring together with the atoms to which each is bonded. When R Y2 forms a ring, —C (R Y2 ) 2 —C (R Y2 ) 2 — The group represented is preferably a group represented by the formula (Y-B1)-(Y-B5), and these groups may have a substituent.
  • R Y2 represents the same meaning as described above.
  • R Y1 represents the same meaning as described above.
  • R Y3 represents a hydrogen atom, an alkyl group, a cycloalkyl group, an alkoxy group, a cycloalkoxy group, an aryl group, or a monovalent heterocyclic group, and these groups may have a substituent.
  • R Y3 is preferably an aryl group, and these groups optionally have a substituent.
  • R Y1 represents the same meaning as described above.
  • R Y4 represents a hydrogen atom, an alkyl group, a cycloalkyl group, an alkoxy group, a cycloalkoxy group, an aryl group, or a monovalent heterocyclic group, and these groups optionally have a substituent.
  • R Y4 is preferably an aryl group, and these groups optionally have a substituent.
  • the structural unit represented by the formula (Y) for example, a structural unit composed of an arylene group represented by the formula (Y-101)-(Y-121), a formula (Y-201)-(Y-207) A divalent group in which an arylene group represented by the formula (Y-301)-(Y-304) and a divalent heterocyclic group are directly bonded to each other.
  • the structural unit is given.
  • the structural unit represented by the formula (Y), wherein Ar Y1 is an arylene group, is excellent in external quantum efficiency, and is preferably 0.5% relative to the total amount of structural units contained in the polymer compound. It is ⁇ 80 mol%, more preferably 30 to 60 mol%.
  • the polymer host is excellent in hole transport properties, it is preferable that the polymer host further contains a structural unit represented by the following formula (X).
  • a X1 and a X2 each independently represent an integer of 0 to 2.
  • Ar X1 and Ar X3 each independently represent an arylene group or a divalent heterocyclic group, and these groups optionally have a substituent.
  • Ar X2 and Ar X4 each independently represent an arylene group, a divalent heterocyclic group, or a divalent group in which an arylene group and a divalent heterocyclic group are directly bonded, and these groups are substituents You may have. When there are a plurality of Ar X2 and Ar X4 , they may be the same or different.
  • R X1 , R X2 and R X3 each independently represent a hydrogen atom, an alkyl group, a cycloalkyl group, an aryl group or a monovalent heterocyclic group, and these groups may have a substituent. When there are a plurality of R X2 and R X3 , they may be the same or different. ]
  • a X1 is preferably 0 or 1 because of its excellent external quantum efficiency.
  • a X2 is preferably 0 because of its excellent external quantum efficiency.
  • R X1 , R X2 and R X3 are preferably aryl groups, and these groups may have a substituent.
  • the arylene group represented by Ar X1 and Ar X3 is more preferably a group represented by the formula (A-1) or the formula (A-9), and these groups may have a substituent.
  • the divalent heterocyclic group represented by Ar X1 and Ar X3 is more preferably represented by the formula (AA-1), the formula (AA-2), or the formula (AA-7)-(AA-26). These groups may have a substituent.
  • Ar X1 and Ar X3 are preferably an arylene group which may have a substituent.
  • the arylene group represented by Ar X2 and Ar X4 more preferably, the formula (A-1), the formula (A-6), the formula (A-7), the formula (A-9)-(A-11) Or it is group represented by a formula (A-19), and these groups may have a substituent.
  • the more preferable range of the divalent heterocyclic group represented by Ar X2 and Ar X4 is the same as the more preferable range of the divalent heterocyclic group represented by Ar X1 and Ar X3 .
  • More preferred ranges and further preferred ranges of the arylene group and the divalent heterocyclic group in the divalent group in which the arylene group represented by Ar X2 and Ar X4 and the divalent heterocyclic group are directly bonded are respectively This is the same as the more preferable range and further preferable range of the arylene group and divalent heterocyclic group represented by Ar X1 and Ar X3 .
  • Examples of the divalent group in which the arylene group represented by Ar X2 and Ar X4 and the divalent heterocyclic group are directly bonded include an arylene group represented by Ar Y1 in the formula (Y) and a divalent heterocyclic group And the same as the divalent group directly bonded to each other.
  • Ar X2 and Ar X4 are preferably an arylene group which may have a substituent.
  • the substituent which the groups represented by Ar X1 to Ar X4 and R X1 to R X3 may have is preferably an alkyl group, a cycloalkyl group or an aryl group, and these groups further have a substituent. You may do it.
  • the structural unit represented by the formula (X) is preferably a structural unit represented by the formula (X-1)-(X-7).
  • R X4 and R X5 each independently represent a hydrogen atom, an alkyl group, a cycloalkyl group, an alkoxy group, a cycloalkoxy group, an aryl group, an aryloxy group, a halogen atom, a monovalent heterocyclic group or cyano. Represents a group, and these groups may have a substituent.
  • a plurality of R X4 may be the same or different.
  • a plurality of R X5 may be the same or different, and adjacent R X5 may be bonded to each other to form a ring together with the carbon atom to which each is bonded.
  • the structural unit represented by the formula (X) has excellent hole transportability, it is preferably 0.1 to 50 mol%, more preferably 1 to 5 mol% with respect to the total amount of the structural units contained in the polymer host. It is 40 mol%, more preferably 5 to 30 mol%.
  • Examples of the structural unit represented by the formula (X) include structural units represented by the formulas (X1-1)-(X1-11).
  • polymer host examples include polymer compounds (P-1) to (P-6) shown in Table 1.
  • the “other” structural unit means a structural unit other than the structural unit represented by the formula (Y) and the structural unit represented by the formula (X).
  • the polymer host may be any of a block copolymer, a random copolymer, an alternating copolymer, and a graft copolymer, and may be in other modes.
  • a copolymer obtained by polymerization is preferred.
  • the polymer host can be produced using a known polymerization method described in Chemical Review (Chem. Rev.), Vol. 109, pp. 897-1091 (2009), etc., and Suzuki reaction, Yamamoto reaction, Buchwald Examples thereof include a polymerization method by a coupling reaction using a transition metal catalyst such as a reaction, Stille reaction, Negishi reaction, and Kumada reaction.
  • the polymerization method as a method of charging the monomer, a method of charging the entire amount of the monomer into the reaction system at once, a part of the monomer is charged and reacted, and then the remaining monomer is batched, Examples thereof include a method of charging continuously or divided, a method of charging monomer continuously or divided, and the like.
  • the transition metal catalyst include a palladium catalyst and a nickel catalyst.
  • Post-treatment of the polymerization reaction is a known method, for example, a method of removing water-soluble impurities by liquid separation, adding the reaction solution after polymerization reaction to a lower alcohol such as methanol, filtering the deposited precipitate, and then drying. These methods are performed alone or in combination.
  • a lower alcohol such as methanol
  • filtering the deposited precipitate and then drying.
  • These methods are performed alone or in combination.
  • the purity of the polymer host is low, it can be purified by usual methods such as crystallization, reprecipitation, continuous extraction with a Soxhlet extractor, column chromatography, and the like.
  • the first light emitting layer includes at least one light emitting material and at least one selected from the group consisting of a hole transport material, a hole injection material, an electron transport material, an electron injection material, and an antioxidant. It is preferable to contain a material.
  • the content of the light emitting material is 100 parts by weight in total of the light emitting material, hole transport material, hole injection material, electron transport material and electron injection material in the first light emitting layer. Usually 0.1 to 100 parts by weight.
  • the first light-emitting layer is formed using an ink containing a light-emitting material (hereinafter also referred to as “ink used for forming the first light-emitting layer”), a spin coating method, a gravure coating method, a bar coating method, a roll coating. It can be formed by a coating method such as a method, a spray coating method, a screen printing method, a die coating method, an ink jet printing method, a capillary coating method, or a nozzle coating method.
  • a coating method such as a method, a spray coating method, a screen printing method, a die coating method, an ink jet printing method, a capillary coating method, or a nozzle coating method.
  • the viscosity of the ink used for forming the first light emitting layer may be adjusted depending on the type of printing method. However, when a solution such as an ink jet printing method is applied to a printing method via a discharge device, In order to prevent clogging and flight bending, the pressure is preferably 1 to 20 mPa ⁇ s at 25 ° C.
  • the solvent contained in the ink is preferably a solvent that can dissolve or uniformly disperse the solid content in the ink.
  • the solvent include chlorine solvents such as chlorobenzene and o-dichlorobenzene; ether solvents such as tetrahydrofuran, dioxane, anisole and 4-methylanisole; toluene, xylene, mesitylene, ethylbenzene, n-hexylbenzene, cyclohexylbenzene and the like.
  • Aromatic hydrocarbon solvents such as: cyclohexane, methylcyclohexane, n-hexane, n-octane, n-decane, n-dodecane, bicyclohexyl and other aliphatic hydrocarbon solvents; methyl ethyl ketone, cyclohexanone, acetophenone and other ketone solvents Ester solvents such as ethyl acetate, butyl acetate, ethyl cellosolve acetate, methyl benzoate, and phenyl acetate; polyhydric alcohol solvents such as ethylene glycol, glycerin, and 1,2-hexanediol; Alcohol solvents hexanol; sulfoxide solvents such as dimethyl sulfoxide; N- methyl-2-pyrrolidone, N, include amide solvents such as N- dimethylformamide.
  • a solvent may be used individually by 1
  • the amount of the solvent is usually 1000 to 100,000 parts by weight with respect to 100 parts by weight of the light emitting material.
  • the hole transport material is classified into a low molecular compound and a high molecular compound, and a high molecular compound is preferable, and a high molecular compound having a crosslinking group is more preferable.
  • Examples of the low molecular weight compound include triphenylamine and derivatives thereof, N, N′-di-1-naphthyl-N, N′-diphenylbenzidine, and N, N′-diphenyl-N, N′-di ( and aromatic amine compounds such as m-tolyl) benzidine.
  • polymer compound examples include polyvinyl carbazole and derivatives thereof; polyarylene having an aromatic amine structure in the side chain or main chain and derivatives thereof.
  • the polymer compound may be a compound to which an electron accepting site is bonded. Examples of the electron accepting site include fullerene, tetrafluorotetracyanoquinodimethane, tetracyanoethylene, and trinitrofluorenone.
  • the content of the hole transport material is the light emitting material, hole transport material, hole injection material, electron transport material and electron injection in the first light emitting layer.
  • the amount is usually 0.1 to 99 parts by weight, preferably 0.1 to 50 parts by weight, and more preferably 0.5 to 10 parts by weight with respect to 100 parts by weight of the total material.
  • a hole transport material may be used individually by 1 type, or may use 2 or more types together.
  • Electron transport materials are classified into low molecular weight compounds and high molecular weight compounds.
  • the electron transport material may have a crosslinking group.
  • Examples of the low molecular compound include a metal complex having 8-hydroxyquinoline as a ligand, oxadiazole, anthraquinodimethane, benzoquinone, naphthoquinone, anthraquinone, tetracyanoanthraquinodimethane, fluorenone, diphenyldicyanoethylene, and , Diphenoquinone, and derivatives thereof.
  • polymer compound examples include polyphenylene, polyfluorene, and derivatives thereof.
  • the polymer compound may be doped with a metal.
  • the content of the electron transport material is the same as that of the light-emitting material, hole transport material, hole injection material, electron transport material, and electron injection material in the first light-emitting layer.
  • the amount is usually 0.1 to 99 parts by weight, preferably 0.1 to 50 parts by weight, more preferably 0.5 to 10 parts by weight with respect to the total of 100 parts by weight.
  • An electron transport material may be used individually by 1 type, or may use 2 or more types together.
  • the hole injection material and the electron injection material are each classified into a low molecular compound and a high molecular compound.
  • the hole injection material and the electron injection material may have a crosslinking group.
  • low molecular weight compounds include metal phthalocyanines such as copper phthalocyanine; carbon; metal oxides such as molybdenum and tungsten; and metal fluorides such as lithium fluoride, sodium fluoride, cesium fluoride, and potassium fluoride.
  • metal phthalocyanines such as copper phthalocyanine
  • carbon such as carbon
  • metal oxides such as molybdenum and tungsten
  • metal fluorides such as lithium fluoride, sodium fluoride, cesium fluoride, and potassium fluoride.
  • polymer compound examples include polyaniline, polythiophene, polypyrrole, polyphenylene vinylene, polythienylene vinylene, polyquinoline, and polyquinoxaline, and derivatives thereof; polymers containing an aromatic amine structure in the main chain or side chain, etc.
  • the conductive polymer is mentioned.
  • the contents of the hole injecting material and the electron injecting material are the light emitting material, hole transporting material, and hole injecting in the first light emitting layer.
  • the amount is usually 0.1 to 30 parts by weight, preferably 0.1 to 10 parts by weight, more preferably 0.1 to 1 part by weight with respect to 100 parts by weight of the total of the material, the electron transport material and the electron injection material.
  • Each of the hole injection material and the electron injection material may be used alone or in combination of two or more.
  • the electrical conductivity of the conductive polymer is preferably 1 ⁇ 10 ⁇ 5 S / cm to 1 ⁇ 10 3 S / cm.
  • the conductive polymer can be doped with an appropriate amount of ions.
  • the type of ions to be doped is an anion for a hole injection material and a cation for an electron injection material.
  • the anion include polystyrene sulfonate ion, alkylbenzene sulfonate ion, and camphor sulfonate ion.
  • the cation include lithium ion, sodium ion, potassium ion, and tetrabutylammonium ion. Only one kind or two or more kinds of ions may be doped.
  • the antioxidant may be a compound that does not inhibit light emission and charge transport, and examples thereof include phenol-based antioxidants and phosphorus-based antioxidants.
  • the content of the antioxidant is usually 0.001 to 10 parts by weight with respect to 100 parts by weight of the light emitting material.
  • Antioxidants may be used alone or in combination of two or more.
  • the ink used for forming the first light emitting layer may contain other components.
  • the second light emitting layer is selected from the group consisting of a polymer compound containing a structural unit represented by formula (1) and a crosslinked product of the polymer compound containing a structural unit represented by formula (1). It is a layer containing at least one kind.
  • a 1 , a 2, and a 3 are preferably 0 or 1, since the external quantum efficiency is excellent, more preferably a 1 is 1, a combination in which a 2 and a 3 are 0, and a 2 is 1. And a combination in which a 1 and a 3 are 0, or a combination in which a 1 , a 2 and a 3 are 0.
  • the aromatic hydrocarbon ring represented by the ring S 1 has usually 6 to 60, preferably 6 to 20, more preferably 6 to 14 carbon atoms constituting the ring.
  • Examples of the aromatic hydrocarbon ring represented by the ring S 1 include a benzene ring, naphthalene ring, anthracene ring, phenanthrene ring, dihydrophenanthrene ring, naphthacene ring, fluorene ring, pyrene ring, perylene ring, or chrysene ring.
  • a benzene ring, a naphthalene ring, a phenanthrene ring, a dihydrophenanthrene ring or a fluorene ring, and a benzene ring is more preferable.
  • the aromatic heterocycle represented by the ring S 1 has usually 2 to 60 carbon atoms, preferably 3 to 20 carbon atoms, more preferably 3 to 12 carbon atoms constituting the ring.
  • Examples of the aromatic heterocycle represented by ring S 1 include pyridine ring, diazabenzene ring, triazine ring, azanaphthalene ring, diazanaphthalene ring, carbazole ring, dibenzofuran ring, dibenzothiophene ring, dibenzosilole ring, phenoxazine.
  • R A1 is preferably an alkyl group, a cycloalkyl group, an alkoxy group, a cycloalkoxy group, or an aryl group, more preferably an alkyl group, since these have higher external quantum efficiency, and these groups have a substituent. It may be.
  • the alkyl group represented by R A1 has 1 to 12 carbon atoms because the polymer compound suitably used for the light emitting device of the embodiment of the present invention has excellent solubility and facilitates the production of the light emitting device.
  • An alkyl group is preferred, an alkyl group having 2 to 12 carbon atoms is more preferred, and an alkyl group having 6 to 12 carbon atoms is still more preferred.
  • alkyl group represented by R A1 it becomes easy to synthesize a polymer compound suitably used in the light-emitting device of the embodiment of the present invention, so that a methyl group, an ethyl group, a propyl group, a butyl group, a pentyl group, A hexyl group is more preferred.
  • the monocyclic or condensed arylene group represented by Ar A1 is preferably represented by the formula (A-1) to the formula (A-9), the formula (A-19), or the formula (A-20). More preferred are formulas (A-1) to (A-3), and these groups may have a substituent.
  • the divalent heterocyclic group represented by Ar A1 is preferably a group represented by the formula (B-1) to the formula (B-4), the formula (B-10) to the formula (B-15), or the formula (B— 24) to groups represented by formula (B-26), and these groups optionally have a substituent.
  • Ar A1 is preferably an arylene group because it has a higher external quantum efficiency.
  • the arylene group represented by Ar A2 , Ar A3 and Ar A4 is preferably represented by the formula (A-1) to the formula (A-9), the formula (A-19), or the formula (A-20). These groups may have a substituent.
  • the divalent heterocyclic group represented by Ar A2 , Ar A3 and Ar A4 is preferably a group represented by formula (B-1) to formula (B-4), formula (B-10) to formula (B-15), Alternatively, groups represented by formula (B-24) to formula (B-26), and these groups may have a substituent.
  • More preferable ranges of the arylene group and the divalent heterocyclic group in the divalent group in which the arylene group represented by Ar A2 , Ar A3 and Ar A4 and the divalent heterocyclic group are directly bonded are Ar A2, is the same as the more preferred range of arylene group and divalent heterocyclic group represented by Ar A3 and Ar A4.
  • Examples of the divalent group in which the arylene group represented by Ar A2 , Ar A3 and Ar A4 and the divalent heterocyclic group are directly bonded include an arylene group represented by Ar Y1 and a divalent heterocyclic group. This is the same as the example of the divalent group directly bonded.
  • Ar A2 is preferably an arylene group, more preferably a group represented by the formula (A-7), since it has excellent external quantum efficiency, and these groups may have a substituent.
  • Ar A3 and Ar A4 are more preferably an arylene group, and more preferably a group represented by the formula (A-1), since the external quantum efficiency is excellent, and these groups have a substituent. Also good.
  • Examples of the monovalent heterocyclic group represented by R A3 , R A4 , R A5 and R A6 include a dihydrocarbazolyl group, a tetrahydrocarbazolyl group in addition to the groups mentioned in the description of the monovalent heterocyclic group. Group and hexahydrocarbazolyl group.
  • R A3 , R A4 , R A5 and R A6 are preferably groups selected from the aryl group CC group or groups selected from the monovalent heterocyclic group DD group, and are represented by the formula (CC-1), the formula (CC— 6) or a group represented by the formula (DD-14) is more preferable, and these groups may have a substituent, and when there are a plurality of R A3 , R A4 , R A5 and R A6 , They may be the same or different.
  • the group represented by Ar A1 , Ar A2 , Ar A3 , Ar A4 , R A3 , R A4 , R A5 and R A6 may have, preferably an alkyl group, a cycloalkyl group, an aryl group Alternatively, it is a monovalent heterocyclic group, and these groups may further have a substituent.
  • the content of the structural unit represented by the formula (1) is usually 0.1 mol% to 100 mol% with respect to the total content of the structural units contained in the polymer compound, and the hole transport property is Since it is excellent, it is preferably 10 mol% to 90 mol%, more preferably 30 mol% to 50 mol%, and still more preferably 40 mol% to 50 mol%.
  • Examples of the structural unit represented by the formula (1) include structural units represented by the formulas (1′-1) to (1′-18).
  • the structural unit represented by the formula (1) may be included alone or in combination of two or more.
  • the structural unit represented by the formula (1) is preferably a structural unit represented by the formula (1a) because the external quantum efficiency is more excellent.
  • the aromatic hydrocarbon ring represented by the ring S 2 has usually 6 to 60, preferably 6 to 20, more preferably 6 to 14 carbon atoms constituting the ring. Examples and preferred ranges of the aromatic hydrocarbon ring represented by ring S 2 are the same as those of the aromatic hydrocarbon ring represented by ring S 1 and preferred ranges.
  • the aromatic heterocyclic ring represented by ring S 2 has usually 2 to 60 carbon atoms, preferably 3 to 20 carbon atoms, more preferably 3 to 12 carbon atoms constituting the ring. Examples and preferred ranges of the aromatic heterocycle represented by ring S 2 are the same as those of the aromatic heterocycle represented by ring S 1 and preferred ranges.
  • the preferred range of the group and atom represented by R A2 is the same as the preferred range of the group and atom represented by R A1 .
  • Examples of the structural unit represented by the formula (1a) include structural units represented by the formula (1Y-1) to the formula (1Y-13), preferably the formula (1Y-1) to the formula (1Y -3), a structural unit represented by formula (1Y-6), formula (1Y-7), formula (1Y-9), formula (1Y-10) or formula (1Y-13).
  • Examples of the structural unit represented by the formula (1) include structural units represented by the formulas (1-1) to (1-18), and preferably the formulas (1-1) to (1-6). ), Formula (1-10), formula (1-11), formula (1-13), formula (1-17) or formula (1-18).
  • the polymer compound containing the structural unit represented by the formula (1) is further a phosphorescent structural unit (in particular, a group formed by removing a hydrogen atom from the phosphorescent compound represented by the formula (2)). It is preferable that the polymer compound further contains at least one phosphorescent compound selected from the structural units represented by formula (1G), formula (2G), formula (3G), and formula (4G). More preferably, the structural unit is included.
  • R A is preferably an aryl group or a monovalent heterocyclic group, more preferably an aryl group, and these groups optionally have a substituent.
  • L 1 is preferably a group represented by —C (R B ) 2 — or an arylene group, and more preferably a group represented by formula (A-1) or formula (A-2). These groups may have a substituent.
  • R B is preferably a hydrogen atom, an alkyl group, a cycloalkyl group or an aryl group, more preferably a hydrogen atom, and these groups optionally have a substituent.
  • R A , R B and L 1 may have include an alkyl group, a cycloalkyl group, an alkoxy group, a cycloalkoxy group, an aryl group, an aryloxy group, a monovalent heterocyclic group, and a halogen atom. These groups may further have a substituent.
  • na1 is preferably an integer of 0 to 2, more preferably 0.
  • M 1G is preferably a group represented by the formula (GM-1).
  • n 111 represents 1 or 2.
  • n 112 represents 0 or 1; However, n 111 + n 112 is 1 or 2.
  • M is a rhodium atom or an iridium atom
  • n 111 + n 112 is 2
  • M is a palladium atom or a platinum atom
  • n 111 + n 112 is 1.
  • E 3 and E 4 represent the same meaning as described above.
  • Ring R 1G and ring R 1G1 each independently represent an aromatic heterocyclic ring, and these rings may have a substituent.
  • substituents When a plurality of the substituents are present, they may be the same or different, and may be bonded to each other to form a ring together with the atoms to which each is bonded.
  • rings R 1G When a plurality of rings R 1G are present, they may be the same or different.
  • Ring R 2G and ring R 2G1 each independently represent an aromatic hydrocarbon ring or an aromatic heterocyclic ring, and these rings optionally have a substituent.
  • a plurality of the substituents When a plurality of the substituents are present, they may be the same or different, and may be bonded to each other to form a ring together with the atoms to which each is bonded.
  • rings R 2G When a plurality of rings R 2G are present, they may be the same or different.
  • E 4 is a carbon atom.
  • One of the ring R 1G1 and the ring R 2G1 has a bond.
  • a 3 -G 2 -A 4 represents the same meaning as described above. ]
  • n 112 is 0 or 1, and more preferably 0.
  • M is a palladium atom or a platinum atom
  • n 112 is 0.
  • Ring R 1G is preferably an aromatic heterocyclic ring having 1 to 4 nitrogen atoms as constituent atoms, more preferably a pyridine ring, a pyrimidine ring, a quinoline ring or an isoquinoline ring. May have a substituent.
  • Ring R 2G is preferably an aromatic hydrocarbon ring, more preferably a benzene ring, a naphthalene ring or a fluorene ring, and these rings may have a substituent.
  • Examples of the substituent that the ring R 1G and the ring R 2G may have include an alkyl group, a cycloalkyl group, an aryl group, a monovalent heterocyclic group, an alkoxy group, a cycloalkoxy group, an aryloxy group, and a dendron.
  • an alkyl group, an aryl group, or a dendron is more preferable, and these groups may further have a substituent.
  • At least one ring selected from the group consisting of ring R 1G and ring R 2G has a dendron.
  • the number of dendrons contained in at least one ring selected from the group consisting of ring R 1G and ring R 2G is preferably 1 to 3, more preferably 1.
  • the dendron possessed by at least one ring selected from the group consisting of ring R 1G and ring R 2G is a group represented by the formula (DA) or (DB), and m DA1 is 1 to 10
  • Ar DA1 bonded to ring R 1G and / or ring R 2G is preferably a group represented by the formula (ArDA-1).
  • G DA bonded to R 1G and / or ring R 2G is a group represented by formula (GDA-11), formula (GDA-12), formula (GDA-14) or formula (GDA-15) are preferable, and a group represented by the formula (GDA-11) or the formula (GDA-14) is more preferable.
  • the dendron possessed by at least one of the ring R 1G and the ring R 2G is represented by the formula (D-A1), the formula (D-A3), the formula (D-B1) or the formula (D-B3). And a group represented by the formula (D-A1) or (D-A3) is more preferable.
  • GM-1 At least one of the ligands (the ligand represented by ring R 1G -ring R 2G ) whose number is defined by the subscript n 111 is represented by the formula (GM-L1 It is preferable that it is a ligand represented by.
  • R G1 and R G2 , R G2 and R G3 , and R G3 and R G4 are not bonded to form a ring.
  • R G3 and R G4 are preferably bonded to form an aromatic ring.
  • R G1 ⁇ R G8 are each independently a hydrogen atom, an alkyl group, a cycloalkyl group, an aryl group, a monovalent heterocyclic group, an alkoxy group, cycloalkoxy group, or an aryloxy group or a dendron, and R G1 R G2 may be bonded, R G2 and R G3 may be bonded, or R G3 and R G4 may be bonded to form an aromatic ring, and these groups may have a substituent.
  • R G1 and R G2, R G2 and R G3, R G3 and R G4, R G4 and R G5, R G5 and R G6, R G6 and R G7, and, R G7 and R G8 are each bound, You may form the ring with the atom to which each couple
  • R G1 , R G4 , R G5 and R G8 are preferably a hydrogen atom, an alkyl group or an aryl group, more preferably a hydrogen atom, and these groups may have a substituent.
  • R G2 , R G3 , R G6 and R G7 are preferably a hydrogen atom, an alkyl group, an aryl group, a monovalent heterocyclic group or a dendron, and a hydrogen atom, an alkyl group, an aryl group or a monovalent heterocyclic ring.
  • a group or a dendron is more preferable, a hydrogen atom or a dendron is further preferable, and these groups may have a substituent.
  • At least one of R G1 to R G8 is preferably an alkyl group, a cycloalkyl group, an aryl group, a monovalent heterocyclic group, an alkoxy group, a cycloalkoxy group, an aryloxy group, or a dendron, and R G2 , R G3 , More preferably, at least one of R G6 and R G7 is an alkyl group, a cycloalkyl group, an aryl group, a monovalent heterocyclic group, an alkoxy group, a cycloalkoxy group, an aryloxy group or a dendron, and these groups are substituted It may have a group.
  • R G2 , R G3 , R G6 and R G7 is preferably a dendron, and at least one of R G2 and R G6 is More preferably, it is a dendron.
  • R G2 and R G6 Is preferably an alkyl group, a cycloalkyl group, an aryl group, a monovalent heterocyclic group, an alkoxy group, a cycloalkoxy group or an aryloxy group, and these groups optionally have a substituent. .
  • the plurality of R G1 to R G8 may be the same or different.
  • the ligand represented by the ring R 1G1 -ring R 2G1 is preferably a ligand represented by the formula (GM-L1).
  • R G1 and R G2 , R G2 and R G3 , and R G3 and R G4 are not bonded to form a ring.
  • R G3 and R G4 are preferably bonded to form an aromatic ring.
  • R G2 , R G3 , R G6 or R G7 may be a bond.
  • R G6 is a bond.
  • Exemplary and preferred embodiments of A 3 -G 2 -A 4 include those similar to the illustrative and preferred embodiments of A 3 -G 2 -A 4 in phosphorescent compound represented by the formula (2) described later .
  • L 2 is preferably a group represented by —C (R B ) 2 —, an arylene group or a divalent heterocyclic group, and represented by formula (A-1) or formula (A-2). It is more preferably a group, and these groups may have a substituent.
  • L 3 is preferably a group represented by —C (R B ) 2 — or an arylene group, and more preferably a group represented by Formula (A-1) or Formula (A-2). These groups may have a substituent.
  • n b1 and n c1 are usually integers of 0 to 10, preferably 0.
  • Ar 1M is a benzene ring, a naphthalene ring, a fluorene ring, a phenanthrene ring, a dihydrophenanthrene ring, a pyridine ring, a diazabenzene ring, a triazine ring, a carbazole ring, a phenoxazine ring, or a phenothiazine ring.
  • a group in which three hydrogen atoms directly bonded are removed is preferable, and a group in which three hydrogen atoms directly bonded to a carbon atom constituting the ring are removed from a benzene ring is more preferable. It may have a substituent.
  • M 2G is preferably a group represented by the formula (GM-2) or the formula (GM-3).
  • n113 and n114 each independently represents 0 or 1. However, n 113 + n 114 is 0 or 1. When M is a rhodium atom or an iridium atom, n 113 + n 114 is 1, and when M is a palladium atom or a platinum atom, n 113 + n 114 is 0. Ring R 1G2 represents an aromatic heterocycle, and the ring may have a substituent.
  • Ring R 2G2 represents an aromatic hydrocarbon ring or an aromatic heterocyclic ring, and the ring may have a substituent.
  • the substituents When a plurality of the substituents are present, they may be the same or different, and may be bonded to each other to form a ring together with the atoms to which each is bonded.
  • the ring R 2G2 is a 6-membered aromatic heterocyclic ring, E 4 is a carbon atom.
  • one of the ring R 1G2 and the ring R 2G2 has two bonds, or each of the ring R 1G2 and the ring R 2G2 has one bond.
  • n 114 is preferably 0.
  • the definition of ring R 1G2 is the same as the definition of ring R 1G .
  • the definition of the ring portion excluding the bond of ring R 1G2 is the same as the definition of ring R 1G .
  • the definition of ring R 2G2 is the same as the definition of ring R 2G .
  • the definition of the ring portion excluding the bond of ring R 2G2 is the same as the definition of ring R 2G .
  • the substituent that the ring R 1G2 and the ring R 2G2 may have is the same as the substituent that the ring R 1G and the ring R 2G may have.
  • Each of the ring R 1G2 and the ring R 2G2 preferably has one bond.
  • the ligand represented by ring R 1G2 -ring R 2G2 is preferably a ligand represented by the formula (GM-L1).
  • the ligand represented by the ring R 1G2 -ring R 2G2 is preferably a ligand represented by the formula (GM-L1).
  • R G2 and R G6 , R G2 and R G7 , R G3 and R G6 , or R G3 and R G7 are preferably bonds.
  • R 1G2 -ring R 2G2 is a ligand represented by the formula (GM-L1), and R G3 and R G4 are bonded to form an aromatic ring , R G2 and R G6 , or R G2 and R G7 are preferably bonds.
  • R G2 and R G3 are preferably bonded, and two of the carbon-hydrogen bonds, R G6 and R G7 have an aromatic ring formed by bonding.
  • R 1G2 -ring R 2G2 is a ligand represented by the formula (GM-L1)
  • R G1 and R G2 are combined to form an aromatic ring
  • R G6 and R G3 or R G7 and R G3 are preferably bonds.
  • M 3G is preferably a group represented by the formula (GM-4).
  • n 115 represents 0 or 1; n 116 represents 1 or 3. However, when M is a rhodium atom or an iridium atom, n 115 is 0 and n 116 is 3. When M is a palladium atom or a platinum atom, n 115 is 1 and n 116 is 1. ]
  • the phosphorescent compound is preferably a phosphorescent compound represented by the formula (2).
  • M 2 is preferably an iridium atom since the external quantum efficiency of the light-emitting device containing the composition according to this embodiment is more excellent.
  • n 3 is preferably 2 or 3, and more preferably 3.
  • M 2 is a palladium atom or a platinum atom, n 3 is preferably 2.
  • E 3 and E 4 are preferably carbon atoms.
  • the preferred range for ring L 1 is the same as the preferred range for ring R 1G .
  • Ring L 2 is preferably a 6-membered aromatic hydrocarbon ring or a 6-membered aromatic heterocyclic ring, and more preferably a 6-membered aromatic hydrocarbon ring. However, when the ring L 2 is a 6-membered aromatic heterocyclic ring, E 4 is a carbon atom. Ring L 2 is preferably a benzene ring, a pyridine ring or a pyrimidine ring, and more preferably a benzene ring.
  • the ring L 1 has a plurality of other substituents, they may be the same or different, and may be bonded to each other to form a ring together with the atoms to which they are bonded.
  • the ring L 2 has a plurality of other substituents, they may be the same or different, and may be bonded to each other to form a ring together with the atoms to which they are bonded.
  • the other substituent in the ring L 1 and the other substituent in the ring L 2 may be bonded to each other to form a ring together with the atoms to which they are bonded.
  • anionic bidentate ligand represented by A 3 -G 2 -A 4 are the same as the anionic bidentate ligand represented by A 1 -G 1 -A 2. The However, the anionic bidentate ligand represented by A 3 -G 2 -A 4 is different from the ligand whose number is defined by the subscript n 3 .
  • the ring L 1 is a pyridine ring, pyrimidine ring, isoquinoline ring or quinoline ring, and the ring L 2 is a benzene ring, A pyridine ring or a pyrimidine ring is preferred.
  • the phosphorescent compound represented by the formula (2) is represented by the formulas (2-B1) to (2-B5). It is preferable that the phosphorescent compound be used.
  • At least one selected from the group consisting of R 11B , R 12B , R 13B , R 14B , R 21B , R 22B , R 23B and R 24B is represented by an aryl group, a monovalent heterocyclic group or a substituted amino group. These groups are preferable, and these groups may have a substituent.
  • R 11B , R 12B , R 13B and R 14B are preferably a hydrogen atom, an alkyl group or an aryl group.
  • R 11B , R 12B , R 13B and R 14B is an aryl group, a monovalent heterocyclic group or a substituted amino group
  • R 13B is an aryl group, a monovalent heterocyclic group or a substituted amino group. It is preferable.
  • These groups are preferably dendrons because the external quantum efficiency of the light emitting device is more excellent. Examples and preferred embodiments of the dendron include the same as the examples and preferred embodiments of the dendron in the phosphorescent compound represented by the formula (5-A).
  • R 21B , R 22B , R 23B and R 24B are preferably a hydrogen atom, an alkyl group, a cycloalkyl group, an aryl group, a monovalent heterocyclic group or a substituted amino group, and a hydrogen atom, an alkyl group or an aryl group It is more preferable that R 15B , R 16B , R 17B and R 18B are preferably hydrogen atoms.
  • Examples of the phosphorescent compound represented by the formula (2) include a phosphorescent compound represented by the following formula.
  • Examples of the structural unit represented by the formula (1G) include structural units represented by the formula (1G-1) to the formula (1G-12).
  • De represents a hydrogen atom, a methyl group, an ethyl group, a propyl group, an n-butyl group, a tert-butyl group, a group represented by the formula (DA), or a formula (DB). Represents a group.
  • Examples of the structural unit represented by the formula (2G) include structural units represented by the formulas (2G-1) to (2G-12).
  • Examples of the structural unit represented by the formula (3G) include structural units represented by the formulas (3G-1) to (3G-20).
  • Examples of the structural unit represented by the formula (4G) include structural units represented by the formulas (4G-1) to (4G-7).
  • the phosphorescent light-emitting structural unit is 0 with respect to 100 mol of the total amount of the structural units contained in the polymer compound.
  • the amount is preferably from 0.01 mol to 30 mol.
  • the polymer compound containing the structural unit represented by the formula (1) since the external quantum efficiency is more excellent, phosphorescence is preferably emitted in the visible region, and the emission peak wavelength is more preferably 570 to 700 nm.
  • the polymer compound containing the structural unit represented by the formula (1) has a long wavelength of 1 to 200 nm with respect to a light emitting material having a light emission peak on the longest wavelength side among the light emitting materials contained in the first light emitting layer. It preferably has an emission peak wavelength on the side, and more preferably has an emission peak wavelength on the longer wavelength side of 50 to 160 nm.
  • the polymer compound containing the structural unit represented by the formula (1) may contain only one type of phosphorescent structural unit or two or more types.
  • the polymer compound containing the structural unit represented by the formula (1) is more excellent in external quantum efficiency, it is preferable to include a crosslinked structural unit having at least one kind of crosslinking group selected from the crosslinking group A group.
  • a structural unit represented by the formula (3) or the formula (4) is preferable.
  • nA is preferably 1 or 2 because of its excellent external quantum efficiency.
  • n is preferably 2 because the external quantum efficiency is excellent.
  • Ar 1 is preferably an aromatic hydrocarbon group which may have a substituent since it has excellent external quantum efficiency.
  • the number of carbon atoms of the aromatic hydrocarbon group represented by Ar 1 is usually 6 to 60, preferably 6 to 30, more preferably 6 to 18, not including the number of carbon atoms of the substituent. is there.
  • the arylene moiety of the aromatic hydrocarbon group represented by Ar 1 is preferably a group represented by the formulas (A-1) to (A-20), more preferably the formula (A-1) Or a group represented by formula (A-9), and these groups each optionally have a substituent.
  • the number of carbon atoms of the divalent heterocyclic group represented by Ar 1 is usually 2 to 60, preferably 4 to 18, excluding the number of carbon atoms of the substituent.
  • the divalent heterocyclic group represented by Ar 1 is preferably a group represented by the formulas (AA-1) to (AA-34).
  • the alkylene group represented by L A is not including the carbon atom number of substituent is usually 1 to 20, preferably preferably 1-10.
  • Cycloalkylene group represented by L A is not including the carbon atom number of substituent is usually 3 to 20.
  • the alkylene group and the cycloalkylene group may have a substituent, and examples thereof include a methylene group, an ethylene group, a propylene group, a butylene group, a hexylene group, a cyclohexylene group, and an octylene group.
  • the arylene group represented by L A may have a substituent.
  • a phenylene group or a fluorenediyl group is preferable.
  • L A is preferably an arylene group or an alkylene group because it facilitates the synthesis of the polymer compound containing the structural unit represented by the formula (1) and the polymer compound of the embodiment of the present invention. These groups may have a substituent.
  • the polymer compound containing the structural unit represented by the formula (1) is excellent in crosslinkability. Therefore, the formula (XL-1), the formula (XL-3), the formula ( XL-7) to a formula (XL-10), a formula (XL-16), a formula (XL-17) or a formula (XL-20), and more preferably a formula (XL-1) ), A crosslinking group represented by formula (XL-17) or formula (XL-20).
  • the total amount of the structural units contained in the polymer compound is 100 mol. On the other hand, it is preferably 0.5 to 90 mol, more preferably 5 to 60 mol.
  • the structural unit represented by Formula (3) may be included in the polymer compound containing the structural unit represented by Formula (1), or may be included in two or more types.
  • mA is preferably 0 because the external quantum efficiency is excellent.
  • m is preferably 0 because the external quantum efficiency is excellent.
  • c is preferably 0 because it facilitates the synthesis of the polymer compound containing the structural unit represented by formula (1) and is excellent in external quantum efficiency.
  • Ar 3 is preferably an aromatic hydrocarbon group which may have a substituent since it has excellent external quantum efficiency.
  • the definition and example of the aromatic hydrocarbon group represented by Ar 3 are the same as the group obtained by removing m hydrogen atoms from the definition and example of the arylene group represented by Ar X2 in formula (X).
  • the definition and example of the heterocyclic group represented by Ar 3 are the same as the group obtained by removing m hydrogen atoms from the definition and example of the divalent heterocyclic group represented by Ar X2 in formula (X). is there.
  • the definition and examples of the group in which the aromatic hydrocarbon group represented by Ar 3 and the heterocyclic group are directly bonded are as follows: the arylene group represented by Ar X2 and the divalent heterocyclic group in the formula (X) are directly This is the same as the group formed by removing m hydrogen atoms from the definition or example of the bonded divalent group.
  • Ar 2 and Ar 4 are preferably an arylene group which may have a substituent since it has excellent external quantum efficiency.
  • the definitions and examples of the arylene group represented by Ar 2 and Ar 4 are the same as the definitions and examples of the arylene group represented by Ar X1 and Ar X3 in the formula (X).
  • the definitions and examples of the divalent heterocyclic group represented by Ar 2 and Ar 4 are the same as the definitions and examples of the divalent heterocyclic group represented by Ar X1 and Ar X3 in formula (X).
  • the definition and examples of the group and the divalent heterocyclic group are the same.
  • K A since the synthesis of the polymer compound containing a constitutional unit represented by formula (1) is facilitated, is preferably a phenylene group or methylene group, which substituent You may have.
  • crosslinking group represented by X ′ are the same as the definition and examples of the crosslinking group represented by X.
  • the structural unit represented by the formula (4) is represented by the formula (1) because the polymer compound containing the structural unit represented by the formula (1) has excellent hole transportability and crosslinkability. Is preferably 0.5 to 80 mol, more preferably 3 to 40 mol, still more preferably 5 to 20 mol, per 100 mol of the total amount of the structural units contained in the polymer compound containing the structural unit. is there.
  • the structural unit represented by Formula (4) may be included in the polymer compound containing the structural unit represented by Formula (1), or may be included in two or more types.
  • Examples of the structural unit represented by formula (3) include structural units represented by formula (3-1) to formula (3-30).
  • Examples of the structural unit represented by formula (4) include: Examples thereof include structural units represented by formulas (4-1) to (4-9).
  • the polymer compound containing the structural unit represented by the formula (1) may further contain a structural unit represented by the formula (Y) and other structural units.
  • the other structural unit may be a structural unit represented by the formula (X).
  • Examples of the polymer compound containing the structural unit represented by the formula (1) include polymer compounds PP-1 to PP-8.
  • the polymer compounds PPP-1 to PPP-8 are preferable because the external quantum efficiency of the light emitting device according to this embodiment is more excellent.
  • p, q, r, s, t, u, v, w, and x represent the molar ratio of each constituent unit.
  • p + q + r + s + t + u + v + w + x 100.
  • the other structural unit means a structural unit other than the structural units represented by Formula (1), Formula (1X), Formula (1Z), Formula (5), Formula (5 ′), and Formula (Y). . ]
  • the crosslinking group of the polymer compound containing the structural unit represented by the formula (1) described above is treated under the crosslinking conditions described later. Is obtained.
  • the second light emitting layer is composed of at least one light emitting material and at least one selected from the group consisting of a hole transport material, a hole injection material, an electron transport material, an electron injection material, and an antioxidant. It is preferable to contain a material.
  • the second light-emitting layer is a phosphorescent compound in addition to at least one selected from the group consisting of a polymer compound containing the structural unit represented by the formula (1) and a crosslinked product of the polymer compound. (In particular, it may contain a phosphorescent compound represented by the formula (2)).
  • Illustrative, preferred range and content of at least one material selected from the group consisting of hole transport material, hole injection material, electron transport material, electron injection material and antioxidant, which can be contained in the second light emitting layer Etc. are the same as those of the first light-emitting layer.
  • the second light-emitting layer is spun using an ink containing a polymer compound containing the structural unit represented by the formula (1) (hereinafter also referred to as “ink used for forming the second light-emitting layer”). It can be formed by a coating method such as a coating method, a gravure coating method, a bar coating method, a roll coating method, a spray coating method, a screen printing method, a die coating method, an ink jet printing method, a capillary coating method, or a nozzle coating method.
  • a coating method such as a coating method, a gravure coating method, a bar coating method, a roll coating method, a spray coating method, a screen printing method, a die coating method, an ink jet printing method, a capillary coating method, or a nozzle coating method.
  • the preferable range of the viscosity of the ink used for forming the second light emitting layer is the same as the preferable range of the viscosity of the ink used for forming the first light emitting layer.
  • Examples and preferred ranges of the solvent contained in the ink used for forming the second light emitting layer are the same as the examples and preferred ranges of the solvent contained in the ink used for forming the first light emitting layer.
  • the polymer compound containing the structural unit represented by the formula (1) and the phosphorescent structural unit of the present invention includes, for example, a compound represented by the following formula (M-1) and a formula (M-1G) It can manufacture by carrying out condensation polymerization with the compound represented by these.
  • the compounds used for the production of the polymer compound of the present invention are sometimes collectively referred to as “raw material monomers”.
  • the polymer compound of the embodiment of the present invention may contain other structural units.
  • examples of the raw material monomer include the following formula (M-1X), formula (M-1Z), formula (M- 5), a compound represented by formula (M-5 ′) or formula (MY).
  • Z C1 to Z C10 each independently represent a group selected from the group consisting of the substituent group A and the substituent group B.
  • Z C1 and Z C2 are groups selected from the substituent group A
  • Z C3 to Z C10 select groups selected from the substituent group B
  • Z C3 to Z C10 select groups selected from the substituent group A.
  • R C1 represents an alkyl group, a cycloalkyl group or an aryl group, and these groups have a substituent.
  • R C2 represents a hydrogen atom, an alkyl group, a cycloalkyl group or an aryl group, these groups may have a substituent.
  • R C2 represents a hydrogen atom, an alkyl group, a cycloalkyl group or an aryl group, these groups may have a substituent.
  • R C2 represents a hydrogen atom, an alkyl group, a cycloalkyl group or an aryl group, these groups may have a substituent.
  • R C2 represents a hydrogen atom, an alkyl group, a cycloalkyl group or an aryl group, these groups may have a substituent.
  • R C2 represents a hydrogen atom, an alkyl group, a cycloalkyl group or an aryl group, these groups may have a substituent.
  • R C2 represents a hydrogen atom, an alkyl group, a cycloalkyl group or an aryl group, these groups may have a substitu
  • a group represented by BF 3 Q ′ (wherein Q ′ represents Li, Na, K, Rb or Cs); -A group represented by MgY '(wherein Y' represents a chlorine atom, a bromine atom or an iodine atom); A group represented by —ZnY ′′ (wherein Y ′′ represents a chlorine atom, a bromine atom or an iodine atom); -Sn (R C3) 3 (wherein, R C3 represents a hydrogen atom, an alkyl group, a cycloalkyl group or an aryl group, these groups may have a substituent. More existing R C3 is The groups may be the same or different and may be linked to each other to form a ring structure together with the tin atoms to which they are bonded.
  • Examples of the group represented by —B (OR C2 ) 2 include groups represented by the following formulae.
  • a compound having a group selected from Substituent Group A and a compound having a group selected from Substituent Group B are subjected to condensation polymerization by a known coupling reaction, and a group selected from Substituent Group A and Substituent Group B Carbon atoms bonded to a group selected from are bonded to each other. Therefore, if a compound having two groups selected from Substituent Group A and a compound having two groups selected from Substituent Group B are subjected to a known coupling reaction, condensation of these compounds by condensation polymerization A polymer can be obtained.
  • the condensation polymerization is usually carried out in the presence of a catalyst, a base and a solvent, but may be carried out in the presence of a phase transfer catalyst if necessary.
  • the catalyst examples include dichlorobis (triphenylphosphine) palladium, dichlorobis (tris-o-methoxyphenylphosphine) palladium, palladium [tetrakis (triphenylphosphine)], [tris (dibenzylideneacetone)] dipalladium, palladium acetate and the like.
  • transition metal complexes such as palladium complexes of nickel, nickel [tetrakis (triphenylphosphine)], [1,3-bis (diphenylphosphino) propane] dichloronickel, [bis (1,4-cyclooctadiene)] nickel Metal complexes; these transition metal complexes may further include complexes having ligands such as triphenylphosphine, tri-o-tolylphosphine, tri-tert-butylphosphine, tricyclohexylphosphine, diphenylphosphinopropane, bipyridyl, etc. .
  • a catalyst may be used individually by 1 type, or may use 2 or more types together.
  • the amount of catalyst used is usually 0.00001 to 3 molar equivalents as the amount of transition metal relative to the total number of moles of raw material monomers.
  • Examples of the base and phase transfer catalyst include inorganic bases such as sodium carbonate, potassium carbonate, cesium carbonate, potassium fluoride, cesium fluoride, and tripotassium phosphate; organics such as tetrabutylammonium fluoride and tetrabutylammonium hydroxide.
  • Examples of the base include phase transfer catalysts such as tetrabutylammonium chloride and tetrabutylammonium bromide. Each of the base and the phase transfer catalyst may be used alone or in combination of two or more.
  • the amount of base and phase transfer catalyst used is usually 0.001 to 100 molar equivalents relative to the total number of moles of raw material monomers.
  • the solvent examples include organic solvents such as toluene, xylene, mesitylene, tetrahydrofuran, 1,4-dioxane, dimethoxyethane, N, N-dimethylacetamide, N, N-dimethylformamide, and water.
  • organic solvents such as toluene, xylene, mesitylene, tetrahydrofuran, 1,4-dioxane, dimethoxyethane, N, N-dimethylacetamide, N, N-dimethylformamide, and water.
  • a solvent may be used individually by 1 type, or may use 2 or more types together.
  • the amount of solvent used is usually 10 to 100000 parts by weight with respect to 100 parts by weight of the total amount of raw material monomers.
  • the reaction temperature of the condensation polymerization is usually -100 to 200 ° C.
  • the reaction time of the condensation polymerization is usually 1 hour or more.
  • Post-treatment of the polymerization reaction is a known method, for example, a method of removing water-soluble impurities by liquid separation, adding the reaction solution after polymerization reaction to a lower alcohol such as methanol, filtering the deposited precipitate, and then drying. These methods are carried out alone or in combination.
  • a lower alcohol such as methanol
  • filtering the deposited precipitate and then drying.
  • these methods are carried out alone or in combination.
  • the purity of the polymer compound is low, it can be purified by a usual method such as recrystallization, reprecipitation, continuous extraction with a Soxhlet extractor, column chromatography, or the like.
  • the compound represented by the formula (1m-1), which is an embodiment of the compound represented by the formula (M-1), can be synthesized, for example, by a method represented by the following formula.
  • R A1 represents the same meaning as described above.
  • Ar A11 represents an arylene group or a divalent heterocyclic group, and these groups optionally have a substituent.
  • Ar A11 is a group in which at least one atom adjacent to a bromine atom or an atom that forms a bond with the group represented by —B (OR C2 ) 2 is an alkyl group, a cycloalkyl group, an alkoxy group, or a cycloalkoxy group.
  • the compound represented by the formula (1m-5) is reacted with lithium bis (trimethylsilyl) amide using a palladium catalyst to induce the compound represented by the formula (1m-5).
  • the compound represented by the formula (1m-3) is reacted with the compound represented by the formula (1m-4) by the Buchwald-Hartwig reaction to obtain the compound represented by the formula (1m-3). Is synthesized.
  • the compound represented by the formula (1m-2) is reacted with the brominating agent to synthesize the compound represented by the formula (1m-2).
  • a compound represented by the formula (1m-1) can be synthesized by reacting a compound represented by the formula (1m-2) with bispinacolatodiboron using a palladium catalyst. it can.
  • the compound represented by the formula (2m-1), which is an embodiment of the compound represented by the formula (M-1), can be synthesized, for example, by the method represented by the following.
  • Ar A12 represents an arylene group or a divalent heterocyclic group, and these groups optionally have a substituent.
  • Ar A12 represents a bromine atom or at least one atom adjacent to an atom that forms a bond with the group represented by —B (OR C2 ) 2 is an alkyl group, a cycloalkyl group, an alkoxy group, or a cycloalkoxy group.
  • An aryl group or a monovalent heterocyclic group as a substituent, and these substituents may further have a substituent.
  • Ar A2 represents the same meaning as described above.
  • R A11 represents the same meaning as R A1 . ]
  • the compound represented by the formula (2m-7) is induced by reacting the compound represented by the formula (2m-8) with lithium bis (trimethylsilyl) amide using a palladium catalyst.
  • a compound represented by the formula (2m-5) is obtained by subjecting a compound represented by the formula (2m-7) and a compound represented by the formula (2m-6) to Buchwald-Hartwig reaction. Is synthesized.
  • the compound represented by the formula (2m-3) is reacted with the compound represented by the formula (2m-4) by a Buchwald-Hartwig reaction to thereby obtain a compound represented by the formula (2m-3). Is synthesized.
  • the compound represented by the formula (2m-2) is reacted with the brominating agent to synthesize the compound represented by the formula (2m-2).
  • the compound represented by the formula (2m-1) can be synthesized by reacting the compound represented by the formula (2m-2) with bispinacolatodiboron using a palladium catalyst. it can.
  • the light emitting device includes an anode, a cathode, and a first light emitting layer and a second light emitting layer provided therebetween.
  • the light emitting device according to this embodiment may have other layers.
  • the first light emitting layer and the second light emitting layer are preferably adjacent to each other because the external quantum efficiency is more excellent.
  • the second light emitting layer is preferably a layer provided between the anode and the first light emitting layer because the external quantum efficiency is more excellent.
  • the second light emitting layer when the second light emitting layer is a layer provided between the anode and the first light emitting layer, the external quantum efficiency is more excellent, so that the anode and the second light emitting layer It is preferable to further have at least one layer selected from the group consisting of a hole injection layer and a hole transport layer between them.
  • the second light-emitting layer is a layer provided between the anode and the first light-emitting layer, the external quantum efficiency is more excellent, so that the electron injection layer and the first light-emitting layer are provided between the cathode and the first light-emitting layer. It is preferable to further have at least one layer selected from the group consisting of electron transport layers.
  • the second light emitting layer when the second light emitting layer is a layer provided between the cathode and the first light emitting layer, the external quantum efficiency is more excellent, so that the anode and the first light emitting layer It is preferable to further have at least one layer selected from the group consisting of a hole injection layer and a hole transport layer between them.
  • the second light-emitting layer is a layer provided between the cathode and the first light-emitting layer, the external quantum efficiency is more excellent, so that the electron injection layer and the second light-emitting layer are interposed between the cathode and the second light-emitting layer. It is preferable to further have at least one layer selected from the group consisting of electron transport layers.
  • two or more anodes, a hole injection layer, a hole transport layer, an electron transport layer, an electron injection layer, and a cathode may be provided as necessary.
  • anodes, hole injection layers, hole transport layers, electron transport layers, electron injection layers, and cathodes they may be the same or different.
  • the thickness of the anode, hole injection layer, hole transport layer, first light emitting layer, second light emitting layer, electron transport layer, electron injection layer and cathode is usually 1 nm to 1 ⁇ m, preferably 5 nm to 150 nm.
  • the layer configuration of the light emitting device according to this embodiment include the layer configurations represented by the following (D1) to (D18).
  • the light emitting device according to this embodiment usually has a substrate, but may be laminated from the anode on the substrate, or may be laminated from the cathode on the substrate.
  • “/” means that the layers before and after are stacked adjacent to each other.
  • “second light-emitting layer / first light-emitting layer” means that the second light-emitting layer and the first light-emitting layer are stacked adjacent to each other.
  • the light emitting device may have a non-light emitting intermediate layer between a plurality of light emitting layers, and may have a multi-photon unit configuration in which the intermediate layer is a charge generation layer.
  • the charge generating layer ITO (indium tin oxide), IZO (indium zinc oxide), ZnO 2, TiN, ZrN , HfN, TiOx, VOx, CuI, InN, GaN, CuAlO 2, CuGaO 2 , conductive inorganic compound layers such as SrCu 2 O 2 , LaB 6 , RuO 2 , two-layer films such as Au / Bi 2 O 3 , SnO 2 / Ag / SnO 2 , ZnO / Ag / ZnO, Bi 2 O 3 / Au / Bi 2 O 3 , TiO 2 / TiN / TiO 2 , TiO 2 / ZrN / TiO 2 and other multilayer films, C 60 and other fullerenes
  • an insulating layer may be provided adjacent to the electrode in order to improve the adhesion between the electrode and other layers and to improve the charge injection from the electrode.
  • the hole transport layer, the electron transport layer, the first light emitting layer, or the second light emitting layer is used to improve the adhesion of the interface and prevent the mixing of two adjacent layers.
  • a thin buffer layer may be inserted at the interface of the layers. The order and number of layers to be stacked, and the thickness of each layer may be adjusted in consideration of external quantum efficiency and device lifetime.
  • the light emitting device may have a substrate on the side opposite to the light emitting layer side of the anode or on the side opposite to the light emitting layer side of the cathode.
  • the substrate forms an electrode and chemically forms an organic layer (for example, a first light emitting layer, a second light emitting layer, a hole transport layer, a hole injection layer, an electron transport layer, an electron injection layer, etc.).
  • an organic layer for example, a first light emitting layer, a second light emitting layer, a hole transport layer, a hole injection layer, an electron transport layer, an electron injection layer, etc.
  • a substrate made of glass, plastic, polymer film, metal film, silicon, or the like, and a substrate in which these are laminated are used.
  • An electron transport layer is a layer containing an electron transport material.
  • the electron transport material a polymer compound containing at least one structural unit selected from the group consisting of a structural unit represented by the formula (ET-1) and a structural unit represented by the formula (ET-2) (hereinafter referred to as “electron transport material”) And also referred to as “polymer compound of electron transport layer”).
  • nE1 represents an integer of 1 or more.
  • Ar E1 represents an aromatic hydrocarbon group or a heterocyclic group, and these groups may have a substituent other than R E1 .
  • R E1 represents a group represented by the formula (ES-1). When a plurality of R E1 are present, they may be the same or different. ]
  • nE3 represents an integer of 0 or more
  • aE1 represents an integer of 1 or more
  • bE1 represents an integer of 0 or more
  • mE1 represents an integer of 1 or more.
  • nE3, aE1, and bE1 may be the same or different.
  • mE1 is 1 when R E3 is a single bond.
  • aE1 and bE1 are selected so that the charge of the group represented by the formula (ES-1) becomes zero.
  • R E3 represents a single bond, a hydrocarbon group, a heterocyclic group or —O—R E3 ′ (R E3 ′ represents a hydrocarbon group or a heterocyclic group), and these groups have a substituent. It may be.
  • Q E1 represents an alkylene group, a cycloalkylene group, an arylene group, an oxygen atom or a sulfur atom, and these groups optionally have a substituent. When a plurality of Q E1 are present, they may be the same or different.
  • Y E1 represents —CO 2 ⁇ , —SO 3 ⁇ , —SO 2 — or —PO 3 2 ⁇ . When a plurality of Y E1 are present, they may be the same or different.
  • M E1 represents an alkali metal cation, an alkaline earth metal cation or an ammonium cation, and this ammonium cation may have a substituent. When a plurality of M E1 are present, they may be the same or different.
  • Z E1 is F ⁇ , Cl ⁇ , Br ⁇ , I ⁇ , OH ⁇ , B (R E4 ) 4 ⁇ , R E4 SO 3 ⁇ , R E4 COO ⁇ , NO 3 ⁇ , SO 4 2 ⁇ , HSO 4 ⁇ . , PO 4 3 ⁇ , HPO 4 2 ⁇ , H 2 PO 4 ⁇ , BF 4 ⁇ or PF 6 ⁇ .
  • R E4 represents an alkyl group, a cycloalkyl group, or an aryl group, and these groups optionally have a substituent. When a plurality of Z E1 are present, they may be the same or different. ]
  • NE1 is usually an integer of 1 to 4, preferably 1 or 2.
  • Examples of the aromatic hydrocarbon group or heterocyclic group represented by Ar E1 include 1,4-phenylene group, 1,3-phenylene group, 1,2-phenylene group, 2,6-naphthalenediyl group, 1,4 Hydrogen bonded directly to the atoms constituting the ring from a naphthalenediyl group, a 2,7-fluorenediyl group, a 3,6-fluorenediyl group, a 2,7-phenanthenediyl group or a 2,7-carbazolediyl group
  • a group excluding one atom nE1 is preferable, and may have a substituent other than R E1 .
  • Examples of the substituent other than R E1 that Ar E1 may have include a halogen atom, a cyano group, an alkyl group, a cycloalkyl group, an aryl group, a monovalent heterocyclic group, an alkoxy group, a cycloalkoxy group, and aryloxy.
  • n ′, m ′ and nx each independently represents an integer of 1 or more.
  • nE3 is preferably an integer of 0 to 2.
  • aE1 is preferably 1 or 2.
  • bE1 is preferably 0 or 1.
  • mE1 is preferably 1.
  • R E3 is —O—R E3 ′
  • the group represented by the formula (ES-1) is a group represented by the following formula. -O-R E3 '- ⁇ (Q E1 ) nE3 -Y E1 (M E1 ) aE1 (Z E1 ) bE1 ⁇ mE1
  • R E3 is preferably an aromatic hydrocarbon group. As the substituent that R E3 may have, a group represented by formula (ES-3) is preferable.
  • Q E1 is preferably an alkylene group or an oxygen atom.
  • Y E1 is preferably —CO 2 — .
  • Examples of the alkali metal cation represented by M E1 include Li + , Na + , K + , Rb + , and Cs + .
  • Examples of the alkaline earth metal cation represented by M E1 include Be 2+ , Mg 2+ , Ca 2+ , Sr 2+ and Ba 2+ .
  • M E1 is preferably an alkali metal cation or an alkaline earth metal cation.
  • Z E1 is preferably F ⁇ , Cl ⁇ , Br ⁇ , I ⁇ , OH ⁇ , B (R E4 ) 4 ⁇ , R E4 SO 3 ⁇ , R E4 COO ⁇ or NO 3 ⁇ .
  • R E4 is preferably an alkyl group.
  • Examples of the group represented by the formula (ES-1) include a group represented by the following formula.
  • M + represents Li + , Na + , K + , Cs + or N (CH 3 ) 4 + .
  • M + represents Li + , Na + , K + , Cs + or N (CH 3 ) 4 + .
  • M + may be the same or different.
  • nE2 represents an integer of 1 or more.
  • Ar E2 represents an aromatic hydrocarbon group or a heterocyclic group, and these groups may have a substituent other than R E2 .
  • R E2 represents a group represented by the formula (ES-2). When a plurality of R E2 are present, they may be the same or different. ]
  • nE4 represents an integer of 0 or more
  • aE2 represents an integer of 1 or more
  • bE2 represents an integer of 0 or more
  • mE2 represents an integer of 1 or more.
  • nE4 represents an integer of 0 or more
  • aE2 represents an integer of 1 or more
  • bE2 represents an integer of 0 or more
  • mE2 represents an integer of 1 or more.
  • R E5 represents a single bond, a hydrocarbon group, a heterocyclic group or —O—R E5 ′ (R E5 ′ represents a hydrocarbon group or a heterocyclic group), and these groups have a substituent. It may be.
  • Q E2 represents an alkylene group, a cycloalkylene group, an arylene group, an oxygen atom or a sulfur atom, and these groups optionally have a substituent. When a plurality of Q E2 are present, they may be the same or different.
  • Y E2 represents -C + R E6 2 , -N + R E6 3 , -P + R E6 3 , -S + R E6 2 or -I + R E6 2 .
  • R E6 represents a hydrogen atom, an alkyl group, a cycloalkyl group, or an aryl group, and these groups optionally have a substituent.
  • a plurality of R E6 may be the same or different.
  • Y E2 When a plurality of Y E2 are present, they may be the same or different.
  • M E2 represents F ⁇ , Cl ⁇ , Br ⁇ , I ⁇ , OH ⁇ , B (R E7 ) 4 ⁇ , R E7 SO 3 ⁇ , R E7 COO ⁇ , BF 4 ⁇ , SbCl 6 ⁇ or SbF 6 ⁇ .
  • R E7 represents an alkyl group, a cycloalkyl group, or an aryl group, and these groups optionally have a substituent.
  • M E2 represents an alkali metal cation or an alkaline earth metal cation.
  • Z E2 represents an alkali metal cation or an alkaline earth metal cation.
  • R E5 is —O—R E5 ′
  • the group represented by the formula (ES-2) is preferably a group represented by the following formula. -O-R E5 '- ⁇ (Q E1 ) nE3 -Y E1 (M E1 ) aE1 (Z E1 ) bE1 ⁇ mE1
  • Examples of the group represented by the formula (ES-2) include a group represented by the following formula.
  • X ⁇ represents F ⁇ , Cl ⁇ , Br ⁇ , I ⁇ , B (C 6 H 5 ) 4 ⁇ , CH 3 COO ⁇ or CF 3 SO 3 ⁇ .
  • X ⁇ represents F ⁇ , Cl ⁇ , Br ⁇ , I ⁇ , B (C 6 H 5 ) 4 ⁇ , CH 3 COO ⁇ or CF 3 SO 3 ⁇ .
  • X ⁇ represents F ⁇ , Cl ⁇ , Br ⁇ , I ⁇ , B (C 6 H 5 ) 4 ⁇ , CH 3 COO ⁇ or CF 3 SO 3 ⁇ .
  • X ⁇ represents F ⁇ , Cl ⁇ , Br ⁇ , I ⁇ , B (C 6 H 5 ) 4 ⁇ , CH 3 COO ⁇ or CF 3 SO 3 ⁇ .
  • Examples of the structural units represented by formula (ET-1) and formula (ET-2) include structural units represented by the following formula (ET-31) to formula (ET-38).
  • Examples of the polymer compound for the electron transport layer include, for example, JP2009-239279A, JP2012-033845A, JP2012-216281A, JP2012-216822A, and JP2012-216815A. It can be synthesized according to the method described in 1.
  • Solvents used for forming the polymer compound of the electron transport layer from a solution are water, alcohol, fluorinated alcohol, ether, ester, nitrile compound, nitro compound, alkyl halide, aryl halide, thiol, sulfide, sulfoxide.
  • a hole injection layer is a layer containing hole injection material.
  • the hole injection material which the composition of the 1st light emitting layer may contain is mentioned, for example.
  • the hole injection material may be contained singly or in combination of two or more.
  • the electron injection layer is a layer containing an electron injection material.
  • an electron injection material the electron injection material which the composition of a 1st light emitting layer may contain is mentioned, for example.
  • the electron injection material may be contained singly or in combination of two or more.
  • a hole transport layer is a layer containing hole transport material.
  • the hole transport material which the composition of the 1st light emitting layer may contain is mentioned, for example.
  • the hole transport material may be contained singly or in combination of two or more.
  • the material of the anode includes, for example, conductive metal oxides and translucent metals, and preferably conductive compounds such as indium oxide, zinc oxide, tin oxide; ITO, indium / zinc / oxide; A composite of silver, palladium and copper (APC); NESA, gold, platinum, silver and copper.
  • conductive metal oxides and translucent metals and preferably conductive compounds such as indium oxide, zinc oxide, tin oxide; ITO, indium / zinc / oxide; A composite of silver, palladium and copper (APC); NESA, gold, platinum, silver and copper.
  • Examples of the material of the cathode include metals such as lithium, sodium, potassium, rubidium, cesium, beryllium, magnesium, calcium, strontium, barium, aluminum, zinc, indium; two or more kinds of alloys thereof; Alloys of at least one species and at least one of silver, copper, manganese, titanium, cobalt, nickel, tungsten, and tin; and graphite and graphite intercalation compounds.
  • Examples of the alloy include a magnesium-silver alloy, a magnesium-indium alloy, a magnesium-aluminum alloy, an indium-silver alloy, a lithium-aluminum alloy, a lithium-magnesium alloy, a lithium-indium alloy, and a calcium-aluminum alloy.
  • At least one of the anode and the cathode is usually transparent or translucent, but the anode is preferably transparent or translucent.
  • Examples of the method for forming the anode and the cathode include a vacuum deposition method, a sputtering method, an ion plating method, a plating method, and a laminating method.
  • each layer such as the first light emitting layer, the second light emitting layer, the hole transport layer, the electron transport layer, the hole injection layer, the electron injection layer, etc.
  • a vacuum deposition method from a powder a method by film formation from a solution or a molten state
  • a polymer compound for example, a method by film formation from a solution or a molten state can be mentioned.
  • the first light emitting layer is formed using the ink used for forming the first light emitting layer
  • the second light emitting layer is formed using the ink used for forming the second light emitting layer.
  • the hole injection layer and the electron injection layer are typified by a spin coat method and an ink jet printing method using inks containing the above-described hole transport material, electron transport material, hole injection material and electron injection material, respectively. It can be formed by a coating method.
  • the light emitting device according to this embodiment can be manufactured by sequentially laminating each layer on a substrate.
  • each of the first light-emitting layer, the second light-emitting layer, the hole injection layer, the hole transport layer, the electron injection layer, and the electron transport layer of the light-emitting element are manufactured for the light-emitting element.
  • Each of the hole injection layer, the hole transport layer, the second light-emitting layer, the first light-emitting layer, the electron transport layer, and the solvent used when forming the layer adjacent to the electron injection layer It is preferred to avoid dissolution of the material in the solvent.
  • a method for avoiding dissolution of the material i) a method using a material having a crosslinking group, or ii) a method of providing a difference in solubility between adjacent layers is preferable.
  • the layer after forming a layer using a material having a crosslinking group, the layer can be insolubilized by crosslinking the crosslinking group.
  • Examples of the crosslinking method of the crosslinking group include a method of crosslinking by heating or light irradiation.
  • the heating temperature for crosslinking is usually 25 to 300 ° C, preferably 50 to 250 ° C, more preferably 150 to 200 ° C.
  • Types of light used for light irradiation for crosslinking are, for example, ultraviolet light, near ultraviolet light, and visible light.
  • the second light emitting layer is formed by a coating method, it is preferable to use ink.
  • the polymer compound containing the structural unit represented by the formula (1) contained in the second light emitting layer is a polymer compound containing a crosslinked structural unit having a crosslinking group
  • the polymer compound contained in the second light emitting layer can be crosslinked.
  • the second light emitting layer is substantially insolubilized in the solvent. Therefore, the second organic layer is suitable for stacking light emitting elements.
  • the polymer compound contained in the second light emitting layer is preferably a crosslinked body.
  • the light emitting device when the second light emitting layer is a layer provided between the anode and the first light emitting layer, the light emitting device according to this embodiment forms, for example, an anode on a substrate. Then, if necessary, a hole injection layer and / or a hole transport layer is formed on the anode, a second light emitting layer is formed on the anode, the hole injection layer, or the hole transport layer, and the second A first light-emitting layer is formed on the first light-emitting layer, and an electron transport layer and / or an electron injection layer is formed on the first light-emitting layer as necessary, and the first light-emitting layer, the electron transport layer, or It can be manufactured by forming a cathode on the electron injection layer.
  • the light-emitting device when the second light-emitting layer is a layer provided between the anode and the first light-emitting layer, the light-emitting device according to this embodiment includes, for example, a cathode on a substrate. If necessary, an electron injection layer and / or an electron transport layer is formed on the cathode, a first light emitting layer is formed on the cathode, the electron injection layer, or the electron transport layer, and the first light emission is performed. A second light emitting layer is formed on the layer, and a hole transport layer and / or a hole injection layer is formed on the second light emitting layer as necessary, and the second light emitting layer and the hole transport layer are formed. Or it can manufacture by forming an anode on a positive hole injection layer.
  • the light emitting device when the second light emitting layer is a layer provided between the cathode and the first light emitting layer, the light emitting device according to this embodiment forms, for example, an anode on a substrate. Then, if necessary, a hole injection layer and / or a hole transport layer is formed on the anode, a first light emitting layer is formed on the anode, the hole injection layer, or the hole transport layer, and the first A second light-emitting layer is formed on the light-emitting layer, and an electron transport layer and / or an electron injection layer is formed on the second light-emitting layer as necessary, and the second light-emitting layer, the electron transport layer or It can be manufactured by forming a cathode on the electron injection layer.
  • the light-emitting device when the second light-emitting layer is a layer provided between the cathode and the first light-emitting layer, the light-emitting device according to this embodiment includes, for example, a cathode on a substrate. If necessary, an electron injection layer and / or an electron transport layer is formed on the cathode, a second light emitting layer is formed on the cathode, the electron injection layer, or the electron transport layer, and the second light emission A first light emitting layer is formed on the layer, and a hole transport layer and / or a hole injection layer is formed on the first light emitting layer as necessary, and the first light emitting layer and the hole transport layer are formed. Or it can manufacture by forming an anode on a positive hole injection layer.
  • planar anode and cathode may be arranged so as to overlap each other.
  • pattern-like light emission a method in which a mask having a pattern-like window is provided on the surface of a planar light-emitting element, a layer that is desired to be a non-light-emitting portion is formed extremely thick and substantially non-light-emitting. There is a method, a method of forming an anode or a cathode, or both electrodes in a pattern.
  • a segment type display device capable of displaying numbers, characters, and the like can be obtained.
  • both the anode and the cathode may be formed in stripes and arranged orthogonally. Partial color display and multicolor display are possible by a method of separately coating a plurality of types of polymer compounds having different emission colors, or a method using a color filter or a fluorescence conversion filter.
  • the dot matrix display device can be driven passively, or can be driven active in combination with a TFT or the like. These display devices can be used for displays of computers, televisions, portable terminals and the like.
  • the planar light emitting element can be suitably used as a planar light source for backlight of a liquid crystal display device or a planar illumination light source. If a flexible substrate is used, it can also be used as a curved light source and a display device.
  • the polystyrene-equivalent number average molecular weight (Mn) and polystyrene-equivalent weight average molecular weight (Mw) of the polymer compound were determined by size exclusion chromatography (SEC) (manufactured by Shimadzu Corporation, trade name: LC-10Avp). Determined by The SEC measurement conditions are as follows. The polymer compound to be measured was dissolved in THF (tetrahydrofuran) at a concentration of 0.05% by mass, and 10 ⁇ L was injected into SEC. THF was used as the mobile phase of SEC, and flowed at a flow rate of 2.0 mL / min. As the column, PLgel MIXED-B (manufactured by Polymer Laboratories) was used. A UV-VIS detector (manufactured by Shimadzu Corporation, trade name: SPD-10Avp) was used as the detector.
  • THF tetrahydrofuran
  • LC-MS was measured by the following method.
  • the measurement sample was dissolved in chloroform or tetrahydrofuran to a concentration of about 2 mg / mL, and about 1 ⁇ L was injected into LC-MS (manufactured by Agilent, trade name: 1100LCMSD).
  • the mobile phase of LC-MS was used while changing the ratio of acetonitrile and tetrahydrofuran, and was allowed to flow at a flow rate of 0.2 mL / min.
  • L-column 2 ODS 3 ⁇ m
  • TLC-MS was measured by the following method. A measurement sample is dissolved in any solvent of toluene, tetrahydrofuran or chloroform at an arbitrary concentration, and applied on a TLC plate for DART (trade name: YSK5-100, manufactured by Techno Applications), and TLC-MS (JEOL Ltd.) (Trade name: JMS-T100TD (The AccuTOF TLC)). The helium gas temperature during measurement was adjusted in the range of 200 to 400 ° C.
  • NMR NMR was measured by the following method. About 5 to 10 mg of a measurement sample, about 0.5 mL of heavy chloroform (CDCl 3 ), heavy tetrahydrofuran, heavy dimethyl sulfoxide, heavy acetone, heavy N, N-dimethylformamide, heavy toluene, heavy methanol, heavy ethanol, heavy 2-propanol Alternatively, it was dissolved in methylene chloride and measured using an NMR apparatus (manufactured by Agilent, trade name: INOVA300 or MERCURY 400VX).
  • HPLC high performance liquid chromatography
  • Kaseisorb LC ODS 2000 manufactured by Tokyo Chemical Industry
  • ODS column As the column, Kaseisorb LC ODS 2000 (manufactured by Tokyo Chemical Industry) or an ODS column having equivalent performance was used.
  • the detector a photodiode array detector (manufactured by Shimadzu Corporation, trade name: SPD-M20A) was used.
  • GC gas chromatography
  • the obtained reaction solution was separated, and the obtained organic layer was washed with ion-exchanged water.
  • the obtained washing liquid was dried over anhydrous magnesium sulfate and then filtered, and the obtained filtrate was concentrated under reduced pressure to obtain a solid.
  • Toluene and activated carbon were added to the obtained solid and stirred for 30 minutes.
  • the obtained toluene solution was filtered with a filter laid with silica gel and celite, and the obtained filtrate was concentrated under reduced pressure to obtain a solid.
  • the obtained solid was purified by silica gel column chromatography (a mixed solvent of hexane and ethyl acetate), recrystallized using isopropanol, and then dried under reduced pressure at 50 ° C.
  • reaction vessel was cooled using an ice bath, an aqueous hydrochloric acid solution (2 mol / L, 800 mL) was added, and the reaction vessel was stirred for 1.5 hours while being cooled using an ice bath. Then, it neutralized by adding sodium hydroxide aqueous solution (6 mol / L, 600 mL) there.
  • the obtained reaction solution was separated, and the obtained organic layer was washed with ion-exchanged water.
  • the obtained washing liquid was separated, and the obtained organic layer was dried over magnesium sulfate and filtered.
  • the obtained filtrate was concentrated under reduced pressure, hexane was added, and the mixture was suspended and stirred for 1 hour, followed by filtration to obtain a yellow solid.
  • the resulting reaction mixture was cooled to room temperature and then washed with ion exchange water (100 mL).
  • the obtained washing liquid was separated, and the obtained organic layer was washed with ion-exchanged water.
  • the obtained washing solution was separated, and the obtained organic layer was dried over magnesium sulfate, filtered, and the obtained filtrate was concentrated. Thereafter, toluene and activated carbon were added thereto, and the mixture was stirred at room temperature for 30 minutes, followed by filtration with a filter covered with celite, and the obtained filtrate was concentrated under reduced pressure to obtain a white solid.
  • the obtained white solid was repeatedly recrystallized using a mixed solvent of toluene and methanol, and then dried under reduced pressure at 50 ° C.
  • the reaction vessel was cooled in an ice bath, an aqueous hydrochloric acid solution (2M, 467 mL) was added, and the reaction vessel was stirred for 30 minutes while being cooled in an ice bath. After adding heptane, the organic layer was separated. The obtained aqueous layer was washed with heptane and neutralized with an aqueous sodium hydroxide solution (10%, 381 mL). Heptane was added to the obtained reaction solution, and the obtained organic layer was washed with water. The obtained organic layer was dried over magnesium sulfate, filtered, and the obtained filtrate was concentrated.
  • the obtained oil was purified by silica gel column chromatography (toluene and ethyl acetate) and dried under reduced pressure at 50 ° C. to obtain compound 9 (37.0 g, red oil).
  • the HPLC area percentage value of Compound 9 was 99.0%.
  • the obtained organic layer was washed with water, dried over magnesium sulfate, and filtered.
  • the obtained filtrate was concentrated under reduced pressure to obtain an oily substance.
  • the obtained oil was purified by silica gel column chromatography (mixed solvent of hexane and toluene) and dried under reduced pressure at 50 ° C. to obtain compound 10 (31.9 g, oil).
  • the HPLC area percentage value of Compound 10 was 98.9%.
  • the obtained reaction liquid was cooled and toluene was added, followed by filtration with a filter containing silica gel and celite, and the obtained filtrate was concentrated under reduced pressure to obtain a solid.
  • the obtained solid was purified by silica gel column chromatography (solvent: heptane) and dried at 50 ° C. under reduced pressure.
  • the obtained solid was recrystallized using a mixed solvent of toluene and isopropyl alcohol, and then dried under reduced pressure at 50 ° C. to obtain Compound 13 (14.5 g, white solid).
  • the HPLC area percentage value of Compound 13 was 99.5% or more. By repeating this operation, the necessary amount of Compound 13 was secured.
  • the obtained oil was dissolved in heptane, activated carbon (2.6 g) was added and stirred, and then filtered through a filter pre-coated with Celite, and the resulting filtrate was concentrated to obtain a crude product.
  • the obtained crude product was purified using silica gel column chromatography (solvent: heptane) and a silica gel column modified with an octadecylsilyl group (developing solvent: ethyl acetate / acetonitrile). Then, the compound 14 (12.7g, oily substance) was obtained by making it dry under reduced pressure. The HPLC area percentage value of Compound 14 was 99.3%.
  • the obtained washing liquid was separated, and the obtained organic layer was washed with ion-exchanged water.
  • the obtained washing liquid was separated, and the obtained organic layer was dried over magnesium sulfate and filtered.
  • the obtained filtrate was concentrated, hexane and activated carbon were added, and the mixture was stirred at room temperature for 30 minutes, and then filtered through a filter with celite.
  • the obtained filtrate was concentrated under reduced pressure, hexane and activated clay were added, and the mixture was stirred at room temperature for 30 minutes, followed by filtration with a filter covered with silica gel and celite.
  • the obtained filtrate was concentrated under reduced pressure to obtain an oily substance.
  • the obtained washing liquid was separated, and the obtained organic layer was dried over magnesium sulfate, filtered, and the obtained filtrate was concentrated to obtain a white solid. Thereafter, hexane, toluene and activated carbon were added thereto, and the mixture was stirred at room temperature for 30 minutes, followed by filtration with a filter laid with celite, and the obtained filtrate was concentrated under reduced pressure to obtain a solid. Hexane was added to the obtained solid, and the mixture was suspended and stirred, and then filtered. The obtained solid was recrystallized using a mixed solvent of toluene, methanol and ethanol, and then dried under reduced pressure at 50 ° C. to obtain Compound 15-b (35.0 g, white solid).
  • Compound 15-b had an HPLC area percentage value of 99.5% or more.
  • an aqueous hydrochloric acid solution (2M, 240 mL) was added, and the reaction vessel was stirred for 30 minutes while cooling using an ice bath, whereby a solid was precipitated. The precipitated solid was filtered, and the resulting residue was dissolved in a mixed solvent of toluene and hexane. Thereafter, an aqueous sodium hydroxide solution (2M, 200 mL) was added thereto for neutralization. The obtained reaction solution was separated, and the obtained organic layer was washed with ion-exchanged water. The obtained washing solution was separated, the obtained organic layer was dried over magnesium sulfate, filtered, and the obtained filtrate was concentrated.
  • the resulting reaction mixture was cooled to room temperature, and then ion exchanged water (400 mL) was added.
  • the mixture was filtered through a filter with celite, and the obtained filtrate was separated.
  • the obtained organic layer was washed with ion-exchanged water, and the obtained washing solution was separated.
  • the obtained organic layer was dried over magnesium sulfate and filtered, and the obtained filtrate was concentrated. Thereafter, hexane and activated carbon were added thereto, and the mixture was stirred at room temperature for 30 minutes, and then filtered through a filter with celite.
  • the obtained filtrate was concentrated under reduced pressure to obtain an oily substance.
  • Compound CM1 Japanese Unexamined Patent Publication No. 2011-174062
  • Compound CM2 International Publication No. 2013/199088
  • Compound CM3 Japanese Unexamined Patent Publication No. 2010-215886
  • Compound CM4 International Publication No. 2015/008851
  • Compound CM5 Japanese Unexamined Patent Publication No. 2008-106241
  • Compounds CM6 and CM9 US Patent Application Publication No. 2014/0175415
  • Compound CM7 JP 2010-189630
  • Compound CM8 International Publication No. 2015/008851
  • Compound CM10 and CM11 JP 2009/157424
  • Compound CM13 International Publication No. 2014/157016
  • Compound CM17 International Publication No.
  • compound CM25-stg0 (8.0 g) synthesized by the method described in WO2016 / 005750, bispinacolatodiboron (7.5 g), potassium acetate (7 0.0 g), [1,1′-bis (diphenylphosphino) ferrocene] palladium (II) dichloride dichloromethane adduct (0.6 g) and dimethoxyethane (80 mL) were added and stirred. The resulting mixture was stirred at 80 ° C. for 4 hours, cooled to room temperature, hexane (160 mL) was added, and the mixture was filtered through a filter covered with celite.
  • the obtained filtrate was concentrated, toluene and activated carbon were added, and the mixture was stirred at room temperature for 1 hour, and then filtered through a filter with celite.
  • the obtained filtrate was concentrated, ethyl acetate was added, and the mixture was filtered through a filter covered with silica gel.
  • the obtained silica gel was washed with ethyl acetate.
  • the obtained washing solution was concentrated to obtain a solid.
  • the obtained solid was recrystallized using toluene and acetonitrile, and then dried under reduced pressure at 50 ° C. to obtain Compound CM25 (7.8 g, white solid).
  • the HPLC area percentage value of Compound CM25 was 99.4%.
  • Dicyclopentadiene (40 g) and 7-bromohept-1-ene (107 g) were added to the shield tube, sealed, and then stirred at 200 ° C. for 72 hours. This operation was repeated 9 times, and the solutions obtained by 10 operations were combined. The combined solution was distilled 6 times and purified by silica gel column chromatography to obtain compound CM26-stg1 (193 g). The GC (gas chromatography) area percentage value of the compound CM26-stg1 was 94.0%.
  • the obtained washing solution was concentrated, purified by silica gel column chromatography (hexane), and then recrystallized (a mixed solvent of ethyl acetate and methanol) to repeatedly obtain Compound CM26-stg2 (58 g).
  • the HPLC area percentage value of compound CM26-stg2 was 99.4%.
  • the obtained reaction liquid was filtered with a filter covered with celite, and the obtained celite was washed with toluene (200 mL). After repeating the same operation as the above series of operations, the obtained washing solutions were combined, suspended and stirred in acetonitrile, and then filtered to obtain a solid.
  • Compound CM26 (26.5 g) was obtained by repeating the operation of recrystallizing the obtained solid (mixed solvent of toluene and acetonitrile). The HPLC area percentage value of Compound CM26 was 99.2%.
  • reaction vessel was filled with a nitrogen gas atmosphere, and then compound CM27-stg0 (25.1 g) and tetrahydrofuran (95 mL) synthesized by the method described in International Publication No. 2016/005750 were added and stirred.
  • the obtained mixture was cooled to ⁇ 70 ° C., sec-butyllithium (1M cyclohexane solution, 96 mL) was added dropwise, and the mixture was stirred for 2 hours. Thereafter, fluorenone (11.8 g) dissolved in tetrahydrofuran (24 mL) was added dropwise thereto over 1 hour, followed by stirring for 2 hours. Thereafter, methanol (12 mL) was added thereto and stirred at room temperature.
  • the reaction vessel was filled with a nitrogen gas atmosphere, and then compound CM27-stg1 (18.9 g), toluene (189 mL) and triethylsilane (24.8 g) were added and stirred. After the obtained mixture was heated to 60 ° C., methanesulfonic acid (20.5 g) was added dropwise over 1 hour and stirred for 2.5 hours. After cooling the obtained reaction liquid to room temperature, toluene (189 mL) and ion-exchange water (189 mL) were added and stirred. The obtained solution was separated, and a 5 wt% aqueous sodium hydrogen carbonate solution (95 mL) was added to the obtained organic layer for washing.
  • reaction vessel was filled with a nitrogen gas atmosphere, and then compound CM27-stg2 (13.8 g), 60 wt% sodium hydride (1.8 g) and tetrahydrofuran (74 mL) were added and stirred. Thereafter, dimethylformamide (37 mL) was added dropwise thereto over 10 minutes, and the resulting mixture was cooled to 0 ° C. Thereafter, bromochlorohexane (22.5 g) was added dropwise thereto over 40 minutes, stirred at 0 ° C. for 2.5 hours, and then stirred at room temperature. Thereafter, heptane (110 mL) and ion-exchanged water (55 mL) were added thereto and stirred.
  • the obtained solution was separated, and ion-exchanged water (55 mL) was added to the obtained organic layer for washing.
  • the obtained organic layer was dried over magnesium sulfate, filtered, and concentrated to obtain an oil.
  • the obtained oil was purified by silica gel column chromatography (a mixed solvent of hexane and chloroform), suspended and stirred in a mixed solvent of ethanol and methanol, and filtered.
  • the obtained solid was dried under reduced pressure at 50 ° C. to obtain compound CM27-stg3 (16.9 g, white solid).
  • the HPLC area percentage value of the compound CM27-stg3 was 99.5% or more.
  • the reaction vessel was filled with a nitrogen gas atmosphere, and then compound CM27-stg3 (15.7 g), sodium iodide (42.0 g) and acetone (126 mL) were added and stirred. The resulting mixture was stirred at 55 ° C. for 41 hours and then cooled to room temperature. Thereafter, toluene (126 mL) and ion-exchanged water (63 mL) were added thereto and stirred. The obtained solution was separated, and ion-exchanged water (63 mL) was added to the obtained organic layer for washing. The obtained organic layer was dried over magnesium sulfate, filtered, and concentrated to obtain a solid.
  • the reaction vessel was filled with a nitrogen gas atmosphere, 60 wt% sodium hydride (0.8 g), tetrahydrofuran (56 mL) and dimethylformamide (56 mL) were added, and the mixture was cooled to 0 ° C and stirred. Thereafter, the compound CM27-stg4 (16.1 g) was added thereto. Thereafter, compound CM27-stg5b (14.0 g, synthesized by the method described in JP-T-2014-506609) dissolved in tetrahydrofuran (56 mL) was added dropwise thereto over 1 hour and stirred for 3 hours. The resulting reaction solution was stirred at 10 ° C. for 12 hours.
  • reaction vessel was filled with an argon gas atmosphere, and then compound CM27-stg5 (22.0 g), bispinacolatodiboron (14.1 g), potassium acetate (13.1 g) and dimethoxyethane (220 mL) were added and stirred. . Thereafter, [1,1′-bis (diphenylphosphino) ferrocene] palladium (II) dichloride dichloromethane adduct (0.7 g) was added thereto and stirred at 90 ° C. for 15 hours. The obtained reaction solution was cooled to room temperature, toluene (220 mL) and celite (11 g) were added, and the mixture was filtered with a filter overlaid with celite.
  • the obtained filtrate was concentrated, suspended and stirred in hexane, and filtered.
  • Toluene (218 mL) and activated carbon (14 g) were added to the obtained solid, and the mixture was stirred for 1 hour, and then filtered through a filter covered with silica gel (28 g) and celite (84 g).
  • the obtained filtrate was concentrated to obtain a solid.
  • the obtained solid was recrystallized with a mixed solvent of toluene and hexane, and the obtained solid was dried at 50 ° C. under reduced pressure to obtain Compound CM27 (18.6 g, white solid).
  • the HPLC area percentage value of Compound CM27 was 99.5% or more.
  • the obtained organic layer was concentrated under reduced pressure, and the obtained crude product was recrystallized with a mixed solution of toluene and ethanol to obtain 51.8 g of compound CM28-stg2 as a white solid.
  • the obtained compound CM28-stg2 had an HPLC area percentage value (UV254 nm) of 99.5% or more. By repeating this operation, the required amount of compound CM28-stg2 was obtained.
  • the obtained residue was recrystallized with a mixed solution of toluene and heptane to obtain 81.0 g of a compound CM28-stg3 as a white solid.
  • the obtained compound CM28-stg3 had an HPLC area percentage value (UV254 nm) of 99.5%. By repeating this operation, the required amount of compound CM28-stg3 was obtained.
  • the obtained crude product was recrystallized with a mixed solution of heptane and isopropanol to obtain 143 g of compound CM28-stg4 as a white solid.
  • the obtained compound CM28-stg4 had an HPLC area percentage value (UV254 nm) of 99.4%.
  • the obtained reaction mixture was cooled to room temperature, toluene (143 ml) was added, and the mixture was filtered through a filter packed with celite.
  • the obtained filtrate was concentrated under reduced pressure to obtain a crude product.
  • the obtained crude product was dissolved in a mixed solution of toluene (173 ml) and heptane (173 ml), activated carbon (4.6 g) was added, and the mixture was filtered through a filter packed with silica gel and celite.
  • the obtained filtrate was concentrated under reduced pressure, and the operation of recrystallizing the obtained residue with a mixed solution of ethyl acetate and acetonitrile was repeated to obtain 11.2 g of Compound CM28 as a white solid.
  • Compound CM29 Japanese Patent Application Laid-Open No. 2011-105701
  • Compound CM30 Japanese Patent Application Laid-Open No. 2008-179617
  • Step 1 Synthesis of polymer compound P1 (Step 1) After making the inside of the reaction vessel an inert gas atmosphere, Compound CM7 (1.000412 g), Compound CM5 (0.2141 g), Compound CM12 (1.1087 g) Compound CM10 (0.0847 g), dichlorobis (tris-o-methoxyphenylphosphine) palladium (3.60 mg) and toluene (32 mL) were added, and the mixture was heated to 90 ° C. (Step 2) A 16 wt% tetrabutylammonium hydroxide aqueous solution (21.2 g) was added dropwise to the reaction solution, and the mixture was refluxed for 7 hours.
  • Step 2 A 16 wt% tetrabutylammonium hydroxide aqueous solution (21.2 g) was added dropwise to the reaction solution, and the mixture was refluxed for 7 hours.
  • Step 3 After the reaction, phenylboronic acid (98.7 mg) and dichlorobis (tris-o-methoxyphenylphosphine) palladium (1.79 mg) were added thereto and refluxed for 14.5 hours.
  • Step 4 Then, after cooling, the obtained reaction solution was washed twice with a 10 wt% aqueous hydrochloric acid solution, twice with a 3 wt% aqueous ammonia solution and twice with water, and the obtained solution was added dropwise to methanol. However, precipitation occurred.
  • the obtained precipitate was dissolved in toluene and purified by passing through an alumina column and a silica gel column in this order.
  • the obtained solution was added dropwise to methanol and stirred, and then the resulting precipitate was collected by filtration and dried to obtain 1.30 g of polymer compound P1.
  • the polymer compound P1 had a polystyrene-equivalent number average molecular weight of 3.9 ⁇ 10 4 and a polystyrene-equivalent weight average molecular weight of 1.3 ⁇ 10 5 .
  • the theoretical value obtained from the amount of raw materials used for the polymer compound P1 is that the structural unit derived from the compound CM7, the structural unit derived from the compound CM5, the structural unit derived from the compound CM12, and the compound CM10
  • the derived structural unit is a copolymer having a molar ratio of 50: 10: 39.4: 1.2.
  • Step 1 Synthesis of polymer compound P2 (Step 1) After making the inside of the reaction vessel an inert gas atmosphere, Compound CM1 (0.2655 g), Compound CM2 (0.6009 g), Compound CM3 (0.1675 g) Compound CM12 (0.9919 g), Compound CM11 (0.1669 g), dichlorobis (tris-o-methoxyphenylphosphine) palladium (1.32 mg) and toluene (31 mL) were added, and the mixture was heated to 90 ° C.
  • Step 2 A 16 wt% tetrabutylammonium hydroxide aqueous solution (20.7 g) was added dropwise to the reaction solution, and the mixture was refluxed for 6 hours.
  • Step 3 After the reaction, phenylboronic acid (73.2 mg) and dichlorobis (tris-o-methoxyphenylphosphine) palladium (1.32 mg) were added thereto and refluxed for 14.5 hours.
  • Step 4 Then, after cooling, the obtained reaction solution was washed twice with a 10 wt% aqueous hydrochloric acid solution, twice with a 3 wt% aqueous ammonia solution and twice with water, and the obtained solution was added dropwise to methanol.
  • the obtained precipitate was dissolved in toluene and purified by passing through an alumina column and a silica gel column in this order. The obtained solution was added dropwise to methanol and stirred, and then the resulting precipitate was collected by filtration and dried to obtain 1.27 g of the polymer compound P2.
  • the polymer compound P2 had a polystyrene-equivalent number average molecular weight of 4.7 ⁇ 10 4 and a polystyrene-equivalent weight average molecular weight of 2.6 ⁇ 10 5 .
  • the theoretical value obtained from the amount of the raw material used for the polymer compound P2 is that the structural unit derived from the compound CM1, the structural unit derived from the compound CM2, the structural unit derived from the compound CM3, and the compound CM12 It is a copolymer in which the structural unit derived and the structural unit derived from the compound CM11 are configured in a molar ratio of 10: 30: 10: 47: 3.
  • Example 3 Synthesis of polymer compound P3 (Step 1) in Example 2 was carried out as follows: "After making the inside of the reaction vessel an inert gas atmosphere, compound CM1 (0.1775 g), compound CM2 (0.4006 g), Compound CM3 (0.1116 g), Compound CM13 (1.2146 g), Compound CM11 (0.1113 g), dichlorobis (tris-o-methoxyphenylphosphine) palladium (2.64 mg) and toluene (32 mL) were added, and 90 ° C.
  • Step 2 “16 wt% tetraethylammonium hydroxide aqueous solution (21.3 g) was added dropwise to the reaction solution and refluxed for 8 hours”, (step 3). Later, there was phenylboronic acid (48.8 mg) and dichlorobis (tris-o-methoxyphenylphosphine) palladium (0.88 m). ) was added, except that it was refluxed for 14.5 hours. "By the same manner as in Example 2, to give 1.34g of the polymer compound P3. The Mn of the polymer compound P3 was 3.6 ⁇ 10 4 , and the Mw was 1.3 ⁇ 10 5 .
  • the theoretical value obtained from the amount of raw materials used for the polymer compound P3 is that the structural unit derived from the compound CM1, the structural unit derived from the compound CM2, the structural unit derived from the compound CM3, and the compound CM13 It is a copolymer in which the structural unit derived and the structural unit derived from the compound CM11 are configured in a molar ratio of 10: 30: 10: 47: 3.
  • Example 4 Synthesis of polymer compound P4 (Step 1) in Example 2 was carried out by replacing "the reaction vessel with an inert gas atmosphere, then compound CM1 (0.2594 g), compound CM2 (0.6009 g), Compound CM3 (0.1675 g), Compound CM14 (0.8851 g), Compound CM11 (0.1669 g), dichlorobis (tris-o-methoxyphenylphosphine) palladium (1.32 mg) and toluene (29 mL) were added, and 90 ° C.
  • Step 2 is the same as in Example 2 except that “16 wt% tetraethylammonium hydroxide aqueous solution (19.2 g) was added dropwise to the reaction solution and refluxed for 4 hours”. In the same manner, 1.20 g of polymer compound P4 was obtained. The Mn of the polymer compound P4 was 5.3 ⁇ 10 4 and the Mw was 4.1 ⁇ 10 5 .
  • the theoretical value obtained from the amount of raw materials used for the polymer compound P4 is that the structural unit derived from the compound CM1, the structural unit derived from the compound CM2, the structural unit derived from the compound CM3, and the compound CM14 It is a copolymer in which the structural unit derived and the structural unit derived from the compound CM11 are configured in a molar ratio of 10: 30: 10: 47: 3.
  • Example 5 Synthesis of polymer compound P5 (Step 1) in Example 2 was carried out as follows: "After making the inside of the reaction vessel an inert gas atmosphere, compound CM1 (0.2252 g), compound CM2 (0.5007 g), Compound CM3 (0.1396 g), Compound CM15 (1.0202 g), Compound CM11 (0.1391 g), dichlorobis (tris-o-methoxyphenylphosphine) palladium (3.30 mg) and toluene (29 mL) were added, and 90 ° C.
  • Step 2 Heated to “ (Step 2) was changed to “16% by weight tetraethylammonium hydroxide aqueous solution (18.3 g) was added dropwise to the reaction solution and refluxed for 8 hours.”
  • Step 3 Boronic acid (61.0 mg) and dichlorobis (tris-o-methoxyphenylphosphine) palladium (1.10 mg) were added and refluxed for 14.5 hours. 1.11 g of polymer compound P5 was obtained.
  • the Mn of the polymer compound P5 was 3.1 ⁇ 10 4
  • the Mw was 9.2 ⁇ 10 4 .
  • the theoretical value obtained from the amount of the raw material used for the polymer compound P5 is that the structural unit derived from the compound CM1, the structural unit derived from the compound CM2, the structural unit derived from the compound CM3, and the compound CM15 It is a copolymer in which the structural unit derived and the structural unit derived from the compound CM11 are configured in a molar ratio of 10: 30: 10: 47: 3.
  • Example 6 Synthesis of polymer compound P6 (Step 1) in Example 2 was carried out as follows: "After making the inside of the reaction vessel an inert gas atmosphere, Compound CM1 (0.2593 g), Compound CM2 (0.6009 g), Compound CM3 (0.1676 g), Compound CM16 (0.9438 g), Compound CM11 (0.1669 g), dichlorobis (tris-o-methoxyphenylphosphine) palladium (1.32 mg) and toluene (30 mL) were added, and 90 ° C.
  • Step 2 was changed to “Example 2” except that “16 wt% aqueous tetraethylammonium hydroxide solution (20.0 g) was added dropwise to the reaction solution and refluxed for 4 hours”.
  • 1.22 g of the polymer compound P6 was obtained.
  • the Mn of the polymer compound P6 was 6.5 ⁇ 10 4
  • the Mw was 4.9 ⁇ 10 5 .
  • the theoretical value obtained from the amount of raw materials used for the polymer compound P6 is that the structural unit derived from the compound CM1, the structural unit derived from the compound CM2, the structural unit derived from the compound CM3, and the compound CM16 It is a copolymer in which the structural unit derived and the structural unit derived from the compound CM11 are configured in a molar ratio of 10: 30: 10: 47: 3.
  • Polymer compound P7 was synthesized by Suzuki coupling reaction using Compound CM7, Compound CM5, Compound CM17, and Compound CM10 according to the method described in WO 00/0053656. Synthesized.
  • the polymer compound P7 had a polystyrene equivalent number average molecular weight of 3.5 ⁇ 10 4 and a polystyrene equivalent weight average molecular weight of 1.4 ⁇ 10 5 .
  • the theoretical value obtained from the amount of the raw material used for the polymer compound P7 is that the structural unit derived from the compound CM7, the structural unit derived from the compound CM5, the structural unit derived from the compound CM17, and the compound CM10
  • the derived structural unit is a copolymer having a molar ratio of 50: 10: 39.4: 1.2.
  • Step 2 Heated to " (Step 2) was changed to “16% by weight tetrabutylammonium hydroxide aqueous solution (21.5 g) was added dropwise to the reaction solution and refluxed for 4 hours”. Phenylboronic acid (56.1 mg) and dichlorobis (tris-o-methoxyphenylphosphine) palladium (1.01 mg) were added and refluxed for 14.5 hours. ” Thus, 1.35 g of the polymer compound 8 was obtained. The Mn of the polymer compound 8 was 4.7 ⁇ 10 4 and the Mw was 3.2 ⁇ 10 5 .
  • the polymer compound 8 is derived from the structural unit derived from the compound CM1, the structural unit derived from the compound CM2, the structural unit derived from the compound CM3, and the compound CM17. It is a copolymer in which the structural unit derived and the structural unit derived from the compound CM11 are configured in a molar ratio of 10: 30: 10: 47: 3.
  • the polymer compound P9 had a polystyrene-equivalent number average molecular weight of 1.2 ⁇ 10 4 and a polystyrene-equivalent weight average molecular weight of 1.8 ⁇ 10 5 .
  • the theoretical value obtained from the amount of the raw material used for polymer compound P9 was 16: a structural unit derived from compound M1, a structural unit derived from compound CM6, and a structural unit derived from compound CM9. It is a copolymer formed with a molar ratio of 50:34.
  • the theoretical value obtained from the amount of the raw material used for the polymer compound P10 is 50: a structural unit derived from the compound CM7, a structural unit derived from the compound CM4, and a structural unit derived from the compound CM8. It is a copolymer composed of a molar ratio of 26:24.
  • Step 1 Synthesis of polymer compound P12 (Step 1) After making the inside of the reaction vessel an inert gas atmosphere, Compound CM18 (9.23 g), Compound CM7 (4.58 g), dichlorobis (tris-o-methoxy) Phenylphosphine) palladium (8.6 mg) and toluene (175 mL) were added and heated to 105 ° C. (Step 2) Thereafter, a 12% by weight aqueous sodium carbonate solution (40.3 mL) was added dropwise thereto and refluxed for 29 hours.
  • Step 3 phenylboronic acid (0.47 g) and dichlorobis (tris-o-methoxyphenylphosphine) palladium (8.7 mg) were added thereto and refluxed for 14 hours.
  • Step 4 Thereafter, an aqueous sodium diethyldithiacarbamate solution was added thereto, and the mixture was stirred at 80 ° C. for 2 hours. When the obtained reaction solution was cooled and dropped into methanol, precipitation occurred.
  • the precipitate was collected by filtration, washed with methanol and water, and then dried, and the solid obtained was dissolved in chloroform and purified by passing through an alumina column and a silica gel column through which chloroform was passed in advance in this order. When the obtained purified solution was added dropwise to methanol and stirred, precipitation occurred. The precipitate was collected by filtration and dried to obtain polymer compound P11 (7.15 g).
  • the polymer compound P11 had Mn of 3.2 ⁇ 10 4 and Mw of 6.0 ⁇ 10 4 .
  • the polymer compound P11 has a theoretical value determined from the amount of raw materials charged, and is a co-polymer composed of a structural unit derived from the compound CM18 and a structural unit derived from the compound CM7 in a molar ratio of 50:50. It is a polymer.
  • Step 5 After making the inside of the reaction vessel under an argon gas atmosphere, polymer compound P11 (3.1 g), tetrahydrofuran (130 mL), methanol (66 mL), cesium hydroxide monohydrate (2.1 g) and water (12.5 mL) was added and stirred at 60 ° C. for 3 hours. (Step 6) Then, methanol (220 mL) was added thereto and stirred for 2 hours. The obtained reaction mixture was concentrated and then added dropwise to isopropyl alcohol, followed by stirring. As a result, precipitation occurred. The precipitate was collected by filtration and dried to obtain polymer compound P12 (3.5 g). By 1 H-NMR analysis of the polymer compound P12, it was confirmed that the signal at the ethyl ester site in the polymer compound P11 disappeared and the reaction was completed.
  • the theoretical value calculated from the amount of the raw material of the polymer compound P11 is that the polymer compound P12 has a molar ratio of 50:50 between the structural unit represented by the following formula and the structural unit derived from the compound CM7. It is a copolymer formed.
  • Example 7 Synthesis of Polymer Compound P13 1.46 g of polymer compound P13 was obtained according to Example 1 using Compound CM27, Compound CM3, Compound CM12 and Compound CM11 as monomers.
  • the polymer compound P13 had a polystyrene-equivalent number average molecular weight of 5.1 ⁇ 10 4 and a polystyrene-equivalent weight average molecular weight of 3.3 ⁇ 10 5 .
  • the theoretical value obtained from the amount of raw materials used for the polymer compound P13 is that the structural unit derived from the compound CM27, the structural unit derived from the compound CM3, the structural unit derived from the compound CM12, and the compound CM11
  • the derived structural unit is a copolymer composed of a molar ratio of 40: 10: 47: 3.
  • Example 8> Synthesis of polymer compound P14 1.11 g of polymer compound P14 was obtained according to Example 1 using Compound CM1, Compound CM25, Compound CM26, Compound CM12, and Compound CM11 as monomers.
  • the number average molecular weight of polystyrene conversion of the high molecular compound P14 was 5.5 * 10 ⁇ 4 >, and the weight average molecular weight of polystyrene conversion was 4.9 * 10 ⁇ 5 >.
  • the theoretical value obtained from the amount of charged raw materials for polymer compound P14 is that the structural unit derived from compound CM1, the structural unit derived from compound CM25, the structural unit derived from compound CM26, and the compound CM12 It is a copolymer in which the structural unit derived and the structural unit derived from the compound CM11 are configured in a molar ratio of 10: 30: 10: 47: 3.
  • Example 9 Synthesis of polymer compound P15 According to Example 1, 1.09 g of polymer compound P15 was obtained using Compound CM28, Compound CM3, Compound CM12, and Compound CM29 as monomers.
  • the polymer compound P15 had a polystyrene-equivalent number average molecular weight of 4.3 ⁇ 10 4 and a polystyrene-equivalent weight average molecular weight of 3.5 ⁇ 10 5 .
  • the theoretical value obtained from the amount of the raw material used for the polymer compound P15 is that the structural unit derived from the compound CM28, the structural unit derived from the compound CM3, the structural unit derived from the compound CM12, and the compound CM29
  • the derived structural unit is a copolymer composed of a molar ratio of 40: 10: 47: 3.
  • Example 10 Synthesis of polymer compound P16 According to Example 1, 5.2 g of polymer compound P16 was obtained using Compound CM28, Compound CM3, Compound CM12, and Compound CM11 as monomers.
  • the polymer compound P16 had a polystyrene-equivalent number average molecular weight of 5.3 ⁇ 10 4 and a polystyrene-equivalent weight average molecular weight of 3.1 ⁇ 10 5 .
  • the theoretical value obtained from the amount of the raw material used for the polymer compound P16 is that the structural unit derived from the compound CM28, the structural unit derived from the compound CM3, the structural unit derived from the compound CM12, and the compound CM11
  • the derived structural unit is a copolymer composed of a molar ratio of 40: 10: 47: 3.
  • Example 18 Synthesis of Polymer Compound P17 According to Example 1, 1.22 g of polymer compound P17 was obtained using Compound CM28, Compound CM3, and Compound CM12 as monomers.
  • the polymer compound P17 had a polystyrene-equivalent number average molecular weight of 6.7 ⁇ 10 4 and a polystyrene-equivalent weight average molecular weight of 4.4 ⁇ 10 5 .
  • the theoretical value obtained from the amount of the raw material for the polymer compound P17 is 40: a structural unit derived from the compound CM28, a structural unit derived from the compound CM3, and a structural unit derived from the compound CM12. It is a copolymer formed with a molar ratio of 10:50.
  • the theoretical value obtained from the amount of the raw material used for the polymer compound P18 is that the structural unit derived from the compound CM27, the structural unit derived from the compound CM3, the structural unit derived from the compound CM17, and the compound CM11
  • the derived structural unit is a copolymer composed of a molar ratio of 40: 10: 47: 3.
  • Example 20 Synthesis of Polymer Compound P19 According to Example 1, 63.8 g of polymer compound P19 was obtained using Compound CM1, Compound CM25, Compound CM26, Compound CM17, and Compound CM11 as monomers.
  • the polymer compound P19 had a polystyrene-equivalent number average molecular weight of 5.1 ⁇ 10 4 and a polystyrene-equivalent weight average molecular weight of 4.0 ⁇ 10 5 .
  • the theoretical value obtained from the amount of charged raw material for polymer compound P19 is that the structural unit derived from compound CM1, the structural unit derived from compound CM25, the structural unit derived from compound CM26, and the compound CM17 It is a copolymer in which the structural unit derived and the structural unit derived from the compound CM11 are configured in a molar ratio of 10: 30: 10: 47: 3.
  • the theoretical value obtained from the amount of the raw material used for polymer compound P20 is that the structural unit derived from compound CM28, the structural unit derived from compound CM3, the structural unit derived from compound CM17, and the compound CM29
  • the derived structural unit is a copolymer composed of a molar ratio of 40: 10: 47: 3.
  • Example 22 Synthesis of Polymer Compound P21 According to Example 1, 2.56 g of polymer compound P21 was obtained using Compound CM28, Compound CM3, and Compound CM17 as monomers.
  • the polymer compound P21 had a polystyrene-equivalent number average molecular weight of 4.5 ⁇ 10 4 and a polystyrene-equivalent weight average molecular weight of 3.1 ⁇ 10 5 .
  • the theoretical value obtained from the amount of raw materials for the polymer compound P21 is 40: a structural unit derived from the compound CM28, a structural unit derived from the compound CM3, and a structural unit derived from the compound CM17. It is a copolymer formed with a molar ratio of 10:50.
  • Example D1 Fabrication and evaluation of light-emitting element D1 (formation of anode and hole injection layer)
  • An anode was formed by attaching an ITO film with a thickness of 45 nm to the glass substrate by sputtering.
  • a hole injection material ND-3202 manufactured by Nissan Chemical Industries, Ltd.
  • the hole injection layer was formed by volatilizing and subsequently heating on a hot plate at 230 ° C. for 15 minutes.
  • Polymer compound P1 was dissolved in xylene at a concentration of 0.7 mass%.
  • the obtained xylene solution was used to form a film having a thickness of 20 nm on the hole injection layer by spin coating, and heated on a hot plate at 180 ° C. for 60 minutes in a nitrogen gas atmosphere.
  • the light emitting layer was formed.
  • the substrate on which the first light emitting layer is formed is depressurized to 1.0 ⁇ 10 ⁇ 4 Pa or less in a vapor deposition machine, and then, as a cathode, sodium fluoride is about 4 nm on the electron transport layer, and then sodium fluoride. About 80 nm of aluminum was deposited on the layer. After vapor deposition, the light emitting element D1 was produced by sealing using a glass substrate.
  • Example D2 Production and Evaluation of Light-Emitting Element D2
  • the ratio of polymer compound P9, compound CM19, and compound CM20 was such that polymer compound P9 / compound CM19 / compound.
  • CM20 64% by mass / 35% by mass / 1% by mass
  • a light emitting device D2 was produced in the same manner as in Example D1, and EL emission was observed by applying a voltage.
  • the external quantum efficiency at 1000 cd / m 2 was 15.8%. The results are shown in Table 4.
  • Example D3 Production and evaluation of light-emitting device D3
  • Example D1 formation of the first light-emitting layer
  • polymer compound P10 was used instead of polymer compound P9
  • the same procedure as in Example D1 was performed.
  • a light emitting element D3 was manufactured, and EL light emission was observed by applying a voltage.
  • the external quantum efficiency at 1000 cd / m 2 was 15.4%.
  • the results are shown in Table 4.
  • Example D4 Production and evaluation of light-emitting element D4
  • Example D2 formation of the first light-emitting layer
  • polymer compound P10 was used instead of polymer compound P9
  • a light emitting element D4 was manufactured, and EL light emission was observed by applying a voltage.
  • the external quantum efficiency at 1000 cd / m 2 was 16.5%. The results are shown in Table 4.
  • Example D5 Production and Evaluation of Light-Emitting Element D5
  • a light-emitting element was produced in the same manner as in Example D1, except that Compound CM22 was used instead of Compound CM19 in Example D1 (Formation of First Light-Emitting Layer).
  • EL emission was observed by producing D5 and applying a voltage.
  • the external quantum efficiency at 1000 cd / m 2 was 16.3%. The results are shown in Table 4.
  • Example CD1 Production and Evaluation of Light-Emitting Element CD1
  • Example D1 formation of the second light-emitting layer
  • the polymer compound P7 instead of the polymer compound P1, the polymer compound P7 was used.
  • a light emitting device CD1 was fabricated, and EL light emission was observed by applying a voltage.
  • the external quantum efficiency at 1000 cd / m 2 was 13.3%. The results are shown in Table 4.
  • Example D2 formation of second light-emitting layer
  • polymer compound P7 was used instead of polymer compound P1
  • a light emitting device CD2 was fabricated, and EL light emission was observed by applying a voltage.
  • the external quantum efficiency at 1000 cd / m 2 was 13.9%. The results are shown in Table 4.
  • Example D6 Fabrication and evaluation of light-emitting element D6 (formation of anode and hole injection layer)
  • An anode was formed by attaching an ITO film with a thickness of 45 nm to the glass substrate by sputtering.
  • a hole injection material ND-3202 manufactured by Nissan Chemical Industries, Ltd.
  • the hole injection layer was formed by volatilizing and subsequently heating on a hot plate at 230 ° C. for 15 minutes.
  • Polymer compound P1 was dissolved in xylene at a concentration of 0.7 mass%.
  • the obtained xylene solution was used to form a film having a thickness of 20 nm on the hole injection layer by spin coating, and heated on a hot plate at 180 ° C. for 60 minutes in a nitrogen gas atmosphere.
  • the light emitting layer was formed.
  • the polymer compound P12 was dissolved in 2,2,3,3,4,4,5,5-octafluoro-1-pentanol at a concentration of 0.25% by mass. Using the obtained 2,2,3,3,4,4,5,5-octafluoro-1-pentanol solution, a film having a thickness of 10 nm is formed on the first light-emitting layer by spin coating. Then, an electron transport layer was formed by heating at 130 ° C. for 10 minutes in a nitrogen gas atmosphere.
  • Example D7 Fabrication and evaluation of light-emitting element D7
  • Example D6 formation of the second light-emitting layer
  • polymer compound P2 was used instead of polymer compound P1.
  • a light emitting element D7 was produced, and EL light emission was observed by applying a voltage.
  • the external quantum efficiency at 1000 cd / m 2 was 18.8%. The results are shown in Table 5.
  • Example D8 Fabrication and evaluation of light-emitting element D8
  • Example D6 formation of the second light-emitting layer
  • polymer compound P3 was used instead of polymer compound P1
  • a light emitting element D8 was manufactured, and EL light emission was observed by applying a voltage.
  • the external quantum efficiency at 1000 cd / m 2 was 15.7%. The results are shown in Table 5.
  • Example D9 Fabrication and evaluation of light-emitting element D9
  • Example D6 formation of the second light-emitting layer
  • polymer compound P4 was used instead of polymer compound P1.
  • a light emitting device D9 was fabricated, and EL light emission was observed by applying a voltage.
  • the external quantum efficiency at 1000 cd / m 2 was 14.5%. The results are shown in Table 5.
  • Example D10 Production and evaluation of light-emitting element D10
  • Example D6 formation of the second light-emitting layer
  • polymer compound P5 was used instead of polymer compound P1.
  • a light emitting element D10 was fabricated, and EL light emission was observed by applying a voltage.
  • the external quantum efficiency at 1000 cd / m 2 was 17.3%. The results are shown in Table 5.
  • Example D11 Production and evaluation of light-emitting element D11
  • Example D6 formation of the second light-emitting layer
  • polymer compound P6 was used instead of polymer compound P1.
  • a light emitting element D11 was fabricated, and EL light emission was observed by applying a voltage.
  • the external quantum efficiency at 1000 cd / m 2 was 16.1%. The results are shown in Table 5.
  • Example D6 formation of the second light-emitting layer
  • the polymer compound P7 was used.
  • a light emitting device CD3 was fabricated, and EL light emission was observed by applying a voltage.
  • the external quantum efficiency at 1000 cd / m 2 was 13.4%. The results are shown in Table 5.
  • Example CD4 Production and Evaluation of Light-Emitting Element CD4 Same as Example D6, except that in Example D6 (Formation of Second Light-Emitting Layer), Polymer Compound P8 was Used instead of Polymer Compound P1. Then, a light emitting device CD4 was manufactured, and EL light emission was observed by applying a voltage. The external quantum efficiency at 1000 cd / m 2 was 10.4%. The results are shown in Table 5.
  • Example D12 Fabrication and evaluation of light-emitting element D12 (formation of anode and hole injection layer)
  • An anode was formed by attaching an ITO film with a thickness of 45 nm to the glass substrate by sputtering.
  • ND-3202 Nisan Chemical Industry Co., Ltd.
  • ND-3202 which is a hole injection material
  • the hole injection layer was formed by heating at 230 ° C. for 15 minutes on a hot plate.
  • Polymer compound P2 was dissolved in xylene at a concentration of 0.7 mass%.
  • the obtained xylene solution was used to form a film having a thickness of 20 nm on the hole injection layer by spin coating, and heated on a hot plate at 180 ° C. for 60 minutes in a nitrogen gas atmosphere.
  • the light emitting layer was formed.
  • the polymer compound P12 was dissolved in 2,2,3,3,4,4,5,5-octafluoro-1-pentanol at a concentration of 0.25% by mass. Using the obtained 2,2,3,3,4,4,5,5-octafluoro-1-pentanol solution, a film having a thickness of 10 nm is formed on the first light-emitting layer by spin coating. Then, an electron transport layer was formed by heating at 130 ° C. for 10 minutes in a nitrogen gas atmosphere.
  • Example D12 formation of second light-emitting layer
  • polymer compound P8 polymer compound P8 was used.
  • a light emitting device CD5 was fabricated, and EL light emission was observed by applying a voltage.
  • the external quantum efficiency at 1000 cd / m 2 was 2.45%. The results are shown in Table 6.
  • Example D13 Fabrication and evaluation of light-emitting element D13 (formation of anode and hole injection layer)
  • An anode was formed by attaching an ITO film with a thickness of 45 nm to the glass substrate by sputtering.
  • a hole injection material ND-3202 manufactured by Nissan Chemical Industries, Ltd.
  • the hole injection layer was formed by volatilizing and subsequently heating on a hot plate at 230 ° C. for 15 minutes.
  • Polymer compound P1 was dissolved in xylene at a concentration of 0.7 mass%.
  • the obtained xylene solution was used to form a film having a thickness of 20 nm on the hole injection layer by spin coating, and heated on a hot plate at 180 ° C. for 60 minutes in a nitrogen gas atmosphere.
  • the light emitting layer was formed.
  • the polymer compound P12 was dissolved in 2,2,3,3,4,4,5,5-octafluoro-1-pentanol at a concentration of 0.25% by mass. Using the obtained 2,2,3,3,4,4,5,5-octafluoro-1-pentanol solution, a film having a thickness of 10 nm is formed on the first light-emitting layer by spin coating. Then, an electron transport layer was formed by heating at 130 ° C. for 10 minutes in a nitrogen gas atmosphere.
  • Example D13 Formation of Second Light-Emitting Layer
  • Polymer Compound P7 was used instead of Polymer Compound P1.
  • a light emitting device CD6 was fabricated, and EL light emission was observed by applying a voltage.
  • the external quantum efficiency at 1000 cd / m 2 was 7.02%. The results are shown in Table 7.
  • Example D14 Fabrication and evaluation of light-emitting element D14 (formation of anode and hole injection layer)
  • An anode was formed by attaching an ITO film with a thickness of 45 nm to the glass substrate by sputtering.
  • a hole injection material ND-3202 manufactured by Nissan Chemical Industries, Ltd.
  • ND-3202 was formed to a thickness of 35 nm by a spin coating method, and was heated on a hot plate at 50 ° C. for 3 minutes. The solvent was evaporated by heating, and then the hole injection layer was formed by heating at 230 ° C. for 15 minutes on a hot plate.
  • Polymer compound P1 was dissolved in xylene at a concentration of 0.7 mass%.
  • the obtained xylene solution was used to form a film having a thickness of 20 nm on the hole injection layer by spin coating, and heated on a hot plate at 180 ° C. for 60 minutes in a nitrogen gas atmosphere.
  • the light emitting layer was formed.
  • the polymer compound P12 was dissolved in 2,2,3,3,4,4,5,5-octafluoro-1-pentanol at a concentration of 0.25% by mass. Using the obtained 2,2,3,3,4,4,5,5-octafluoro-1-pentanol solution, a film having a thickness of 10 nm is formed on the first light-emitting layer by spin coating. Then, an electron transport layer was formed by heating at 130 ° C. for 10 minutes in a nitrogen gas atmosphere.
  • Example D14 formation of second light-emitting layer
  • polymer compound P2 was used instead of polymer compound P1
  • a light emitting device CD7 was fabricated, and EL emission was observed by applying a voltage.
  • the external quantum efficiency at 1000 cd / m 2 was 13.3%. The results are shown in Table 8.
  • Example D15 Fabrication and evaluation of light-emitting element D15 (formation of anode and hole injection layer)
  • An anode was formed by attaching an ITO film with a thickness of 45 nm to the glass substrate by sputtering.
  • a hole injection material ND-3202 manufactured by Nissan Chemical Industries, Ltd.
  • the hole injection layer was formed by volatilizing and subsequently heating on a hot plate at 230 ° C. for 15 minutes.
  • Polymer compound P2 was dissolved in xylene at a concentration of 0.7 mass%.
  • the obtained xylene solution was used to form a film having a thickness of 20 nm on the hole injection layer by spin coating, and heated on a hot plate at 180 ° C. for 60 minutes in a nitrogen gas atmosphere.
  • the light emitting layer was formed.
  • the polymer compound P12 was dissolved in 2,2,3,3,4,4,5,5-octafluoro-1-pentanol at a concentration of 0.25% by mass. Using the obtained 2,2,3,3,4,4,5,5-octafluoro-1-pentanol solution, a film having a thickness of 10 nm is formed on the first light-emitting layer by spin coating. Then, an electron transport layer was formed by heating at 130 ° C. for 10 minutes in a nitrogen gas atmosphere.
  • Example D16 Fabrication and evaluation of light-emitting element D16
  • Example D15 formation of second light-emitting layer
  • polymer compound P3 was used instead of polymer compound P2
  • a light emitting element D16 was fabricated, and EL light emission was observed by applying a voltage.
  • the external quantum efficiency at 1000 cd / m 2 was 19.8%.
  • the results are shown in Table 9.
  • Example D17 Production and evaluation of light-emitting element D17
  • Example D15 formation of the second light-emitting layer
  • polymer compound P4 was used instead of polymer compound P2
  • a light emitting element D17 was fabricated, and EL light emission was observed by applying a voltage.
  • the external quantum efficiency at 1000 cd / m 2 was 16.8%.
  • the results are shown in Table 9.
  • Example D15 Formation of Second Light-Emitting Layer
  • Polymer Compound P8 was used instead of Polymer Compound P2
  • a light emitting device CD8 was fabricated, and EL light emission was observed by applying a voltage.
  • External quantum efficiency at 1000 cd / m 2 was 15.0%. The results are shown in Table 9.
  • Example D18 Fabrication and evaluation of light-emitting element D18 (formation of anode and hole injection layer)
  • An anode was formed by attaching an ITO film with a thickness of 45 nm to the glass substrate by sputtering.
  • a hole injection material ND-3202 manufactured by Nissan Chemical Industries, Ltd.
  • the hole injection layer was formed by volatilizing and subsequently heating on a hot plate at 230 ° C. for 15 minutes.
  • Polymer compound P13 was dissolved in xylene at a concentration of 0.7 mass%.
  • the obtained xylene solution was used to form a film having a thickness of 20 nm on the hole injection layer by spin coating, and heated on a hot plate at 180 ° C. for 60 minutes in a nitrogen gas atmosphere.
  • the light emitting layer was formed.
  • the polymer compound P12 was dissolved in 2,2,3,3,4,4,5,5-octafluoro-1-pentanol at a concentration of 0.25% by mass. Using the obtained 2,2,3,3,4,4,5,5-octafluoro-1-pentanol solution, a film having a thickness of 10 nm is formed on the first light-emitting layer by spin coating. Then, an electron transport layer was formed by heating at 130 ° C. for 10 minutes in a nitrogen gas atmosphere.
  • Example D19 Production and evaluation of light-emitting device D19
  • polymer compound P14 was used instead of polymer compound P13, except that polymer compound P14 was used.
  • a light emitting device D19 was manufactured, and EL light emission was observed by applying a voltage.
  • the external quantum efficiency at 1000 cd / m 2 was 16.1%. The results are shown in Table 10.
  • Example D18 Formation of Second Light-Emitting Layer
  • Polymer Compound P18 was used instead of Polymer Compound P13.
  • a light emitting device CD9 was manufactured, and EL light emission was observed by applying a voltage.
  • the external quantum efficiency at 1000 cd / m 2 was 9.9%. The results are shown in Table 10.
  • Example CD10 Production and Evaluation of Light-Emitting Element CD10
  • Example D20 Fabrication and evaluation of light-emitting element D20 (formation of anode and hole injection layer)
  • An anode was formed by attaching an ITO film with a thickness of 45 nm to the glass substrate by sputtering.
  • a hole injection material ND-3202 manufactured by Nissan Chemical Industries, Ltd.
  • the hole injection layer was formed by volatilizing and subsequently heating on a hot plate at 230 ° C. for 15 minutes.
  • Polymer compound P15 was dissolved in xylene at a concentration of 0.7 mass%.
  • the obtained xylene solution was used to form a film having a thickness of 20 nm on the hole injection layer by spin coating, and heated on a hot plate at 180 ° C. for 60 minutes in a nitrogen gas atmosphere.
  • the light emitting layer was formed.
  • the polymer compound P12 was dissolved in 2,2,3,3,4,4,5,5-octafluoro-1-pentanol at a concentration of 0.25% by mass. Using the obtained 2,2,3,3,4,4,5,5-octafluoro-1-pentanol solution, a film having a thickness of 10 nm is formed on the first light-emitting layer by spin coating. Then, an electron transport layer was formed by heating at 130 ° C. for 10 minutes in a nitrogen gas atmosphere.
  • Example CD11 Production and Evaluation of Light-Emitting Element CD11 Same as Example D20 except that in Example D18 (Formation of Second Light-Emitting Layer), instead of Polymer Compound P15, Polymer Compound P20 was used. Then, a light emitting device CD11 was fabricated, and EL light emission was observed by applying a voltage. The external quantum efficiency at 1000 cd / m 2 was 11.4%. The results are shown in Table 11.
  • Example D21 Fabrication and evaluation of light-emitting element D21 (formation of anode and hole injection layer)
  • An anode was formed by attaching an ITO film with a thickness of 45 nm to the glass substrate by sputtering.
  • a hole injection material ND-3202 manufactured by Nissan Chemical Industries, Ltd.
  • the hole injection layer was formed by volatilizing and subsequently heating on a hot plate at 230 ° C. for 15 minutes.
  • Polymer compound P16 was dissolved in xylene at a concentration of 0.7 mass%.
  • the obtained xylene solution was used to form a film having a thickness of 20 nm on the hole injection layer by spin coating, and heated on a hot plate at 180 ° C. for 60 minutes in a nitrogen gas atmosphere.
  • the light emitting layer was formed.
  • the polymer compound P12 was dissolved in 2,2,3,3,4,4,5,5-octafluoro-1-pentanol at a concentration of 0.25% by mass. Using the obtained 2,2,3,3,4,4,5,5-octafluoro-1-pentanol solution, a film having a thickness of 10 nm is formed on the first light-emitting layer by spin coating. Then, an electron transport layer was formed by heating at 130 ° C. for 10 minutes in a nitrogen gas atmosphere.
  • Example D22 Production and evaluation of light-emitting element D22
  • polymer compound P17 and compound CM30 90 mass% / 10 mass%) Except that was used, a light-emitting element D22 was produced in the same manner as in Example D21, and EL emission was observed by applying a voltage.
  • the external quantum efficiency at 1000 cd / m 2 was 10.1%. The results are shown in Table 12.
  • Example D21 Formation of Second Light-Emitting Layer
  • Polymer Compound P21 and Compound CM30 Polymer Compound P21 / Compound CM30
  • Polymer Compound P16 90 mass% / 10 mass%)
  • a light-emitting element CD12 was produced in the same manner as in Example D21, and EL emission was observed by applying a voltage.
  • the external quantum efficiency at 1000 cd / m 2 was 7.3%. The results are shown in Table 12.
  • Example D23 Fabrication and evaluation of light-emitting element D23 (formation of anode and hole injection layer)
  • An anode was formed by attaching an ITO film with a thickness of 45 nm to the glass substrate by sputtering.
  • a hole injection material ND-3202 manufactured by Nissan Chemical Industries, Ltd.
  • the hole injection layer was formed by volatilizing and subsequently heating on a hot plate at 230 ° C. for 15 minutes.
  • Polymer compound P16 was dissolved in xylene at a concentration of 0.7 mass%.
  • the obtained xylene solution was used to form a film having a thickness of 20 nm on the hole injection layer by spin coating, and heated on a hot plate at 180 ° C. for 60 minutes in a nitrogen gas atmosphere.
  • the light emitting layer was formed.
  • the polymer compound P12 was dissolved in 2,2,3,3,4,4,5,5-octafluoro-1-pentanol at a concentration of 0.25% by mass. Using the obtained 2,2,3,3,4,4,5,5-octafluoro-1-pentanol solution, a film having a thickness of 10 nm is formed on the first light-emitting layer by spin coating. Then, an electron transport layer was formed by heating at 130 ° C. for 10 minutes in a nitrogen gas atmosphere.
  • Example D24 Production and Evaluation of Light-Emitting Element D24
  • Example D21 Formation of Second Light-Emitting Layer
  • Polymer Compound P17 and Compound CM30 Polymer Compound P17 / Compound CM30
  • Polymer Compound P16 90 mass% / 10 mass%)
  • a light emitting device D24 was produced in the same manner as in Example D23 except that EL emission was observed by applying a voltage.
  • the external quantum efficiency at 1000 cd / m 2 was 5.9%. The results are shown in Table 13.
  • Example D23 Formation of Second Light-Emitting Layer
  • Polymer Compound P21 and Compound CM30 Polymer Compound P21 / Compound CM30
  • Polymer Compound P16 90 mass% / 10 mass%)
  • a light emitting device CD13 was fabricated in the same manner as in Example D23 except that EL emission was observed by applying a voltage.
  • the external quantum efficiency at 1000 cd / m 2 was 2.4%. The results are shown in Table 13.
  • a light emitting device having excellent external quantum efficiency can be provided.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

Provided is a light-emitting element or the like having excellent external quantum efficiency. This light-emitting element has an anode, a cathode, a first light-emitting layer provided between the anode and the cathode, and a second light-emitting layer provided between the anode and the cathode. The second light-emitting layer contains at least one selected from the group consisting of a polymer compound containing a constitutional unit represented by formula (1), and a crosslinked product of the polymer compound. (In the formula, a1, a2, and a3 represent integers between 0 and 5, inclusive. Ring S1 represents an aromatic hydrocarbon ring or the like. RA1 represents an alkyl group or the like. ArA1 represents an arylene group or the like. ArA2, ArA3, and ArA4 represent an arylene group or the like. RA3, RA4, RA5, and RA6 represent an aryl group or the like.)

Description

発光素子及び該発光素子に用いる高分子化合物LIGHT EMITTING ELEMENT AND POLYMER COMPOUND USED FOR THE LIGHT EMITTING ELEMENT
 発光素子及び該発光素子に用いる高分子化合物に関する。 The present invention relates to a light emitting element and a polymer compound used for the light emitting element.
 発光素子は、ディスプレイ及び照明の用途に使用することが可能であり、研究開発が盛んに行われている。この発光素子は、発光層、電荷輸送層等の有機層等を有している。
 特許文献1及び2には、例えば、下記式で表されるアリールアミン構成単位を含む高分子化合物を含有する発光層の上に、燐光発光性化合物を含む発光層を積層した発光素子が記載されている。
Light-emitting elements can be used for display and lighting applications, and research and development are actively conducted. This light-emitting element has an organic layer such as a light-emitting layer and a charge transport layer.
Patent Documents 1 and 2 describe, for example, a light emitting element in which a light emitting layer containing a phosphorescent compound is stacked on a light emitting layer containing a polymer compound containing an arylamine structural unit represented by the following formula. ing.
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000018
米国特許出願公開第2014/0175415号明細書US Patent Application Publication No. 2014/0175415 国際公開第2015/163174号International Publication No. 2015/163174
 しかし、特許文献1及び2に記載された発光素子は、外部量子効率が必ずしも十分ではない。
 そこで、本発明は、外部量子効率に優れる発光素子を提供することを目的とする。本発明はまた、外部量子効率に優れる発光素子の製造に有用な高分子化合物を提供することを目的とする。
However, the light emitting elements described in Patent Documents 1 and 2 do not necessarily have sufficient external quantum efficiency.
Therefore, an object of the present invention is to provide a light-emitting element that is excellent in external quantum efficiency. Another object of the present invention is to provide a polymer compound useful for producing a light emitting device having excellent external quantum efficiency.
 本発明は、以下の[1]~[15]を提供する。 The present invention provides the following [1] to [15].
[1]陽極と、陰極と、前記陽極及び前記陰極の間に設けられた第1の発光層と、前記陽極及び前記陰極の間に設けられた第2の発光層とを有し、
 前記第2の発光層が、式(1)で表される構成単位を含む高分子化合物、及び、前記高分子化合物の架橋体からなる群より選ばれる少なくとも1種を含有する、発光素子。
Figure JPOXMLDOC01-appb-C000019
[式中、
 a1、a2及びa3は、それぞれ独立に、0以上5以下の整数を表す。a3が複数存在する場合、それらは同一でも異なっていてもよい。
 環S1は、芳香族炭化水素環又は芳香族複素環を表し、これらの環はRA1以外の置換基を有していてもよい。該置換基が複数存在する場合、それらは同一でも異なっていてもよい。
 RA1は、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基、アリールオキシ基、1価の複素環基、置換アミノ基又はハロゲン原子を表し、これらの基は置換基を有していてもよい。
 ArA1は、アリーレン基、又は、2価の複素環基を表し、これらの基は置換基を有していてもよい。
 ArA2、ArA3及びArA4は、それぞれ独立に、アリーレン基、2価の複素環基、又は、アリーレン基と2価の複素環基とが直接結合した2価の基を表し、これらの基は置換基を有していてもよい。ArA2、ArA3及びArA4が複数存在する場合、それらはそれぞれ同一でも異なっていてもよい。
 RA3、RA4、RA5及びRA6は、それぞれ独立に、アリール基又は1価の複素環基を表し、これらの基は置換基を有していてもよい。RA4、RA5及びRA6が複数存在する場合、それらはそれぞれ同一でも異なっていてもよい。]
[2]前記式(1)で表される構成単位が、式(1a)で表される構成単位である、[1]に記載の発光素子。
Figure JPOXMLDOC01-appb-C000020
[式中、
 a1、a2、a3、ArA2、ArA3、ArA4、環S1、RA1、RA3、RA4、RA5及びRA6は、前記と同じ意味を表す。
 環S2は、芳香族炭化水素環又は芳香族複素環を表し、これらの環はRA2以外の置換基を有していてもよい。該置換基が複数存在する場合、それらは同一でも異なっていてもよく、互いに結合して、それぞれが結合する原子とともに環を形成していてもよい。
 RA2は、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基、アリールオキシ基、1価の複素環基、置換アミノ基又はハロゲン原子を表し、これらの基は置換基を有していてもよい。]
[3]前記式(1)で表される構成単位を含む高分子化合物又は前記高分子化合物の架橋体が、更に燐光発光性構成単位を含む、[1]又は[2]に記載の発光素子。
[4]前記第2の発光層が、更に燐光発光性化合物を含有する、[1]又は[2]に記載の発光素子。
[5]前記第1の発光層が、燐光発光性化合物を含有する、[1]~[4]のいずれかに記載の発光素子。
[6]前記第1の発光層が、式(H-1)で表される化合物を更に含有する、[1]~[5]のいずれかに記載の発光素子。
Figure JPOXMLDOC01-appb-C000021
[式中、
 ArH1及びArH2は、それぞれ独立に、アリール基又は1価の複素環基を表し、これらの基は置換基を有していてもよい。
 nH1及びnH2は、それぞれ独立に、0又は1を表す。nH1が複数存在する場合、それらは同一でも異なっていてもよい。複数存在するnH2は、同一でも異なっていてもよい。
 nH3は、0~10の整数を表す。
 LH1は、アリーレン基、2価の複素環基、又は、-[C(RH112]nH11-で表される基を表し、これらの基は置換基を有していてもよい。LH1が複数存在する場合、それらは同一でも異なっていてもよい。nH11は、1以上10以下の整数を表す。RH11は、水素原子、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基又は1価の複素環基を表し、これらの基は置換基を有していてもよい。複数存在するRH11は、同一でも異なっていてもよく、互いに結合して、それぞれが結合する炭素原子とともに環を形成していてもよい。
 LH2は、-N(-LH21-RH21)-で表される基を表す。LH2が複数存在する場合、それらは同一でも異なっていてもよい。LH21は、単結合、アリーレン基又は2価の複素環基を表し、これらの基は置換基を有していてもよい。RH21は、水素原子、アルキル基、シクロアルキル基、アリール基又は1価の複素環基を表し、これらの基は置換基を有していてもよい。]
[7]上記式(1)で表される構成単位と燐光発光性構成単位とを含む高分子化合物。
[8]前記式(1)で表される構成単位が、上記式(1a)で表される構成単位である、[7]に記載の高分子化合物。
[9]前記燐光発光性構成単位が、式(1G)、式(2G)、式(3G)又は式(4G)で表される構成単位である、[7]又は[8]に記載の高分子化合物。
Figure JPOXMLDOC01-appb-C000022
[式中、
 M1Gは、燐光発光性化合物から1個の水素原子を取り除いてなる基を表す。
 L1は、酸素原子、硫黄原子、-N(RA)-で表される基、-C(RB2-で表される基、-C(RB)=C(RB)-で表される基、-C≡C-で表される基、アリーレン基又は2価の複素環基を表し、これらの基は置換基を有していてもよい。RAは、水素原子、アルキル基、シクロアルキル基、アリール基又は1価の複素環基を表し、これらの基は置換基を有していてもよい。RBは、水素原子、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基又は1価の複素環基を表し、これらの基は置換基を有していてもよい。複数存在するRBは、同一でも異なっていてもよく、互いに結合して、それぞれが結合する炭素原子と共に環を形成していてもよい。L1が複数存在する場合、それらは同一でも異なっていてもよい。
 na1は0~10の整数を表す。]
Figure JPOXMLDOC01-appb-C000023
[式中、
 M1Gは、前記と同じ意味を有する。
 L2及びL3は、それぞれ独立に、酸素原子、硫黄原子、-N(RA)-で表される基、-C(RB2-で表される基、-C(RB)=C(RB)-で表される基、-C≡C-で表される基、アリーレン基又は2価の複素環基を表し、これらの基は置換基を有していてもよい。RA及びRBは、前記と同じ意味を有する。
 nb1及びnc1は、それぞれ独立に、0~10の整数を表す。複数存在するnb1は、同一でも異なっていてもよい。
 Ar1Mは、芳香族炭化水素基又は複素環基を表し、これらの基は置換基を有していてもよい。]
Figure JPOXMLDOC01-appb-C000024
[式中、
 M2Gは、燐光発光性化合物から2個の水素原子を取り除いてなる基を表す。
 L2及びnb1は、前記と同じ意味を有する。]
Figure JPOXMLDOC01-appb-C000025
[式中、
 M3Gは、燐光発光性化合物から3個の水素原子を取り除いてなる基を表す。
 L2及びnb1は、前記と同じ意味を有する。]
[10]前記燐光発光性化合物が、式(2)で表される化合物である、[9]に記載の高分子化合物。
Figure JPOXMLDOC01-appb-C000026
[式中、
 M2は、ロジウム原子、パラジウム原子、イリジウム原子又は白金原子を表す。
 n3は1以上の整数を表し、n4は0以上の整数を表し、n3+n4は2又は3である。Mがロジウム原子又はイリジウム原子の場合、n3+n4は3であり、Mがパラジウム原子又は白金原子の場合、n3+n4は2である。
 E及びEは、それぞれ独立に、炭素原子又は窒素原子を表す。但し、E及びEの少なくとも一方は炭素原子である。
 環L1は、芳香族複素環を表し、この環は置換基を有していてもよい。該置換基が複数存在する場合、それらは同一でも異なっていてもよく、互いに結合して、それぞれが結合する原子とともに環を形成していてもよい。環L1が複数存在する場合、それらは同一でも異なっていてもよい。
 環L2は、芳香族炭化水素環又は芳香族複素環を表し、これらの環は置換基を有していてもよい。該置換基が複数存在する場合、それらは同一でも異なっていてもよく、互いに結合して、それぞれが結合する原子とともに環を形成していてもよい。環L2が複数存在する場合、それらは同一でも異なっていてもよい。
 環L1が有していてもよい置換基と環L2が有していてもよい置換基とは、互いに結合して、それぞれが結合する原子とともに環を形成していてもよい。
 A3-G2-A4は、アニオン性の2座配位子を表す。A3及びA4は、それぞれ独立に、炭素原子、酸素原子又は窒素原子を表し、これらの原子は環を構成する原子であってもよい。G2は、単結合、又は、A3及びA4とともに2座配位子を構成する原子団を表す。A3-G2-A4が複数存在する場合、それらは同一でも異なっていてもよい。]
[11]前記環L1が、ピリジン環、ピリミジン環、イソキノリン環又はキノリン環であり、かつ、前記環L2が、ベンゼン環、ピリジン環又はピリミジン環である、[10]に記載の高分子化合物。
[12]前記式(2)で表される燐光発光性化合物が、式(2-B1)、式(2-B2)、式(2-B3)、式(2-B4)又は式(2-B5)で表される燐光発光性化合物である、[11]に記載の発光素子。
Figure JPOXMLDOC01-appb-C000027
[式中、
 M2、n3、n4及びA3-G2-A4は、前記と同じ意味を表す。
 n11及びn12は、それぞれ独立に、1以上の整数を表し、n11+n12は2又は3である。Mがロジウム原子又はイリジウム原子の場合、n11+n12は3であり、Mがパラジウム原子又は白金原子の場合、n11+n12は2である。
 R11B、R12B、R13B、R14B、R15B、R16B、R17B、R18B、R21B、R22B、R23B及びR24Bは、それぞれ独立に、水素原子、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基、アリールオキシ基、1価の複素環基、置換アミノ基又はハロゲン原子を表し、これらの基は置換基を有していてもよい。R11B、R12B、R13B、R14B、R15B、R16B、R17B、R18B、R21B、R22B、R23B及びR24Bが複数存在する場合、それらはそれぞれ同一でも異なっていてもよい。R11BとR12B、R12BとR13B、R13BとR14B、R13BとR15B、R15BとR16B、R16BとR17B、R17BとR18B、R18BとR21B、R11BとR21B、R21BとR22B、R22BとR23B、及び、R23BとR24Bは、それぞれ結合して、それぞれが結合する原子とともに環を形成していてもよい。]
[13]前記R11B、前記R12B、前記R13B、前記R14B、前記R21B、前記R22B、前記R23B及び前記R24Bのうちの少なくとも1つが、式(D-A)、式(D-B)又は式(D-C)で表される基である、[12]に記載の高分子化合物。
Figure JPOXMLDOC01-appb-C000028
[式中、
 mDA1、mDA2及びmDA3は、それぞれ独立に、0~10の整数を表す。
 GDAは、窒素原子、芳香族炭化水素基又は複素環基を表し、これらの基は置換基を有していてもよい。
 ArDA1、ArDA2及びArDA3は、それぞれ独立に、アリーレン基又は2価の複素環基を表し、これらの基は置換基を有していてもよい。ArDA1、ArDA2及びArDA3が複数存在する場合、それらはそれぞれ同一でも異なっていてもよい。
 TDAは、アリール基又は1価の複素環基を表し、これらの基は置換基を有していてもよい。複数存在するTDAは、同一でも異なっていてもよい。]
Figure JPOXMLDOC01-appb-C000029
[式中、
 mDA1、mDA2、mDA3、GDA、ArDA1、ArDA2、ArDA3及びTDAは、前記と同じ意味を表す。
 mDA4、mDA5、mDA6及びmDA7は、それぞれ独立に、0~10の整数を表す。
 ArDA4、ArDA5、ArDA6及びArDA7は、それぞれ独立に、アリーレン基又は2価の複素環基を表し、これらの基は置換基を有していてもよい。ArDA4、ArDA5、ArDA6及びArDA7が複数ある場合、それらはそれぞれ同一でも異なっていてもよい。]
Figure JPOXMLDOC01-appb-C000030
[式中、
 mDA1、ArDA1及びTDAは、前記と同じ意味を有する。]
[14]前記式(1)で表される構成単位を含む高分子化合物が、架橋基A群から選ばれる少なくとも1種の架橋基を有する架橋構成単位を含む、[7]~[13]のいずれかに記載の高分子化合物。
(架橋基A群)
Figure JPOXMLDOC01-appb-C000031
[式中、
 RXLは、メチレン基、酸素原子又は硫黄原子を表し、nXLは、0~5の整数を表す。RXLが複数存在する場合、それらは同一でも異なっていてもよい。nXLが複数存在する場合、それらは同一でも異なっていてもよい。*1は結合位置を表す。これらの架橋基は置換基を有していてもよい。]
[15]前記架橋構成単位が、式(3)又は式(4)で表される構成単位である、[14]に記載の高分子化合物。
Figure JPOXMLDOC01-appb-C000032
[式中、
 nAは0~5の整数を表し、nは1又は2を表す。
 Ar1は、芳香族炭化水素基又は複素環基を表し、これらの基は置換基を有していてもよい。
 LAは、アルキレン基、シクロアルキレン基、アリーレン基、2価の複素環基、-NR’-で表される基、酸素原子又は硫黄原子を表し、これらの基は置換基を有していてもよい。R’は、水素原子、アルキル基、シクロアルキル基、アリール基又は1価の複素環基を表し、これらの基は置換基を有していてもよい。LAが複数存在する場合、それらは同一でも異なっていてもよい。
 Xは、前記架橋基A群から選ばれる架橋基を表す。Xが複数存在する場合、それらは同一でも異なっていてもよい。nAが複数存在する場合、それらは同一でも異なっていてもよい。]
Figure JPOXMLDOC01-appb-C000033
[式中、
 mAは0~5の整数を表し、mは1~4の整数を表し、cは0又は1を表す。mAが複数存在する場合、それらは同一でも異なっていてもよい。
 Ar3は、芳香族炭化水素基、複素環基、又は、芳香族炭化水素基と複素環基とが直接結合した基を表し、これらの基は置換基を有していてもよい。
 Ar2及びAr4は、それぞれ独立に、アリーレン基又は2価の複素環基を表し、これらの基は置換基を有していてもよい。
 Ar2、Ar3及びAr4はそれぞれ、該基が結合している窒素原子に結合している該基以外の基と、直接又は酸素原子若しくは硫黄原子を介して結合して、環を形成していてもよい。
 KAは、アルキレン基、シクロアルキレン基、アリーレン基、2価の複素環基、-NR’’-で表される基、酸素原子又は硫黄原子を表し、これらの基は置換基を有していてもよい。R’’は、水素原子、アルキル基、シクロアルキル基、アリール基又は1価の複素環基を表し、これらの基は置換基を有していてもよい。KAが複数存在する場合、それらは同一でも異なっていてもよい。
 X’は、前記架橋基A群から選ばれる架橋基、水素原子、アルキル基、シクロアルキル基、アリール基又は1価の複素環基を表し、これらの基は置換基を有していてもよい。X’が複数存在する場合、それらは同一でも異なっていてもよい。但し、少なくとも1つのX’は、前記架橋基A群から選ばれる架橋基である。]
[1] An anode, a cathode, a first light emitting layer provided between the anode and the cathode, and a second light emitting layer provided between the anode and the cathode,
The light emitting element in which a said 2nd light emitting layer contains at least 1 sort (s) chosen from the group which consists of a high molecular compound containing the structural unit represented by Formula (1), and the crosslinked body of the said high molecular compound.
Figure JPOXMLDOC01-appb-C000019
[Where:
a 1 , a 2 and a 3 each independently represents an integer of 0 or more and 5 or less. When a plurality of a 3 are present, they may be the same or different.
Ring S 1 represents an aromatic hydrocarbon ring or an aromatic heterocyclic ring, and these rings may have a substituent other than R A1 . When a plurality of the substituents are present, they may be the same or different.
R A1 represents an alkyl group, a cycloalkyl group, an alkoxy group, a cycloalkoxy group, an aryl group, an aryloxy group, a monovalent heterocyclic group, a substituted amino group, or a halogen atom, and these groups have a substituent. It may be.
Ar A1 represents an arylene group or a divalent heterocyclic group, and these groups optionally have a substituent.
Ar A2 , Ar A3 and Ar A4 each independently represent an arylene group, a divalent heterocyclic group, or a divalent group in which an arylene group and a divalent heterocyclic group are directly bonded, and these groups May have a substituent. When there are a plurality of Ar A2 , Ar A3 and Ar A4 , they may be the same or different.
R A3 , R A4 , R A5 and R A6 each independently represents an aryl group or a monovalent heterocyclic group, and these groups optionally have a substituent. When a plurality of R A4 , R A5 and R A6 are present, they may be the same or different. ]
[2] The light emitting device according to [1], wherein the structural unit represented by the formula (1) is a structural unit represented by the formula (1a).
Figure JPOXMLDOC01-appb-C000020
[Where:
a 1 , a 2 , a 3 , Ar A2 , Ar A3 , Ar A4 , Ring S 1 , R A1 , R A3 , R A4 , R A5 and R A6 represent the same meaning as described above.
Ring S 2 represents an aromatic hydrocarbon ring or an aromatic heterocyclic ring, and these rings may have a substituent other than R A2 . When a plurality of such substituents are present, they may be the same or different, and may be bonded to each other to form a ring together with the atoms to which each is bonded.
R A2 represents an alkyl group, a cycloalkyl group, an alkoxy group, a cycloalkoxy group, an aryl group, an aryloxy group, a monovalent heterocyclic group, a substituted amino group, or a halogen atom, and these groups have a substituent. It may be. ]
[3] The light emitting device according to [1] or [2], wherein the polymer compound containing the structural unit represented by the formula (1) or a crosslinked product of the polymer compound further contains a phosphorescent structural unit. .
[4] The light emitting device according to [1] or [2], wherein the second light emitting layer further contains a phosphorescent compound.
[5] The light emitting device according to any one of [1] to [4], wherein the first light emitting layer contains a phosphorescent compound.
[6] The light emitting device according to any one of [1] to [5], wherein the first light emitting layer further contains a compound represented by the formula (H-1).
Figure JPOXMLDOC01-appb-C000021
[Where:
Ar H1 and Ar H2 each independently represent an aryl group or a monovalent heterocyclic group, and these groups optionally have a substituent.
n H1 and n H2 each independently represent 0 or 1. When a plurality of n H1 are present, they may be the same or different. A plurality of n H2 may be the same or different.
n H3 represents an integer of 0 to 10.
L H1 represents an arylene group, a divalent heterocyclic group, or a group represented by — [C (R H11 ) 2 ] n H11 —, and these groups optionally have a substituent. When a plurality of L H1 are present, they may be the same or different. n H11 represents an integer of 1 to 10. R H11 represents a hydrogen atom, an alkyl group, a cycloalkyl group, an alkoxy group, a cycloalkoxy group, an aryl group, or a monovalent heterocyclic group, and these groups may have a substituent. A plurality of R H11 may be the same or different, and may be bonded to each other to form a ring together with the carbon atom to which each is bonded.
L H2 represents a group represented by —N (—L H21 —R H21 ) —. When a plurality of L H2 are present, they may be the same or different. L H21 represents a single bond, an arylene group or a divalent heterocyclic group, and these groups optionally have a substituent. R H21 represents a hydrogen atom, an alkyl group, a cycloalkyl group, an aryl group, or a monovalent heterocyclic group, and these groups optionally have a substituent. ]
[7] A polymer compound comprising the structural unit represented by the formula (1) and a phosphorescent structural unit.
[8] The polymer compound according to [7], wherein the structural unit represented by the formula (1) is a structural unit represented by the formula (1a).
[9] The high phosphor according to [7] or [8], wherein the phosphorescent structural unit is a structural unit represented by the formula (1G), the formula (2G), the formula (3G), or the formula (4G). Molecular compound.
Figure JPOXMLDOC01-appb-C000022
[Where:
M 1G represents a group formed by removing one hydrogen atom from a phosphorescent compound.
L 1 represents an oxygen atom, a sulfur atom, a group represented by —N (R A ) —, a group represented by —C (R B ) 2 —, —C (R B ) ═C (R B ) — Represents a group represented by the formula: —C≡C—, an arylene group or a divalent heterocyclic group, and these groups optionally have a substituent. R A represents a hydrogen atom, an alkyl group, a cycloalkyl group, an aryl group, or a monovalent heterocyclic group, and these groups may have a substituent. R B represents a hydrogen atom, an alkyl group, a cycloalkyl group, an alkoxy group, a cycloalkoxy group, an aryl group, or a monovalent heterocyclic group, and these groups may have a substituent. A plurality of R B may be the same or different, and may be bonded to each other to form a ring together with the carbon atoms to which they are bonded. When a plurality of L 1 are present, they may be the same or different.
n a1 represents an integer of 0 to 10. ]
Figure JPOXMLDOC01-appb-C000023
[Where:
M 1G has the same meaning as described above.
L 2 and L 3 each independently represents an oxygen atom, a sulfur atom, a group represented by —N (R A ) —, a group represented by —C (R B ) 2 —, or —C (R B ) Represents a group represented by ═C (R B ) —, a group represented by —C≡C—, an arylene group or a divalent heterocyclic group, and these groups optionally have a substituent. R A and R B have the same meaning as described above.
n b1 and n c1 each independently represents an integer of 0 to 10. A plurality of n b1 may be the same or different.
Ar 1M represents an aromatic hydrocarbon group or a heterocyclic group, and these groups optionally have a substituent. ]
Figure JPOXMLDOC01-appb-C000024
[Where:
M 2G represents a group formed by removing two hydrogen atoms from a phosphorescent compound.
L 2 and n b1 have the same meaning as described above. ]
Figure JPOXMLDOC01-appb-C000025
[Where:
M 3G represents a group formed by removing three hydrogen atoms from a phosphorescent compound.
L 2 and n b1 have the same meaning as described above. ]
[10] The polymer compound according to [9], wherein the phosphorescent compound is a compound represented by the formula (2).
Figure JPOXMLDOC01-appb-C000026
[Where:
M 2 represents a rhodium atom, a palladium atom, an iridium atom or a platinum atom.
n 3 represents an integer of 1 or more, n 4 represents an integer of 0 or more, and n 3 + n 4 is 2 or 3. When M is a rhodium atom or an iridium atom, n 3 + n 4 is 3. When M is a palladium atom or a platinum atom, n 3 + n 4 is 2.
E 3 and E 4 each independently represents a carbon atom or a nitrogen atom. However, at least one of E 3 and E 4 is a carbon atom.
Ring L 1 represents an aromatic heterocyclic ring, and this ring may have a substituent. When a plurality of such substituents are present, they may be the same or different, and may be bonded to each other to form a ring together with the atoms to which each is bonded. When a plurality of rings L 1 are present, they may be the same or different.
The ring L 2 represents an aromatic hydrocarbon ring or an aromatic heterocyclic ring, and these rings may have a substituent. When a plurality of such substituents are present, they may be the same or different, and may be bonded to each other to form a ring together with the atoms to which each is bonded. When a plurality of rings L 2 are present, they may be the same or different.
The substituent that the ring L 1 may have and the substituent that the ring L 2 may have may be bonded to each other to form a ring together with the atoms to which they are bonded.
A 3 -G 2 -A 4 represents an anionic bidentate ligand. A 3 and A 4 each independently represent a carbon atom, an oxygen atom or a nitrogen atom, and these atoms may be atoms constituting a ring. G 2 represents a single bond or an atomic group constituting a bidentate ligand together with A 3 and A 4 . When a plurality of A 3 -G 2 -A 4 are present, they may be the same or different. ]
[11] The polymer according to [10], wherein the ring L 1 is a pyridine ring, a pyrimidine ring, an isoquinoline ring or a quinoline ring, and the ring L 2 is a benzene ring, a pyridine ring or a pyrimidine ring. Compound.
[12] The phosphorescent compound represented by the formula (2) is represented by the formula (2-B1), the formula (2-B2), the formula (2-B3), the formula (2-B4) or the formula (2- The light-emitting device according to [11], which is a phosphorescent compound represented by B5).
Figure JPOXMLDOC01-appb-C000027
[Where:
M 2 , n 3 , n 4 and A 3 -G 2 -A 4 represent the same meaning as described above.
n 11 and n 12 each independently represents an integer of 1 or more, and n 11 + n 12 is 2 or 3. When M is a rhodium atom or iridium atom, n 11 + n 12 is 3, and when M is a palladium atom or platinum atom, n 11 + n 12 is 2.
R 11B , R 12B , R 13B , R 14B , R 15B , R 16B , R 17B , R 18B , R 21B , R 22B , R 23B and R 24B are each independently a hydrogen atom, an alkyl group or a cycloalkyl group Represents an alkoxy group, a cycloalkoxy group, an aryl group, an aryloxy group, a monovalent heterocyclic group, a substituted amino group, or a halogen atom, and these groups optionally have a substituent. When there are a plurality of R 11B , R 12B , R 13B , R 14B , R 15B , R 16B , R 17B , R 18B , R 21B , R 22B , R 23B and R 24B , they may be the same or different. Good. R 11B and R 12B , R 12B and R 13B , R 13B and R 14B , R 13B and R 15B , R 15B and R 16B , R 16B and R 17B , R 17B and R 18B , R 18B and R 21B , R 11B And R 21B , R 21B and R 22B , R 22B and R 23B , and R 23B and R 24B may be bonded to each other to form a ring together with the atoms to which they are bonded. ]
[13] At least one of R 11B , R 12B , R 13B , R 14B , R 21B , R 22B , R 23B, and R 24B is represented by formula (DA), formula ( The polymer compound according to [12], which is a group represented by DB) or formula (DC).
Figure JPOXMLDOC01-appb-C000028
[Where:
m DA1 , m DA2 and m DA3 each independently represent an integer of 0 to 10.
GDA represents a nitrogen atom, an aromatic hydrocarbon group, or a heterocyclic group, and these groups may have a substituent.
Ar DA1 , Ar DA2 and Ar DA3 each independently represent an arylene group or a divalent heterocyclic group, and these groups optionally have a substituent. When there are a plurality of Ar DA1 , Ar DA2 and Ar DA3 , they may be the same or different.
T DA represents an aryl group or a monovalent heterocyclic group, and these groups optionally have a substituent. A plurality of TDA may be the same or different. ]
Figure JPOXMLDOC01-appb-C000029
[Where:
m DA1, m DA2, m DA3 , G DA, Ar DA1, Ar DA2, Ar DA3 and T DA is the same as defined above.
m DA4 , m DA5 , m DA6 and m DA7 each independently represent an integer of 0 to 10.
Ar DA4 , Ar DA5 , Ar DA6 and Ar DA7 each independently represent an arylene group or a divalent heterocyclic group, and these groups optionally have a substituent. When there are a plurality of Ar DA4 , Ar DA5 , Ar DA6 and Ar DA7 , they may be the same or different. ]
Figure JPOXMLDOC01-appb-C000030
[Where:
m DA1 , Ar DA1 and T DA have the same meaning as described above. ]
[14] The polymer compound including the structural unit represented by the formula (1) includes a crosslinked structural unit having at least one crosslinking group selected from the crosslinking group A group. The high molecular compound in any one.
(Crosslinking group A group)
Figure JPOXMLDOC01-appb-C000031
[Where:
R XL represents a methylene group, an oxygen atom or a sulfur atom, and n XL represents an integer of 0 to 5. When a plurality of R XL are present, they may be the same or different. When there are a plurality of nXL , they may be the same or different. * 1 represents a binding position. These crosslinking groups may have a substituent. ]
[15] The polymer compound according to [14], wherein the crosslinked structural unit is a structural unit represented by formula (3) or formula (4).
Figure JPOXMLDOC01-appb-C000032
[Where:
nA represents an integer of 0 to 5, and n represents 1 or 2.
Ar 1 represents an aromatic hydrocarbon group or a heterocyclic group, and these groups optionally have a substituent.
L A represents an alkylene group, a cycloalkylene group, an arylene group, a divalent heterocyclic group, a group represented by —NR′—, an oxygen atom or a sulfur atom, and these groups have a substituent. Also good. R ′ represents a hydrogen atom, an alkyl group, a cycloalkyl group, an aryl group, or a monovalent heterocyclic group, and these groups optionally have a substituent. When a plurality of LA are present, they may be the same or different.
X represents a crosslinking group selected from the crosslinking group A group. When two or more X exists, they may be the same or different. When a plurality of nA are present, they may be the same or different. ]
Figure JPOXMLDOC01-appb-C000033
[Where:
mA represents an integer of 0 to 5, m represents an integer of 1 to 4, and c represents 0 or 1. When a plurality of mA are present, they may be the same or different.
Ar 3 represents an aromatic hydrocarbon group, a heterocyclic group, or a group in which an aromatic hydrocarbon group and a heterocyclic group are directly bonded, and these groups may have a substituent.
Ar 2 and Ar 4 each independently represent an arylene group or a divalent heterocyclic group, and these groups optionally have a substituent.
Ar 2 , Ar 3 and Ar 4 are each bonded to a group other than the group bonded to the nitrogen atom to which the group is bonded, directly or via an oxygen atom or sulfur atom to form a ring. It may be.
K A represents an alkylene group, a cycloalkylene group, an arylene group, a divalent heterocyclic group, a group represented by —NR ″ —, an oxygen atom or a sulfur atom, and these groups have a substituent. May be. R ″ represents a hydrogen atom, an alkyl group, a cycloalkyl group, an aryl group, or a monovalent heterocyclic group, and these groups optionally have a substituent. When a plurality of K A are present, they may be the same or different.
X ′ represents a bridging group selected from the bridging group A, a hydrogen atom, an alkyl group, a cycloalkyl group, an aryl group, or a monovalent heterocyclic group, and these groups may have a substituent. . When a plurality of X ′ are present, they may be the same or different. However, at least one X ′ is a cross-linking group selected from the cross-linking group A group. ]
 本発明の実施形態によれば、外部量子効率に優れる発光素子を提供することができる。また、本発明の実施形態によれば、外部量子収率に優れる発光素子の製造に有用な高分子化合物を提供することができる。 According to the embodiment of the present invention, a light emitting device having excellent external quantum efficiency can be provided. In addition, according to the embodiment of the present invention, it is possible to provide a polymer compound useful for producing a light emitting device having an excellent external quantum yield.
 以下、本発明の好適な実施形態について詳細に説明する。 Hereinafter, preferred embodiments of the present invention will be described in detail.
 <共通する用語の説明>
 本明細書で共通して用いられる用語は、特記しない限り、以下の意味である。
<Explanation of common terms>
Terms commonly used in this specification have the following meanings unless otherwise specified.
 Meはメチル基、Etはエチル基、Buはブチル基、i-Prはイソプロピル基、t-Buはtert-ブチル基を表す。 Me represents a methyl group, Et represents an ethyl group, Bu represents a butyl group, i-Pr represents an isopropyl group, and t-Bu represents a tert-butyl group.
 水素原子は、重水素原子であっても、軽水素原子であってもよい。 The hydrogen atom may be a deuterium atom or a light hydrogen atom.
 金属錯体を表す式中、中心金属との結合を表す実線は、共有結合又は配位結合を意味する。 In the formula representing the metal complex, the solid line representing the bond with the central metal means a covalent bond or a coordinate bond.
 「高分子化合物」とは、分子量分布を有し、ポリスチレン換算の数平均分子量が1×103~1×108である重合体を意味する。 The “polymer compound” means a polymer having a molecular weight distribution and having a polystyrene-equivalent number average molecular weight of 1 × 10 3 to 1 × 10 8 .
 高分子化合物は、ブロック共重合体、ランダム共重合体、交互共重合体、グラフト共重合体のいずれであってもよいし、その他の態様であってもよい。 The polymer compound may be any of a block copolymer, a random copolymer, an alternating copolymer, and a graft copolymer, or other embodiments.
 高分子化合物の末端基は、重合活性基がそのまま残っていると、高分子化合物を発光素子の作製に用いた場合に発光特性又は外部量子効率が低下する可能性があるので、好ましくは安定な基である。この末端基としては、好ましくは主鎖と共役結合している基であり、例えば、炭素-炭素結合を介してアリール基又は1価の複素環基と結合している基が挙げられる。 The terminal group of the polymer compound is preferably stable because if the polymerization active group remains as it is, the light emission characteristics or external quantum efficiency may decrease when the polymer compound is used in the production of a light emitting device. It is a group. The terminal group is preferably a group conjugated to the main chain, and examples thereof include a group bonded to an aryl group or a monovalent heterocyclic group via a carbon-carbon bond.
 「低分子化合物」とは、分子量分布を有さず、分子量が1×104以下の化合物を意味する。 “Low molecular weight compound” means a compound having no molecular weight distribution and a molecular weight of 1 × 10 4 or less.
 「構成単位」とは、高分子化合物中に1個以上存在する単位を意味する。 “Structural unit” means one or more units present in a polymer compound.
 「アルキル基」は、直鎖及び分岐のいずれでもよい。直鎖のアルキル基の炭素原子数は、置換基の炭素原子数を含めないで、通常1~50であり、好ましくは3~30であり、より好ましくは4~20である。分岐のアルキル基の炭素原子数は、置換基の炭素原子数を含めないで、通常3~50であり、好ましくは3~30であり、より好ましくは4~20である。
 アルキル基は、置換基を有していてもよく、例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、2-ブチル基、イソブチル基、tert-ブチル基、ペンチル基、イソアミル基、2-エチルブチル基、ヘキシル基、ヘプチル基、オクチル基、2-エチルヘキシル基、3-プロピルヘプチル基、デシル基、3,7-ジメチルオクチル基、2-エチルオクチル基、2-ヘキシルデシル基、ドデシル基、及び、これらの基における水素原子が、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基、フッ素原子等で置換された基が挙げられ、例えば、トリフルオロメチル基、ペンタフルオロエチル基、パーフルオロブチル基、パーフルオロヘキシル基、パーフルオロオクチル基、3-フェニルプロピル基、3-(4-メチルフェニル)プロピル基、3-(3,5-ジ-ヘキシルフェニル)プロピル基、6-エチルオキシヘキシル基が挙げられる。
 「シクロアルキル基」の炭素原子数は、置換基の炭素原子数を含めないで、通常3~50であり、好ましくは3~30であり、より好ましくは4~20である。
 シクロアルキル基は、置換基を有していてもよく、例えば、シクロヘキシル基、シクロヘキシルメチル基、シクロヘキシルエチル基が挙げられる。
The “alkyl group” may be linear or branched. The number of carbon atoms of the straight chain alkyl group is usually 1 to 50, preferably 3 to 30, and more preferably 4 to 20, excluding the number of carbon atoms of the substituent. The number of carbon atoms of the branched alkyl group is usually 3 to 50, preferably 3 to 30, more preferably 4 to 20, excluding the number of carbon atoms of the substituent.
The alkyl group may have a substituent, for example, methyl group, ethyl group, propyl group, isopropyl group, butyl group, 2-butyl group, isobutyl group, tert-butyl group, pentyl group, isoamyl group, 2-ethylbutyl, hexyl, heptyl, octyl, 2-ethylhexyl, 3-propylheptyl, decyl, 3,7-dimethyloctyl, 2-ethyloctyl, 2-hexyldecyl, dodecyl And a group in which a hydrogen atom in these groups is substituted with a cycloalkyl group, an alkoxy group, a cycloalkoxy group, an aryl group, a fluorine atom, etc., for example, a trifluoromethyl group, a pentafluoroethyl group, a per Fluorobutyl group, perfluorohexyl group, perfluorooctyl group, 3-phenylpropyl group, 3- (4-methylphenyl) propyl group, 3- Examples include (3,5-di-hexylphenyl) propyl group and 6-ethyloxyhexyl group.
The number of carbon atoms of the “cycloalkyl group” is usually 3 to 50, preferably 3 to 30, and more preferably 4 to 20, excluding the number of carbon atoms of the substituent.
The cycloalkyl group may have a substituent, and examples thereof include a cyclohexyl group, a cyclohexylmethyl group, and a cyclohexylethyl group.
 「アリール基」は、芳香族炭化水素から環を構成する炭素原子に直接結合する水素原子1個を除いた残りの原子団を意味する。アリール基の炭素原子数は、置換基の炭素原子数を含めないで、通常6~60であり、好ましくは6~20であり、より好ましくは6~10である。
 アリール基は、置換基を有していてもよく、例えば、フェニル基、1-ナフチル基、2-ナフチル基、1-アントラセニル基、2-アントラセニル基、9-アントラセニル基、1-ピレニル基、2-ピレニル基、4-ピレニル基、2-フルオレニル基、3-フルオレニル基、4-フルオレニル基、2-フェニルフェニル基、3-フェニルフェニル基、4-フェニルフェニル基、及び、これらの基における水素原子が、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基、フッ素原子等で置換された基が挙げられる。
“Aryl group” means an atomic group remaining after removing one hydrogen atom directly bonded to a carbon atom constituting a ring from an aromatic hydrocarbon. The number of carbon atoms of the aryl group is usually 6 to 60, preferably 6 to 20, more preferably 6 to 10, not including the number of carbon atoms of the substituent.
The aryl group may have a substituent, for example, phenyl group, 1-naphthyl group, 2-naphthyl group, 1-anthracenyl group, 2-anthracenyl group, 9-anthracenyl group, 1-pyrenyl group, 2 -Pyrenyl group, 4-pyrenyl group, 2-fluorenyl group, 3-fluorenyl group, 4-fluorenyl group, 2-phenylphenyl group, 3-phenylphenyl group, 4-phenylphenyl group, and hydrogen atoms in these groups Are groups substituted with an alkyl group, a cycloalkyl group, an alkoxy group, a cycloalkoxy group, an aryl group, a fluorine atom, or the like.
 「アルコキシ基」は、直鎖及び分岐のいずれでもよい。直鎖のアルコキシ基の炭素原子数は、置換基の炭素原子数を含めないで、通常1~40であり、好ましくは4~10である。分岐のアルコキシ基の炭素原子数は、置換基の炭素原子数を含めないで、通常3~40であり、好ましくは4~10である。
 アルコキシ基は、置換基を有していてもよく、例えば、メトキシ基、エトキシ基、プロピルオキシ基、イソプロピルオキシ基、ブチルオキシ基、イソブチルオキシ基、tert-ブチルオキシ基、ペンチルオキシ基、ヘキシルオキシ基、ヘプチルオキシ基、オクチルオキシ基、2-エチルヘキシルオキシ基、ノニルオキシ基、デシルオキシ基、3,7-ジメチルオクチルオキシ基、ラウリルオキシ基、及び、これらの基における水素原子が、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基、フッ素原子等で置換された基が挙げられる。
 「シクロアルコキシ基」の炭素原子数は、置換基の炭素原子数を含めないで、通常3~40であり、好ましくは4~10である。
 シクロアルコキシ基は、置換基を有していてもよく、例えば、シクロヘキシルオキシ基が挙げられる。
The “alkoxy group” may be linear or branched. The number of carbon atoms of the straight-chain alkoxy group is usually 1 to 40, preferably 4 to 10, excluding the number of carbon atoms of the substituent. The number of carbon atoms of the branched alkoxy group is usually 3 to 40, preferably 4 to 10, excluding the number of carbon atoms of the substituent.
The alkoxy group may have a substituent, for example, methoxy group, ethoxy group, propyloxy group, isopropyloxy group, butyloxy group, isobutyloxy group, tert-butyloxy group, pentyloxy group, hexyloxy group, Heptyloxy group, octyloxy group, 2-ethylhexyloxy group, nonyloxy group, decyloxy group, 3,7-dimethyloctyloxy group, lauryloxy group, and the hydrogen atom in these groups is a cycloalkyl group, an alkoxy group, And a group substituted with a cycloalkoxy group, an aryl group, a fluorine atom, or the like.
The number of carbon atoms of the “cycloalkoxy group” is usually 3 to 40, preferably 4 to 10, not including the number of carbon atoms of the substituent.
The cycloalkoxy group may have a substituent, and examples thereof include a cyclohexyloxy group.
 「アリールオキシ基」の炭素原子数は、置換基の炭素原子数を含めないで、通常6~60であり、好ましくは6~48である。
 アリールオキシ基は、置換基を有していてもよく、例えば、フェノキシ基、1-ナフチルオキシ基、2-ナフチルオキシ基、1-アントラセニルオキシ基、9-アントラセニルオキシ基、1-ピレニルオキシ基、及び、これらの基における水素原子が、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、フッ素原子等で置換された基が挙げられる。
The number of carbon atoms of the “aryloxy group” is usually 6 to 60, preferably 6 to 48, not including the number of carbon atoms of the substituent.
The aryloxy group may have a substituent, for example, a phenoxy group, 1-naphthyloxy group, 2-naphthyloxy group, 1-anthracenyloxy group, 9-anthracenyloxy group, 1- Examples include a pyrenyloxy group and a group in which a hydrogen atom in these groups is substituted with an alkyl group, a cycloalkyl group, an alkoxy group, a cycloalkoxy group, a fluorine atom, or the like.
 「p価の複素環基」(pは、1以上の整数を表す。)とは、複素環式化合物から、環を構成する炭素原子又はヘテロ原子に直接結合している水素原子のうちp個の水素原子を除いた残りの原子団を意味する。p価の複素環基の中でも、芳香族複素環式化合物から、環を構成する炭素原子又はヘテロ原子に直接結合している水素原子のうちp個の水素原子を除いた残りの原子団である「p価の芳香族複素環基」が好ましい。
 「芳香族複素環式化合物」は、オキサジアゾール、チアジアゾール、チアゾール、オキサゾール、チオフェン、ピロール、ホスホール、フラン、ピリジン、ピラジン、ピリミジン、トリアジン、ピリダジン、キノリン、イソキノリン、カルバゾール、ジベンゾホスホール等の複素環自体が芳香族性を示す化合物、及び、フェノキサジン、フェノチアジン、ジベンゾボロール、ジベンゾシロール、ベンゾピラン等の複素環自体は芳香族性を示さなくとも、複素環に芳香環が縮環されている化合物を意味する。
The “p-valent heterocyclic group” (p represents an integer of 1 or more) is p of hydrogen atoms directly bonded to a carbon atom or a hetero atom constituting a ring from a heterocyclic compound. This means the remaining atomic group excluding the hydrogen atom. Among the p-valent heterocyclic groups, it is the remaining atomic group obtained by removing p hydrogen atoms from the hydrogen atoms directly bonded to the carbon atoms or heteroatoms constituting the ring from the aromatic heterocyclic compound. A “p-valent aromatic heterocyclic group” is preferable.
`` Aromatic heterocyclic compounds '' are oxadiazole, thiadiazole, thiazole, oxazole, thiophene, pyrrole, phosphole, furan, pyridine, pyrazine, pyrimidine, triazine, pyridazine, quinoline, isoquinoline, carbazole, dibenzophosphole, etc. A compound in which the ring itself exhibits aromaticity, and a heterocyclic ring such as phenoxazine, phenothiazine, dibenzoborol, dibenzosilol, benzopyran itself does not exhibit aromaticity, but the aromatic ring is condensed to the heterocyclic ring Means a compound.
 1価の複素環基の炭素原子数は、置換基の炭素原子数を含めないで、通常2~60であり、好ましくは4~20である。
 1価の複素環基は、置換基を有していてもよく、例えば、チエニル基、ピロリル基、フリル基、ピリジニル基、ピペリジニル基、キノリニル基、イソキノリニル基、ピリミジニル基、トリアジニル基、及び、これらの基における水素原子が、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基等で置換された基が挙げられる。
The number of carbon atoms of the monovalent heterocyclic group is usually 2 to 60, preferably 4 to 20, excluding the number of carbon atoms of the substituent.
The monovalent heterocyclic group may have a substituent, for example, thienyl group, pyrrolyl group, furyl group, pyridinyl group, piperidinyl group, quinolinyl group, isoquinolinyl group, pyrimidinyl group, triazinyl group, and these And a group in which the hydrogen atom in the group is substituted with an alkyl group, a cycloalkyl group, an alkoxy group, a cycloalkoxy group, or the like.
 「ハロゲン原子」とは、フッ素原子、塩素原子、臭素原子又はヨウ素原子を示す。 “Halogen atom” means a fluorine atom, a chlorine atom, a bromine atom or an iodine atom.
 「アミノ基」は、置換基を有していてもよく、置換アミノ基が好ましい。アミノ基が有する置換基としては、アルキル基、シクロアルキル基、アリール基又は1価の複素環基が好ましい。
 置換アミノ基としては、例えば、ジアルキルアミノ基、ジシクロアルキルアミノ基及びジアリールアミノ基が挙げられる。
 アミノ基としては、例えば、ジメチルアミノ基、ジエチルアミノ基、ジフェニルアミノ基、ビス(4-メチルフェニル)アミノ基、ビス(4-tert-ブチルフェニル)アミノ基、ビス(3,5-ジ-tert-ブチルフェニル)アミノ基が挙げられる。
The “amino group” may have a substituent, and a substituted amino group is preferable. As a substituent which an amino group has, an alkyl group, a cycloalkyl group, an aryl group, or a monovalent heterocyclic group is preferable.
Examples of the substituted amino group include a dialkylamino group, a dicycloalkylamino group, and a diarylamino group.
Examples of the amino group include dimethylamino group, diethylamino group, diphenylamino group, bis (4-methylphenyl) amino group, bis (4-tert-butylphenyl) amino group, bis (3,5-di-tert- Butylphenyl) amino group.
 「アルケニル基」は、直鎖及び分岐のいずれでもよい。直鎖のアルケニル基の炭素原子数は、置換基の炭素原子数を含めないで、通常2~30であり、好ましくは3~20である。分岐のアルケニル基の炭素原子数は、置換基の炭素原子数を含めないで、通常3~30であり、好ましくは4~20である。
 「シクロアルケニル基」の炭素原子数は、置換基の炭素原子数を含めないで、通常3~30であり、好ましくは4~20である。
 アルケニル基及びシクロアルケニル基は、置換基を有していてもよく、例えば、ビニル基、1-プロペニル基、2-プロペニル基、2-ブテニル基、3-ブテニル基、3-ペンテニル基、4-ペンテニル基、1-ヘキセニル基、5-ヘキセニル基、7-オクテニル基、及び、これらの基が置換基を有する基が挙げられる。
The “alkenyl group” may be linear or branched. The number of carbon atoms of the straight-chain alkenyl group is usually 2-30, preferably 3-20, excluding the number of carbon atoms of the substituent. The number of carbon atoms of the branched alkenyl group is usually 3 to 30, preferably 4 to 20, not including the number of carbon atoms of the substituent.
The number of carbon atoms of the “cycloalkenyl group” is usually 3 to 30, preferably 4 to 20, not including the number of carbon atoms of the substituent.
The alkenyl group and the cycloalkenyl group may have a substituent, for example, a vinyl group, a 1-propenyl group, a 2-propenyl group, a 2-butenyl group, a 3-butenyl group, a 3-pentenyl group, a 4-pentenyl group, Examples include a pentenyl group, a 1-hexenyl group, a 5-hexenyl group, a 7-octenyl group, and groups in which these groups have a substituent.
 「アルキニル基」は、直鎖及び分岐のいずれでもよい。アルキニル基の炭素原子数は、置換基の炭素原子を含めないで、通常2~20であり、好ましくは3~20である。分岐のアルキニル基の炭素原子数は、置換基の炭素原子を含めないで、通常4~30であり、好ましくは4~20である。
 「シクロアルキニル基」の炭素原子数は、置換基の炭素原子を含めないで、通常4~30であり、好ましくは4~20である。
 アルキニル基及びシクロアルキニル基は、置換基を有していてもよく、例えば、エチニル基、1-プロピニル基、2-プロピニル基、2-ブチニル基、3-ブチニル基、3-ペンチニル基、4-ペンチニル基、1-ヘキシニル基、5-ヘキシニル基、及び、これらの基が置換基を有する基が挙げられる。
The “alkynyl group” may be linear or branched. The number of carbon atoms of the alkynyl group is usually 2 to 20, preferably 3 to 20, not including the carbon atom of the substituent. The number of carbon atoms of the branched alkynyl group is usually from 4 to 30, and preferably from 4 to 20, not including the carbon atom of the substituent.
The number of carbon atoms of the “cycloalkynyl group” is usually 4 to 30, preferably 4 to 20, not including the carbon atom of the substituent.
The alkynyl group and the cycloalkynyl group may have a substituent, for example, an ethynyl group, a 1-propynyl group, a 2-propynyl group, a 2-butynyl group, a 3-butynyl group, a 3-pentynyl group, 4- Examples include a pentynyl group, 1-hexynyl group, 5-hexynyl group, and groups in which these groups have a substituent.
 「アリーレン基」は、芳香族炭化水素から環を構成する炭素原子に直接結合する水素原子2個を除いた残りの原子団を意味する。アリーレン基の炭素原子数は、置換基の炭素原子数を含めないで、通常6~60であり、好ましくは6~30であり、より好ましくは6~18である。
 アリーレン基は、置換基を有していてもよく、例えば、フェニレン基、ナフタレンジイル基、アントラセンジイル基、フェナントレンジイル基、ジヒドロフェナントレンジイル基、ナフタセンジイル基、フルオレンジイル基、ピレンジイル基、ペリレンジイル基、クリセンジイル基、及び、これらの基が置換基を有する基が挙げられ、好ましくは、式(A-1)~式(A-20)で表される基である。アリーレン基は、これらの基が複数結合した基を含む。
The “arylene group” means an atomic group remaining after removing two hydrogen atoms directly bonded to a carbon atom constituting a ring from an aromatic hydrocarbon. The number of carbon atoms of the arylene group is usually 6 to 60, preferably 6 to 30, and more preferably 6 to 18, excluding the number of carbon atoms of the substituent.
The arylene group may have a substituent, for example, phenylene group, naphthalenediyl group, anthracenediyl group, phenanthrene diyl group, dihydrophenanthenediyl group, naphthacene diyl group, fluorenediyl group, pyrenediyl group, perylene diyl group, Examples include chrysenediyl groups and groups in which these groups have substituents, and groups represented by formulas (A-1) to (A-20) are preferable. The arylene group includes a group in which a plurality of these groups are bonded.
Figure JPOXMLDOC01-appb-C000034
Figure JPOXMLDOC01-appb-C000034
Figure JPOXMLDOC01-appb-C000035
Figure JPOXMLDOC01-appb-C000035
Figure JPOXMLDOC01-appb-C000036
Figure JPOXMLDOC01-appb-C000036
Figure JPOXMLDOC01-appb-C000037
[式中、R及びRaは、それぞれ独立に、水素原子、アルキル基、シクロアルキル基、アリール基又は1価の複素環基を表す。複数存在するR及びRaは、各々、同一でも異なっていてもよく、Ra同士は互いに結合して、それぞれが結合する原子と共に環を形成していてもよい。]
Figure JPOXMLDOC01-appb-C000037
[Wherein, R and R a each independently represents a hydrogen atom, an alkyl group, a cycloalkyl group, an aryl group or a monovalent heterocyclic group. A plurality of R and R a may be the same or different, and R a may be bonded to each other to form a ring together with the atoms to which they are bonded. ]
 2価の複素環基の炭素原子数は、置換基の炭素原子数を含めないで、通常2~60であり、好ましくは、3~20であり、より好ましくは、4~15である。
 2価の複素環基は、置換基を有していてもよく、例えば、ピリジン、ジアザベンゼン、トリアジン、アザナフタレン、ジアザナフタレン、カルバゾール、ジベンゾフラン、ジベンゾチオフェン、ジベンゾシロール、フェノキサジン、フェノチアジン、アクリジン、ジヒドロアクリジン、フラン、チオフェン、アゾール、ジアゾール、トリアゾールから、環を構成する炭素原子又はヘテロ原子に直接結合している水素原子のうち2個の水素原子を除いた2価の基が挙げられ、好ましくは、式(AA-1)~式(AA-34)で表される基である。2価の複素環基は、これらの基が複数結合した基を含む。
The number of carbon atoms of the divalent heterocyclic group is usually 2 to 60, preferably 3 to 20, and more preferably 4 to 15 excluding the number of carbon atoms of the substituent.
The divalent heterocyclic group may have a substituent, for example, pyridine, diazabenzene, triazine, azanaphthalene, diazanaphthalene, carbazole, dibenzofuran, dibenzothiophene, dibenzosilol, phenoxazine, phenothiazine, acridine, Divalent acridine, furan, thiophene, azole, diazole, and triazole include divalent groups obtained by removing two hydrogen atoms from hydrogen atoms directly bonded to carbon atoms or heteroatoms constituting the ring, and preferably Is a group represented by formula (AA-1) to formula (AA-34). The divalent heterocyclic group includes a group in which a plurality of these groups are bonded.
Figure JPOXMLDOC01-appb-C000038
Figure JPOXMLDOC01-appb-C000038
Figure JPOXMLDOC01-appb-C000039
Figure JPOXMLDOC01-appb-C000039
Figure JPOXMLDOC01-appb-C000040
Figure JPOXMLDOC01-appb-C000040
Figure JPOXMLDOC01-appb-C000041
Figure JPOXMLDOC01-appb-C000041
Figure JPOXMLDOC01-appb-C000042
Figure JPOXMLDOC01-appb-C000042
Figure JPOXMLDOC01-appb-C000043
Figure JPOXMLDOC01-appb-C000043
Figure JPOXMLDOC01-appb-C000044
[式中、R及びRaは、前記と同じ意味を表す。]
Figure JPOXMLDOC01-appb-C000044
[Wherein, R and R a represent the same meaning as described above. ]
 「架橋基」とは、加熱、紫外線照射、近紫外線照射、可視光照射、赤外線照射、ラジカル反応等に供することにより、新たな結合を生成することが可能な基であり、好ましくは、上記架橋基A群の式(XL-1)~(XL-21)で表される架橋基である。 The “crosslinking group” is a group capable of generating a new bond by being subjected to heating, ultraviolet irradiation, near ultraviolet irradiation, visible light irradiation, infrared irradiation, radical reaction, etc. A crosslinking group represented by formulas (XL-1) to (XL-21) of group A.
 「置換基」とは、ハロゲン原子、シアノ基、アルキル基、シクロアルキル基、アリール基、1価の複素環基、アルコキシ基、シクロアルコキシ基、アリールオキシ基、アミノ基、置換アミノ基、アルケニル基、シクロアルケニル基、アルキニル基又はシクロアルキニル基を表す。置換基は架橋基であってもよい。 “Substituent” means a halogen atom, cyano group, alkyl group, cycloalkyl group, aryl group, monovalent heterocyclic group, alkoxy group, cycloalkoxy group, aryloxy group, amino group, substituted amino group, alkenyl group. Represents a cycloalkenyl group, an alkynyl group or a cycloalkynyl group. The substituent may be a crosslinking group.
 「デンドロン」とは、原子又は環を分岐点とする規則的な樹枝状分岐構造(即ち、デンドリマー構造)を有する基を意味する。デンドロンを有する化合物(以下、「デンドリマー」と言う。)としては、例えば、国際公開第02/067343号、特開2003-231692号公報、国際公開第2003/079736号、国際公開第2006/097717号等の文献に記載の構造が挙げられる。 “Dendron” means a group having a regular dendritic branch structure (ie, a dendrimer structure) having an atom or ring as a branch point. Examples of the compound having dendron (hereinafter referred to as “dendrimer”) include, for example, International Publication No. 02/066733, Japanese Patent Application Laid-Open No. 2003-231692, International Publication No. 2003/079736, International Publication No. 2006/097717 And the structure described in the literature.
 デンドロンとしては、式(D-A)で表される基又は式(D-B)で表される基が好ましく、式(D-A)で表される基がより好ましい。 The dendron is preferably a group represented by the formula (DA) or a group represented by the formula (DB), and more preferably a group represented by the formula (DA).
 次に、式(D-A)で表される基、式(D-B)で表される基及び式(D-C)で表される基について説明する。 Next, the group represented by the formula (DA), the group represented by the formula (DB), and the group represented by the formula (DC) will be described.
 mDA1~mDA7は、好ましくは5以下の整数であり、より好ましくは2以下の整数であり、更に好ましくは0又は1である。mDA2~mDA7が、同一の整数であることが好ましく、mDA1~mDA7が、同一の整数であることがより好ましい。 m DA1 to m DA7 are preferably integers of 5 or less, more preferably integers of 2 or less, and even more preferably 0 or 1. m DA2 to m DA7 are preferably the same integer, and m DA1 to m DA7 are more preferably the same integer.
 GDAは、好ましくは式(GDA-11)~(GDA-15)で表される基であり、より好ましくは式(GDA-11)~(GDA-14)で表される基であり、更に好ましくは式(GDA-11)又は(GDA-14)で表される基であり、特に好ましくは式(GDA-11)で表される基である。 G DA is preferably a group represented by the formula (GDA-11) ~ (GDA -15), more preferably a group represented by the formula (GDA-11) ~ (GDA -14), further A group represented by formula (GDA-11) or (GDA-14) is preferred, and a group represented by formula (GDA-11) is particularly preferred.
Figure JPOXMLDOC01-appb-C000045
[式中、
 *は、式(D-A)におけるArDA1、式(D-B)におけるArDA1、式(D-B)におけるArDA2、又は、式(D-B)におけるArDA3との結合を表す。
 **は、式(D-A)におけるArDA2、式(D-B)におけるArDA2、式(D-B)におけるArDA4、又は、式(D-B)におけるArDA6との結合を表す。
 ***は、式(D-A)におけるArDA3、式(D-B)におけるArDA3、式(D-B)におけるArDA5、又は、式(D-B)におけるArDA7との結合を表す。
 RDAは、水素原子、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基又は1価の複素環基を表し、これらの基は更に置換基を有していてもよい。RDAが複数ある場合、それらは同一でも異なっていてもよい。]
Figure JPOXMLDOC01-appb-C000045
[Where:
* Is, Ar DA1 in the formula (DA), Ar DA1 in the formula (DB), Ar in formula (DB) DA2, or represents a bond between Ar DA3 in the formula (DB).
** is, Ar DA2 in the formula (DA), Ar DA2 in the formula (DB), Ar in formula (DB) DA4, or represents a bond between Ar DA6 in the formula (DB).
*** is, Ar DA3 in the formula (DA), Ar DA3 in the formula (DB), Ar in formula (DB) DA5, or represents a bond between Ar DA7 in formula (DB).
R DA represents a hydrogen atom, an alkyl group, a cycloalkyl group, an alkoxy group, a cycloalkoxy group, an aryl group, or a monovalent heterocyclic group, and these groups may further have a substituent. When there are a plurality of RDA , they may be the same or different. ]
 RDAは、好ましくは水素原子、アルキル基、シクロアルキル基、アルコキシ基又はシクロアルコキシ基であり、より好ましくは水素原子、アルキル基又はシクロアルキル基であり、これらの基は置換基を有していてもよい。 R DA is preferably a hydrogen atom, an alkyl group, a cycloalkyl group, an alkoxy group or a cycloalkoxy group, more preferably a hydrogen atom, an alkyl group or a cycloalkyl group, and these groups have a substituent. May be.
 ArDA1、ArDA2、ArDA3、ArDA4、ArDA5、ArDA6及びArDA7は、好ましくは、フェニレン基、フルオレンジイル基又はカルバゾールジイル基であり、より好ましくは式(A-1)~式(A-3)、式(A-8)、式(A-9)、式(AA-10)、式(AA-11)、式(AA-33)又は式(AA-34)で表される基であり、更に好ましくは式(ArDA-1)~式(ArDA-5)で表される基である。 Ar DA1, Ar DA2, Ar DA3 , Ar DA4, Ar DA5, Ar DA6 and Ar DA7 are preferably a phenylene group, a fluorenediyl group or a carbazole-diyl group, more preferably the formula (A-1) ~ Formula (A-3), Formula (A-8), Formula (A-9), Formula (AA-10), Formula (AA-11), Formula (AA-33), or Formula (AA-34) And more preferably a group represented by formula (ArDA-1) to formula (ArDA-5).
Figure JPOXMLDOC01-appb-C000046
[式中、
 RDAは前記と同じ意味を表す。
 RDBは、水素原子、アルキル基、シクロアルキル基、アリール基又は1価の複素環基を表し、これらの基は置換基を有していてもよい。RDBが複数ある場合、それらは同一でも異なっていてもよい。]
Figure JPOXMLDOC01-appb-C000046
[Where:
R DA represents the same meaning as described above.
R DB represents a hydrogen atom, an alkyl group, a cycloalkyl group, an aryl group or a monovalent heterocyclic group, and these groups may have a substituent. When there are a plurality of RDBs , they may be the same or different. ]
 RDBは、好ましくはアルキル基、シクロアルキル基、アリール基又は1価の複素環基であり、より好ましくはアリール基であり、これらの基は置換基を有していてもよい。 R DB is preferably an alkyl group, a cycloalkyl group, an aryl group or a monovalent heterocyclic group, more preferably an aryl group, and these groups optionally have a substituent.
 TDAは、好ましくは式(TDA-1)~(TDA-3)で表される基であり、より好ましくは式(TDA-1)で表される基である。 T DA is preferably a group represented by the formula (TDA-1) ~ (TDA -3), more preferably a group represented by the formula (TDA-1).
Figure JPOXMLDOC01-appb-C000047
[式中、RDA及びRDBは、前記と同じ意味を表す。]
Figure JPOXMLDOC01-appb-C000047
[Wherein, R DA and R DB represent the same meaning as described above. ]
 式(D-A)で表される基は、好ましくは式(D-A1)~(D-A4)で表される基であり、より好ましくは式(D-A1)又は式(D-A3)で表される基である。 The group represented by the formula (DA) is preferably a group represented by the formula (D-A1) to (D-A4), more preferably in the formula (D-A1) or the formula (D-A3). It is a group represented.
Figure JPOXMLDOC01-appb-C000048
[式中、
 Rp1、Rp2、Rp3及びRp4は、それぞれ独立に、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基又はフッ素原子を表す。Rp1、Rp2及びRp4が複数ある場合、それらはそれぞれ同一であっても異なっていてもよい。
 np1は、0~5の整数を表し、np2は0~3の整数を表し、np3は0又は1を表し、np4は0~4の整数を表す。複数あるnp1は、同一でも異なっていてもよい。]
Figure JPOXMLDOC01-appb-C000048
[Where:
R p1 , R p2 , R p3 and R p4 each independently represents an alkyl group, a cycloalkyl group, an alkoxy group, a cycloalkoxy group or a fluorine atom. When there are a plurality of R p1 , R p2 and R p4 , they may be the same or different.
np1 represents an integer of 0 to 5, np2 represents an integer of 0 to 3, np3 represents 0 or 1, and np4 represents an integer of 0 to 4. A plurality of np1 may be the same or different. ]
 式(D-B)で表される基は、好ましくは式(D-B1)~(D-B3)で表される基であり、より好ましくは式(D-B1)で表される基である。 The group represented by the formula (D-B) is preferably a group represented by the formulas (D-B1) to (D-B3), more preferably a group represented by the formula (D-B1).
Figure JPOXMLDOC01-appb-C000049
[式中、
 Rp1、Rp2及びRp3は、それぞれ独立に、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基又はフッ素原子を表す。Rp1及びRp2が複数ある場合、それらはそれぞれ同一でも異なっていてもよい。
 np1は0~5の整数を表し、np2は0~3の整数を表し、np3は0又は1を表す。np1及びnp2が複数ある場合、それらはそれぞれ同一でも異なっていてもよい。]
Figure JPOXMLDOC01-appb-C000049
[Where:
R p1 , R p2 and R p3 each independently represents an alkyl group, a cycloalkyl group, an alkoxy group, a cycloalkoxy group or a fluorine atom. When there are a plurality of R p1 and R p2 , they may be the same or different.
np1 represents an integer of 0 to 5, np2 represents an integer of 0 to 3, and np3 represents 0 or 1. When there are a plurality of np1 and np2, they may be the same or different. ]
 式(D-C)で表される基は、好ましくは式(D-C1)~(D-C4)で表される基であり、より好ましくは式(D-C1)で表される基である。 The group represented by the formula (D-C) is preferably a group represented by the formulas (D-C1) to (D-C4), more preferably a group represented by the formula (D-C1).
Figure JPOXMLDOC01-appb-C000050
[式中、
 Rp4、Rp5及びRp6は、それぞれ独立に、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基又はフッ素原子を表す。Rp4、Rp5及びRp6が複数ある場合、それらはそれぞれ同一であっても異なっていてもよい。
 np4は、0~4の整数を表し、np5は0~5の整数を表し、np6は0~5の整数を表す。]
Figure JPOXMLDOC01-appb-C000050
[Where:
R p4 , R p5 and R p6 each independently represents an alkyl group, a cycloalkyl group, an alkoxy group, a cycloalkoxy group or a fluorine atom. When there are a plurality of R p4 , R p5 and R p6 , they may be the same or different.
np4 represents an integer of 0 to 4, np5 represents an integer of 0 to 5, and np6 represents an integer of 0 to 5. ]
 np1は、好ましくは0又は1であり、より好ましくは1である。np2は、好ましくは0又は1であり、より好ましくは0である。np3は好ましくは0である。np4は、好ましくは0~2の整数である。np5は、好ましくは1~3の整数である。np6は、好ましくは0~2の整数である。 Np1 is preferably 0 or 1, more preferably 1. np2 is preferably 0 or 1, more preferably 0. np3 is preferably 0. np4 is preferably an integer of 0 to 2. np5 is preferably an integer of 1 to 3. np6 is preferably an integer of 0 to 2.
 Rp1、Rp2、Rp3、Rp4、Rp5及びRp6は、好ましくはアルキル基又はシクロアルキル基であり、より好ましくはメチル基、エチル基、イソプロピル基、tert-ブチル基、ヘキシル基、2-エチルヘキシル基、シクロヘキシル基、メトキシ基、2-エチルヘキシルオキシ基、tert-オクチル基又はシクロへキシルオキシ基であり、更に好ましくはメチル基、エチル基、イソプロピル基、tert-ブチル基、ヘキシル基、2-エチルヘキシル基又はtert-オクチル基である。 R p1 , R p2 , R p3 , R p4 , R p5 and R p6 are preferably alkyl groups or cycloalkyl groups, more preferably methyl groups, ethyl groups, isopropyl groups, tert-butyl groups, hexyl groups, 2-ethylhexyl group, cyclohexyl group, methoxy group, 2-ethylhexyloxy group, tert-octyl group or cyclohexyloxy group, more preferably methyl group, ethyl group, isopropyl group, tert-butyl group, hexyl group, 2 -Ethylhexyl group or tert-octyl group.
 式(D-A)で表される基としては、例えば、式(D-A-1)~(D-A-12)で表される基が挙げられる。 Examples of the group represented by the formula (D-A) include groups represented by the formulas (DA-1) to (DA-12).
Figure JPOXMLDOC01-appb-C000051
Figure JPOXMLDOC01-appb-C000051
Figure JPOXMLDOC01-appb-C000052
[式中、RDは、メチル基、エチル基、イソプロピル基、tert-ブチル基、ヘキシル基、2-エチルヘキシル基、tert-オクチル基、シクロヘキシル基、メトキシ基、2-エチルヘキシルオキシ基又はシクロへキシルオキシ基を表す。RDが複数存在する場合、それらは同一でも異なっていてもよい。]
Figure JPOXMLDOC01-appb-C000052
[Wherein, R D represents a methyl group, an ethyl group, an isopropyl group, a tert-butyl group, a hexyl group, a 2-ethylhexyl group, a tert-octyl group, a cyclohexyl group, a methoxy group, a 2-ethylhexyloxy group, or a cyclohexyloxy group. Represents a group. When two or more RD exists, they may be the same or different. ]
 式(D-B)で表される基としては、例えば、式(D-B-1)~(D-B-4)で表される基が挙げられる。 Examples of the group represented by the formula (D-B) include groups represented by the formulas (DB-1) to (DB-4).
Figure JPOXMLDOC01-appb-C000053
[式中、RDは前記と同じ意味を表す。]
Figure JPOXMLDOC01-appb-C000053
[Wherein, R D represents the same meaning as described above. ]
 式(D-C)で表される基としては、例えば、式(D-C-1)~(D-C-13)で表される基が挙げられる。 Examples of the group represented by the formula (D-C) include groups represented by the formulas (DC-1) to (DC-13).
Figure JPOXMLDOC01-appb-C000054
Figure JPOXMLDOC01-appb-C000054
Figure JPOXMLDOC01-appb-C000055
[式中、RDは前記と同じ意味を表す。]
Figure JPOXMLDOC01-appb-C000055
[Wherein, R D represents the same meaning as described above. ]
 RDはメチル基、エチル基、イソプロピル基、tert-ブチル基、ヘキシル基、2-エチルヘキシル基又はtert-オクチル基であることが好ましい。 R D is preferably a methyl group, an ethyl group, an isopropyl group, a tert-butyl group, a hexyl group, a 2-ethylhexyl group or a tert-octyl group.
 <発光素子>
 次に、本発明の一実施形態に係る発光素子について説明する。
 本発明の発光素子は、陽極と、陰極と、陽極及び陰極の間に設けられた第1の発光層と、陽極及び陰極の間に設けられた第2の発光層とを有する発光素子であって、第2の発光層が、式(1)で表される構成単位を含む高分子化合物、及び、前記高分子化合物の架橋体からなる群より選択される少なくとも1種を含有する、発光素子である。
<Light emitting element>
Next, a light emitting device according to an embodiment of the present invention will be described.
The light emitting device of the present invention is a light emitting device having an anode, a cathode, a first light emitting layer provided between the anode and the cathode, and a second light emitting layer provided between the anode and the cathode. The second light-emitting layer contains at least one selected from the group consisting of a polymer compound containing the structural unit represented by the formula (1) and a crosslinked product of the polymer compound, It is.
 [第1の発光層]
 次に、本実施形態に係る発光素子が有する第1の発光層について、説明する。
 第1の発光層は、発光材料を含有する層である。
[First light emitting layer]
Next, the 1st light emitting layer which the light emitting element concerning this embodiment has is demonstrated.
The first light emitting layer is a layer containing a light emitting material.
 ・発光材料
 発光材料は、低分子化合物と高分子化合物とに分類され、低分子化合物が好ましく、これらの化合物は架橋基を有していてもよい。
-Light emitting material A light emitting material is classified into a low molecular compound and a high molecular compound, and a low molecular compound is preferable, and these compounds may have a crosslinking group.
 低分子化合物としては、例えば、ナフタレン及びその誘導体、アントラセン及びその誘導体、ペリレン及びその誘導体、並びに、イリジウム、白金、パラジウム、ロジウム又はユーロピウムを中心金属とする燐光発光性化合物が挙げられる。 Examples of the low molecular weight compound include naphthalene and derivatives thereof, anthracene and derivatives thereof, perylene and derivatives thereof, and phosphorescent compounds having iridium, platinum, palladium, rhodium, or europium as a central metal.
 発光材料は、燐光発光性化合物を含むことが好ましい。 The light emitting material preferably contains a phosphorescent compound.
 第1の発光層は、本実施形態に係る発光素子の外部量子効率が優れるので、好ましくは2種以上の燐光発光性化合物を含む。 The first light-emitting layer preferably contains two or more phosphorescent compounds because the external quantum efficiency of the light-emitting device according to this embodiment is excellent.
 ・燐光発光性化合物
 燐光発光性化合物は、燐光発光性を有する化合物である。燐光発光性化合物としては、室温(例えば、25℃)で高い発光量子収率を有するものを好適に用いることができる。
-Phosphorescent compound The phosphorescent compound is a compound having phosphorescence. As the phosphorescent compound, a compound having a high emission quantum yield at room temperature (for example, 25 ° C.) can be preferably used.
 燐光発光性化合物としては、例えば、前記式(2)で表される燐光発光性化合物、及び、下記式で表される金属錯体が挙げられ、好ましくは、前記式(2)で表される燐光発光性化合物である。 Examples of the phosphorescent compound include a phosphorescent compound represented by the above formula (2) and a metal complex represented by the following formula. Preferably, the phosphorescent compound represented by the above formula (2) is used. It is a luminescent compound.
Figure JPOXMLDOC01-appb-C000056
Figure JPOXMLDOC01-appb-C000056
 第1の発光層に含まれる燐光発光性化合物は、前記式(2)で表される燐光発光性化合物であることが好ましく、中でも、第1の発光層に含まれる燐光発光性化合物の少なくとも1種として式(5)で表される燐光発光性化合物が含まれることが好ましい。 The phosphorescent compound contained in the first light emitting layer is preferably a phosphorescent compound represented by the formula (2), and among these, at least one of the phosphorescent compounds contained in the first light emitting layer. It is preferable that the phosphorescent compound represented by Formula (5) is contained as a seed.
Figure JPOXMLDOC01-appb-C000057
[式中、
 M1は、ロジウム原子、パラジウム原子、イリジウム原子又は白金原子を表す。
 n1は1以上の整数を表し、n2は0以上の整数を表し、n1+n2は2又は3である。M1がロジウム原子又はイリジウム原子の場合、n1+n2は3であり、Mがパラジウム原子又は白金原子の場合、n1+n2は2である。
 E1及びE2は、それぞれ独立に、炭素原子又は窒素原子を表す。但し、E1及びE2の少なくとも一方は炭素原子である。
 環R1は、5員の芳香族複素環を表し、この環は置換基を有していてもよい。該置換基が複数存在する場合、それらは同一でも異なっていてもよく、互いに結合して、それぞれが結合する原子とともに環を形成していてもよい。環R1が複数存在する場合、それらは同一でも異なっていてもよい。
 環R2は、芳香族炭化水素環又は芳香族複素環を表し、これらの環は置換基を有していてもよい。該置換基が複数存在する場合、それらは同一でも異なっていてもよく、互いに結合して、それぞれが結合する原子とともに環を形成していてもよい。環R2が複数存在する場合、それらは同一でも異なっていてもよい。
 環R1が有していてもよい置換基と環R2が有していてもよい置換基とは、互いに結合して、それぞれが結合する原子とともに環を形成していてもよい。
 A1-G1-A2は、アニオン性の2座配位子を表す。A1及びA2は、それぞれ独立に、炭素原子、酸素原子又は窒素原子を表し、これらの原子は環を構成する原子であってもよい。G1は、単結合、又は、A1及びA2とともに2座配位子を構成する原子団を表す。A1-G1-A2が複数存在する場合、それらは同一でも異なっていてもよい。]
Figure JPOXMLDOC01-appb-C000057
[Where:
M 1 represents a rhodium atom, a palladium atom, an iridium atom or a platinum atom.
n 1 represents an integer of 1 or more, n 2 represents an integer of 0 or more, and n 1 + n 2 is 2 or 3. When M 1 is a rhodium atom or an iridium atom, n 1 + n 2 is 3. When M 1 is a palladium atom or a platinum atom, n 1 + n 2 is 2.
E 1 and E 2 each independently represent a carbon atom or a nitrogen atom. However, at least one of E 1 and E 2 is a carbon atom.
Ring R 1 represents a 5-membered aromatic heterocyclic ring, and this ring may have a substituent. When a plurality of such substituents are present, they may be the same or different, and may be bonded to each other to form a ring together with the atoms to which each is bonded. When a plurality of rings R 1 are present, they may be the same or different.
Ring R 2 represents an aromatic hydrocarbon ring or an aromatic heterocyclic ring, and these rings may have a substituent. When a plurality of such substituents are present, they may be the same or different, and may be bonded to each other to form a ring together with the atoms to which each is bonded. When a plurality of rings R 2 are present, they may be the same or different.
The substituent that ring R 1 may have and the substituent that ring R 2 may have may be bonded to each other to form a ring together with the atoms to which they are bonded.
A 1 -G 1 -A 2 represents an anionic bidentate ligand. A 1 and A 2 each independently represents a carbon atom, an oxygen atom or a nitrogen atom, and these atoms may be atoms constituting a ring. G 1 represents a single bond or an atomic group constituting a bidentate ligand together with A 1 and A 2 . When a plurality of A 1 -G 1 -A 2 are present, they may be the same or different. ]
 式(5)中、M1はイリジウム原子又は白金原子であることが好ましく、イリジウム原子であることがより好ましい。 In Formula (5), M 1 is preferably an iridium atom or a platinum atom, and more preferably an iridium atom.
 式(5)中、E1及びE2は、炭素原子であることが好ましい。 In formula (5), E 1 and E 2 are preferably carbon atoms.
 式(5)中、環R1は、1つ以上3つ以下の窒素原子を構成原子として有する5員環の芳香族複素環であることが好ましく、イミダゾール環、トリアゾール環であることがより好ましく、これらの環は置換基を有していてもよい。 In the formula (5), the ring R 1 is preferably a 5-membered aromatic heterocyclic ring having 1 to 3 nitrogen atoms as constituent atoms, more preferably an imidazole ring or a triazole ring. These rings may have a substituent.
 式(5)中、環R2は、6員環の芳香族炭化水素環、又は、5員環若しくは6員環の芳香族複素環であることが好ましく、ベンゼン環、ピリジン環又はピリミジン環であることがより好ましく、これらの環は置換基を有していてもよい。 In formula (5), ring R 2 is preferably a 6-membered aromatic hydrocarbon ring, or a 5-membered or 6-membered aromatic heterocycle, and is a benzene ring, a pyridine ring or a pyrimidine ring. More preferably, these rings may have a substituent.
 環R1及び環R2が有していてもよい置換基としては、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基、アリールオキシ基、1価の複素環基、ハロゲン原子又はデンドロンが好ましく、アルキル基、シクロアルキル基、アリール基、ハロゲン原子又はデンドロンがより好ましく、これらの基は更に置換基を有していてもよい。 Examples of the substituent that the ring R 1 and the ring R 2 may have include an alkyl group, a cycloalkyl group, an alkoxy group, a cycloalkoxy group, an aryl group, an aryloxy group, a monovalent heterocyclic group, a halogen atom, A dendron is preferable, an alkyl group, a cycloalkyl group, an aryl group, a halogen atom or a dendron is more preferable, and these groups may further have a substituent.
 式(5)中、A1-G1-A2で表されるアニオン性の2座配位子としては、例えば、下記式で表される配位子が挙げられる。但し、A1-G1-A2で表されるアニオン性の2座配位子は、添え字n1でその数を定義されている配位子とは異なる。 In the formula (5), examples of the anionic bidentate ligand represented by A 1 -G 1 -A 2 include a ligand represented by the following formula. However, the anionic bidentate ligand represented by A 1 -G 1 -A 2 is different from the ligand whose number is defined by the subscript n 1 .
Figure JPOXMLDOC01-appb-C000058
Figure JPOXMLDOC01-appb-C000058
Figure JPOXMLDOC01-appb-C000059
[式中、*は、M1と結合する部位を示す。]
Figure JPOXMLDOC01-appb-C000059
Wherein * indicates the binding site for the M 1. ]
 式(5)で表される燐光発光性化合物は、式(5-A1)~式(5-A4)で表される燐光発光性化合物であることが好ましい。 The phosphorescent compound represented by the formula (5) is preferably a phosphorescent compound represented by the formula (5-A1) to the formula (5-A4).
Figure JPOXMLDOC01-appb-C000060
[式中、
 M1、n1、n2及びA1-G1-A2は、前記と同じ意味を表す。
 R11A、R12A、R13A、R21A、R22A、R23A及びR24Aは、それぞれ独立に、水素原子、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基、アリールオキシ基、1価の複素環基、置換アミノ基又はハロゲン原子を表し、これらの基は置換基を有していてもよい。R11A、R12A、R13A、R21A、R22A、R23A及びR24Aが複数存在する場合、それらはそれぞれ同一でも異なっていてもよい。R11AとR12A、R12AとR13A、R11AとR21A、R21AとR22A、R22AとR23A、及び、R23AとR24Aは、それぞれ結合して、それぞれが結合する原子とともに環を形成していてもよい。]
Figure JPOXMLDOC01-appb-C000060
[Where:
M 1 , n 1 , n 2 and A 1 -G 1 -A 2 represent the same meaning as described above.
R 11A , R 12A , R 13A , R 21A , R 22A , R 23A and R 24A are each independently a hydrogen atom, alkyl group, cycloalkyl group, alkoxy group, cycloalkoxy group, aryl group, aryloxy group, It represents a monovalent heterocyclic group, a substituted amino group, or a halogen atom, and these groups may have a substituent. When there are a plurality of R 11A , R 12A , R 13A , R 21A , R 22A , R 23A and R 24A , they may be the same or different. R 11A and R 12A , R 12A and R 13A , R 11A and R 21A , R 21A and R 22A , R 22A and R 23A , and R 23A and R 24A are bonded to each other together with the atoms to which they are bonded. A ring may be formed. ]
 R11A、R12A、R13A、R21A、R22A、R23A及びR24Aは、アルキル基、シクロアルキル基、アリール基、1価の複素環基又は置換アミノ基であることが好ましく、水素原子、アルキル基又はシクロアルキル基であることがより好ましい。 R 11A , R 12A , R 13A , R 21A , R 22A , R 23A and R 24A are each preferably an alkyl group, a cycloalkyl group, an aryl group, a monovalent heterocyclic group or a substituted amino group, and a hydrogen atom More preferably an alkyl group or a cycloalkyl group.
 R11A、R12A、R13A、R21A、R22A、R23A及びR24Aがアリール基、1価の複素環基又は置換アミノ基である場合、発光素子の外部量子効率がより優れるので、デンドロンであることが好ましい。デンドロンの好ましい態様としては、式(D-A)、式(D-B)又は式(D-C)で表される基が好ましく、式(D-A)又は式(D-C)で表される基がより好ましい。 When R 11A , R 12A , R 13A , R 21A , R 22A , R 23A, and R 24A are an aryl group, a monovalent heterocyclic group, or a substituted amino group, the external quantum efficiency of the light emitting device is more excellent, so that dendron It is preferable that As a preferred embodiment of the dendron, a group represented by the formula (DA), formula (DB) or formula (DC) is preferable, and the group represented by the formula (DA) or formula (DC) is preferred. More preferred are the groups
 式(5-A1)~式(5-A4)で表される燐光発光性化合物としては、例えば、下記式で表される燐光発光性化合物が挙げられる。 Examples of the phosphorescent compounds represented by the formulas (5-A1) to (5-A4) include phosphorescent compounds represented by the following formulas.
Figure JPOXMLDOC01-appb-C000061
Figure JPOXMLDOC01-appb-C000061
Figure JPOXMLDOC01-appb-C000062
Figure JPOXMLDOC01-appb-C000062
 第1の発光層は、本実施形態に係る発光素子の外部量子効率が優れるので、式(5)で表される燐光発光性化合物に加えて、後述の式(2-B1)~(2-B5)で表される燐光発光性化合物を含有することが好ましい。 Since the first light emitting layer has excellent external quantum efficiency of the light emitting device according to this embodiment, in addition to the phosphorescent compound represented by the formula (5), the following formulas (2-B1) to (2- It is preferable to contain the phosphorescent compound represented by B5).
 第1の発光層の形成に用いられる燐光発光性化合物は、例えば、特表2004-530254号公報、特開2008-179617号公報、特開2011-105701号公報、特表2007-504272号公報、特開2013-147449号公報、特開2013-147450号公報に記載されている方法に従って合成することができる。 Examples of the phosphorescent compound used for forming the first light-emitting layer include Japanese Unexamined Patent Publication No. 2004-530254, Japanese Unexamined Patent Application Publication No. 2008-179617, Japanese Unexamined Patent Application Publication No. 2011-105701, Japanese Unexamined Patent Publication No. 2007-504272, They can be synthesized according to the methods described in JP2013-147449A and JP2013-147450A.
 ・ホスト材料
 本実施形態に係る発光素子の外部量子効率が優れるので、第1の発光層は、燐光発光性化合物と、正孔注入性、正孔輸送性、電子注入性及び電子輸送性のうちの少なくとも1つの機能を有するホスト材料とを含有することが好ましい。ホスト材料は、1種単独であっても、2種以上であってもよい。
-Host material Since the external quantum efficiency of the light emitting device according to the present embodiment is excellent, the first light emitting layer is composed of a phosphorescent compound, a hole injecting property, a hole transporting property, an electron injecting property, and an electron transporting property. And a host material having at least one of the following functions. The host material may be one kind alone or two or more kinds.
 第1の発光層が燐光発光性化合物とホスト材料とを含有する場合、燐光発光性化合物の総含有量は、燐光発光性化合物とホスト材料との合計100質量部に対して、通常、0.1~50質量部であり、好ましくは5~40質量部である。 When the first light-emitting layer contains a phosphorescent compound and a host material, the total content of the phosphorescent compound is usually 0. The amount is 1 to 50 parts by mass, preferably 5 to 40 parts by mass.
 ホスト材料の有する最低励起三重項状態(T1)は、本実施形態に係る発光素子の外部量子効率が優れるので、第1の発光層の形成に用いられる燐光発光性化合物の有するT1と同等のエネルギー準位、又は、より高いエネルギー準位であることが好ましい。 Since the lowest excited triplet state (T 1 ) of the host material has excellent external quantum efficiency of the light emitting device according to this embodiment, it is equivalent to T 1 of the phosphorescent compound used for forming the first light emitting layer. It is preferable that the energy level is higher or higher.
 ホスト材料としては、本実施形態に係る発光素子を溶液塗布プロセスで作製できるので、第1の発光層の形成に用いられる燐光発光性化合物を溶解することが可能な溶媒に対して溶解性を示すものであることが好ましい。 As the host material, since the light-emitting element according to this embodiment can be manufactured by a solution coating process, it exhibits solubility in a solvent capable of dissolving the phosphorescent compound used for forming the first light-emitting layer. It is preferable.
 ホスト材料は、低分子化合物(以下、「低分子ホスト」と言う。)と高分子化合物(以下、「高分子ホスト」と言う。)とに分類されるが、低分子ホストが好ましい。 The host material is classified into a low molecular compound (hereinafter referred to as “low molecular host”) and a high molecular compound (hereinafter referred to as “polymer host”), and a low molecular host is preferable.
 低分子ホストは、好ましくは、前記式(H-1)で表される化合物である。 The low molecular host is preferably a compound represented by the formula (H-1).
 ArH1及びArH2は、フェニル基、フルオレニル基、スピロビフルオレニル基、ピリジル基、ピリミジニル基、トリアジニル基、キノリニル基、イソキノリニル基、チエニル基、ベンゾチエニル基、ジベンゾチエニル基、フリル基、ベンゾフリル基、ジベンゾフリル基、ピロリル基、インドリル基、アザインドリル基、カルバゾリル基、アザカルバゾリル基、ジアザカルバゾリル基、フェノキサジニル基又はフェノチアジニル基であることが好ましく、フェニル基、スピロビフルオレニル基、ピリジル基、ピリミジニル基、トリアジニル基、ジベンゾチエニル基、ジベンゾフリル基、カルバゾリル基又はアザカルバゾリル基であることがより好ましく、前記式(TDA-1)又は(TDA-3)で表される基であることが更に好ましく、これらの基は置換基を有していてもよい。 Ar H1 and Ar H2 are phenyl group, fluorenyl group, spirobifluorenyl group, pyridyl group, pyrimidinyl group, triazinyl group, quinolinyl group, isoquinolinyl group, thienyl group, benzothienyl group, dibenzothienyl group, furyl group, benzofuryl Group, dibenzofuryl group, pyrrolyl group, indolyl group, azaindolyl group, carbazolyl group, azacarbazolyl group, diazacarbazolyl group, phenoxazinyl group or phenothiazinyl group, phenyl group, spirobifluorenyl group, It is more preferably a pyridyl group, pyrimidinyl group, triazinyl group, dibenzothienyl group, dibenzofuryl group, carbazolyl group or azacarbazolyl group, and is a group represented by the above formula (TDA-1) or (TDA-3) Is more preferable. Groups may have a substituent.
 ArH1及びArH2が有していてもよい置換基としては、ハロゲン原子、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基又は1価の複素環基が好ましく、アルキル基又はシクロアルキル基がより好ましく、これらの基は更に置換基を有していてもよい。 As the substituent that Ar H1 and Ar H2 may have, a halogen atom, an alkyl group, a cycloalkyl group, an alkoxy group, a cycloalkoxy group, an aryl group, or a monovalent heterocyclic group is preferable. Alkyl groups are more preferred, and these groups may further have a substituent.
 nH1は、好ましくは1である。nH2は、好ましくは0である。
 nH3は、好ましくは1~3の整数であり、より好ましくは1である。
 nH11は、好ましくは1~5の整数であり、より好ましくは1~3の整数であり、更に好ましくは1である。
n H1 is preferably 1. n H2 is preferably 0.
n H3 is preferably an integer of 1 to 3, more preferably 1.
n H11 is preferably an integer of 1 to 5, more preferably an integer of 1 to 3, and still more preferably 1.
 RH11は、水素原子、アルキル基、シクロアルキル基、アリール基又は1価の複素環基であることが好ましく、水素原子又はアルキル基であることがより好ましく、これらの基は置換基を有していてもよい。 R H11 is preferably a hydrogen atom, an alkyl group, a cycloalkyl group, an aryl group or a monovalent heterocyclic group, more preferably a hydrogen atom or an alkyl group, and these groups have a substituent. It may be.
 LH1は、アリーレン基又は2価の複素環基であることが好ましい。
 LH1は、式(A-1)~(A-3)、式(A-8)~(A-10)、式(AA-1)~(AA-6)、式(AA-10)~(AA-21)又は式(AA-24)~(AA-34)で表される基であることが好ましく、式(A-1)、式(A-2)、式(AA-2)、式(AA-4)又は式(AA-14)で表される基であることがより好ましい。
 LH1が有していてもよい置換基としては、ハロゲン原子、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基又は1価の複素環基が好ましく、アルキル基、アルコキシ基、アリール基又は1価の複素環基がより好ましく、これらの基は更に置換基を有していてもよい。
L H1 is preferably an arylene group or a divalent heterocyclic group.
L H1 represents formulas (A-1) to (A-3), formulas (A-8) to (A-10), formulas (AA-1) to (AA-6), formulas (AA-10) to A group represented by formula (AA-21) or formulas (AA-24) to (AA-34) is preferred, and the formula (A-1), formula (A-2), formula (AA-2), A group represented by formula (AA-4) or (AA-14) is more preferable.
As the substituent that L H1 may have, a halogen atom, an alkyl group, a cycloalkyl group, an alkoxy group, a cycloalkoxy group, an aryl group, or a monovalent heterocyclic group is preferable, and an alkyl group, an alkoxy group, an aryl group A group or a monovalent heterocyclic group is more preferable, and these groups may further have a substituent.
 LH21は、単結合又はアリーレン基であることが好ましく、このアリーレン基は置換基を有していてもよい。
 LH21で表されるアリーレン基又は2価の複素環基の定義及び例は、LH1で表されるアリーレン基又は2価の複素環基の定義及び例と同様である。
L H21 is preferably a single bond or an arylene group, and this arylene group may have a substituent.
The definition and examples of the arylene group or divalent heterocyclic group represented by L H21 are the same as the definitions and examples of the arylene group or divalent heterocyclic group represented by L H1 .
 RH21は、アリール基又は1価の複素環基であることが好ましく、これらの基は置換基を有していてもよい
 RH21で表されるアリール基及び1価の複素環基の定義及び例は、ArH1及びArH2で表されるアリール基及び1価の複素環基の定義及び例と同様である。
 RH21が有していてもよい置換基の定義及び例は、ArH1及びArH2が有していてもよい置換基の定義及び例と同様である。
R H21 is preferably an aryl group or a monovalent heterocyclic group, and these groups may have a definition of the aryl group and monovalent heterocyclic group represented by R H21 and Examples are the same as the definitions and examples of the aryl group and monovalent heterocyclic group represented by Ar H1 and Ar H2 .
Definition and examples of the substituent which may be R H21 optionally has are the same as definitions and examples of the substituent may have Ar H1 and Ar H2 is.
 式(H-1)で表される化合物は、式(H-2)で表される化合物であることが好ましい。 The compound represented by the formula (H-1) is preferably a compound represented by the formula (H-2).
Figure JPOXMLDOC01-appb-C000063
[式中、ArH1、ArH2、nH3及びLH1は、前記と同じ意味を表す。]
Figure JPOXMLDOC01-appb-C000063
[Wherein, Ar H1 , Ar H2 , n H3 and L H1 represent the same meaning as described above. ]
 式(H-1)で表される化合物としては、例えば、式(H-101)~(H-118)で表される化合物が挙げられる。 Examples of the compound represented by the formula (H-1) include compounds represented by the formulas (H-101) to (H-118).
Figure JPOXMLDOC01-appb-C000064
Figure JPOXMLDOC01-appb-C000064
Figure JPOXMLDOC01-appb-C000065
Figure JPOXMLDOC01-appb-C000065
Figure JPOXMLDOC01-appb-C000066
Figure JPOXMLDOC01-appb-C000066
Figure JPOXMLDOC01-appb-C000067
Figure JPOXMLDOC01-appb-C000067
 高分子ホストは、好ましくは、式(Y)で表される構成単位を含む高分子化合物である。 The polymer host is preferably a polymer compound containing a structural unit represented by the formula (Y).
Figure JPOXMLDOC01-appb-C000068
[式中、ArY1は、アリーレン基、2価の複素環基、又は、アリーレン基と2価の複素環基とが直接結合した2価の基を表し、これらの基は置換基を有していてもよい。]
Figure JPOXMLDOC01-appb-C000068
[In the formula, Ar Y1 represents an arylene group, a divalent heterocyclic group, or a divalent group in which an arylene group and a divalent heterocyclic group are directly bonded, and these groups have a substituent. It may be. ]
 ArY1で表されるアリーレン基は、より好ましくは、式(A-1)、式(A-2)、式(A-6)-(A-10)、式(A-19)又は式(A-20)で表される基であり、これらの基は置換基を有していてもよい。 Arylene group represented by Ar Y1 is more preferably the formula (A-1), formula (A-2), the formula (A-6) - (A -10), formula (A-19) or Formula ( A-20), and these groups may have a substituent.
 ArY1で表される2価の複素環基は、より好ましくは、式(AA-1)-(AA-4)、式(AA-10)-(AA-15)、式(AA-18)-(AA-21)、式(AA-33)又は式(AA-34)で表される基であり、これらの基は置換基を有していてもよい。 The divalent heterocyclic group represented by Ar Y1 is more preferably a formula (AA-1)-(AA-4), a formula (AA-10)-(AA-15), a formula (AA-18) -(AA-21), a group represented by formula (AA-33) or formula (AA-34), and these groups may have a substituent.
 ArY1で表されるアリーレン基と2価の複素環基とが直接結合した2価の基における、アリーレン基及び2価の複素環基のより好ましい範囲、更に好ましい範囲は、それぞれ、前述のArY1で表されるアリーレン基及び2価の複素環基のより好ましい範囲、更に好ましい範囲と同様である。 In the divalent group in which the arylene group represented by Ar Y1 and the divalent heterocyclic group are directly bonded, more preferable ranges and further preferable ranges of the arylene group and the divalent heterocyclic group are the above-mentioned Ar. This is the same as the more preferable range and further preferable range of the arylene group and divalent heterocyclic group represented by Y1 .
 「アリーレン基と2価の複素環基とが直接結合した2価の基」としては、例えば、下記式で表される基が挙げられ、これらの基は置換基を有していてもよい。 Examples of the “divalent group in which an arylene group and a divalent heterocyclic group are directly bonded” include groups represented by the following formulas, and these groups may have a substituent.
Figure JPOXMLDOC01-appb-C000069
[式中、RXXは、水素原子、アルキル基、シクロアルキル基、アリール基又は1価の複素環基を表し、これらの基は置換基を有していてもよい。]
Figure JPOXMLDOC01-appb-C000069
[Wherein R XX represents a hydrogen atom, an alkyl group, a cycloalkyl group, an aryl group or a monovalent heterocyclic group, and these groups optionally have a substituent. ]
 RXXは、好ましくは、アルキル基、シクロアルキル基又はアリール基であり、これらの基は置換基を有していてもよい。 R XX is preferably an alkyl group, a cycloalkyl group, or an aryl group, and these groups optionally have a substituent.
 ArY1で表される基が有してもよい置換基は、好ましくは、アルキル基、シクロアルキル基又はアリール基であり、これらの基は更に置換基を有していてもよい。 The substituent that the group represented by Ar Y1 may have is preferably an alkyl group, a cycloalkyl group, or an aryl group, and these groups may further have a substituent.
 式(Y)で表される構成単位としては、例えば、式(Y-1)-(Y-10)で表される構成単位が挙げられる。 Examples of the structural unit represented by the formula (Y) include structural units represented by the formulas (Y-1)-(Y-10).
Figure JPOXMLDOC01-appb-C000070
[式中、RY1は、水素原子、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基又は1価の複素環基を表し、これらの基は置換基を有していてもよい。複数存在するRY1は、同一でも異なっていてもよく、隣接するRY1同士は互いに結合して、それぞれが結合する炭素原子と共に環を形成していてもよい。]
Figure JPOXMLDOC01-appb-C000070
[Wherein, R Y1 represents a hydrogen atom, an alkyl group, a cycloalkyl group, an alkoxy group, a cycloalkoxy group, an aryl group, or a monovalent heterocyclic group, and these groups optionally have a substituent. . A plurality of R Y1 may be the same or different, and adjacent R Y1 may be bonded to each other to form a ring together with the carbon atom to which each is bonded. ]
 RY1は、好ましくは、水素原子、アルキル基、シクロアルキル基又はアリール基であり、これらの基は置換基を有していてもよい。 R Y1 is preferably a hydrogen atom, an alkyl group, a cycloalkyl group, or an aryl group, and these groups optionally have a substituent.
Figure JPOXMLDOC01-appb-C000071
[式中、
 RY1は前記と同じ意味を表す。
 XY1は、-C(RY2)2-、-C(RY2)=C(RY2)-又は-C(RY2)2-C(RY2)2-で表される基を表す。RY2は、水素原子、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基又は1価の複素環基を表し、これらの基は置換基を有していてもよい。複数存在するRY2は、同一でも異なっていてもよく、RY2同士は互いに結合して、それぞれが結合する炭素原子と共に環を形成していてもよい。]
Figure JPOXMLDOC01-appb-C000071
[Where:
R Y1 represents the same meaning as described above.
X Y1 is, -C (R Y2) 2 - , - represents a group represented by - C (R Y2) = C (R Y2) - , or -C (R Y2) 2 -C ( R Y2) 2. R Y2 represents a hydrogen atom, an alkyl group, a cycloalkyl group, an alkoxy group, a cycloalkoxy group, an aryl group, or a monovalent heterocyclic group, and these groups may have a substituent. A plurality of R Y2 may be the same or different, and R Y2 may be bonded to each other to form a ring together with the carbon atom to which each is bonded. ]
 RY2は、好ましくは、アルキル基、シクロアルキル基、アリール基又は1価の複素環基であり、これらの基は置換基を有していてもよい。 R Y2 is preferably an alkyl group, a cycloalkyl group, an aryl group, or a monovalent heterocyclic group, and these groups optionally have a substituent.
 XY1において、-C(RY2)2-で表される基中の2個のRY2の組み合わせは、好ましくは両方がアルキル基若しくはシクロアルキル基、両方がアリール基、両方が1価の複素環基、又は、一方がアルキル基若しくはシクロアルキル基で他方がアリール基若しくは1価の複素環基であり、これらの基は置換基を有していてもよい。2個存在するRY2は互いに結合して、それぞれが結合する原子と共に環を形成していてもよく、RY2が環を形成する場合、-C(RY2)2-で表される基としては、好ましくは式(Y-A1)-(Y-A5)で表される基であり、これらの基は置換基を有していてもよい。 In X Y1 , the combination of two R Y2 in the group represented by —C (R Y2 ) 2 — is preferably an alkyl group or a cycloalkyl group, both an aryl group, and both are monovalent complex A cyclic group, or one is an alkyl group or a cycloalkyl group, and the other is an aryl group or a monovalent heterocyclic group, and these groups may have a substituent. Two R Y2 s may be bonded to each other to form a ring together with the atoms to which they are bonded. When R Y2 forms a ring, the group represented by —C (R Y2 ) 2 — Is preferably a group represented by the formula (Y-A1)-(Y-A5), and these groups may have a substituent.
Figure JPOXMLDOC01-appb-C000072
Figure JPOXMLDOC01-appb-C000072
 XY1において、-C(RY2)=C(RY2)-で表される基中の2個のRY2の組み合わせは、好ましくは両方がアルキル基若しくはシクロアルキル基、又は、一方がアルキル基若しくはシクロアルキル基で他方がアリール基であり、これらの基は置換基を有していてもよい。 In X Y1 , the combination of two R Y2 in the group represented by —C (R Y2 ) ═C (R Y2 ) — is preferably such that both are alkyl groups or cycloalkyl groups, or one is an alkyl group Alternatively, a cycloalkyl group and the other is an aryl group, and these groups optionally have a substituent.
 XY1において、-C(RY2)2-C(RY2)2-で表される基中の4個のRY2は、好ましくは置換基を有していてもよいアルキル基又はシクロアルキル基である。複数あるRY2は互いに結合して、それぞれが結合する原子と共に環を形成していてもよく、RY2が環を形成する場合、-C(RY2)2-C(RY2)2-で表される基は、好ましくは式(Y-B1)-(Y-B5)で表される基であり、これらの基は置換基を有していてもよい。 In X Y1 , four R Y2 in the group represented by —C (R Y2 ) 2 —C (R Y2 ) 2 — are preferably an alkyl group or a cycloalkyl group which may have a substituent. It is. A plurality of R Y2 may be bonded to each other to form a ring together with the atoms to which each is bonded. When R Y2 forms a ring, —C (R Y2 ) 2 —C (R Y2 ) 2 — The group represented is preferably a group represented by the formula (Y-B1)-(Y-B5), and these groups may have a substituent.
Figure JPOXMLDOC01-appb-C000073
[式中、RY2は前記と同じ意味を表す。]
Figure JPOXMLDOC01-appb-C000073
[Wherein, R Y2 represents the same meaning as described above. ]
Figure JPOXMLDOC01-appb-C000074
[式中、RY1及びXY1は前記と同じ意味を表す。]
Figure JPOXMLDOC01-appb-C000074
[Wherein, R Y1 and X Y1 represent the same meaning as described above. ]
Figure JPOXMLDOC01-appb-C000075
Figure JPOXMLDOC01-appb-C000075
Figure JPOXMLDOC01-appb-C000076
[式中、
 RY1は前記と同じ意味を表す。
 RY3は、水素原子、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基又は1価の複素環基を表し、これらの基は置換基を有していてもよい。]
Figure JPOXMLDOC01-appb-C000076
[Where:
R Y1 represents the same meaning as described above.
R Y3 represents a hydrogen atom, an alkyl group, a cycloalkyl group, an alkoxy group, a cycloalkoxy group, an aryl group, or a monovalent heterocyclic group, and these groups may have a substituent. ]
 RY3は、好ましくは好ましくはアリール基であり、これらの基は置換基を有していてもよい。 R Y3 is preferably an aryl group, and these groups optionally have a substituent.
Figure JPOXMLDOC01-appb-C000077
[式中、
 RY1は前記を同じ意味を表す。
 RY4は、水素原子、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基又は1価の複素環基を表し、これらの基は置換基を有していてもよい。]
Figure JPOXMLDOC01-appb-C000077
[Where:
R Y1 represents the same meaning as described above.
R Y4 represents a hydrogen atom, an alkyl group, a cycloalkyl group, an alkoxy group, a cycloalkoxy group, an aryl group, or a monovalent heterocyclic group, and these groups optionally have a substituent. ]
 RY4は、好ましくは好ましくはアリール基であり、これらの基は置換基を有していてもよい。 R Y4 is preferably an aryl group, and these groups optionally have a substituent.
 式(Y)で表される構成単位としては、例えば、式(Y-101)-(Y-121)で表されるアリーレン基からなる構成単位、式(Y-201)-(Y-207)で表される2価の複素環基からなる構成単位、式(Y-301)-(Y-304)で表されるアリーレン基と2価の複素環基とが直接結合した2価の基からなる構成単位が挙げられる。 As the structural unit represented by the formula (Y), for example, a structural unit composed of an arylene group represented by the formula (Y-101)-(Y-121), a formula (Y-201)-(Y-207) A divalent group in which an arylene group represented by the formula (Y-301)-(Y-304) and a divalent heterocyclic group are directly bonded to each other. The structural unit is given.
Figure JPOXMLDOC01-appb-C000078
Figure JPOXMLDOC01-appb-C000078
Figure JPOXMLDOC01-appb-C000079
Figure JPOXMLDOC01-appb-C000079
Figure JPOXMLDOC01-appb-C000080
Figure JPOXMLDOC01-appb-C000080
 式(Y)で表される構成単位であって、ArY1がアリーレン基である構成単位は、外部量子効率が優れるので、高分子化合物に含まれる構成単位の合計量に対して、好ましくは0.5~80モル%であり、より好ましくは30~60モル%である。 The structural unit represented by the formula (Y), wherein Ar Y1 is an arylene group, is excellent in external quantum efficiency, and is preferably 0.5% relative to the total amount of structural units contained in the polymer compound. It is ˜80 mol%, more preferably 30 to 60 mol%.
 式(Y)で表される構成単位であって、ArY1が2価の複素環基、又は、アリーレン基と2価の複素環基とが直接結合した2価の基である構成単位は、本発明の実施形態の発光素子の電荷輸送性が優れるので、高分子化合物に含まれる構成単位の合計量に対して、好ましくは0.5~30モル%であり、より好ましくは3~20モル%である。 A structural unit represented by the formula (Y), wherein Ar Y1 is a divalent heterocyclic group or a divalent group in which an arylene group and a divalent heterocyclic group are directly bonded, Since the charge transport property of the light emitting device of the embodiment of the present invention is excellent, it is preferably 0.5 to 30 mol%, more preferably 3 to 20 mol%, based on the total amount of structural units contained in the polymer compound. is there.
 式(Y)で表される構成単位は、高分子ホスト中に、1種のみ含まれていてもよく、2種以上含まれていてもよい。 In the polymer host, only one type of structural unit represented by the formula (Y) may be contained, or two or more types may be contained.
 高分子ホストは、正孔輸送性が優れるので、更に、下記式(X)で表される構成単位を含むことが好ましい。 Since the polymer host is excellent in hole transport properties, it is preferable that the polymer host further contains a structural unit represented by the following formula (X).
Figure JPOXMLDOC01-appb-C000081
[式中、
 aX1及びaX2は、それぞれ独立に、0~2の整数を表す。
 ArX1及びArX3は、それぞれ独立に、アリーレン基又は2価の複素環基を表し、これらの基は置換基を有していてもよい。
 ArX2及びArX4は、それぞれ独立に、アリーレン基、2価の複素環基、又は、アリーレン基と2価の複素環基とが直接結合した2価の基を表し、これらの基は置換基を有していてもよい。ArX2及びArX4が複数存在する場合、それらは同一でも異なっていてもよい。
 RX1、RX2及びRX3は、それぞれ独立に、水素原子、アルキル基、シクロアルキル基、アリール基又は1価の複素環基を表し、これらの基は置換基を有していてもよい。RX2及びRX3が複数存在する場合、それらは同一でも異なっていてもよい。]
Figure JPOXMLDOC01-appb-C000081
[Where:
a X1 and a X2 each independently represent an integer of 0 to 2.
Ar X1 and Ar X3 each independently represent an arylene group or a divalent heterocyclic group, and these groups optionally have a substituent.
Ar X2 and Ar X4 each independently represent an arylene group, a divalent heterocyclic group, or a divalent group in which an arylene group and a divalent heterocyclic group are directly bonded, and these groups are substituents You may have. When there are a plurality of Ar X2 and Ar X4 , they may be the same or different.
R X1 , R X2 and R X3 each independently represent a hydrogen atom, an alkyl group, a cycloalkyl group, an aryl group or a monovalent heterocyclic group, and these groups may have a substituent. When there are a plurality of R X2 and R X3 , they may be the same or different. ]
 aX1は、外部量子効率が優れるので、好ましくは0又は1である。
 aX2は、外部量子効率が優れるので、好ましくは0である。
a X1 is preferably 0 or 1 because of its excellent external quantum efficiency.
a X2 is preferably 0 because of its excellent external quantum efficiency.
 RX1、RX2及びRX3は、好ましくはアリール基であり、これらの基は置換基を有していてもよい。 R X1 , R X2 and R X3 are preferably aryl groups, and these groups may have a substituent.
 ArX1及びArX3で表されるアリーレン基は、より好ましくは式(A-1)又は式(A-9)で表される基であり、これらの基は置換基を有していてもよい。
 ArX1及びArX3で表される2価の複素環基は、より好ましくは式(AA-1)、式(AA-2)又は式(AA-7)-(AA-26)で表される基であり、これらの基は置換基を有していてもよい。
 ArX1及びArX3は、好ましくは置換基を有していてもよいアリーレン基である。
The arylene group represented by Ar X1 and Ar X3 is more preferably a group represented by the formula (A-1) or the formula (A-9), and these groups may have a substituent. .
The divalent heterocyclic group represented by Ar X1 and Ar X3 is more preferably represented by the formula (AA-1), the formula (AA-2), or the formula (AA-7)-(AA-26). These groups may have a substituent.
Ar X1 and Ar X3 are preferably an arylene group which may have a substituent.
 ArX2及びArX4で表されるアリーレン基としては、より好ましくは式(A-1)、式(A-6)、式(A-7)、式(A-9)-(A-11)又は式(A-19)で表される基であり、これらの基は置換基を有していてもよい。
 ArX2及びArX4で表される2価の複素環基のより好ましい範囲は、ArX1及びArX3で表される2価の複素環基のより好ましい範囲と同じである。
 ArX2及びArX4で表されるアリーレン基と2価の複素環基とが直接結合した2価の基における、アリーレン基及び2価の複素環基のより好ましい範囲、更に好ましい範囲は、それぞれ、ArX1及びArX3で表されるアリーレン基及び2価の複素環基のより好ましい範囲、更に好ましい範囲と同様である。
 ArX2及びArX4で表されるアリーレン基と2価の複素環基とが直接結合した2価の基としては、式(Y)のArY1で表されるアリーレン基と2価の複素環基とが直接結合した2価の基と同様のものが挙げられる。
 ArX2及びArX4は、好ましくは置換基を有していてもよいアリーレン基である。
As the arylene group represented by Ar X2 and Ar X4 , more preferably, the formula (A-1), the formula (A-6), the formula (A-7), the formula (A-9)-(A-11) Or it is group represented by a formula (A-19), and these groups may have a substituent.
The more preferable range of the divalent heterocyclic group represented by Ar X2 and Ar X4 is the same as the more preferable range of the divalent heterocyclic group represented by Ar X1 and Ar X3 .
More preferred ranges and further preferred ranges of the arylene group and the divalent heterocyclic group in the divalent group in which the arylene group represented by Ar X2 and Ar X4 and the divalent heterocyclic group are directly bonded are respectively This is the same as the more preferable range and further preferable range of the arylene group and divalent heterocyclic group represented by Ar X1 and Ar X3 .
Examples of the divalent group in which the arylene group represented by Ar X2 and Ar X4 and the divalent heterocyclic group are directly bonded include an arylene group represented by Ar Y1 in the formula (Y) and a divalent heterocyclic group And the same as the divalent group directly bonded to each other.
Ar X2 and Ar X4 are preferably an arylene group which may have a substituent.
 ArX1~ArX4及びRX1~RX3で表される基が有してもよい置換基としては、好ましくはアルキル基、シクロアルキル基又はアリール基であり、これらの基は更に置換基を有していてもよい。 The substituent which the groups represented by Ar X1 to Ar X4 and R X1 to R X3 may have is preferably an alkyl group, a cycloalkyl group or an aryl group, and these groups further have a substituent. You may do it.
 式(X)で表される構成単位は、好ましくは式(X-1)-(X-7)で表される構成単位である。 The structural unit represented by the formula (X) is preferably a structural unit represented by the formula (X-1)-(X-7).
Figure JPOXMLDOC01-appb-C000082
Figure JPOXMLDOC01-appb-C000082
Figure JPOXMLDOC01-appb-C000083
[式中、RX4及びRX5は、それぞれ独立に、水素原子、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基、アリールオキシ基、ハロゲン原子、1価の複素環基又はシアノ基を表し、これらの基は置換基を有していてもよい。複数存在するRX4は、同一でも異なっていてもよい。複数存在するRX5は、同一でも異なっていてもよく、隣接するRX5同士は互いに結合して、それぞれが結合する炭素原子と共に環を形成していてもよい。]
Figure JPOXMLDOC01-appb-C000083
[Wherein, R X4 and R X5 each independently represent a hydrogen atom, an alkyl group, a cycloalkyl group, an alkoxy group, a cycloalkoxy group, an aryl group, an aryloxy group, a halogen atom, a monovalent heterocyclic group or cyano. Represents a group, and these groups may have a substituent. A plurality of R X4 may be the same or different. A plurality of R X5 may be the same or different, and adjacent R X5 may be bonded to each other to form a ring together with the carbon atom to which each is bonded. ]
 式(X)で表される構成単位は、正孔輸送性が優れるので、高分子ホストに含まれる構成単位の合計量に対して、好ましくは0.1~50モル%であり、より好ましくは1~40モル%であり、更に好ましくは5~30モル%である。 Since the structural unit represented by the formula (X) has excellent hole transportability, it is preferably 0.1 to 50 mol%, more preferably 1 to 5 mol% with respect to the total amount of the structural units contained in the polymer host. It is 40 mol%, more preferably 5 to 30 mol%.
 式(X)で表される構成単位としては、例えば、式(X1-1)-(X1-11)で表される構成単位が挙げられる。 Examples of the structural unit represented by the formula (X) include structural units represented by the formulas (X1-1)-(X1-11).
Figure JPOXMLDOC01-appb-C000084
Figure JPOXMLDOC01-appb-C000084
Figure JPOXMLDOC01-appb-C000085
Figure JPOXMLDOC01-appb-C000085
 高分子ホストにおいて、式(X)で表される構成単位は、1種のみ含まれていても、2種以上含まれていてもよい。 In the polymer host, only one type of structural unit represented by the formula (X) may be included, or two or more types of structural units may be included.
 高分子ホストとしては、例えば、表1の高分子化合物(P-1)~(P-6)が挙げられる。ここで、「その他」の構成単位とは、式(Y)で表される構成単位、式(X)で表される構成単位以外の構成単位を意味する。 Examples of the polymer host include polymer compounds (P-1) to (P-6) shown in Table 1. Here, the “other” structural unit means a structural unit other than the structural unit represented by the formula (Y) and the structural unit represented by the formula (X).
Figure JPOXMLDOC01-appb-T000086

[表中、p、q、r、s及びtは、各構成単位のモル比率を示す。p+q+r+s+t=100であり、かつ、100≧p+q+r+s≧70である。]
Figure JPOXMLDOC01-appb-T000086

[In the table, p, q, r, s and t represent the molar ratio of each constituent unit. p + q + r + s + t = 100 and 100 ≧ p + q + r + s ≧ 70. ]
 高分子ホストは、ブロック共重合体、ランダム共重合体、交互共重合体、グラフト共重合体のいずれであってもよいし、その他の態様であってもよいが、複数種の原料モノマーを共重合してなる共重合体であることが好ましい。 The polymer host may be any of a block copolymer, a random copolymer, an alternating copolymer, and a graft copolymer, and may be in other modes. A copolymer obtained by polymerization is preferred.
 高分子ホストは、ケミカルレビュー(Chem. Rev.),第109巻,897-1091頁(2009年)等に記載の公知の重合方法を用いて製造することができ、Suzuki反応、Yamamoto反応、Buchwald反応、Stille反応、Negishi反応及びKumada反応等の遷移金属触媒を用いるカップリング反応により重合させる方法が例示される。 The polymer host can be produced using a known polymerization method described in Chemical Review (Chem. Rev.), Vol. 109, pp. 897-1091 (2009), etc., and Suzuki reaction, Yamamoto reaction, Buchwald Examples thereof include a polymerization method by a coupling reaction using a transition metal catalyst such as a reaction, Stille reaction, Negishi reaction, and Kumada reaction.
 前記重合方法において、単量体を仕込む方法としては、単量体全量を反応系に一括して仕込む方法、単量体の一部を仕込んで反応させた後、残りの単量体を一括、連続又は分割して仕込む方法、単量体を連続又は分割して仕込む方法等が挙げられる。
 遷移金属触媒としては、パラジウム触媒、ニッケル触媒等が挙げられる。
In the polymerization method, as a method of charging the monomer, a method of charging the entire amount of the monomer into the reaction system at once, a part of the monomer is charged and reacted, and then the remaining monomer is batched, Examples thereof include a method of charging continuously or divided, a method of charging monomer continuously or divided, and the like.
Examples of the transition metal catalyst include a palladium catalyst and a nickel catalyst.
 重合反応の後処理は、公知の方法、例えば、分液により水溶性不純物を除去する方法、メタノール等の低級アルコールに重合反応後の反応液を加えて、析出させた沈殿を濾過した後、乾燥させる方法等を単独又は組み合わせて行う。高分子ホストの純度が低い場合、例えば、晶析、再沈殿、ソックスレー抽出器による連続抽出、カラムクロマトグラフィー等の通常の方法にて精製することができる。 Post-treatment of the polymerization reaction is a known method, for example, a method of removing water-soluble impurities by liquid separation, adding the reaction solution after polymerization reaction to a lower alcohol such as methanol, filtering the deposited precipitate, and then drying. These methods are performed alone or in combination. When the purity of the polymer host is low, it can be purified by usual methods such as crystallization, reprecipitation, continuous extraction with a Soxhlet extractor, column chromatography, and the like.
 ・その他の材料
 第1の発光層は、少なくとも1種の発光材料と、正孔輸送材料、正孔注入材料、電子輸送材料、電子注入材料及び酸化防止剤からなる群から選ばれる少なくとも1種の材料とを含有することが好ましい。
Other materials The first light emitting layer includes at least one light emitting material and at least one selected from the group consisting of a hole transport material, a hole injection material, an electron transport material, an electron injection material, and an antioxidant. It is preferable to contain a material.
 第1の発光層において、発光材料の含有量は、第1の発光層中の発光材料、正孔輸送材料、正孔注入材料、電子輸送材料及び電子注入材料の合計100重量部に対して、通常、0.1~100重量部である。 In the first light emitting layer, the content of the light emitting material is 100 parts by weight in total of the light emitting material, hole transport material, hole injection material, electron transport material and electron injection material in the first light emitting layer. Usually 0.1 to 100 parts by weight.
 第1の発光層は、発光材料を含むインク(以下、「第1の発光層の形成に用いられるインク」ともいう。)を用いて、スピンコート法、グラビアコート法、バーコート法、ロールコート法、スプレーコート法、スクリーン印刷法、ダイコート法、インクジェット印刷法、キャピラリ-コート法、ノズルコート法等の塗布法により形成することができる。 The first light-emitting layer is formed using an ink containing a light-emitting material (hereinafter also referred to as “ink used for forming the first light-emitting layer”), a spin coating method, a gravure coating method, a bar coating method, a roll coating. It can be formed by a coating method such as a method, a spray coating method, a screen printing method, a die coating method, an ink jet printing method, a capillary coating method, or a nozzle coating method.
 第1の発光層の形成に用いられるインクの粘度は、印刷法の種類によって調整すればよいが、インクジェットプリント法等の溶液が吐出装置を経由する印刷法に適用する場合には、吐出時の目づまりと飛行曲がりを防止するために、好ましくは25℃において1~20mPa・sである。 The viscosity of the ink used for forming the first light emitting layer may be adjusted depending on the type of printing method. However, when a solution such as an ink jet printing method is applied to a printing method via a discharge device, In order to prevent clogging and flight bending, the pressure is preferably 1 to 20 mPa · s at 25 ° C.
 インクに含まれる溶媒は、インク中の固形分を溶解又は均一に分散できる溶媒が好ましい。溶媒としては、例えば、クロロベンゼン、o-ジクロロベンゼン等の塩素系溶媒;テトラヒドロフラン、ジオキサン、アニソール、4-メチルアニソール等のエーテル系溶媒;トルエン、キシレン、メシチレン、エチルベンゼン、n-ヘキシルベンゼン、シクロヘキシルベンゼン等の芳香族炭化水素系溶媒;シクロヘキサン、メチルシクロヘキサン、n-ヘキサン、n-オクタン、n-デカン、n-ドデカン、ビシクロヘキシル等の脂肪族炭化水素系溶媒;メチルエチルケトン、シクロヘキサノン、アセトフェノン等のケトン系溶媒;酢酸エチル、酢酸ブチル、エチルセルソルブアセテート、安息香酸メチル、酢酸フェニル等のエステル系溶媒;エチレングリコール、グリセリン、1,2-ヘキサンジオール等の多価アルコール系溶媒;イソプロピルアルコール、シクロヘキサノール等のアルコール系溶媒;ジメチルスルホキシド等のスルホキシド系溶媒;N-メチル-2-ピロリドン、N,N-ジメチルホルムアミド等のアミド系溶媒が挙げられる。溶媒は、一種単独で用いても二種以上を併用してもよい。 The solvent contained in the ink is preferably a solvent that can dissolve or uniformly disperse the solid content in the ink. Examples of the solvent include chlorine solvents such as chlorobenzene and o-dichlorobenzene; ether solvents such as tetrahydrofuran, dioxane, anisole and 4-methylanisole; toluene, xylene, mesitylene, ethylbenzene, n-hexylbenzene, cyclohexylbenzene and the like. Aromatic hydrocarbon solvents such as: cyclohexane, methylcyclohexane, n-hexane, n-octane, n-decane, n-dodecane, bicyclohexyl and other aliphatic hydrocarbon solvents; methyl ethyl ketone, cyclohexanone, acetophenone and other ketone solvents Ester solvents such as ethyl acetate, butyl acetate, ethyl cellosolve acetate, methyl benzoate, and phenyl acetate; polyhydric alcohol solvents such as ethylene glycol, glycerin, and 1,2-hexanediol; Alcohol solvents hexanol; sulfoxide solvents such as dimethyl sulfoxide; N- methyl-2-pyrrolidone, N, include amide solvents such as N- dimethylformamide. A solvent may be used individually by 1 type, or may use 2 or more types together.
 第1発光層の形成に用いられるインクにおいて、溶媒の配合量は、発光材料100重量部に対して、通常、1000~100000重量部である。 In the ink used for forming the first light emitting layer, the amount of the solvent is usually 1000 to 100,000 parts by weight with respect to 100 parts by weight of the light emitting material.
 正孔輸送材料は、低分子化合物と高分子化合物とに分類され、高分子化合物が好ましく、架橋基を有する高分子化合物がより好ましい。 The hole transport material is classified into a low molecular compound and a high molecular compound, and a high molecular compound is preferable, and a high molecular compound having a crosslinking group is more preferable.
 低分子化合物としては、例えば、トリフェニルアミン及びその誘導体、N,N’-ジ-1-ナフチル-N,N’-ジフェニルベンジジン、並びに、N,N’-ジフェニル-N,N’-ジ(m-トリル)ベンジジン等の芳香族アミン化合物が挙げられる。 Examples of the low molecular weight compound include triphenylamine and derivatives thereof, N, N′-di-1-naphthyl-N, N′-diphenylbenzidine, and N, N′-diphenyl-N, N′-di ( and aromatic amine compounds such as m-tolyl) benzidine.
 高分子化合物としては、例えば、ポリビニルカルバゾール及びその誘導体;側鎖又は主鎖に芳香族アミン構造を有するポリアリーレン及びその誘導体が挙げられる。高分子化合物は、電子受容性部位が結合された化合物でもよい。電子受容性部位としては、例えば、フラーレン、テトラフルオロテトラシアノキノジメタン、テトラシアノエチレン、トリニトロフルオレノンが挙げられる。 Examples of the polymer compound include polyvinyl carbazole and derivatives thereof; polyarylene having an aromatic amine structure in the side chain or main chain and derivatives thereof. The polymer compound may be a compound to which an electron accepting site is bonded. Examples of the electron accepting site include fullerene, tetrafluorotetracyanoquinodimethane, tetracyanoethylene, and trinitrofluorenone.
 第1の発光層が正孔輸送材料を含有する場合、正孔輸送材料の含有量は、第1の発光層中の発光材料、正孔輸送材料、正孔注入材料、電子輸送材料及び電子注入材料の合計100重量部に対して、通常、0.1~99重量部であり、好ましくは0.1~50重量部であり、より好ましくは0.5~10重量部である。
 正孔輸送材料は、一種単独で用いても二種以上を併用してもよい。
When the first light emitting layer contains a hole transport material, the content of the hole transport material is the light emitting material, hole transport material, hole injection material, electron transport material and electron injection in the first light emitting layer. The amount is usually 0.1 to 99 parts by weight, preferably 0.1 to 50 parts by weight, and more preferably 0.5 to 10 parts by weight with respect to 100 parts by weight of the total material.
A hole transport material may be used individually by 1 type, or may use 2 or more types together.
 電子輸送材料は、低分子化合物と高分子化合物とに分類される。電子輸送材料は、架橋基を有していてもよい。 Electron transport materials are classified into low molecular weight compounds and high molecular weight compounds. The electron transport material may have a crosslinking group.
 低分子化合物としては、例えば、8-ヒドロキシキノリンを配位子とする金属錯体、オキサジアゾール、アントラキノジメタン、ベンゾキノン、ナフトキノン、アントラキノン、テトラシアノアントラキノジメタン、フルオレノン、ジフェニルジシアノエチレン、及び、ジフェノキノン、並びに、これらの誘導体が挙げられる。 Examples of the low molecular compound include a metal complex having 8-hydroxyquinoline as a ligand, oxadiazole, anthraquinodimethane, benzoquinone, naphthoquinone, anthraquinone, tetracyanoanthraquinodimethane, fluorenone, diphenyldicyanoethylene, and , Diphenoquinone, and derivatives thereof.
 高分子化合物としては、例えば、ポリフェニレン、ポリフルオレン、及び、これらの誘導体が挙げられる。高分子化合物は、金属でドープされていてもよい。 Examples of the polymer compound include polyphenylene, polyfluorene, and derivatives thereof. The polymer compound may be doped with a metal.
 第1の発光層が電子輸送材料を含有する場合、電子輸送材料の含有量は、第1の発光層中の発光材料、正孔輸送材料、正孔注入材料、電子輸送材料及び電子注入材料の合計100重量部に対して、通常、0.1~99重量部であり、好ましくは0.1~50重量部であり、より好ましくは0.5~10重量部である。
 電子輸送材料は、一種単独で用いても二種以上を併用してもよい。
When the first light-emitting layer contains an electron transport material, the content of the electron transport material is the same as that of the light-emitting material, hole transport material, hole injection material, electron transport material, and electron injection material in the first light-emitting layer. The amount is usually 0.1 to 99 parts by weight, preferably 0.1 to 50 parts by weight, more preferably 0.5 to 10 parts by weight with respect to the total of 100 parts by weight.
An electron transport material may be used individually by 1 type, or may use 2 or more types together.
 正孔注入材料及び電子注入材料は、各々、低分子化合物と高分子化合物とに分類される。正孔注入材料及び電子注入材料は、架橋基を有していてもよい。 The hole injection material and the electron injection material are each classified into a low molecular compound and a high molecular compound. The hole injection material and the electron injection material may have a crosslinking group.
 低分子化合物としては、例えば、銅フタロシアニン等の金属フタロシアニン;カーボン;モリブデン、タングステン等の金属酸化物;フッ化リチウム、フッ化ナトリウム、フッ化セシウム、フッ化カリウム等の金属フッ化物が挙げられる。 Examples of low molecular weight compounds include metal phthalocyanines such as copper phthalocyanine; carbon; metal oxides such as molybdenum and tungsten; and metal fluorides such as lithium fluoride, sodium fluoride, cesium fluoride, and potassium fluoride.
 高分子化合物としては、例えば、ポリアニリン、ポリチオフェン、ポリピロール、ポリフェニレンビニレン、ポリチエニレンビニレン、ポリキノリン、及び、ポリキノキサリン、並びに、これらの誘導体;芳香族アミン構造を主鎖又は側鎖に含む重合体等の導電性高分子が挙げられる。 Examples of the polymer compound include polyaniline, polythiophene, polypyrrole, polyphenylene vinylene, polythienylene vinylene, polyquinoline, and polyquinoxaline, and derivatives thereof; polymers containing an aromatic amine structure in the main chain or side chain, etc. The conductive polymer is mentioned.
 第1の発光層が正孔注入材料及び電子注入材料を含有する場合、正孔注入材料及び電子注入材料の含有量は、第1の発光層中の発光材料、正孔輸送材料、正孔注入材料、電子輸送材料及び電子注入材料の合計100重量部に対して、通常、0.1~30重量部であり、好ましくは0.1~10重量部であり、より好ましくは0.1~1重量部である。
 正孔注入材料及び電子注入材料は、各々、一種単独で用いても二種以上を併用してもよい。
When the first light emitting layer contains a hole injecting material and an electron injecting material, the contents of the hole injecting material and the electron injecting material are the light emitting material, hole transporting material, and hole injecting in the first light emitting layer. The amount is usually 0.1 to 30 parts by weight, preferably 0.1 to 10 parts by weight, more preferably 0.1 to 1 part by weight with respect to 100 parts by weight of the total of the material, the electron transport material and the electron injection material.
Each of the hole injection material and the electron injection material may be used alone or in combination of two or more.
 正孔注入材料又は電子注入材料が導電性高分子を含む場合、導電性高分子の電気伝導度は、好ましくは、1×10-5S/cm~1×103S/cmである。導電性高分子の電気伝導度をかかる範囲とするために、導電性高分子に適量のイオンをドープすることができる。 When the hole injection material or the electron injection material includes a conductive polymer, the electrical conductivity of the conductive polymer is preferably 1 × 10 −5 S / cm to 1 × 10 3 S / cm. In order to make the electric conductivity of the conductive polymer within such a range, the conductive polymer can be doped with an appropriate amount of ions.
 ドープするイオンの種類は、正孔注入材料であればアニオン、電子注入材料であればカチオンである。アニオンとしては、例えば、ポリスチレンスルホン酸イオン、アルキルベンゼンスルホン酸イオン、樟脳スルホン酸イオンが挙げられる。カチオンとしては、例えば、リチウムイオン、ナトリウムイオン、カリウムイオン、テトラブチルアンモニウムイオンが挙げられる。
 ドープするイオンは、一種のみでも二種以上でもよい。
The type of ions to be doped is an anion for a hole injection material and a cation for an electron injection material. Examples of the anion include polystyrene sulfonate ion, alkylbenzene sulfonate ion, and camphor sulfonate ion. Examples of the cation include lithium ion, sodium ion, potassium ion, and tetrabutylammonium ion.
Only one kind or two or more kinds of ions may be doped.
 酸化防止剤は、発光及び電荷輸送を阻害しない化合物であればよく、例えば、フェノール系酸化防止剤、リン系酸化防止剤が挙げられる。 The antioxidant may be a compound that does not inhibit light emission and charge transport, and examples thereof include phenol-based antioxidants and phosphorus-based antioxidants.
 第1の発光層が酸化防止剤を含有する場合、酸化防止剤の含有量は、発光材料100重量部に対して、通常、0.001~10重量部である。
 酸化防止剤は、一種単独で用いても二種以上を併用してもよい。
When the first light emitting layer contains an antioxidant, the content of the antioxidant is usually 0.001 to 10 parts by weight with respect to 100 parts by weight of the light emitting material.
Antioxidants may be used alone or in combination of two or more.
 第1の発光層の形成に用いられるインクは、その他の成分を含んでいてよい。 The ink used for forming the first light emitting layer may contain other components.
 [第2の発光層]
 第2の発光層は、式(1)で表される構成単位を含む高分子化合物、及び、式(1)で表される構成単位を含む高分子化合物の架橋体からなる群より選択される少なくとも1種を含有する層である。
[Second light emitting layer]
The second light emitting layer is selected from the group consisting of a polymer compound containing a structural unit represented by formula (1) and a crosslinked product of the polymer compound containing a structural unit represented by formula (1). It is a layer containing at least one kind.
 ・式(1)で表される構成単位を含む高分子化合物 ・ High molecular compound containing structural unit represented by formula (1)
Figure JPOXMLDOC01-appb-C000087
Figure JPOXMLDOC01-appb-C000087
 a1、a2及びa3は、外部量子効率が優れるので、好ましくは0又は1であり、より好ましくはa1が1であり、a2及びa3が0である組み合わせ、a2が1であり、a1及びa3が0である組み合わせ、又は、a1、a2及びa3が0である組み合わせである。 a 1 , a 2, and a 3 are preferably 0 or 1, since the external quantum efficiency is excellent, more preferably a 1 is 1, a combination in which a 2 and a 3 are 0, and a 2 is 1. And a combination in which a 1 and a 3 are 0, or a combination in which a 1 , a 2 and a 3 are 0.
 環S1で表される芳香族炭化水素環は、環を構成する炭素原子数が、通常6~60であり、好ましくは6~20であり、より好ましくは6~14である。
 環S1で表される芳香族炭化水素環としては、例えば、ベンゼン環、ナフタレン環、アントラセン環、フェナントレン環、ジヒドロフェナントレン環、ナフタセン環、フルオレン環、ピレン環、ペリレン環、又はクリセン環が挙げられ、ベンゼン環、ナフタレン環、フェナントレン環、ジヒドロフェナントレン環又はフルオレン環が好ましく、ベンゼン環がより好ましい。
The aromatic hydrocarbon ring represented by the ring S 1 has usually 6 to 60, preferably 6 to 20, more preferably 6 to 14 carbon atoms constituting the ring.
Examples of the aromatic hydrocarbon ring represented by the ring S 1 include a benzene ring, naphthalene ring, anthracene ring, phenanthrene ring, dihydrophenanthrene ring, naphthacene ring, fluorene ring, pyrene ring, perylene ring, or chrysene ring. A benzene ring, a naphthalene ring, a phenanthrene ring, a dihydrophenanthrene ring or a fluorene ring, and a benzene ring is more preferable.
 環S1で表される芳香族複素環は、環を構成する炭素原子数が、通常2~60であり、好ましくは3~20であり、より好ましくは3~12である。
 環S1で表される芳香族複素環としては、例えば、ピリジン環、ジアザベンゼン環、トリアジン環、アザナフタレン環、ジアザナフタレン環、カルバゾール環、ジベンゾフラン環、ジベンゾチオフェン環、ジベンゾシロール環、フェノキサジン環、フェノチアジン環、アクリジン環、ジヒドロアクリジン環、フラン環、チオフェン環、アゾール環、ジアゾール環又はトリアゾール環が挙げられ、ピリジン環、トリアジン環、カルバゾール環、ジベンゾフラン環、ジベンゾチオフェン環、フラン環、チオフェン環又はアゾール環が好ましい。
The aromatic heterocycle represented by the ring S 1 has usually 2 to 60 carbon atoms, preferably 3 to 20 carbon atoms, more preferably 3 to 12 carbon atoms constituting the ring.
Examples of the aromatic heterocycle represented by ring S 1 include pyridine ring, diazabenzene ring, triazine ring, azanaphthalene ring, diazanaphthalene ring, carbazole ring, dibenzofuran ring, dibenzothiophene ring, dibenzosilole ring, phenoxazine. Ring, phenothiazine ring, acridine ring, dihydroacridine ring, furan ring, thiophene ring, azole ring, diazole ring or triazole ring, pyridine ring, triazine ring, carbazole ring, dibenzofuran ring, dibenzothiophene ring, furan ring, thiophene A ring or an azole ring is preferred.
 RA1は、外部量子効率がより優れるので、好ましくはアルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基又はアリール基であり、より好ましくはアルキル基であり、これらの基は置換基を有していてもよい。
 RA1で表されるアルキル基としては、本発明の実施形態の発光素子に好適に用いられる高分子化合物の溶解性が優れ発光素子の作製が容易になるので、炭素原子数が1~12のアルキル基が好ましく、炭素原子数2~12のアルキル基がより好ましく、炭素原子数6~12のアルキル基が更に好ましい。
 RA1で表されるアルキル基としては、本発明の実施形態の発光素子に好適に用いられる高分子化合物の合成が容易になるので、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基がより好ましい。
R A1 is preferably an alkyl group, a cycloalkyl group, an alkoxy group, a cycloalkoxy group, or an aryl group, more preferably an alkyl group, since these have higher external quantum efficiency, and these groups have a substituent. It may be.
The alkyl group represented by R A1 has 1 to 12 carbon atoms because the polymer compound suitably used for the light emitting device of the embodiment of the present invention has excellent solubility and facilitates the production of the light emitting device. An alkyl group is preferred, an alkyl group having 2 to 12 carbon atoms is more preferred, and an alkyl group having 6 to 12 carbon atoms is still more preferred.
As the alkyl group represented by R A1 , it becomes easy to synthesize a polymer compound suitably used in the light-emitting device of the embodiment of the present invention, so that a methyl group, an ethyl group, a propyl group, a butyl group, a pentyl group, A hexyl group is more preferred.
 ArA1で表される単環若しくは縮環のアリーレン基は、好ましくは式(A-1)~式(A-9)、式(A-19)、又は、式(A-20)で表される基であり、更に好ましくは式(A-1)~式(A-3)であり、これらの基は置換基を有していてもよい。
 ArA1で表される2価の複素環基は、好ましくは式(B-1)~式(B-4)、式(B-10)~式(B-15)、又は、式(B-24)~式(B-26)で表される基であり、これらの基は置換基を有していてもよい。
 ArA1は、外部量子効率がより優れるので、好ましくはアリーレン基である。
The monocyclic or condensed arylene group represented by Ar A1 is preferably represented by the formula (A-1) to the formula (A-9), the formula (A-19), or the formula (A-20). More preferred are formulas (A-1) to (A-3), and these groups may have a substituent.
The divalent heterocyclic group represented by Ar A1 is preferably a group represented by the formula (B-1) to the formula (B-4), the formula (B-10) to the formula (B-15), or the formula (B— 24) to groups represented by formula (B-26), and these groups optionally have a substituent.
Ar A1 is preferably an arylene group because it has a higher external quantum efficiency.
 ArA2、ArA3及びArA4で表されるアリーレン基は、好ましくは式(A-1)~式(A-9)、式(A-19)、又は、式(A-20)で表される基であり、これらの基は置換基を有していてもよい。
 ArA2、ArA3及びArA4で表される2価の複素環基は、好ましくは式(B-1)~式(B-4)、式(B-10)~式(B-15)、又は、式(B-24)~式(B-26)で表される基であり、これらの基は置換基を有していてもよい。
 ArA2、ArA3及びArA4で表されるアリーレン基と2価の複素環基とが直接結合した2価の基における、アリーレン基及び2価の複素環基のより好ましい範囲は、それぞれ、ArA2、ArA3及びArA4で表されるアリーレン基及び2価の複素環基のより好ましい範囲と同じである。
 ArA2、ArA3及びArA4で表されるアリーレン基と2価の複素環基とが直接結合した2価の基としては、ArY1で表されるアリーレン基と2価の複素環基とが直接結合した2価の基の例示と同じである。
The arylene group represented by Ar A2 , Ar A3 and Ar A4 is preferably represented by the formula (A-1) to the formula (A-9), the formula (A-19), or the formula (A-20). These groups may have a substituent.
The divalent heterocyclic group represented by Ar A2 , Ar A3 and Ar A4 is preferably a group represented by formula (B-1) to formula (B-4), formula (B-10) to formula (B-15), Alternatively, groups represented by formula (B-24) to formula (B-26), and these groups may have a substituent.
More preferable ranges of the arylene group and the divalent heterocyclic group in the divalent group in which the arylene group represented by Ar A2 , Ar A3 and Ar A4 and the divalent heterocyclic group are directly bonded are Ar A2, is the same as the more preferred range of arylene group and divalent heterocyclic group represented by Ar A3 and Ar A4.
Examples of the divalent group in which the arylene group represented by Ar A2 , Ar A3 and Ar A4 and the divalent heterocyclic group are directly bonded include an arylene group represented by Ar Y1 and a divalent heterocyclic group. This is the same as the example of the divalent group directly bonded.
 ArA2は、外部量子効率が優れるので、より好ましくはアリーレン基であり、更に好ましくは式(A-7)で表される基であり、これらの基は置換基を有していてもよい。
 ArA3及びArA4は、外部量子効率が優れるので、より好ましくはアリーレン基であり、更に好ましくは式(A-1)で表される基であり、これらの基は置換基を有していてもよい。
Ar A2 is preferably an arylene group, more preferably a group represented by the formula (A-7), since it has excellent external quantum efficiency, and these groups may have a substituent.
Ar A3 and Ar A4 are more preferably an arylene group, and more preferably a group represented by the formula (A-1), since the external quantum efficiency is excellent, and these groups have a substituent. Also good.
 RA3、RA4、RA5及びRA6で表される1価の複素環基としては、前記1価の複素環基の説明で挙げた基に加えて、ジヒドロカルバゾリル基、テトラヒドロカルバゾリル基、ヘキサヒドロカルバゾリル基が挙げられる。 Examples of the monovalent heterocyclic group represented by R A3 , R A4 , R A5 and R A6 include a dihydrocarbazolyl group, a tetrahydrocarbazolyl group in addition to the groups mentioned in the description of the monovalent heterocyclic group. Group and hexahydrocarbazolyl group.
 RA3、RA4、RA5及びRA6は、アリール基CC群から選ばれる基、又は、1価の複素環基DD群から選ばれる基が好ましく、式(CC-1)、式(CC-6)、又は式(DD-14)で表される基がより好ましく、これらの基は置換基を有していてもよく、RA3、RA4、RA5及びRA6が複数存在する場合、それらはそれぞれ同一でも異なっていてもよい。 R A3 , R A4 , R A5 and R A6 are preferably groups selected from the aryl group CC group or groups selected from the monovalent heterocyclic group DD group, and are represented by the formula (CC-1), the formula (CC— 6) or a group represented by the formula (DD-14) is more preferable, and these groups may have a substituent, and when there are a plurality of R A3 , R A4 , R A5 and R A6 , They may be the same or different.
 (アリール基CC群) (Aryl group CC group)
Figure JPOXMLDOC01-appb-C000088
Figure JPOXMLDOC01-appb-C000088
(1価の複素環基DD群) (Monovalent heterocyclic group DD group)
Figure JPOXMLDOC01-appb-C000089
[式中、R及びRaは、前記と同じ意味を表す。]
Figure JPOXMLDOC01-appb-C000089
[Wherein, R and R a represent the same meaning as described above. ]
 ArA1、ArA2、ArA3、ArA4、RA3、RA4、RA5及びRA6で表される基が有してもよい置換基としては、好ましくはアルキル基、シクロアルキル基、アリール基又は1価の複素環基であり、これらの基は更に置換基を有していてもよい。 As the substituent that the group represented by Ar A1 , Ar A2 , Ar A3 , Ar A4 , R A3 , R A4 , R A5 and R A6 may have, preferably an alkyl group, a cycloalkyl group, an aryl group Alternatively, it is a monovalent heterocyclic group, and these groups may further have a substituent.
 式(1)で表される構成単位の含有量は、高分子化合物に含まれる構成単位の合計含有量に対して、通常、0.1モル%~100モル%であり、正孔輸送性が優れるので、10モル%~90モル%であることが好ましく、30モル%~50モル%であることがより好ましく、40モル%~50モル%であることが更に好ましい。 The content of the structural unit represented by the formula (1) is usually 0.1 mol% to 100 mol% with respect to the total content of the structural units contained in the polymer compound, and the hole transport property is Since it is excellent, it is preferably 10 mol% to 90 mol%, more preferably 30 mol% to 50 mol%, and still more preferably 40 mol% to 50 mol%.
 式(1)で表される構成単位としては、例えば、式(1’-1)~(1’-18)で表される構成単位が挙げられる。 Examples of the structural unit represented by the formula (1) include structural units represented by the formulas (1′-1) to (1′-18).
Figure JPOXMLDOC01-appb-C000090
Figure JPOXMLDOC01-appb-C000090
Figure JPOXMLDOC01-appb-C000091
Figure JPOXMLDOC01-appb-C000091
Figure JPOXMLDOC01-appb-C000092
Figure JPOXMLDOC01-appb-C000092
 第2の発光層において、式(1)で表される構成単位は、1種のみ含まれていても、2種以上含まれていてもよい。 In the second light emitting layer, the structural unit represented by the formula (1) may be included alone or in combination of two or more.
 式(1)で表される構成単位は、外部量子効率がより優れるので、式(1a)で表される構成単位であることが好ましい。 The structural unit represented by the formula (1) is preferably a structural unit represented by the formula (1a) because the external quantum efficiency is more excellent.
Figure JPOXMLDOC01-appb-C000093
Figure JPOXMLDOC01-appb-C000093
 環S2で表される芳香族炭化水素環は、環を構成する炭素原子数が、通常6~60であり、好ましくは6~20であり、より好ましくは6~14である。環Sで表される芳香族炭化水素環の例示、好ましい範囲は、環Sで表される芳香族炭化水素環の例示、好ましい範囲と同じである。
 環S2で表される芳香族複素環は、環を構成する炭素原子数が、通常2~60であり、好ましくは3~20であり、より好ましくは3~12である。環S2で表される芳香族複素環の例示、好ましい範囲は、環Sで表される芳香族複素環の例示、好ましい範囲と同じである。
The aromatic hydrocarbon ring represented by the ring S 2 has usually 6 to 60, preferably 6 to 20, more preferably 6 to 14 carbon atoms constituting the ring. Examples and preferred ranges of the aromatic hydrocarbon ring represented by ring S 2 are the same as those of the aromatic hydrocarbon ring represented by ring S 1 and preferred ranges.
The aromatic heterocyclic ring represented by ring S 2 has usually 2 to 60 carbon atoms, preferably 3 to 20 carbon atoms, more preferably 3 to 12 carbon atoms constituting the ring. Examples and preferred ranges of the aromatic heterocycle represented by ring S 2 are the same as those of the aromatic heterocycle represented by ring S 1 and preferred ranges.
 RA2で表される基、原子の好ましい範囲は、RA1で表される基、原子の好ましい範囲と同じである。 The preferred range of the group and atom represented by R A2 is the same as the preferred range of the group and atom represented by R A1 .
 式(1a)で表される構成単位としては、例えば、式(1Y-1)~式(1Y-13)で表される構成単位が挙げられ、好ましくは式(1Y-1)~式(1Y-3)、式(1Y-6)、式(1Y-7)、式(1Y-9)、式(1Y-10)又は式(1Y-13)で表される構成単位である。 Examples of the structural unit represented by the formula (1a) include structural units represented by the formula (1Y-1) to the formula (1Y-13), preferably the formula (1Y-1) to the formula (1Y -3), a structural unit represented by formula (1Y-6), formula (1Y-7), formula (1Y-9), formula (1Y-10) or formula (1Y-13).
Figure JPOXMLDOC01-appb-C000094
Figure JPOXMLDOC01-appb-C000094
Figure JPOXMLDOC01-appb-C000095
Figure JPOXMLDOC01-appb-C000095
Figure JPOXMLDOC01-appb-C000096
[式中、R、RA1及びRA2は、前記と同じ意味を表す。]
Figure JPOXMLDOC01-appb-C000096
[Wherein, R, R A1 and R A2 represent the same meaning as described above. ]
 式(1)で表される構成単位としては、例えば、式(1-1)~(1-18)で表される構成単位が挙げられ、好ましくは式(1-1)~(1-6)、式(1-10)、式(1-11)、式(1-13)、式(1-17)又は式(1-18)で表される構成単位である。 Examples of the structural unit represented by the formula (1) include structural units represented by the formulas (1-1) to (1-18), and preferably the formulas (1-1) to (1-6). ), Formula (1-10), formula (1-11), formula (1-13), formula (1-17) or formula (1-18).
Figure JPOXMLDOC01-appb-C000097
Figure JPOXMLDOC01-appb-C000097
Figure JPOXMLDOC01-appb-C000098
Figure JPOXMLDOC01-appb-C000098
Figure JPOXMLDOC01-appb-C000099
Figure JPOXMLDOC01-appb-C000099
 前記式(1)で表される構成単位を含む高分子化合物は、更に燐光発光性構成単位(特には、前記式(2)で表される燐光発光性化合物から水素原子を取り除いてなる基)を含む高分子化合物であることが好ましく、更に、式(1G)、式(2G)、式(3G)、及び、式(4G)で表される構成単位から選ばれる少なくとも1種の燐光発光性構成単位を含むことがより好ましい。 The polymer compound containing the structural unit represented by the formula (1) is further a phosphorescent structural unit (in particular, a group formed by removing a hydrogen atom from the phosphorescent compound represented by the formula (2)). It is preferable that the polymer compound further contains at least one phosphorescent compound selected from the structural units represented by formula (1G), formula (2G), formula (3G), and formula (4G). More preferably, the structural unit is included.
Figure JPOXMLDOC01-appb-C000100
Figure JPOXMLDOC01-appb-C000100
 RAは、アリール基又は1価の複素環基であることが好ましく、アリール基であることがより好ましく、これらの基は置換基を有していてもよい。 R A is preferably an aryl group or a monovalent heterocyclic group, more preferably an aryl group, and these groups optionally have a substituent.
 L1は、-C(RB2-で表される基又はアリーレン基であることが好ましく、式(A-1)又は式(A-2)で表される基であることがより好ましく、これらの基は置換基を有していてもよい。 L 1 is preferably a group represented by —C (R B ) 2 — or an arylene group, and more preferably a group represented by formula (A-1) or formula (A-2). These groups may have a substituent.
 RBは、水素原子、アルキル基、シクロアルキル基又はアリール基であることが好ましく、水素原子であることがより好ましく、これらの基は置換基を有していてもよい。 R B is preferably a hydrogen atom, an alkyl group, a cycloalkyl group or an aryl group, more preferably a hydrogen atom, and these groups optionally have a substituent.
 RA、RB及びL1が有していてもよい置換基としては、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基、アリールオキシ基、1価の複素環基、ハロゲン原子が好ましく、これらの基は更に置換基を有していてもよい。 Examples of the substituent that R A , R B and L 1 may have include an alkyl group, a cycloalkyl group, an alkoxy group, a cycloalkoxy group, an aryl group, an aryloxy group, a monovalent heterocyclic group, and a halogen atom. These groups may further have a substituent.
 na1は、好ましくは0~2の整数であり、より好ましくは0である。 na1 is preferably an integer of 0 to 2, more preferably 0.
 M1Gは、式(GM-1)で表される基であることが好ましい。 M 1G is preferably a group represented by the formula (GM-1).
Figure JPOXMLDOC01-appb-C000101
[式中、
 Mは、ロジウム原子、パラジウム原子、イリジウム原子又は白金原子を表す。
 n111は1又は2を表す。n112は0又は1を表す。但し、n111+n112は1又は2である。Mがロジウム原子又はイリジウム原子の場合、n111+n112は2であり、Mがパラジウム原子又は白金原子の場合、n111+n112は1である。
 E及びEは、前記と同じ意味を表す。
 環R1G及び環R1G1は、それぞれ独立に、芳香族複素環を表し、これらの環は置換基を有していてもよい。該置換基が複数存在する場合、それらは同一でも異なっていてもよく、互いに結合して、それぞれが結合する原子と共に環を形成していてもよい。環R1Gが複数存在する場合、それらは同一でも異なっていてもよい。
 環R2G及び環R2G1は、それぞれ独立に、芳香族炭化水素環又は芳香族複素環を表し、これらの環は置換基を有していてもよい。該置換基が複数存在する場合、それらは同一でも異なっていてもよく、互いに結合して、それぞれが結合する原子と共に環を形成していてもよい。環R2Gが複数存在する場合、それらは同一でも異なっていてもよい。但し、環R2Gが6員の芳香族複素環である場合、E4は炭素原子である。
 環R1G1及び環R2G1の一方は、結合手を有する。
 A-G-Aは、前記と同じ意味を表す。]
Figure JPOXMLDOC01-appb-C000101
[Where:
M represents a rhodium atom, a palladium atom, an iridium atom, or a platinum atom.
n 111 represents 1 or 2. n 112 represents 0 or 1; However, n 111 + n 112 is 1 or 2. When M is a rhodium atom or an iridium atom, n 111 + n 112 is 2, and when M is a palladium atom or a platinum atom, n 111 + n 112 is 1.
E 3 and E 4 represent the same meaning as described above.
Ring R 1G and ring R 1G1 each independently represent an aromatic heterocyclic ring, and these rings may have a substituent. When a plurality of the substituents are present, they may be the same or different, and may be bonded to each other to form a ring together with the atoms to which each is bonded. When a plurality of rings R 1G are present, they may be the same or different.
Ring R 2G and ring R 2G1 each independently represent an aromatic hydrocarbon ring or an aromatic heterocyclic ring, and these rings optionally have a substituent. When a plurality of the substituents are present, they may be the same or different, and may be bonded to each other to form a ring together with the atoms to which each is bonded. When a plurality of rings R 2G are present, they may be the same or different. However, when the ring R 2G is a 6-membered aromatic heterocyclic ring, E 4 is a carbon atom.
One of the ring R 1G1 and the ring R 2G1 has a bond.
A 3 -G 2 -A 4 represents the same meaning as described above. ]
 Mがロジウム原子又はイリジウム原子の場合、n112は0又は1であり、0であることがより好ましい。
 Mがパラジウム原子又は白金原子の場合の場合、n112は0である。
When M is a rhodium atom or an iridium atom, n 112 is 0 or 1, and more preferably 0.
When M is a palladium atom or a platinum atom, n 112 is 0.
 環R1Gは、1つ以上4つ以下の窒素原子を構成原子として有する芳香族複素環であることが好ましく、ピリジン環、ピリミジン環、キノリン環又はイソキノリン環であることが更に好ましく、これらの環は置換基を有していてもよい。 Ring R 1G is preferably an aromatic heterocyclic ring having 1 to 4 nitrogen atoms as constituent atoms, more preferably a pyridine ring, a pyrimidine ring, a quinoline ring or an isoquinoline ring. May have a substituent.
 環R2Gは、芳香族炭化水素環であることが好ましく、ベンゼン環、ナフタレン環又はフルオレン環であることがより好ましく、これらの環は置換基を有していてもよい。 Ring R 2G is preferably an aromatic hydrocarbon ring, more preferably a benzene ring, a naphthalene ring or a fluorene ring, and these rings may have a substituent.
 環R1G及び環R2Gが有していてもよい置換基としては、アルキル基、シクロアルキル基、アリール基、1価の複素環基、アルコキシ基、シクロアルコキシ基、アリールオキシ基、又はデンドロンが好ましく、アルキル基、アリール基又はデンドロンがより好ましく、これらの基は更に置換基を有していてもよい。 Examples of the substituent that the ring R 1G and the ring R 2G may have include an alkyl group, a cycloalkyl group, an aryl group, a monovalent heterocyclic group, an alkoxy group, a cycloalkoxy group, an aryloxy group, and a dendron. Preferably, an alkyl group, an aryl group, or a dendron is more preferable, and these groups may further have a substituent.
 環R1G及び環R2Gからなる群から選ばれる少なくとも1つの環がデンドロンを有することがより好ましい。
 環R1G及び環R2Gからなる群から選ばれる少なくとも1つの環が有するデンドロンの個数は、好ましくは1~3個であり、より好ましくは1個である。
More preferably, at least one ring selected from the group consisting of ring R 1G and ring R 2G has a dendron.
The number of dendrons contained in at least one ring selected from the group consisting of ring R 1G and ring R 2G is preferably 1 to 3, more preferably 1.
 環R1G及び環R2Gからなる群から選ばれる少なくとも1つの環が有するデンドロンが、式(D-A)又は(D-B)で表される基であり、かつ、mDA1が1~10の整数である場合、環R1G及び/又は環R2Gに結合するArDA1は、式(ArDA-1)で表される基であることが好ましい。 The dendron possessed by at least one ring selected from the group consisting of ring R 1G and ring R 2G is a group represented by the formula (DA) or (DB), and m DA1 is 1 to 10 In this case, Ar DA1 bonded to ring R 1G and / or ring R 2G is preferably a group represented by the formula (ArDA-1).
 環R1G及び環R2Gのうち、少なくとも1つの環が有するデンドロンが、式(D-A)又は(D-B)で表される基であり、且つ、mDA1が0である場合、環R1G及び/又は環R2Gに結合するGDAは、式(GDA-11)、式(GDA-12)、式(GDA-14)又は式(GDA-15)で表される基であることが好ましく、式(GDA-11)又は式(GDA-14)で表される基であることがより好ましい。 When the dendron of at least one of the rings R 1G and R 2G is a group represented by the formula (DA) or (DB) and m DA1 is 0, G DA bonded to R 1G and / or ring R 2G is a group represented by formula (GDA-11), formula (GDA-12), formula (GDA-14) or formula (GDA-15) Are preferable, and a group represented by the formula (GDA-11) or the formula (GDA-14) is more preferable.
 環R1G及び環R2Gのうち、少なくとも1つの環が有するデンドロンとしては、式(D-A1)、式(D-A3)、式(D-B1)又は式(D-B3)で表される基であることが好ましく、式(D-A1)又は式(D-A3)で表される基であることがより好ましい。 The dendron possessed by at least one of the ring R 1G and the ring R 2G is represented by the formula (D-A1), the formula (D-A3), the formula (D-B1) or the formula (D-B3). And a group represented by the formula (D-A1) or (D-A3) is more preferable.
 式(GM-1)において、添え字n111でその数を定義されている配位子(環R1G-環R2Gで表される配位子)の少なくとも1つは、式(GM-L1)で表される配位子であることが好ましい。式(GM-L1)で表される配位子としては、RG1とRG2、RG2とRG3、及び、RG3とRG4、のいずれもが結合して環を形成していないもの、或いは、RG3とRG4が結合して芳香環を形成しているものが好ましい。 In the formula (GM-1), at least one of the ligands (the ligand represented by ring R 1G -ring R 2G ) whose number is defined by the subscript n 111 is represented by the formula (GM-L1 It is preferable that it is a ligand represented by. As the ligand represented by the formula (GM-L1), R G1 and R G2 , R G2 and R G3 , and R G3 and R G4 are not bonded to form a ring. Alternatively, R G3 and R G4 are preferably bonded to form an aromatic ring.
Figure JPOXMLDOC01-appb-C000102
[式中、
 RG1~RG8は、それぞれ独立に、水素原子、アルキル基、シクロアルキル基、アリール基、1価の複素環基、アルコキシ基、シクロアルコキシ基、アリールオキシ基又はデンドロンを表すか、RG1とRG2が結合、RG2とRG3が結合、又は、RG3とRG4が結合して芳香環を形成してもよく、これらの基は置換基を有していてもよい。RG1とRG2、RG2とRG3、RG3とRG4、RG4とRG5、RG5とRG6、RG6とRG7、及び、RG7とRG8は、それぞれ結合して、それぞれが結合する原子と共に環を形成していてもよい。]
Figure JPOXMLDOC01-appb-C000102
[Where:
R G1 ~ R G8 are each independently a hydrogen atom, an alkyl group, a cycloalkyl group, an aryl group, a monovalent heterocyclic group, an alkoxy group, cycloalkoxy group, or an aryloxy group or a dendron, and R G1 R G2 may be bonded, R G2 and R G3 may be bonded, or R G3 and R G4 may be bonded to form an aromatic ring, and these groups may have a substituent. R G1 and R G2, R G2 and R G3, R G3 and R G4, R G4 and R G5, R G5 and R G6, R G6 and R G7, and, R G7 and R G8 are each bound, You may form the ring with the atom to which each couple | bonds. ]
 RG1、RG4、RG5及びRG8は、水素原子、アルキル基又はアリール基であることが好ましく、水素原子であることがより好ましく、これらの基は置換基を有していてもよい。 R G1 , R G4 , R G5 and R G8 are preferably a hydrogen atom, an alkyl group or an aryl group, more preferably a hydrogen atom, and these groups may have a substituent.
 RG2、RG3、RG6及びRG7は、水素原子、アルキル基、アリール基、1価の複素環基又はデンドロンであることが好ましく、水素原子、アルキル基、アリール基、1価の複素環基又はデンドロンであることがより好ましく、水素原子又はデンドロンであることが更に好ましく、これらの基は置換基を有していてもよい。 R G2 , R G3 , R G6 and R G7 are preferably a hydrogen atom, an alkyl group, an aryl group, a monovalent heterocyclic group or a dendron, and a hydrogen atom, an alkyl group, an aryl group or a monovalent heterocyclic ring. A group or a dendron is more preferable, a hydrogen atom or a dendron is further preferable, and these groups may have a substituent.
 RG1~RG8の少なくとも1つがアルキル基、シクロアルキル基、アリール基、1価の複素環基、アルコキシ基、シクロアルコキシ基、アリールオキシ基又はデンドロンであることが好ましく、RG2、RG3、RG6及びRG7の少なくとも1つがアルキル基、シクロアルキル基、アリール基、1価の複素環基、アルコキシ基、シクロアルコキシ基、アリールオキシ基又はデンドロンであることがより好ましく、これらの基は置換基を有していてもよい。 At least one of R G1 to R G8 is preferably an alkyl group, a cycloalkyl group, an aryl group, a monovalent heterocyclic group, an alkoxy group, a cycloalkoxy group, an aryloxy group, or a dendron, and R G2 , R G3 , More preferably, at least one of R G6 and R G7 is an alkyl group, a cycloalkyl group, an aryl group, a monovalent heterocyclic group, an alkoxy group, a cycloalkoxy group, an aryloxy group or a dendron, and these groups are substituted It may have a group.
 式(GM-L1)で表される配位子がデンドロンを有する場合、RG2、RG3、RG6及びRG7の少なくとも1つがデンドロンであることが好ましく、RG2及びRG6の少なくとも1つがデンドロンであることがより好ましい。 When the ligand represented by the formula (GM-L1) has a dendron, at least one of R G2 , R G3 , R G6 and R G7 is preferably a dendron, and at least one of R G2 and R G6 is More preferably, it is a dendron.
 式(GM-L1)で表される配位子がアルキル基、シクロアルキル基、アリール基、1価の複素環基、アルコキシ基、シクロアルコキシ基又はアリールオキシ基を有する場合、RG2及びRG6の少なくとも1つがアルキル基、シクロアルキル基、アリール基、1価の複素環基、アルコキシ基、シクロアルコキシ基又はアリールオキシ基であることが好ましく、これらの基は置換基を有していてもよい。 When the ligand represented by the formula (GM-L1) has an alkyl group, a cycloalkyl group, an aryl group, a monovalent heterocyclic group, an alkoxy group, a cycloalkoxy group or an aryloxy group, R G2 and R G6 Is preferably an alkyl group, a cycloalkyl group, an aryl group, a monovalent heterocyclic group, an alkoxy group, a cycloalkoxy group or an aryloxy group, and these groups optionally have a substituent. .
 式(GM-1)において、式(GM-L1)で表される配位子が複数存在する場合、複数存在するRG1~RG8は、それぞれ同一でも異なっていてもよい。 In the formula (GM-1), when a plurality of ligands represented by the formula (GM-L1) are present, the plurality of R G1 to R G8 may be the same or different.
 式(GM-1)において、環R1G1-環R2G1で表される配位子は、式(GM-L1)で表される配位子であることが好ましい。式(GM-L1)で表される配位子としては、RG1とRG2、RG2とRG3、及び、RG3とRG4、のいずれもが結合して環を形成していないもの、或いは、RG3とRG4が結合して芳香環を形成しているものが好ましい。 In the formula (GM-1), the ligand represented by the ring R 1G1 -ring R 2G1 is preferably a ligand represented by the formula (GM-L1). As the ligand represented by the formula (GM-L1), R G1 and R G2 , R G2 and R G3 , and R G3 and R G4 are not bonded to form a ring. Alternatively, R G3 and R G4 are preferably bonded to form an aromatic ring.
 環R1G1-環R2G1で表される配位子が式(GM-L1)で表される配位子である場合、RG2、RG3、RG6又はRG7が結合手であることが好ましく、RG6が結合手であることがより好ましい。 When the ligand represented by ring R 1G1 -ring R 2G1 is a ligand represented by the formula (GM-L1), R G2 , R G3 , R G6 or R G7 may be a bond. Preferably, R G6 is a bond.
 A3-G2-A4の例示及び好ましい態様としては、後述する式(2)で表される燐光発光性化合物におけるA3-G2-A4の例示及び好ましい態様と同じものが挙げられる。 Exemplary and preferred embodiments of A 3 -G 2 -A 4, include those similar to the illustrative and preferred embodiments of A 3 -G 2 -A 4 in phosphorescent compound represented by the formula (2) described later .
Figure JPOXMLDOC01-appb-C000103
Figure JPOXMLDOC01-appb-C000103
 L2は、-C(RB2-で表される基、アリーレン基又は2価の複素環基であることが好ましく、式(A-1)又は式(A-2)で表される基であることがより好ましく、これらの基は置換基を有していてもよい。 L 2 is preferably a group represented by —C (R B ) 2 —, an arylene group or a divalent heterocyclic group, and represented by formula (A-1) or formula (A-2). It is more preferably a group, and these groups may have a substituent.
 L3は、-C(RB2-で表される基又はアリーレン基であることが好ましく、式(A-1)又は式(A-2)で表される基であることがより好ましく、これらの基は置換基を有していてもよい。 L 3 is preferably a group represented by —C (R B ) 2 — or an arylene group, and more preferably a group represented by Formula (A-1) or Formula (A-2). These groups may have a substituent.
 nb1及びnc1は、通常0~10の整数であり、好ましくは0である。 n b1 and n c1 are usually integers of 0 to 10, preferably 0.
 Ar1Mは、ベンゼン環、ナフタレン環、フルオレン環、フェナントレン環、ジヒドロフェナントレン環、ピリジン環、ジアザベンゼン環、トリアジン環、カルバゾール環、フェノキサジン環又はフェノチアジン環から、環を構成する炭素原子又はヘテロ原子に直接結合する水素原子3個を除いた基であることが好ましく、ベンゼン環から、環を構成する炭素原子に直接結合する水素原子3個を除いた基であることがより好ましく、これらの基は置換基を有していてもよい。 Ar 1M is a benzene ring, a naphthalene ring, a fluorene ring, a phenanthrene ring, a dihydrophenanthrene ring, a pyridine ring, a diazabenzene ring, a triazine ring, a carbazole ring, a phenoxazine ring, or a phenothiazine ring. A group in which three hydrogen atoms directly bonded are removed is preferable, and a group in which three hydrogen atoms directly bonded to a carbon atom constituting the ring are removed from a benzene ring is more preferable. It may have a substituent.
 L2、L3及びAr1Mが有していてもよい置換基は、前述の環R1G及び環R2Gが有していてもよい置換基と同様である。 The substituents that L 2 , L 3, and Ar 1M may have are the same as the substituents that the aforementioned ring R 1G and ring R 2G may have.
Figure JPOXMLDOC01-appb-C000104
Figure JPOXMLDOC01-appb-C000104
 M2Gは、式(GM-2)又は式(GM-3)で表される基であることが好ましい。 M 2G is preferably a group represented by the formula (GM-2) or the formula (GM-3).
Figure JPOXMLDOC01-appb-C000105
[式中、
 M、E、E4、環R1G、環R2G、A-G-A、環R1G1、環R2G1、n111及びn112は、前記と同じ意味を表す。
 n113及びn114は、それぞれ独立に、0又は1を表す。但し、n113+n114は0又は1である。Mがロジウム原子又はイリジウム原子の場合、n113+n114は1であり、Mがパラジウム原子又は白金原子の場合、n113+n114は0である。
 環R1G2は、芳香族複素環を表し、該環は置換基を有していてもよい。該置換基が複数存在する場合、それらは同一でも異なっていてもよく、互いに結合して、それぞれが結合する原子と共に環を形成していてもよい。
 環R2G2は、芳香族炭化水素環又は芳香族複素環を表し、該環は置換基を有していてもよい。該置換基が複数存在する場合、それらは同一でも異なっていてもよく、互いに結合して、それぞれが結合する原子と共に環を形成していてもよい。但し、環R2G2が6員の芳香族複素環である場合、E4は炭素原子である。
 但し、環R1G2及び環R2G2の一方は2つの結合手を有するか、又は、環R1G2及び環R2G2は、それぞれ、結合手を1つずつ有する。]
Figure JPOXMLDOC01-appb-C000105
[Where:
M, E 3 , E 4 , ring R 1G , ring R 2G , A 3 -G 2 -A 4 , ring R 1G1 , ring R 2G 1 , n 111 and n 112 have the same meaning as described above.
n113 and n114 each independently represents 0 or 1. However, n 113 + n 114 is 0 or 1. When M is a rhodium atom or an iridium atom, n 113 + n 114 is 1, and when M is a palladium atom or a platinum atom, n 113 + n 114 is 0.
Ring R 1G2 represents an aromatic heterocycle, and the ring may have a substituent. When a plurality of the substituents are present, they may be the same or different, and may be bonded to each other to form a ring together with the atoms to which each is bonded.
Ring R 2G2 represents an aromatic hydrocarbon ring or an aromatic heterocyclic ring, and the ring may have a substituent. When a plurality of the substituents are present, they may be the same or different, and may be bonded to each other to form a ring together with the atoms to which each is bonded. However, when the ring R 2G2 is a 6-membered aromatic heterocyclic ring, E 4 is a carbon atom.
However, one of the ring R 1G2 and the ring R 2G2 has two bonds, or each of the ring R 1G2 and the ring R 2G2 has one bond. ]
 Mがロジウム原子又はイリジウム原子の場合、n114は0であることが好ましい。 When M is a rhodium atom or an iridium atom, n 114 is preferably 0.
 環R1G2が結合手を有さない場合、環R1G2の定義は、環R1Gの定義と同様である。
 環R1G2が結合手を有する場合、環R1G2の結合手を除いた環部分の定義は、環R1Gの定義と同様である。
 環R2G2が結合手を有さない場合、環R2G2の定義は、環R2Gの定義と同様である。
 環R2G2が結合手を有する場合、環R2G2の結合手を除いた環部分の定義は、環R2Gの定義と同様である。
 環R1G2及び環R2G2が有していてもよい置換基は、環R1G及び環R2Gが有していてもよい置換基と同様である。
 環R1G2及び環R2G2は、それぞれ、結合手を1つずつ有することが好ましい。
When ring R 1G2 has no bond, the definition of ring R 1G2 is the same as the definition of ring R 1G .
When ring R 1G2 has a bond, the definition of the ring portion excluding the bond of ring R 1G2 is the same as the definition of ring R 1G .
When ring R 2G2 has no bond, the definition of ring R 2G2 is the same as the definition of ring R 2G .
When ring R 2G2 has a bond, the definition of the ring portion excluding the bond of ring R 2G2 is the same as the definition of ring R 2G .
The substituent that the ring R 1G2 and the ring R 2G2 may have is the same as the substituent that the ring R 1G and the ring R 2G may have.
Each of the ring R 1G2 and the ring R 2G2 preferably has one bond.
 環R1G2-環R2G2で表される配位子は、式(GM-L1)で表される配位子であることが好ましい。 The ligand represented by ring R 1G2 -ring R 2G2 is preferably a ligand represented by the formula (GM-L1).
 式(GM-2)において、環R1G1-環R2G1で表される配位子は、式(GM-1)において、環R1G1-環R2G1で表される配位子と同様のものが好ましい。
 式(GM-3)において、環R1G2-環R2G2で表される配位子は、式(GM-L1)で表される配位子であることが好ましい。式(GM-L1)で表される配位子としては、RG2及びRG6、RG2及びRG7、RG3及びRG6、又は、RG3及びRG7が結合手であることが好ましい。
In the formula (GM-2), the ring R 1G1 - ligand for ring R 2G1, in Formula (GM-1), the ring R 1G1 - the same as the ligand represented by the ring R 2G1 Is preferred.
In the formula (GM-3), the ligand represented by the ring R 1G2 -ring R 2G2 is preferably a ligand represented by the formula (GM-L1). As the ligand represented by the formula (GM-L1), R G2 and R G6 , R G2 and R G7 , R G3 and R G6 , or R G3 and R G7 are preferably bonds.
 環R1G2-環R2G2で表される配位子が式(GM-L1)で表される配位子であり、かつ、RG3とRG4が結合して芳香環を形成している場合、RG2及びRG6、又は、RG2及びRG7が結合手であることが好ましい。 When the ligand represented by ring R 1G2 -ring R 2G2 is a ligand represented by the formula (GM-L1), and R G3 and R G4 are bonded to form an aromatic ring , R G2 and R G6 , or R G2 and R G7 are preferably bonds.
 環R1G2-環R2G2で表される配位子が式(GM-L1)で表される配位子であり、かつ、RG2とRG3が結合して芳香環を形成している場合、RG2とRG3が結合して形成している芳香環が有する炭素-水素結合、RG6及びRG7のうちの2つが結合手であることが好ましい。 When the ligand represented by ring R 1G2 -ring R 2G2 is a ligand represented by the formula (GM-L1), and R G2 and R G3 are combined to form an aromatic ring , R G2 and R G3 are preferably bonded, and two of the carbon-hydrogen bonds, R G6 and R G7 have an aromatic ring formed by bonding.
 環R1G2-環R2G2で表される配位子が式(GM-L1)で表される配位子であり、かつ、RG1とRG2が結合して芳香環を形成している場合、RG6及びRG3、又は、RG7及びRG3が結合手であることが好ましい。 When the ligand represented by ring R 1G2 -ring R 2G2 is a ligand represented by the formula (GM-L1), and R G1 and R G2 are combined to form an aromatic ring , R G6 and R G3 , or R G7 and R G3 are preferably bonds.
 式(3G)において、L2、及びnb1の好ましい範囲は、式(2G)におけるL2、及びnb1と同じである。また、A-G-Aの例示及び好ましい態様としては、後述する式(2)で表される燐光発光性化合物におけるA3-G2-A4の例示及び好ましい態様と同じものが挙げられる。 In formula (3G), the preferred range of L 2, and n b1 are the same as L 2, and n b1 in formula (2G). Further, exemplary and preferred embodiments of A 3 -G 2 -A 4, those similar to the illustrative and preferred embodiments of A 3 -G 2 -A 4 in phosphorescent compound represented by the formula (2) described later Can be mentioned.
Figure JPOXMLDOC01-appb-C000106
Figure JPOXMLDOC01-appb-C000106
 M3Gは、式(GM-4)で表される基であることが好ましい。 M 3G is preferably a group represented by the formula (GM-4).
Figure JPOXMLDOC01-appb-C000107
[式中、
 M、E4、環R1G1、環R2G1、環R1G2及び環R2G2は、前記と同じ意味を表す。
 n115は0又は1を表す。n116は1又は3を表す。但し、Mがロジウム原子又はイリジウム原子の場合、n115は0であり、且つ、n116は3である。Mがパラジウム原子又は白金原子の場合、n115は1であり、かつ、n116は1である。]
Figure JPOXMLDOC01-appb-C000107
[Where:
M, E 4 , Ring R 1G1 , Ring R 2G1 , Ring R 1G2 and Ring R 2G2 represent the same meaning as described above.
n 115 represents 0 or 1; n 116 represents 1 or 3. However, when M is a rhodium atom or an iridium atom, n 115 is 0 and n 116 is 3. When M is a palladium atom or a platinum atom, n 115 is 1 and n 116 is 1. ]
 式(4G)において、L2、及びnb1の好ましい範囲は、式(2G)におけるL2、及びnb1と同じである。 In formula (4G), the preferred range of L 2, and n b1 are the same as L 2, and n b1 in formula (2G).
 前記燐光発光性化合物は、前記式(2)で表される燐光発光性化合物であることが好ましい。 The phosphorescent compound is preferably a phosphorescent compound represented by the formula (2).
 M2は、本実施形態に係る組成物を含有する発光素子の外部量子効率がより優れるので、イリジウム原子であることが好ましい。
 M2がロジウム原子又はイリジウム原子の場合、n3は2又は3であることが好ましく、3であることがより好ましい。
 M2がパラジウム原子又は白金原子の場合、n3は2であることが好ましい。
M 2 is preferably an iridium atom since the external quantum efficiency of the light-emitting device containing the composition according to this embodiment is more excellent.
When M 2 is a rhodium atom or an iridium atom, n 3 is preferably 2 or 3, and more preferably 3.
When M 2 is a palladium atom or a platinum atom, n 3 is preferably 2.
 E及びEは、炭素原子であることが好ましい。
 環L1の好ましい範囲は、環R1Gの好ましい範囲と同様である。
E 3 and E 4 are preferably carbon atoms.
The preferred range for ring L 1 is the same as the preferred range for ring R 1G .
 環L2は、6員の芳香族炭化水素環又は6員の芳香族複素環であることが好ましく、6員の芳香族炭化水素環であることがより好ましい。但し、環L2が6員の芳香族複素環である場合、E4は炭素原子である。
 環L2としては、ベンゼン環、ピリジン環又はピリミジン環であることが好ましく、ベンゼン環であることがより好ましい。
Ring L 2 is preferably a 6-membered aromatic hydrocarbon ring or a 6-membered aromatic heterocyclic ring, and more preferably a 6-membered aromatic hydrocarbon ring. However, when the ring L 2 is a 6-membered aromatic heterocyclic ring, E 4 is a carbon atom.
Ring L 2 is preferably a benzene ring, a pyridine ring or a pyrimidine ring, and more preferably a benzene ring.
 環L1が他の置換基を複数有する場合、それらは同一でも異なっていてもよく、互いに結合して、それぞれが結合する原子とともに環を形成していてもよい。
 環L2が他の置換基を複数有する場合、それらは同一でも異なっていてもよく、互いに結合して、それぞれが結合する原子とともに環を形成していてもよい。
When the ring L 1 has a plurality of other substituents, they may be the same or different, and may be bonded to each other to form a ring together with the atoms to which they are bonded.
When the ring L 2 has a plurality of other substituents, they may be the same or different, and may be bonded to each other to form a ring together with the atoms to which they are bonded.
 環L1における他の置換基と、環L2における他の置換基とは、互いに結合して、それぞれが結合する原子とともに環を形成していてもよい。 The other substituent in the ring L 1 and the other substituent in the ring L 2 may be bonded to each other to form a ring together with the atoms to which they are bonded.
 A3-G2-A4で表されるアニオン性の2座配位子としては、A1-G1-A2で表されるアニオン性の2座配位子と同様のものが例示される。但し、A3-G2-A4で表されるアニオン性の2座配位子は、添え字n3でその数を定義されている配位子とは異なる。 Examples of the anionic bidentate ligand represented by A 3 -G 2 -A 4 are the same as the anionic bidentate ligand represented by A 1 -G 1 -A 2. The However, the anionic bidentate ligand represented by A 3 -G 2 -A 4 is different from the ligand whose number is defined by the subscript n 3 .
 式(2)で表される燐光発光性化合物は、外部量子効率がより優れるので、環L1がピリジン環、ピリミジン環、イソキノリン環又はキノリン環であり、かつ、環L2が、ベンゼン環、ピリジン環又はピリミジン環であることが好ましい。 Since the phosphorescent compound represented by the formula (2) has better external quantum efficiency, the ring L 1 is a pyridine ring, pyrimidine ring, isoquinoline ring or quinoline ring, and the ring L 2 is a benzene ring, A pyridine ring or a pyrimidine ring is preferred.
 本実施形態に係る組成物を含有する発光素子の外部量子効率が更に優れるので、式(2)で表される燐光発光性化合物は、式(2-B1)~式(2-B5)で表される燐光発光性化合物であることが好ましい。 Since the external quantum efficiency of the light-emitting device containing the composition according to this embodiment is further excellent, the phosphorescent compound represented by the formula (2) is represented by the formulas (2-B1) to (2-B5). It is preferable that the phosphorescent compound be used.
Figure JPOXMLDOC01-appb-C000108
Figure JPOXMLDOC01-appb-C000108
 R11B、R12B、R13B、R14B、R21B、R22B、R23B及びR24Bからなる群から選ばれる少なくとも1つは、アリール基、1価の複素環基又は置換アミノ基で表される基であることが好ましく、これらの基は置換基を有していてもよい。
 R11B、R12B、R13B及びR14Bは、水素原子、アルキル基又はアリール基であることが好ましい。
At least one selected from the group consisting of R 11B , R 12B , R 13B , R 14B , R 21B , R 22B , R 23B and R 24B is represented by an aryl group, a monovalent heterocyclic group or a substituted amino group. These groups are preferable, and these groups may have a substituent.
R 11B , R 12B , R 13B and R 14B are preferably a hydrogen atom, an alkyl group or an aryl group.
 R11B、R12B、R13B及びR14Bの少なくとも一つがアリール基、1価の複素環基又は置換アミノ基である場合、R13Bがアリール基、1価の複素環基又は置換アミノ基であることが好ましい。これらの基は、発光素子の外部量子効率がより優れるので、デンドロンであることが好ましい。デンドロンの例示及び好ましい態様としては、式(5-A)で表される燐光発光性化合物におけるデンドロンの例示及び好ましい態様と同じものが挙げられる。 When at least one of R 11B , R 12B , R 13B and R 14B is an aryl group, a monovalent heterocyclic group or a substituted amino group, R 13B is an aryl group, a monovalent heterocyclic group or a substituted amino group. It is preferable. These groups are preferably dendrons because the external quantum efficiency of the light emitting device is more excellent. Examples and preferred embodiments of the dendron include the same as the examples and preferred embodiments of the dendron in the phosphorescent compound represented by the formula (5-A).
 R21B、R22B、R23B及びR24Bは、水素原子、アルキル基、シクロアルキル基、アリール基、1価の複素環基又は置換アミノ基であることが好ましく、水素原子、アルキル基又はアリール基であることがより好ましい。
 R15B、R16B、R17B及びR18Bは、水素原子であることが好ましい。
R 21B , R 22B , R 23B and R 24B are preferably a hydrogen atom, an alkyl group, a cycloalkyl group, an aryl group, a monovalent heterocyclic group or a substituted amino group, and a hydrogen atom, an alkyl group or an aryl group It is more preferable that
R 15B , R 16B , R 17B and R 18B are preferably hydrogen atoms.
 式(2)で表される燐光発光性化合物としては、例えば、下記式で表される燐光発光性化合物が挙げられる。 Examples of the phosphorescent compound represented by the formula (2) include a phosphorescent compound represented by the following formula.
Figure JPOXMLDOC01-appb-C000109
Figure JPOXMLDOC01-appb-C000109
Figure JPOXMLDOC01-appb-C000110
Figure JPOXMLDOC01-appb-C000110
Figure JPOXMLDOC01-appb-C000111
Figure JPOXMLDOC01-appb-C000111
Figure JPOXMLDOC01-appb-C000112
Figure JPOXMLDOC01-appb-C000112
Figure JPOXMLDOC01-appb-C000113
Figure JPOXMLDOC01-appb-C000113
Figure JPOXMLDOC01-appb-C000114
Figure JPOXMLDOC01-appb-C000114
Figure JPOXMLDOC01-appb-C000115
Figure JPOXMLDOC01-appb-C000115
Figure JPOXMLDOC01-appb-C000116
Figure JPOXMLDOC01-appb-C000116
Figure JPOXMLDOC01-appb-C000117
Figure JPOXMLDOC01-appb-C000117
 式(1G)で表される構成単位としては、例えば、式(1G-1)~式(1G-12)で表される構成単位が挙げられる。 Examples of the structural unit represented by the formula (1G) include structural units represented by the formula (1G-1) to the formula (1G-12).
Figure JPOXMLDOC01-appb-C000118
Figure JPOXMLDOC01-appb-C000118
Figure JPOXMLDOC01-appb-C000119
Figure JPOXMLDOC01-appb-C000119
Figure JPOXMLDOC01-appb-C000120
[式中、Deは、水素原子、メチル基、エチル基、プロピル基、n-ブチル基、tert-ブチル基、式(D-A)で表される基又は式(D-B)で表される基を表す。]
Figure JPOXMLDOC01-appb-C000120
[In the formula, De represents a hydrogen atom, a methyl group, an ethyl group, a propyl group, an n-butyl group, a tert-butyl group, a group represented by the formula (DA), or a formula (DB). Represents a group. ]
 式(2G)で表される構成単位としては、例えば、式(2G-1)~(2G-12)で表される構成単位が挙げられる。 Examples of the structural unit represented by the formula (2G) include structural units represented by the formulas (2G-1) to (2G-12).
Figure JPOXMLDOC01-appb-C000121
Figure JPOXMLDOC01-appb-C000121
Figure JPOXMLDOC01-appb-C000122
Figure JPOXMLDOC01-appb-C000122
Figure JPOXMLDOC01-appb-C000123
[式中、Deは、前記と同じ意味を有する。]
Figure JPOXMLDOC01-appb-C000123
[In the formula, De has the same meaning as described above. ]
 式(3G)で表される構成単位としては、例えば、式(3G-1)~(3G-20)で表される構成単位が挙げられる。 Examples of the structural unit represented by the formula (3G) include structural units represented by the formulas (3G-1) to (3G-20).
Figure JPOXMLDOC01-appb-C000124
Figure JPOXMLDOC01-appb-C000124
Figure JPOXMLDOC01-appb-C000125
Figure JPOXMLDOC01-appb-C000125
Figure JPOXMLDOC01-appb-C000126
Figure JPOXMLDOC01-appb-C000126
Figure JPOXMLDOC01-appb-C000127
Figure JPOXMLDOC01-appb-C000127
Figure JPOXMLDOC01-appb-C000128
[式中、Deは、前記と同じ意味を有する。]
Figure JPOXMLDOC01-appb-C000128
[In the formula, De has the same meaning as described above. ]
 式(4G)で表される構成単位としては、式(4G-1)~(4G-7)で表される構成単位が挙げられる。 Examples of the structural unit represented by the formula (4G) include structural units represented by the formulas (4G-1) to (4G-7).
Figure JPOXMLDOC01-appb-C000129
Figure JPOXMLDOC01-appb-C000129
Figure JPOXMLDOC01-appb-C000130
[式中、Deは、前記と同じ意味を有する。]
Figure JPOXMLDOC01-appb-C000130
[In the formula, De has the same meaning as described above. ]
 式(1)で表される構成単位を含む高分子化合物は、外部量子効率がより優れるので、該高分子化合物が含有する構成単位の合計量100モルに対して、燐光発光性構成単位を0.01モル~30モルであることが好ましい。 Since the polymer compound containing the structural unit represented by the formula (1) is more excellent in external quantum efficiency, the phosphorescent light-emitting structural unit is 0 with respect to 100 mol of the total amount of the structural units contained in the polymer compound. The amount is preferably from 0.01 mol to 30 mol.
 式(1)で表される構成単位を含む高分子化合物としては、外部量子効率がより優れるので、可視域で燐光発光することが好ましく、発光ピーク波長が570~700nmであることがより好ましい。 As the polymer compound containing the structural unit represented by the formula (1), since the external quantum efficiency is more excellent, phosphorescence is preferably emitted in the visible region, and the emission peak wavelength is more preferably 570 to 700 nm.
 式(1)で表される構成単位を含む高分子化合物は、第1の発光層に含有される発光材料のうち最も長波長側に発光ピークを有する発光材料に対して、1~200nm長波長側に発光ピーク波長を有することが好ましく、50~160nm長波長側に発光ピーク波長を有することがより好ましい。 The polymer compound containing the structural unit represented by the formula (1) has a long wavelength of 1 to 200 nm with respect to a light emitting material having a light emission peak on the longest wavelength side among the light emitting materials contained in the first light emitting layer. It preferably has an emission peak wavelength on the side, and more preferably has an emission peak wavelength on the longer wavelength side of 50 to 160 nm.
 式(1)で表される構成単位を含む高分子化合物は、燐光発光性構成単位を1種のみ含んでいても、2種以上含んでいてもよい。 The polymer compound containing the structural unit represented by the formula (1) may contain only one type of phosphorescent structural unit or two or more types.
 式(1)で表される構成単位を含む高分子化合物は、外部量子効率がより優れるので、架橋基A群から選ばれる少なくとも1種の架橋基を有する架橋構成単位を含むことが好ましい。 Since the polymer compound containing the structural unit represented by the formula (1) is more excellent in external quantum efficiency, it is preferable to include a crosslinked structural unit having at least one kind of crosslinking group selected from the crosslinking group A group.
 式(1)で表される構成単位を含む高分子化合物に含まれる架橋構成単位としては、式(3)又は式(4)で表される構成単位が好ましい。 As the crosslinked structural unit contained in the polymer compound containing the structural unit represented by the formula (1), a structural unit represented by the formula (3) or the formula (4) is preferable.
Figure JPOXMLDOC01-appb-C000131
Figure JPOXMLDOC01-appb-C000131
 式(3)中、nAは、外部量子効率が優れるので、好ましくは1又は2である。
 式(3)中、nは、外部量子効率が優れるので、好ましくは2である。
 式(3)中、Ar1は、外部量子効率が優れるので、好ましくは置換基を有していてもよい芳香族炭化水素基である。
In formula (3), nA is preferably 1 or 2 because of its excellent external quantum efficiency.
In the formula (3), n is preferably 2 because the external quantum efficiency is excellent.
In formula (3), Ar 1 is preferably an aromatic hydrocarbon group which may have a substituent since it has excellent external quantum efficiency.
 Ar1で表される芳香族炭化水素基の炭素原子数は、置換基の炭素原子数を含めないで、通常6~60であり、好ましくは6~30であり、より好ましくは6~18である。
 Ar1で表される芳香族炭化水素基のアリーレン部分としては、好ましくは、式(A-1)~(A-20)で表される基であり、より好ましくは、式(A-1)、又は、式(A-9)で表される基であり、これらの基は置換基を有していてもよい。
The number of carbon atoms of the aromatic hydrocarbon group represented by Ar 1 is usually 6 to 60, preferably 6 to 30, more preferably 6 to 18, not including the number of carbon atoms of the substituent. is there.
The arylene moiety of the aromatic hydrocarbon group represented by Ar 1 is preferably a group represented by the formulas (A-1) to (A-20), more preferably the formula (A-1) Or a group represented by formula (A-9), and these groups each optionally have a substituent.
 Ar1で表される2価の複素環基の炭素原子数は、置換基の炭素原子数を含めないで、通常2~60であり、好ましくは4~18である。
 Ar1で表される2価の複素環基としては、好ましくは、式(AA-1)~(AA-34)で表される基である。
The number of carbon atoms of the divalent heterocyclic group represented by Ar 1 is usually 2 to 60, preferably 4 to 18, excluding the number of carbon atoms of the substituent.
The divalent heterocyclic group represented by Ar 1 is preferably a group represented by the formulas (AA-1) to (AA-34).
 式(3)中、LAで表されるアルキレン基は、置換基の炭素原子数を含めないで、通常1~20であり、好ましくは好ましくは1~10である。LAで表されるシクロアルキレン基は、置換基の炭素原子数を含めないで、通常3~20である。
 アルキレン基及びシクロアルキレン基は、置換基を有していてもよく、例えば、メチレン基、エチレン基、プロピレン基、ブチレン基、ヘキシレン基、シクロヘキシレン基、オクチレン基が挙げられる。
In the formula (3), the alkylene group represented by L A is not including the carbon atom number of substituent is usually 1 to 20, preferably preferably 1-10. Cycloalkylene group represented by L A is not including the carbon atom number of substituent is usually 3 to 20.
The alkylene group and the cycloalkylene group may have a substituent, and examples thereof include a methylene group, an ethylene group, a propylene group, a butylene group, a hexylene group, a cyclohexylene group, and an octylene group.
 LAで表されるアリーレン基は、置換基を有していてもよい。アリーレン基としては、フェニレン基又はフルオレンジイル基が好ましい。 The arylene group represented by L A may have a substituent. As the arylene group, a phenylene group or a fluorenediyl group is preferable.
 LAは、前記式(1)で表される構成単位を含む高分子化合物、及び、本発明の実施形態の高分子化合物の合成が容易になるので、好ましくは、アリーレン基又はアルキレン基であり、これらの基は置換基を有していてもよい。 L A is preferably an arylene group or an alkylene group because it facilitates the synthesis of the polymer compound containing the structural unit represented by the formula (1) and the polymer compound of the embodiment of the present invention. These groups may have a substituent.
 Xで表される架橋基としては、式(1)で表される構成単位を含む高分子化合物の架橋性が優れるので、好ましくは式(XL-1)、式(XL-3)、式(XL-7)~式(XL-10)、式(XL-16)、式(XL-17)又は式(XL-20)で表される架橋基であり、より好ましくは、式(XL-1)、式(XL-17)又は式(XL-20)で表される架橋基である。 As the crosslinking group represented by X, the polymer compound containing the structural unit represented by the formula (1) is excellent in crosslinkability. Therefore, the formula (XL-1), the formula (XL-3), the formula ( XL-7) to a formula (XL-10), a formula (XL-16), a formula (XL-17) or a formula (XL-20), and more preferably a formula (XL-1) ), A crosslinking group represented by formula (XL-17) or formula (XL-20).
 式(3)で表される構成単位は、前記式(1)で表される構成単位を含む高分子化合物の架橋性が優れるので、該高分子化合物に含まれる構成単位の合計量100モルに対して、好ましくは0.5~90モルであり、より好ましくは5~60モルである。 Since the structural unit represented by the formula (3) has excellent crosslinkability of the polymer compound containing the structural unit represented by the formula (1), the total amount of the structural units contained in the polymer compound is 100 mol. On the other hand, it is preferably 0.5 to 90 mol, more preferably 5 to 60 mol.
 式(3)で表される構成単位は、式(1)で表される構成単位を含む高分子化合物において、1種のみ含まれていてもよく、2種以上含まれていてもよい。 The structural unit represented by Formula (3) may be included in the polymer compound containing the structural unit represented by Formula (1), or may be included in two or more types.
Figure JPOXMLDOC01-appb-C000132
Figure JPOXMLDOC01-appb-C000132
 式(4)中、mAは、外部量子効率が優れるので、好ましくは0である。
 式(4)中、mは、外部量子効率が優れるので、好ましくは0である。
 式(4)中、cは、式(1)で表される構成単位を含む高分子化合物の合成が容易となり、かつ、外部量子効率が優れるので、好ましくは0である。
 式(4)中、Ar3は、外部量子効率が優れるので、好ましくは置換基を有していてもよい芳香族炭化水素基である。
In formula (4), mA is preferably 0 because the external quantum efficiency is excellent.
In formula (4), m is preferably 0 because the external quantum efficiency is excellent.
In formula (4), c is preferably 0 because it facilitates the synthesis of the polymer compound containing the structural unit represented by formula (1) and is excellent in external quantum efficiency.
In formula (4), Ar 3 is preferably an aromatic hydrocarbon group which may have a substituent since it has excellent external quantum efficiency.
 Ar3で表される芳香族炭化水素基の定義や例は、式(X)におけるArX2で表されるアリーレン基の定義や例からm個の水素原子を取り除いてなる基と同じである。
 Ar3で表される複素環基の定義や例は、式(X)におけるArX2で表される2価の複素環基の定義や例からm個の水素原子を取り除いてなる基と同じである。
 Ar3で表される芳香族炭化水素基と複素環基とが直接結合した基の定義や例は、式(X)におけるArX2で表されるアリーレン基と2価の複素環基とが直接結合した2価の基の定義や例からm個の水素原子を取り除いてなる基と同じである。
The definition and example of the aromatic hydrocarbon group represented by Ar 3 are the same as the group obtained by removing m hydrogen atoms from the definition and example of the arylene group represented by Ar X2 in formula (X).
The definition and example of the heterocyclic group represented by Ar 3 are the same as the group obtained by removing m hydrogen atoms from the definition and example of the divalent heterocyclic group represented by Ar X2 in formula (X). is there.
The definition and examples of the group in which the aromatic hydrocarbon group represented by Ar 3 and the heterocyclic group are directly bonded are as follows: the arylene group represented by Ar X2 and the divalent heterocyclic group in the formula (X) are directly This is the same as the group formed by removing m hydrogen atoms from the definition or example of the bonded divalent group.
 式(4)中、Ar2及びAr4は、外部量子効率が優れるので、好ましくは置換基を有していてもよいアリーレン基である。
 Ar2及びAr4で表されるアリーレン基の定義や例は、式(X)におけるArX1及びArX3で表されるアリーレン基の定義や例と同じである。
 Ar2及びAr4で表される2価の複素環基の定義や例は、式(X)におけるArX1及びArX3で表される2価の複素環基の定義や例と同じである。
In formula (4), Ar 2 and Ar 4 are preferably an arylene group which may have a substituent since it has excellent external quantum efficiency.
The definitions and examples of the arylene group represented by Ar 2 and Ar 4 are the same as the definitions and examples of the arylene group represented by Ar X1 and Ar X3 in the formula (X).
The definitions and examples of the divalent heterocyclic group represented by Ar 2 and Ar 4 are the same as the definitions and examples of the divalent heterocyclic group represented by Ar X1 and Ar X3 in formula (X).
 式(4)中、KAで表されるアルキレン基、シクロアルキレン基、アリーレン基、2価の複素環基の定義や例は、それぞれ、LAで表されるアルキレン基、シクロアルキレン基、アリーレン基、2価の複素環基の定義や例と同じである。
 式(4)中、KAは、式(1)で表される構成単位を含む高分子化合物の合成が容易になるので、フェニレン基又はメチレン基であることが好ましく、これらの基は置換基を有していてもよい。
In the formula (4), the alkylene group represented by K A, a cycloalkylene group, an arylene group, a divalent definitions and examples of the heterocyclic group, respectively, the alkylene group represented by L A, a cycloalkylene group, an arylene The definition and examples of the group and the divalent heterocyclic group are the same.
Wherein (4), K A, since the synthesis of the polymer compound containing a constitutional unit represented by formula (1) is facilitated, is preferably a phenylene group or methylene group, which substituent You may have.
 X’で表される架橋基の定義や例は、Xで表される架橋基の定義や例と同じである。 The definition and examples of the crosslinking group represented by X ′ are the same as the definition and examples of the crosslinking group represented by X.
 式(4)で表される構成単位は、式(1)で表される構成単位を含む高分子化合物の正孔輸送性が優れ、かつ、架橋性が優れるので、式(1)で表される構成単位を含む高分子化合物に含まれる構成単位の合計量100モルに対して、好ましくは0.5~80モルであり、より好ましくは3~40モルであり、更に好ましくは5~20モルある。 The structural unit represented by the formula (4) is represented by the formula (1) because the polymer compound containing the structural unit represented by the formula (1) has excellent hole transportability and crosslinkability. Is preferably 0.5 to 80 mol, more preferably 3 to 40 mol, still more preferably 5 to 20 mol, per 100 mol of the total amount of the structural units contained in the polymer compound containing the structural unit. is there.
 式(4)で表される構成単位は、式(1)で表される構成単位を含む高分子化合物において、1種のみ含まれていても2種以上含まれていてもよい。 The structural unit represented by Formula (4) may be included in the polymer compound containing the structural unit represented by Formula (1), or may be included in two or more types.
 式(3)で表される構成単位としては、例えば、式(3-1)~式(3-30)で表される構成単位が挙げられ、式(4)で表される構成単位としては、例えば、式(4-1)~式(4-9)で表される構成単位が挙げられる。 Examples of the structural unit represented by formula (3) include structural units represented by formula (3-1) to formula (3-30). Examples of the structural unit represented by formula (4) include: Examples thereof include structural units represented by formulas (4-1) to (4-9).
Figure JPOXMLDOC01-appb-C000133
Figure JPOXMLDOC01-appb-C000133
Figure JPOXMLDOC01-appb-C000134
Figure JPOXMLDOC01-appb-C000134
Figure JPOXMLDOC01-appb-C000135
Figure JPOXMLDOC01-appb-C000135
 式(1)で表される構成単位を含む高分子化合物は、更に、式(Y)で表される構成単位、その他の構成単位を含んでいてもよい。その他の構成単位は、式(X)で表される構成単位であってもよい。 The polymer compound containing the structural unit represented by the formula (1) may further contain a structural unit represented by the formula (Y) and other structural units. The other structural unit may be a structural unit represented by the formula (X).
 式(1)で表される構成単位を含む高分子化合物としては、例えば、高分子化合物PP-1~PP-8が挙げられる。 Examples of the polymer compound containing the structural unit represented by the formula (1) include polymer compounds PP-1 to PP-8.
Figure JPOXMLDOC01-appb-T000136

[表中、p、q、r、s及びtは、各構成単位のモル比率を表す。p+q+r+s+t=100である。その他の構成単位とは、式(1)、式(1G)~式(4G)、式(3)、式(4)、式(X)及び式(Y)で表される構成単位以外の構成単位を意味する。]
Figure JPOXMLDOC01-appb-T000136

[In the table, p, q, r, s, and t represent the molar ratio of each structural unit. p + q + r + s + t = 100. The other structural units are components other than the structural units represented by formula (1), formula (1G) to formula (4G), formula (3), formula (4), formula (X), and formula (Y). Means a unit. ]
 式(1)で表される構成単位を含む高分子化合物としては、本実施形態に係る発光素子の外部量子効率がより優れるので、高分子化合物PPP-1~PPP-8が好ましい。 As the polymer compound containing the structural unit represented by the formula (1), the polymer compounds PPP-1 to PPP-8 are preferable because the external quantum efficiency of the light emitting device according to this embodiment is more excellent.
Figure JPOXMLDOC01-appb-T000137

[表中、p、q、r、s、t、u、v、w及びxは、各構成単位のモル比率を表す。p+q+r+s+t+u+v+w+x=100である。その他の構成単位とは、式(1)、式(1X)、式(1Z)、式(5)、式(5’)及び式(Y)で表される構成単位以外の構成単位を意味する。]
Figure JPOXMLDOC01-appb-T000137

[In the table, p, q, r, s, t, u, v, w, and x represent the molar ratio of each constituent unit. p + q + r + s + t + u + v + w + x = 100. The other structural unit means a structural unit other than the structural units represented by Formula (1), Formula (1X), Formula (1Z), Formula (5), Formula (5 ′), and Formula (Y). . ]
 式(1)で表される構成単位を含む高分子化合物の架橋体は、上述した式(1)で表される構成単位を含む高分子化合物の架橋基を、後述の架橋条件で処理することにより得られるものである。 In the crosslinked product of the polymer compound containing the structural unit represented by the formula (1), the crosslinking group of the polymer compound containing the structural unit represented by the formula (1) described above is treated under the crosslinking conditions described later. Is obtained.
 ・その他の材料
 第2の発光層は、少なくとも1種の発光材料と、正孔輸送材料、正孔注入材料、電子輸送材料、電子注入材料及び酸化防止剤からなる群から選ばれる少なくとも1種の材料とを含有することが好ましい。また、第2の発光層は、式(1)で表される構成単位を含む高分子化合物、及び、前記高分子化合物の架橋体からなる群より選ばれる少なくとも1種のほか、燐光発光性化合物(特には、式(2)で表される燐光発光性化合物)を含有していてもよい。
 第2の発光層が含有し得る、正孔輸送材料、正孔注入材料、電子輸送材料、電子注入材料及び酸化防止剤からなる群から選ばれる少なくとも1種の材料の例示、好ましい範囲、含有量等は、第1の発光層と同様である。
Other materials The second light emitting layer is composed of at least one light emitting material and at least one selected from the group consisting of a hole transport material, a hole injection material, an electron transport material, an electron injection material, and an antioxidant. It is preferable to contain a material. In addition, the second light-emitting layer is a phosphorescent compound in addition to at least one selected from the group consisting of a polymer compound containing the structural unit represented by the formula (1) and a crosslinked product of the polymer compound. (In particular, it may contain a phosphorescent compound represented by the formula (2)).
Illustrative, preferred range and content of at least one material selected from the group consisting of hole transport material, hole injection material, electron transport material, electron injection material and antioxidant, which can be contained in the second light emitting layer Etc. are the same as those of the first light-emitting layer.
 第2の発光層は、式(1)で表される構成単位を含む高分子化合物を含むインク(以下、「第2の発光層の形成に用いられるインク」ともいう。)を用いて、スピンコート法、グラビアコート法、バーコート法、ロールコート法、スプレーコート法、スクリーン印刷法、ダイコート法、インクジェット印刷法、キャピラリ-コート法、ノズルコート法等の塗布法により形成することができる。 The second light-emitting layer is spun using an ink containing a polymer compound containing the structural unit represented by the formula (1) (hereinafter also referred to as “ink used for forming the second light-emitting layer”). It can be formed by a coating method such as a coating method, a gravure coating method, a bar coating method, a roll coating method, a spray coating method, a screen printing method, a die coating method, an ink jet printing method, a capillary coating method, or a nozzle coating method.
 第2の発光層の形成に用いられるインクの粘度の好ましい範囲は、第1の発光層の形成に用いられるインクの粘度の好ましい範囲と同じである。第2の発光層の形成に用いられるインクに含有される溶媒の例及び好ましい範囲は、第1の発光層の形成に用いられるインクに含有される溶媒の例及び好ましい範囲と同じである。 The preferable range of the viscosity of the ink used for forming the second light emitting layer is the same as the preferable range of the viscosity of the ink used for forming the first light emitting layer. Examples and preferred ranges of the solvent contained in the ink used for forming the second light emitting layer are the same as the examples and preferred ranges of the solvent contained in the ink used for forming the first light emitting layer.
 <高分子化合物の製造方法>
 次に、本発明の高分子化合物の製造方法について説明する。
 本発明の式(1)で表される構成単位と燐光発光性構成単位とを含む高分子化合物は、例えば、以下の式(M-1)で表される化合物と、式(M-1G)で表される化合物とを縮合重合させることにより製造することができる。本明細書において、本発明の高分子化合物の製造に使用される化合物を総称して、「原料モノマー」ということがある。
 本発明の実施形態の高分子化合物が、その他の構成単位を含んでいてもよく、その場合の原料モノマーとしては、以下の式(M-1X)、式(M-1Z)、式(M-5)、式(M-5’)又は式(M-Y)で表される化合物が例示される。
<Method for producing polymer compound>
Next, a method for producing the polymer compound of the present invention will be described.
The polymer compound containing the structural unit represented by the formula (1) and the phosphorescent structural unit of the present invention includes, for example, a compound represented by the following formula (M-1) and a formula (M-1G) It can manufacture by carrying out condensation polymerization with the compound represented by these. In the present specification, the compounds used for the production of the polymer compound of the present invention are sometimes collectively referred to as “raw material monomers”.
The polymer compound of the embodiment of the present invention may contain other structural units. In this case, examples of the raw material monomer include the following formula (M-1X), formula (M-1Z), formula (M- 5), a compound represented by formula (M-5 ′) or formula (MY).
Figure JPOXMLDOC01-appb-C000138
Figure JPOXMLDOC01-appb-C000138
Figure JPOXMLDOC01-appb-C000139
[式中、
 a1、a2、a3、ArA3、ArA4、ArA5、環S1、RA1、RA3、RA4、RA5、RA6、L、L、L、Ar1M、M1G、M2G、M3G、na1、nb1及びnc1は、前記と同じ意味を表す。
 ZC1~ZC10は、それぞれ独立に、置換基A群及び置換基B群からなる群から選ばれる基を表す。]
Figure JPOXMLDOC01-appb-C000139
[Where:
a 1 , a 2 , a 3 , Ar A3 , Ar A4 , Ar A5 , Ring S 1 , R A1 , R A3 , R A4 , R A5 , R A6 , L 1 , L 2 , L 3 , Ar 1M , M 1G , M2G , M3G , na1 , nb1 and nc1 have the same meaning as described above.
Z C1 to Z C10 each independently represent a group selected from the group consisting of the substituent group A and the substituent group B. ]
 例えば、ZC1及びZC2が置換基A群から選ばれる基である場合、ZC3~ZC10は、置換基B群から選ばれる基を選択する。
 例えば、ZC1及びZC2が置換基B群から選ばれる基である場合、ZC3~ZC10は置換基A群から選ばれる基を選択する。
For example, when Z C1 and Z C2 are groups selected from the substituent group A, Z C3 to Z C10 select groups selected from the substituent group B.
For example, when Z C1 and Z C2 are groups selected from the substituent group B, Z C3 to Z C10 select groups selected from the substituent group A.
 <置換基A群>
 塩素原子、臭素原子、ヨウ素原子、-O-S(=O)2C1(式中、RC1は、アルキル基、シクロアルキル基又はアリール基を表し、これらの基は置換基を有していてもよい。)で表される基。
<Substituent group A>
Chlorine atom, bromine atom, iodine atom, —O—S (═O) 2 R C1 (wherein R C1 represents an alkyl group, a cycloalkyl group or an aryl group, and these groups have a substituent. A group represented by:
 <置換基B群>
 -B(ORC2)2(式中、RC2は、水素原子、アルキル基、シクロアルキル基又はアリール基を表し、これらの基は置換基を有していてもよい。複数存在するRC2は同一でも異なっていてもよく、互いに連結して、それぞれが結合する酸素原子とともに環構造を形成していてもよい。)で表される基;
 -BF3Q'(式中、Q'は、Li、Na、K、Rb又はCsを表す。)で表される基;
 -MgY'(式中、Y'は、塩素原子、臭素原子又はヨウ素原子を表す。)で表される基;
 -ZnY''(式中、Y''は、塩素原子、臭素原子又はヨウ素原子を表す。)で表される基;及び、
 -Sn(RC3)3(式中、RC3は、水素原子、アルキル基、シクロアルキル基又はアリール基を表し、これらの基は置換基を有していてもよい。複数存在するRC3は同一でも異なっていてもよく、互いに連結して、それぞれが結合するスズ原子とともに環構造を形成していてもよい。)で表される基。
<Substituent group B>
-B in (OR C2) 2 (wherein, R C2 represents a hydrogen atom, an alkyl group, a cycloalkyl group or an aryl group, these groups may have a substituent. There exist a plurality of R C2 is Groups which may be the same or different and may be linked to each other to form a ring structure together with the oxygen atoms to which they are bonded.
A group represented by BF 3 Q ′ (wherein Q ′ represents Li, Na, K, Rb or Cs);
-A group represented by MgY '(wherein Y' represents a chlorine atom, a bromine atom or an iodine atom);
A group represented by —ZnY ″ (wherein Y ″ represents a chlorine atom, a bromine atom or an iodine atom);
-Sn (R C3) 3 (wherein, R C3 represents a hydrogen atom, an alkyl group, a cycloalkyl group or an aryl group, these groups may have a substituent. More existing R C3 is The groups may be the same or different and may be linked to each other to form a ring structure together with the tin atoms to which they are bonded.
 -B(ORC2)2で表される基としては、下記式で表される基が例示される。 Examples of the group represented by —B (OR C2 ) 2 include groups represented by the following formulae.
Figure JPOXMLDOC01-appb-C000140
Figure JPOXMLDOC01-appb-C000140
 置換基A群から選ばれる基を有する化合物と置換基B群から選ばれる基を有する化合物とは、公知のカップリング反応により縮合重合して、置換基A群から選ばれる基及び置換基B群から選ばれる基と結合する炭素原子同士が結合する。そのため、置換基A群から選ばれる基を2個有する化合物と、置換基B群から選ばれる基を2個有する化合物を公知のカップリング反応に供すれば、縮合重合により、これらの化合物の縮合重合体を得ることができる。 A compound having a group selected from Substituent Group A and a compound having a group selected from Substituent Group B are subjected to condensation polymerization by a known coupling reaction, and a group selected from Substituent Group A and Substituent Group B Carbon atoms bonded to a group selected from are bonded to each other. Therefore, if a compound having two groups selected from Substituent Group A and a compound having two groups selected from Substituent Group B are subjected to a known coupling reaction, condensation of these compounds by condensation polymerization A polymer can be obtained.
 縮合重合は、通常、触媒、塩基及び溶媒の存在下で行われるが、必要に応じて、相間移動触媒を共存させて行ってもよい。 The condensation polymerization is usually carried out in the presence of a catalyst, a base and a solvent, but may be carried out in the presence of a phase transfer catalyst if necessary.
 触媒としては、例えば、ジクロロビス(トリフェニルホスフィン)パラジウム、ジクロロビス(トリス-o-メトキシフェニルホスフィン)パラジウム、パラジウム[テトラキス(トリフェニルホスフィン)]、[トリス(ジベンジリデンアセトン)]ジパラジウム、パラジウムアセテート等のパラジウム錯体、ニッケル[テトラキス(トリフェニルホスフィン)]、[1,3-ビス(ジフェニルホスフィノ)プロパン]ジクロロニッケル、[ビス(1,4-シクロオクタジエン)]ニッケル等のニッケル錯体等の遷移金属錯体;これらの遷移金属錯体が、更にトリフェニルホスフィン、トリ-o-トリルホスフィン、トリ-tert-ブチルホスフィン、トリシクロヘキシルホスフィン、ジフェニルホスフィノプロパン、ビピリジル等の配位子を有する錯体が挙げられる。触媒は、一種単独で用いても二種以上を併用してもよい。 Examples of the catalyst include dichlorobis (triphenylphosphine) palladium, dichlorobis (tris-o-methoxyphenylphosphine) palladium, palladium [tetrakis (triphenylphosphine)], [tris (dibenzylideneacetone)] dipalladium, palladium acetate and the like. Transition of nickel complexes such as palladium complexes of nickel, nickel [tetrakis (triphenylphosphine)], [1,3-bis (diphenylphosphino) propane] dichloronickel, [bis (1,4-cyclooctadiene)] nickel Metal complexes; these transition metal complexes may further include complexes having ligands such as triphenylphosphine, tri-o-tolylphosphine, tri-tert-butylphosphine, tricyclohexylphosphine, diphenylphosphinopropane, bipyridyl, etc. . A catalyst may be used individually by 1 type, or may use 2 or more types together.
 触媒の使用量は、原料モノマーのモル数の合計に対する遷移金属の量として、通常、0.00001~3モル当量である。 The amount of catalyst used is usually 0.00001 to 3 molar equivalents as the amount of transition metal relative to the total number of moles of raw material monomers.
 塩基及び相間移動触媒としては、例えば、炭酸ナトリウム、炭酸カリウム、炭酸セシウム、フッ化カリウム、フッ化セシウム、リン酸三カリウム等の無機塩基;フッ化テトラブチルアンモニウム、水酸化テトラブチルアンモニウム等の有機塩基;塩化テトラブチルアンモニウム、臭化テトラブチルアンモニウム等の相間移動触媒が挙げられる。塩基及び相間移動触媒は、それぞれ、一種単独で用いても二種以上を併用してもよい。 Examples of the base and phase transfer catalyst include inorganic bases such as sodium carbonate, potassium carbonate, cesium carbonate, potassium fluoride, cesium fluoride, and tripotassium phosphate; organics such as tetrabutylammonium fluoride and tetrabutylammonium hydroxide. Examples of the base include phase transfer catalysts such as tetrabutylammonium chloride and tetrabutylammonium bromide. Each of the base and the phase transfer catalyst may be used alone or in combination of two or more.
 塩基及び相間移動触媒の使用量は、それぞれ、原料モノマーの合計モル数に対して、通常0.001~100モル当量である。 The amount of base and phase transfer catalyst used is usually 0.001 to 100 molar equivalents relative to the total number of moles of raw material monomers.
 溶媒としては、例えば、トルエン、キシレン、メシチレン、テトラヒドロフラン、1,4-ジオキサン、ジメトキシエタン、N,N-ジメチルアセトアミド、N,N-ジメチルホルムアミド等の有機溶媒、水が挙げられる。溶媒は、一種単独で用いても二種以上を併用してもよい。 Examples of the solvent include organic solvents such as toluene, xylene, mesitylene, tetrahydrofuran, 1,4-dioxane, dimethoxyethane, N, N-dimethylacetamide, N, N-dimethylformamide, and water. A solvent may be used individually by 1 type, or may use 2 or more types together.
 溶媒の使用量は、通常、原料モノマーの合計100重量部に対して、10~100000重量部である。 The amount of solvent used is usually 10 to 100000 parts by weight with respect to 100 parts by weight of the total amount of raw material monomers.
 縮合重合の反応温度は、通常-100~200℃である。縮合重合の反応時間は、通常1時間以上である。 The reaction temperature of the condensation polymerization is usually -100 to 200 ° C. The reaction time of the condensation polymerization is usually 1 hour or more.
 重合反応の後処理は、公知の方法、例えば、分液により水溶性不純物を除去する方法、メタノール等の低級アルコールに重合反応後の反応液を加えて、析出させた沈殿を濾過した後、乾燥させる方法等を単独、又は組み合わせて行う。高分子化合物の純度が低い場合、例えば、再結晶、再沈殿、ソックスレー抽出器による連続抽出、カラムクロマトグラフィー等の通常の方法にて精製することができる。 Post-treatment of the polymerization reaction is a known method, for example, a method of removing water-soluble impurities by liquid separation, adding the reaction solution after polymerization reaction to a lower alcohol such as methanol, filtering the deposited precipitate, and then drying. These methods are carried out alone or in combination. When the purity of the polymer compound is low, it can be purified by a usual method such as recrystallization, reprecipitation, continuous extraction with a Soxhlet extractor, column chromatography, or the like.
 式(M-1)で表される化合物の一実施形態である式(1m-1)で表される化合物は、例えば、下記式で表される方法で合成することができる。 The compound represented by the formula (1m-1), which is an embodiment of the compound represented by the formula (M-1), can be synthesized, for example, by a method represented by the following formula.
Figure JPOXMLDOC01-appb-C000141
[式中、RA1は、前記と同じ意味を表す。ArA11は、アリーレン基又は2価の複素環基を表し、これらの基は置換基を有していてもよい。但し、ArA11は、臭素原子又は前記-B(ORC2)2で表される基と結合を形成する原子の隣の原子の少なくとも1つが、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基又は1価の複素環基を置換基として有し、これらの置換基は更に置換基を有していてもよい。]
Figure JPOXMLDOC01-appb-C000141
[Wherein, R A1 represents the same meaning as described above. Ar A11 represents an arylene group or a divalent heterocyclic group, and these groups optionally have a substituent. However, Ar A11 is a group in which at least one atom adjacent to a bromine atom or an atom that forms a bond with the group represented by —B (OR C2 ) 2 is an alkyl group, a cycloalkyl group, an alkoxy group, or a cycloalkoxy group. , An aryl group or a monovalent heterocyclic group as a substituent, and these substituents may further have a substituent. ]
 まず、式(1m-6)で表される化合物と、リチウムビス(トリメチルシリル)アミドとを、パラジウム触媒を用いて反応させることにより、式(1m-5)で表される化合物に誘導する。次に、式(1m-5)で表される化合物と、式(1m-4)で表される化合物とを、ブッフバルト・ハートウィッグ反応させることにより、式(1m-3)で表される化合物を合成する。次に、式(1m-3)で表される化合物と、臭素化剤とを反応させることにより、式(1m-2)で表される化合物を合成する。次に、式(1m-2)で表される化合物と、ビスピナコラートジボロンとを、パラジウム触媒を用いて反応させることにより、式(1m-1)で表される化合物を合成することができる。 First, the compound represented by the formula (1m-5) is reacted with lithium bis (trimethylsilyl) amide using a palladium catalyst to induce the compound represented by the formula (1m-5). Next, the compound represented by the formula (1m-3) is reacted with the compound represented by the formula (1m-4) by the Buchwald-Hartwig reaction to obtain the compound represented by the formula (1m-3). Is synthesized. Next, the compound represented by the formula (1m-2) is reacted with the brominating agent to synthesize the compound represented by the formula (1m-2). Next, a compound represented by the formula (1m-1) can be synthesized by reacting a compound represented by the formula (1m-2) with bispinacolatodiboron using a palladium catalyst. it can.
 式(M-1)で表される化合物の一実施形態である式(2m-1)で表される化合物は、例えば、下記で表される方法で合成することができる。 The compound represented by the formula (2m-1), which is an embodiment of the compound represented by the formula (M-1), can be synthesized, for example, by the method represented by the following.
Figure JPOXMLDOC01-appb-C000142
[式中、
 ArA12は、アリーレン基又は2価の複素環基を表し、これらの基は置換基を有していてもよい。但し、ArA12は、臭素原子又は前記-B(ORC2)2で表される基と結合を形成する原子の隣の原子の少なくとも1つが、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基又は1価の複素環基を置換基として有し、これらの置換基は更に置換基を有していてもよい。
 ArA2は、前記と同じ意味を表す。RA11は、前記RA1と同じ意味を表す。]
Figure JPOXMLDOC01-appb-C000142
[Where:
Ar A12 represents an arylene group or a divalent heterocyclic group, and these groups optionally have a substituent. However, Ar A12 represents a bromine atom or at least one atom adjacent to an atom that forms a bond with the group represented by —B (OR C2 ) 2 is an alkyl group, a cycloalkyl group, an alkoxy group, or a cycloalkoxy group. , An aryl group or a monovalent heterocyclic group as a substituent, and these substituents may further have a substituent.
Ar A2 represents the same meaning as described above. R A11 represents the same meaning as R A1 . ]
 まず、式(2m-8)で表される化合物と、リチウムビス(トリメチルシリル)アミドとを、パラジウム触媒を用いて反応させることによりにより、式(2m-7)で表される化合物に誘導する。次に、式(2m-7)で表される化合物と、式(2m-6)で表される化合物とを、ブッフバルト・ハートウィッグ反応させることにより、式(2m-5)で表される化合物を合成する。次に、式(2m-5)で表される化合物と、式(2m-4)で表される化合物とを、ブッフバルト・ハートウィッグ反応させることにより、式(2m-3)で表される化合物を合成する。次に、式(2m-3)で表される化合物と、臭素化剤とを反応させることにより、式(2m-2)で表される化合物を合成する。次に、式(2m-2)で表される化合物と、ビスピナコラートジボロンとを、パラジウム触媒を用いて反応させることにより、式(2m-1)で表される化合物を合成することができる。 First, the compound represented by the formula (2m-7) is induced by reacting the compound represented by the formula (2m-8) with lithium bis (trimethylsilyl) amide using a palladium catalyst. Next, a compound represented by the formula (2m-5) is obtained by subjecting a compound represented by the formula (2m-7) and a compound represented by the formula (2m-6) to Buchwald-Hartwig reaction. Is synthesized. Next, the compound represented by the formula (2m-3) is reacted with the compound represented by the formula (2m-4) by a Buchwald-Hartwig reaction to thereby obtain a compound represented by the formula (2m-3). Is synthesized. Next, the compound represented by the formula (2m-2) is reacted with the brominating agent to synthesize the compound represented by the formula (2m-2). Next, the compound represented by the formula (2m-1) can be synthesized by reacting the compound represented by the formula (2m-2) with bispinacolatodiboron using a palladium catalyst. it can.
 <発光素子の層構成>
 本実施形態に係る発光素子は、陽極と、陰極と、それらの間に設けられた第1の発光層及び第2の発光層とを有する。本実施形態に係る発光素子は、その他の層を有していてもよい。
<Layer structure of light emitting element>
The light emitting device according to this embodiment includes an anode, a cathode, and a first light emitting layer and a second light emitting layer provided therebetween. The light emitting device according to this embodiment may have other layers.
 本実施形態に係る発光素子において、第1の発光層と第2の発光層とは、外部量子効率がより優れるので、隣接していることが好ましい。
 また、第2の発光層は、外部量子効率がより優れるので、陽極及び第1の発光層の間に設けられた層であることが好ましい。
In the light emitting element according to this embodiment, the first light emitting layer and the second light emitting layer are preferably adjacent to each other because the external quantum efficiency is more excellent.
The second light emitting layer is preferably a layer provided between the anode and the first light emitting layer because the external quantum efficiency is more excellent.
 本実施形態に係る発光素子において、第2の発光層が陽極及び第1の発光層の間に設けられた層である場合、外部量子効率がより優れるので、陽極と第2の発光層との間に、正孔注入層及び正孔輸送層からなる群から選ばれる少なくとも1つの層を更に有することが好ましい。また、第2の発光層が陽極及び第1の発光層の間に設けられた層である場合、外部量子効率がより優れるので、陰極と第1の発光層との間に、電子注入層及び電子輸送層からなる群から選ばれる少なくとも1つの層を更に有することが好ましい。 In the light emitting device according to the present embodiment, when the second light emitting layer is a layer provided between the anode and the first light emitting layer, the external quantum efficiency is more excellent, so that the anode and the second light emitting layer It is preferable to further have at least one layer selected from the group consisting of a hole injection layer and a hole transport layer between them. In addition, when the second light-emitting layer is a layer provided between the anode and the first light-emitting layer, the external quantum efficiency is more excellent, so that the electron injection layer and the first light-emitting layer are provided between the cathode and the first light-emitting layer. It is preferable to further have at least one layer selected from the group consisting of electron transport layers.
 本実施形態に係る発光素子において、第2の発光層が陰極及び第1の発光層の間に設けられた層である場合、外部量子効率がより優れるので、陽極と第1の発光層との間に、正孔注入層及び正孔輸送層からなる群から選ばれる少なくとも1つの層を更に有することが好ましい。また、第2の発光層が陰極及び第1の発光層の間に設けられた層である場合、外部量子効率がより優れるので、陰極と第2の発光層との間に、電子注入層及び電子輸送層からなる群から選ばれる少なくとも1つの層を更に有することが好ましい。 In the light emitting device according to the present embodiment, when the second light emitting layer is a layer provided between the cathode and the first light emitting layer, the external quantum efficiency is more excellent, so that the anode and the first light emitting layer It is preferable to further have at least one layer selected from the group consisting of a hole injection layer and a hole transport layer between them. In addition, when the second light-emitting layer is a layer provided between the cathode and the first light-emitting layer, the external quantum efficiency is more excellent, so that the electron injection layer and the second light-emitting layer are interposed between the cathode and the second light-emitting layer. It is preferable to further have at least one layer selected from the group consisting of electron transport layers.
 本実施形態に係る発光素子において、陽極、正孔注入層、正孔輸送層、電子輸送層、電子注入層及び陰極は、それぞれ、必要に応じて、2層以上設けられていてもよい。
 陽極、正孔注入層、正孔輸送層、電子輸送層、電子注入層及び陰極が複数存在する場合、それらはそれぞれ同一でも異なっていてもよい。
In the light emitting device according to this embodiment, two or more anodes, a hole injection layer, a hole transport layer, an electron transport layer, an electron injection layer, and a cathode may be provided as necessary.
When there are a plurality of anodes, hole injection layers, hole transport layers, electron transport layers, electron injection layers, and cathodes, they may be the same or different.
 陽極、正孔注入層、正孔輸送層、第1の発光層、第2の発光層、電子輸送層、電子注入層及び陰極の厚さは、通常、1nm~1μmであり、好ましくは5nm~150nmである。 The thickness of the anode, hole injection layer, hole transport layer, first light emitting layer, second light emitting layer, electron transport layer, electron injection layer and cathode is usually 1 nm to 1 μm, preferably 5 nm to 150 nm.
 本実施形態に係る発光素子の具体的な層構成としては、例えば、下記(D1)~(D18)で表される層構成が挙げられる。本実施形態に係る発光素子は、通常、基板を有するが、基板上に陽極から積層されていてもよく、基板上に陰極から積層されていてもよい。 Specific examples of the layer configuration of the light emitting device according to this embodiment include the layer configurations represented by the following (D1) to (D18). The light emitting device according to this embodiment usually has a substrate, but may be laminated from the anode on the substrate, or may be laminated from the cathode on the substrate.
(D1)陽極/第2の発光層/第1の発光層/陰極
(D2)陽極/第1の発光層/第2の発光層/陰極
(D3)陽極/正孔注入層/第2の発光層/第1の発光層/陰極
(D4)陽極/正孔輸送層/第2の発光層/第1の発光層/陰極
(D5)陽極/第2の発光層/第1の発光層/電子輸送層/陰極
(D6)陽極/第2の発光層/第1の発光層/電子注入層/陰極
(D7)陽極/第2の発光層/第1の発光層/電子輸送層/電子注入層/陰極
(D8)陽極/正孔注入層/第2の発光層/第1の発光層/電子輸送層/陰極
(D9)陽極/正孔注入層/第2の発光層/第1の発光層/電子注入層/陰極
(D10)陽極/正孔注入層/第2の発光層/第1の発光層/電子輸送層/電子注入層/陰極
(D11)陽極/正孔輸送層/第2の発光層/第1の発光層/電子輸送層/陰極
(D12)陽極/正孔輸送層/第2の発光層/第1の発光層/電子注入層/陰極
(D13)陽極/正孔輸送層/第2の発光層/第1の発光層/電子輸送層/電子注入層/陰極
(D14)陽極/正孔注入層/正孔輸送層/第2の発光層/第1の発光層/陰極
(D15)陽極/正孔注入層/正孔輸送層/第2の発光層/第1の発光層/電子輸送層/陰極
(D16)陽極/正孔注入層/正孔輸送層/第2の発光層/第1の発光層/電子輸送層/電子注入層/陰極
(D17)陽極/正孔注入層/第1の発光層/第2の発光層/電子輸送層/電子注入層/陰極
(D18)陽極/正孔注入層/正孔輸送層/第1の発光層/第2の発光層/電子輸送層/電子注入層/陰極
(D1) Anode / second light emitting layer / first light emitting layer / cathode (D2) anode / first light emitting layer / second light emitting layer / cathode (D3) anode / hole injection layer / second light emitting Layer / first light emitting layer / cathode (D4) anode / hole transport layer / second light emitting layer / first light emitting layer / cathode (D5) anode / second light emitting layer / first light emitting layer / electrons Transport layer / cathode (D6) anode / second light emitting layer / first light emitting layer / electron injection layer / cathode (D7) anode / second light emitting layer / first light emitting layer / electron transport layer / electron injection layer / Cathode (D8) anode / hole injection layer / second emission layer / first emission layer / electron transport layer / cathode (D9) anode / hole injection layer / second emission layer / first emission layer / Electron injection layer / cathode (D10) anode / hole injection layer / second light emitting layer / first light emitting layer / electron transport layer / electron injection layer / cathode (D11) anode / hole transport layer / second Light emitting layer / first Photo layer / electron transport layer / cathode (D12) anode / hole transport layer / second light emitting layer / first light emitting layer / electron injection layer / cathode (D13) anode / hole transport layer / second light emitting layer / First light emitting layer / electron transport layer / electron injection layer / cathode (D14) anode / hole injection layer / hole transport layer / second light emitting layer / first light emitting layer / cathode (D15) anode / positive Hole injection layer / hole transport layer / second light emitting layer / first light emitting layer / electron transport layer / cathode (D16) anode / hole injection layer / hole transport layer / second light emitting layer / first Light emitting layer / electron transport layer / electron injection layer / cathode (D17) anode / hole injection layer / first light emission layer / second light emission layer / electron transport layer / electron injection layer / cathode (D18) anode / hole Injection layer / hole transport layer / first light emitting layer / second light emitting layer / electron transport layer / electron injection layer / cathode
 上記の(D1)~(D18)中、「/」は、その前後の層が隣接して積層していることを意味する。具体的には、「第2の発光層/第1の発光層」とは、第2の発光層と第1の発光層とが隣接して積層していることを意味する。 In the above (D1) to (D18), “/” means that the layers before and after are stacked adjacent to each other. Specifically, “second light-emitting layer / first light-emitting layer” means that the second light-emitting layer and the first light-emitting layer are stacked adjacent to each other.
 本実施形態に係る発光素子は、複数の発光層の間に非発光性の中間層を有していてもよく、中間層が電荷発生層であるマルチフォトンユニット構成であってもよい。この場合、電荷発生層としては、ITO(インジウム・スズ酸化物)、IZO(インジウム・亜鉛酸化物)、ZnO、TiN、ZrN、HfN、TiOx、VOx、CuI、InN、GaN、CuAlO、CuGaO、SrCu、LaB、RuO等の導電性無機化合物層や、Au/Bi等の2層膜、SnO/Ag/SnO、ZnO/Ag/ZnO、Bi/Au/Bi、TiO/TiN/TiO、TiO/ZrN/TiO等の多層膜、またC60等のフラーレン、オリゴチオフェン等の導電性有機物層、金属フタロシアニン、無金属フタロシアニン、金属ポルフィリン、無金属ポルフィリン等の導電性有機化合物層等が挙げられる。 The light emitting device according to this embodiment may have a non-light emitting intermediate layer between a plurality of light emitting layers, and may have a multi-photon unit configuration in which the intermediate layer is a charge generation layer. In this case, as the charge generating layer, ITO (indium tin oxide), IZO (indium zinc oxide), ZnO 2, TiN, ZrN , HfN, TiOx, VOx, CuI, InN, GaN, CuAlO 2, CuGaO 2 , conductive inorganic compound layers such as SrCu 2 O 2 , LaB 6 , RuO 2 , two-layer films such as Au / Bi 2 O 3 , SnO 2 / Ag / SnO 2 , ZnO / Ag / ZnO, Bi 2 O 3 / Au / Bi 2 O 3 , TiO 2 / TiN / TiO 2 , TiO 2 / ZrN / TiO 2 and other multilayer films, C 60 and other fullerenes, conductive organic layers such as oligothiophene, metal phthalocyanine, metal-free Examples thereof include conductive organic compound layers such as phthalocyanine, metal porphyrin, and metal-free porphyrin.
 本実施形態に係る発光素子は、電極と他の層との密着性向上や電極からの電荷注入の改善のために、電極に隣接して絶縁層を設けてもよい。また、本実施形態に係る発光素子では、界面の密着性向上や隣接する2層の成分混合の防止等のために、正孔輸送層、電子輸送層、第1の発光層又は第2の発光層の界面に薄いバッファー層を挿入してもよい。積層する層の順番及び数、並びに各層の厚さは、外部量子効率や素子寿命を勘案して調整すればよい。 In the light emitting device according to the present embodiment, an insulating layer may be provided adjacent to the electrode in order to improve the adhesion between the electrode and other layers and to improve the charge injection from the electrode. In the light emitting device according to the present embodiment, the hole transport layer, the electron transport layer, the first light emitting layer, or the second light emitting layer is used to improve the adhesion of the interface and prevent the mixing of two adjacent layers. A thin buffer layer may be inserted at the interface of the layers. The order and number of layers to be stacked, and the thickness of each layer may be adjusted in consideration of external quantum efficiency and device lifetime.
 ・基板
 本実施形態に係る発光素子は、陽極の発光層側とは反対側、又は陰極の発光層側とは反対側に、基板を有していてもよい。基板は、電極を形成し、有機層(例えば、第1の発光層、第2の発光層、正孔輸送層、正孔注入層、電子輸送層、電子注入層等)を形成する際に化学的に変化しないものであればよく、例えば、ガラス、プラスチック、高分子フィルム、金属フィルム、シリコン等の基板、及びこれらを積層した基板が用いられる。
-Substrate The light emitting device according to this embodiment may have a substrate on the side opposite to the light emitting layer side of the anode or on the side opposite to the light emitting layer side of the cathode. The substrate forms an electrode and chemically forms an organic layer (for example, a first light emitting layer, a second light emitting layer, a hole transport layer, a hole injection layer, an electron transport layer, an electron injection layer, etc.). For example, a substrate made of glass, plastic, polymer film, metal film, silicon, or the like, and a substrate in which these are laminated are used.
 ・電子輸送層
 電子輸送層は、電子輸送材料を含有する層である。電子輸送材料としては、式(ET-1)で表される構成単位及び式(ET-2)で表される構成単位からなる群から選ばれる少なくとも1種の構成単位を含む高分子化合物(以下、「電子輸送層の高分子化合物」ともいう。)が好ましい。
-Electron transport layer An electron transport layer is a layer containing an electron transport material. As the electron transport material, a polymer compound containing at least one structural unit selected from the group consisting of a structural unit represented by the formula (ET-1) and a structural unit represented by the formula (ET-2) (hereinafter referred to as “electron transport material”) And also referred to as “polymer compound of electron transport layer”).
Figure JPOXMLDOC01-appb-C000143
[式中、
 nE1は、1以上の整数を表す。
 ArE1は、芳香族炭化水素基又は複素環基を表し、これらの基はRE1以外の置換基を有していてもよい。
 RE1は、式(ES-1)で表される基を表す。RE1が複数存在する場合、それらは同一でも異なっていてもよい。]
Figure JPOXMLDOC01-appb-C000143
[Where:
nE1 represents an integer of 1 or more.
Ar E1 represents an aromatic hydrocarbon group or a heterocyclic group, and these groups may have a substituent other than R E1 .
R E1 represents a group represented by the formula (ES-1). When a plurality of R E1 are present, they may be the same or different. ]
  -RE3-{(QE1nE3-YE1(ME1aE1(ZE1bE1mE1   (ES-1)
[式中、
 nE3は0以上の整数を表し、aE1は1以上の整数を表し、bE1は0以上の整数を表し、mE1は1以上の整数を表す。nE3、aE1及びbE1が複数存在する場合、それらはそれぞれ同一でも異なっていてもよい。但し、RE3が単結合である場合、mE1は1である。また、aE1及びbE1は、式(ES-1)で表される基の電荷が0となるように選択される。
 RE3は、単結合、炭化水素基、複素環基又は-O-RE3’を表し(RE3’は、炭化水素基又は複素環基を表す。)、これらの基は置換基を有していてもよい。
 QE1は、アルキレン基、シクロアルキレン基、アリーレン基、酸素原子又は硫黄原子を表し、これらの基は置換基を有していてもよい。QE1が複数存在する場合、それらは同一でも異なっていてもよい。
 YE1は、-CO2 -、-SO3 -、-SO2 -又は-PO3 2-を表す。YE1が複数存在する場合、それらは同一でも異なっていてもよい。
 ME1は、アルカリ金属カチオン、アルカリ土類金属カチオン又はアンモニウムカチオンを表し、このアンモニウムカチオンは置換基を有していてもよい。ME1が複数存在する場合、それらは同一でも異なっていてもよい。
 ZE1は、F-、Cl-、Br-、I-、OH-、B(RE44 -、RE4SO3 -、RE4COO-、NO3 -、SO4 2-、HSO4 -、PO4 3-、HPO4 2-、H2PO4 -、BF4 -又はPF6 -を表す。RE4は、アルキル基、シクロアルキル基又はアリール基を表し、これらの基は置換基を有していてもよい。ZE1が複数存在する場合、それらは同一でも異なっていてもよい。]
-R E3 -{(Q E1 ) nE3 -Y E1 (M E1 ) aE1 (Z E1 ) bE1 } mE1 (ES-1)
[Where:
nE3 represents an integer of 0 or more, aE1 represents an integer of 1 or more, bE1 represents an integer of 0 or more, and mE1 represents an integer of 1 or more. When a plurality of nE3, aE1, and bE1 are present, they may be the same or different. However, mE1 is 1 when R E3 is a single bond. Further, aE1 and bE1 are selected so that the charge of the group represented by the formula (ES-1) becomes zero.
R E3 represents a single bond, a hydrocarbon group, a heterocyclic group or —O—R E3 ′ (R E3 ′ represents a hydrocarbon group or a heterocyclic group), and these groups have a substituent. It may be.
Q E1 represents an alkylene group, a cycloalkylene group, an arylene group, an oxygen atom or a sulfur atom, and these groups optionally have a substituent. When a plurality of Q E1 are present, they may be the same or different.
Y E1 represents —CO 2 , —SO 3 , —SO 2 or —PO 3 2− . When a plurality of Y E1 are present, they may be the same or different.
M E1 represents an alkali metal cation, an alkaline earth metal cation or an ammonium cation, and this ammonium cation may have a substituent. When a plurality of M E1 are present, they may be the same or different.
Z E1 is F , Cl , Br , I , OH , B (R E4 ) 4 , R E4 SO 3 , R E4 COO , NO 3 , SO 4 2− , HSO 4 −. , PO 4 3− , HPO 4 2− , H 2 PO 4 , BF 4 or PF 6 . R E4 represents an alkyl group, a cycloalkyl group, or an aryl group, and these groups optionally have a substituent. When a plurality of Z E1 are present, they may be the same or different. ]
 nE1は、通常1~4の整数であり、好ましくは1又は2である。 NE1 is usually an integer of 1 to 4, preferably 1 or 2.
 ArE1で表される芳香族炭化水素基又は複素環基としては、1,4-フェニレン基、1,3-フェニレン基、1,2-フェニレン基、2,6-ナフタレンジイル基、1,4-ナフタレンジイル基、2、7-フルオレンジイル基、3,6-フルオレンジイル基、2,7-フェナントレンジイル基又は2,7-カルバゾールジイル基から、環を構成する原子に直接結合する水素原子nE1個を除いた基が好ましく、RE1以外の置換基を有していてもよい。 Examples of the aromatic hydrocarbon group or heterocyclic group represented by Ar E1 include 1,4-phenylene group, 1,3-phenylene group, 1,2-phenylene group, 2,6-naphthalenediyl group, 1,4 Hydrogen bonded directly to the atoms constituting the ring from a naphthalenediyl group, a 2,7-fluorenediyl group, a 3,6-fluorenediyl group, a 2,7-phenanthenediyl group or a 2,7-carbazolediyl group A group excluding one atom nE1 is preferable, and may have a substituent other than R E1 .
 ArE1が有していてもよいRE1以外の置換基としては、ハロゲン原子、シアノ基、アルキル基、シクロアルキル基、アリール基、1価の複素環基、アルコキシ基、シクロアルコキシ基、アリールオキシ基、アミノ基、置換アミノ基、アルケニル基、シクロアルケニル基、アルキニル基、シクロアルキニル基、カルボキシル基及び式(ES-3)で表される基が挙げられる。 Examples of the substituent other than R E1 that Ar E1 may have include a halogen atom, a cyano group, an alkyl group, a cycloalkyl group, an aryl group, a monovalent heterocyclic group, an alkoxy group, a cycloalkoxy group, and aryloxy. Group, amino group, substituted amino group, alkenyl group, cycloalkenyl group, alkynyl group, cycloalkynyl group, carboxyl group and group represented by the formula (ES-3).
  -O-(Cn’2n’O)nx-Cm’2m’+1  (ES-3)
[式中、n’、m’及びnxは、それぞれ独立に、1以上の整数を表す。]
-O- (C n 'H 2n' O) nx -C m 'H 2m' + 1 (ES-3)
[Wherein, n ′, m ′ and nx each independently represents an integer of 1 or more. ]
 nE3は、好ましくは0~2の整数である。
 aE1は、好ましくは1又は2である。
 bE1は、好ましくは0又は1である。
 mE1は、好ましくは1である。
nE3 is preferably an integer of 0 to 2.
aE1 is preferably 1 or 2.
bE1 is preferably 0 or 1.
mE1 is preferably 1.
 RE3が-O-RE3’の場合、式(ES-1)で表される基は、下記式で表される基である。
  -O-RE3’-{(QE1nE3-YE1(ME1aE1(ZE1bE1mE1
When R E3 is —O—R E3 ′, the group represented by the formula (ES-1) is a group represented by the following formula.
-O-R E3 '-{(Q E1 ) nE3 -Y E1 (M E1 ) aE1 (Z E1 ) bE1 } mE1
 RE3としては、芳香族炭化水素基が好ましい。
 RE3が有していてもよい置換基としては、式(ES-3)で表される基が好ましい。
 QE1としては、アルキレン基又は酸素原子が好ましい。
 YE1としては、-CO2 -が好ましい。
 ME1で表されるアルカリ金属カチオンとしては、例えば、Li+、Na+、K+、Rb+、Cs+が挙げられる。
 ME1で表されるアルカリ土類金属カチオンとしては、例えば、Be2+、Mg2+、Ca2+、Sr2+、Ba2+が挙げられる。
 ME1としては、アルカリ金属カチオン又はアルカリ土類金属カチオンが好ましい。
 ZE1としては、F-、Cl-、Br-、I-、OH-、B(RE44 -、RE4SO3 -、RE4COO-又はNO3 -が好ましい。RE4としては、アルキル基が好ましい。
R E3 is preferably an aromatic hydrocarbon group.
As the substituent that R E3 may have, a group represented by formula (ES-3) is preferable.
Q E1 is preferably an alkylene group or an oxygen atom.
Y E1 is preferably —CO 2 .
Examples of the alkali metal cation represented by M E1 include Li + , Na + , K + , Rb + , and Cs + .
Examples of the alkaline earth metal cation represented by M E1 include Be 2+ , Mg 2+ , Ca 2+ , Sr 2+ and Ba 2+ .
M E1 is preferably an alkali metal cation or an alkaline earth metal cation.
Z E1 is preferably F , Cl , Br , I , OH , B (R E4 ) 4 , R E4 SO 3 , R E4 COO or NO 3 . R E4 is preferably an alkyl group.
 式(ES-1)で表される基としては、例えば、下記式で表される基が挙げられる。 Examples of the group represented by the formula (ES-1) include a group represented by the following formula.
Figure JPOXMLDOC01-appb-C000144
Figure JPOXMLDOC01-appb-C000144
Figure JPOXMLDOC01-appb-C000145
[式中、M+は、Li+、Na+、K+、Cs+又はN(CH34 +を表す。M+が複数存在する場合、それらは同一でも異なっていてもよい。]
Figure JPOXMLDOC01-appb-C000145
[Wherein M + represents Li + , Na + , K + , Cs + or N (CH 3 ) 4 + . When a plurality of M + are present, they may be the same or different. ]
Figure JPOXMLDOC01-appb-C000146
[式中、
 nE2は、1以上の整数を表す。
 ArE2は、芳香族炭化水素基又は複素環基を表し、これらの基はRE2以外の置換基を有していてもよい。
 RE2は、式(ES-2)で表される基を表す。RE2が複数存在する場合、それらは同一でも異なっていてもよい。]
Figure JPOXMLDOC01-appb-C000146
[Where:
nE2 represents an integer of 1 or more.
Ar E2 represents an aromatic hydrocarbon group or a heterocyclic group, and these groups may have a substituent other than R E2 .
R E2 represents a group represented by the formula (ES-2). When a plurality of R E2 are present, they may be the same or different. ]
  -RE5-{(QE2nE4-YE2(ME2aE2(ZE2bE2mE2  (ES-2)
[式中、
 nE4は0以上の整数を表し、aE2は1以上の整数を表し、bE2は0以上の整数を表し、mE2は1以上の整数を表す。nE4、aE2及びbE2が複数存在する場合、それらはそれぞれ同一でも異なっていてもよい。但し、RE5が単結合である場合、mE2は1である。また、aE2及びbE2は、式(ES-2)で表される基の電荷が0となるように選択される。
 RE5は、単結合、炭化水素基、複素環基又は-O-RE5’を表し(RE5’は、炭化水素基又は複素環基を表す。)、これらの基は置換基を有していてもよい。
 QE2は、アルキレン基、シクロアルキレン基、アリーレン基、酸素原子又は硫黄原子を表し、これらの基は置換基を有していてもよい。QE2が複数存在する場合、それらは同一でも異なっていてもよい。
 YE2は、-C+E6 2、-N+E6 3、-P+E6 3、-S+E6 2又は-I+E6 2を表す。RE6は、水素原子、アルキル基、シクロアルキル基又はアリール基を表し、これらの基は置換基を有していてもよい。複数存在するRE6は、同一でも異なっていてもよい。YE2が複数存在する場合、それらは同一でも異なっていてもよい。
 ME2は、F-、Cl-、Br-、I-、OH-、B(RE74 -、RE7SO3 -、RE7COO-、BF4 -、SbCl6 -又はSbF6 -を表す。RE7は、アルキル基、シクロアルキル基又はアリール基を表し、これらの基は置換基を有していてもよい。ME2が複数存在する場合、それらは同一でも異なっていてもよい。
 ZE2は、アルカリ金属カチオン又はアルカリ土類金属カチオンを表す。ZE2が複数存在する場合、それらは同一でも異なっていてもよい。]
-R E5 -{(Q E2 ) nE4 -Y E2 (M E2 ) aE2 (Z E2 ) bE2 } mE2 (ES-2)
[Where:
nE4 represents an integer of 0 or more, aE2 represents an integer of 1 or more, bE2 represents an integer of 0 or more, and mE2 represents an integer of 1 or more. When there are a plurality of nE4, aE2, and bE2, they may be the same or different. However, mE2 is 1 when R E5 is a single bond. Further, aE2 and bE2 are selected so that the charge of the group represented by the formula (ES-2) becomes zero.
R E5 represents a single bond, a hydrocarbon group, a heterocyclic group or —O—R E5 ′ (R E5 ′ represents a hydrocarbon group or a heterocyclic group), and these groups have a substituent. It may be.
Q E2 represents an alkylene group, a cycloalkylene group, an arylene group, an oxygen atom or a sulfur atom, and these groups optionally have a substituent. When a plurality of Q E2 are present, they may be the same or different.
Y E2 represents -C + R E6 2 , -N + R E6 3 , -P + R E6 3 , -S + R E6 2 or -I + R E6 2 . R E6 represents a hydrogen atom, an alkyl group, a cycloalkyl group, or an aryl group, and these groups optionally have a substituent. A plurality of R E6 may be the same or different. When a plurality of Y E2 are present, they may be the same or different.
M E2 represents F , Cl , Br , I , OH , B (R E7 ) 4 , R E7 SO 3 , R E7 COO , BF 4 , SbCl 6 or SbF 6 . To express. R E7 represents an alkyl group, a cycloalkyl group, or an aryl group, and these groups optionally have a substituent. When a plurality of M E2 are present, they may be the same or different.
Z E2 represents an alkali metal cation or an alkaline earth metal cation. When a plurality of Z E2 are present, they may be the same or different. ]
 RE5が-O-RE5’の場合、式(ES-2)で表される基は、下記式で表される基であることが好ましい。
  -O-RE5’-{(QE1nE3-YE1(ME1aE1(ZE1bE1mE1
When R E5 is —O—R E5 ′, the group represented by the formula (ES-2) is preferably a group represented by the following formula.
-O-R E5 '-{(Q E1 ) nE3 -Y E1 (M E1 ) aE1 (Z E1 ) bE1 } mE1
 式(ES-2)で表される基としては、例えば、下記式で表される基が挙げられる。 Examples of the group represented by the formula (ES-2) include a group represented by the following formula.
Figure JPOXMLDOC01-appb-C000147
Figure JPOXMLDOC01-appb-C000147
Figure JPOXMLDOC01-appb-C000148
[式中、X-は、F-、Cl-、Br-、I-、B(C654 -、CH3COO-又はCF3SO3 -を表す。X-が複数存在する場合、それらは同一でも異なっていてもよい。]
Figure JPOXMLDOC01-appb-C000148
[Wherein, X represents F , Cl , Br , I , B (C 6 H 5 ) 4 , CH 3 COO or CF 3 SO 3 . When a plurality of X are present, they may be the same or different. ]
 式(ET-1)及び式(ET-2)で表される構成単位としては、例えば、下記式(ET-31)~式(ET-38)で表される構成単位が挙げられる。 Examples of the structural units represented by formula (ET-1) and formula (ET-2) include structural units represented by the following formula (ET-31) to formula (ET-38).
Figure JPOXMLDOC01-appb-C000149
Figure JPOXMLDOC01-appb-C000149
Figure JPOXMLDOC01-appb-C000150
Figure JPOXMLDOC01-appb-C000150
Figure JPOXMLDOC01-appb-C000151
Figure JPOXMLDOC01-appb-C000151
 電子輸送層の高分子化合物は、例えば、特開2009-239279号公報、特開2012-033845号公報、特開2012-216821号公報、特開2012-216822号公報、特開2012-216815号公報に記載の方法に従って合成することができる。 Examples of the polymer compound for the electron transport layer include, for example, JP2009-239279A, JP2012-033845A, JP2012-216281A, JP2012-216822A, and JP2012-216815A. It can be synthesized according to the method described in 1.
 上記電子輸送層の高分子化合物を溶液からの成膜に用いる溶媒は、水、アルコール、フッ素化アルコール、エーテル、エステル、ニトリル化合物、ニトロ化合物、ハロゲン化アルキル、ハロゲン化アリール、チオール、スルフィド、スルホキシド、チオケトン、アミド、カルボン酸が挙げられ、水、メタノール、エタノール、2-プロパノール、1-ブタノール、tert-ブチルアルコール、アセトニトリル、1,2-エタンジオール、N,N-ジメチルホルムアミド、ジメチルスルホキシド、酢酸、ニトロベンゼン、ニトロメタン、1,2-ジクロロエタン、ジクロロメタン、クロロベンゼン、ブロモベンゼン、1,4-ジオキサン、炭酸プロピレン、ピリジン、及び、二硫化炭素、2,2,3,3-テトラフルオロプロパノール、1,1,1-トリフルオロ-2-プロパノール、1,1,1,3,3,3-ヘキサフルオロ-2-プロパノール、2,2,3,3,4,4-ヘキサフルオロブタノール、2,2,3,3,4,4,4-ヘプタフルオロ-1-ブタノール、2,2,3,3,3-ペンタフルオロ-1-プロパノール、3,3,4,4,5,5,5-ヘプタフルオロ-2-ペンタノール、2,2,3,3,4,4,5,5-オクタフルオロ-1-ペンタノール、3,3,4,4,5,5,6,6,6-ノナフルオロ-1-ヘキサノール、2,2,3,3,4,4,5,5,6,6,7,7-ドデカフルオロヘプタノールが好ましい。これらの溶媒は、一種単独で用いても二種以上を併用してもよい。 Solvents used for forming the polymer compound of the electron transport layer from a solution are water, alcohol, fluorinated alcohol, ether, ester, nitrile compound, nitro compound, alkyl halide, aryl halide, thiol, sulfide, sulfoxide. Thioketone, amide, carboxylic acid, water, methanol, ethanol, 2-propanol, 1-butanol, tert-butyl alcohol, acetonitrile, 1,2-ethanediol, N, N-dimethylformamide, dimethyl sulfoxide, acetic acid , Nitrobenzene, nitromethane, 1,2-dichloroethane, dichloromethane, chlorobenzene, bromobenzene, 1,4-dioxane, propylene carbonate, pyridine, and carbon disulfide, 2,2,3,3-tetrafluoropropanol, 1 1,1-trifluoro-2-propanol, 1,1,1,3,3,3-hexafluoro-2-propanol, 2,2,3,3,4,4-hexafluorobutanol, 2,2, 3,3,4,4,4-heptafluoro-1-butanol, 2,2,3,3,3-pentafluoro-1-propanol, 3,3,4,4,5,5,5-heptafluoro -2-pentanol, 2,2,3,3,4,4,5,5-octafluoro-1-pentanol, 3,3,4,4,5,5,6,6,6-nonafluoro- 1-hexanol, 2,2,3,3,4,4,5,5,6,6,7,7-dodecafluoroheptanol is preferred. These solvents may be used alone or in combination of two or more.
 ・正孔注入層及び電子注入層
 正孔注入層は、正孔注入材料を含有する層である。正孔注入材料としては、例えば、第1の発光層の組成物が含有していてもよい正孔注入材料が挙げられる。正孔注入材料は、1種単独で含有されていても、2種以上が含有されていてもよい。
-Hole injection layer and electron injection layer A hole injection layer is a layer containing hole injection material. As a hole injection material, the hole injection material which the composition of the 1st light emitting layer may contain is mentioned, for example. The hole injection material may be contained singly or in combination of two or more.
 電子注入層は、電子注入材料を含有する層である。電子注入材料としては、例えば、第1の発光層の組成物が含有していてもよい電子注入材料が挙げられる。電子注入材料は、1種単独で含有されていても、2種以上が含有されていてもよい。 The electron injection layer is a layer containing an electron injection material. As an electron injection material, the electron injection material which the composition of a 1st light emitting layer may contain is mentioned, for example. The electron injection material may be contained singly or in combination of two or more.
 ・正孔輸送層
 正孔輸送層は、正孔輸送材料を含有する層である。正孔輸送材料としては、例えば、第1の発光層の組成物が含有していてもよい正孔輸送材料が挙げられる。正孔輸送材料は、1種単独で含有されていても、2種以上が含有されていてもよい。
-Hole transport layer A hole transport layer is a layer containing hole transport material. As a hole transport material, the hole transport material which the composition of the 1st light emitting layer may contain is mentioned, for example. The hole transport material may be contained singly or in combination of two or more.
 ・電極
 陽極の材料としては、例えば、導電性の金属酸化物、半透明の金属が挙げられ、好ましくは、酸化インジウム、酸化亜鉛、酸化スズ;ITO、インジウム・亜鉛・オキサイド等の導電性化合物;銀とパラジウムと銅との複合体(APC);NESA、金、白金、銀、銅である。
-Electrode The material of the anode includes, for example, conductive metal oxides and translucent metals, and preferably conductive compounds such as indium oxide, zinc oxide, tin oxide; ITO, indium / zinc / oxide; A composite of silver, palladium and copper (APC); NESA, gold, platinum, silver and copper.
 陰極の材料としては、例えば、リチウム、ナトリウム、カリウム、ルビジウム、セシウム、ベリリウム、マグネシウム、カルシウム、ストロンチウム、バリウム、アルミニウム、亜鉛、インジウム等の金属;それらのうち2種以上の合金;それらのうち1種以上と、銀、銅、マンガン、チタン、コバルト、ニッケル、タングステン、錫のうち1種以上との合金;並びに、グラファイト及びグラファイト層間化合物が挙げられる。合金としては、例えば、マグネシウム-銀合金、マグネシウム-インジウム合金、マグネシウム-アルミニウム合金、インジウム-銀合金、リチウム-アルミニウム合金、リチウム-マグネシウム合金、リチウム-インジウム合金、カルシウム-アルミニウム合金が挙げられる。 Examples of the material of the cathode include metals such as lithium, sodium, potassium, rubidium, cesium, beryllium, magnesium, calcium, strontium, barium, aluminum, zinc, indium; two or more kinds of alloys thereof; Alloys of at least one species and at least one of silver, copper, manganese, titanium, cobalt, nickel, tungsten, and tin; and graphite and graphite intercalation compounds. Examples of the alloy include a magnesium-silver alloy, a magnesium-indium alloy, a magnesium-aluminum alloy, an indium-silver alloy, a lithium-aluminum alloy, a lithium-magnesium alloy, a lithium-indium alloy, and a calcium-aluminum alloy.
 本実施形態に係る発光素子において、陽極及び陰極の少なくとも一方は、通常、透明又は半透明であるが、陽極が透明又は半透明であることが好ましい。 In the light emitting device according to this embodiment, at least one of the anode and the cathode is usually transparent or translucent, but the anode is preferably transparent or translucent.
 陽極及び陰極の形成方法としては、例えば、真空蒸着法、スパッタリング法、イオンプレーティング法、メッキ法及びラミネート法が挙げられる。 Examples of the method for forming the anode and the cathode include a vacuum deposition method, a sputtering method, an ion plating method, a plating method, and a laminating method.
 [発光素子の製造方法]
 本実施形態に係る発光素子において、第1の発光層、第2の発光層、正孔輸送層、電子輸送層、正孔注入層、電子注入層等の各層の形成方法としては、低分子化合物を用いる場合、例えば、粉末からの真空蒸着法、溶液又は溶融状態からの成膜による方法が挙げられ、高分子化合物を用いる場合、例えば、溶液又は溶融状態からの成膜による方法が挙げられる。
[Method for Manufacturing Light-Emitting Element]
In the light emitting device according to the present embodiment, as a method for forming each layer such as the first light emitting layer, the second light emitting layer, the hole transport layer, the electron transport layer, the hole injection layer, the electron injection layer, etc. In the case of using, for example, a vacuum deposition method from a powder, a method by film formation from a solution or a molten state, and when using a polymer compound, for example, a method by film formation from a solution or a molten state can be mentioned.
 第1の発光層は第1の発光層の形成に用いられるインクを用いて、第2の発光層は第2の発光層の形成に用いられるインクを用いて、正孔輸送層、電子輸送層、正孔注入層及び電子注入層は、上述した正孔輸送材料、電子輸送材料、正孔注入材料及び電子注入材料をそれぞれ含有するインクを用いて、スピンコート法、インクジェット印刷法に代表される塗布法により形成することができる。 The first light emitting layer is formed using the ink used for forming the first light emitting layer, and the second light emitting layer is formed using the ink used for forming the second light emitting layer. The hole injection layer and the electron injection layer are typified by a spin coat method and an ink jet printing method using inks containing the above-described hole transport material, electron transport material, hole injection material and electron injection material, respectively. It can be formed by a coating method.
 本実施形態に係る発光素子は、基板上に各層を順次積層することにより製造することができる。 The light emitting device according to this embodiment can be manufactured by sequentially laminating each layer on a substrate.
 本実施形態に係る発光素子の第1の発光層、第2の発光層、正孔注入層、正孔輸送層、電子注入層及び電子輸送層の各層の形成に用いる材料は、発光素子の作製において、各々、正孔注入層、正孔輸送層、第2の発光層、第1の発光層、電子輸送層及び電子注入層に隣接する層の形成時に使用される溶媒に溶解する場合、該溶媒に該材料が溶解することが回避されることが好ましい。材料の溶解を回避する方法としては、i)架橋基を有する材料を用いる方法、又は、ii)隣接する層の溶解性に差を設ける方法が好ましい。上記i)の方法では、架橋基を有する材料を用いて層を形成した後、該架橋基を架橋させることにより、該層を不溶化させることができる。 The materials used for forming each of the first light-emitting layer, the second light-emitting layer, the hole injection layer, the hole transport layer, the electron injection layer, and the electron transport layer of the light-emitting element according to this embodiment are manufactured for the light-emitting element. Each of the hole injection layer, the hole transport layer, the second light-emitting layer, the first light-emitting layer, the electron transport layer, and the solvent used when forming the layer adjacent to the electron injection layer, It is preferred to avoid dissolution of the material in the solvent. As a method for avoiding dissolution of the material, i) a method using a material having a crosslinking group, or ii) a method of providing a difference in solubility between adjacent layers is preferable. In the method i), after forming a layer using a material having a crosslinking group, the layer can be insolubilized by crosslinking the crosslinking group.
 架橋基の架橋方法としては、例えば、加熱又は光照射することにより架橋する方法が挙げられる。
 架橋させるための加熱の温度は、通常、25~300℃であり、好ましくは50~250℃であり、より好ましくは150~200℃である。
 架橋させるための光照射に用いられる光の種類は、例えば、紫外光、近紫外光、可視光である。
Examples of the crosslinking method of the crosslinking group include a method of crosslinking by heating or light irradiation.
The heating temperature for crosslinking is usually 25 to 300 ° C, preferably 50 to 250 ° C, more preferably 150 to 200 ° C.
Types of light used for light irradiation for crosslinking are, for example, ultraviolet light, near ultraviolet light, and visible light.
 第2の発光層を塗布法により形成する場合、インクを用いることが好ましい。第2の発光層が含有する式(1)で表される構成単位を含有する高分子化合物が架橋基を有する架橋構成単位を含む高分子化合物である場合、第2の発光層を形成後、加熱又は光照射することで、第2の発光層に含有される高分子化合物を架橋させることができる。高分子化合物が架橋された状態で、第2の発光層に含有されている場合、第2の発光層は溶媒に対して実質的に不溶化されている。そのため、該第2の有機層は、発光素子の積層化に好適である。 In the case where the second light emitting layer is formed by a coating method, it is preferable to use ink. When the polymer compound containing the structural unit represented by the formula (1) contained in the second light emitting layer is a polymer compound containing a crosslinked structural unit having a crosslinking group, after forming the second light emitting layer, By heating or irradiating with light, the polymer compound contained in the second light emitting layer can be crosslinked. When the polymer compound is contained in the second light emitting layer in a crosslinked state, the second light emitting layer is substantially insolubilized in the solvent. Therefore, the second organic layer is suitable for stacking light emitting elements.
 本実施形態に係る発光素子は、第2の発光層に含有される高分子化合物が架橋体であることが好ましい。 In the light emitting device according to this embodiment, the polymer compound contained in the second light emitting layer is preferably a crosslinked body.
 上記(ii)の方法では、隣接する層に対して溶解性の低い溶液を用いることで各層を形成する方法が挙げられる。 In the above method (ii), a method of forming each layer by using a solution having low solubility with respect to an adjacent layer can be mentioned.
 第1の発光層又は第2の発光層の上に、溶解性の差を利用して電子輸送層を積層する場合に用いる溶媒としては、前記電子輸送層の高分子化合物の溶液からの成膜に用いる溶媒として例示したものが挙げられる。 As a solvent used when an electron transport layer is laminated on the first light-emitting layer or the second light-emitting layer using a difference in solubility, film formation from a solution of a polymer compound in the electron transport layer is used. What was illustrated as a solvent used for is mentioned.
 本実施形態に係る発光素子において、第2の発光層が陽極及び第1の発光層の間に設けられた層である場合、本実施形態に係る発光素子は、例えば、基板上に陽極を形成し、必要に応じて陽極上に正孔注入層及び/又は正孔輸送層を形成し、陽極上、正孔注入層上又は正孔輸送層上に第2の発光層を形成し、第2の発光層上に第1の発光層を形成し、必要に応じて第1の発光層上に電子輸送層及び/又は電子注入層を形成し、第1の発光層上、電子輸送層上又は電子注入層上に陰極を形成することにより、製造することができる。
 また、本実施形態に係る発光素子において、第2の発光層が陽極及び第1の発光層の間に設けられた層である場合、本実施形態に係る発光素子は、例えば、基板上に陰極を形成し、必要に応じて陰極上に電子注入層及び/又は電子輸送層を形成し、陰極上、電子注入層上又は電子輸送層上に第1の発光層を形成し、第1の発光層上に第2の発光層を形成し、必要に応じて第2の発光層上に正孔輸送層及び/又は正孔注入層を形成し、第2の発光層上、正孔輸送層上又は正孔注入層上に陽極を形成することにより、製造することができる。
In the light emitting device according to this embodiment, when the second light emitting layer is a layer provided between the anode and the first light emitting layer, the light emitting device according to this embodiment forms, for example, an anode on a substrate. Then, if necessary, a hole injection layer and / or a hole transport layer is formed on the anode, a second light emitting layer is formed on the anode, the hole injection layer, or the hole transport layer, and the second A first light-emitting layer is formed on the first light-emitting layer, and an electron transport layer and / or an electron injection layer is formed on the first light-emitting layer as necessary, and the first light-emitting layer, the electron transport layer, or It can be manufactured by forming a cathode on the electron injection layer.
In the light-emitting device according to this embodiment, when the second light-emitting layer is a layer provided between the anode and the first light-emitting layer, the light-emitting device according to this embodiment includes, for example, a cathode on a substrate. If necessary, an electron injection layer and / or an electron transport layer is formed on the cathode, a first light emitting layer is formed on the cathode, the electron injection layer, or the electron transport layer, and the first light emission is performed. A second light emitting layer is formed on the layer, and a hole transport layer and / or a hole injection layer is formed on the second light emitting layer as necessary, and the second light emitting layer and the hole transport layer are formed. Or it can manufacture by forming an anode on a positive hole injection layer.
 本実施形態に係る発光素子において、第2の発光層が陰極及び第1の発光層の間に設けられた層である場合、本実施形態に係る発光素子は、例えば、基板上に陽極を形成し、必要に応じて陽極上に正孔注入層及び/又は正孔輸送層を形成し、陽極上、正孔注入層上又は正孔輸送層上に第1の発光層を形成し、第1の発光層上に第2の発光層を形成し、必要に応じて第2の発光層上に電子輸送層及び/又は電子注入層を形成し、第2の発光層上、電子輸送層上又は電子注入層上に陰極を形成することにより、製造することができる。
 また、本実施形態に係る発光素子において、第2の発光層が陰極及び第1の発光層の間に設けられた層である場合、本実施形態に係る発光素子は、例えば、基板上に陰極を形成し、必要に応じて陰極上に電子注入層及び/又は電子輸送層を形成し、陰極上、電子注入層上又は電子輸送層上に第2の発光層を形成し、第2の発光層上に第1の発光層を形成し、必要に応じて第1の発光層上に正孔輸送層及び/又は正孔注入層を形成し、第1の発光層上、正孔輸送層上又は正孔注入層上に陽極を形成することにより、製造することができる。
In the light emitting device according to this embodiment, when the second light emitting layer is a layer provided between the cathode and the first light emitting layer, the light emitting device according to this embodiment forms, for example, an anode on a substrate. Then, if necessary, a hole injection layer and / or a hole transport layer is formed on the anode, a first light emitting layer is formed on the anode, the hole injection layer, or the hole transport layer, and the first A second light-emitting layer is formed on the light-emitting layer, and an electron transport layer and / or an electron injection layer is formed on the second light-emitting layer as necessary, and the second light-emitting layer, the electron transport layer or It can be manufactured by forming a cathode on the electron injection layer.
In the light-emitting device according to this embodiment, when the second light-emitting layer is a layer provided between the cathode and the first light-emitting layer, the light-emitting device according to this embodiment includes, for example, a cathode on a substrate. If necessary, an electron injection layer and / or an electron transport layer is formed on the cathode, a second light emitting layer is formed on the cathode, the electron injection layer, or the electron transport layer, and the second light emission A first light emitting layer is formed on the layer, and a hole transport layer and / or a hole injection layer is formed on the first light emitting layer as necessary, and the first light emitting layer and the hole transport layer are formed. Or it can manufacture by forming an anode on a positive hole injection layer.
 ・用途
 発光素子を用いて面状の発光を得るためには、面状の陽極と陰極が重なり合うように配置すればよい。パターン状の発光を得るためには、面状の発光素子の表面にパターン状の窓を設けたマスクを設置する方法、非発光部にしたい層を極端に厚く形成し実質的に非発光とする方法、陽極若しくは陰極、又は両方の電極をパターン状に形成する方法がある。これらのいずれかの方法でパターンを形成し、いくつかの電極を独立にON/OFFできるように配置することにより、数字、文字等を表示できるセグメントタイプの表示装置が得られる。ドットマトリックス表示装置とするためには、陽極と陰極を共にストライプ状に形成して直交するように配置すればよい。複数の種類の発光色の異なる高分子化合物を塗り分ける方法、カラーフィルター又は蛍光変換フィルターを用いる方法により、部分カラー表示、マルチカラー表示が可能となる。ドットマトリックス表示装置は、パッシブ駆動も可能であるし、TFT等と組み合わせてアクティブ駆動も可能である。これらの表示装置は、コンピュータ、テレビ、携帯端末等のディスプレイに用いることができる。面状の発光素子は、液晶表示装置のバックライト用の面状光源、又は、面状の照明用光源として好適に用いることができる。フレキシブルな基板を用いれば、曲面状の光源、及び、表示装置としても使用できる。
-Application In order to obtain planar light emission using a light emitting element, the planar anode and cathode may be arranged so as to overlap each other. In order to obtain pattern-like light emission, a method in which a mask having a pattern-like window is provided on the surface of a planar light-emitting element, a layer that is desired to be a non-light-emitting portion is formed extremely thick and substantially non-light-emitting. There is a method, a method of forming an anode or a cathode, or both electrodes in a pattern. By forming a pattern by any of these methods and arranging several electrodes so that they can be turned on and off independently, a segment type display device capable of displaying numbers, characters, and the like can be obtained. In order to obtain a dot matrix display device, both the anode and the cathode may be formed in stripes and arranged orthogonally. Partial color display and multicolor display are possible by a method of separately coating a plurality of types of polymer compounds having different emission colors, or a method using a color filter or a fluorescence conversion filter. The dot matrix display device can be driven passively, or can be driven active in combination with a TFT or the like. These display devices can be used for displays of computers, televisions, portable terminals and the like. The planar light emitting element can be suitably used as a planar light source for backlight of a liquid crystal display device or a planar illumination light source. If a flexible substrate is used, it can also be used as a curved light source and a display device.
 以下、実施例によって本発明の実施形態を詳細に説明するが、本発明の実施形態はこれらの実施例に限定されるものではない。 Hereinafter, embodiments of the present invention will be described in detail by way of examples, but the embodiments of the present invention are not limited to these examples.
 実施例において、高分子化合物のポリスチレン換算の数平均分子量(Mn)及びポリスチレン換算の重量平均分子量(Mw)は、サイズエクスクルージョンクロマトグラフィー(SEC)(島津製作所製、商品名:LC-10Avp)により求めた。なお、SECの測定条件は、次のとおりである。
 測定する高分子化合物を0.05質量%の濃度でTHF(テトラヒドロフラン)に溶解させ、SECに10μL注入した。SECの移動相としてTHFを用い、2.0mL/分の流量で流した。カラムとして、PLgel MIXED-B(ポリマーラボラトリーズ製)を用いた。検出器にはUV-VIS検出器(島津製作所製、商品名:SPD-10Avp)を用いた。
In the Examples, the polystyrene-equivalent number average molecular weight (Mn) and polystyrene-equivalent weight average molecular weight (Mw) of the polymer compound were determined by size exclusion chromatography (SEC) (manufactured by Shimadzu Corporation, trade name: LC-10Avp). Determined by The SEC measurement conditions are as follows.
The polymer compound to be measured was dissolved in THF (tetrahydrofuran) at a concentration of 0.05% by mass, and 10 μL was injected into SEC. THF was used as the mobile phase of SEC, and flowed at a flow rate of 2.0 mL / min. As the column, PLgel MIXED-B (manufactured by Polymer Laboratories) was used. A UV-VIS detector (manufactured by Shimadzu Corporation, trade name: SPD-10Avp) was used as the detector.
 LC-MSは、下記の方法で測定した。
 測定試料を約2mg/mLの濃度になるようにクロロホルム又はテトラヒドロフランに溶解させ、LC-MS(Agilent製、商品名:1100LCMSD)に約1μL注入した。LC-MSの移動相には、アセトニトリル及びテトラヒドロフランの比率を変化させながら用い、0.2mL/分の流量で流した。カラムは、L-column 2 ODS(3μm)(化学物質評価研究機構製、内径:2.1mm、長さ:100mm、粒径3μm)を用いた。
LC-MS was measured by the following method.
The measurement sample was dissolved in chloroform or tetrahydrofuran to a concentration of about 2 mg / mL, and about 1 μL was injected into LC-MS (manufactured by Agilent, trade name: 1100LCMSD). The mobile phase of LC-MS was used while changing the ratio of acetonitrile and tetrahydrofuran, and was allowed to flow at a flow rate of 0.2 mL / min. As the column, L-column 2 ODS (3 μm) (manufactured by Chemicals Evaluation and Research Institute, inner diameter: 2.1 mm, length: 100 mm, particle size: 3 μm) was used.
 TLC-MSは、下記の方法で測定した。
 測定試料をトルエン、テトラヒドロフラン又はクロロホルムのいずれかの溶媒に任意の濃度で溶解させ、DART用TLCプレート(テクノアプリケーションズ社製、商品名:YSK5-100)上に塗布し、TLC-MS(日本電子社製、商品名:JMS-T100TD(The AccuTOF TLC))を用いて測定した。測定時のヘリウムガス温度は、200~400℃の範囲で調節した。
TLC-MS was measured by the following method.
A measurement sample is dissolved in any solvent of toluene, tetrahydrofuran or chloroform at an arbitrary concentration, and applied on a TLC plate for DART (trade name: YSK5-100, manufactured by Techno Applications), and TLC-MS (JEOL Ltd.) (Trade name: JMS-T100TD (The AccuTOF TLC)). The helium gas temperature during measurement was adjusted in the range of 200 to 400 ° C.
 NMRは、下記の方法で測定した。
 5~10mgの測定試料を約0.5mLの重クロロホルム(CDCl3)、重テトラヒドロフラン、重ジメチルスルホキシド、重アセトン、重N,N-ジメチルホルムアミド、重トルエン、重メタノール、重エタノール、重2-プロパノール又は重塩化メチレンに溶解させ、NMR装置(Agilent製、商品名:INOVA300又はMERCURY 400VX)を用いて測定した。
NMR was measured by the following method.
About 5 to 10 mg of a measurement sample, about 0.5 mL of heavy chloroform (CDCl 3 ), heavy tetrahydrofuran, heavy dimethyl sulfoxide, heavy acetone, heavy N, N-dimethylformamide, heavy toluene, heavy methanol, heavy ethanol, heavy 2-propanol Alternatively, it was dissolved in methylene chloride and measured using an NMR apparatus (manufactured by Agilent, trade name: INOVA300 or MERCURY 400VX).
 化合物の純度の指標として、高速液体クロマトグラフィー(HPLC)面積百分率の値を用いた。この値は、特に記載がない限り、HPLC(島津製作所製、商品名:LC-20A)でのUV=254nmにおける値とする。この際、測定する化合物は、0.01~0.2重量%の濃度になるようにテトラヒドロフラン又はクロロホルムに溶解させ、濃度に応じてHPLCに1~10μL注入した。HPLCの移動相には、アセトニトリル/テトラヒドロフランの比率を100/0~0/100(容積比)まで変化させながら用い、1.0mL/分の流量で流した。カラムは、Kaseisorb LC ODS 2000(東京化成工業製)又は同等の性能を有するODSカラムを用いた。検出器には、フォトダイオードアレイ検出器(島津製作所製、商品名:SPD-M20A)を用いた。 As a compound purity index, a high performance liquid chromatography (HPLC) area percentage value was used. Unless otherwise specified, this value is a value at UV = 254 nm by HPLC (manufactured by Shimadzu Corporation, trade name: LC-20A). At this time, the compound to be measured was dissolved in tetrahydrofuran or chloroform to a concentration of 0.01 to 0.2% by weight, and 1 to 10 μL was injected into the HPLC depending on the concentration. For the mobile phase of HPLC, the acetonitrile / tetrahydrofuran ratio was changed from 100/0 to 0/100 (volume ratio), and the flow rate was 1.0 mL / min. As the column, Kaseisorb LC ODS 2000 (manufactured by Tokyo Chemical Industry) or an ODS column having equivalent performance was used. As the detector, a photodiode array detector (manufactured by Shimadzu Corporation, trade name: SPD-M20A) was used.
 化合物の純度の指標として、ガスクロマトグラフィー(GC)面積百分率の値を用いた。この値は、特に記載がない限り、GC(Agilent社製、商品名:Agilent7820)での値とする。この際、測定する化合物は、0.01~0.2重量%の濃度になるようにテトラヒドロフラン又はクロロホルムに溶解させ、濃度に応じてGCに1~10μL注入した。キャリヤーガスとしてはヘリウムガスを用い、1.0mL/分の流量で流した。カラムオーブンは50℃~300℃まで変化させながら用いた。ヒーター温度は注入口280℃、検出器320℃とした。カラムは、SGE製BPX-5(30m×0.25mm×0.25μm)を用いた。 The value of gas chromatography (GC) area percentage was used as an indicator of the purity of the compound. Unless otherwise specified, this value is a value in GC (manufactured by Agilent, trade name: Agilent 7820). At this time, the compound to be measured was dissolved in tetrahydrofuran or chloroform to a concentration of 0.01 to 0.2% by weight, and 1 to 10 μL was injected into the GC depending on the concentration. Helium gas was used as the carrier gas and was flowed at a flow rate of 1.0 mL / min. The column oven was used while changing from 50 ° C to 300 ° C. The heater temperature was 280 ° C. for the inlet and 320 ° C. for the detector. As the column, BPX-5 (30 m × 0.25 mm × 0.25 μm) manufactured by SGE was used.
 <合成例1> 化合物4の合成 <Synthesis Example 1> Synthesis of Compound 4
Figure JPOXMLDOC01-appb-C000152
Figure JPOXMLDOC01-appb-C000152
 (化合物2の合成)
 反応容器内をアルゴンガス雰囲気とした後、化合物1(199.0g)、ジクロロ[1,3-ビス(ジフェニルホスフィノ)プロパン]ニッケル(15.4g)及びシクロペンチルメチルエーテル(1460mL)を加え、撹拌した。その後、そこへ、メチルマグネシウムブロマイドエーテル溶液(3mol/L、292mL)を1時間かけて加えた。得られた反応液を40℃まで昇温し、40℃で4時間撹拌した。得られた反応液を室温まで冷却した後、塩酸水溶液(1mol/L、200mL)を加えた。得られた反応液を分液し、得られた有機層をイオン交換水で洗浄した。得られた洗浄液を無水硫酸マグネシウムで乾燥させた後、ろ過し、得られたろ液を減圧濃縮することにより固体を得た。得られた固体に、トルエン及び活性炭を加え、30分間攪拌した。得られたトルエン溶液を、シリカゲル及びセライトを敷いたろ過器でろ過し、得られたろ液を減圧濃縮することにより固体を得た。得られた固体をシリカゲルカラムクロマトグラフィー(ヘキサン及び酢酸エチルの混合溶媒)で精製し、イソプロパノールを用いて再結晶した後、50℃で減圧乾燥させることにより、化合物2(81g、白色固体)を得た。化合物2のHPLC面積百分率値は97.2%であった。この操作を繰り返し行うことによって、化合物2の必要量を得た。
 LC-MS(APPI, positive):[M]+208.
(Synthesis of Compound 2)
After the inside of the reaction vessel was filled with an argon gas atmosphere, Compound 1 (199.0 g), dichloro [1,3-bis (diphenylphosphino) propane] nickel (15.4 g) and cyclopentylmethyl ether (1460 mL) were added and stirred. did. Thereafter, a methylmagnesium bromide ether solution (3 mol / L, 292 mL) was added thereto over 1 hour. The resulting reaction solution was heated to 40 ° C. and stirred at 40 ° C. for 4 hours. After cooling the obtained reaction liquid to room temperature, hydrochloric acid aqueous solution (1 mol / L, 200 mL) was added. The obtained reaction solution was separated, and the obtained organic layer was washed with ion-exchanged water. The obtained washing liquid was dried over anhydrous magnesium sulfate and then filtered, and the obtained filtrate was concentrated under reduced pressure to obtain a solid. Toluene and activated carbon were added to the obtained solid and stirred for 30 minutes. The obtained toluene solution was filtered with a filter laid with silica gel and celite, and the obtained filtrate was concentrated under reduced pressure to obtain a solid. The obtained solid was purified by silica gel column chromatography (a mixed solvent of hexane and ethyl acetate), recrystallized using isopropanol, and then dried under reduced pressure at 50 ° C. to obtain compound 2 (81 g, white solid). It was. The HPLC area percentage value of Compound 2 was 97.2%. The required amount of Compound 2 was obtained by repeating this operation.
LC-MS (APPI, positive): [M] + 208.
 (化合物3の合成)
 反応容器内を窒素ガス雰囲気とした後、化合物2(96g)及びジクロロメタン(1200mL)を加え、反応容器を氷浴を用いて冷却した。その後、そこへ、臭素(74g)を2時間かけて滴下し、反応容器を氷浴を用いて冷却しながら3時間撹拌した。その後、10重量%亜硫酸ナトリウム水溶液(150mL)を加え、撹拌した。得られた反応液を分液し、得られた有機層をイオン交換水で洗浄した。得られた洗浄液を分液し、得られた有機層を硫酸マグネシウムで乾燥させた後、ろ過し、得られたろ液を減圧濃縮することにより固体を得た。得られた固体に、ヘキサン、トルエン及び活性炭を加え、1時間撹拌した。得られた溶液を、シリカゲル及びセライトを敷いたろ過器でろ過し、得られたろ液を減圧濃縮することにより固体を得た。得られた固体を、トルエン及びイソプロパノールの混合溶液を用いて再結晶した後、50℃で減圧乾燥させることにより、化合物3(83g、白色固体)を得た。化合物3のHPLC面積百分率値は98.9%であった。
 LC-MS(APPI, positive):[M]+286.
(Synthesis of Compound 3)
After making the inside of the reaction vessel a nitrogen gas atmosphere, Compound 2 (96 g) and dichloromethane (1200 mL) were added, and the reaction vessel was cooled using an ice bath. Thereafter, bromine (74 g) was added dropwise thereto over 2 hours, and the reaction vessel was stirred for 3 hours while cooling using an ice bath. Thereafter, 10% by weight aqueous sodium sulfite solution (150 mL) was added and stirred. The obtained reaction solution was separated, and the obtained organic layer was washed with ion-exchanged water. The obtained washing liquid was separated, and the obtained organic layer was dried over magnesium sulfate and then filtered. The obtained filtrate was concentrated under reduced pressure to obtain a solid. Hexane, toluene and activated carbon were added to the resulting solid and stirred for 1 hour. The obtained solution was filtered with a filter coated with silica gel and celite, and the obtained filtrate was concentrated under reduced pressure to obtain a solid. The obtained solid was recrystallized using a mixed solution of toluene and isopropanol, and then dried under reduced pressure at 50 ° C. to obtain Compound 3 (83 g, white solid). The HPLC area percentage value of Compound 3 was 98.9%.
LC-MS (APPI, positive): [M] + 286.
 (化合物4の合成)
 反応容器内をアルゴンガス雰囲気とした後、化合物3(83.0g)、トリス(ジベンジリデンアセトン)ジパラジウム(0)(2.6g)、(2-ビフェニル)ジシクロヘキシルホスフィン(2.4g)及びテトラヒドロフラン(800mL)を加え、攪拌した。その後、そこへ、リチウムビス(トリメチルシリル)アミドテトラヒドロフラン溶液(1.3mol/mL、334mL)を30分間かけて加えた。得られた反応液を65℃に昇温させた後、65℃で4時間攪拌した。その後、反応容器を氷浴を用いて冷却し、塩酸水溶液(2mol/L、800mL)を加え、反応容器を氷浴を用いて冷却しながら1.5時間撹拌した。その後、そこへ、水酸化ナトリウム水溶液(6mol/L、600mL)を加えることで中和した。得られた反応液を分液し、得られた有機層をイオン交換水で洗浄した。得られた洗浄液を分液し、得られた有機層を硫酸マグネシウムで乾燥させた後、ろ過した。得られたろ液を減圧濃縮した後、ヘキサンを加え、1時間懸濁撹拌した後、ろ過し、黄色固体を得た。得られた黄色固体をヘキサンを用いて懸濁撹拌した後、ろ過した。得られた残渣を、ヘキサン及びトルエンの混合溶液を用いて再結晶する操作を繰り返した後、50℃で減圧乾燥させることにより、化合物4(40g、淡黄色固体)を得た。化合物4のHPLC面積百分率値は99.1%であった。
 1H-NMR(CDCl3、300MHz):δ(ppm)=1.43(6H,s),2.40(3H,s),3.72(2H,s),6.64(1H,dd),6.743(1H,d),7.09(1H,d),7.17(1H,d),7.46(2H,d).
(Synthesis of Compound 4)
After the reaction vessel was filled with an argon gas atmosphere, compound 3 (83.0 g), tris (dibenzylideneacetone) dipalladium (0) (2.6 g), (2-biphenyl) dicyclohexylphosphine (2.4 g) and tetrahydrofuran (800 mL) was added and stirred. Thereafter, a lithium bis (trimethylsilyl) amide tetrahydrofuran solution (1.3 mol / mL, 334 mL) was added thereto over 30 minutes. The resulting reaction solution was heated to 65 ° C. and then stirred at 65 ° C. for 4 hours. Thereafter, the reaction vessel was cooled using an ice bath, an aqueous hydrochloric acid solution (2 mol / L, 800 mL) was added, and the reaction vessel was stirred for 1.5 hours while being cooled using an ice bath. Then, it neutralized by adding sodium hydroxide aqueous solution (6 mol / L, 600 mL) there. The obtained reaction solution was separated, and the obtained organic layer was washed with ion-exchanged water. The obtained washing liquid was separated, and the obtained organic layer was dried over magnesium sulfate and filtered. The obtained filtrate was concentrated under reduced pressure, hexane was added, and the mixture was suspended and stirred for 1 hour, followed by filtration to obtain a yellow solid. The obtained yellow solid was suspended and stirred with hexane, and then filtered. The operation of recrystallizing the obtained residue using a mixed solution of hexane and toluene was repeated, followed by drying under reduced pressure at 50 ° C. to obtain Compound 4 (40 g, pale yellow solid). The HPLC area percentage value of Compound 4 was 99.1%.
1 H-NMR (CDCl 3 , 300 MHz): δ (ppm) = 1.43 (6H, s), 2.40 (3H, s), 3.72 (2H, s), 6.64 (1H, dd ), 6.743 (1H, d), 7.09 (1H, d), 7.17 (1H, d), 7.46 (2H, d).
 <合成例2> 化合物7の合成 <Synthesis Example 2> Synthesis of Compound 7
Figure JPOXMLDOC01-appb-C000153
Figure JPOXMLDOC01-appb-C000153
 (化合物6の合成)
 反応容器内をアルゴンガス雰囲気とした後、化合物4(34.0g)、化合物5(80.8g)、トリス(ジベンジリデンアセトン)ジパラジウム(0)(1.4g)、トリ-tert-ブチルホスフィンテトラフルオロボレート塩(0.9g)及びトルエン(680mL)を加え、50℃に昇温し、50℃で攪拌した。その後、そこへ、ナトリウム-tert-ブトキシド(43.9g)を加え、110℃に昇温させた後、110℃で4時間攪拌した。その後、そこへ、トルエンを加え、セライトを敷いたろ過器でろ過した。得られたろ液を、イオン交換水、15重量%の食塩水で順次洗浄した。得られた洗浄液を分液した後、得られた有機層を減圧濃縮することにより粗生成物を得た。得られた粗組成物に、ヘキサン及び活性炭を加え、1時間撹拌した。得られた溶液を、シリカゲル及びセライトを敷いたろ過器でろ過し、得られたろ液を減圧濃縮することにより油状物を得た。得られた油状物をシリカゲルカラムクロマトグラフィー(ヘキサン及び酢酸エチルの混合溶媒)で精製することにより、化合物6(22g、無色油状物)を得た。化合物6のHPLC面積百分率値は99.5%であった。
 LC-MS(APCI,positive):[M+H]+544.
(Synthesis of Compound 6)
After the reaction vessel was filled with an argon gas atmosphere, compound 4 (34.0 g), compound 5 (80.8 g), tris (dibenzylideneacetone) dipalladium (0) (1.4 g), tri-tert-butylphosphine Tetrafluoroborate salt (0.9 g) and toluene (680 mL) were added, the temperature was raised to 50 ° C., and the mixture was stirred at 50 ° C. Thereafter, sodium-tert-butoxide (43.9 g) was added thereto, the temperature was raised to 110 ° C., and the mixture was stirred at 110 ° C. for 4 hours. Then, toluene was added there, and it filtered with the filter which spread celite. The obtained filtrate was washed successively with ion-exchanged water and 15% by weight saline. After separating the obtained washing liquid, the obtained organic layer was concentrated under reduced pressure to obtain a crude product. Hexane and activated carbon were added to the resulting crude composition and stirred for 1 hour. The obtained solution was filtered with a filter covered with silica gel and celite, and the obtained filtrate was concentrated under reduced pressure to obtain an oily substance. The obtained oil was purified by silica gel column chromatography (a mixed solvent of hexane and ethyl acetate) to obtain Compound 6 (22 g, colorless oil). Compound 6 had an HPLC area percentage value of 99.5%.
LC-MS (APCI, positive): [M + H] + 544.
 (化合物7の合成)
 反応容器内を窒素ガス雰囲気とした後、化合物6(22g)及びクロロホルム(360mL)を加え、反応容器を氷浴を用いて冷却した。その後、そこへ、N―ブロモスクシイミド(84g)を加え、反応容器を氷浴を用いて冷却しながら6時間撹拌した。その後、10重量%亜硫酸ナトリウム水溶液(50mL)を加え、撹拌した。得られた反応液を分液し、得られた有機層をイオン交換水で洗浄した。得られた洗浄液を分液し、得られた有機層を硫酸マグネシウムで乾燥させた後、ろ過し、得られたろ液を減圧濃縮することにより固体を得た。得られた固体に、ヘキサン及び活性炭を加え、1時間撹拌した。得られた溶液を、シリカゲル及びセライトを敷いたろ過器でろ過し、得られたろ液を減圧濃縮することにより固体を得た。得られた固体をシリカゲルカラムクロマトグラフィー(ヘキサン)で精製し、アセトンを用いて再結晶した後、50℃で減圧乾燥させることにより、化合物7(12g、白色固体)を得た。化合物7のHPLC面積百分率値は99.5%以上であった。この操作を繰り返し行うことによって、化合物7の必要量を得た。
 LC-MS(APCI,positive):[M+H]+700.
(Synthesis of Compound 7)
After making the inside of the reaction vessel a nitrogen gas atmosphere, Compound 6 (22 g) and chloroform (360 mL) were added, and the reaction vessel was cooled using an ice bath. Then, N-bromosuccinimide (84g) was added there, and it stirred for 6 hours, cooling a reaction container using an ice bath. Thereafter, 10% by weight aqueous sodium sulfite solution (50 mL) was added and stirred. The obtained reaction solution was separated, and the obtained organic layer was washed with ion-exchanged water. The obtained washing liquid was separated, and the obtained organic layer was dried over magnesium sulfate and then filtered. The obtained filtrate was concentrated under reduced pressure to obtain a solid. Hexane and activated carbon were added to the obtained solid and stirred for 1 hour. The obtained solution was filtered with a filter coated with silica gel and celite, and the obtained filtrate was concentrated under reduced pressure to obtain a solid. The obtained solid was purified by silica gel column chromatography (hexane), recrystallized using acetone, and then dried under reduced pressure at 50 ° C. to obtain Compound 7 (12 g, white solid). The HPLC area percentage value of Compound 7 was 99.5% or more. By repeating this operation, the necessary amount of Compound 7 was obtained.
LC-MS (APCI, positive): [M + H] + 700.
 <合成例3> 化合物8の合成 <Synthesis Example 3> Synthesis of Compound 8
Figure JPOXMLDOC01-appb-C000154
Figure JPOXMLDOC01-appb-C000154
 (化合物8-aの合成)
 反応容器内を窒素ガス雰囲気とした後、4-ブロモ-4’,4’’-ジメチルトリフェニルアミン(14.0g)、3,3’-ジメチルジフェニルアミン(7.2g)、トリス(ジベンジリデンアセトン)ジパラジウム(0)(0.3g)、トリ-tert-ブチルホスフィンテトラフルオロボレート塩(0.2g)及びトルエン(143mL)を加え、50℃で攪拌した。その後、そこへ、ナトリウム-tert-ブトキシド(10.5g)を加え、80℃で4時間攪拌した。得られた反応混合物を室温まで冷却した後、イオン交換水(100mL)で洗浄した。得られた洗浄液を分液し、得られた有機層をイオン交換水で洗浄した。得られた洗浄液を分液し、得られた有機層を硫酸マグネシウムで乾燥させた後、ろ過し、得られたろ液を濃縮した。その後、そこへ、トルエン及び活性炭を加え、室温で30分間撹拌した後、セライトを敷いたろ過器でろ過し、得られたろ液を減圧濃縮することにより白色固体を得た。得られた白色固体を、トルエン及びメタノールの混合溶媒を用いて再結晶する操作を繰り返した後、50℃で減圧乾燥させることにより、化合物8-a(12.0g、白色固体)を得た。化合物8-aのHPLC面積百分率値は99.5%以上であった。
 1H-NMR(CDCl3, 300MHz) δ(ppm):2.26(12H,s), 6.57-7.23(20H,br).
(Synthesis of Compound 8-a)
After the reaction vessel was filled with a nitrogen gas atmosphere, 4-bromo-4 ′, 4 ″ -dimethyltriphenylamine (14.0 g), 3,3′-dimethyldiphenylamine (7.2 g), tris (dibenzylideneacetone) ) Dipalladium (0) (0.3 g), tri-tert-butylphosphine tetrafluoroborate salt (0.2 g) and toluene (143 mL) were added, and the mixture was stirred at 50 ° C. Thereafter, sodium-tert-butoxide (10.5 g) was added thereto, and the mixture was stirred at 80 ° C. for 4 hours. The resulting reaction mixture was cooled to room temperature and then washed with ion exchange water (100 mL). The obtained washing liquid was separated, and the obtained organic layer was washed with ion-exchanged water. The obtained washing solution was separated, and the obtained organic layer was dried over magnesium sulfate, filtered, and the obtained filtrate was concentrated. Thereafter, toluene and activated carbon were added thereto, and the mixture was stirred at room temperature for 30 minutes, followed by filtration with a filter covered with celite, and the obtained filtrate was concentrated under reduced pressure to obtain a white solid. The obtained white solid was repeatedly recrystallized using a mixed solvent of toluene and methanol, and then dried under reduced pressure at 50 ° C. to obtain Compound 8-a (12.0 g, white solid). The HPLC area percentage value of compound 8-a was 99.5% or more.
1 H-NMR (CDCl 3 , 300 MHz) δ (ppm): 2.26 (12H, s), 6.57-7.23 (20H, br).
 (化合物8の合成)
 反応容器内を窒素ガス雰囲気とした後、化合物8-a(11.6g)及びクロロホルム(198mL)を加え、-10℃まで冷却した。その後、そこへ、N-ブロモスクシイミド(8.8g)を加え、-10℃で8時間撹拌した。その後、そこへ、10重量%亜硫酸ナトリウム水溶液を加え、攪拌した。得られた反応液を分液し、得られた有機層をイオン交換水で洗浄した。得られた洗浄液を分液し、得られた有機層を硫酸マグネシウムで乾燥させた後、ろ過し、得られたろ液を濃縮することにより白色固体を得た。その後、そこへ、ヘキサン及び活性炭を加え、室温で30分間撹拌した後、セライトを敷いたろ過器でろ過し、得られたろ液を減圧濃縮した。得られた固体をアセトンを用いて再結晶し、次いで、トルエン及びメタノールの混合溶媒を用いて再結晶した。その後、そこへ、ヘキサン及び活性白土を加え、室温で30分間撹拌した後、セライトを敷いたろ過器でろ過し、得られたろ液を減圧濃縮した。更に、得られた固体をトルエン及びメタノールの混合溶媒を用いて再結晶した後、50℃で減圧乾燥させることにより、化合物8(10.0g、白色固体)を得た。化合物8のHPLC面積百分率値は99.5%以上であった。
 LC-MS(APCI, positive):[M+H]+.625
 1H-NMR(CDCl3, 300MHz) δ(ppm):2.29(s,12H), 6.75(s,2H), 6.91-7.05(br,14H), 7.35(d,2H).
(Synthesis of Compound 8)
After making the inside of the reaction vessel a nitrogen gas atmosphere, Compound 8-a (11.6 g) and chloroform (198 mL) were added and cooled to −10 ° C. Thereafter, N-bromosuccinimide (8.8 g) was added thereto and stirred at −10 ° C. for 8 hours. Thereafter, a 10 wt% aqueous sodium sulfite solution was added thereto and stirred. The obtained reaction solution was separated, and the obtained organic layer was washed with ion-exchanged water. The obtained washing liquid was separated, and the obtained organic layer was dried over magnesium sulfate, filtered, and the obtained filtrate was concentrated to obtain a white solid. Thereafter, hexane and activated carbon were added thereto, and the mixture was stirred at room temperature for 30 minutes, followed by filtration with a filter with celite, and the obtained filtrate was concentrated under reduced pressure. The obtained solid was recrystallized using acetone, and then recrystallized using a mixed solvent of toluene and methanol. Thereafter, hexane and activated clay were added thereto, and the mixture was stirred at room temperature for 30 minutes, and then filtered through a filter with celite, and the obtained filtrate was concentrated under reduced pressure. Furthermore, after recrystallizing the obtained solid using the mixed solvent of toluene and methanol, the compound 8 (10.0g, white solid) was obtained by making it dry under reduced pressure at 50 degreeC. The HPLC area percentage value of Compound 8 was 99.5% or more.
LC-MS (APCI, positive): [M + H] + .625
1 H-NMR (CDCl 3 , 300 MHz) δ (ppm): 2.29 (s, 12H), 6.75 (s, 2H), 6.91-7.05 (br, 14H), 7.35 (d, 2H).
 <合成例4> 化合物11の合成 <Synthesis Example 4> Synthesis of Compound 11
Figure JPOXMLDOC01-appb-C000155
Figure JPOXMLDOC01-appb-C000155
 (化合物9の合成)
 反応容器内をアルゴンガス雰囲気とした後、3-ブロモヘキシルトルエン(45.0g)、トリス(ジベンジリデンアセトン)ジパラジウム(0)(1.66g)、トリ-tert-ブチルホスフィンテトラフルオロボレート塩(1.04g)及びテトラヒドロフラン(180mL)を加え、室温で攪拌した。その後、そこへ、リチウムビス(トリメチルシリル)アミドテトラヒドロフラン溶液(1.3mol/mL、179mL)を滴下した後、65℃で3時間攪拌した。反応容器を氷浴で冷却した後、塩酸水溶液(2M、467mL)を加え、反応容器を氷浴で冷却しながら、30分間撹拌し、ヘプタンを加えた後、有機層を分離した。得られた水層をヘプタンで洗浄し、水酸化ナトリウム水溶液(10%、381mL)を加え、中和した。得られた反応液にヘプタンを加え、得られた有機層を水で洗浄することで得られた有機層を硫酸マグネシウムで乾燥させ、ろ過し、得られたろ液を濃縮した。得られた油状物を、シリカゲルカラムクロマトグラフィー(トルエン及び酢酸エチル)で精製し、50℃で減圧乾燥させることにより、化合物9(37.0g、赤色オイル)を得た。化合物9のHPLC面積百分率値は99.0%であった。
(Synthesis of Compound 9)
After the reaction vessel was filled with an argon gas atmosphere, 3-bromohexyltoluene (45.0 g), tris (dibenzylideneacetone) dipalladium (0) (1.66 g), tri-tert-butylphosphine tetrafluoroborate salt ( 1.04 g) and tetrahydrofuran (180 mL) were added, and the mixture was stirred at room temperature. Thereafter, a lithium bis (trimethylsilyl) amide tetrahydrofuran solution (1.3 mol / mL, 179 mL) was added dropwise thereto, followed by stirring at 65 ° C. for 3 hours. The reaction vessel was cooled in an ice bath, an aqueous hydrochloric acid solution (2M, 467 mL) was added, and the reaction vessel was stirred for 30 minutes while being cooled in an ice bath. After adding heptane, the organic layer was separated. The obtained aqueous layer was washed with heptane and neutralized with an aqueous sodium hydroxide solution (10%, 381 mL). Heptane was added to the obtained reaction solution, and the obtained organic layer was washed with water. The obtained organic layer was dried over magnesium sulfate, filtered, and the obtained filtrate was concentrated. The obtained oil was purified by silica gel column chromatography (toluene and ethyl acetate) and dried under reduced pressure at 50 ° C. to obtain compound 9 (37.0 g, red oil). The HPLC area percentage value of Compound 9 was 99.0%.
 (化合物10の合成)
 反応容器内をアルゴンガス雰囲気とした後、3-ブロモヘキシルベンゼン(25.0g)、トリ-tert-ブチルホスフィンテトラフルオロボレート塩(0.632g)、トリス(ジベンジリデンアセトン)ジパラジウム(0)(1.16g)、化合物9(20.2g)及びトルエン(500mL)を加え、攪拌した。その後、そこへ、ナトリウム-tert-ブトキシド(19.9g)を加え、60℃で2時間攪拌した。その後、反応容器を冷却し、水とヘキサンを加え、水層を分離した。得られた有機層を水で洗浄した後、硫酸マグネシウムで乾燥させた後、ろ過した。得られたろ液を減圧濃縮することにより、油状物を得た。得られた油状物を、シリカゲルカラムクロマトグラフィー(ヘキサン及びトルエンの混合溶媒)で精製し、50℃で減圧乾燥させることにより、化合物10(31.9g、油状物)を得た。化合物10のHPLC面積百分率値は98.9%であった。
(Synthesis of Compound 10)
After the reaction vessel was filled with an argon gas atmosphere, 3-bromohexylbenzene (25.0 g), tri-tert-butylphosphine tetrafluoroborate salt (0.632 g), tris (dibenzylideneacetone) dipalladium (0) ( 1.16 g), Compound 9 (20.2 g) and toluene (500 mL) were added and stirred. Thereafter, sodium-tert-butoxide (19.9 g) was added thereto, and the mixture was stirred at 60 ° C. for 2 hours. Thereafter, the reaction vessel was cooled, water and hexane were added, and the aqueous layer was separated. The obtained organic layer was washed with water, dried over magnesium sulfate, and filtered. The obtained filtrate was concentrated under reduced pressure to obtain an oily substance. The obtained oil was purified by silica gel column chromatography (mixed solvent of hexane and toluene) and dried under reduced pressure at 50 ° C. to obtain compound 10 (31.9 g, oil). The HPLC area percentage value of Compound 10 was 98.9%.
 (化合物11の合成)
 反応容器内をアルゴンガス雰囲気とした後、反応容器全体を遮光し、化合物10(30.5g)及びN,N-ジメチルホルムアミド(183mL)を加え、0℃まで冷却した。その後、そこへ、N-ブロモスクシンイミド(32.2g)及びN,N-ジメチルホルムアミド(92mL)を滴下し、室温で撹拌した。その後、そこへ、水及びヘプタンを加え、水層を分離した。得られた有機層を水で洗浄し、硫酸マグネシウムで乾燥させた後、ろ過した。得られたろ液を減圧濃縮することにより、油状物を得た。得られた油状物を、シリカゲルカラムクロマトグラフィー(ヘキサン及びトルエンの混合溶媒)で精製し、50℃で減圧乾燥させることにより、化合物11(18.4g、油状物)を得た。化合物11のHPLC面積百分率値は98.5%であった。
 1H-NMR(CDCl3, 300MHz) δ(ppm): 0.89 (t, 6H), 1.28-1.64 (m, 16H), 2.65 (t, 4H), 5.58 (s, 1H), 6.73 (q, 2H), 6.75 (s, 2H), 7.37 (d, 2H).
(Synthesis of Compound 11)
After the inside of the reaction vessel was filled with an argon gas atmosphere, the entire reaction vessel was shielded from light, compound 10 (30.5 g) and N, N-dimethylformamide (183 mL) were added, and the mixture was cooled to 0 ° C. Thereafter, N-bromosuccinimide (32.2 g) and N, N-dimethylformamide (92 mL) were added dropwise thereto and stirred at room temperature. Thereafter, water and heptane were added thereto, and the aqueous layer was separated. The obtained organic layer was washed with water, dried over magnesium sulfate, and then filtered. The obtained filtrate was concentrated under reduced pressure to obtain an oily substance. The obtained oil was purified by silica gel column chromatography (mixed solvent of hexane and toluene) and dried under reduced pressure at 50 ° C. to obtain compound 11 (18.4 g, oil). The HPLC area percentage value of Compound 11 was 98.5%.
1 H-NMR (CDCl 3 , 300 MHz) δ (ppm): 0.89 (t, 6H), 1.28-1.64 (m, 16H), 2.65 (t, 4H), 5.58 (s, 1H), 6.73 (q, 2H ), 6.75 (s, 2H), 7.37 (d, 2H).
 <合成例5> 化合物14の合成 <Synthesis Example 5> Synthesis of Compound 14
Figure JPOXMLDOC01-appb-C000156
Figure JPOXMLDOC01-appb-C000156
 (化合物13の合成)
 反応容器内をアルゴンガス雰囲気とした後、米国特許出願公開第2015/053944号明細書記載の合成方法に従って合成した化合物12(20.2g)、1,4-ジヨードベンゼン(99.3g)、[1,1’-ビス(ジフェニルホスフィノ)フェロセン]ジクロロパラジウム錯体(1.64g)及びトルエン(404mL)を加え、次いで、ナトリウム-tert-ブトキシド(31.8g)を加え、90℃で6時間攪拌した。得られた反応液を冷却し、トルエンを加えた後、シリカゲルとセライトを含むろ過器でろ過し、得られたろ液を減圧濃縮することにより固体を得た。得られた固体を、シリカゲルカラムクロマトグラフィー(溶媒:ヘプタン)で精製し、50℃で減圧乾燥させた。得られた固体を、トルエン及びイソプロピルアルコールの混合溶媒を用いて再結晶した後、50℃で減圧乾燥させることにより、化合物13(14.5g、白色固体)を得た。化合物13のHPLC面積百分率値は99.5%以上であった。この操作を繰り返すことによって、化合物13の必要量を確保した。
 LC-MS(APPI,positive):[M+H]+404
 1H-NMR(CDCl3, 300MHz) δ(ppm): 1.10 (s, 3H), 1.18 (s, 3H), 1.30-1.70 (m, 7H), 1.87-1.94 (m, 1H), 6.52 (d, 1H), 6.75 (t, 1H), 6.97-7.07 (m, 4H), 7.65 (d, 2H).
(Synthesis of Compound 13)
Compound 12 (20.2 g) synthesized according to the synthesis method described in US Patent Application Publication No. 2015/053944, 1,4-diiodobenzene (99.3 g) after making the inside of the reaction vessel an argon gas atmosphere, [1,1′-Bis (diphenylphosphino) ferrocene] dichloropalladium complex (1.64 g) and toluene (404 mL) are added, followed by sodium-tert-butoxide (31.8 g) and 6 hours at 90 ° C. Stir. The obtained reaction liquid was cooled and toluene was added, followed by filtration with a filter containing silica gel and celite, and the obtained filtrate was concentrated under reduced pressure to obtain a solid. The obtained solid was purified by silica gel column chromatography (solvent: heptane) and dried at 50 ° C. under reduced pressure. The obtained solid was recrystallized using a mixed solvent of toluene and isopropyl alcohol, and then dried under reduced pressure at 50 ° C. to obtain Compound 13 (14.5 g, white solid). The HPLC area percentage value of Compound 13 was 99.5% or more. By repeating this operation, the necessary amount of Compound 13 was secured.
LC-MS (APPI, positive): [M + H] + 404
1 H-NMR (CDCl 3 , 300 MHz) δ (ppm): 1.10 (s, 3H), 1.18 (s, 3H), 1.30-1.70 (m, 7H), 1.87-1.94 (m, 1H), 6.52 (d , 1H), 6.75 (t, 1H), 6.97-7.07 (m, 4H), 7.65 (d, 2H).
 (化合物14の合成)
 反応容器内をアルゴンガス雰囲気とした後、ヨウ化銅(I)(2.60g)、トランス-1,2-シクロヘキサンジアミン(3.12g)及びキシレン(135mL)を加え、次いで、化合物11(16.9g)、化合物13(17.2g)、キシレン(34mL)及びナトリウム-tert-ペントキシド(11.3g)を加え、90℃で7時間攪拌した。得られた反応液を冷却し、ヘプタンを加えた後、シリカゲルとセライトを含むろ過器でろ過し、得られたろ液を減圧濃縮することにより油状物を得た。得られた油状物をヘプタンに溶解させ、活性炭(2.6g)を加えて攪拌した後、セライトをプレコートしたろ過器によりろ過し、得られたろ液を濃縮することで粗生成物を得た。得られた粗生成物を、シリカゲルカラムクロマトグラフィー(溶媒:ヘプタン)及びオクタデシルシリル基で修飾したシリカゲルカラム(展開溶媒 酢酸エチル/アセトニトリル)のそれぞれを用いて精製した。その後、減圧乾燥させることにより、化合物14(12.7g、油状物)を得た。化合物14のHPLC面積百分率値は99.3%であった。
 LC-MS(APCI,positive):[M+H]+769
 1H-NMR(CDCl3, 300MHz) δ(ppm): 0.89 (t, 6H), 1.01(s, 3H), 1.19 (s, 3H), 1.28-1.94 (m, 23H), 2.35 (s, 1H), 2.61 (t, 4H), 6.50 (d, 1H) , 6.70-7.25 (m, 11H) , 7.37 (d, 2H).
(Synthesis of Compound 14)
After making the inside of the reaction vessel an argon gas atmosphere, copper (I) iodide (2.60 g), trans-1,2-cyclohexanediamine (3.12 g) and xylene (135 mL) were added, and then compound 11 (16 0.9 g), Compound 13 (17.2 g), xylene (34 mL) and sodium-tert-pentoxide (11.3 g) were added, and the mixture was stirred at 90 ° C. for 7 hours. The obtained reaction liquid was cooled, heptane was added, and the mixture was filtered through a filter containing silica gel and celite. The obtained filtrate was concentrated under reduced pressure to obtain an oily substance. The obtained oil was dissolved in heptane, activated carbon (2.6 g) was added and stirred, and then filtered through a filter pre-coated with Celite, and the resulting filtrate was concentrated to obtain a crude product. The obtained crude product was purified using silica gel column chromatography (solvent: heptane) and a silica gel column modified with an octadecylsilyl group (developing solvent: ethyl acetate / acetonitrile). Then, the compound 14 (12.7g, oily substance) was obtained by making it dry under reduced pressure. The HPLC area percentage value of Compound 14 was 99.3%.
LC-MS (APCI, positive): [M + H] + 769
1 H-NMR (CDCl 3 , 300 MHz) δ (ppm): 0.89 (t, 6H), 1.01 (s, 3H), 1.19 (s, 3H), 1.28-1.94 (m, 23H), 2.35 (s, 1H ), 2.61 (t, 4H), 6.50 (d, 1H), 6.70-7.25 (m, 11H), 7.37 (d, 2H).
 <合成例6> 化合物15の合成 <Synthesis Example 6> Synthesis of Compound 15
Figure JPOXMLDOC01-appb-C000157
Figure JPOXMLDOC01-appb-C000157
 (化合物15-aの合成)
 反応容器内をアルゴンガス雰囲気とした後、4-ブロモトルエン(31.5g)、3-エチルカルバゾール(30.0g)、キシレン(1200mL)、酢酸カリウム(1.0g)及びトリ-tert-ブチルホスフィンテトラフルオロボレート塩(2.9g)を加え、攪拌した。その後、そこへ、ナトリウム-tert-ブトキシド(44.3g)を加え、130℃で13時間攪拌した。その後、反応容器を氷浴を用いて冷却し、イオン交換水(200mL)を加えて洗浄した。得られた洗浄液を分液し、得られた有機層をイオン交換水で洗浄した。得られた洗浄液を分液し、得られた有機層を硫酸マグネシウムで乾燥させた後、ろ過した。得られたろ液を濃縮した後、ヘキサン及び活性炭を加え、室温で30分間撹拌した後、セライトを敷いたろ過器でろ過した。得られたろ液を減圧濃縮した後、ヘキサン及び活性白土を加え、室温で30分間撹拌した後、シリカゲル及びセライトを敷いたろ過器でろ過した。得られたろ液を減圧濃縮することにより、油状物を得た。得られた油状物を、シリカゲルカラムクロマトグラフィー(ヘキサン及び酢酸エチルの混合溶媒)で精製し、50℃で減圧乾燥させることにより、化合物15-a(43.0g、油状物)を得た。化合物15-aのHPLC面積百分率値は99.4%であった。
 1H-NMR(CDCl3, 300MHz) δ(ppm):1.32(3H,t), 2.48(3H,s), 2.85(2H,q), 7.25-7.41(9H,m), 7.95(1H, s), 8.12(d, 1H).
(Synthesis of Compound 15-a)
After the reaction vessel was filled with an argon gas atmosphere, 4-bromotoluene (31.5 g), 3-ethylcarbazole (30.0 g), xylene (1200 mL), potassium acetate (1.0 g) and tri-tert-butylphosphine Tetrafluoroborate salt (2.9 g) was added and stirred. Thereafter, sodium-tert-butoxide (44.3 g) was added thereto, and the mixture was stirred at 130 ° C. for 13 hours. Thereafter, the reaction vessel was cooled using an ice bath, and ion-exchanged water (200 mL) was added and washed. The obtained washing liquid was separated, and the obtained organic layer was washed with ion-exchanged water. The obtained washing liquid was separated, and the obtained organic layer was dried over magnesium sulfate and filtered. The obtained filtrate was concentrated, hexane and activated carbon were added, and the mixture was stirred at room temperature for 30 minutes, and then filtered through a filter with celite. The obtained filtrate was concentrated under reduced pressure, hexane and activated clay were added, and the mixture was stirred at room temperature for 30 minutes, followed by filtration with a filter covered with silica gel and celite. The obtained filtrate was concentrated under reduced pressure to obtain an oily substance. The obtained oil was purified by silica gel column chromatography (mixed solvent of hexane and ethyl acetate) and dried under reduced pressure at 50 ° C. to obtain compound 15-a (43.0 g, oil). The HPLC area percentage value of Compound 15-a was 99.4%.
1 H-NMR (CDCl 3 , 300 MHz) δ (ppm): 1.32 (3H, t), 2.48 (3H, s), 2.85 (2H, q), 7.25-7.41 (9H, m), 7.95 (1H, s ), 8.12 (d, 1H).
 (化合物15-bの合成)
 反応容器内を窒素ガス雰囲気とした後、化合物15-a(42.0g)及びクロロホルム(330mL)を加え、-10℃に冷却した。その後、そこへ、ベンジルトリメチルアンモニウムトリブロミド(57.4g)を加え、-10℃で10時間撹拌した。その後、そこへ、10重量%亜硫酸ナトリウム水溶液を加え、攪拌した。得られた反応液を分液し、得られた有機層をイオン交換水で洗浄した。得られた洗浄液を分液し、得られた有機層を硫酸マグネシウムで乾燥させた後、ろ過し、得られたろ液を濃縮することにより白色固体を得た。その後、そこへ、ヘキサン、トルエン及び活性炭を加え、室温で30分間撹拌した後、セライトを敷いたろ過器でろ過し、得られたろ液を減圧濃縮することにより固体を得た。得られたこの固体にをヘキサンを加え、で懸濁撹拌した後、ろ濾過した。更に得られた固体を、トルエン、メタノール及びエタノールの混合溶媒を用いて再結晶した後、50℃で減圧乾燥させることにより、化合物15-b(35.0g、白色固体)を得た。化合物15-bのHPLC面積百分率値は99.5%以上であった。
 1H-NMR(CDCl3, 300MHz) δ(ppm):1.34(3H,t), 2.48(3H,s), 2.83(2H,q), 7.20(1H,d), 7.28(2H,s),7.39(4H,s), 7.44(dd,1H), 7.89(s,1H), 8.22(d, 1H).
(Synthesis of Compound 15-b)
After making the inside of the reaction vessel a nitrogen gas atmosphere, Compound 15-a (42.0 g) and chloroform (330 mL) were added and cooled to −10 ° C. Thereafter, benzyltrimethylammonium tribromide (57.4 g) was added thereto and stirred at −10 ° C. for 10 hours. Thereafter, a 10 wt% aqueous sodium sulfite solution was added thereto and stirred. The obtained reaction solution was separated, and the obtained organic layer was washed with ion-exchanged water. The obtained washing liquid was separated, and the obtained organic layer was dried over magnesium sulfate, filtered, and the obtained filtrate was concentrated to obtain a white solid. Thereafter, hexane, toluene and activated carbon were added thereto, and the mixture was stirred at room temperature for 30 minutes, followed by filtration with a filter laid with celite, and the obtained filtrate was concentrated under reduced pressure to obtain a solid. Hexane was added to the obtained solid, and the mixture was suspended and stirred, and then filtered. The obtained solid was recrystallized using a mixed solvent of toluene, methanol and ethanol, and then dried under reduced pressure at 50 ° C. to obtain Compound 15-b (35.0 g, white solid). Compound 15-b had an HPLC area percentage value of 99.5% or more.
1 H-NMR (CDCl 3 , 300 MHz) δ (ppm): 1.34 (3H, t), 2.48 (3H, s), 2.83 (2H, q), 7.20 (1H, d), 7.28 (2H, s), 7.39 (4H, s), 7.44 (dd, 1H), 7.89 (s, 1H), 8.22 (d, 1H).
 (化合物15-cの合成)
 反応容器内を窒素ガス雰囲気とした後、化合物15-b(34.0g)、トリス(ジベンジリデンアセトン)ジパラジウム(0)(0.9g)、(2-ビフェニル)ジシクロヘキシルホスフィン(0.8g)及びテトラヒドロフラン(136mL)を加え、室温で攪拌した。その後、そこへ、リチウムビス(トリメチルシリル)アミドテトラヒドロフラン溶液(1.3mol/mL、108mL)を1時間かけて滴下した後、65℃で4時間攪拌した。反応容器を氷浴を用いて冷却した後、塩酸水溶液(2M、240mL)を加え、反応容器を氷浴を用いて冷却しながら、30分間撹拌したところ、固体が析出した。析出した固体をろ過し、得られた残渣を、トルエン及びヘキサンの混合溶媒に溶解させた。その後、そこへ、水酸化ナトリウム水溶液(2M、200mL)を加え、中和した。得られた反応液を分液し、得られた有機層をイオン交換水で洗浄した。得られた洗浄液を分液し、得られた有機層を硫酸マグネシウムで乾燥させ、ろ過し、得られたろ液を濃縮した。その後、そこへ、ヘキサン、トルエン及び活性炭を加え、室温で30分間撹拌した後、セライトを敷いたろ過器でろ過し、得られたろ液を減圧濃縮することにより、油状物を得た。得られた油状物を、シリカゲルカラムクロマトグラフィー(ヘキサン及び酢酸エチルの今後溶媒)で精製し、50℃で減圧乾燥させることにより、化合物15-c(19.0g、赤色固体)を得た。化合物15-cのHPLC面積百分率値は99.5%以上であった。この操作を繰り返すことによって、化合物15-cの必要量を確保した。
 1H-NMR(CDCl3, 300MHz) δ(ppm):1.33(t,3H),2.46(s,3H),2.81(q,2H),6.81(dd,1H),7.18(s,1H),7.21(s,1H),7.25-7.43(m,6H),7.84(s,1H).
(Synthesis of Compound 15-c)
The reaction vessel was filled with a nitrogen gas atmosphere, then compound 15-b (34.0 g), tris (dibenzylideneacetone) dipalladium (0) (0.9 g), (2-biphenyl) dicyclohexylphosphine (0.8 g) And tetrahydrofuran (136 mL) were added, and the mixture was stirred at room temperature. Thereafter, a lithium bis (trimethylsilyl) amide tetrahydrofuran solution (1.3 mol / mL, 108 mL) was added dropwise thereto over 1 hour, followed by stirring at 65 ° C. for 4 hours. After cooling the reaction vessel using an ice bath, an aqueous hydrochloric acid solution (2M, 240 mL) was added, and the reaction vessel was stirred for 30 minutes while cooling using an ice bath, whereby a solid was precipitated. The precipitated solid was filtered, and the resulting residue was dissolved in a mixed solvent of toluene and hexane. Thereafter, an aqueous sodium hydroxide solution (2M, 200 mL) was added thereto for neutralization. The obtained reaction solution was separated, and the obtained organic layer was washed with ion-exchanged water. The obtained washing solution was separated, the obtained organic layer was dried over magnesium sulfate, filtered, and the obtained filtrate was concentrated. Thereafter, hexane, toluene and activated carbon were added thereto, and the mixture was stirred at room temperature for 30 minutes, followed by filtration with a filter laid with celite, and the obtained filtrate was concentrated under reduced pressure to obtain an oily substance. The obtained oil was purified by silica gel column chromatography (future solvent of hexane and ethyl acetate) and dried under reduced pressure at 50 ° C. to obtain compound 15-c (19.0 g, red solid). Compound 15-c had an HPLC area percentage value of 99.5% or more. By repeating this operation, the necessary amount of Compound 15-c was secured.
1 H-NMR (CDCl 3 , 300 MHz) δ (ppm): 1.33 (t, 3H), 2.46 (s, 3H), 2.81 (q, 2H), 6.81 (dd, 1H), 7.18 (s, 1H), 7.21 (s, 1H), 7.25-7.43 (m, 6H), 7.84 (s, 1H).
 (化合物15-dの合成)
 反応容器内をアルゴンガス雰囲気とした後、化合物15-c(29.0g)、トリス(ジベンジリデンアセトン)ジパラジウム(0)(1.8g)、トリ-tert-ブチルホスフィンテトラフルオロボレート塩(1.1g)、ナトリウム-tert-ブトキシド(16.8g)及びトルエン(410mL)を加え、2時間攪拌した。その後、そこへ、トルエン(115mL)に溶解させた3-ブロモエチルベンゼン(39.3g)1時間かけて滴下し、110℃で4時間攪拌した。得られた反応混合物を室温まで冷却した後、イオン交換水(400mL)加えた。セライトを敷いたろ過器でろ過し、得られたろ液を分液した。得られた有機層をイオン交換水で洗浄し、得られた洗浄液を分液した。得られた有機層を硫酸マグネシウムで乾燥させた後、ろ過し、得られたろ液を濃縮した。その後、そこへ、ヘキサン及び活性炭を加え、室温で30分間撹拌した後、セライトを敷いたろ過器でろ過した。得られたろ液を減圧濃縮することにより、油状物を得た。得られた油状物を、シリカゲルカラムクロマトグラフィー(ヘキサン及びトルエンの混合溶媒)で精製し、50℃で減圧乾燥させることにより、化合物15-d(36.0g、白色固体)を得た。化合物15-dのHPLC面積百分率値は99.5%以上であった。
 1H-NMR(CDCl3, 300MHz) δ(ppm):1.17(6H,t), 1.30(3H,t), 2.47(3H,s), 2.53 (4H,q), 2.79(2H,q), 6.79-7.45(16H,m), 7.45(1H,s), 7.81(1H,s).
(Synthesis of Compound 15-d)
After making the inside of the reaction vessel an argon gas atmosphere, compound 15-c (29.0 g), tris (dibenzylideneacetone) dipalladium (0) (1.8 g), tri-tert-butylphosphine tetrafluoroborate salt (1 0.1 g), sodium-tert-butoxide (16.8 g) and toluene (410 mL) were added and stirred for 2 hours. Thereafter, 3-bromoethylbenzene (39.3 g) dissolved in toluene (115 mL) was added dropwise thereto over 1 hour, and the mixture was stirred at 110 ° C. for 4 hours. The resulting reaction mixture was cooled to room temperature, and then ion exchanged water (400 mL) was added. The mixture was filtered through a filter with celite, and the obtained filtrate was separated. The obtained organic layer was washed with ion-exchanged water, and the obtained washing solution was separated. The obtained organic layer was dried over magnesium sulfate and filtered, and the obtained filtrate was concentrated. Thereafter, hexane and activated carbon were added thereto, and the mixture was stirred at room temperature for 30 minutes, and then filtered through a filter with celite. The obtained filtrate was concentrated under reduced pressure to obtain an oily substance. The obtained oil was purified by silica gel column chromatography (mixed solvent of hexane and toluene) and dried under reduced pressure at 50 ° C. to obtain compound 15-d (36.0 g, white solid). Compound 15-d had an HPLC area percentage value of 99.5% or more.
1 H-NMR (CDCl 3 , 300 MHz) δ (ppm): 1.17 (6H, t), 1.30 (3H, t), 2.47 (3H, s), 2.53 (4H, q), 2.79 (2H, q), 6.79-7.45 (16H, m), 7.45 (1H, s), 7.81 (1H, s).
 (化合物15の合成)
 反応容器内を窒素ガス雰囲気とした後、化合物15-d(15.0g)及びジクロロメタン(255mL)を加え、-10℃に冷却した。その後、そこへ、ベンジルトリメチルアンモニウムトリブロミド(23.0g)を加え、-10℃から-20で撹拌した。その後、そこへ、10重量%亜硫酸ナトリウム水溶液を加え、攪拌した。得られた反応液を分液し、得られた有機層をイオン交換水で洗浄した。得られた洗浄液を分液し、得られた有機層を硫酸マグネシウムで乾燥させた後、ろ過し、得られたろ液を濃縮した。その後、そこへ、ヘキサン、トルエン及び活性炭を加え、室温で30分間撹拌した後、セライトを敷いたろ過器でろ過し、得られたろ液を減圧濃縮することにより白色固体を得た。得られた白色固体を、シリカゲルカラムクロマトグラフィー(ヘキサン及び及び酢酸エチルの混合溶媒)で精製し、プロピオニトリル、トルエン及びアセトニトリルを用いて複数回再結晶した後、50℃で減圧乾燥させることにより、化合物15(11.3g、白色固体)を得た。化合物15のHPLC面積百分率値は99.5%以上であった。
 LC-MS(APCI,positive):[M+H]+ 665.
 1H-NMR(CDCl3, 300MHz) δ(ppm):1.14(6H,t), 1.30(3H,t), 2.48(3H,s), 2.63 (4H,q), 2.79(2H,q), 6.76(2H,dd), 6.96(2H,s), 7.13(1H,d), 7.21-7.47(9H,m), 7.82(1H,s), 7.86(1H,s).
(Synthesis of Compound 15)
The reaction vessel was filled with a nitrogen gas atmosphere, then compound 15-d (15.0 g) and dichloromethane (255 mL) were added, and the mixture was cooled to −10 ° C. Thereafter, benzyltrimethylammonium tribromide (23.0 g) was added thereto and stirred at −10 ° C. to −20. Thereafter, a 10 wt% aqueous sodium sulfite solution was added thereto and stirred. The obtained reaction solution was separated, and the obtained organic layer was washed with ion-exchanged water. The obtained washing solution was separated, and the obtained organic layer was dried over magnesium sulfate, filtered, and the obtained filtrate was concentrated. Thereafter, hexane, toluene, and activated carbon were added thereto, and the mixture was stirred at room temperature for 30 minutes, and then filtered through a filter with celite. The obtained filtrate was concentrated under reduced pressure to obtain a white solid. The obtained white solid was purified by silica gel column chromatography (mixed solvent of hexane and ethyl acetate), recrystallized several times using propionitrile, toluene and acetonitrile, and then dried at 50 ° C. under reduced pressure. Compound 15 (11.3 g, white solid) was obtained. The HPLC area percentage value of Compound 15 was 99.5% or more.
LC-MS (APCI, positive): [M + H] + 665.
1 H-NMR (CDCl 3 , 300 MHz) δ (ppm): 1.14 (6H, t), 1.30 (3H, t), 2.48 (3H, s), 2.63 (4H, q), 2.79 (2H, q), 6.76 (2H, dd), 6.96 (2H, s), 7.13 (1H, d), 7.21-7.47 (9H, m), 7.82 (1H, s), 7.86 (1H, s).
 <合成例7> 化合物CM1~化合物CM24の合成
 化合物CM1~CM11、化合物CM13、化合物CM17~化合物CM20、化合物CM22、CM23及び化合物CM24は、下記文献に記載された方法に従って合成し、化合物CM21は下記文献に記載された方法に準じて合成し、99.5%以上のHPLC面積百分率値を示したものを用いた。
 なお、化合物CM12は、上記で合成した化合物7と同一であり、化合物CM14は、上記で合成した化合物8と同一であり、化合物CM15は、上記で合成した化合物14と同一であり、化合物CM16は、上記で合成した化合物15と同一である。
<Synthesis Example 7> Synthesis of Compound CM1 to Compound CM24 Compound CM1 to CM11, Compound CM13, Compound CM17 to Compound CM20, Compound CM22, CM23 and Compound CM24 were synthesized according to the methods described in the following documents. A compound synthesized according to a method described in the literature and having an HPLC area percentage value of 99.5% or more was used.
Compound CM12 is the same as Compound 7 synthesized above, Compound CM14 is the same as Compound 8 synthesized above, Compound CM15 is the same as Compound 14 synthesized above, and Compound CM16 is , Identical to compound 15 synthesized above.
 化合物CM1:特開2011-174062号公報
 化合物CM2:国際公開第2013/191088号
 化合物CM3:特開2010-215886号公報
 化合物CM4:国際公開第2015/008851号
 化合物CM5:特開2008-106241号公報
 化合物CM6及びCM9:米国特許出願公開第2014/0175415号明細書
 化合物CM7:特開2010-189630号公報
 化合物CM8:国際公開第2015/008851号
 化合物CM10及びCM11:特開2009/157424号公報
 化合物CM13:国際公開第2014/157016号
 化合物CM17:国際公開第2013/146806号
 化合物CM18:国際公開第2015/159932号
 化合物CM19:米国特許出願公開第2014/0151659号明細書
 化合物CM20:国際公開第2009/131255号
 化合物CM21:特開2014-224101号公報及び国際公開第2009/131255号
 化合物CM22:特開2013-147551号公報
 化合物CM23:国際公開第2015/008851号
 化合物CM24:特開2015-174824号公報
Compound CM1: Japanese Unexamined Patent Publication No. 2011-174062 Compound CM2: International Publication No. 2013/199088 Compound CM3: Japanese Unexamined Patent Publication No. 2010-215886 Compound CM4: International Publication No. 2015/008851 Compound CM5: Japanese Unexamined Patent Publication No. 2008-106241 Compounds CM6 and CM9: US Patent Application Publication No. 2014/0175415 Compound CM7: JP 2010-189630 A Compound CM8: International Publication No. 2015/008851 Compound CM10 and CM11: JP 2009/157424 A Compound CM13 : International Publication No. 2014/157016 Compound CM17: International Publication No. 2013/146806 Compound CM18: International Publication No. 2015/159932 Compound CM19: US Patent Application Publication No. 2014/0 No. 51659 Compound CM20: International Publication No. 2009/131255 Compound CM21: Japanese Unexamined Patent Publication No. 2014-224101 and International Publication No. 2009/131255 Compound CM22: Japanese Unexamined Patent Publication No. 2013-147551 Compound CM23: International Publication No. 2015 / No. 008851 Compound CM24: JP-A-2015-174824
Figure JPOXMLDOC01-appb-C000158
Figure JPOXMLDOC01-appb-C000158
Figure JPOXMLDOC01-appb-C000159
Figure JPOXMLDOC01-appb-C000159
Figure JPOXMLDOC01-appb-C000160
Figure JPOXMLDOC01-appb-C000160
Figure JPOXMLDOC01-appb-C000161
Figure JPOXMLDOC01-appb-C000161
Figure JPOXMLDOC01-appb-C000162
Figure JPOXMLDOC01-appb-C000162
Figure JPOXMLDOC01-appb-C000163
Figure JPOXMLDOC01-appb-C000163
Figure JPOXMLDOC01-appb-C000164
Figure JPOXMLDOC01-appb-C000164
 <合成例8> 化合物CM25の合成 <Synthesis Example 8> Synthesis of Compound CM25
Figure JPOXMLDOC01-appb-C000165
Figure JPOXMLDOC01-appb-C000165
 反応容器内をアルゴンガス雰囲気とした後、国際公開第2016/005750号に記載の方法で合成した化合物CM25-stg0(8.0g)、ビスピナコラートジボロン(7.5g)、酢酸カリウム(7.0g)、[1,1’―ビス(ジフェニルホスフィノ)フェロセン]パラジウム(II)ジクロリドジクロロメタン付加体(0.6g)及びジメトキシエタン(80mL)を加え、撹拌した。得られた混合物を80℃で4時間撹拌し、室温まで冷却した後、ヘキサン(160mL)を加え、セライトを敷いたろ過器でろ過した。得られたろ液を濃縮した後、トルエン及び活性炭を加え、室温で1時間撹拌した後、セライトを敷いたろ過器でろ過した。得られたろ液を濃縮した後、酢酸エチルを加え、シリカゲルを敷いたろ過器でろ過し、得られたシリカゲルを酢酸エチルで洗浄した。得られた洗浄液を濃縮することにより、固体を得た。得られた固体を、トルエン及びアセトニトリルを用いて再結晶した後、50℃で減圧乾燥させることにより、化合物CM25(7.8g、白色固体)を得た。化合物CM25のHPLC面積百分率値は99.4%であった。
 LC-MS(ESI,positive):[M+K] 801.5.
 H-NMR(CDCl, 300MHz) δ(ppm):0.95(18H, s), 1.31(24H, s), 1.54(2H, dd), 1.73(2H, d), 2.67(2H,d),3.25(2H,m),6.84-6.88(4H,d),7.08(2H,d), 7.08(2H,d),7.74-7.81(6H,m).
After making the inside of the reaction vessel an argon gas atmosphere, compound CM25-stg0 (8.0 g) synthesized by the method described in WO2016 / 005750, bispinacolatodiboron (7.5 g), potassium acetate (7 0.0 g), [1,1′-bis (diphenylphosphino) ferrocene] palladium (II) dichloride dichloromethane adduct (0.6 g) and dimethoxyethane (80 mL) were added and stirred. The resulting mixture was stirred at 80 ° C. for 4 hours, cooled to room temperature, hexane (160 mL) was added, and the mixture was filtered through a filter covered with celite. The obtained filtrate was concentrated, toluene and activated carbon were added, and the mixture was stirred at room temperature for 1 hour, and then filtered through a filter with celite. The obtained filtrate was concentrated, ethyl acetate was added, and the mixture was filtered through a filter covered with silica gel. The obtained silica gel was washed with ethyl acetate. The obtained washing solution was concentrated to obtain a solid. The obtained solid was recrystallized using toluene and acetonitrile, and then dried under reduced pressure at 50 ° C. to obtain Compound CM25 (7.8 g, white solid). The HPLC area percentage value of Compound CM25 was 99.4%.
LC-MS (ESI, positive): [M + K] + 801.5.
1 H-NMR (CDCl 3 , 300 MHz) δ (ppm): 0.95 (18H, s), 1.31 (24H, s), 1.54 (2H, dd), 1.73 (2H, d) , 2.67 (2H, d), 3.25 (2H, m), 6.84-6.88 (4H, d), 7.08 (2H, d), 7.08 (2H, d), 7.74-7.81 (6H, m).
 <合成例9> 化合物CM26の合成 <Synthesis Example 9> Synthesis of Compound CM26
Figure JPOXMLDOC01-appb-C000166
Figure JPOXMLDOC01-appb-C000166
 シールド管に、ジシクロペンタジエン(40g)及び7-ブロモヘプタ-1-エン(107g)を加え、封管した後、200℃で72時間撹拌した。この操作を9回繰り返し、10回の操作で得られた溶液を合一した。合一した溶液を6回蒸留した後、シリカゲルカラムクロマトグラフィーで精製することにより、化合物CM26-stg1(193g)を得た。化合物CM26-stg1のGC(ガスクロマトグラフィー)面積百分率値は94.0%であった。
 H-NMR(CDCl,400MHz) δ(ppm):0.47-0.51 (m, 1H), 1.06-1.10 (m, 2H), 1.21-1.23 (m, 1H), 1.28-1.42 (m, 5H), 1.82-1.89 (m, 3H), 1.91-2.02 (m, 1H), 2.75-2.76 (m, 2H), 3.40-3.43 (m, 2H), 5.91-5.93 (m, 1H), 6.11-6.13 (m, 1H).
Dicyclopentadiene (40 g) and 7-bromohept-1-ene (107 g) were added to the shield tube, sealed, and then stirred at 200 ° C. for 72 hours. This operation was repeated 9 times, and the solutions obtained by 10 operations were combined. The combined solution was distilled 6 times and purified by silica gel column chromatography to obtain compound CM26-stg1 (193 g). The GC (gas chromatography) area percentage value of the compound CM26-stg1 was 94.0%.
1 H-NMR (CDCl 3 , 400 MHz) δ (ppm): 0.47-0.51 (m, 1H), 1.06-1.10 (m, 2H), 1.21-1.23 (m 1H), 1.28-1.42 (m, 5H), 1.82-1.89 (m, 3H), 1.91-2.02 (m, 1H), 2.75-2.76 (m, 2H), 3.40-3.43 (m, 2H), 5.91-5.93 (m, 1H), 6.11-6.13 (m, 1H).
 反応容器内をアルゴンガス雰囲気とした後、2,7-ジブロモフルオレン(60.0g)及びテトラヒドロフラン(1080mL)を加え、撹拌した。その後、そこへ、カリウム-tert-ブトキシド(62.5g)を加え、0℃に冷却した後、テトラヒドロフラン(80mL)に溶解させた化合物CM26-stg1(99.3g)を滴下した。得られた混合物を室温で6時間撹拌した後、セライトを敷いたろ過器でろ過し、得られたセライトをテトラヒドロフラン(500mL)で洗浄した。得られた洗浄液を濃縮し、シリカゲルカラムクロマトグラフィー(ヘキサン)で精製した後、再結晶(酢酸エチル及びメタノールの混合溶媒)を繰り返し行うことで、化合物CM26-stg2(58g)を得た。化合物CM26-stg2のHPLC面積百分率値は99.4%であった。
 H-NMR(CDCl, 400MHz) δ(ppm): 0.42(d, 2H), 0.56-0.68 (m, 4H), 0.88-0.92(m, 4H), 1.04-1.091(m, 8H), 1.16-1.19(m, 2H), 1.35(d, 2H), 1.74-1.80(m, 2H), 1.85-1.94(m, 6H), 2.68-2.72(m, 4H), 5.85(t, 2H), 6.08(t, 2H), 7.46-7.49(m, 4H), 7.53-7.55(m, 2H).
After making the inside of the reaction vessel an argon gas atmosphere, 2,7-dibromofluorene (60.0 g) and tetrahydrofuran (1080 mL) were added and stirred. Thereafter, potassium tert-butoxide (62.5 g) was added thereto, and after cooling to 0 ° C., compound CM26-stg1 (99.3 g) dissolved in tetrahydrofuran (80 mL) was added dropwise. The resulting mixture was stirred at room temperature for 6 hours, filtered through a filter with celite, and the resulting celite was washed with tetrahydrofuran (500 mL). The obtained washing solution was concentrated, purified by silica gel column chromatography (hexane), and then recrystallized (a mixed solvent of ethyl acetate and methanol) to repeatedly obtain Compound CM26-stg2 (58 g). The HPLC area percentage value of compound CM26-stg2 was 99.4%.
1 H-NMR (CDCl 3 , 400 MHz) δ (ppm): 0.42 (d, 2H), 0.56-0.68 (m, 4H), 0.88-0.92 (m, 4H), 1.04-1.091 (m, 8H), 1.16-1.19 (m, 2H), 1.35 (d, 2H), 1.74-1.80 (m, 2H), 85-1.94 (m, 6H), 2.68-1.72 (m, 4H), 5.85 (t, 2H), 6.08 (t, 2H), 7.46-7.49 ( m, 4H), 7.53-7.55 (m, 2H).
 反応容器内をアルゴンガス雰囲気とした後、化合物CM26-stg2(22.0g)及びテトラヒドロフラン(220mL)を加え、撹拌した。得られた混合物を-78℃に冷却した後、sec‐ブチルリチウム(1.3Mシクロヘキサン溶液、117mL)を1.5時間かけて滴下した。その後、そこへ、2-イソプロポキシ-4,4,5,5-テトラメチル-1,3,2-ジオキサボロラン(35mL)を加え、室温で16時間撹拌した。得られた反応液を-30℃に冷却した後、塩化水素溶液(2Mエーテル溶液、73mL)を加えた。得られた反応液をセライトを敷いたろ過器でろ過し、得られたセライトをトルエン(200mL)で洗浄した。
 上記の一連の操作と同様の操作を繰り返した後、得られた洗浄液を合一し、アセトニトリル中で懸濁撹拌した後、ろ過することで固体を得た。得られた固体を再結晶(トルエン及びアセトニトリルの混合溶媒)する操作を繰り返すことで、化合物CM26(26.5g)を得た。化合物CM26のHPLC面積百分率値は99.2%であった。
 H-NMR(CDCl, 400MHz) δ(ppm):0.36-0.40 (m, 2H), 0.51-0.55(m, 4H), 0.85-0.87(m, 4H), 0.85-0.99(m, 10H), 1.13-1.16(m, 2H), 1.31-1.34(m, 2H), 1.40(s, 24H), 1.70-1.81(m, 2H), 1.98-2.04(m, 4H), 2.64-2.68(m, 4H), 5.81(dd, 2H), 6.04(dd, 2H), 7.72-7.76(m, 4H), 7.82(d, 2H).
After making the inside of the reaction vessel an argon gas atmosphere, Compound CM26-stg2 (22.0 g) and tetrahydrofuran (220 mL) were added and stirred. The obtained mixture was cooled to −78 ° C., and sec-butyl lithium (1.3 M cyclohexane solution, 117 mL) was added dropwise over 1.5 hours. Thereafter, 2-isopropoxy-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (35 mL) was added thereto, and the mixture was stirred at room temperature for 16 hours. The resulting reaction solution was cooled to −30 ° C., and then a hydrogen chloride solution (2M ether solution, 73 mL) was added. The obtained reaction liquid was filtered with a filter covered with celite, and the obtained celite was washed with toluene (200 mL).
After repeating the same operation as the above series of operations, the obtained washing solutions were combined, suspended and stirred in acetonitrile, and then filtered to obtain a solid. Compound CM26 (26.5 g) was obtained by repeating the operation of recrystallizing the obtained solid (mixed solvent of toluene and acetonitrile). The HPLC area percentage value of Compound CM26 was 99.2%.
1 H-NMR (CDCl 3 , 400 MHz) δ (ppm): 0.36-0.40 (m, 2H), 0.51-0.55 (m, 4H), 0.85-0.87 (m , 4H), 0.85-0.99 (m, 10H), 1.13-1.16 (m, 2H), 1.31-1.34 (m, 2H), 1.40 (s, 24H ), 1.70-1.81 (m, 2H), 1.98-2.04 (m, 4H), 2.64-2.68 (m, 4H), 5.81 (dd, 2H), 6.04 (dd, 2H), 7.72-7.76 (m, 4H), 7.82 (d, 2H).
 <合成例10> 化合物CM27の合成 <Synthesis Example 10> Synthesis of Compound CM27
Figure JPOXMLDOC01-appb-C000167
Figure JPOXMLDOC01-appb-C000167
 反応容器内を窒素ガス雰囲気とした後、国際公開第2016/005750号に記載の方法で合成した化合物CM27-stg0(25.1g)及びテトラヒドロフラン(95mL)を加え、撹拌した。得られた混合物を-70℃まで冷却した後、sec-ブチルリチウム(1Mシクロヘキサン溶液、96mL)を滴下し、2時間撹拌した。その後、そこへ、テトラヒドロフラン(24mL)に溶解させたフルオレノン(11.8g)を1時間かけて滴下し、2時間撹拌した。その後、そこへ、メタノール(12mL)を加え、室温で撹拌した。その後、そこへ、イオン交換水(59mL)及びトルエン(83mL)を加え、撹拌した。得られた溶液を分液し、得られた有機層にイオン交換水(59mL)を加え、洗浄した。得られた有機層を硫酸マグネシウムで乾燥させた後、ろ過し、濃縮することで油状物を得た。得られた油状物を、シリカゲルカラムクロマトグラフィー(ヘキサン及びクロロホルムの混合溶媒)で精製した後、ヘキサンで懸濁撹拌し、ろ過した。得られた固体を50℃で減圧乾燥させることにより、化合物CM27-stg1(20.1g、白色固体)を得た。化合物CM27-stg1のHPLC面積百分率値は99.5%以上であった。
 LC-MS(ESI,positive):m/z=393[M+K]
The reaction vessel was filled with a nitrogen gas atmosphere, and then compound CM27-stg0 (25.1 g) and tetrahydrofuran (95 mL) synthesized by the method described in International Publication No. 2016/005750 were added and stirred. The obtained mixture was cooled to −70 ° C., sec-butyllithium (1M cyclohexane solution, 96 mL) was added dropwise, and the mixture was stirred for 2 hours. Thereafter, fluorenone (11.8 g) dissolved in tetrahydrofuran (24 mL) was added dropwise thereto over 1 hour, followed by stirring for 2 hours. Thereafter, methanol (12 mL) was added thereto and stirred at room temperature. Then, ion-exchange water (59 mL) and toluene (83 mL) were added and stirred there. The obtained solution was separated, and ion-exchanged water (59 mL) was added to the obtained organic layer for washing. The obtained organic layer was dried over magnesium sulfate, filtered and concentrated to obtain an oil. The obtained oil was purified by silica gel column chromatography (mixed solvent of hexane and chloroform), suspended and stirred in hexane, and filtered. The obtained solid was dried at 50 ° C. under reduced pressure to obtain Compound CM27-stg1 (20.1 g, white solid). The HPLC area percentage value of the compound CM27-stg1 was 99.5% or more.
LC-MS (ESI, positive): m / z = 393 [M + K] +
 反応容器内を窒素ガス雰囲気とした後、化合物CM27-stg1(18.9g)、トルエン(189mL)及びトリエチルシラン(24.8g)を加え、撹拌した。得られた混合物を60℃に加熱した後、メタンスルホン酸(20.5g)を1時間かけて滴下し、2.5時間撹拌した。得られた反応液を室温まで冷却した後、トルエン(189mL)及びイオン交換水(189mL)を加え、撹拌した。得られた溶液を分液し、得られた有機層に5重量%炭酸水素ナトリウム水溶液(95mL)を加え、洗浄した。得られた有機層にイオン交換水(95mL)を加え、洗浄した。得られた有機層を硫酸マグネシウムで乾燥させた後、ろ過し、濃縮することで、固体を得た。得られた固体を再結晶(ヘキサン)した後、50℃で減圧乾燥させることにより、化合物CM27-stg2(15.9g、白色固体)を得た。化合物CM27-stg2のHPLC面積百分率値は99.5%以上であった。
 H-NMR(CDCl, 300MHz) δ(ppm):0.97(9H,s), 1.51-1.57(m,2H), 1.74(1H,dd), 2.67(1H,dd), 3.25(1H,dd), 3.45-3.50(1H,m), 6.67(1H,s), 6.97(2H,q), 7.22-7.38(6H,m), 7.78(2H,d).
The reaction vessel was filled with a nitrogen gas atmosphere, and then compound CM27-stg1 (18.9 g), toluene (189 mL) and triethylsilane (24.8 g) were added and stirred. After the obtained mixture was heated to 60 ° C., methanesulfonic acid (20.5 g) was added dropwise over 1 hour and stirred for 2.5 hours. After cooling the obtained reaction liquid to room temperature, toluene (189 mL) and ion-exchange water (189 mL) were added and stirred. The obtained solution was separated, and a 5 wt% aqueous sodium hydrogen carbonate solution (95 mL) was added to the obtained organic layer for washing. Ion exchange water (95 mL) was added to the obtained organic layer and washed. The obtained organic layer was dried over magnesium sulfate, filtered, and concentrated to obtain a solid. The obtained solid was recrystallized (hexane) and then dried under reduced pressure at 50 ° C. to obtain compound CM27-stg2 (15.9 g, white solid). The HPLC area percentage value of the compound CM27-stg2 was 99.5% or more.
1 H-NMR (CDCl 3 , 300 MHz) δ (ppm): 0.97 (9H, s), 1.51-1.57 (m, 2H), 1.74 (1H, dd), 2.67 ( 1H, dd), 3.25 (1H, dd), 3.45-3.50 (1H, m), 6.67 (1H, s), 6.97 (2H, q), 7.22-7 .38 (6H, m), 7.78 (2H, d).
 反応容器内を窒素ガス雰囲気とした後、化合物CM27-stg2(13.8g)、60重量%水素化ナトリウム(1.8g)及びテトラヒドロフラン(74mL)を加え、撹拌した。その後、そこへ、ジメチルホルムアミド(37mL)を10分間かけて滴下し、得られた混合物を0℃に冷却した。その後、そこへ、ブロモクロロヘキサン(22.5g)を40分間かけて滴下し、0℃で2.5時間撹拌した後、室温で撹拌した。その後、そこへ、ヘプタン(110mL)及びイオン交換水(55mL)を加え、撹拌した。得られた溶液を分液し、得られた有機層にイオン交換水(55mL)を加えて洗浄した。得られた有機層を硫酸マグネシウムで乾燥させた後、ろ過し、濃縮しすることで、油状物を得た。得られた油状物を、シリカゲルカラムクロマトグラフィー(ヘキサン及びクロロホルムの混合溶媒)で精製した後、エタノール及びメタノールの混合溶媒で懸濁撹拌し、ろ過した。得られた固体を50℃で減圧乾燥させることにより、化合物CM27-stg3(16.9g、白色固体)を得た。化合物CM27-stg3のHPLC面積百分率値は99.5%以上であった。
 H-NMR(CDCl, 300MHz) δ(ppm):0.67-0.744(2H,m), 0.94(9H,s),1.14-1.26(4H,m),1.47-1.61(3H,m),1.68(1H,dd),2.39-2.42(2H,m),2.65(1H,d),3.23(1H,dd),3.83-3.44(3H,m),6.83(1H,s),6.87(1H,d),6.99(1H,d),7.19-7.25(4H,m),7.32(2H,t),7.72(2H,d).
The reaction vessel was filled with a nitrogen gas atmosphere, and then compound CM27-stg2 (13.8 g), 60 wt% sodium hydride (1.8 g) and tetrahydrofuran (74 mL) were added and stirred. Thereafter, dimethylformamide (37 mL) was added dropwise thereto over 10 minutes, and the resulting mixture was cooled to 0 ° C. Thereafter, bromochlorohexane (22.5 g) was added dropwise thereto over 40 minutes, stirred at 0 ° C. for 2.5 hours, and then stirred at room temperature. Thereafter, heptane (110 mL) and ion-exchanged water (55 mL) were added thereto and stirred. The obtained solution was separated, and ion-exchanged water (55 mL) was added to the obtained organic layer for washing. The obtained organic layer was dried over magnesium sulfate, filtered, and concentrated to obtain an oil. The obtained oil was purified by silica gel column chromatography (a mixed solvent of hexane and chloroform), suspended and stirred in a mixed solvent of ethanol and methanol, and filtered. The obtained solid was dried under reduced pressure at 50 ° C. to obtain compound CM27-stg3 (16.9 g, white solid). The HPLC area percentage value of the compound CM27-stg3 was 99.5% or more.
1 H-NMR (CDCl 3 , 300 MHz) δ (ppm): 0.67-0.744 (2H, m), 0.94 (9H, s), 1.14-1.26 (4H, m), 1.47-1.61 (3H, m), 1.68 (1H, dd), 2.39-2.42 (2H, m), 2.65 (1H, d), 3.23 (1H, dd), 3.83-3.44 (3H, m), 6.83 (1H, s), 6.87 (1H, d), 6.99 (1H, d), 7.19-7.25. (4H, m), 7.32 (2H, t), 7.72 (2H, d).
 反応容器内を窒素ガス雰囲気とした後、化合物CM27-stg3(15.7g)、ヨウ化ナトリウム(42.0g)及びアセトン(126mL)を加え、撹拌した。得られた混合物を55℃で41時間撹拌した後、室温に冷却した。その後、そこへ、トルエン(126mL)及びイオン交換水(63mL)を加え、撹拌した。得られた溶液を分液し、得られた有機層にイオン交換水(63mL)を加えて洗浄した。得られた有機層を硫酸マグネシウムで乾燥させた後、ろ過し、濃縮することで、固体を得た。得られた固体を、アセトニトリルで再結晶し、得られた固体を50℃で減圧乾燥させることにより、化合物CM27-stg4(19.2g、白色固体)を得た。化合物CM27-stg4のHPLC面積百分率値は99.5%以上であった。
 LC-MS(ESI,positive):m/z=587[M+K]
The reaction vessel was filled with a nitrogen gas atmosphere, and then compound CM27-stg3 (15.7 g), sodium iodide (42.0 g) and acetone (126 mL) were added and stirred. The resulting mixture was stirred at 55 ° C. for 41 hours and then cooled to room temperature. Thereafter, toluene (126 mL) and ion-exchanged water (63 mL) were added thereto and stirred. The obtained solution was separated, and ion-exchanged water (63 mL) was added to the obtained organic layer for washing. The obtained organic layer was dried over magnesium sulfate, filtered, and concentrated to obtain a solid. The obtained solid was recrystallized from acetonitrile, and the obtained solid was dried at 50 ° C. under reduced pressure to obtain Compound CM27-stg4 (19.2 g, white solid). The HPLC area percentage value of the compound CM27-stg4 was 99.5% or more.
LC-MS (ESI, positive): m / z = 587 [M + K] +
 反応容器内を窒素ガス雰囲気とした後、60重量%水素化ナトリウム(0.8g)、テトラヒドロフラン(56mL)及びジメチルホルムアミド(56mL)を加え、0℃に冷却した後、撹拌した。その後、そこへ、化合物CM27-stg4(16.1g)を加えた。その後、そこへ、テトラヒドロフラン(56mL)に溶解させた化合物CM27-stg5b(14.0g、特表2014-506609号公報記載の方法で合成)を1時間かけて滴下し、3時間撹拌した。得られた反応液を、10℃で12時間撹拌した。その後、そこへ、トルエン(140mL)及びイオン交換水(140mL)を加え、撹拌した。得られた溶液を分液し、得られた有機層にイオン交換水(140mL)を加えて洗浄した。得られた有機層を硫酸ナトリウムで乾燥させた後、シリカゲル(26g)及びセライト(14g)を敷いたろ過器でろ過した。得られたろ液を濃縮することで、油状物を得た。得られた油状物を、シリカゲルカラムクロマトグラフィー(ヘキサン及びクロロホルムの混合溶媒)で精製する操作を複数回行った後、ヘキサンで懸濁撹拌し、ろ過した。得られた固体を50℃で減圧乾燥させることにより、化合物CM27-stg5(22.3g、白色固体)を得た。化合物CM27-stg5のHPLC面積百分率値は99.5%以上であった。
 LC-MS(ESI,positive):m/z=1025[M+K]
 H-NMR(CDCl, 300MHz) δ(ppm):0.51-0.57(4H,m), 0.85(6H,t), 0.94(12H,s), 1.24(12H,s),1.47-1.52(6H,m), 1.69(1H,dd), 2.22-2.33(4H,m), 2.45(4H,t), 2.65(1H,d),3.23(1H,dd), 3.93-3.43(1H,m), 6.64(2H,s),6.80(2H,d), 6.85(1H,d), 6.96(1H,d), 7.14-7.23(6H,m), 7.27(2H,t), 7.42(2H,d),7.52(2H,d),7.70(2H,d).
The reaction vessel was filled with a nitrogen gas atmosphere, 60 wt% sodium hydride (0.8 g), tetrahydrofuran (56 mL) and dimethylformamide (56 mL) were added, and the mixture was cooled to 0 ° C and stirred. Thereafter, the compound CM27-stg4 (16.1 g) was added thereto. Thereafter, compound CM27-stg5b (14.0 g, synthesized by the method described in JP-T-2014-506609) dissolved in tetrahydrofuran (56 mL) was added dropwise thereto over 1 hour and stirred for 3 hours. The resulting reaction solution was stirred at 10 ° C. for 12 hours. Then, toluene (140 mL) and ion-exchange water (140 mL) were added and stirred there. The obtained solution was separated, and ion-exchanged water (140 mL) was added to the obtained organic layer for washing. The obtained organic layer was dried over sodium sulfate, and filtered through a filter covered with silica gel (26 g) and celite (14 g). The obtained filtrate was concentrated to obtain an oily substance. The obtained oil was purified by silica gel column chromatography (mixed solvent of hexane and chloroform) several times, suspended and stirred in hexane, and filtered. The obtained solid was dried under reduced pressure at 50 ° C. to obtain compound CM27-stg5 (22.3 g, white solid). The HPLC area percentage value of the compound CM27-stg5 was 99.5% or more.
LC-MS (ESI, positive): m / z = 1025 [M + K] +
1 H-NMR (CDCl 3 , 300 MHz) δ (ppm): 0.51-0.57 (4H, m), 0.85 (6H, t), 0.94 (12H, s), 1.24 ( 12H, s), 1.47-1.52 (6H, m), 1.69 (1H, dd), 2.22-2.33 (4H, m), 2.45 (4H, t), 2 .65 (1H, d), 3.23 (1H, dd), 3.93-3.43 (1H, m), 6.64 (2H, s), 6.80 (2H, d), 85 (1H, d), 6.96 (1H, d), 7.14-7.23 (6H, m), 7.27 (2H, t), 7.42 (2H, d), 7.52 (2H, d), 7.70 (2H, d).
 反応容器内をアルゴンガス雰囲気とした後、化合物CM27-stg5(22.0g)、ビスピナコラートジボロン(14.1g)、酢酸カリウム(13.1g)及びジメトキシエタン(220mL)を加え、撹拌した。その後、そこへ、[1,1’-ビス(ジフェニルホスフィノ)フェロセン]パラジウム(II)ジクロリドジクロロメタン付加体(0.7g)を加え、90℃で15時間撹拌した。得られた反応液を室温まで冷却した後、トルエン(220mL)及びセライト(11g)を加え、セライトを敷いたろ過器でろ過した。得られたろ液を濃縮した後、ヘキサンで懸濁撹拌し、ろ過した。得られた固体にトルエン(218mL)及び活性炭(14g)を加え、1時間撹拌した後、シリカゲル(28g)及びセライト(84g)を敷いたろ過器でろ過した。得られたろ液を濃縮することで、固体を得た。得られた固体を、トルエン及びヘキサンの混合溶媒で再結晶し、得られた固体を50℃で減圧乾燥させることにより、化合物CM27(18.6g、白色固体)を得た。化合物CM27のHPLC面積百分率値は99.5%以上であった。
 LC-MS(ESI,positive):m/z=1101[M+NH
 H-NMR(CDCl, 300MHz) δ(ppm):0.48-0.57(4H,m), 0.86(6H,t), 0.93(9H,s), 1.23(10H,s), 1.31(24H, s),1.46-1.53(9H,m), 1.70(1H,dd), 2.27-2.43(10H,m), 2.64(1H,d), 3.22(1H,dd), 3.42(1H,m),6.70(2H,s), 6.75(2H,d), 6.83(1H,d), 6.94(1H,d), 7.12-7.30(6H,m), 7.56(2H,s), 7.67-7.79(6H,m).
The reaction vessel was filled with an argon gas atmosphere, and then compound CM27-stg5 (22.0 g), bispinacolatodiboron (14.1 g), potassium acetate (13.1 g) and dimethoxyethane (220 mL) were added and stirred. . Thereafter, [1,1′-bis (diphenylphosphino) ferrocene] palladium (II) dichloride dichloromethane adduct (0.7 g) was added thereto and stirred at 90 ° C. for 15 hours. The obtained reaction solution was cooled to room temperature, toluene (220 mL) and celite (11 g) were added, and the mixture was filtered with a filter overlaid with celite. The obtained filtrate was concentrated, suspended and stirred in hexane, and filtered. Toluene (218 mL) and activated carbon (14 g) were added to the obtained solid, and the mixture was stirred for 1 hour, and then filtered through a filter covered with silica gel (28 g) and celite (84 g). The obtained filtrate was concentrated to obtain a solid. The obtained solid was recrystallized with a mixed solvent of toluene and hexane, and the obtained solid was dried at 50 ° C. under reduced pressure to obtain Compound CM27 (18.6 g, white solid). The HPLC area percentage value of Compound CM27 was 99.5% or more.
LC-MS (ESI, positive): m / z = 1101 [M + NH 4 ] +
1 H-NMR (CDCl 3 , 300 MHz) δ (ppm): 0.48-0.57 (4H, m), 0.86 (6H, t), 0.93 (9H, s), 1.23 ( 10H, s), 1.31 (24H, s), 1.46-1.53 (9H, m), 1.70 (1H, dd), 2.27-2.43 (10H, m), 2 .64 (1H, d), 3.22 (1H, dd), 3.42 (1H, m), 6.70 (2H, s), 6.75 (2H, d), 6.83 (1H, d), 6.94 (1H, d), 7.12-7.30 (6H, m), 7.56 (2H, s), 7.67-7.79 (6H, m).
 <合成例11> 化合物CM28の合成 <Synthesis Example 11> Synthesis of Compound CM28
Figure JPOXMLDOC01-appb-C000168
Figure JPOXMLDOC01-appb-C000168
 撹拌器を備えたフラスコ内の気体を窒素ガスで置換した後、化合物CM28-stg0(64.6g)及びテトラヒドロフラン(615ml)を加え、-70℃に冷却した。そこへ、n-ブチルリチウムヘキサン溶液(1.6M、218ml)を1時間かけて滴下した後、-70℃で2時間撹拌した。そこへ、フルオレノン(42.1g)を数回に分けて加えた後、-70℃で2時間撹拌した。そこへ、メタノール(40ml)を1時間かけて滴下した後、室温まで昇温した。その後、減圧濃縮して溶媒を留去し、トルエン及び水を加えた。その後、水層を分離し、得られた有機層をさらに水で洗浄した。得られた有機層を減圧濃縮して、得られた残渣をシリカゲルカラム(展開溶媒 ヘキサンと酢酸エチルの混合溶媒)を用いて精製することで、無色油状物として化合物CM28-stg1を71g得た。得られた化合物CM28-stg1のHPLC面積百分率値(UV254nm)は97.5%であった。この操作を繰り返し行うことで、化合物CM28-stg1の必要量を得た。
 H-NMR(CDCl,300MHz) δ(ppm):2.43(1H,s),3.07-3.13(4H,m),6.95(1H,d),7.07(1H,S),7.18-7.28(3H,m),7.28-7.40(4H,m),7.66(2H,s).
After replacing the gas in the flask equipped with a stirrer with nitrogen gas, Compound CM28-stg0 (64.6 g) and tetrahydrofuran (615 ml) were added and cooled to -70 ° C. Thereto, an n-butyllithium hexane solution (1.6 M, 218 ml) was added dropwise over 1 hour, followed by stirring at −70 ° C. for 2 hours. Thereto, fluorenone (42.1 g) was added in several portions, followed by stirring at −70 ° C. for 2 hours. Methanol (40 ml) was added dropwise thereto over 1 hour, and the temperature was raised to room temperature. Then, it concentrated under reduced pressure, the solvent was distilled off, and toluene and water were added. Thereafter, the aqueous layer was separated, and the obtained organic layer was further washed with water. The obtained organic layer was concentrated under reduced pressure, and the obtained residue was purified using a silica gel column (developing solvent: a mixed solvent of hexane and ethyl acetate) to obtain 71 g of compound CM28-stg1 as a colorless oil. The obtained compound CM28-stg1 had an HPLC area percentage value (UV254 nm) of 97.5%. By repeating this operation, the required amount of compound CM28-stg1 was obtained.
1 H-NMR (CDCl 3 , 300 MHz) δ (ppm): 2.43 (1H, s), 3.07-3.13 (4H, m), 6.95 (1H, d), 7.07 ( 1H, S), 7.18-7.28 (3H, m), 7.28-7.40 (4H, m), 7.66 (2H, s).
 撹拌器を備えたフラスコ内の気体を窒素ガスで置換した後、化合物CM28-stg1(72.3g)、トルエン(723ml)及びトリエチルシラン(118.0g)を加え、70℃に昇温した。そこへ、メタンスルホン酸(97.7g)を1.5時間かけて滴下した後、70℃で0.5時間撹拌した。その後、室温まで冷却し、トルエン(1L)及び水(1L)を加えた後、水層を分離した。得られた有機層を、水、5重量%炭酸水素ナトリウム水、水の順番で洗浄した。得られた有機層を減圧濃縮して、得られた粗生成物をトルエン及びエタノールの混合溶液で再結晶することで、白色固体として化合物CM28-stg2を51.8g得た。得られた化合物CM28-stg2のHPLC面積百分率値(UV254nm)は99.5%以上であった。この操作を繰り返し行うことで、化合物CM28-stg2の必要量を得た。
 H-NMR(CDCl,300MHz) δ(ppm):3.03-3.14(4H,m),4.99(1H,s),6.68(1H,s),6.92-7.01(2H,m),7.20-7.28(2H,m),7.29-7.38(4H,m),7.78(2H,d).
After replacing the gas in the flask equipped with a stirrer with nitrogen gas, Compound CM28-stg1 (72.3 g), toluene (723 ml) and triethylsilane (118.0 g) were added, and the temperature was raised to 70 ° C. Thereto, methanesulfonic acid (97.7 g) was added dropwise over 1.5 hours, followed by stirring at 70 ° C. for 0.5 hours. Then, after cooling to room temperature and adding toluene (1 L) and water (1 L), the water layer was isolate | separated. The obtained organic layer was washed with water, 5 wt% aqueous sodium hydrogen carbonate and water in this order. The obtained organic layer was concentrated under reduced pressure, and the obtained crude product was recrystallized with a mixed solution of toluene and ethanol to obtain 51.8 g of compound CM28-stg2 as a white solid. The obtained compound CM28-stg2 had an HPLC area percentage value (UV254 nm) of 99.5% or more. By repeating this operation, the required amount of compound CM28-stg2 was obtained.
1 H-NMR (CDCl 3 , 300 MHz) δ (ppm): 3.03-3.14 (4H, m), 4.99 (1H, s), 6.68 (1H, s), 6.92- 7.01 (2H, m), 7.20-7.28 (2H, m), 7.29-7.38 (4H, m), 7.78 (2H, d).
 撹拌器を備えたフラスコ内の気体を窒素ガスで置換した後、水素化ナトリウム(60重量%、流動パラフィンに分散)(10.9g)、テトラヒドロフラン(268ml)及び1-ブロモ-6-クロロへキサン(198.3g)を加えた。その後、フラスコ全体を遮光し、0~5℃に冷却した。そこへ、化合物CM28-stg2(67.0g)及びテトラヒドロフラン(330ml)の混合液を2.5時間かけて加えた後、50℃まで昇温し、50℃で6時間撹拌した。そこへ、ヘプタン(536ml)及び水(268ml)を加え、水層を分離した。得られた有機層を水で洗浄した後、硫酸マグネシウムを加えた。得られた混合液をろ過して、得られたろ液を減圧濃縮することで粗生成物を得た。得られた粗生成物をイソプロパノールで再結晶した後、得られた結晶をトルエン及びヘプタンの混合液に溶解させ、活性炭(9.6g)を加えた。得られた混合液をろ過し、得られたろ液を減圧濃縮した。得られた残渣をトルエン及びヘプタンの混合液で再結晶することで、白色固体として化合物CM28-stg3を81.0g得た。得られた化合物CM28-stg3のHPLC面積百分率値(UV254nm)は99.5%であった。この操作を繰り返し行うことで、化合物CM28-stg3の必要量を得た。
 H-NMR(CDCl,300MHz) δ(ppm):0.71-0.83(2H,m),1.27(4H,t),1.58-1.68(2H,m),2.49-2.54(2H,m),3.08-3.19(4H,m),3.49(2H,t),6.89(1H,s),6.94(1H,d),7.07(1H,d),7.25-7.44(6H,m),7.83(2H,d).
After replacing the gas in the flask equipped with a stirrer with nitrogen gas, sodium hydride (60 wt%, dispersed in liquid paraffin) (10.9 g), tetrahydrofuran (268 ml) and 1-bromo-6-chlorohexane (198.3 g) was added. Thereafter, the entire flask was shielded from light and cooled to 0 to 5 ° C. Thereto was added a mixture of compound CM28-stg2 (67.0 g) and tetrahydrofuran (330 ml) over 2.5 hours, and then the mixture was heated to 50 ° C. and stirred at 50 ° C. for 6 hours. Thereto were added heptane (536 ml) and water (268 ml), and the aqueous layer was separated. The obtained organic layer was washed with water, and magnesium sulfate was added. The obtained mixed solution was filtered, and the obtained filtrate was concentrated under reduced pressure to obtain a crude product. The obtained crude product was recrystallized from isopropanol, and the obtained crystal was dissolved in a mixed solution of toluene and heptane, and activated carbon (9.6 g) was added. The obtained mixed solution was filtered, and the obtained filtrate was concentrated under reduced pressure. The obtained residue was recrystallized with a mixed solution of toluene and heptane to obtain 81.0 g of a compound CM28-stg3 as a white solid. The obtained compound CM28-stg3 had an HPLC area percentage value (UV254 nm) of 99.5%. By repeating this operation, the required amount of compound CM28-stg3 was obtained.
1 H-NMR (CD 2 Cl 2 , 300 MHz) δ (ppm): 0.71-0.83 (2H, m), 1.27 (4H, t), 1.58-1.68 (2H, m ), 2.49-2.54 (2H, m), 3.08-3.19 (4H, m), 3.49 (2H, t), 6.89 (1H, s), 6.94 ( 1H, d), 7.07 (1H, d), 7.25-7.44 (6H, m), 7.83 (2H, d).
 撹拌器を備えたフラスコ内の気体を窒素ガスで置換した後、化合物CM28-stg3(124.4g)、ヨウ化ナトリウム(385.5g)及びアセトン(786ml)を加えた後、還流温度まで昇温し、還流温度で34時間撹拌した。その後、室温まで冷却し、得られた混合液にヘプタン、トルエン及び水を加えた後、水層を分離した。得られた有機層を水で洗浄した後、硫酸マグネシウムを加えた。得られた混合液をろ過し、得られたろ液を減圧濃縮することで粗生成物を得た。得られた粗生成物を、ヘプタン及びイソプロパノールの混合液で再結晶することで、白色固体として化合物CM28-stg4を143g得た。得られた化合物CM28-stg4のHPLC面積百分率値(UV254nm)は99.4%であった。
 H-NMR(CDCl,300MHz) δ(ppm):0.71-0.83(2H,m),1.20-1.36(4H,m),1.60-1.70(2H,m),2.48-2.54(2H,m),3.13-3.18(6H,m),6.89(1H,s),6.94(1H,d),7.07(1H,d),7.25-7.44(6H,m),7.83(2H,d).
After replacing the gas in the flask equipped with a stirrer with nitrogen gas, Compound CM28-stg3 (124.4 g), sodium iodide (385.5 g) and acetone (786 ml) were added, and the temperature was raised to the reflux temperature. And stirred at reflux temperature for 34 hours. Then, it cooled to room temperature and added the heptane, toluene, and water to the obtained liquid mixture, and isolate | separated the water layer. The obtained organic layer was washed with water, and magnesium sulfate was added. The obtained mixed solution was filtered, and the obtained filtrate was concentrated under reduced pressure to obtain a crude product. The obtained crude product was recrystallized with a mixed solution of heptane and isopropanol to obtain 143 g of compound CM28-stg4 as a white solid. The obtained compound CM28-stg4 had an HPLC area percentage value (UV254 nm) of 99.4%.
1 H-NMR (CD 2 Cl 2 , 300 MHz) δ (ppm): 0.71-0.83 (2H, m), 1.20-1.36 (4H, m), 1.60-1.70 (2H, m), 2.48-2.54 (2H, m), 3.13-3.18 (6H, m), 6.89 (1H, s), 6.94 (1H, d), 7.07 (1H, d), 7.25-7.44 (6H, m), 7.83 (2H, d).
 撹拌器を備えたフラスコ内の気体を窒素ガスで置換した後、水素化ナトリウム(60重量%、流動パラフィンに分散)(1.0g)、テトラヒドロフラン(42.5ml)、N,N-ジメチルホルムアミド(42.5ml)及び化合物CM28-stg4(10.8g)を加えた。
 その後、フラスコ全体を遮光し、0~5℃に冷却した。そこへ、特表2014-506609号公報記載の合成法に従い合成した化合物CM27-stg5b(10.6g)及びテトラヒドロフラン(42.5ml)の混合液を1時間かけて加えた後、0~5℃で4時間撹拌した。
 得られた反応混合物を室温まで昇温した後、トルエン(106ml)及び水(106ml)を加え、水層を分離した。得られた有機層を水で洗浄した後、硫酸ナトリウムを加えた。得られた混合液を、シリカゲルを敷き詰めたろ過器でろ過し、得られたろ液を減圧濃縮することで粗生成物を得た。得られた粗生成物を、酢酸エチル及びアセトニトリルの混合液で再結晶する操作を繰り返すことで、白色固体として化合物CM28-stg5を14.3g得た。得られた化合物CM28-stg5のHPLC面積百分率値(UV254nm)は99.5%以上であった。
 LC-MS(positive)m/z:955([M+K]
 H-NMR(CDCl,300MHz) δ(ppm):0.56-0.65(4H,m),0.90-1.32(22H,m),1.54-1.58(4H,m),2.34-2.42(4H,m),2.52(4H,t),3.12(4H,d),6.74(2H,s),6.85(1H,s),6.92(2H,d),7.00-7.05(1H,m),7.19(2H,d),7.26-7.41(6H,m),7.53(2H,d),7.65(2H,d),7.80(2H,d).
After replacing the gas in the flask equipped with a stirrer with nitrogen gas, sodium hydride (60% by weight, dispersed in liquid paraffin) (1.0 g), tetrahydrofuran (42.5 ml), N, N-dimethylformamide ( 42.5 ml) and compound CM28-stg4 (10.8 g) were added.
Thereafter, the entire flask was shielded from light and cooled to 0 to 5 ° C. Thereto was added a mixture of compound CM27-stg5b (10.6 g) and tetrahydrofuran (42.5 ml) synthesized according to the synthesis method described in JP-T-2014-506609 over 1 hour, and then at 0 to 5 ° C. Stir for 4 hours.
The resulting reaction mixture was warmed to room temperature, toluene (106 ml) and water (106 ml) were added, and the aqueous layer was separated. The obtained organic layer was washed with water, and then sodium sulfate was added. The obtained mixed liquid was filtered with a filter packed with silica gel, and the obtained filtrate was concentrated under reduced pressure to obtain a crude product. The obtained crude product was recrystallized with a mixed solution of ethyl acetate and acetonitrile to obtain 14.3 g of compound CM28-stg5 as a white solid. The compound CM28-stg5 obtained had an HPLC area percentage value (UV254 nm) of 99.5% or more.
LC-MS (positive) m / z: 955 ([M + K] + )
1 H-NMR (CD 2 Cl 2 , 300 MHz) δ (ppm): 0.56-0.65 (4H, m), 0.90-1.32 (22H, m), 1.54-1.58 (4H, m), 2.34-2.42 (4H, m), 2.52 (4H, t), 3.12 (4H, d), 6.74 (2H, s), 6.85 ( 1H, s), 6.92 (2H, d), 7.00-7.05 (1H, m), 7.19 (2H, d), 7.26-7.41 (6H, m), 7 .53 (2H, d), 7.65 (2H, d), 7.80 (2H, d).
 撹拌器を備えたフラスコ内の気体を窒素ガスで置換した後、化合物CM28-stg5(14.3g)、[1,1’-ビス(ジフェニルホスフィノ)フェロセン]パラジウム(II)ジクロリドジクロロメタン付加物(PdCl(dppf)・CHCl、0.51g)、ビスピナコラートジボロン(9.5g)、酢酸カリウム(9.3g)及び1,2-ジメトキシエタン(143ml)を加え、還流温度まで昇温した後、還流温度で12時間撹拌した。得られた反応混合物を室温まで冷却した後、トルエン(143ml)を加え、セライトを敷き詰めたろ過器でろ過した。得られたろ液を減圧濃縮することで粗生成物を得た。得られた粗生成物を、トルエン(173ml)及びヘプタン(173ml)の混合液に溶解させた後、活性炭(4.6g)を加え、シリカゲル及びセライトを敷き詰めたろ過器でろ過した。得られたろ液を減圧濃縮して、得られた残渣を、酢酸エチル及びアセトニトリルの混合液で再結晶する操作を繰り返すことで、白色固体として化合物CM28を11.2g得た。得られた化合物CM28のHPLC面積百分率値(UV254nm)は99.5%であった。
 LC-MS(positive)m/z:1031([M+NH
 H-NMR(CDCl,300MHz) δ(ppm):0.50-0.68(4H,m),0.90-1.00(10H,m),1.31-1.58(40H,m),2.34-2.53(8H,m),3.12(4H,s),6.76(2H,s),6.83(1H,s),6.90(2H,d),6.98-7.04(1H,m),7.17(2H,d),7.27(2H,t),7.37(2H,t),7.55(2H,s),7.77-7.83(6H,m).
After replacing the gas in the flask equipped with a stirrer with nitrogen gas, compound CM28-stg5 (14.3 g), [1,1′-bis (diphenylphosphino) ferrocene] palladium (II) dichloride dichloromethane adduct ( PdCl 2 (dppf) · CH 2 Cl 2 , 0.51 g), bispinacolato diboron (9.5 g), potassium acetate (9.3 g) and 1,2-dimethoxyethane (143 ml) are added and brought to reflux temperature After raising the temperature, the mixture was stirred at reflux temperature for 12 hours. The obtained reaction mixture was cooled to room temperature, toluene (143 ml) was added, and the mixture was filtered through a filter packed with celite. The obtained filtrate was concentrated under reduced pressure to obtain a crude product. The obtained crude product was dissolved in a mixed solution of toluene (173 ml) and heptane (173 ml), activated carbon (4.6 g) was added, and the mixture was filtered through a filter packed with silica gel and celite. The obtained filtrate was concentrated under reduced pressure, and the operation of recrystallizing the obtained residue with a mixed solution of ethyl acetate and acetonitrile was repeated to obtain 11.2 g of Compound CM28 as a white solid. The obtained compound CM28 had an HPLC area percentage value (UV254 nm) of 99.5%.
LC-MS (positive) m / z: 1031 ([M + NH 4 ] + )
1 H-NMR (CD 2 Cl 2 , 300 MHz) δ (ppm): 0.50-0.68 (4H, m), 0.90-1.00 (10H, m), 1.31-1.58 (40H, m), 2.34-2.53 (8H, m), 3.12 (4H, s), 6.76 (2H, s), 6.83 (1H, s), 6.90 ( 2H, d), 6.98-7.04 (1H, m), 7.17 (2H, d), 7.27 (2H, t), 7.37 (2H, t), 7.55 (2H , S), 7.77-7.83 (6H, m).
 <合成例12> 化合物CM29及び化合物CM30の合成
 化合物CM29及び化合物CM30は、下記文献に記載された方法に従って合成し、99.5%以上のHPLC面積百分率値を示したものを用いた。
<Synthesis Example 12> Synthesis of Compound CM29 and Compound CM30 Compound CM29 and Compound CM30 were synthesized according to the method described in the following literature, and those having an HPLC area percentage value of 99.5% or more were used.
 化合物CM29:特開2011-105701号公報
 化合物CM30:特開2008-179617号公報
Compound CM29: Japanese Patent Application Laid-Open No. 2011-105701 Compound CM30: Japanese Patent Application Laid-Open No. 2008-179617
Figure JPOXMLDOC01-appb-C000169
Figure JPOXMLDOC01-appb-C000169
 <実施例1> 高分子化合物P1の合成
 (工程1)反応容器内を不活性ガス雰囲気とした後、化合物CM7(1.00412g)、化合物CM5(0.2141g)、化合物CM12(1.1087g)、化合物CM10(0.0847g)、ジクロロビス(トリス-o‐メトキシフェニルホスフィン)パラジウム(3.60mg)及びトルエン(32mL)を加え、90℃に加熱した。
 (工程2)反応液に、16重量%水酸化テトラブチルアンモニウム水溶液(21.2g)を滴下し、7時間還流させた。
 (工程3)反応後、そこに、フェニルボロン酸(98.7mg)及びジクロロビス(トリス-o‐メトキシフェニルホスフィン)パラジウム(1.79mg)を加え、14.5時間還流させた。
 (工程4)その後、冷却後、得られた反応液を、10重量%塩酸水溶液で2回、3重量%アンモニア水溶液で2回、水で2回洗浄し、得られた溶液をメタノールに滴下したところ、沈澱が生じた。得られた沈殿物をトルエンに溶解させ、アルミナカラム、シリカゲルカラムの順番で通すことにより精製した。得られた溶液をメタノールに滴下し、撹拌した後、得られた沈殿物をろ取し、乾燥させることにより、高分子化合物P1を1.30g得た。高分子化合物P1のポリスチレン換算の数平均分子量は3.9×104であり、ポリスチレン換算の重量平均分子量は1.3×105であった。
<Example 1> Synthesis of polymer compound P1 (Step 1) After making the inside of the reaction vessel an inert gas atmosphere, Compound CM7 (1.000412 g), Compound CM5 (0.2141 g), Compound CM12 (1.1087 g) Compound CM10 (0.0847 g), dichlorobis (tris-o-methoxyphenylphosphine) palladium (3.60 mg) and toluene (32 mL) were added, and the mixture was heated to 90 ° C.
(Step 2) A 16 wt% tetrabutylammonium hydroxide aqueous solution (21.2 g) was added dropwise to the reaction solution, and the mixture was refluxed for 7 hours.
(Step 3) After the reaction, phenylboronic acid (98.7 mg) and dichlorobis (tris-o-methoxyphenylphosphine) palladium (1.79 mg) were added thereto and refluxed for 14.5 hours.
(Step 4) Then, after cooling, the obtained reaction solution was washed twice with a 10 wt% aqueous hydrochloric acid solution, twice with a 3 wt% aqueous ammonia solution and twice with water, and the obtained solution was added dropwise to methanol. However, precipitation occurred. The obtained precipitate was dissolved in toluene and purified by passing through an alumina column and a silica gel column in this order. The obtained solution was added dropwise to methanol and stirred, and then the resulting precipitate was collected by filtration and dried to obtain 1.30 g of polymer compound P1. The polymer compound P1 had a polystyrene-equivalent number average molecular weight of 3.9 × 10 4 and a polystyrene-equivalent weight average molecular weight of 1.3 × 10 5 .
 高分子化合物P1は、仕込み原料の量から求めた理論値では、化合物CM7から誘導される構成単位と、化合物CM5から誘導される構成単位と、化合物CM12から誘導される構成単位と、化合物CM10から誘導される構成単位とが、50:10:39.4:1.2のモル比で構成されてなる共重合体である。 The theoretical value obtained from the amount of raw materials used for the polymer compound P1 is that the structural unit derived from the compound CM7, the structural unit derived from the compound CM5, the structural unit derived from the compound CM12, and the compound CM10 The derived structural unit is a copolymer having a molar ratio of 50: 10: 39.4: 1.2.
 <実施例2> 高分子化合物P2の合成
 (工程1)反応容器内を不活性ガス雰囲気とした後、化合物CM1(0.2655g)、化合物CM2(0.6009g)、化合物CM3(0.1675g)、化合物CM12(0.9919g)、化合物CM11(0.1669g)、ジクロロビス(トリス-o‐メトキシフェニルホスフィン)パラジウム(1.32mg)及びトルエン(31mL)を加え、90℃に加熱した。
 (工程2)反応液に、16重量%水酸化テトラブチルアンモニウム水溶液(20.7g)を滴下し、6時間還流させた。
 (工程3)反応後、そこに、フェニルボロン酸(73.2mg)及びジクロロビス(トリス-o‐メトキシフェニルホスフィン)パラジウム(1.32mg)を加え、14.5時間還流させた。
 (工程4)その後、冷却後、得られた反応液を、10重量%塩酸水溶液で2回、3重量%アンモニア水溶液で2回、水で2回洗浄し、得られた溶液をメタノールに滴下したところ、沈澱が生じた。得られた沈殿物をトルエンに溶解させ、アルミナカラム、シリカゲルカラムの順番で通すことにより精製した。得られた溶液をメタノールに滴下し、撹拌した後、得られた沈殿物をろ取し、乾燥させることにより、高分子化合物P2を1.27g得た。高分子化合物P2のポリスチレン換算の数平均分子量は4.7×104であり、ポリスチレン換算の重量平均分子量は2.6×105であった。
<Example 2> Synthesis of polymer compound P2 (Step 1) After making the inside of the reaction vessel an inert gas atmosphere, Compound CM1 (0.2655 g), Compound CM2 (0.6009 g), Compound CM3 (0.1675 g) Compound CM12 (0.9919 g), Compound CM11 (0.1669 g), dichlorobis (tris-o-methoxyphenylphosphine) palladium (1.32 mg) and toluene (31 mL) were added, and the mixture was heated to 90 ° C.
(Step 2) A 16 wt% tetrabutylammonium hydroxide aqueous solution (20.7 g) was added dropwise to the reaction solution, and the mixture was refluxed for 6 hours.
(Step 3) After the reaction, phenylboronic acid (73.2 mg) and dichlorobis (tris-o-methoxyphenylphosphine) palladium (1.32 mg) were added thereto and refluxed for 14.5 hours.
(Step 4) Then, after cooling, the obtained reaction solution was washed twice with a 10 wt% aqueous hydrochloric acid solution, twice with a 3 wt% aqueous ammonia solution and twice with water, and the obtained solution was added dropwise to methanol. However, precipitation occurred. The obtained precipitate was dissolved in toluene and purified by passing through an alumina column and a silica gel column in this order. The obtained solution was added dropwise to methanol and stirred, and then the resulting precipitate was collected by filtration and dried to obtain 1.27 g of the polymer compound P2. The polymer compound P2 had a polystyrene-equivalent number average molecular weight of 4.7 × 10 4 and a polystyrene-equivalent weight average molecular weight of 2.6 × 10 5 .
 高分子化合物P2は、仕込み原料の量から求めた理論値では、化合物CM1から誘導される構成単位と、化合物CM2から誘導される構成単位と、化合物CM3から誘導される構成単位と、化合物CM12から誘導される構成単位と、化合物CM11から誘導される構成単位とが、10:30:10:47:3のモル比で構成されてなる共重合体である。 The theoretical value obtained from the amount of the raw material used for the polymer compound P2 is that the structural unit derived from the compound CM1, the structural unit derived from the compound CM2, the structural unit derived from the compound CM3, and the compound CM12 It is a copolymer in which the structural unit derived and the structural unit derived from the compound CM11 are configured in a molar ratio of 10: 30: 10: 47: 3.
 <実施例3> 高分子化合物P3の合成
 実施例2における(工程1)を、「反応容器内を不活性ガス雰囲気とした後、化合物CM1(0.1775g)、化合物CM2(0.4006g)、化合物CM3(0.1116g)、化合物CM13(1.2146g)、化合物CM11(0.1113g)、ジクロロビス(トリス-o‐メトキシフェニルホスフィン)パラジウム(2.64mg)及びトルエン(32mL)を加え、90℃に加熱した。」、(工程2)を、「反応液に、16重量%水酸化テトラエチルアンモニウム水溶液(21.3g)を滴下し、8時間還流させた。」、(工程3)を、「反応後、そこに、フェニルボロン酸(48.8mg)及びジクロロビス(トリス-o‐メトキシフェニルホスフィン)パラジウム(0.88mg)を加え、14.5時間還流させた。」とする以外は、実施例2と同様にすることで、高分子化合物P3を1.34g得た。高分子化合物P3のMnは3.6×104であり、Mwは1.3×105であった。
<Example 3> Synthesis of polymer compound P3 (Step 1) in Example 2 was carried out as follows: "After making the inside of the reaction vessel an inert gas atmosphere, compound CM1 (0.1775 g), compound CM2 (0.4006 g), Compound CM3 (0.1116 g), Compound CM13 (1.2146 g), Compound CM11 (0.1113 g), dichlorobis (tris-o-methoxyphenylphosphine) palladium (2.64 mg) and toluene (32 mL) were added, and 90 ° C. ”(Step 2)”, “16 wt% tetraethylammonium hydroxide aqueous solution (21.3 g) was added dropwise to the reaction solution and refluxed for 8 hours”, (step 3). Later, there was phenylboronic acid (48.8 mg) and dichlorobis (tris-o-methoxyphenylphosphine) palladium (0.88 m). ) Was added, except that it was refluxed for 14.5 hours. "By the same manner as in Example 2, to give 1.34g of the polymer compound P3. The Mn of the polymer compound P3 was 3.6 × 10 4 , and the Mw was 1.3 × 10 5 .
 高分子化合物P3は、仕込み原料の量から求めた理論値では、化合物CM1から誘導される構成単位と、化合物CM2から誘導される構成単位と、化合物CM3から誘導される構成単位と、化合物CM13から誘導される構成単位と、化合物CM11から誘導される構成単位とが、10:30:10:47:3のモル比で構成されてなる共重合体である。 The theoretical value obtained from the amount of raw materials used for the polymer compound P3 is that the structural unit derived from the compound CM1, the structural unit derived from the compound CM2, the structural unit derived from the compound CM3, and the compound CM13 It is a copolymer in which the structural unit derived and the structural unit derived from the compound CM11 are configured in a molar ratio of 10: 30: 10: 47: 3.
 <実施例4> 高分子化合物P4の合成
 実施例2における(工程1)を、「反応容器内を不活性ガス雰囲気とした後、化合物CM1(0.2594g)、化合物CM2(0.6009g)、化合物CM3(0.1675g)、化合物CM14(0.8851g)、化合物CM11(0.1669g)、ジクロロビス(トリス-o‐メトキシフェニルホスフィン)パラジウム(1.32mg)及びトルエン(29mL)を加え、90℃に加熱した。」、(工程2)を、「反応液に、16重量%水酸化テトラエチルアンモニウム水溶液(19.2g)を滴下し、4時間還流させた。」とする以外は、実施例2と同様にすることで、高分子化合物P4を1.20g得た。高分子化合物P4のMnは5.3×104であり、Mwは4.1×105であった。
<Example 4> Synthesis of polymer compound P4 (Step 1) in Example 2 was carried out by replacing "the reaction vessel with an inert gas atmosphere, then compound CM1 (0.2594 g), compound CM2 (0.6009 g), Compound CM3 (0.1675 g), Compound CM14 (0.8851 g), Compound CM11 (0.1669 g), dichlorobis (tris-o-methoxyphenylphosphine) palladium (1.32 mg) and toluene (29 mL) were added, and 90 ° C. (Step 2) is the same as in Example 2 except that “16 wt% tetraethylammonium hydroxide aqueous solution (19.2 g) was added dropwise to the reaction solution and refluxed for 4 hours”. In the same manner, 1.20 g of polymer compound P4 was obtained. The Mn of the polymer compound P4 was 5.3 × 10 4 and the Mw was 4.1 × 10 5 .
 高分子化合物P4は、仕込み原料の量から求めた理論値では、化合物CM1から誘導される構成単位と、化合物CM2から誘導される構成単位と、化合物CM3から誘導される構成単位と、化合物CM14から誘導される構成単位と、化合物CM11から誘導される構成単位とが、10:30:10:47:3のモル比で構成されてなる共重合体である。 The theoretical value obtained from the amount of raw materials used for the polymer compound P4 is that the structural unit derived from the compound CM1, the structural unit derived from the compound CM2, the structural unit derived from the compound CM3, and the compound CM14 It is a copolymer in which the structural unit derived and the structural unit derived from the compound CM11 are configured in a molar ratio of 10: 30: 10: 47: 3.
 <実施例5> 高分子化合物P5の合成
 実施例2における(工程1)を、「反応容器内を不活性ガス雰囲気とした後、化合物CM1(0.2252g)、化合物CM2(0.5007g)、化合物CM3(0.1396g)、化合物CM15(1.0202g)、化合物CM11(0.1391g)、ジクロロビス(トリス-o‐メトキシフェニルホスフィン)パラジウム(3.30mg)及びトルエン(29mL)を加え、90℃に加熱した。」、
(工程2)を、「反応液に、16重量%水酸化テトラエチルアンモニウム水溶液(18.3g)を滴下し、8時間還流させた。」,(工程3)を、「反応後、そこに、フェニルボロン酸(61.0mg)及びジクロロビス(トリス-o‐メトキシフェニルホスフィン)パラジウム(1.10mg)を加え、14.5時間還流させた。」とする以外は、実施例2と同様にすることで、高分子化合物P5を1.11g得た。高分子化合物P5のMnは3.1×104であり、Mwは9.2×104であった。
<Example 5> Synthesis of polymer compound P5 (Step 1) in Example 2 was carried out as follows: "After making the inside of the reaction vessel an inert gas atmosphere, compound CM1 (0.2252 g), compound CM2 (0.5007 g), Compound CM3 (0.1396 g), Compound CM15 (1.0202 g), Compound CM11 (0.1391 g), dichlorobis (tris-o-methoxyphenylphosphine) palladium (3.30 mg) and toluene (29 mL) were added, and 90 ° C. Heated to "
(Step 2) was changed to “16% by weight tetraethylammonium hydroxide aqueous solution (18.3 g) was added dropwise to the reaction solution and refluxed for 8 hours.”, (Step 3) Boronic acid (61.0 mg) and dichlorobis (tris-o-methoxyphenylphosphine) palladium (1.10 mg) were added and refluxed for 14.5 hours. 1.11 g of polymer compound P5 was obtained. The Mn of the polymer compound P5 was 3.1 × 10 4 , and the Mw was 9.2 × 10 4 .
 高分子化合物P5は、仕込み原料の量から求めた理論値では、化合物CM1から誘導される構成単位と、化合物CM2から誘導される構成単位と、化合物CM3から誘導される構成単位と、化合物CM15から誘導される構成単位と、化合物CM11から誘導される構成単位とが、10:30:10:47:3のモル比で構成されてなる共重合体である。 The theoretical value obtained from the amount of the raw material used for the polymer compound P5 is that the structural unit derived from the compound CM1, the structural unit derived from the compound CM2, the structural unit derived from the compound CM3, and the compound CM15 It is a copolymer in which the structural unit derived and the structural unit derived from the compound CM11 are configured in a molar ratio of 10: 30: 10: 47: 3.
 <実施例6> 高分子化合物P6の合成
 実施例2における(工程1)を、「反応容器内を不活性ガス雰囲気とした後、化合物CM1(0.2593g)、化合物CM2(0.6009g)、化合物CM3(0.1676g)、化合物CM16(0.9438g)、化合物CM11(0.1669g)、ジクロロビス(トリス-o‐メトキシフェニルホスフィン)パラジウム(1.32mg)及びトルエン(30mL)を加え、90℃に加熱した。」、(工程2)を、「反応液に、16重量%水酸化テトラエチルアンモニウム水溶液(20.0g)を滴下し、4時間還流させた。」とする以外は、実施例2と同様にすることで、高分子化合物P6を1.22g得た。高分子化合物P6のMnは6.5×104であり、Mwは4.9×105であった。
<Example 6> Synthesis of polymer compound P6 (Step 1) in Example 2 was carried out as follows: "After making the inside of the reaction vessel an inert gas atmosphere, Compound CM1 (0.2593 g), Compound CM2 (0.6009 g), Compound CM3 (0.1676 g), Compound CM16 (0.9438 g), Compound CM11 (0.1669 g), dichlorobis (tris-o-methoxyphenylphosphine) palladium (1.32 mg) and toluene (30 mL) were added, and 90 ° C. (Step 2) was changed to “Example 2” except that “16 wt% aqueous tetraethylammonium hydroxide solution (20.0 g) was added dropwise to the reaction solution and refluxed for 4 hours”. In the same manner, 1.22 g of the polymer compound P6 was obtained. The Mn of the polymer compound P6 was 6.5 × 10 4 , and the Mw was 4.9 × 10 5 .
 高分子化合物P6は、仕込み原料の量から求めた理論値では、化合物CM1から誘導される構成単位と、化合物CM2から誘導される構成単位と、化合物CM3から誘導される構成単位と、化合物CM16から誘導される構成単位と、化合物CM11から誘導される構成単位とが、10:30:10:47:3のモル比で構成されてなる共重合体である。 The theoretical value obtained from the amount of raw materials used for the polymer compound P6 is that the structural unit derived from the compound CM1, the structural unit derived from the compound CM2, the structural unit derived from the compound CM3, and the compound CM16 It is a copolymer in which the structural unit derived and the structural unit derived from the compound CM11 are configured in a molar ratio of 10: 30: 10: 47: 3.
 <合成例13> 高分子化合物P7の合成
 高分子化合物P7は、化合物CM7、化合物CM5、化合物CM17、化合物CM10を用いて、国際公開第00/0053656号記載の方法に準じてSuzukiカップリング反応により合成した。高分子化合物P7のポリスチレン換算の数平均分子量は3.5×104であり、ポリスチレン換算の重量平均分子量は1.4×105であった。
<Synthesis Example 13> Synthesis of Polymer Compound P7 Polymer compound P7 was synthesized by Suzuki coupling reaction using Compound CM7, Compound CM5, Compound CM17, and Compound CM10 according to the method described in WO 00/0053656. Synthesized. The polymer compound P7 had a polystyrene equivalent number average molecular weight of 3.5 × 10 4 and a polystyrene equivalent weight average molecular weight of 1.4 × 10 5 .
 高分子化合物P7は、仕込み原料の量から求めた理論値では、化合物CM7から誘導される構成単位と、化合物CM5から誘導される構成単位と、化合物CM17から誘導される構成単位と、化合物CM10から誘導される構成単位とが、50:10:39.4:1.2のモル比で構成されてなる共重合体である。 The theoretical value obtained from the amount of the raw material used for the polymer compound P7 is that the structural unit derived from the compound CM7, the structural unit derived from the compound CM5, the structural unit derived from the compound CM17, and the compound CM10 The derived structural unit is a copolymer having a molar ratio of 50: 10: 39.4: 1.2.
 <合成例14> 高分子化合物P8の合成
 実施例2における(工程1)を、「反応容器内を不活性ガス雰囲気とした後、化合物CM1(0.1989g)、化合物CM2(0.4607g)、化合物CM3(0.1284g)、化合物CM17(1.1927g)、化合物CM11(0.1280g)、ジクロロビス(トリス-o‐メトキシフェニルホスフィン)パラジウム(1.01mg)及びトルエン(32mL)を加え、90℃に加熱した。」、
(工程2)を、「反応液に、16重量%水酸化テトラブチルアンモニウム水溶液(21.5g)を滴下し、4時間還流させた。」、(工程3)を、「反応後、そこに、フェニルボロン酸(56.1mg)及びジクロロビス(トリス-o‐メトキシフェニルホスフィン)パラジウム(1.01mg)を加え、14.5時間還流させた。」とする以外は、実施例2と同様にすることで、高分子化合物8を1.35g得た。高分子化合物8のMnは4.7×104であり、Mwは3.2×105であった。
<Synthesis Example 14> Synthesis of Polymer Compound P8 (Step 1) in Example 2 was carried out as follows: “After the inside of the reaction vessel was set to an inert gas atmosphere, Compound CM1 (0.1989 g), Compound CM2 (0.4607 g), Compound CM3 (0.1284 g), Compound CM17 (1.1927 g), Compound CM11 (0.1280 g), dichlorobis (tris-o-methoxyphenylphosphine) palladium (1.01 mg) and toluene (32 mL) were added, and 90 ° C. Heated to "
(Step 2) was changed to “16% by weight tetrabutylammonium hydroxide aqueous solution (21.5 g) was added dropwise to the reaction solution and refluxed for 4 hours”. Phenylboronic acid (56.1 mg) and dichlorobis (tris-o-methoxyphenylphosphine) palladium (1.01 mg) were added and refluxed for 14.5 hours. ” Thus, 1.35 g of the polymer compound 8 was obtained. The Mn of the polymer compound 8 was 4.7 × 10 4 and the Mw was 3.2 × 10 5 .
 高分子化合物8は、仕込み原料の量から求めた理論値では、化合物CM1から誘導される構成単位と、化合物CM2から誘導される構成単位と、化合物CM3から誘導される構成単位と、化合物CM17から誘導される構成単位と、化合物CM11から誘導される構成単位とが、10:30:10:47:3のモル比で構成されてなる共重合体である。 From the theoretical values obtained from the amounts of raw materials used, the polymer compound 8 is derived from the structural unit derived from the compound CM1, the structural unit derived from the compound CM2, the structural unit derived from the compound CM3, and the compound CM17. It is a copolymer in which the structural unit derived and the structural unit derived from the compound CM11 are configured in a molar ratio of 10: 30: 10: 47: 3.
 <合成例15> 高分子化合物P9の合成
 高分子化合物P9は、化合物M1、化合物CM6、化合物CM9を用いて、国際公開第00/0053656号記載の方法に準じてSuzukiカップリング反応により合成した。化合物M1は、東京化成工業株式会社より購入したものを、再結晶により精製した後に用いた。
<Synthesis Example 15> Synthesis of Polymer Compound P9 Polymer compound P9 was synthesized by Suzuki coupling reaction using Compound M1, Compound CM6, and Compound CM9 according to the method described in International Publication No. 00/0053656. Compound M1 was purchased from Tokyo Chemical Industry Co., Ltd. and purified after recrystallization.
Figure JPOXMLDOC01-appb-C000170
Figure JPOXMLDOC01-appb-C000170
 高分子化合物P9のポリスチレン換算の数平均分子量は1.2×104であり、ポリスチレン換算の重量平均分子量は1.8×105であった。 The polymer compound P9 had a polystyrene-equivalent number average molecular weight of 1.2 × 10 4 and a polystyrene-equivalent weight average molecular weight of 1.8 × 10 5 .
 高分子化合物P9は、仕込み原料の量から求めた理論値では、化合物M1から誘導される構成単位と、化合物CM6から誘導される構成単位と、化合物CM9から誘導される構成単位とが、16:50:34のモル比で構成されてなる共重合体である。 The theoretical value obtained from the amount of the raw material used for polymer compound P9 was 16: a structural unit derived from compound M1, a structural unit derived from compound CM6, and a structural unit derived from compound CM9. It is a copolymer formed with a molar ratio of 50:34.
 <合成例16> 高分子化合物P10の合成
 高分子化合物P10は、化合物CM7、化合物CM4、化合物CM8を用いて、国際公開第2015/008851号記載の方法に従ってSuzukiカップリング反応により合成した。高分子化合物P10のポリスチレン換算の数平均分子量は8.8×104であり、ポリスチレン換算の重量平均分子量は2.1×105であった。
<Synthesis Example 16> Synthesis of Polymer Compound P10 Polymer compound P10 was synthesized by Suzuki coupling reaction using Compound CM7, Compound CM4, and Compound CM8 according to the method described in International Publication No. 2015/008851. The number average molecular weight in terms of polystyrene of the polymer compound P10 was 8.8 × 10 4 , and the weight average molecular weight in terms of polystyrene was 2.1 × 10 5 .
 高分子化合物P10は、仕込み原料の量から求めた理論値では、化合物CM7から誘導される構成単位と、化合物CM4から誘導される構成単位と、化合物CM8から誘導される構成単位とが、50:26:24のモル比で構成されてなる共重合体である。 The theoretical value obtained from the amount of the raw material used for the polymer compound P10 is 50: a structural unit derived from the compound CM7, a structural unit derived from the compound CM4, and a structural unit derived from the compound CM8. It is a copolymer composed of a molar ratio of 26:24.
 <合成例17> 高分子化合物P12の合成
 (工程1)反応容器内を不活性ガス雰囲気とした後、化合物CM18(9.23g)、化合物CM7(4.58g)、ジクロロビス(トリス-o-メトキシフェニルホスフィン)パラジウム(8.6mg)及びトルエン(175mL)を加え、105℃に加熱した。
 (工程2)その後、そこに、12重量%炭酸ナトリウム水溶液(40.3mL)を滴下し、29時間還流させた。
 (工程3)その後、そこに、フェニルボロン酸(0.47g)及びジクロロビス(トリス-o-メトキシフェニルホスフィン)パラジウム(8.7mg)を加え、14時間還流させた。
 (工程4)その後、そこに、ジエチルジチアカルバミン酸ナトリウム水溶液を加え、80℃で2時間撹拌した。得られた反応液を冷却後、メタノールに滴下したところ、沈澱が生じた。沈殿物をろ取し、メタノール、水で洗浄後、乾燥させることにより得た固体をクロロホルムに溶解させ、予めクロロホルムを通液したアルミナカラム及びシリカゲルカラムに順番に通すことにより精製した。得られた精製液をメタノールに滴下し、撹拌したところ、沈殿が生じた。沈殿物をろ取し、乾燥させることにより、高分子化合物P11(7.15g)を得た。高分子化合物P11のMnは3.2×104、Mwは6.0×104であった。
<Synthesis Example 17> Synthesis of polymer compound P12 (Step 1) After making the inside of the reaction vessel an inert gas atmosphere, Compound CM18 (9.23 g), Compound CM7 (4.58 g), dichlorobis (tris-o-methoxy) Phenylphosphine) palladium (8.6 mg) and toluene (175 mL) were added and heated to 105 ° C.
(Step 2) Thereafter, a 12% by weight aqueous sodium carbonate solution (40.3 mL) was added dropwise thereto and refluxed for 29 hours.
(Step 3) Thereafter, phenylboronic acid (0.47 g) and dichlorobis (tris-o-methoxyphenylphosphine) palladium (8.7 mg) were added thereto and refluxed for 14 hours.
(Step 4) Thereafter, an aqueous sodium diethyldithiacarbamate solution was added thereto, and the mixture was stirred at 80 ° C. for 2 hours. When the obtained reaction solution was cooled and dropped into methanol, precipitation occurred. The precipitate was collected by filtration, washed with methanol and water, and then dried, and the solid obtained was dissolved in chloroform and purified by passing through an alumina column and a silica gel column through which chloroform was passed in advance in this order. When the obtained purified solution was added dropwise to methanol and stirred, precipitation occurred. The precipitate was collected by filtration and dried to obtain polymer compound P11 (7.15 g). The polymer compound P11 had Mn of 3.2 × 10 4 and Mw of 6.0 × 10 4 .
 高分子化合物P11は、仕込み原料の量から求めた理論値では、化合物CM18から誘導される構成単位と、化合物CM7から誘導される構成単位とが、50:50のモル比で構成されてなる共重合体である。 The polymer compound P11 has a theoretical value determined from the amount of raw materials charged, and is a co-polymer composed of a structural unit derived from the compound CM18 and a structural unit derived from the compound CM7 in a molar ratio of 50:50. It is a polymer.
 (工程5)反応容器内をアルゴンガス雰囲気下とした後、高分子化合物P11(3.1g)、テトラヒドロフラン(130mL)、メタノール(66mL)、水酸化セシウム一水和物(2.1g)及び水(12.5mL)を加え、60℃で3時間撹拌した。
 (工程6)その後、そこに、メタノール(220mL)を加え、2時間攪拌した。得られた反応混合物を濃縮した後、イソプロピルアルコールに滴下し、攪拌したところ、沈殿が生じた。沈殿物をろ取し、乾燥させることにより、高分子化合物P12(3.5g)を得た。高分子化合物P12の1H-NMR解析により、高分子化合物P11中のエチルエステル部位のシグナルが消失し、反応が完結したことを確認した。
(Step 5) After making the inside of the reaction vessel under an argon gas atmosphere, polymer compound P11 (3.1 g), tetrahydrofuran (130 mL), methanol (66 mL), cesium hydroxide monohydrate (2.1 g) and water (12.5 mL) was added and stirred at 60 ° C. for 3 hours.
(Step 6) Then, methanol (220 mL) was added thereto and stirred for 2 hours. The obtained reaction mixture was concentrated and then added dropwise to isopropyl alcohol, followed by stirring. As a result, precipitation occurred. The precipitate was collected by filtration and dried to obtain polymer compound P12 (3.5 g). By 1 H-NMR analysis of the polymer compound P12, it was confirmed that the signal at the ethyl ester site in the polymer compound P11 disappeared and the reaction was completed.
 高分子化合物P12は、高分子化合物P11の仕込み原料の量から求めた理論値では、下記式で表される構成単位と、化合物CM7から誘導される構成単位とが、50:50のモル比で構成されてなる共重合体である。 The theoretical value calculated from the amount of the raw material of the polymer compound P11 is that the polymer compound P12 has a molar ratio of 50:50 between the structural unit represented by the following formula and the structural unit derived from the compound CM7. It is a copolymer formed.
Figure JPOXMLDOC01-appb-C000171
Figure JPOXMLDOC01-appb-C000171
 <実施例7> 高分子化合物P13の合成
 単量体として化合物CM27、化合物CM3、化合物CM12及び化合物CM11を用いて、実施例1に準じて、高分子化合物P13を1.46g得た。高分子化合物P13のポリスチレン換算の数平均分子量は5.1×10であり、ポリスチレン換算の重量平均分子量は3.3×10であった。
Example 7 Synthesis of Polymer Compound P13 1.46 g of polymer compound P13 was obtained according to Example 1 using Compound CM27, Compound CM3, Compound CM12 and Compound CM11 as monomers. The polymer compound P13 had a polystyrene-equivalent number average molecular weight of 5.1 × 10 4 and a polystyrene-equivalent weight average molecular weight of 3.3 × 10 5 .
 高分子化合物P13は、仕込み原料の量から求めた理論値では、化合物CM27から誘導される構成単位と、化合物CM3から誘導される構成単位と、化合物CM12から誘導される構成単位と、化合物CM11から誘導される構成単位とが、40:10:47:3のモル比で構成されてなる共重合体である。 The theoretical value obtained from the amount of raw materials used for the polymer compound P13 is that the structural unit derived from the compound CM27, the structural unit derived from the compound CM3, the structural unit derived from the compound CM12, and the compound CM11 The derived structural unit is a copolymer composed of a molar ratio of 40: 10: 47: 3.
 <実施例8> 高分子化合物P14の合成
 単量体として化合物CM1、化合物CM25、化合物CM26、化合物CM12、化合物CM11を用いて実施例1に準じて、高分子化合物P14を1.11g得た。高分子化合物P14のポリスチレン換算の数平均分子量は5.5×10であり、ポリスチレン換算の重量平均分子量は4.9×10であった。
<Example 8> Synthesis of polymer compound P14 1.11 g of polymer compound P14 was obtained according to Example 1 using Compound CM1, Compound CM25, Compound CM26, Compound CM12, and Compound CM11 as monomers. The number average molecular weight of polystyrene conversion of the high molecular compound P14 was 5.5 * 10 < 4 >, and the weight average molecular weight of polystyrene conversion was 4.9 * 10 < 5 >.
 高分子化合物P14は、仕込み原料の量から求めた理論値では、化合物CM1から誘導される構成単位と、化合物CM25から誘導される構成単位と、化合物CM26から誘導される構成単位と、化合物CM12から誘導される構成単位と、化合物CM11から誘導される構成単位とが、10:30:10:47:3のモル比で構成されてなる共重合体である。 The theoretical value obtained from the amount of charged raw materials for polymer compound P14 is that the structural unit derived from compound CM1, the structural unit derived from compound CM25, the structural unit derived from compound CM26, and the compound CM12 It is a copolymer in which the structural unit derived and the structural unit derived from the compound CM11 are configured in a molar ratio of 10: 30: 10: 47: 3.
 <実施例9> 高分子化合物P15の合成
 単量体として化合物CM28、化合物CM3、化合物CM12、化合物CM29を用いて実施例1に準じて、高分子化合物P15を1.09g得た。高分子化合物P15のポリスチレン換算の数平均分子量は4.3×10であり、ポリスチレン換算の重量平均分子量は3.5×10であった。
<Example 9> Synthesis of polymer compound P15 According to Example 1, 1.09 g of polymer compound P15 was obtained using Compound CM28, Compound CM3, Compound CM12, and Compound CM29 as monomers. The polymer compound P15 had a polystyrene-equivalent number average molecular weight of 4.3 × 10 4 and a polystyrene-equivalent weight average molecular weight of 3.5 × 10 5 .
 高分子化合物P15は、仕込み原料の量から求めた理論値では、化合物CM28から誘導される構成単位と、化合物CM3から誘導される構成単位と、化合物CM12から誘導される構成単位と、化合物CM29から誘導される構成単位とが、40:10:47:3のモル比で構成されてなる共重合体である。 The theoretical value obtained from the amount of the raw material used for the polymer compound P15 is that the structural unit derived from the compound CM28, the structural unit derived from the compound CM3, the structural unit derived from the compound CM12, and the compound CM29 The derived structural unit is a copolymer composed of a molar ratio of 40: 10: 47: 3.
 <実施例10> 高分子化合物P16の合成
 単量体として化合物CM28、化合物CM3、化合物CM12、化合物CM11を用いて実施例1に準じて、高分子化合物P16を5.2g得た。高分子化合物P16のポリスチレン換算の数平均分子量は5.3×10であり、ポリスチレン換算の重量平均分子量は3.1×10であった。
<Example 10> Synthesis of polymer compound P16 According to Example 1, 5.2 g of polymer compound P16 was obtained using Compound CM28, Compound CM3, Compound CM12, and Compound CM11 as monomers. The polymer compound P16 had a polystyrene-equivalent number average molecular weight of 5.3 × 10 4 and a polystyrene-equivalent weight average molecular weight of 3.1 × 10 5 .
 高分子化合物P16は、仕込み原料の量から求めた理論値では、化合物CM28から誘導される構成単位と、化合物CM3から誘導される構成単位と、化合物CM12から誘導される構成単位と、化合物CM11から誘導される構成単位とが、40:10:47:3のモル比で構成されてなる共重合体である。 The theoretical value obtained from the amount of the raw material used for the polymer compound P16 is that the structural unit derived from the compound CM28, the structural unit derived from the compound CM3, the structural unit derived from the compound CM12, and the compound CM11 The derived structural unit is a copolymer composed of a molar ratio of 40: 10: 47: 3.
 <合成例18> 高分子化合物P17の合成
 単量体として化合物CM28、化合物CM3、化合物CM12を用いて実施例1に準じて、高分子化合物P17を1.22g得た。高分子化合物P17のポリスチレン換算の数平均分子量は6.7×10であり、ポリスチレン換算の重量平均分子量は4.4×10であった。
<Synthesis Example 18> Synthesis of Polymer Compound P17 According to Example 1, 1.22 g of polymer compound P17 was obtained using Compound CM28, Compound CM3, and Compound CM12 as monomers. The polymer compound P17 had a polystyrene-equivalent number average molecular weight of 6.7 × 10 4 and a polystyrene-equivalent weight average molecular weight of 4.4 × 10 5 .
 高分子化合物P17は、仕込み原料の量から求めた理論値では、化合物CM28から誘導される構成単位と、化合物CM3から誘導される構成単位と、化合物CM12から誘導される構成単位とが、40:10:50のモル比で構成されてなる共重合体である。 The theoretical value obtained from the amount of the raw material for the polymer compound P17 is 40: a structural unit derived from the compound CM28, a structural unit derived from the compound CM3, and a structural unit derived from the compound CM12. It is a copolymer formed with a molar ratio of 10:50.
 <合成例19> 高分子化合物P18の合成
 単量体として化合物CM27、化合物CM3、化合物CM17、化合物CM11を用いて実施例1に準じて、高分子化合物P18を1.48g得た。高分子化合物P18のポリスチレン換算の数平均分子量は4.4×10であり、ポリスチレン換算の重量平均分子量は2.8×10であった。
<Synthesis Example 19> Synthesis of Polymer Compound P18 1.48 g of Polymer Compound P18 was obtained according to Example 1 using Compound CM27, Compound CM3, Compound CM17, and Compound CM11 as monomers. The number average molecular weight of polystyrene conversion of the high molecular compound P18 was 4.4 * 10 < 4 >, and the weight average molecular weight of polystyrene conversion was 2.8 * 10 < 5 >.
 高分子化合物P18は、仕込み原料の量から求めた理論値では、化合物CM27から誘導される構成単位と、化合物CM3から誘導される構成単位と、化合物CM17から誘導される構成単位と、化合物CM11から誘導される構成単位とが、40:10:47:3のモル比で構成されてなる共重合体である。 The theoretical value obtained from the amount of the raw material used for the polymer compound P18 is that the structural unit derived from the compound CM27, the structural unit derived from the compound CM3, the structural unit derived from the compound CM17, and the compound CM11 The derived structural unit is a copolymer composed of a molar ratio of 40: 10: 47: 3.
 <合成例20> 高分子化合物P19の合成
 単量体として化合物CM1、化合物CM25、化合物CM26、化合物CM17、化合物CM11を用いて実施例1に準じて、高分子化合物P19を63.8g得た。高分子化合物P19のポリスチレン換算の数平均分子量は5.1×10であり、ポリスチレン換算の重量平均分子量は4.0×10であった。
<Synthesis Example 20> Synthesis of Polymer Compound P19 According to Example 1, 63.8 g of polymer compound P19 was obtained using Compound CM1, Compound CM25, Compound CM26, Compound CM17, and Compound CM11 as monomers. The polymer compound P19 had a polystyrene-equivalent number average molecular weight of 5.1 × 10 4 and a polystyrene-equivalent weight average molecular weight of 4.0 × 10 5 .
 高分子化合物P19は、仕込み原料の量から求めた理論値では、化合物CM1から誘導される構成単位と、化合物CM25から誘導される構成単位と、化合物CM26から誘導される構成単位と、化合物CM17から誘導される構成単位と、化合物CM11から誘導される構成単位とが、10:30:10:47:3のモル比で構成されてなる共重合体である。 The theoretical value obtained from the amount of charged raw material for polymer compound P19 is that the structural unit derived from compound CM1, the structural unit derived from compound CM25, the structural unit derived from compound CM26, and the compound CM17 It is a copolymer in which the structural unit derived and the structural unit derived from the compound CM11 are configured in a molar ratio of 10: 30: 10: 47: 3.
 <合成例21> 高分子化合物P20の合成
 単量体として化合物CM28、化合物CM3、化合物CM17、化合物CM29を用いて実施例1に準じて、高分子化合物P20を1.40g得た。高分子化合物P20のポリスチレン換算の数平均分子量は4.0×10であり、ポリスチレン換算の重量平均分子量は3.4×10であった。
<Synthesis Example 21> Synthesis of Polymer Compound P20 1.40 g of Polymer Compound P20 was obtained according to Example 1 using Compound CM28, Compound CM3, Compound CM17, and Compound CM29 as monomers. The polymer compound P20 had a polystyrene-equivalent number average molecular weight of 4.0 × 10 4 and a polystyrene-equivalent weight average molecular weight of 3.4 × 10 5 .
 高分子化合物P20は、仕込み原料の量から求めた理論値では、化合物CM28から誘導される構成単位と、化合物CM3から誘導される構成単位と、化合物CM17から誘導される構成単位と、化合物CM29から誘導される構成単位とが、40:10:47:3のモル比で構成されてなる共重合体である。 The theoretical value obtained from the amount of the raw material used for polymer compound P20 is that the structural unit derived from compound CM28, the structural unit derived from compound CM3, the structural unit derived from compound CM17, and the compound CM29 The derived structural unit is a copolymer composed of a molar ratio of 40: 10: 47: 3.
 <合成例22> 高分子化合物P21の合成
 単量体として化合物CM28、化合物CM3、化合物CM17用いて実施例1に準じて、高分子化合物P21を2.56g得た。高分子化合物P21のポリスチレン換算の数平均分子量は4.5×10であり、ポリスチレン換算の重量平均分子量は3.1×10であった。
<Synthesis Example 22> Synthesis of Polymer Compound P21 According to Example 1, 2.56 g of polymer compound P21 was obtained using Compound CM28, Compound CM3, and Compound CM17 as monomers. The polymer compound P21 had a polystyrene-equivalent number average molecular weight of 4.5 × 10 4 and a polystyrene-equivalent weight average molecular weight of 3.1 × 10 5 .
 高分子化合物P21は、仕込み原料の量から求めた理論値では、化合物CM28から誘導される構成単位と、化合物CM3から誘導される構成単位と、化合物CM17から誘導される構成単位とが、40:10:50のモル比で構成されてなる共重合体である。 The theoretical value obtained from the amount of raw materials for the polymer compound P21 is 40: a structural unit derived from the compound CM28, a structural unit derived from the compound CM3, and a structural unit derived from the compound CM17. It is a copolymer formed with a molar ratio of 10:50.
 <実施例D1> 発光素子D1の作製と評価
(陽極及び正孔注入層の形成)
 ガラス基板にスパッタ法により45nmの厚みでITO膜を付けることにより陽極を形成した。該陽極上に、正孔注入材料であるND-3202(日産化学工業株式会社製)をスピンコート法により35nmの厚さで成膜し、ホットプレート上で50℃、3分間加熱して溶媒を揮発させ、続けてホットプレート上で230℃、15分間加熱することにより正孔注入層を形成した。
<Example D1> Fabrication and evaluation of light-emitting element D1 (formation of anode and hole injection layer)
An anode was formed by attaching an ITO film with a thickness of 45 nm to the glass substrate by sputtering. On the anode, a hole injection material ND-3202 (manufactured by Nissan Chemical Industries, Ltd.) was formed into a film with a thickness of 35 nm by spin coating, and the solvent was heated on a hot plate at 50 ° C. for 3 minutes. The hole injection layer was formed by volatilizing and subsequently heating on a hot plate at 230 ° C. for 15 minutes.
(第2の発光層の形成)
 キシレンに、高分子化合物P1を0.7質量%の濃度で溶解させた。得られたキシレン溶液を用いて、正孔注入層の上にスピンコート法により20nmの厚さで成膜し、窒素ガス雰囲気下において、ホットプレート上で180℃、60分間加熱させることにより第2の発光層を形成した。
(Formation of second light emitting layer)
Polymer compound P1 was dissolved in xylene at a concentration of 0.7 mass%. The obtained xylene solution was used to form a film having a thickness of 20 nm on the hole injection layer by spin coating, and heated on a hot plate at 180 ° C. for 60 minutes in a nitrogen gas atmosphere. The light emitting layer was formed.
(第1の発光層の形成)
 トルエンに、高分子化合物P9、化合物CM19及び化合物CM20(高分子化合物P9/化合物CM19/化合物CM20=59質量%/40質量%/1質量%)を2質量%の濃度で溶解させた。得られたトルエン溶液を用いて、第2の発光層の上にスピンコート法により75nmの厚さで成膜し、窒素ガス雰囲気下において、130℃、10分間加熱させることにより第1の発光層を形成した。
(Formation of first light emitting layer)
Polymer compound P9, compound CM19 and compound CM20 (polymer compound P9 / compound CM19 / compound CM20 = 59 mass% / 40 mass% / 1 mass%) were dissolved in toluene at a concentration of 2 mass%. Using the obtained toluene solution, a film having a thickness of 75 nm was formed on the second light-emitting layer by spin coating, and the first light-emitting layer was heated at 130 ° C. for 10 minutes in a nitrogen gas atmosphere. Formed.
(陰極の形成)
 第1の発光層を形成した基板を蒸着機内において、1.0×10-4Pa以下にまで減圧した後、陰極として、電子輸送層の上にフッ化ナトリウムを約4nm、次いで、フッ化ナトリウム層の上にアルミニウムを約80nm蒸着した。蒸着後、ガラス基板を用いて封止することにより、発光素子D1を作製した。
(Formation of cathode)
The substrate on which the first light emitting layer is formed is depressurized to 1.0 × 10 −4 Pa or less in a vapor deposition machine, and then, as a cathode, sodium fluoride is about 4 nm on the electron transport layer, and then sodium fluoride. About 80 nm of aluminum was deposited on the layer. After vapor deposition, the light emitting element D1 was produced by sealing using a glass substrate.
(発光素子の評価)
 発光素子D1に電圧を印加することによりEL発光が観測された。1000cd/m2における外部量子効率は15.1%であった。結果を表4に示す。
(Evaluation of light emitting element)
EL light emission was observed by applying a voltage to the light emitting element D1. The external quantum efficiency at 1000 cd / m 2 was 15.1%. The results are shown in Table 4.
 <実施例D2> 発光素子D2の作製及び評価
 実施例D1の(第1の発光層の形成)において、高分子化合物P9、化合物CM19及び化合物CM20の比率が、高分子化合物P9/化合物CM19/化合物CM20=64質量%/35質量%/1質量%である組成物を用いた以外は、実施例D1と同様にして、発光素子D2を作製し、電圧を印加することによりEL発光が観測された。1000cd/m2における外部量子効率は15.8%であった。結果を表4に示す。
<Example D2> Production and Evaluation of Light-Emitting Element D2 In Example D1 (Formation of First Light-Emitting Layer), the ratio of polymer compound P9, compound CM19, and compound CM20 was such that polymer compound P9 / compound CM19 / compound. Except for using the composition of CM20 = 64% by mass / 35% by mass / 1% by mass, a light emitting device D2 was produced in the same manner as in Example D1, and EL emission was observed by applying a voltage. . The external quantum efficiency at 1000 cd / m 2 was 15.8%. The results are shown in Table 4.
 <実施例D3> 発光素子D3の作製及び評価
 実施例D1の(第1の発光層の形成)において、高分子化合物P9の代わりに高分子化合物P10を用いた以外は、実施例D1と同様にして、発光素子D3を作製し、電圧を印加することによりEL発光が観測された。1000cd/m2における外部量子効率は15.4%であった。結果を表4に示す。
<Example D3> Production and evaluation of light-emitting device D3 In Example D1 (formation of the first light-emitting layer), except that polymer compound P10 was used instead of polymer compound P9, the same procedure as in Example D1 was performed. Thus, a light emitting element D3 was manufactured, and EL light emission was observed by applying a voltage. The external quantum efficiency at 1000 cd / m 2 was 15.4%. The results are shown in Table 4.
 <実施例D4> 発光素子D4の作製及び評価
 実施例D2の(第1の発光層の形成)において、高分子化合物P9の代わりに高分子化合物P10を用いた以外は、実施例D2と同様にして、発光素子D4を作製し、電圧を印加することによりEL発光が観測された。1000cd/m2における外部量子効率は16.5%であった。結果を表4に示す。
<Example D4> Production and evaluation of light-emitting element D4 In Example D2 (formation of the first light-emitting layer), except that polymer compound P10 was used instead of polymer compound P9, the same as Example D2 Thus, a light emitting element D4 was manufactured, and EL light emission was observed by applying a voltage. The external quantum efficiency at 1000 cd / m 2 was 16.5%. The results are shown in Table 4.
 <実施例D5> 発光素子D5の作製及び評価
 実施例D1の(第1の発光層の形成)において、化合物CM19の代わりに化合物CM22を用いた以外は、実施例D1と同様にして、発光素子D5作製し、電圧を印加することによりEL発光が観測された。1000cd/m2における外部量子効率は16.3%であった。結果を表4に示す。
<Example D5> Production and Evaluation of Light-Emitting Element D5 A light-emitting element was produced in the same manner as in Example D1, except that Compound CM22 was used instead of Compound CM19 in Example D1 (Formation of First Light-Emitting Layer). EL emission was observed by producing D5 and applying a voltage. The external quantum efficiency at 1000 cd / m 2 was 16.3%. The results are shown in Table 4.
 <比較例CD1> 発光素子CD1の作製及び評価
 実施例D1の(第2の発光層の形成)において、高分子化合物P1に代えて、高分子化合物P7を用いた以外は、実施例D1と同様にして、発光素子CD1を作製し、電圧を印加することによりEL発光が観測された。1000cd/m2における外部量子効率は13.3%であった。結果を表4に示す。
<Comparative Example CD1> Production and Evaluation of Light-Emitting Element CD1 The same as Example D1 except that in Example D1 (formation of the second light-emitting layer), instead of the polymer compound P1, the polymer compound P7 was used. Then, a light emitting device CD1 was fabricated, and EL light emission was observed by applying a voltage. The external quantum efficiency at 1000 cd / m 2 was 13.3%. The results are shown in Table 4.
 <比較例CD2> 発光素子CD2の作製及び評価
 実施例D2の(第2の発光層の形成)において、高分子化合物P1に代えて、高分子化合物P7を用いた以外は、実施例D2と同様にして、発光素子CD2を作製し、電圧を印加することによりEL発光が観測された。1000cd/m2における外部量子効率は13.9%であった。結果を表4に示す。
<Comparative Example CD2> Fabrication and Evaluation of Light-Emitting Element CD2 In Example D2 (formation of second light-emitting layer), except that polymer compound P7 was used instead of polymer compound P1, the same as Example D2 Then, a light emitting device CD2 was fabricated, and EL light emission was observed by applying a voltage. The external quantum efficiency at 1000 cd / m 2 was 13.9%. The results are shown in Table 4.
Figure JPOXMLDOC01-appb-T000172
Figure JPOXMLDOC01-appb-T000172
 <実施例D6> 発光素子D6の作製と評価
(陽極及び正孔注入層の形成)
 ガラス基板にスパッタ法により45nmの厚みでITO膜を付けることにより陽極を形成した。該陽極上に、正孔注入材料であるND-3202(日産化学工業株式会社製)をスピンコート法により35nmの厚さで成膜し、ホットプレート上で50℃、3分間加熱して溶媒を揮発させ、続けてホットプレート上で230℃、15分間加熱することにより正孔注入層を形成した。
<Example D6> Fabrication and evaluation of light-emitting element D6 (formation of anode and hole injection layer)
An anode was formed by attaching an ITO film with a thickness of 45 nm to the glass substrate by sputtering. On the anode, a hole injection material ND-3202 (manufactured by Nissan Chemical Industries, Ltd.) was formed into a film with a thickness of 35 nm by spin coating, and the solvent was heated on a hot plate at 50 ° C. for 3 minutes. The hole injection layer was formed by volatilizing and subsequently heating on a hot plate at 230 ° C. for 15 minutes.
(第2の発光層の形成)
 キシレンに、高分子化合物P1を0.7質量%の濃度で溶解させた。得られたキシレン溶液を用いて、正孔注入層の上にスピンコート法により20nmの厚さで成膜し、窒素ガス雰囲気下において、ホットプレート上で180℃、60分間加熱させることにより第2の発光層を形成した。
(Formation of second light emitting layer)
Polymer compound P1 was dissolved in xylene at a concentration of 0.7 mass%. The obtained xylene solution was used to form a film having a thickness of 20 nm on the hole injection layer by spin coating, and heated on a hot plate at 180 ° C. for 60 minutes in a nitrogen gas atmosphere. The light emitting layer was formed.
(第1の発光層の形成)
 トルエンに、以下の化合物HM-1、化合物CM22及び化合物CM21(化合物HM-1/化合物CM22/化合物CM21=74質量%/25質量%/1質量%)を2質量%の濃度で溶解させた。得られたトルエン溶液を用いて、第2の発光層の上にスピンコート法により75nmの厚さで成膜し、窒素ガス雰囲気下において、130℃、10分間加熱させることにより第1の発光層を形成した。化合物HM-1は、Luminescence Technology社より購入したものを用いた。
(Formation of first light emitting layer)
The following compound HM-1, compound CM22 and compound CM21 (compound HM-1 / compound CM22 / compound CM21 = 74% by mass / 25% by mass / 1% by mass) were dissolved in toluene at a concentration of 2% by mass. Using the obtained toluene solution, a film having a thickness of 75 nm was formed on the second light-emitting layer by spin coating, and the first light-emitting layer was heated at 130 ° C. for 10 minutes in a nitrogen gas atmosphere. Formed. Compound HM-1 used was purchased from Luminescence Technology.
Figure JPOXMLDOC01-appb-C000173
Figure JPOXMLDOC01-appb-C000173
(電子輸送層の形成)
 2,2,3,3,4,4,5,5-オクタフルオロ-1-ペンタノールに、高分子化合物P12を0.25質量%の濃度で溶解させた。得られた2,2,3,3,4,4,5,5-オクタフルオロ-1-ペンタノール溶液を用いて、第1の発光層の上にスピンコート法により10nmの厚さで成膜し、窒素ガス雰囲気下において、130℃、10分間加熱させることにより電子輸送層を形成した。
(Formation of electron transport layer)
The polymer compound P12 was dissolved in 2,2,3,3,4,4,5,5-octafluoro-1-pentanol at a concentration of 0.25% by mass. Using the obtained 2,2,3,3,4,4,5,5-octafluoro-1-pentanol solution, a film having a thickness of 10 nm is formed on the first light-emitting layer by spin coating. Then, an electron transport layer was formed by heating at 130 ° C. for 10 minutes in a nitrogen gas atmosphere.
(陰極の形成)
 電子輸送層を形成した基板を蒸着機内において、1.0×10-4Pa以下にまで減圧した後、陰極として、電子輸送層の上にフッ化ナトリウムを約4nm、次いで、フッ化ナトリウム層の上にアルミニウムを約80nm蒸着した。蒸着後、ガラス基板を用いて封止することにより、発光素子D6を作製した。
(Formation of cathode)
After depressurizing the substrate on which the electron transport layer was formed to 1.0 × 10 −4 Pa or less in a vapor deposition machine, sodium fluoride was about 4 nm on the electron transport layer as a cathode, and then the sodium fluoride layer About 80 nm of aluminum was deposited thereon. After vapor deposition, the light emitting element D6 was produced by sealing using a glass substrate.
(発光素子の評価)
 発光素子D6に電圧を印加することによりEL発光が観測された。1000cd/m2における外部量子効率は18.4%であった。結果を表5に示す。
(Evaluation of light emitting element)
EL light emission was observed by applying a voltage to the light emitting element D6. The external quantum efficiency at 1000 cd / m 2 was 18.4%. The results are shown in Table 5.
 <実施例D7> 発光素子D7の作製及び評価
 実施例D6の(第2の発光層の形成)において、高分子化合物P1に代えて、高分子化合物P2を用いた以外は、実施例D6と同様にして、発光素子D7を作製し、電圧を印加することによりEL発光が観測された。1000cd/m2における外部量子効率は18.8%であった。結果を表5に示す。
<Example D7> Fabrication and evaluation of light-emitting element D7 In Example D6 (formation of the second light-emitting layer), the same as Example D6, except that polymer compound P2 was used instead of polymer compound P1. Then, a light emitting element D7 was produced, and EL light emission was observed by applying a voltage. The external quantum efficiency at 1000 cd / m 2 was 18.8%. The results are shown in Table 5.
 <実施例D8> 発光素子D8の作製及び評価
 実施例D6の(第2の発光層の形成)において、高分子化合物P1に代えて、高分子化合物P3を用いた以外は、実施例D6と同様にして、発光素子D8を作製し、電圧を印加することによりEL発光が観測された。1000cd/m2における外部量子効率は15.7%であった。結果を表5に示す。
<Example D8> Fabrication and evaluation of light-emitting element D8 In Example D6 (formation of the second light-emitting layer), except that polymer compound P3 was used instead of polymer compound P1, the same as Example D6 Then, a light emitting element D8 was manufactured, and EL light emission was observed by applying a voltage. The external quantum efficiency at 1000 cd / m 2 was 15.7%. The results are shown in Table 5.
 <実施例D9> 発光素子D9の作製及び評価
 実施例D6の(第2の発光層の形成)において、高分子化合物P1に代えて、高分子化合物P4を用いた以外は、実施例D6と同様にして、発光素子D9を作製し、電圧を印加することによりEL発光が観測された。1000cd/m2における外部量子効率は14.5%であった。結果を表5に示す。
<Example D9> Fabrication and evaluation of light-emitting element D9 In Example D6 (formation of the second light-emitting layer), the same as Example D6, except that polymer compound P4 was used instead of polymer compound P1. Then, a light emitting device D9 was fabricated, and EL light emission was observed by applying a voltage. The external quantum efficiency at 1000 cd / m 2 was 14.5%. The results are shown in Table 5.
 <実施例D10> 発光素子D10の作製及び評価
 実施例D6の(第2の発光層の形成)において、高分子化合物P1に代えて、高分子化合物P5を用いた以外は、実施例D6と同様にして、発光素子D10を作製し、電圧を印加することによりEL発光が観測された。1000cd/m2における外部量子効率は17.3%であった。結果を表5に示す。
<Example D10> Production and evaluation of light-emitting element D10 In Example D6 (formation of the second light-emitting layer), the same as Example D6, except that polymer compound P5 was used instead of polymer compound P1. Then, a light emitting element D10 was fabricated, and EL light emission was observed by applying a voltage. The external quantum efficiency at 1000 cd / m 2 was 17.3%. The results are shown in Table 5.
 <実施例D11> 発光素子D11の作製及び評価
 実施例D6の(第2の発光層の形成)において、高分子化合物P1に代えて、高分子化合物P6を用いた以外は、実施例D6と同様にして、発光素子D11を作製し、電圧を印加することによりEL発光が観測された。1000cd/m2における外部量子効率は16.1%であった。結果を表5に示す。
<Example D11> Production and evaluation of light-emitting element D11 In Example D6 (formation of the second light-emitting layer), the same as Example D6, except that polymer compound P6 was used instead of polymer compound P1. Then, a light emitting element D11 was fabricated, and EL light emission was observed by applying a voltage. The external quantum efficiency at 1000 cd / m 2 was 16.1%. The results are shown in Table 5.
 <比較例CD3> 発光素子CD3の作製及び評価
 実施例D6の(第2の発光層の形成)において、高分子化合物P1に代えて、高分子化合物P7を用いた以外は、実施例D6と同様にして、発光素子CD3を作製し、電圧を印加することによりEL発光が観測された。1000cd/m2における外部量子効率は13.4%であった。結果を表5に示す。
<Comparative Example CD3> Production and Evaluation of Light-Emitting Element CD3 The same as Example D6 except that in Example D6 (formation of the second light-emitting layer), instead of the polymer compound P1, the polymer compound P7 was used. Then, a light emitting device CD3 was fabricated, and EL light emission was observed by applying a voltage. The external quantum efficiency at 1000 cd / m 2 was 13.4%. The results are shown in Table 5.
 <比較例CD4> 発光素子CD4の作製及び評価
 実施例D6の(第2の発光層の形成)において、高分子化合物P1に代えて、高分子化合物P8を用いた以外は、実施例D6と同様にして、発光素子CD4を作製し、電圧を印加することによりEL発光が観測された。1000cd/m2における外部量子効率は10.4%であった。結果を表5に示す。
<Comparative Example CD4> Production and Evaluation of Light-Emitting Element CD4 Same as Example D6, except that in Example D6 (Formation of Second Light-Emitting Layer), Polymer Compound P8 was Used instead of Polymer Compound P1. Then, a light emitting device CD4 was manufactured, and EL light emission was observed by applying a voltage. The external quantum efficiency at 1000 cd / m 2 was 10.4%. The results are shown in Table 5.
Figure JPOXMLDOC01-appb-T000174
Figure JPOXMLDOC01-appb-T000174
 <実施例D12> 発光素子D12の作製と評価
(陽極及び正孔注入層の形成)
 ガラス基板にスパッタ法により45nmの厚みでITO膜を付けることにより陽極を形成した。該陽極上に、正孔注入材料であるND-3202(日産化学工業株式会社製)をスピンコート法により35nmの厚さで成膜し、、ホットプレート上で50℃、3分間加熱して溶媒を揮発させ、続けてホットプレート上で230℃、15分間加熱することにより正孔注入層を形成した。
<Example D12> Fabrication and evaluation of light-emitting element D12 (formation of anode and hole injection layer)
An anode was formed by attaching an ITO film with a thickness of 45 nm to the glass substrate by sputtering. On the anode, ND-3202 (Nissan Chemical Industry Co., Ltd.), which is a hole injection material, was formed into a film with a thickness of 35 nm by spin coating, and heated on a hot plate at 50 ° C. for 3 minutes to form a solvent. Then, the hole injection layer was formed by heating at 230 ° C. for 15 minutes on a hot plate.
(第2の発光層の形成)
 キシレンに、高分子化合物P2を0.7質量%の濃度で溶解させた。得られたキシレン溶液を用いて、正孔注入層の上にスピンコート法により20nmの厚さで成膜し、窒素ガス雰囲気下において、ホットプレート上で180℃、60分間加熱させることにより第2の発光層を形成した。
(Formation of second light emitting layer)
Polymer compound P2 was dissolved in xylene at a concentration of 0.7 mass%. The obtained xylene solution was used to form a film having a thickness of 20 nm on the hole injection layer by spin coating, and heated on a hot plate at 180 ° C. for 60 minutes in a nitrogen gas atmosphere. The light emitting layer was formed.
(第1の発光層の形成)
 トルエンに、以下の化合物HM-2、化合物CM22及び化合物CM21(化合物HM-2/化合物CM22/化合物CM21=74質量%/25質量%/1質量%)を2質量%の濃度で溶解させた。得られたトルエン溶液を用いて、第2の発光層の上にスピンコート法により75nmの厚さで成膜し、窒素ガス雰囲気下において、130℃、10分間加熱させることにより第1の発光層を形成した。化合物HM-2は、Luminescence Technology社より購入したものを用いた。
(Formation of first light emitting layer)
The following compound HM-2, compound CM22 and compound CM21 (compound HM-2 / compound CM22 / compound CM21 = 74% by mass / 25% by mass / 1% by mass) were dissolved in toluene at a concentration of 2% by mass. Using the obtained toluene solution, a film having a thickness of 75 nm was formed on the second light-emitting layer by spin coating, and the first light-emitting layer was heated at 130 ° C. for 10 minutes in a nitrogen gas atmosphere. Formed. Compound HM-2 was purchased from Luminescence Technology.
Figure JPOXMLDOC01-appb-C000175
Figure JPOXMLDOC01-appb-C000175
(電子輸送層の形成)
 2,2,3,3,4,4,5,5-オクタフルオロ-1-ペンタノールに、高分子化合物P12を0.25質量%の濃度で溶解させた。得られた2,2,3,3,4,4,5,5-オクタフルオロ-1-ペンタノール溶液を用いて、第1の発光層の上にスピンコート法により10nmの厚さで成膜し、窒素ガス雰囲気下において、130℃、10分間加熱させることにより電子輸送層を形成した。
(Formation of electron transport layer)
The polymer compound P12 was dissolved in 2,2,3,3,4,4,5,5-octafluoro-1-pentanol at a concentration of 0.25% by mass. Using the obtained 2,2,3,3,4,4,5,5-octafluoro-1-pentanol solution, a film having a thickness of 10 nm is formed on the first light-emitting layer by spin coating. Then, an electron transport layer was formed by heating at 130 ° C. for 10 minutes in a nitrogen gas atmosphere.
(陰極の形成)
 電子輸送層を形成した基板を蒸着機内において、1.0×10-4Pa以下にまで減圧した後、陰極として、電子輸送層の上にフッ化ナトリウムを約4nm、次いで、フッ化ナトリウム層の上にアルミニウムを約80nm蒸着した。蒸着後、ガラス基板を用いて封止することにより、発光素子D12を作製した。
(Formation of cathode)
After depressurizing the substrate on which the electron transport layer was formed to 1.0 × 10 −4 Pa or less in a vapor deposition machine, sodium fluoride was about 4 nm on the electron transport layer as a cathode, and then the sodium fluoride layer About 80 nm of aluminum was deposited thereon. After vapor deposition, the light emitting element D12 was produced by sealing using a glass substrate.
(発光素子の評価)
 発光素子D12に電圧を印加することによりEL発光が観測された。1000cd/m2における外部量子効率は9.88%であった。結果を表6に示す。
(Evaluation of light emitting element)
EL light emission was observed by applying a voltage to the light emitting element D12. The external quantum efficiency at 1000 cd / m 2 was 9.88%. The results are shown in Table 6.
 <比較例CD5> 発光素子CD5の作製及び評価
 実施例D12の(第2の発光層の形成)において、高分子化合物P2に代えて、高分子化合物P8を用いた以外は、実施例D12と同様にして、発光素子CD5を作製し、電圧を印加することによりEL発光が観測された。1000cd/m2における外部量子効率は2.45%であった。結果を表6に示す。
<Comparative Example CD5> Production and Evaluation of Light-Emitting Element CD5 Same as Example D12, except that in Example D12 (formation of second light-emitting layer), instead of polymer compound P2, polymer compound P8 was used. Then, a light emitting device CD5 was fabricated, and EL light emission was observed by applying a voltage. The external quantum efficiency at 1000 cd / m 2 was 2.45%. The results are shown in Table 6.
Figure JPOXMLDOC01-appb-T000176
Figure JPOXMLDOC01-appb-T000176
 <実施例D13> 発光素子D13の作製と評価
(陽極及び正孔注入層の形成)
 ガラス基板にスパッタ法により45nmの厚みでITO膜を付けることにより陽極を形成した。該陽極上に、正孔注入材料であるND-3202(日産化学工業株式会社製)をスピンコート法により35nmの厚さで成膜し、ホットプレート上で50℃、3分間加熱して溶媒を揮発させ、続けてホットプレート上で230℃、15分間加熱することにより正孔注入層を形成した。
<Example D13> Fabrication and evaluation of light-emitting element D13 (formation of anode and hole injection layer)
An anode was formed by attaching an ITO film with a thickness of 45 nm to the glass substrate by sputtering. On the anode, a hole injection material ND-3202 (manufactured by Nissan Chemical Industries, Ltd.) was formed into a film with a thickness of 35 nm by spin coating, and the solvent was heated on a hot plate at 50 ° C. for 3 minutes. The hole injection layer was formed by volatilizing and subsequently heating on a hot plate at 230 ° C. for 15 minutes.
(第2の発光層の形成)
 キシレンに、高分子化合物P1を0.7質量%の濃度で溶解させた。得られたキシレン溶液を用いて、正孔注入層の上にスピンコート法により20nmの厚さで成膜し、窒素ガス雰囲気下において、ホットプレート上で180℃、60分間加熱させることにより第2の発光層を形成した。
(Formation of second light emitting layer)
Polymer compound P1 was dissolved in xylene at a concentration of 0.7 mass%. The obtained xylene solution was used to form a film having a thickness of 20 nm on the hole injection layer by spin coating, and heated on a hot plate at 180 ° C. for 60 minutes in a nitrogen gas atmosphere. The light emitting layer was formed.
(第1の発光層の形成)
 クロロベンゼンに、化合物HM-1、FIrpic及び化合物CM21(化合物HM-1/FIrpic/化合物CM21=74質量%/25質量%/1質量%)を2質量%の濃度で溶解させた。得られたトルエン溶液を用いて、第2の発光層の上にスピンコート法により75nmの厚さで成膜し、窒素ガス雰囲気下において、130℃、10分間加熱させることにより第1の発光層を形成した。FIrpicは、Luminescence Technology社より購入したものを用いた。
(Formation of first light emitting layer)
Compound HM-1, FIrpic and compound CM21 (compound HM-1 / FIrpic / compound CM21 = 74% by mass / 25% by mass / 1% by mass) were dissolved in chlorobenzene at a concentration of 2% by mass. Using the obtained toluene solution, a film having a thickness of 75 nm was formed on the second light-emitting layer by spin coating, and the first light-emitting layer was heated at 130 ° C. for 10 minutes in a nitrogen gas atmosphere. Formed. The FIrpic used was purchased from Luminescence Technology.
(電子輸送層の形成)
 2,2,3,3,4,4,5,5-オクタフルオロ-1-ペンタノールに、高分子化合物P12を0.25質量%の濃度で溶解させた。得られた2,2,3,3,4,4,5,5-オクタフルオロ-1-ペンタノール溶液を用いて、第1の発光層の上にスピンコート法により10nmの厚さで成膜し、窒素ガス雰囲気下において、130℃、10分間加熱させることにより電子輸送層を形成した。
(Formation of electron transport layer)
The polymer compound P12 was dissolved in 2,2,3,3,4,4,5,5-octafluoro-1-pentanol at a concentration of 0.25% by mass. Using the obtained 2,2,3,3,4,4,5,5-octafluoro-1-pentanol solution, a film having a thickness of 10 nm is formed on the first light-emitting layer by spin coating. Then, an electron transport layer was formed by heating at 130 ° C. for 10 minutes in a nitrogen gas atmosphere.
(陰極の形成)
 電子輸送層を形成した基板を蒸着機内において、1.0×10-4Pa以下にまで減圧した後、陰極として、電子輸送層の上にフッ化ナトリウムを約4nm、次いで、フッ化ナトリウム層の上にアルミニウムを約80nm蒸着した。蒸着後、ガラス基板を用いて封止することにより、発光素子D13を作製した。
(Formation of cathode)
In depositing machine the substrate with the electron-transporting layer, the pressure was reduced to below 1.0 × 10 -4 Pa, as a cathode, approximately 4nm sodium fluoride on the electron transport layer, and then, sodium fluoride layer About 80 nm of aluminum was deposited thereon. After vapor deposition, the light emitting element D13 was produced by sealing using a glass substrate.
(発光素子の評価)
 発光素子D13に電圧を印加することによりEL発光が観測された。1000cd/m2における外部量子効率は13.5%であった。結果を表7に示す。
(Evaluation of light emitting element)
EL light emission was observed by applying a voltage to the light emitting element D13. The external quantum efficiency at 1000 cd / m 2 was 13.5%. The results are shown in Table 7.
 <比較例CD6> 発光素子CD6の作製及び評価
 実施例D13の(第2の発光層の形成)において、高分子化合物P1に代えて、高分子化合物P7を用いた以外は、実施例D13と同様にして、発光素子CD6を作製し、電圧を印加することによりEL発光が観測された。1000cd/m2における外部量子効率は7.02%であった。結果を表7に示す。
<Comparative Example CD6> Production and Evaluation of Light-Emitting Element CD6 Same as Example D13, except that in Example D13 (Formation of Second Light-Emitting Layer), Polymer Compound P7 was used instead of Polymer Compound P1. Then, a light emitting device CD6 was fabricated, and EL light emission was observed by applying a voltage. The external quantum efficiency at 1000 cd / m 2 was 7.02%. The results are shown in Table 7.
Figure JPOXMLDOC01-appb-T000177
Figure JPOXMLDOC01-appb-T000177
 <実施例D14> 発光素子D14の作製と評価
(陽極及び正孔注入層の形成)
 ガラス基板にスパッタ法により45nmの厚みでITO膜を付けることにより陽極を形成した。該陽極上に、該陽極上に、正孔注入材料であるND-3202(日産化学工業株式会社製)をスピンコート法により35nmの厚さで成膜し、ホットプレート上で50℃、3分間加熱して溶媒を揮発させ、続けてホットプレート上で230℃、15分間加熱することにより正孔注入層を形成した。
<Example D14> Fabrication and evaluation of light-emitting element D14 (formation of anode and hole injection layer)
An anode was formed by attaching an ITO film with a thickness of 45 nm to the glass substrate by sputtering. On the anode, a hole injection material ND-3202 (manufactured by Nissan Chemical Industries, Ltd.) was formed to a thickness of 35 nm by a spin coating method, and was heated on a hot plate at 50 ° C. for 3 minutes. The solvent was evaporated by heating, and then the hole injection layer was formed by heating at 230 ° C. for 15 minutes on a hot plate.
(第2の発光層の形成)
 キシレンに、高分子化合物P1を0.7質量%の濃度で溶解させた。得られたキシレン溶液を用いて、正孔注入層の上にスピンコート法により20nmの厚さで成膜し、窒素ガス雰囲気下において、ホットプレート上で180℃、60分間加熱させることにより第2の発光層を形成した。
(Formation of second light emitting layer)
Polymer compound P1 was dissolved in xylene at a concentration of 0.7 mass%. The obtained xylene solution was used to form a film having a thickness of 20 nm on the hole injection layer by spin coating, and heated on a hot plate at 180 ° C. for 60 minutes in a nitrogen gas atmosphere. The light emitting layer was formed.
(第1の発光層の形成)
 トルエンに、以下の化合物HM-1、化合物CM23及び化合物CM21(化合物HM-1/化合物CM23/化合物CM21=74質量%/25質量%/1質量%)を2質量%の濃度で溶解させた。得られたトルエン溶液を用いて、第2の発光層の上にスピンコート法により75nmの厚さで成膜し、窒素ガス雰囲気下において、130℃、10分間加熱させることにより第1の発光層を形成した。
(Formation of first light emitting layer)
The following compound HM-1, compound CM23 and compound CM21 (compound HM-1 / compound CM23 / compound CM21 = 74 mass% / 25 mass% / 1 mass%) were dissolved in toluene at a concentration of 2 mass%. Using the obtained toluene solution, a film having a thickness of 75 nm was formed on the second light-emitting layer by spin coating, and the first light-emitting layer was heated at 130 ° C. for 10 minutes in a nitrogen gas atmosphere. Formed.
(電子輸送層の形成)
 2,2,3,3,4,4,5,5-オクタフルオロ-1-ペンタノールに、高分子化合物P12を0.25質量%の濃度で溶解させた。得られた2,2,3,3,4,4,5,5-オクタフルオロ-1-ペンタノール溶液を用いて、第1の発光層の上にスピンコート法により10nmの厚さで成膜し、窒素ガス雰囲気下において、130℃、10分間加熱させることにより電子輸送層を形成した。
(Formation of electron transport layer)
The polymer compound P12 was dissolved in 2,2,3,3,4,4,5,5-octafluoro-1-pentanol at a concentration of 0.25% by mass. Using the obtained 2,2,3,3,4,4,5,5-octafluoro-1-pentanol solution, a film having a thickness of 10 nm is formed on the first light-emitting layer by spin coating. Then, an electron transport layer was formed by heating at 130 ° C. for 10 minutes in a nitrogen gas atmosphere.
(陰極の形成)
 電子輸送層を形成した基板を蒸着機内において、1.0×10-4Pa以下にまで減圧した後、陰極として、電子輸送層の上にフッ化ナトリウムを約4nm、次いで、フッ化ナトリウム層の上にアルミニウムを約80nm蒸着した。蒸着後、ガラス基板を用いて封止することにより、発光素子D14を作製した。
(Formation of cathode)
After depressurizing the substrate on which the electron transport layer was formed to 1.0 × 10 −4 Pa or less in a vapor deposition machine, sodium fluoride was about 4 nm on the electron transport layer as a cathode, and then the sodium fluoride layer About 80 nm of aluminum was deposited thereon. After vapor deposition, the light emitting element D14 was produced by sealing using a glass substrate.
(発光素子の評価)
 発光素子D14に電圧を印加することによりEL発光が観測された。1000cd/m2における外部量子効率は16.7%であった。結果を表8に示す。
(Evaluation of light emitting element)
EL light emission was observed by applying a voltage to the light emitting element D14. The external quantum efficiency at 1000 cd / m 2 was 16.7%. The results are shown in Table 8.
 <比較例CD7> 発光素子CD7の作製及び評価
 実施例D14の(第2の発光層の形成)において、高分子化合物P1に代えて、高分子化合物P2を用いた以外は、実施例D14と同様にして、発光素子CD7を作製し、電圧を印加することによりEL発光が観測された。1000cd/m2における外部量子効率は13.3%であった。結果を表8に示す。
<Comparative Example CD7> Fabrication and Evaluation of Light-Emitting Element CD7 In Example D14 (formation of second light-emitting layer), except that polymer compound P2 was used instead of polymer compound P1, it was the same as Example D14. Then, a light emitting device CD7 was fabricated, and EL emission was observed by applying a voltage. The external quantum efficiency at 1000 cd / m 2 was 13.3%. The results are shown in Table 8.
Figure JPOXMLDOC01-appb-T000178
Figure JPOXMLDOC01-appb-T000178
<実施例D15> 発光素子D15の作製と評価
(陽極及び正孔注入層の形成)
 ガラス基板にスパッタ法により45nmの厚みでITO膜を付けることにより陽極を形成した。該陽極上に、正孔注入材料であるND-3202(日産化学工業株式会社製)をスピンコート法により35nmの厚さで成膜し、ホットプレート上で50℃、3分間加熱して溶媒を揮発させ、続けてホットプレート上で230℃、15分間加熱することにより正孔注入層を形成した。
<Example D15> Fabrication and evaluation of light-emitting element D15 (formation of anode and hole injection layer)
An anode was formed by attaching an ITO film with a thickness of 45 nm to the glass substrate by sputtering. On the anode, a hole injection material ND-3202 (manufactured by Nissan Chemical Industries, Ltd.) was formed into a film with a thickness of 35 nm by spin coating, and the solvent was heated on a hot plate at 50 ° C. for 3 minutes. The hole injection layer was formed by volatilizing and subsequently heating on a hot plate at 230 ° C. for 15 minutes.
(第2の発光層の形成)
 キシレンに、高分子化合物P2を0.7質量%の濃度で溶解させた。得られたキシレン溶液を用いて、正孔注入層の上にスピンコート法により20nmの厚さで成膜し、窒素ガス雰囲気下において、ホットプレート上で180℃、60分間加熱させることにより第2の発光層を形成した。
(Formation of second light emitting layer)
Polymer compound P2 was dissolved in xylene at a concentration of 0.7 mass%. The obtained xylene solution was used to form a film having a thickness of 20 nm on the hole injection layer by spin coating, and heated on a hot plate at 180 ° C. for 60 minutes in a nitrogen gas atmosphere. The light emitting layer was formed.
(第1の発光層の形成)
 トルエンに、以下の化合物HM-1、化合物CM24及び化合物CM21(化合物HM-1/化合物CM24/化合物CM21=74質量%/25質量%/1質量%)を2質量%の濃度で溶解させた。得られたトルエン溶液を用いて、第2の発光層の上にスピンコート法により75nmの厚さで成膜し、窒素ガス雰囲気下において、130℃、10分間加熱させることにより第1の発光層を形成した。
(Formation of first light emitting layer)
The following compound HM-1, compound CM24 and compound CM21 (compound HM-1 / compound CM24 / compound CM21 = 74% by mass / 25% by mass / 1% by mass) were dissolved in toluene at a concentration of 2% by mass. Using the obtained toluene solution, a film having a thickness of 75 nm was formed on the second light-emitting layer by spin coating, and the first light-emitting layer was heated at 130 ° C. for 10 minutes in a nitrogen gas atmosphere. Formed.
(電子輸送層の形成)
 2,2,3,3,4,4,5,5-オクタフルオロ-1-ペンタノールに、高分子化合物P12を0.25質量%の濃度で溶解させた。得られた2,2,3,3,4,4,5,5-オクタフルオロ-1-ペンタノール溶液を用いて、第1の発光層の上にスピンコート法により10nmの厚さで成膜し、窒素ガス雰囲気下において、130℃、10分間加熱させることにより電子輸送層を形成した。
(Formation of electron transport layer)
The polymer compound P12 was dissolved in 2,2,3,3,4,4,5,5-octafluoro-1-pentanol at a concentration of 0.25% by mass. Using the obtained 2,2,3,3,4,4,5,5-octafluoro-1-pentanol solution, a film having a thickness of 10 nm is formed on the first light-emitting layer by spin coating. Then, an electron transport layer was formed by heating at 130 ° C. for 10 minutes in a nitrogen gas atmosphere.
(陰極の形成)
 電子輸送層を形成した基板を蒸着機内において、1.0×10-4Pa以下にまで減圧した後、陰極として、電子輸送層の上にフッ化ナトリウムを約4nm、次いで、フッ化ナトリウム層の上にアルミニウムを約80nm蒸着した。蒸着後、ガラス基板を用いて封止することにより、発光素子D15を作製した。
(Formation of cathode)
In depositing machine the substrate with the electron-transporting layer, the pressure was reduced to below 1.0 × 10 -4 Pa, as a cathode, approximately 4nm sodium fluoride on the electron transport layer, and then, sodium fluoride layer About 80 nm of aluminum was deposited thereon. After vapor deposition, the light emitting element D15 was produced by sealing using a glass substrate.
(発光素子の評価)
 発光素子D15に電圧を印加することによりEL発光が観測された。1000cd/m2における外部量子効率は16.2%であった。結果を表9に示す。
(Evaluation of light emitting element)
EL light emission was observed by applying a voltage to the light emitting element D15. The external quantum efficiency at 1000 cd / m 2 was 16.2%. The results are shown in Table 9.
 <実施例D16> 発光素子D16の作製及び評価
 実施例D15の(第2の発光層の形成)において、高分子化合物P2に代えて、高分子化合物P3を用いた以外は、実施例D15と同様にして、発光素子D16を作製し、電圧を印加することによりEL発光が観測された。1000cd/m2における外部量子効率は19.8%であった。結果を表9に示す。
<Example D16> Fabrication and evaluation of light-emitting element D16 In Example D15 (formation of second light-emitting layer), except that polymer compound P3 was used instead of polymer compound P2, the same as Example D15 Then, a light emitting element D16 was fabricated, and EL light emission was observed by applying a voltage. The external quantum efficiency at 1000 cd / m 2 was 19.8%. The results are shown in Table 9.
 <実施例D17> 発光素子D17の作製及び評価
 実施例D15の(第2の発光層の形成)において、高分子化合物P2に代えて、高分子化合物P4を用いた以外は、実施例D15と同様にして、発光素子D17を作製し、電圧を印加することによりEL発光が観測された。1000cd/m2における外部量子効率は16.8%であった。結果を表9に示す。
<Example D17> Production and evaluation of light-emitting element D17 In Example D15 (formation of the second light-emitting layer), except that polymer compound P4 was used instead of polymer compound P2, the same as Example D15 Then, a light emitting element D17 was fabricated, and EL light emission was observed by applying a voltage. The external quantum efficiency at 1000 cd / m 2 was 16.8%. The results are shown in Table 9.
 <比較例CD8> 発光素子CD8の作製及び評価
 実施例D15の(第2の発光層の形成)において、高分子化合物P2に代えて、高分子化合物P8を用いた以外は、実施例D15と同様にして、発光素子CD8を作製し、電圧を印加することによりEL発光が観測された。1000cd/m2における外部量子効率は15.0%であった。結果を表9に示す。
<Comparative Example CD8> Production and Evaluation of Light-Emitting Element CD8 In Example D15 (Formation of Second Light-Emitting Layer), except that Polymer Compound P8 was used instead of Polymer Compound P2, it was the same as Example D15. Then, a light emitting device CD8 was fabricated, and EL light emission was observed by applying a voltage. External quantum efficiency at 1000 cd / m 2 was 15.0%. The results are shown in Table 9.
Figure JPOXMLDOC01-appb-T000179
Figure JPOXMLDOC01-appb-T000179
 <実施例D18> 発光素子D18の作製と評価
(陽極及び正孔注入層の形成)
 ガラス基板にスパッタ法により45nmの厚みでITO膜を付けることにより陽極を形成した。該陽極上に、正孔注入材料であるND-3202(日産化学工業株式会社製)をスピンコート法により35nmの厚さで成膜し、ホットプレート上で50℃、3分間加熱して溶媒を揮発させ、続けてホットプレート上で230℃、15分間加熱することにより正孔注入層を形成した。
<Example D18> Fabrication and evaluation of light-emitting element D18 (formation of anode and hole injection layer)
An anode was formed by attaching an ITO film with a thickness of 45 nm to the glass substrate by sputtering. On the anode, a hole injection material ND-3202 (manufactured by Nissan Chemical Industries, Ltd.) was formed into a film with a thickness of 35 nm by spin coating, and the solvent was heated on a hot plate at 50 ° C. for 3 minutes. The hole injection layer was formed by volatilizing and subsequently heating on a hot plate at 230 ° C. for 15 minutes.
(第2の発光層の形成)
 キシレンに、高分子化合物P13を0.7質量%の濃度で溶解させた。得られたキシレン溶液を用いて、正孔注入層の上にスピンコート法により20nmの厚さで成膜し、窒素ガス雰囲気下において、ホットプレート上で180℃、60分間加熱させることにより第2の発光層を形成した。
(Formation of second light emitting layer)
Polymer compound P13 was dissolved in xylene at a concentration of 0.7 mass%. The obtained xylene solution was used to form a film having a thickness of 20 nm on the hole injection layer by spin coating, and heated on a hot plate at 180 ° C. for 60 minutes in a nitrogen gas atmosphere. The light emitting layer was formed.
(第1の発光層の形成)
 トルエンに、化合物HM-1、化合物CM22及び化合物CM21(化合物HM-1/化合物CM22/化合物CM21=74質量%/25質量%/1質量%)を2質量%の濃度で溶解させた。得られたトルエン溶液を用いて、第2の発光層の上にスピンコート法により75nmの厚さで成膜し、窒素ガス雰囲気下において、130℃、10分間加熱させることにより第1の発光層を形成した。
(Formation of first light emitting layer)
Compound HM-1, Compound CM22 and Compound CM21 (Compound HM-1 / Compound CM22 / Compound CM21 = 74% by mass / 25% by mass / 1% by mass) were dissolved in toluene at a concentration of 2% by mass. Using the obtained toluene solution, a film having a thickness of 75 nm was formed on the second light-emitting layer by spin coating, and the first light-emitting layer was heated at 130 ° C. for 10 minutes in a nitrogen gas atmosphere. Formed.
(電子輸送層の形成)
 2,2,3,3,4,4,5,5-オクタフルオロ-1-ペンタノールに、高分子化合物P12を0.25質量%の濃度で溶解させた。得られた2,2,3,3,4,4,5,5-オクタフルオロ-1-ペンタノール溶液を用いて、第1の発光層の上にスピンコート法により10nmの厚さで成膜し、窒素ガス雰囲気下において、130℃、10分間加熱させることにより電子輸送層を形成した。
(Formation of electron transport layer)
The polymer compound P12 was dissolved in 2,2,3,3,4,4,5,5-octafluoro-1-pentanol at a concentration of 0.25% by mass. Using the obtained 2,2,3,3,4,4,5,5-octafluoro-1-pentanol solution, a film having a thickness of 10 nm is formed on the first light-emitting layer by spin coating. Then, an electron transport layer was formed by heating at 130 ° C. for 10 minutes in a nitrogen gas atmosphere.
(陰極の形成)
 電子輸送層を形成した基板を蒸着機内において、1.0×10-4Pa以下にまで減圧した後、陰極として、電子輸送層の上にフッ化ナトリウムを約4nm、次いで、フッ化ナトリウム層の上にアルミニウムを約80nm蒸着した。蒸着後、ガラス基板を用いて封止することにより、発光素子D18を作製した。
(Formation of cathode)
After depressurizing the substrate on which the electron transport layer was formed to 1.0 × 10 −4 Pa or less in a vapor deposition machine, sodium fluoride was about 4 nm on the electron transport layer as a cathode, and then the sodium fluoride layer About 80 nm of aluminum was deposited thereon. After vapor deposition, the light emitting element D18 was produced by sealing using a glass substrate.
(発光素子の評価)
 発光素子D18に電圧を印加することによりEL発光が観測された。1000cd/m2における外部量子効率は15.6%であった。結果を表10に示す。
(Evaluation of light emitting element)
EL light emission was observed by applying a voltage to the light emitting element D18. The external quantum efficiency at 1000 cd / m 2 was 15.6%. The results are shown in Table 10.
 <実施例D19> 発光素子D19の作製及び評価
 実施例D18の(第2の発光層の形成)において、高分子化合物P13に代えて、高分子化合物P14を用いた以外は、実施例D18と同様にして、発光素子D19を作製し、電圧を印加することによりEL発光が観測された。1000cd/m2における外部量子効率は16.1%であった。結果を表10に示す。
<Example D19> Production and evaluation of light-emitting device D19 In Example D18 (formation of second light-emitting layer), polymer compound P14 was used instead of polymer compound P13, except that polymer compound P14 was used. Thus, a light emitting device D19 was manufactured, and EL light emission was observed by applying a voltage. The external quantum efficiency at 1000 cd / m 2 was 16.1%. The results are shown in Table 10.
 <比較例CD9> 発光素子CD9の作製及び評価
 実施例D18の(第2の発光層の形成)において、高分子化合物P13に代えて、高分子化合物P18を用いた以外は、実施例D18と同様にして、発光素子CD9を作製し、電圧を印加することによりEL発光が観測された。1000cd/m2における外部量子効率は9.9%であった。結果を表10に示す。
<Comparative Example CD9> Production and Evaluation of Light-Emitting Element CD9 Same as Example D18, except that in Example D18 (Formation of Second Light-Emitting Layer), Polymer Compound P18 was used instead of Polymer Compound P13. Then, a light emitting device CD9 was manufactured, and EL light emission was observed by applying a voltage. The external quantum efficiency at 1000 cd / m 2 was 9.9%. The results are shown in Table 10.
 <比較例CD10> 発光素子CD10の作製及び評価
 実施例D18の(第2の発光層の形成)において、高分子化合物P13に代えて、高分子化合物P19を用いた以外は、実施例D18と同様にして、発光素子CD10を作製し、電圧を印加することによりEL発光が観測された。1000cd/m2における外部量子効率は9.9%であった。結果を表10に示す。
<Comparative Example CD10> Production and Evaluation of Light-Emitting Element CD10 The same as Example D18 except that in Example D18 (formation of the second light-emitting layer), instead of polymer compound P13, polymer compound P19 was used. Then, a light emitting device CD10 was manufactured, and EL light emission was observed by applying a voltage. The external quantum efficiency at 1000 cd / m 2 was 9.9%. The results are shown in Table 10.
Figure JPOXMLDOC01-appb-T000180
Figure JPOXMLDOC01-appb-T000180
 <実施例D20> 発光素子D20の作製と評価
(陽極及び正孔注入層の形成)
 ガラス基板にスパッタ法により45nmの厚みでITO膜を付けることにより陽極を形成した。該陽極上に、正孔注入材料であるND-3202(日産化学工業株式会社製)をスピンコート法により35nmの厚さで成膜し、ホットプレート上で50℃、3分間加熱して溶媒を揮発させ、続けてホットプレート上で230℃、15分間加熱することにより正孔注入層を形成した。
<Example D20> Fabrication and evaluation of light-emitting element D20 (formation of anode and hole injection layer)
An anode was formed by attaching an ITO film with a thickness of 45 nm to the glass substrate by sputtering. On the anode, a hole injection material ND-3202 (manufactured by Nissan Chemical Industries, Ltd.) was formed into a film with a thickness of 35 nm by spin coating, and the solvent was heated on a hot plate at 50 ° C. for 3 minutes. The hole injection layer was formed by volatilizing and subsequently heating on a hot plate at 230 ° C. for 15 minutes.
(第2の発光層の形成)
 キシレンに、高分子化合物P15を0.7質量%の濃度で溶解させた。得られたキシレン溶液を用いて、正孔注入層の上にスピンコート法により20nmの厚さで成膜し、窒素ガス雰囲気下において、ホットプレート上で180℃、60分間加熱させることにより第2の発光層を形成した。
(Formation of second light emitting layer)
Polymer compound P15 was dissolved in xylene at a concentration of 0.7 mass%. The obtained xylene solution was used to form a film having a thickness of 20 nm on the hole injection layer by spin coating, and heated on a hot plate at 180 ° C. for 60 minutes in a nitrogen gas atmosphere. The light emitting layer was formed.
(第1の発光層の形成)
 トルエンに、化合物HM-1、化合物CM22及び化合物CM21(化合物HM-1/化合物CM22/化合物CM21=74質量%/25質量%/1質量%)を2質量%の濃度で溶解させた。得られたトルエン溶液を用いて、第2の発光層の上にスピンコート法により75nmの厚さで成膜し、窒素ガス雰囲気下において、130℃、10分間加熱させることにより第1の発光層を形成した。
(Formation of first light emitting layer)
Compound HM-1, Compound CM22 and Compound CM21 (Compound HM-1 / Compound CM22 / Compound CM21 = 74% by mass / 25% by mass / 1% by mass) were dissolved in toluene at a concentration of 2% by mass. Using the obtained toluene solution, a film having a thickness of 75 nm was formed on the second light-emitting layer by spin coating, and the first light-emitting layer was heated at 130 ° C. for 10 minutes in a nitrogen gas atmosphere. Formed.
(電子輸送層の形成)
 2,2,3,3,4,4,5,5-オクタフルオロ-1-ペンタノールに、高分子化合物P12を0.25質量%の濃度で溶解させた。得られた2,2,3,3,4,4,5,5-オクタフルオロ-1-ペンタノール溶液を用いて、第1の発光層の上にスピンコート法により10nmの厚さで成膜し、窒素ガス雰囲気下において、130℃、10分間加熱させることにより電子輸送層を形成した。
(Formation of electron transport layer)
The polymer compound P12 was dissolved in 2,2,3,3,4,4,5,5-octafluoro-1-pentanol at a concentration of 0.25% by mass. Using the obtained 2,2,3,3,4,4,5,5-octafluoro-1-pentanol solution, a film having a thickness of 10 nm is formed on the first light-emitting layer by spin coating. Then, an electron transport layer was formed by heating at 130 ° C. for 10 minutes in a nitrogen gas atmosphere.
(陰極の形成)
 電子輸送層を形成した基板を蒸着機内において、1.0×10-4Pa以下にまで減圧した後、陰極として、電子輸送層の上にフッ化ナトリウムを約4nm、次いで、フッ化ナトリウム層の上にアルミニウムを約80nm蒸着した。蒸着後、ガラス基板を用いて封止することにより、発光素子D20を作製した。
(Formation of cathode)
After depressurizing the substrate on which the electron transport layer was formed to 1.0 × 10 −4 Pa or less in a vapor deposition machine, sodium fluoride was about 4 nm on the electron transport layer as a cathode, and then the sodium fluoride layer About 80 nm of aluminum was deposited thereon. After vapor deposition, the light emitting element D20 was produced by sealing using a glass substrate.
(発光素子の評価)
 発光素子D20に電圧を印加することによりEL発光が観測された。1000cd/m2における外部量子効率は16.6%であった。結果を表11に示す。
(Evaluation of light emitting element)
EL light emission was observed by applying a voltage to the light emitting element D20. The external quantum efficiency at 1000 cd / m 2 was 16.6%. The results are shown in Table 11.
 <比較例CD11> 発光素子CD11の作製及び評価
 実施例D18の(第2の発光層の形成)において、高分子化合物P15に代えて、高分子化合物P20を用いた以外は、実施例D20と同様にして、発光素子CD11を作製し、電圧を印加することによりEL発光が観測された。1000cd/m2における外部量子効率は11.4%であった。結果を表11に示す。
<Comparative Example CD11> Production and Evaluation of Light-Emitting Element CD11 Same as Example D20 except that in Example D18 (Formation of Second Light-Emitting Layer), instead of Polymer Compound P15, Polymer Compound P20 was used. Then, a light emitting device CD11 was fabricated, and EL light emission was observed by applying a voltage. The external quantum efficiency at 1000 cd / m 2 was 11.4%. The results are shown in Table 11.
Figure JPOXMLDOC01-appb-T000181
Figure JPOXMLDOC01-appb-T000181
 <実施例D21> 発光素子D21の作製と評価
(陽極及び正孔注入層の形成)
 ガラス基板にスパッタ法により45nmの厚みでITO膜を付けることにより陽極を形成した。該陽極上に、正孔注入材料であるND-3202(日産化学工業株式会社製)をスピンコート法により35nmの厚さで成膜し、ホットプレート上で50℃、3分間加熱して溶媒を揮発させ、続けてホットプレート上で230℃、15分間加熱することにより正孔注入層を形成した。
<Example D21> Fabrication and evaluation of light-emitting element D21 (formation of anode and hole injection layer)
An anode was formed by attaching an ITO film with a thickness of 45 nm to the glass substrate by sputtering. On the anode, a hole injection material ND-3202 (manufactured by Nissan Chemical Industries, Ltd.) was formed into a film with a thickness of 35 nm by spin coating, and the solvent was heated on a hot plate at 50 ° C. for 3 minutes. The hole injection layer was formed by volatilizing and subsequently heating on a hot plate at 230 ° C. for 15 minutes.
(第2の発光層の形成)
 キシレンに、高分子化合物P16を0.7質量%の濃度で溶解させた。得られたキシレン溶液を用いて、正孔注入層の上にスピンコート法により20nmの厚さで成膜し、窒素ガス雰囲気下において、ホットプレート上で180℃、60分間加熱させることにより第2の発光層を形成した。
(Formation of second light emitting layer)
Polymer compound P16 was dissolved in xylene at a concentration of 0.7 mass%. The obtained xylene solution was used to form a film having a thickness of 20 nm on the hole injection layer by spin coating, and heated on a hot plate at 180 ° C. for 60 minutes in a nitrogen gas atmosphere. The light emitting layer was formed.
(第1の発光層の形成)
 トルエンに、化合物HM-1及び化合物CM22(化合物HM-1/化合物CM22=75質量%/25質量%)を2質量%の濃度で溶解させた。得られたトルエン溶液を用いて、第2の発光層の上にスピンコート法により75nmの厚さで成膜し、窒素ガス雰囲気下において、130℃、10分間加熱させることにより第1の発光層を形成した。
(Formation of first light emitting layer)
Compound HM-1 and Compound CM22 (Compound HM-1 / Compound CM22 = 75% by mass / 25% by mass) were dissolved in toluene at a concentration of 2% by mass. Using the obtained toluene solution, a film having a thickness of 75 nm was formed on the second light-emitting layer by spin coating, and the first light-emitting layer was heated at 130 ° C. for 10 minutes in a nitrogen gas atmosphere. Formed.
(電子輸送層の形成)
 2,2,3,3,4,4,5,5-オクタフルオロ-1-ペンタノールに、高分子化合物P12を0.25質量%の濃度で溶解させた。得られた2,2,3,3,4,4,5,5-オクタフルオロ-1-ペンタノール溶液を用いて、第1の発光層の上にスピンコート法により10nmの厚さで成膜し、窒素ガス雰囲気下において、130℃、10分間加熱させることにより電子輸送層を形成した。
(Formation of electron transport layer)
The polymer compound P12 was dissolved in 2,2,3,3,4,4,5,5-octafluoro-1-pentanol at a concentration of 0.25% by mass. Using the obtained 2,2,3,3,4,4,5,5-octafluoro-1-pentanol solution, a film having a thickness of 10 nm is formed on the first light-emitting layer by spin coating. Then, an electron transport layer was formed by heating at 130 ° C. for 10 minutes in a nitrogen gas atmosphere.
(陰極の形成)
 電子輸送層を形成した基板を蒸着機内において、1.0×10-4Pa以下にまで減圧した後、陰極として、電子輸送層の上にフッ化ナトリウムを約4nm、次いで、フッ化ナトリウム層の上にアルミニウムを約80nm蒸着した。蒸着後、ガラス基板を用いて封止することにより、発光素子D21を作製した。
(Formation of cathode)
After depressurizing the substrate on which the electron transport layer was formed to 1.0 × 10 −4 Pa or less in a vapor deposition machine, sodium fluoride was about 4 nm on the electron transport layer as a cathode, and then the sodium fluoride layer About 80 nm of aluminum was deposited thereon. After vapor deposition, the light emitting element D21 was produced by sealing using a glass substrate.
(発光素子の評価)
 発光素子D21に電圧を印加することによりEL発光が観測された。1000cd/m2における外部量子効率は18.6%であった。結果を表12に示す。
(Evaluation of light emitting element)
EL light emission was observed by applying a voltage to the light emitting element D21. The external quantum efficiency at 1000 cd / m 2 was 18.6%. The results are shown in Table 12.
 <実施例D22> 発光素子D22の作製及び評価
 実施例D21の(第2の発光層の形成)において、高分子化合物P16に代えて、高分子化合物P17及び化合物CM30(高分子化合物P17/化合物CM30=90質量%/10質量%)用いた以外は、実施例D21と同様にして、発光素子D22を作製し、電圧を印加することによりEL発光が観測された。1000cd/m2における外部量子効率は10.1%であった。結果を表12に示す。
<Example D22> Production and evaluation of light-emitting element D22 In Example D21 (formation of second light-emitting layer), instead of polymer compound P16, polymer compound P17 and compound CM30 (polymer compound P17 / compound CM30) = 90 mass% / 10 mass%) Except that was used, a light-emitting element D22 was produced in the same manner as in Example D21, and EL emission was observed by applying a voltage. The external quantum efficiency at 1000 cd / m 2 was 10.1%. The results are shown in Table 12.
 <比較例CD12> 発光素子CD12の作製及び評価
 実施例D21の(第2の発光層の形成)において、高分子化合物P16に代えて、高分子化合物P21及び化合物CM30(高分子化合物P21/化合物CM30=90質量%/10質量%)用いた以外は、実施例D21と同様にして、発光素子CD12を作製し、電圧を印加することによりEL発光が観測された。1000cd/m2における外部量子効率は7.3%であった。結果を表12に示す。
<Comparative Example CD12> Fabrication and Evaluation of Light-Emitting Element CD12 In Example D21 (Formation of Second Light-Emitting Layer), Polymer Compound P21 and Compound CM30 (Polymer Compound P21 / Compound CM30) Instead of Polymer Compound P16 = 90 mass% / 10 mass%) Except that was used, a light-emitting element CD12 was produced in the same manner as in Example D21, and EL emission was observed by applying a voltage. The external quantum efficiency at 1000 cd / m 2 was 7.3%. The results are shown in Table 12.
Figure JPOXMLDOC01-appb-T000182
Figure JPOXMLDOC01-appb-T000182
 <実施例D23> 発光素子D23の作製と評価
(陽極及び正孔注入層の形成)
 ガラス基板にスパッタ法により45nmの厚みでITO膜を付けることにより陽極を形成した。該陽極上に、正孔注入材料であるND-3202(日産化学工業株式会社製)をスピンコート法により35nmの厚さで成膜し、ホットプレート上で50℃、3分間加熱して溶媒を揮発させ、続けてホットプレート上で230℃、15分間加熱することにより正孔注入層を形成した。
<Example D23> Fabrication and evaluation of light-emitting element D23 (formation of anode and hole injection layer)
An anode was formed by attaching an ITO film with a thickness of 45 nm to the glass substrate by sputtering. On the anode, a hole injection material ND-3202 (manufactured by Nissan Chemical Industries, Ltd.) was formed into a film with a thickness of 35 nm by spin coating, and the solvent was heated on a hot plate at 50 ° C. for 3 minutes. The hole injection layer was formed by volatilizing and subsequently heating on a hot plate at 230 ° C. for 15 minutes.
(第2の発光層の形成)
 キシレンに、高分子化合物P16を0.7質量%の濃度で溶解させた。得られたキシレン溶液を用いて、正孔注入層の上にスピンコート法により20nmの厚さで成膜し、窒素ガス雰囲気下において、ホットプレート上で180℃、60分間加熱させることにより第2の発光層を形成した。
(Formation of second light emitting layer)
Polymer compound P16 was dissolved in xylene at a concentration of 0.7 mass%. The obtained xylene solution was used to form a film having a thickness of 20 nm on the hole injection layer by spin coating, and heated on a hot plate at 180 ° C. for 60 minutes in a nitrogen gas atmosphere. The light emitting layer was formed.
(第1の発光層の形成)
 トルエンに、化合物HM-1及びFIrpic(化合物HM-1/FIrpic=75質量%/25質量%)を2質量%の濃度で溶解させた。得られたトルエン溶液を用いて、第2の発光層の上にスピンコート法により75nmの厚さで成膜し、窒素ガス雰囲気下において、130℃、10分間加熱させることにより第1の発光層を形成した。
(Formation of first light emitting layer)
Compound HM-1 and FIrpic (compound HM-1 / FIrpic = 75% by mass / 25% by mass) were dissolved in toluene at a concentration of 2% by mass. Using the obtained toluene solution, a film having a thickness of 75 nm was formed on the second light-emitting layer by spin coating, and the first light-emitting layer was heated at 130 ° C. for 10 minutes in a nitrogen gas atmosphere. Formed.
(電子輸送層の形成)
 2,2,3,3,4,4,5,5-オクタフルオロ-1-ペンタノールに、高分子化合物P12を0.25質量%の濃度で溶解させた。得られた2,2,3,3,4,4,5,5-オクタフルオロ-1-ペンタノール溶液を用いて、第1の発光層の上にスピンコート法により10nmの厚さで成膜し、窒素ガス雰囲気下において、130℃、10分間加熱させることにより電子輸送層を形成した。
(Formation of electron transport layer)
The polymer compound P12 was dissolved in 2,2,3,3,4,4,5,5-octafluoro-1-pentanol at a concentration of 0.25% by mass. Using the obtained 2,2,3,3,4,4,5,5-octafluoro-1-pentanol solution, a film having a thickness of 10 nm is formed on the first light-emitting layer by spin coating. Then, an electron transport layer was formed by heating at 130 ° C. for 10 minutes in a nitrogen gas atmosphere.
(陰極の形成)
 電子輸送層を形成した基板を蒸着機内において、1.0×10-4Pa以下にまで減圧した後、陰極として、電子輸送層の上にフッ化ナトリウムを約4nm、次いで、フッ化ナトリウム層の上にアルミニウムを約80nm蒸着した。蒸着後、ガラス基板を用いて封止することにより、発光素子D23を作製した。
(Formation of cathode)
After depressurizing the substrate on which the electron transport layer was formed to 1.0 × 10 −4 Pa or less in a vapor deposition machine, sodium fluoride was about 4 nm on the electron transport layer as a cathode, and then the sodium fluoride layer About 80 nm of aluminum was deposited thereon. After vapor deposition, the light emitting element D23 was produced by sealing using a glass substrate.
(発光素子の評価)
 発光素子D23に電圧を印加することによりEL発光が観測された。1000cd/m2における外部量子効率は9.5%であった。結果を表13に示す。
(Evaluation of light emitting element)
EL light emission was observed by applying a voltage to the light emitting element D23. The external quantum efficiency at 1000 cd / m 2 was 9.5%. The results are shown in Table 13.
 <実施例D24> 発光素子D24の作製及び評価
 実施例D21の(第2の発光層の形成)において、高分子化合物P16に代えて、高分子化合物P17及び化合物CM30(高分子化合物P17/化合物CM30=90質量%/10質量%)用いた以外は、実施例D23と同様にして、発光素子D24を作製し、電圧を印加することによりEL発光が観測された。1000cd/m2における外部量子効率は5.9%であった。結果を表13に示す。
<Example D24> Production and Evaluation of Light-Emitting Element D24 In Example D21 (Formation of Second Light-Emitting Layer), Polymer Compound P17 and Compound CM30 (Polymer Compound P17 / Compound CM30) Instead of Polymer Compound P16 = 90 mass% / 10 mass%) A light emitting device D24 was produced in the same manner as in Example D23 except that EL emission was observed by applying a voltage. The external quantum efficiency at 1000 cd / m 2 was 5.9%. The results are shown in Table 13.
 <比較例CD13> 発光素子CD13の作製及び評価
 実施例D23の(第2の発光層の形成)において、高分子化合物P16に代えて、高分子化合物P21及び化合物CM30(高分子化合物P21/化合物CM30=90質量%/10質量%)用いた以外は、実施例D23と同様にして、発光素子CD13を作製し、電圧を印加することによりEL発光が観測された。1000cd/m2における外部量子効率は2.4%であった。結果を表13に示す。
<Comparative Example CD13> Fabrication and Evaluation of Light-Emitting Element CD13 In Example D23 (Formation of Second Light-Emitting Layer), Polymer Compound P21 and Compound CM30 (Polymer Compound P21 / Compound CM30) Instead of Polymer Compound P16 = 90 mass% / 10 mass%) A light emitting device CD13 was fabricated in the same manner as in Example D23 except that EL emission was observed by applying a voltage. The external quantum efficiency at 1000 cd / m 2 was 2.4%. The results are shown in Table 13.
Figure JPOXMLDOC01-appb-T000183
Figure JPOXMLDOC01-appb-T000183
 本発明の実施形態によれば、外部量子効率に優れる発光素子を提供することができる。また、本発明の実施形態によれば、外部量子収率に優れる発光素子の製造に有用な高分子化合物を提供することができる。 According to the embodiment of the present invention, a light emitting device having excellent external quantum efficiency can be provided. In addition, according to the embodiment of the present invention, it is possible to provide a polymer compound useful for producing a light emitting device having an excellent external quantum yield.

Claims (15)

  1.  陽極と、
     陰極と、
     前記陽極及び前記陰極の間に設けられた第1の発光層と、
     前記陽極及び前記陰極の間に設けられた第2の発光層とを有し、
     前記第2の発光層が、式(1)で表される構成単位を含む高分子化合物、及び、前記高分子化合物の架橋体からなる群より選ばれる少なくとも1種を含有する、発光素子。
    Figure JPOXMLDOC01-appb-C000001
    [式中、
     a1、a2及びa3は、それぞれ独立に、0以上5以下の整数を表す。a3が複数存在する場合、それらは同一でも異なっていてもよい。
     環S1は、芳香族炭化水素環又は芳香族複素環を表し、これらの環はRA1以外の置換基を有していてもよい。該置換基が複数存在する場合、それらは同一でも異なっていてもよい。
     RA1は、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基、アリールオキシ基、1価の複素環基、置換アミノ基又はハロゲン原子を表し、これらの基は置換基を有していてもよい。
     ArA1は、アリーレン基、又は、2価の複素環基を表し、これらの基は置換基を有していてもよい。
     ArA2、ArA3及びArA4は、それぞれ独立に、アリーレン基、2価の複素環基、又は、アリーレン基と2価の複素環基とが直接結合した2価の基を表し、これらの基は置換基を有していてもよい。ArA2、ArA3及びArA4が複数存在する場合、それらはそれぞれ同一でも異なっていてもよい。
     RA3、RA4、RA5及びRA6は、それぞれ独立に、アリール基又は1価の複素環基を表し、これらの基は置換基を有していてもよい。RA4、RA5及びRA6が複数存在する場合、それらはそれぞれ同一でも異なっていてもよい。]
    The anode,
    A cathode,
    A first light emitting layer provided between the anode and the cathode;
    A second light emitting layer provided between the anode and the cathode,
    The light emitting element in which a said 2nd light emitting layer contains at least 1 sort (s) chosen from the group which consists of a high molecular compound containing the structural unit represented by Formula (1), and the crosslinked body of the said high molecular compound.
    Figure JPOXMLDOC01-appb-C000001
    [Where:
    a 1 , a 2 and a 3 each independently represents an integer of 0 or more and 5 or less. When a plurality of a 3 are present, they may be the same or different.
    Ring S 1 represents an aromatic hydrocarbon ring or an aromatic heterocyclic ring, and these rings may have a substituent other than R A1 . When a plurality of the substituents are present, they may be the same or different.
    R A1 represents an alkyl group, a cycloalkyl group, an alkoxy group, a cycloalkoxy group, an aryl group, an aryloxy group, a monovalent heterocyclic group, a substituted amino group, or a halogen atom, and these groups have a substituent. It may be.
    Ar A1 represents an arylene group or a divalent heterocyclic group, and these groups optionally have a substituent.
    Ar A2 , Ar A3 and Ar A4 each independently represent an arylene group, a divalent heterocyclic group, or a divalent group in which an arylene group and a divalent heterocyclic group are directly bonded, and these groups May have a substituent. When there are a plurality of Ar A2 , Ar A3 and Ar A4 , they may be the same or different.
    R A3 , R A4 , R A5 and R A6 each independently represents an aryl group or a monovalent heterocyclic group, and these groups optionally have a substituent. When a plurality of R A4 , R A5 and R A6 are present, they may be the same or different. ]
  2.  前記式(1)で表される構成単位が、式(1a)で表される構成単位である、請求項1に記載の発光素子。
    Figure JPOXMLDOC01-appb-C000002
    [式中、
     a1、a2、a3、ArA2、ArA3、ArA4、環S1、RA1、RA3、RA4、RA5及びRA6は、前記と同じ意味を表す。
     環S2は、芳香族炭化水素環又は芳香族複素環を表し、これらの環はRA2以外の置換基を有していてもよい。該置換基が複数存在する場合、それらは同一でも異なっていてもよく、互いに結合して、それぞれが結合する原子とともに環を形成していてもよい。
     RA2は、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基、アリールオキシ基、1価の複素環基、置換アミノ基又はハロゲン原子を表し、これらの基は置換基を有していてもよい。]
    The light emitting element of Claim 1 whose structural unit represented by said Formula (1) is a structural unit represented by Formula (1a).
    Figure JPOXMLDOC01-appb-C000002
    [Where:
    a 1 , a 2 , a 3 , Ar A2 , Ar A3 , Ar A4 , Ring S 1 , R A1 , R A3 , R A4 , R A5 and R A6 represent the same meaning as described above.
    Ring S 2 represents an aromatic hydrocarbon ring or an aromatic heterocyclic ring, and these rings may have a substituent other than R A2 . When a plurality of such substituents are present, they may be the same or different, and may be bonded to each other to form a ring together with the atoms to which each is bonded.
    R A2 represents an alkyl group, a cycloalkyl group, an alkoxy group, a cycloalkoxy group, an aryl group, an aryloxy group, a monovalent heterocyclic group, a substituted amino group, or a halogen atom, and these groups have a substituent. It may be. ]
  3.  前記式(1)で表される構成単位を含む高分子化合物又は前記高分子化合物の架橋体が、更に燐光発光性構成単位を含む、請求項1又は2に記載の発光素子。 The light emitting device according to claim 1 or 2, wherein the polymer compound containing the structural unit represented by the formula (1) or a crosslinked product of the polymer compound further contains a phosphorescent structural unit.
  4.  前記第2の発光層が、更に燐光発光性化合物を含有する、請求項1又は2に記載の発光素子。 The light emitting device according to claim 1 or 2, wherein the second light emitting layer further contains a phosphorescent compound.
  5.  前記第1の発光層が、燐光発光性化合物を含有する、請求項1~4のいずれか一項に記載の発光素子。 The light-emitting element according to any one of claims 1 to 4, wherein the first light-emitting layer contains a phosphorescent compound.
  6.  前記第1の発光層が、式(H-1)で表される化合物を更に含有する、請求項1~5のいずれか一項に記載の発光素子。
    Figure JPOXMLDOC01-appb-C000003
    [式中、
     ArH1及びArH2は、それぞれ独立に、アリール基又は1価の複素環基を表し、これらの基は置換基を有していてもよい。
     nH1及びnH2は、それぞれ独立に、0又は1を表す。nH1が複数存在する場合、それらは同一でも異なっていてもよい。複数存在するnH2は、同一でも異なっていてもよい。
     nH3は、0~10の整数を表す。
     LH1は、アリーレン基、2価の複素環基、又は、-[C(RH112]nH11-で表される基を表し、これらの基は置換基を有していてもよい。LH1が複数存在する場合、それらは同一でも異なっていてもよい。nH11は、1以上10以下の整数を表す。RH11は、水素原子、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基又は1価の複素環基を表し、これらの基は置換基を有していてもよい。複数存在するRH11は、同一でも異なっていてもよく、互いに結合して、それぞれが結合する炭素原子とともに環を形成していてもよい。
     LH2は、-N(-LH21-RH21)-で表される基を表す。LH2が複数存在する場合、それらは同一でも異なっていてもよい。LH21は、単結合、アリーレン基又は2価の複素環基を表し、これらの基は置換基を有していてもよい。RH21は、水素原子、アルキル基、シクロアルキル基、アリール基又は1価の複素環基を表し、これらの基は置換基を有していてもよい。]
    The light emitting device according to any one of claims 1 to 5, wherein the first light emitting layer further contains a compound represented by the formula (H-1).
    Figure JPOXMLDOC01-appb-C000003
    [Where:
    Ar H1 and Ar H2 each independently represent an aryl group or a monovalent heterocyclic group, and these groups optionally have a substituent.
    n H1 and n H2 each independently represent 0 or 1. When a plurality of n H1 are present, they may be the same or different. A plurality of n H2 may be the same or different.
    n H3 represents an integer of 0 to 10.
    L H1 represents an arylene group, a divalent heterocyclic group, or a group represented by — [C (R H11 ) 2 ] n H11 —, and these groups optionally have a substituent. When a plurality of L H1 are present, they may be the same or different. n H11 represents an integer of 1 to 10. R H11 represents a hydrogen atom, an alkyl group, a cycloalkyl group, an alkoxy group, a cycloalkoxy group, an aryl group, or a monovalent heterocyclic group, and these groups may have a substituent. A plurality of R H11 may be the same or different, and may be bonded to each other to form a ring together with the carbon atom to which each is bonded.
    L H2 represents a group represented by —N (—L H21 —R H21 ) —. When a plurality of L H2 are present, they may be the same or different. L H21 represents a single bond, an arylene group or a divalent heterocyclic group, and these groups optionally have a substituent. R H21 represents a hydrogen atom, an alkyl group, a cycloalkyl group, an aryl group, or a monovalent heterocyclic group, and these groups optionally have a substituent. ]
  7.  式(1)で表される構成単位と燐光発光性構成単位とを含む高分子化合物。
    Figure JPOXMLDOC01-appb-C000004
    [式中、
     a1、a2及びa3は、それぞれ独立に、0以上5以下の整数を表す。a3が複数存在する場合、それらは同一でも異なっていてもよい。
     環S1は、芳香族炭化水素環又は芳香族複素環を表し、これらの環はRA1以外の置換基を有していてもよい。該置換基が複数存在する場合、それらは同一でも異なっていてもよい。
     RA1は、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基、アリールオキシ基、1価の複素環基、置換アミノ基又はハロゲン原子を表し、これらの基は置換基を有していてもよい。
     ArA1は、アリーレン基、又は、2価の複素環基を表し、これらの基は置換基を有していてもよい。
     ArA2、ArA3及びArA4は、それぞれ独立に、アリーレン基、2価の複素環基、又は、アリーレン基と2価の複素環基とが直接結合した2価の基を表し、これらの基は置換基を有していてもよい。ArA2、ArA3及びArA4が複数存在する場合、それらはそれぞれ同一でも異なっていてもよい。
     RA3、RA4、RA5及びRA6は、それぞれ独立に、アリール基又は1価の複素環基を表し、これらの基は置換基を有していてもよい。RA4、RA5及びRA6が複数存在する場合、それらはそれぞれ同一でも異なっていてもよい。]
    A polymer compound comprising a structural unit represented by formula (1) and a phosphorescent structural unit.
    Figure JPOXMLDOC01-appb-C000004
    [Where:
    a 1 , a 2 and a 3 each independently represents an integer of 0 or more and 5 or less. When a plurality of a 3 are present, they may be the same or different.
    Ring S 1 represents an aromatic hydrocarbon ring or an aromatic heterocyclic ring, and these rings may have a substituent other than R A1 . When a plurality of the substituents are present, they may be the same or different.
    R A1 represents an alkyl group, a cycloalkyl group, an alkoxy group, a cycloalkoxy group, an aryl group, an aryloxy group, a monovalent heterocyclic group, a substituted amino group, or a halogen atom, and these groups have a substituent. It may be.
    Ar A1 represents an arylene group or a divalent heterocyclic group, and these groups optionally have a substituent.
    Ar A2 , Ar A3 and Ar A4 each independently represent an arylene group, a divalent heterocyclic group, or a divalent group in which an arylene group and a divalent heterocyclic group are directly bonded, and these groups May have a substituent. When there are a plurality of Ar A2 , Ar A3 and Ar A4 , they may be the same or different.
    R A3 , R A4 , R A5 and R A6 each independently represents an aryl group or a monovalent heterocyclic group, and these groups optionally have a substituent. When a plurality of R A4 , R A5 and R A6 are present, they may be the same or different. ]
  8.  前記式(1)で表される構成単位が、式(1a)で表される構成単位である、請求項7に記載の高分子化合物。
    Figure JPOXMLDOC01-appb-C000005
    [式中、
     a1、a2、a3、ArA2、ArA3、ArA4、環S1、RA1、RA3、RA4、RA5及びRA6は、前記と同じ意味を表す。
     環S2は、芳香族炭化水素環又は芳香族複素環を表し、これらの環はRA2以外の置換基を有していてもよい。該置換基が複数存在する場合、それらは同一でも異なっていてもよく、互いに結合して、それぞれが結合する原子とともに環を形成していてもよい。
     RA2は、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基、アリールオキシ基、1価の複素環基、置換アミノ基又はハロゲン原子を表し、これらの基は置換基を有していてもよい。]
    The polymer compound according to claim 7, wherein the structural unit represented by the formula (1) is a structural unit represented by the formula (1a).
    Figure JPOXMLDOC01-appb-C000005
    [Where:
    a 1 , a 2 , a 3 , Ar A2 , Ar A3 , Ar A4 , Ring S 1 , R A1 , R A3 , R A4 , R A5 and R A6 represent the same meaning as described above.
    Ring S 2 represents an aromatic hydrocarbon ring or an aromatic heterocyclic ring, and these rings may have a substituent other than R A2 . When a plurality of such substituents are present, they may be the same or different, and may be bonded to each other to form a ring together with the atoms to which each is bonded.
    R A2 represents an alkyl group, a cycloalkyl group, an alkoxy group, a cycloalkoxy group, an aryl group, an aryloxy group, a monovalent heterocyclic group, a substituted amino group, or a halogen atom, and these groups have a substituent. It may be. ]
  9.  前記燐光発光性構成単位が、式(1G)、式(2G)、式(3G)又は式(4G)で表される構成単位である、請求項7又は8に記載の高分子化合物。
    Figure JPOXMLDOC01-appb-C000006
    [式中、
     M1Gは、燐光発光性化合物から1個の水素原子を取り除いてなる基を表す。
     L1は、酸素原子、硫黄原子、-N(RA)-で表される基、-C(RB2-で表される基、-C(RB)=C(RB)-で表される基、-C≡C-で表される基、アリーレン基又は2価の複素環基を表し、これらの基は置換基を有していてもよい。RAは、水素原子、アルキル基、シクロアルキル基、アリール基又は1価の複素環基を表し、これらの基は置換基を有していてもよい。RBは、水素原子、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基又は1価の複素環基を表し、これらの基は置換基を有していてもよい。複数存在するRBは、同一でも異なっていてもよく、互いに結合して、それぞれが結合する炭素原子と共に環を形成していてもよい。L1が複数存在する場合、それらは同一でも異なっていてもよい。
     na1は0~10の整数を表す。]
    Figure JPOXMLDOC01-appb-C000007
    [式中、
     M1Gは、前記と同じ意味を有する。
     L2及びL3は、それぞれ独立に、酸素原子、硫黄原子、-N(RA)-で表される基、-C(RB2-で表される基、-C(RB)=C(RB)-で表される基、-C≡C-で表される基、アリーレン基又は2価の複素環基を表し、これらの基は置換基を有していてもよい。RA及びRBは、前記と同じ意味を有する。
     nb1及びnc1は、それぞれ独立に、0~10の整数を表す。複数存在するnb1は、同一でも異なっていてもよい。
     Ar1Mは、芳香族炭化水素基又は複素環基を表し、これらの基は置換基を有していてもよい。]
    Figure JPOXMLDOC01-appb-C000008
    [式中、
     M2Gは、燐光発光性化合物から2個の水素原子を取り除いてなる基を表す。
     L2及びnb1は、前記と同じ意味を有する。]
    Figure JPOXMLDOC01-appb-C000009
    [式中、
     M3Gは、燐光発光性化合物から3個の水素原子を取り除いてなる基を表す。
     L2及びnb1は、前記と同じ意味を有する。]
    The polymer compound according to claim 7 or 8, wherein the phosphorescent structural unit is a structural unit represented by formula (1G), formula (2G), formula (3G), or formula (4G).
    Figure JPOXMLDOC01-appb-C000006
    [Where:
    M 1G represents a group formed by removing one hydrogen atom from a phosphorescent compound.
    L 1 represents an oxygen atom, a sulfur atom, a group represented by —N (R A ) —, a group represented by —C (R B ) 2 —, —C (R B ) ═C (R B ) — Represents a group represented by the formula: —C≡C—, an arylene group or a divalent heterocyclic group, and these groups optionally have a substituent. R A represents a hydrogen atom, an alkyl group, a cycloalkyl group, an aryl group, or a monovalent heterocyclic group, and these groups may have a substituent. R B represents a hydrogen atom, an alkyl group, a cycloalkyl group, an alkoxy group, a cycloalkoxy group, an aryl group, or a monovalent heterocyclic group, and these groups may have a substituent. A plurality of R B may be the same or different, and may be bonded to each other to form a ring together with the carbon atoms to which they are bonded. When a plurality of L 1 are present, they may be the same or different.
    n a1 represents an integer of 0 to 10. ]
    Figure JPOXMLDOC01-appb-C000007
    [Where:
    M 1G has the same meaning as described above.
    L 2 and L 3 each independently represents an oxygen atom, a sulfur atom, a group represented by —N (R A ) —, a group represented by —C (R B ) 2 —, or —C (R B ) Represents a group represented by ═C (R B ) —, a group represented by —C≡C—, an arylene group or a divalent heterocyclic group, and these groups optionally have a substituent. R A and R B have the same meaning as described above.
    n b1 and n c1 each independently represents an integer of 0 to 10. A plurality of n b1 may be the same or different.
    Ar 1M represents an aromatic hydrocarbon group or a heterocyclic group, and these groups optionally have a substituent. ]
    Figure JPOXMLDOC01-appb-C000008
    [Where:
    M 2G represents a group formed by removing two hydrogen atoms from a phosphorescent compound.
    L 2 and n b1 have the same meaning as described above. ]
    Figure JPOXMLDOC01-appb-C000009
    [Where:
    M 3G represents a group formed by removing three hydrogen atoms from a phosphorescent compound.
    L 2 and n b1 have the same meaning as described above. ]
  10.  前記燐光発光性化合物が、式(2)で表される化合物である、請求項9に記載の高分子化合物。
    Figure JPOXMLDOC01-appb-C000010
    [式中、
     M2は、ロジウム原子、パラジウム原子、イリジウム原子又は白金原子を表す。
     n3は1以上の整数を表し、n4は0以上の整数を表し、n3+n4は2又は3である。Mがロジウム原子又はイリジウム原子の場合、n3+n4は3であり、Mがパラジウム原子又は白金原子の場合、n3+n4は2である。
     E及びEは、それぞれ独立に、炭素原子又は窒素原子を表す。但し、E及びEの少なくとも一方は炭素原子である。
     環L1は、芳香族複素環を表し、この環は置換基を有していてもよい。該置換基が複数存在する場合、それらは同一でも異なっていてもよく、互いに結合して、それぞれが結合する原子とともに環を形成していてもよい。環L1が複数存在する場合、それらは同一でも異なっていてもよい。
     環L2は、芳香族炭化水素環又は芳香族複素環を表し、これらの環は置換基を有していてもよい。該置換基が複数存在する場合、それらは同一でも異なっていてもよく、互いに結合して、それぞれが結合する原子とともに環を形成していてもよい。環L2が複数存在する場合、それらは同一でも異なっていてもよい。
     環L1が有していてもよい置換基と環L2が有していてもよい置換基とは、互いに結合して、それぞれが結合する原子とともに環を形成していてもよい。
     A3-G2-A4は、アニオン性の2座配位子を表す。A3及びA4は、それぞれ独立に、炭素原子、酸素原子又は窒素原子を表し、これらの原子は環を構成する原子であってもよい。G2は、単結合、又は、A3及びA4とともに2座配位子を構成する原子団を表す。A3-G2-A4が複数存在する場合、それらは同一でも異なっていてもよい。]
    The polymer compound according to claim 9, wherein the phosphorescent compound is a compound represented by the formula (2).
    Figure JPOXMLDOC01-appb-C000010
    [Where:
    M 2 represents a rhodium atom, a palladium atom, an iridium atom or a platinum atom.
    n 3 represents an integer of 1 or more, n 4 represents an integer of 0 or more, and n 3 + n 4 is 2 or 3. When M is a rhodium atom or an iridium atom, n 3 + n 4 is 3. When M is a palladium atom or a platinum atom, n 3 + n 4 is 2.
    E 3 and E 4 each independently represents a carbon atom or a nitrogen atom. However, at least one of E 3 and E 4 is a carbon atom.
    Ring L 1 represents an aromatic heterocyclic ring, and this ring may have a substituent. When a plurality of such substituents are present, they may be the same or different, and may be bonded to each other to form a ring together with the atoms to which each is bonded. When a plurality of rings L 1 are present, they may be the same or different.
    The ring L 2 represents an aromatic hydrocarbon ring or an aromatic heterocyclic ring, and these rings may have a substituent. When a plurality of such substituents are present, they may be the same or different, and may be bonded to each other to form a ring together with the atoms to which each is bonded. When a plurality of rings L 2 are present, they may be the same or different.
    The substituent that the ring L 1 may have and the substituent that the ring L 2 may have may be bonded to each other to form a ring together with the atoms to which they are bonded.
    A 3 -G 2 -A 4 represents an anionic bidentate ligand. A 3 and A 4 each independently represent a carbon atom, an oxygen atom or a nitrogen atom, and these atoms may be atoms constituting a ring. G 2 represents a single bond or an atomic group constituting a bidentate ligand together with A 3 and A 4 . When a plurality of A 3 -G 2 -A 4 are present, they may be the same or different. ]
  11.  前記環L1が、ピリジン環、ピリミジン環、イソキノリン環又はキノリン環であり、かつ、前記環L2が、ベンゼン環、ピリジン環又はピリミジン環である、請求項10に記載の高分子化合物。 It said ring L 1 is a pyridine ring, a pyrimidine ring, an isoquinoline ring or a quinoline ring, and the ring L 2 is a benzene ring, a pyridine ring or a pyrimidine ring, a polymer compound according to claim 10.
  12.  前記式(2)で表される燐光発光性化合物が、式(2-B1)、式(2-B2)、式(2-B3)、式(2-B4)又は式(2-B5)で表される燐光発光性化合物である、請求項11に記載の発光素子。
    Figure JPOXMLDOC01-appb-C000011
    [式中、
     M2、n3、n4及びA3-G2-A4は、前記と同じ意味を表す。
     n11及びn12は、それぞれ独立に、1以上の整数を表し、n11+n12は2又は3である。Mがロジウム原子又はイリジウム原子の場合、n11+n12は3であり、Mがパラジウム原子又は白金原子の場合、n11+n12は2である。
     R11B、R12B、R13B、R14B、R15B、R16B、R17B、R18B、R21B、R22B、R23B及びR24Bは、それぞれ独立に、水素原子、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基、アリールオキシ基、1価の複素環基、置換アミノ基又はハロゲン原子を表し、これらの基は置換基を有していてもよい。R11B、R12B、R13B、R14B、R15B、R16B、R17B、R18B、R21B、R22B、R23B及びR24Bが複数存在する場合、それらはそれぞれ同一でも異なっていてもよい。R11BとR12B、R12BとR13B、R13BとR14B、R13BとR15B、R15BとR16B、R16BとR17B、R17BとR18B、R18BとR21B、R11BとR21B、R21BとR22B、R22BとR23B、及び、R23BとR24Bは、それぞれ結合して、それぞれが結合する原子とともに環を形成していてもよい。]
    The phosphorescent compound represented by the formula (2) is represented by the formula (2-B1), the formula (2-B2), the formula (2-B3), the formula (2-B4), or the formula (2-B5). The light-emitting element according to claim 11, which is a phosphorescent compound represented.
    Figure JPOXMLDOC01-appb-C000011
    [Where:
    M 2 , n 3 , n 4 and A 3 -G 2 -A 4 represent the same meaning as described above.
    n 11 and n 12 each independently represents an integer of 1 or more, and n 11 + n 12 is 2 or 3. When M is a rhodium atom or iridium atom, n 11 + n 12 is 3, and when M is a palladium atom or platinum atom, n 11 + n 12 is 2.
    R 11B , R 12B , R 13B , R 14B , R 15B , R 16B , R 17B , R 18B , R 21B , R 22B , R 23B and R 24B are each independently a hydrogen atom, an alkyl group or a cycloalkyl group Represents an alkoxy group, a cycloalkoxy group, an aryl group, an aryloxy group, a monovalent heterocyclic group, a substituted amino group, or a halogen atom, and these groups optionally have a substituent. When there are a plurality of R 11B , R 12B , R 13B , R 14B , R 15B , R 16B , R 17B , R 18B , R 21B , R 22B , R 23B and R 24B , they may be the same or different. Good. R 11B and R 12B , R 12B and R 13B , R 13B and R 14B , R 13B and R 15B , R 15B and R 16B , R 16B and R 17B , R 17B and R 18B , R 18B and R 21B , R 11B And R 21B , R 21B and R 22B , R 22B and R 23B , and R 23B and R 24B may be bonded to each other to form a ring together with the atoms to which they are bonded. ]
  13.  前記R11B、前記R12B、前記R13B、前記R14B、前記R21B、前記R22B、前記R23B及び前記R24Bのうちの少なくとも1つが、式(D-A)、式(D-B)又は式(D-C)で表される基である、請求項12に記載の高分子化合物。
    Figure JPOXMLDOC01-appb-C000012
    [式中、
     mDA1、mDA2及びmDA3は、それぞれ独立に、0~10の整数を表す。
     GDAは、窒素原子、芳香族炭化水素基又は複素環基を表し、これらの基は置換基を有していてもよい。
     ArDA1、ArDA2及びArDA3は、それぞれ独立に、アリーレン基又は2価の複素環基を表し、これらの基は置換基を有していてもよい。ArDA1、ArDA2及びArDA3が複数存在する場合、それらはそれぞれ同一でも異なっていてもよい。
     TDAは、アリール基又は1価の複素環基を表し、これらの基は置換基を有していてもよい。複数存在するTDAは、同一でも異なっていてもよい。]
    Figure JPOXMLDOC01-appb-C000013
    [式中、
     mDA1、mDA2、mDA3、GDA、ArDA1、ArDA2、ArDA3及びTDAは、前記と同じ意味を表す。
     mDA4、mDA5、mDA6及びmDA7は、それぞれ独立に、0~10の整数を表す。
     ArDA4、ArDA5、ArDA6及びArDA7は、それぞれ独立に、アリーレン基又は2価の複素環基を表し、これらの基は置換基を有していてもよい。ArDA4、ArDA5、ArDA6及びArDA7が複数ある場合、それらはそれぞれ同一でも異なっていてもよい。]
    Figure JPOXMLDOC01-appb-C000014
    [式中、
     mDA1、ArDA1及びTDAは、前記と同じ意味を有する。]
    At least one of the R 11B , the R 12B , the R 13B , the R 14B , the R 21B , the R 22B , the R 23B, and the R 24B is represented by the formula (DA), the formula (DB) Or a polymer represented by the formula (D—C).
    Figure JPOXMLDOC01-appb-C000012
    [Where:
    m DA1 , m DA2 and m DA3 each independently represent an integer of 0 to 10.
    GDA represents a nitrogen atom, an aromatic hydrocarbon group, or a heterocyclic group, and these groups may have a substituent.
    Ar DA1 , Ar DA2 and Ar DA3 each independently represent an arylene group or a divalent heterocyclic group, and these groups optionally have a substituent. When there are a plurality of Ar DA1 , Ar DA2 and Ar DA3 , they may be the same or different.
    T DA represents an aryl group or a monovalent heterocyclic group, and these groups optionally have a substituent. A plurality of TDA may be the same or different. ]
    Figure JPOXMLDOC01-appb-C000013
    [Where:
    m DA1, m DA2, m DA3 , G DA, Ar DA1, Ar DA2, Ar DA3 and T DA is the same as defined above.
    m DA4 , m DA5 , m DA6 and m DA7 each independently represent an integer of 0 to 10.
    Ar DA4 , Ar DA5 , Ar DA6 and Ar DA7 each independently represent an arylene group or a divalent heterocyclic group, and these groups optionally have a substituent. When there are a plurality of Ar DA4 , Ar DA5 , Ar DA6 and Ar DA7 , they may be the same or different. ]
    Figure JPOXMLDOC01-appb-C000014
    [Where:
    m DA1 , Ar DA1 and T DA have the same meaning as described above. ]
  14.  前記式(1)で表される構成単位を含む高分子化合物が、架橋基A群から選ばれる少なくとも1種の架橋基を有する架橋構成単位を含む、請求項7~13のいずれか一項に記載の高分子化合物。
    (架橋基A群)
    Figure JPOXMLDOC01-appb-C000015
    [式中、
     RXLは、メチレン基、酸素原子又は硫黄原子を表し、nXLは、0~5の整数を表す。RXLが複数存在する場合、それらは同一でも異なっていてもよい。nXLが複数存在する場合、それらは同一でも異なっていてもよい。*1は結合位置を表す。これらの架橋基は置換基を有していてもよい。]
    The polymer compound containing the structural unit represented by the formula (1) includes a cross-linking structural unit having at least one cross-linking group selected from the cross-linking group A group. The polymer compound described.
    (Crosslinking group A group)
    Figure JPOXMLDOC01-appb-C000015
    [Where:
    R XL represents a methylene group, an oxygen atom or a sulfur atom, and n XL represents an integer of 0 to 5. When a plurality of R XL are present, they may be the same or different. When there are a plurality of nXL , they may be the same or different. * 1 represents a binding position. These crosslinking groups may have a substituent. ]
  15.  前記架橋構成単位が、式(3)又は式(4)で表される構成単位である、請求項14に記載の高分子化合物。
    Figure JPOXMLDOC01-appb-C000016
    [式中、
     nAは0~5の整数を表し、nは1又は2を表す。
     Ar1は、芳香族炭化水素基又は複素環基を表し、これらの基は置換基を有していてもよい。
     LAは、アルキレン基、シクロアルキレン基、アリーレン基、2価の複素環基、-NR’-で表される基、酸素原子又は硫黄原子を表し、これらの基は置換基を有していてもよい。R’は、水素原子、アルキル基、シクロアルキル基、アリール基又は1価の複素環基を表し、これらの基は置換基を有していてもよい。LAが複数存在する場合、それらは同一でも異なっていてもよい。
     Xは、前記架橋基A群から選ばれる架橋基を表す。Xが複数存在する場合、それらは同一でも異なっていてもよい。nAが複数存在する場合、それらは同一でも異なっていてもよい。]
    Figure JPOXMLDOC01-appb-C000017
    [式中、
     mAは0~5の整数を表し、mは1~4の整数を表し、cは0又は1を表す。mAが複数存在する場合、それらは同一でも異なっていてもよい。
     Ar3は、芳香族炭化水素基、複素環基、又は、芳香族炭化水素基と複素環基とが直接結合した基を表し、これらの基は置換基を有していてもよい。
     Ar2及びAr4は、それぞれ独立に、アリーレン基又は2価の複素環基を表し、これらの基は置換基を有していてもよい。
     Ar2、Ar3及びAr4はそれぞれ、該基が結合している窒素原子に結合している該基以外の基と、直接又は酸素原子若しくは硫黄原子を介して結合して、環を形成していてもよい。
     KAは、アルキレン基、シクロアルキレン基、アリーレン基、2価の複素環基、-NR’’-で表される基、酸素原子又は硫黄原子を表し、これらの基は置換基を有していてもよい。R’’は、水素原子、アルキル基、シクロアルキル基、アリール基又は1価の複素環基を表し、これらの基は置換基を有していてもよい。KAが複数存在する場合、それらは同一でも異なっていてもよい。
     X’は、前記架橋基A群から選ばれる架橋基、水素原子、アルキル基、シクロアルキル基、アリール基又は1価の複素環基を表し、これらの基は置換基を有していてもよい。X’が複数存在する場合、それらは同一でも異なっていてもよい。但し、少なくとも1つのX’は、前記架橋基A群から選ばれる架橋基である。]
    The high molecular compound of Claim 14 whose said bridge | crosslinking structural unit is a structural unit represented by Formula (3) or Formula (4).
    Figure JPOXMLDOC01-appb-C000016
    [Where:
    nA represents an integer of 0 to 5, and n represents 1 or 2.
    Ar 1 represents an aromatic hydrocarbon group or a heterocyclic group, and these groups optionally have a substituent.
    L A represents an alkylene group, a cycloalkylene group, an arylene group, a divalent heterocyclic group, a group represented by —NR′—, an oxygen atom or a sulfur atom, and these groups have a substituent. Also good. R ′ represents a hydrogen atom, an alkyl group, a cycloalkyl group, an aryl group, or a monovalent heterocyclic group, and these groups optionally have a substituent. When a plurality of LA are present, they may be the same or different.
    X represents a crosslinking group selected from the crosslinking group A group. When two or more X exists, they may be the same or different. When a plurality of nA are present, they may be the same or different. ]
    Figure JPOXMLDOC01-appb-C000017
    [Where:
    mA represents an integer of 0 to 5, m represents an integer of 1 to 4, and c represents 0 or 1. When a plurality of mA are present, they may be the same or different.
    Ar 3 represents an aromatic hydrocarbon group, a heterocyclic group, or a group in which an aromatic hydrocarbon group and a heterocyclic group are directly bonded, and these groups may have a substituent.
    Ar 2 and Ar 4 each independently represent an arylene group or a divalent heterocyclic group, and these groups optionally have a substituent.
    Ar 2 , Ar 3 and Ar 4 are each bonded to a group other than the group bonded to the nitrogen atom to which the group is bonded, directly or via an oxygen atom or sulfur atom to form a ring. It may be.
    K A represents an alkylene group, a cycloalkylene group, an arylene group, a divalent heterocyclic group, a group represented by —NR ″ —, an oxygen atom or a sulfur atom, and these groups have a substituent. May be. R ″ represents a hydrogen atom, an alkyl group, a cycloalkyl group, an aryl group, or a monovalent heterocyclic group, and these groups optionally have a substituent. When a plurality of K A are present, they may be the same or different.
    X ′ represents a bridging group selected from the bridging group A, a hydrogen atom, an alkyl group, a cycloalkyl group, an aryl group, or a monovalent heterocyclic group, and these groups may have a substituent. . When a plurality of X ′ are present, they may be the same or different. However, at least one X ′ is a cross-linking group selected from the cross-linking group A group. ]
PCT/JP2017/006523 2016-02-25 2017-02-22 Light-emitting element and polymer compound used for said light-emitting element WO2017146083A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018501726A JP6881430B2 (en) 2016-02-25 2017-02-22 Light emitting element and polymer compound used for the light emitting element

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-033907 2016-02-25
JP2016033907 2016-02-25

Publications (1)

Publication Number Publication Date
WO2017146083A1 true WO2017146083A1 (en) 2017-08-31

Family

ID=59686232

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/006523 WO2017146083A1 (en) 2016-02-25 2017-02-22 Light-emitting element and polymer compound used for said light-emitting element

Country Status (2)

Country Link
JP (1) JP6881430B2 (en)
WO (1) WO2017146083A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019049225A1 (en) 2017-09-06 2019-03-14 住友化学株式会社 Light emitting element
WO2019065389A1 (en) * 2017-09-29 2019-04-04 住友化学株式会社 Light-emitting device
CN109956977A (en) * 2017-12-25 2019-07-02 北京夏禾科技有限公司 The metal complex of the ligand containing heterocyclic substituted, and electroluminescent device and compound formulas comprising the complex compound
WO2021166921A1 (en) * 2020-02-20 2021-08-26 保土谷化学工業株式会社 High molecular weight compound and light emitting diode including said high molecular weight compound
US11917899B2 (en) 2020-03-05 2024-02-27 Samsung Electronics Co., Ltd. Arylamine-fluorene alternating copolymer, electroluminescence device material, and electroluminescence device using the polymer

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003034715A (en) * 2001-04-27 2003-02-07 Sumitomo Chem Co Ltd Polymer fluorescent substance and polymeric light emitting element
EP1344788A1 (en) * 2002-03-15 2003-09-17 Sumitomo Chemical Company, Limited Conjugated polymer comprising dibenzothiophene- or dibenzofuran-units and their use in polymer LEDs
JP2009043896A (en) * 2007-08-08 2009-02-26 Canon Inc Organic light-emitting element and display
WO2015163174A1 (en) * 2014-04-25 2015-10-29 住友化学株式会社 Light-emitting element

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10361385B4 (en) * 2003-12-29 2011-07-28 OSRAM Opto Semiconductors GmbH, 93055 Polymers, phosphorescent organic semiconducting emitter materials based on perarylated boranes, process for their preparation and uses thereof
JP5322091B2 (en) * 2008-01-30 2013-10-23 国立大学法人 和歌山大学 Polymer for organic electroluminescence device, organic electroluminescence device and organic EL display
US8512879B2 (en) * 2009-11-10 2013-08-20 General Electric Company Polymer for optoelectronic device
JP2011258373A (en) * 2010-06-08 2011-12-22 Nippon Hoso Kyokai <Nhk> Organic el element and organic el display
CN105051088A (en) * 2013-03-28 2015-11-11 住友化学株式会社 Polymeric compound and light-emitting element manufactured using same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003034715A (en) * 2001-04-27 2003-02-07 Sumitomo Chem Co Ltd Polymer fluorescent substance and polymeric light emitting element
EP1344788A1 (en) * 2002-03-15 2003-09-17 Sumitomo Chemical Company, Limited Conjugated polymer comprising dibenzothiophene- or dibenzofuran-units and their use in polymer LEDs
JP2009043896A (en) * 2007-08-08 2009-02-26 Canon Inc Organic light-emitting element and display
WO2015163174A1 (en) * 2014-04-25 2015-10-29 住友化学株式会社 Light-emitting element

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019049225A1 (en) 2017-09-06 2019-03-14 住友化学株式会社 Light emitting element
WO2019065389A1 (en) * 2017-09-29 2019-04-04 住友化学株式会社 Light-emitting device
CN109956977A (en) * 2017-12-25 2019-07-02 北京夏禾科技有限公司 The metal complex of the ligand containing heterocyclic substituted, and electroluminescent device and compound formulas comprising the complex compound
WO2021166921A1 (en) * 2020-02-20 2021-08-26 保土谷化学工業株式会社 High molecular weight compound and light emitting diode including said high molecular weight compound
US11917899B2 (en) 2020-03-05 2024-02-27 Samsung Electronics Co., Ltd. Arylamine-fluorene alternating copolymer, electroluminescence device material, and electroluminescence device using the polymer

Also Published As

Publication number Publication date
JPWO2017146083A1 (en) 2018-12-20
JP6881430B2 (en) 2021-06-02

Similar Documents

Publication Publication Date Title
JP5867580B2 (en) Light emitting element
JP6108056B2 (en) Composition and light emitting device using the same
WO2017130977A1 (en) Composition, phosphorescent compound, and light-emitting element
JP6610536B2 (en) Light emitting device and composition used therefor
JP6468289B2 (en) Light emitting element
WO2016031639A1 (en) Polymer compound and light-emitting element using same
WO2015163174A1 (en) Light-emitting element
JP6881430B2 (en) Light emitting element and polymer compound used for the light emitting element
WO2015159744A1 (en) Composition and light-emitting element using same
JP6489122B2 (en) Light emitting device and polymer compound used therefor
JP5880679B2 (en) Method for manufacturing light emitting device
JP2018083941A (en) Composition and light emitting element prepared therewith
WO2017170916A1 (en) Metal complex, composition and light-emitting element
JP6754774B2 (en) Light emitting element
WO2017077904A1 (en) Method for driving light emitting element and light emitting device
JP2015174824A (en) Metal complex and light emitting element prepared using the same
JP2017108134A (en) Light emitting device
JP2020138934A (en) Metal complex and composition containing the metal complex
JP6506888B2 (en) Light emitting device and metal complex and composition used therefor
JP6804465B2 (en) Composition and light emitting device using it
JP2016064998A (en) Metal complex and light emitting element prepared therewith
JP2019068061A (en) Light emitting element
JP6417785B2 (en) Polymer compound and light emitting device using the same
JP7354557B2 (en) Polymer compounds and light emitting devices using them
JP2022027028A (en) Metal complex, composition, membrane, and light emitter

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018501726

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17756521

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17756521

Country of ref document: EP

Kind code of ref document: A1