WO2017146002A1 - Variable cam phase mechanism in valve operating device for internal combustion engine - Google Patents

Variable cam phase mechanism in valve operating device for internal combustion engine Download PDF

Info

Publication number
WO2017146002A1
WO2017146002A1 PCT/JP2017/006212 JP2017006212W WO2017146002A1 WO 2017146002 A1 WO2017146002 A1 WO 2017146002A1 JP 2017006212 W JP2017006212 W JP 2017006212W WO 2017146002 A1 WO2017146002 A1 WO 2017146002A1
Authority
WO
WIPO (PCT)
Prior art keywords
cam
centrifugal weight
pin
drive pin
centrifugal
Prior art date
Application number
PCT/JP2017/006212
Other languages
French (fr)
Japanese (ja)
Inventor
一範 野々山
Original Assignee
武蔵精密工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 武蔵精密工業株式会社 filed Critical 武蔵精密工業株式会社
Publication of WO2017146002A1 publication Critical patent/WO2017146002A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/02Valve drive
    • F01L1/04Valve drive by means of cams, camshafts, cam discs, eccentrics or the like
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/34Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift
    • F01L1/344Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear
    • F01L1/356Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear making the angular relationship oscillate, e.g. non-homokinetic drive

Definitions

  • the present invention relates to a cam phase variable mechanism in a valve operating apparatus for an internal combustion engine in which the valve camshaft is rotated in conjunction with a crankshaft of the internal combustion engine via a cam drive wheel (for example, a cam sprocket, a cam drive pulley, etc.)
  • a cam drive wheel for example, a cam sprocket, a cam drive pulley, etc.
  • the present invention relates to a cam phase variable mechanism that uses the centrifugal force of a centrifugal weight to change the phase of a valve-operating cam on a cam shaft in accordance with a change in engine speed.
  • the cam phase variable mechanism is conventionally known as shown in Patent Documents 1 and 2, for example, and in this mechanism, a cam drive wheel is supported by a driven flange (or cam shaft) fixed to the cam shaft so as to be relatively rotatable.
  • the centrifugal weight is supported on the cam drive wheel (or driven flange) via a pivot pin so that the centrifugal weight can swing between the diameter-reduced position and the diameter-enlarged position.
  • a return spring that is biased to the radial position is connected, and the centrifugal weight and the driven flange (or cam drive wheel) transmit driving force from the centrifugal weight to the driven flange (or cam drive wheel) in conjunction with the swing of the centrifugal weight. It is connected via a drive pin that can be transmitted.
  • the swinging force due to the centrifugal force of the centrifugal weight is such that the arm length L1 between the pivot pin and the drive pin connected to the cam drive wheel and the arm length L2 between the drive pin and the cam shaft.
  • the lever ratio (L2 / L1) Is amplified by the lever ratio (L2 / L1) and transmitted to the driven flange. Therefore, even if L2 is set longer to obtain a larger lever ratio in order to reduce the weight and size of the centrifugal mechanism, the conventional mechanism is more radially inward than the pivot pin connected to the prescribed position of the cam drive wheel. Since the drive pin is arranged on the side, it is difficult to set L2 sufficiently long because of the interference with the pivot pin. Therefore, an even larger lever ratio cannot be obtained, and the arrangement structure is disadvantageous in terms of reducing the weight and size of the centrifugal mechanism.
  • the present invention has been made in view of such circumstances, and is a cam in a valve gear for an internal combustion engine that can solve the above-described problems and contribute to the reduction in the weight and size of the centrifugal mechanism, and hence the size of the valve gear.
  • An object is to provide a phase variable mechanism.
  • a first camshaft integrally having a first cam is integrally connected to a cam drive wheel that rotates in conjunction with a crankshaft of an internal combustion engine, and the second cam is integrally formed.
  • a second camshaft is supported by the first camshaft so as to be relatively rotatable, and a driven flange adjacent to the cam drive wheel is integrally connected to the second camshaft. Is supported via a pivot pin so that a centrifugal weight disposed on the opposite side of the driven flange across the cam drive wheel can swing between a predetermined reduced diameter position and an enlarged diameter position.
  • a return spring that biases the centrifugal weight to the reduced diameter position is connected to the centrifugal weight, and the driven flange and the centrifugal weight are connected via a drive pin that passes through a through hole provided in the cam drive wheel.
  • the driving force can be transmitted from the centrifugal weight to the driven flange so that the driven flange rotates relative to the first camshaft in conjunction with the swing of the centrifugal weight.
  • the drive pin has a hole shape that allows the drive pin to rotate around the pivot pin in association with the swinging of the cam drive wheel, and the drive pin is more outward in the radial direction of the cam drive wheel than the pivot pin. Arrangement is the first feature.
  • the phase change angle of the second cam at the time of the relative rotation is the same from the contact position of the drive pin with one inner surface of the through hole.
  • the second feature is that the amount of the through hole is restricted by the amount of movement to the contact position with the other inner surface.
  • the center of the pivot pin and the center of the pivot pin can be seen when viewed from a projection plane orthogonal to the first cam shaft when the centrifugal weight is in the reduced diameter position.
  • a third feature is that the drive pin is arranged on a virtual straight line connecting the center of one camshaft.
  • the centrifugal weight includes a plate-like base portion and a weight portion thicker than the base portion that is connected to the base portion.
  • the driven flange is thicker than the base portion of the centrifugal weight, fixes the base end portion of the drive pin, the tip end portion of the drive pin is fitted and connected, and the cam
  • a fourth feature is that a connecting hole formed of a long hole in the radial direction of the drive wheel is provided in the base portion of the centrifugal weight.
  • the centrifugal weight connected to the cam drive wheel that rotates integrally with the first camshaft with the first cam via the pivot pin is provided in the engine of the internal combustion engine.
  • the centrifugal weight swings from the reduced diameter position to the enlarged diameter position as the rotational speed increases, and accordingly, the centrifugal weight causes the driven flange (and hence the second cam shaft with the second cam) to move through the drive pin to the first. Since it rotates relative to the camshaft, only the phase of the second cam of the first and second cams (and thus the opening / closing timing of the engine valve linked to the second cam) is linked to the swing of the centrifugal weight.
  • the drive pin is disposed radially outward from the pivot pin and the arm length L2 between the drive pin and the first cam shaft can be secured sufficiently long without being obstructed by the pivot pin,
  • the lever ratio (L2 / L1) between the arm lengths L1 and L2 between the drive pins can be made sufficiently large, and the swinging force of the centrifugal weight can be efficiently amplified and transmitted to the driven flange. Since the driven flange can be driven strongly even by a small centrifugal force, it is possible to contribute to the light weight and size reduction of the centrifugal mechanism including the centrifugal weight.
  • the centrifugal weight is disposed on the opposite side of the driven flange across the cam drive wheel, and the cam drive wheel is provided with a through hole through which the drive pin passes.
  • the drive pin has a hole shape that allows the drive pin to rotate around the pivot pin, the cam phase is variable compared to the structure in which both the driven flange and the centrifugal weight are arranged outside the cam drive wheel in the axial direction. The extension of the mechanism in the axial direction from the outer end of the first cam shaft can be suppressed as much as possible, which can contribute to the reduction in the axial direction of the valve gear.
  • the phase change angle of the second cam during the relative rotation between the driven flange (second cam shaft) and the first cam shaft is such that the drive pin is one of the through holes. Since the amount of movement of the drive pin, which is regulated by the through hole, is controlled by the amount of movement from the contact position with the inner surface to the contact position of the other inner surface. It corresponds directly to the limit value. Thereby, the setting accuracy of the phase change angle can be increased, and the phase change angle limit defining means (that is, the stopper means for restricting the swing limit of the centrifugal weight) need not be specially provided. Simplification is achieved.
  • the centrifugal weight when the centrifugal weight is at the reduced diameter position, the virtual weight connecting the center of the pivot pin and the center of the first cam shaft is viewed from the projection plane orthogonal to the first cam shaft. Since the drive pins are arranged on a straight line, the length of L1 with respect to the specified L2 is minimum at the reduced diameter position (that is, the initial swing position) of the centrifugal weight. This makes it possible to increase the maximum value of the lever ratio in combination with the above-described effect of ensuring L2 sufficiently long, so that the drive responsiveness of the driven flange by the drive pin is effectively enhanced. Can do.
  • the driven flange is configured to be thicker than the relatively thin plate-like base portion of the centrifugal weight, and the base end portion of the drive pin is fixed. Support rigidity for the drive pin by the flange can be increased.
  • a connection hole constituted by a long hole extending in the radial direction of the cam drive wheel is provided at the base of the centrifugal weight, the connection is made when the centrifugal weight is swung.
  • the difference between the turning radius of the hole around the pivot pin and the turning radius of the drive pin around the center of the first cam shaft is reasonably due to the sliding of the drive pin in the long connecting hole (long hole) in the radial direction. Therefore, the swinging force of the centrifugal weight can be smoothly transmitted to the drive pin through the connection hole.
  • FIG. 1 is a longitudinal sectional view of an essential part of the valve gear according to the first embodiment.
  • FIG. 2 is a view taken in the direction of arrow 2 in FIG.
  • FIG. 3 is a relationship diagram between the cam lift and the phase according to the first embodiment.
  • FIG. 4 is a longitudinal sectional view (corresponding to FIG. 1) of the main part of the valve gear according to the second embodiment.
  • FIG. 5 is a view taken in the direction of arrow 5 in FIG.
  • FIG. 6 is a relationship diagram of cam lift and phase according to the second embodiment (corresponding to FIG. 3).
  • FIG. 7 shows the principal part of the valve gear according to the third embodiment.
  • FIG. 7 (A) is a partial correspondence diagram of FIG. 1
  • FIG. 7 (B) is a correspondence diagram of FIG. FIG.
  • FIG. 8 is a variation of the first embodiment, and is a relationship diagram between cam lift and phase (corresponding to FIG. 6) when the exhaust cam is advanced in a high speed range.
  • FIG. 9 is a variation of the second embodiment, and is a relationship diagram between cam lift and phase (corresponding to FIG. 3) when the intake cam is retarded in a high speed range.
  • a cylinder head 5 of an SOHC type single cylinder internal combustion engine as an internal combustion engine mounted on a vehicle such as a motorcycle has a plurality of valve cams (that is, intake and exhaust cams 20c and 10c).
  • a cam phase variable mechanism is provided that changes only the cam phase of a part of the engine (that is, the intake cam 20c) in accordance with the increase in the engine speed.
  • an example of the cam phase variable mechanism will be specifically described.
  • the first camshaft 10 that rotates in conjunction with a crankshaft (not shown) of the internal combustion engine via a chain transmission mechanism 33 is rotatably supported on the cylinder head 5 via bearings B1 and B2.
  • An appropriate fixing means for example, a bolt and a non-rotating means not shown
  • a chain transmission mechanism 33 is constituted by the cam sprocket 30, a drive sprocket (not shown) fixed to the crankshaft, and an endless chain 34 wound between the two sprockets.
  • the cam sprocket 30 constitutes the cam drive wheel of the present invention.
  • An exhaust cam 10c as a first cam is integrally formed on the outer periphery of the first cam shaft 10.
  • An exhaust side rocker arm 6 that is pivotally supported by the cylinder head 5 and engages with an exhaust valve (not shown) is slidably contacted with the exhaust cam 10c. As the engine rotates, the exhaust cam 10c opens and closes the exhaust valve via the exhaust side rocker arm 6.
  • a cylindrical second camshaft 20 integrally having an intake cam 20c as a second cam in parallel with the exhaust cam 10c is provided on the outer periphery of the first camshaft 10 via bearings B3 and B4. It is movably fitted and supported.
  • An intake side rocker arm 7 that is pivotally supported by the cylinder head 5 and engages with an intake valve (not shown) is slidably abutted on the intake cam 20c. As the engine rotates, the intake cam 20c opens and closes the intake valve via the intake side rocker arm 7.
  • a part of the plurality of bearings B1 and B2 that rotatably support the first camshaft 10 is the outer peripheral portion of the second camshaft 20 on the side of the intake cam 20c.
  • the first camshaft 10 is rotatably supported via the second camshaft 20 and the bearings B3 and B4.
  • a disc-shaped driven flange 21 adjacent to the inner side surface (the right side surface in FIG. 1) of the cam sprocket 30 is provided at the outer end portion of the second cam shaft 20 with appropriate fixing means (for example, press-fitting means or spline fitting). Etc.).
  • a centrifugal weight 50 adjacent to the outer side surface projects to a predetermined reduced diameter position (solid line position in FIG. 2) and radially outward from the reduced diameter position. It is supported by a pivot pin 32 so as to be swingable so that it can swing between the enlarged diameter position (chain line position in FIG. 2).
  • the base end portion 32a of the pivot pin 32 is fixed to the cam sprocket 30 by appropriate fixing means (in this embodiment, press-fitting).
  • the centrifugal weight 50 is connected to one end of a tension coil spring 51 as a return spring that urges the centrifugal weight 50 to the reduced diameter position, and the other end of the spring 51 is locked to the tip 32b of the pivot pin 32.
  • the centrifugal weight 50 is disposed on the opposite side of the driven flange 21 with the cam sprocket 30 in the axial direction (more specifically, on the outer side in the axial direction when viewed from the cam sprocket 30). is there. Then, the centrifugal weight 50 and the driven flange 21 are connected via the drive pin 22 so as to be relatively rotatable.
  • the drive pin 22 is driven from the centrifugal weight 50 so that the driven flange 21 (and hence the second cam shaft 20) rotates relative to the first cam shaft 10 in conjunction with the swing of the centrifugal weight 50 around the pivot pin 32. A driving force can be transmitted to the flange 21.
  • the drive pin 22 is disposed outward in the radial direction of the cam sprocket 30 with respect to the pivot pin 32.
  • the center of the pivot pin 32 and the center of the first cam shaft 10 are viewed from the projection plane orthogonal to the first cam shaft 10 (that is, FIG. 2).
  • Drive pins 22 are arranged on a virtual straight line connecting the two.
  • the drive pin 22 is located on the radially outer side of the cam sprocket 30 with respect to the pivot pin 32 as described above, the drive pin 22 is disposed at a position slightly shifted from the imaginary straight line. Also good.
  • the centrifugal weight 50 includes a plate-like base portion 50a and a weight portion 50b thicker than the base portion 50a connected to the base portion 50a, and has an arc shape along the circumferential direction of the cam sprocket 30. It is formed.
  • the base portion 50a is formed with a particularly wide base end portion 54 in the radial direction.
  • the driven flange 21 is configured to be thicker than the base portion 50a of the centrifugal weight 50, and the base end portion 22a of the drive pin 22 is fixed to the thick base portion 50a (in this embodiment, press-fitted and fixed).
  • the wide base end portion 54 of the centrifugal weight 50 has a coupling hole into which a bearing hole 53 for rotatably penetrating and supporting an intermediate portion of the pivot pin 32 and a distal end portion 22b of the drive pin 22 are inserted and connected. 52 are juxtaposed.
  • the bearing hole 53 is formed as a circular hole
  • the connection hole 52 is formed as a long hole extending in the radial direction of the cam sprocket 30.
  • the cam sprocket 30 is provided with a through hole 31 through which an intermediate portion of the drive pin 22 passes.
  • the through hole 31 is formed in a hole shape that allows the drive pin 22 to rotate around the pivot pin 32 accompanying the swinging of the centrifugal weight 50 (that is, an arc hole shape along the rotation locus of the drive pin 22).
  • the phase change angle of the second cam 20c when the second camshaft 20 (and hence the second cam 20c) is rotated relative to the first camshaft 10 is determined by the drive pin 22. It is regulated by the amount of movement from the first contact position that contacts one inner side surface 36 of the arc-shaped through hole 31 to the second contact position that contacts the other inner surface 35 of the hole 31.
  • the swing position of the centrifugal weight 50 is defined as a predetermined reduced diameter position against the elastic force of the tension coil spring 51 as a return spring.
  • the swing position of the centrifugal weight 50 is defined as a predetermined diameter-enlarged position against the centrifugal force of the centrifugal weight 50.
  • the centrifugal weight 50 Since the centrifugal force acting on the centrifugal weight 50 is small when the internal combustion engine is in the low speed operation region, the centrifugal weight 50 is held at a predetermined reduced diameter position (solid line position in FIG. 2) by the elastic force of the tension coil spring 51. Is done. Further, when the rotational speed of the internal combustion engine increases, the centrifugal weight 50, which increases the centrifugal force with it, swings from the reduced diameter position toward the enlarged diameter position (chain line position in FIG. 2).
  • the centrifugal weight 50 is swung from the reduced diameter position to the enlarged diameter position by centrifugal force as the engine speed of the internal combustion engine increases, and accordingly, the centrifugal weight 50 is driven via the drive pin 22 to the driven flange 21 ( Accordingly, since the second cam shaft 20 with the intake cam 20c is rotated relative to the first cam shaft 10, the phase of the intake cam 20c in particular among the intake and exhaust cams 20c, 10c (and hence the intake cam 20c is inhaled). Only the intake valve opening / closing timing linked via the side rocker arm 7 can be changed (advanced) in response to the increase in the engine speed in conjunction with the swing of the centrifugal weight 50.
  • only the intake cam 20c can be advanced (see FIG. 3) during high-speed operation of the engine, so that the overlap period between the intake valve opening and the exhaust valve opening is lengthened to improve the scavenging efficiency and High-speed driving performance can be improved.
  • the drive pin 22 of the present embodiment is disposed outward in the radial direction of the cam sprocket 30 with respect to the pivot pin 32, and the arm length L2 between the drive pin 22 and the first cam shaft 10 is set to the pivot pin. Therefore, the lever ratio (L2 / L1) between the arm length L1 between the pivot pin 32 and the drive pin 22 and the L2 can be sufficiently increased. As a result, the swinging force of the centrifugal weight 50 can be efficiently amplified and transmitted to the driven flange 21, so that the driven flange 21 can be driven strongly by the relatively small centrifugal force of the centrifugal weight 50, The included centrifugal mechanism can be reduced in weight and size.
  • the centrifugal weight 50 of the present embodiment is disposed on the opposite side of the driven flange 21 with the cam sprocket 30 interposed therebetween, and the cam sprocket 30 is provided with a through hole 31 through which the drive pin 22 passes.
  • 31 has a hole shape (in this embodiment, an arc-shaped long hole) that allows the drive pin 22 to rotate around the pivot pin 32 in accordance with the swinging of the centrifugal weight 50.
  • the phase change angle of the intake cam 20c during the relative rotation between the driven flange 21 (therefore the second cam shaft 20 integrated therewith) and the first cam shaft 10 is such that the drive pin 22 is one of the through holes 31. Since the amount of movement of the drive pin 22 restricted by the inner wall of the through hole 31 is restricted by the amount of movement from the contact position with the inner side surface 36 to the contact position with the other inner side surface 35, the intake cam This directly corresponds to the limit value of the phase change angle of 20c, and the setting accuracy of the phase change angle can be improved.
  • the centrifugal weight 50 when the centrifugal weight 50 is in the reduced diameter position, the center of the pivot pin 32 and the center of the first cam shaft 10 are viewed from the projection plane (FIG. 2) orthogonal to the first cam shaft 10. Since the drive pin 22 is arranged on the imaginary straight line to be connected, the length of L1 with respect to the specified L2 is minimum at the diameter reduction position (that is, the swing initial position) of the centrifugal weight 50. This makes it possible to set the maximum value of the lever ratio (L2 / L1) in combination with the above-described effect that L2 can be secured sufficiently long, so that the drive response of the driven flange 21 by the drive pin 22 is achieved. Sexually enhanced.
  • the driven flange 21 of the present embodiment is configured to be thicker than the relatively thin plate-like base portion 50a of the centrifugal weight 50, and the base end portion 22a of the drive pin 22 is fixed.
  • the support rigidity with respect to the drive pin 22 can be increased.
  • the centrifugal weight 50 since the distal end portion 22b of the drive pin 22 is inserted and connected, and the connection hole 52 formed by a long hole in the radial direction of the cam sprocket 30 is provided in the base portion 50a of the centrifugal weight 50, the centrifugal weight 50 The difference between the turning radius of the connecting hole 52 around the pivot pin 32 and the turning radius of the drive pin 22 around the center of the cam sprocket 30 is within the connecting hole 52 (long hole) that is long in the radial direction. Thus, the sliding force of the centrifugal weight 50 can be smoothly transmitted to the driving pin 22 through the connecting hole 52.
  • the first cam on the first cam shaft 10 is the exhaust cam 10c
  • the second cam on the second cam shaft 20 is the intake cam.
  • the first cam 10c on the first cam shaft 10 is an intake cam
  • the second cam 20c on the second cam shaft 20 is an exhaust cam. Therefore, the intake side rocker arm 7 is in sliding contact with the first cam 10c (intake cam), and the exhaust side rocker arm 6 is in sliding contact with the second cam 20c (exhaust cam).
  • the centrifugal weight 50 oscillates from the reduced diameter position to the enlarged diameter position by the centrifugal force according to the increase in the engine speed of the internal combustion engine, and via the drive pin 22.
  • the driven flange 21 second camshaft 20
  • the phase of the exhaust cam as the second cam 20c (and thus the exhaust cam via the exhaust-side rocker arm 6).
  • Only the exhaust valve opening / closing timing that is linked) is changed (retarded) according to the increase in the engine speed, so that, for example, the scavenging efficiency in the high-speed operation region of the internal combustion engine can be improved and the high-speed operation performance can be improved. . Therefore, it is particularly suitable for an internal combustion engine that requires an increase in exhaust efficiency.
  • the return spring that repels the centrifugal weight 50 in the diameter reducing direction is constituted by a torsion spring 60 interposed between the centrifugal weight 50 and the cam sprocket 30.
  • One end of the torsion spring 60 is connected to the centrifugal weight 50 via a first locking pin 61 fixed to the base 50 a of the centrifugal weight 50, and the other end of the spring 60 is fixed to the cam sprocket 30.
  • the cam sprocket 30 is locked via the locking pin 62.
  • the intermediate coil portion 63 of the torsion spring 60 is surrounded by the periphery of the pivot pin 32, and therefore, the reluctance of the spring intermediate portion is suppressed.
  • the centrifugal weight 50 is held in the reduced diameter position (solid line position in FIG. 7B) during normal times by the torsional force of the torsion spring 60. Further, the centrifugal weight 50 swings against the torsional force of the torsion spring 60 toward the diameter-enlarged position (the chain line position in FIG. 7B) by centrifugal force in accordance with the increasing change in the engine speed. Move.
  • first and second cams 10c and 20c are an exhaust cam and the other is an intake cam.
  • first and second cams are used. Both the cams 10c and 20c may be intake cams (ie, first and second intake cams), or both the first and second cams 10c and 20c are exhaust cams (ie, first and second exhaust cams). It is good.
  • the single-cylinder engine is used as the internal combustion engine provided with the valve gear, but the present invention may be applied to a multi-cylinder (for example, two-cylinder) engine.
  • the cam phase variable mechanism of the present invention is provided for each cylinder.
  • the SOHC engine is used as the internal combustion engine provided with the valve gear, but the present invention may be applied to a DOHC engine.
  • the cam phase varying mechanism of the present invention is provided on at least one of the intake camshaft and the exhaust camshaft provided for each intake valve and exhaust valve.
  • an internal combustion engine for a motorcycle is shown.
  • the present invention may be applied to an internal combustion engine mounted on a vehicle other than a motorcycle, or an internal combustion engine for a purpose other than a vehicle (for example, a stationary engine).
  • the present invention may be applied to an internal combustion engine of the type.
  • the centrifugal weight 50 is disposed on the opposite side of the driven flange 21 with the cam drive wheel (cam sprocket 30) interposed therebetween, in particular, on the outer side in the axial direction of the cam drive wheel 30.
  • the centrifugal weight 50 may be disposed on the inner side in the axial direction of the cam driving wheel 30.
  • the centrifugal weight 50 is disposed between the driven flange 21 disposed on the outer side in the axial direction of the cam driving wheel 30 and the first cam shaft 10. May be integrally coupled with a connecting arm that penetrates the cam drive wheel 30 loosely.
  • the optimum relationship between the engine speed (particularly the vehicle speed in the case of an internal combustion engine for vehicles) and the opening / closing timings of the intake and exhaust valves can be variously set depending on the structure and specifications of the internal combustion engine.
  • the control example in which the valve timing is changed in the high speed operation range has been described.
  • the valve timing may be changed in the medium speed operation range.
  • the intake cam as the second cam is advanced in the high speed operation range, but conversely, the exhaust cam is advanced (see FIG. 8) to close the exhaust valve.
  • the timing may be advanced, and in this case, the valve overlap period can be shortened to prevent the unburned gas from being blown out, and the hydrocarbon in the exhaust gas can be reduced.
  • the exhaust cam as the second cam is retarded in the high speed operation range, but conversely, the intake cam is retarded (see FIG. 9) to close the intake valve closing timing. In this case, the intake efficiency can be improved by the inertia supercharging effect.

Abstract

Provided is a valve operating device variable cam phase mechanism that utilizes the centrifugal force of a centrifugal weight to change the phase of a valve operating cam according to a change in engine speed, wherein: a second cam shaft (20) equipped with a second cam (20c) is relatively rotatably supported by a first cam shaft (10) equipped with a first cam (10c); a centrifugal weight (50) is supported by a cam drive wheel (30) via a pivot pin (32) so as to be able to rock between a reduced diameter position and an expanded diameter position; a return spring (51) for biasing the centrifugal weight to the reduced diameter position is connected to the centrifugal weight; a driven flange (21) connected to the cam drive wheel (30) and the centrifugal weight are connected via a drive pin (22) passing through a through hole (31) of the cam drive wheel; a driving force can be transmitted by the drive pin from the centrifugal weight to the driven flange so that both camshafts rotate relative to each other in conjunction with the swing of the centrifugal weight; and the drive pin is disposed radially outward of the cam drive wheel from the pivot pin. The weight and size of a centrifugal mechanism is thereby reduced.

Description

内燃機関用動弁装置におけるカム位相可変機構Cam phase variable mechanism in valve gear for internal combustion engine
 本発明は、動弁用カム軸をカム駆動輪(例えばカムスプロケット、カム駆動プーリ等)を介して内燃機関のクランク軸に連動回転させるようにした内燃機関用動弁装置におけるカム位相可変機構、特に遠心ウェイトの遠心力を利用してカム軸上の動弁カムの位相を機関回転数の変化に応じて変化させるカム位相可変機構に関する。 The present invention relates to a cam phase variable mechanism in a valve operating apparatus for an internal combustion engine in which the valve camshaft is rotated in conjunction with a crankshaft of the internal combustion engine via a cam drive wheel (for example, a cam sprocket, a cam drive pulley, etc.) In particular, the present invention relates to a cam phase variable mechanism that uses the centrifugal force of a centrifugal weight to change the phase of a valve-operating cam on a cam shaft in accordance with a change in engine speed.
 上記カム位相可変機構は、例えば特許文献1,2に示されるように従来公知であり、このものでは、カム軸に固定の従動フランジ(又はカム軸)にカム駆動輪が相対回動可能に支持され、カム駆動輪(又は従動フランジ)に、遠心ウェイトが縮径位置と拡径位置との間で揺動し得るようにピボットピンを介して支持されると共に、その遠心ウェイトに、これを縮径位置に付勢する戻しばねが接続され、遠心ウェイトと従動フランジ(又はカム駆動輪)とが、遠心ウェイトの揺動に連動して遠心ウェイトから従動フランジ(又はカム駆動輪)へ駆動力を伝達し得る駆動ピンを介して連結される。この可変機構では、機関回転数の上昇に応じて遠心ウェイトが遠心力で縮径位置から拡径位置へ揺動することにより、カム駆動輪と従動フランジ(カム軸)とを相対回動させてカム位相を変化させるようにしている。 The cam phase variable mechanism is conventionally known as shown in Patent Documents 1 and 2, for example, and in this mechanism, a cam drive wheel is supported by a driven flange (or cam shaft) fixed to the cam shaft so as to be relatively rotatable. The centrifugal weight is supported on the cam drive wheel (or driven flange) via a pivot pin so that the centrifugal weight can swing between the diameter-reduced position and the diameter-enlarged position. A return spring that is biased to the radial position is connected, and the centrifugal weight and the driven flange (or cam drive wheel) transmit driving force from the centrifugal weight to the driven flange (or cam drive wheel) in conjunction with the swing of the centrifugal weight. It is connected via a drive pin that can be transmitted. In this variable mechanism, as the engine speed increases, the centrifugal weight swings from the reduced diameter position to the enlarged diameter position by centrifugal force, thereby rotating the cam drive wheel and the driven flange (cam shaft) relative to each other. The cam phase is changed.
日本特開平8-254108号公報Japanese Unexamined Patent Publication No. 8-254108 日本実開昭55-108203号公報Japanese Utility Model Publication No. 55-108203
 ところで特許文献1,2に示される従来のカム位相可変機構では、カム軸に複数のカムが一体に形成されており、カム軸とカム駆動輪との相対回動により、カム軸上の複数全てのカムが同時にカム位相を変化(進角又は遅角)する構造である。従って、1つのカム位相可変機構で一部のカムだけを位相変化させるようなことはできず、例えば、排気弁(又は吸気弁)を位相変化させないで吸気弁(又は排気弁)だけを位相変化させるようなことや、1つの気筒に2個の吸気弁を設けた内燃機関において、第1吸気弁を位相変化させないで第2吸気弁だけを位相変化させるようなことはできない。従って、内燃機関の要求特性に応じて一部のカムだけを位相変化させたい場合には適用困難となる。 By the way, in the conventional cam phase variable mechanism shown in Patent Documents 1 and 2, a plurality of cams are integrally formed on the camshaft, and all of the plurality of camshafts on the camshaft are rotated by relative rotation between the camshaft and the cam drive wheels. These cams simultaneously change the cam phase (advance or retard). Therefore, it is not possible to change the phase of only a part of the cams with one cam phase variable mechanism. For example, the phase of only the intake valve (or exhaust valve) is changed without changing the phase of the exhaust valve (or intake valve). In an internal combustion engine having two intake valves in one cylinder, it is not possible to change the phase of only the second intake valve without changing the phase of the first intake valve. Therefore, it is difficult to apply when it is desired to change the phase of only some cams according to the required characteristics of the internal combustion engine.
 また特許文献1のカム位相可変機構では、遠心ウェイトの遠心力による揺動力が、カム駆動輪に連結したピボットピン及び駆動ピン間の腕長さL1と、駆動ピンとカム軸間の腕長さL2との比、即ちレバー比(L2/L1)により増幅されて従動フランジに伝達される。そこで、遠心機構の軽量小型化を図るべく更に大きいレバー比を得ようとしてL2を長く設定しようとしても、従来機構では、カム駆動輪の規定の位置に連結されるピボットピンよりも径方向内方側に駆動ピンが配置されているため、上記L2は、ピボットピンに邪魔されて十分長く設定することが困難であった。従って、更に大きいレバー比を得ることはできず、遠心機構の軽量・小型化を図る上で不利な配置構造であった。 Further, in the cam phase variable mechanism of Patent Document 1, the swinging force due to the centrifugal force of the centrifugal weight is such that the arm length L1 between the pivot pin and the drive pin connected to the cam drive wheel and the arm length L2 between the drive pin and the cam shaft. Is amplified by the lever ratio (L2 / L1) and transmitted to the driven flange. Therefore, even if L2 is set longer to obtain a larger lever ratio in order to reduce the weight and size of the centrifugal mechanism, the conventional mechanism is more radially inward than the pivot pin connected to the prescribed position of the cam drive wheel. Since the drive pin is arranged on the side, it is difficult to set L2 sufficiently long because of the interference with the pivot pin. Therefore, an even larger lever ratio cannot be obtained, and the arrangement structure is disadvantageous in terms of reducing the weight and size of the centrifugal mechanism.
 本発明は、かかる事情に鑑みてなされたものであって、上記問題を解消して遠心機構の軽量小型化、延いては動弁装置の小型化に寄与し得る内燃機関用動弁装置におけるカム位相可変機構を提供することを目的とする。 The present invention has been made in view of such circumstances, and is a cam in a valve gear for an internal combustion engine that can solve the above-described problems and contribute to the reduction in the weight and size of the centrifugal mechanism, and hence the size of the valve gear. An object is to provide a phase variable mechanism.
 上記目的を達成するために、本発明は、第1カムを一体に有する第1カム軸が、内燃機関のクランク軸に連動回転するカム駆動輪に一体的に連結され、第2カムを一体に有する第2カム軸が前記第1カム軸に相対回動可能に支持されると共に、その第2カム軸に、前記カム駆動輪に隣接する従動フランジが一体的に連結され、前記カム駆動輪には、そのカム駆動輪を挟んで前記従動フランジとは反対側に配置した遠心ウェイトが、所定の縮径位置と拡径位置との間で揺動し得るようにピボットピンを介して支持されると共に、その遠心ウェイトに、これを前記縮径位置に付勢する戻しばねが接続され、前記従動フランジと前記遠心ウェイトとが、前記カム駆動輪に設けた貫通孔を貫通する駆動ピンを介して相互に連結されていて、その駆動ピンにより、遠心ウェイトの前記揺動に連動して前記従動フランジが前記第1カム軸に対し相対回動するよう遠心ウェイトから従動フランジへ駆動力を伝達可能であり、前記貫通孔は、遠心ウェイトの前記揺動に伴う前記駆動ピンの前記ピボットピン回りの回動を許容する孔形状を有しており、前記駆動ピンは、前記ピボットピンよりも、前記カム駆動輪の径方向で外方に配置されることを第1の特徴とする。 In order to achieve the above object, according to the present invention, a first camshaft integrally having a first cam is integrally connected to a cam drive wheel that rotates in conjunction with a crankshaft of an internal combustion engine, and the second cam is integrally formed. A second camshaft is supported by the first camshaft so as to be relatively rotatable, and a driven flange adjacent to the cam drive wheel is integrally connected to the second camshaft. Is supported via a pivot pin so that a centrifugal weight disposed on the opposite side of the driven flange across the cam drive wheel can swing between a predetermined reduced diameter position and an enlarged diameter position. In addition, a return spring that biases the centrifugal weight to the reduced diameter position is connected to the centrifugal weight, and the driven flange and the centrifugal weight are connected via a drive pin that passes through a through hole provided in the cam drive wheel. Interconnected and driven The driving force can be transmitted from the centrifugal weight to the driven flange so that the driven flange rotates relative to the first camshaft in conjunction with the swing of the centrifugal weight. The drive pin has a hole shape that allows the drive pin to rotate around the pivot pin in association with the swinging of the cam drive wheel, and the drive pin is more outward in the radial direction of the cam drive wheel than the pivot pin. Arrangement is the first feature.
 また本発明は、第1の特徴に加えて、前記相対回動の際の前記第2カムの位相変化角度は、前記駆動ピンが前記貫通孔の一方の内側面との当接位置から、同貫通孔の他方の内側面との当接位置まで移動する量により規制されることを第2の特徴とする。 Further, according to the present invention, in addition to the first feature, the phase change angle of the second cam at the time of the relative rotation is the same from the contact position of the drive pin with one inner surface of the through hole. The second feature is that the amount of the through hole is restricted by the amount of movement to the contact position with the other inner surface.
 また本発明は、第1又は第2の特徴に加えて、前記遠心ウェイトが前記縮径位置にあるときに、前記第1カム軸と直交する投影面で見て、前記ピボットピンの中心と第1カム軸中心とを結ぶ仮想直線上に前記駆動ピンが配置されることを第3の特徴とする。 According to the present invention, in addition to the first or second feature, the center of the pivot pin and the center of the pivot pin can be seen when viewed from a projection plane orthogonal to the first cam shaft when the centrifugal weight is in the reduced diameter position. A third feature is that the drive pin is arranged on a virtual straight line connecting the center of one camshaft.
 また本発明は、第1~第3の何れかの特徴に加えて、前記遠心ウェイトは、板状の基部と、その基部に連設される、該基部よりも厚肉の重錘部とを備え、前記従動フランジは、遠心ウェイトの前記基部よりも厚肉に構成されていて、前記駆動ピンの基端部を固着しており、前記駆動ピンの先端部が嵌挿、連結され且つ前記カム駆動輪の径方向に長い長孔で構成される連結孔が、前記遠心ウェイトの前記基部に設けられることを第4の特徴とする。 In addition to the first to third features of the present invention, the centrifugal weight includes a plate-like base portion and a weight portion thicker than the base portion that is connected to the base portion. The driven flange is thicker than the base portion of the centrifugal weight, fixes the base end portion of the drive pin, the tip end portion of the drive pin is fitted and connected, and the cam A fourth feature is that a connecting hole formed of a long hole in the radial direction of the drive wheel is provided in the base portion of the centrifugal weight.
 本発明の第1の特徴によれば、第1カム付きの第1カム軸と一体に回動するカム駆動輪にピボットピンを介して揺動可能に連結される遠心ウェイトが、内燃機関の機関回転数の上昇に応じて遠心力で縮径位置から拡径位置へ揺動し、それに伴い、遠心ウェイトが駆動ピンを介して従動フランジ(従って第2カム付きの第2カム軸)を第1カム軸に対し相対回動させるので、第1,第2カムのうち特に第2カムの位相(延いては第2カムに連動する機関弁の開閉時期)だけを、遠心ウェイトの揺動に連動させて機関回転数変化に応じ変化(即ち進角又は遅角)させることができ、従って、内燃機関の要求特性に応じて第2カムだけを位相変化させたい場合に好都合である。しかも、駆動ピンは、ピボットピンよりも径方向外方側に配置されていて、駆動ピンと第1カム軸間の腕長さL2をピボットピンに邪魔されずに十分長く確保できるため、ピボットピン及び駆動ピン間の腕長さL1と、L2とのレバー比(L2/L1)を十分大きくでき、遠心ウェイトの揺動力を効率よく増幅して従動フランジに伝達可能となり、これにより、遠心ウェイトの比較的小さな遠心力によっても従動フランジを強力に駆動できるから、遠心ウェイトを含む遠心機構の軽量小型化に寄与することができる。 According to the first feature of the present invention, the centrifugal weight connected to the cam drive wheel that rotates integrally with the first camshaft with the first cam via the pivot pin is provided in the engine of the internal combustion engine. The centrifugal weight swings from the reduced diameter position to the enlarged diameter position as the rotational speed increases, and accordingly, the centrifugal weight causes the driven flange (and hence the second cam shaft with the second cam) to move through the drive pin to the first. Since it rotates relative to the camshaft, only the phase of the second cam of the first and second cams (and thus the opening / closing timing of the engine valve linked to the second cam) is linked to the swing of the centrifugal weight. Therefore, it is possible to change (i.e., advance or retard) according to changes in the engine speed, and therefore, it is convenient when only the second cam is desired to change in phase according to the required characteristics of the internal combustion engine. In addition, since the drive pin is disposed radially outward from the pivot pin and the arm length L2 between the drive pin and the first cam shaft can be secured sufficiently long without being obstructed by the pivot pin, The lever ratio (L2 / L1) between the arm lengths L1 and L2 between the drive pins can be made sufficiently large, and the swinging force of the centrifugal weight can be efficiently amplified and transmitted to the driven flange. Since the driven flange can be driven strongly even by a small centrifugal force, it is possible to contribute to the light weight and size reduction of the centrifugal mechanism including the centrifugal weight.
 その上、遠心ウェイトは、カム駆動輪を挟んで従動フランジとは反対側に配置され、カム駆動輪には、駆動ピンが貫通する貫通孔が設けられ、その貫通孔は、遠心ウェイトの前記揺動に伴う駆動ピンのピボットピン回りの回動を許容する孔形状を有しているので、従動フランジ及び遠心ウェイトを何れもカム駆動輪の軸方向外側に配置した構造と比べて、カム位相可変機構の、第1カム軸外端からの軸方向張出しを極力抑えることができ、動弁装置の軸方向小型化に寄与することができる。 In addition, the centrifugal weight is disposed on the opposite side of the driven flange across the cam drive wheel, and the cam drive wheel is provided with a through hole through which the drive pin passes. As the drive pin has a hole shape that allows the drive pin to rotate around the pivot pin, the cam phase is variable compared to the structure in which both the driven flange and the centrifugal weight are arranged outside the cam drive wheel in the axial direction. The extension of the mechanism in the axial direction from the outer end of the first cam shaft can be suppressed as much as possible, which can contribute to the reduction in the axial direction of the valve gear.
 また本発明の第2の特徴によれば、従動フランジ(第2カム軸)と第1カム軸との前記相対回動の際の第2カムの位相変化角度は、駆動ピンが貫通孔の一方の内側面との当接位置から、他方の内側面の当接位置まで移動する量により規制されるので、上記貫通孔により規制される駆動ピンの移動量が、第2カムの位相変化角度の限界値に直接対応することとなる。これにより、その位相変化角度の設定精度を高めることができ、また位相変化角度の限界規定手段(即ち遠心ウェイトの揺動限を規制するストッパ手段)を特別に設ける必要はなくなるから、装置の構造簡素化が図られる。 According to the second feature of the present invention, the phase change angle of the second cam during the relative rotation between the driven flange (second cam shaft) and the first cam shaft is such that the drive pin is one of the through holes. Since the amount of movement of the drive pin, which is regulated by the through hole, is controlled by the amount of movement from the contact position with the inner surface to the contact position of the other inner surface. It corresponds directly to the limit value. Thereby, the setting accuracy of the phase change angle can be increased, and the phase change angle limit defining means (that is, the stopper means for restricting the swing limit of the centrifugal weight) need not be specially provided. Simplification is achieved.
 また本発明の第3の特徴によれば、遠心ウェイトが縮径位置にあるときに、第1カム軸と直交する投影面で見て、ピボットピンの中心と第1カム軸中心とを結ぶ仮想直線上に駆動ピンが配置されるので、規定のL2に対するL1の長さが遠心ウェイトの縮径位置(即ち揺動初期位置)で最小となる。これにより、上述したようなL2を十分長く確保し得る効果とも相俟って、上記レバー比の最大値を大きくすることができるため、駆動ピンによる従動フランジの駆動応答性を効果的に高めることができる。 Further, according to the third feature of the present invention, when the centrifugal weight is at the reduced diameter position, the virtual weight connecting the center of the pivot pin and the center of the first cam shaft is viewed from the projection plane orthogonal to the first cam shaft. Since the drive pins are arranged on a straight line, the length of L1 with respect to the specified L2 is minimum at the reduced diameter position (that is, the initial swing position) of the centrifugal weight. This makes it possible to increase the maximum value of the lever ratio in combination with the above-described effect of ensuring L2 sufficiently long, so that the drive responsiveness of the driven flange by the drive pin is effectively enhanced. Can do.
 また本発明の第4の特徴によれば、従動フランジは、遠心ウェイトの比較的薄肉の板状基部よりも厚肉に構成されていて、駆動ピンの基端部を固着しているので、従動フランジによる駆動ピンに対する支持剛性を高めることができる。その上、駆動ピンの先端部が嵌挿、連結され且つカム駆動輪の径方向に長い長孔で構成される連結孔が、遠心ウェイトの基部に設けられるので、遠心ウェイトの揺動時、連結孔のピボットピン回りの回動半径と、駆動ピンの第1カム軸中心回りの回動半径との差が、径方向に長い連結孔(長孔)内での駆動ピンの摺動により無理なく許容され、従って、遠心ウェイトの揺動力を連結孔を通して駆動ピンにスムーズに伝達可能となる。 According to the fourth aspect of the present invention, the driven flange is configured to be thicker than the relatively thin plate-like base portion of the centrifugal weight, and the base end portion of the drive pin is fixed. Support rigidity for the drive pin by the flange can be increased. In addition, since the distal end of the drive pin is inserted and connected, and a connection hole constituted by a long hole extending in the radial direction of the cam drive wheel is provided at the base of the centrifugal weight, the connection is made when the centrifugal weight is swung. The difference between the turning radius of the hole around the pivot pin and the turning radius of the drive pin around the center of the first cam shaft is reasonably due to the sliding of the drive pin in the long connecting hole (long hole) in the radial direction. Therefore, the swinging force of the centrifugal weight can be smoothly transmitted to the drive pin through the connection hole.
図1は第1実施形態に係る動弁装置の要部縦断面図である。FIG. 1 is a longitudinal sectional view of an essential part of the valve gear according to the first embodiment. 図2は図1の2矢視図である。FIG. 2 is a view taken in the direction of arrow 2 in FIG. 図3は第1実施形態のカムリフトと位相の関係図である。FIG. 3 is a relationship diagram between the cam lift and the phase according to the first embodiment. 図4は第2実施形態に係る動弁装置の要部縦断面図(図1対応図)である。FIG. 4 is a longitudinal sectional view (corresponding to FIG. 1) of the main part of the valve gear according to the second embodiment. 図5は図4の5矢視図である。FIG. 5 is a view taken in the direction of arrow 5 in FIG. 図6は第2実施形態のカムリフトと位相の関係図(図3対応図)である。FIG. 6 is a relationship diagram of cam lift and phase according to the second embodiment (corresponding to FIG. 3). 図7は第3実施形態に係る動弁装置の要部を示すものであって、特に図7(A)は図1の部分対応図、図7(B)は図2対応図である。FIG. 7 shows the principal part of the valve gear according to the third embodiment. In particular, FIG. 7 (A) is a partial correspondence diagram of FIG. 1 and FIG. 7 (B) is a correspondence diagram of FIG. 図8は第1実施形態のバリエーションであって、排気カムを高速域で進角させた場合のカムリフトと位相の関係図(図6対応図)である。FIG. 8 is a variation of the first embodiment, and is a relationship diagram between cam lift and phase (corresponding to FIG. 6) when the exhaust cam is advanced in a high speed range. 図9は第2実施形態のバリエーションであって、吸気カムを高速域で遅角させた場合のカムリフトと位相の関係図(図3対応図)である。FIG. 9 is a variation of the second embodiment, and is a relationship diagram between cam lift and phase (corresponding to FIG. 3) when the intake cam is retarded in a high speed range.
10・・・・・第1カム軸
10c・・・・排気カム(第1カム)
20・・・・・第2カム軸
20c・・・・吸気カム(第2カム)
21・・・・・従動フランジ
22・・・・・駆動ピン
22a,22b・・駆動ピンの基端部,先端部
30・・・・・カムスプロケット(カム駆動輪)
31・・・・・貫通孔
32・・・・・ピボットピン
35,36・・貫通孔の一方の内側面と他方の内側面
50・・・・・遠心ウェイト
50a,50b・・遠心ウェイトの基部,重錘部
51・・・・・引張コイルばね(戻しばね)
52・・・・・連結孔
60・・・・・捩じりばね(戻しばね)
10... First cam shaft 10 c... Exhaust cam (first cam)
20... Second cam shaft 20 c... Intake cam (second cam)
21... Followed flange 22... Drive pins 22 a and 22 b...
31... Through hole 32... Pivot pins 35 and 36 .. One inner surface and other inner surface 50 of the through hole... Centrifugal weights 50a and 50b. , Weight part 51 ... Tension coil spring (return spring)
52... Connection hole 60... Torsion spring (return spring)
 本発明の実施形態を添付図面に基づいて以下に説明する。 Embodiments of the present invention will be described below with reference to the accompanying drawings.
第1の実施の形態First embodiment
 先ず、図1~図3を参照して、本発明の第1実施形態を説明する。図1,図2において、車両例えば自動二輪車に搭載される内燃機関としてのSOHC型単気筒内燃機関のシリンダヘッド5には、複数の動弁用カム(即ち吸・排気カム20c・10c)のうちの一部(即ち吸気カム20c)のカム位相だけを機関回転数の増大変化に応じて変更させるカム位相可変機構が設けられる。次に、そのカム位相可変機構の一例を具体的に説明する。 First, a first embodiment of the present invention will be described with reference to FIGS. 1 and 2, a cylinder head 5 of an SOHC type single cylinder internal combustion engine as an internal combustion engine mounted on a vehicle such as a motorcycle has a plurality of valve cams (that is, intake and exhaust cams 20c and 10c). A cam phase variable mechanism is provided that changes only the cam phase of a part of the engine (that is, the intake cam 20c) in accordance with the increase in the engine speed. Next, an example of the cam phase variable mechanism will be specifically described.
 シリンダヘッド5には、内燃機関の図示しないクランク軸にチェーン伝動機構33を介して連動回転する第1カム軸10が、軸受B1,B2を介して回転自在に支持される。この第1カム軸10の一端部には、スプロケット歯30tを外周に有するカムスプロケット30が、第1カム軸10と一体回転するように、適当な固定手段(例えばボルトと、図示しない回り止め手段の併用等)で一体的に締結される。そして、このカムスプロケット30と、クランク軸に固定の駆動スプロケット(図示せず)と、その両スプロケット間に巻き掛けられる無端状チェーン34とによりチェーン伝動機構33が構成される。そして、カムスプロケット30は、本発明のカム駆動輪を構成する。 The first camshaft 10 that rotates in conjunction with a crankshaft (not shown) of the internal combustion engine via a chain transmission mechanism 33 is rotatably supported on the cylinder head 5 via bearings B1 and B2. An appropriate fixing means (for example, a bolt and a non-rotating means not shown) is provided at one end of the first camshaft 10 so that the cam sprocket 30 having sprocket teeth 30t on the outer periphery rotates integrally with the first camshaft 10. Etc.), etc.). A chain transmission mechanism 33 is constituted by the cam sprocket 30, a drive sprocket (not shown) fixed to the crankshaft, and an endless chain 34 wound between the two sprockets. The cam sprocket 30 constitutes the cam drive wheel of the present invention.
 第1カム軸10の外周部には、第1カムとしての排気カム10cが一体に形成される。この排気カム10cには、シリンダヘッド5に揺動可能に軸支されて排気弁(図示せず)に係合する排気側ロッカアーム6が摺動可能に当接し、これにより、第1カム軸10の回転に伴い排気カム10cが排気側ロッカアーム6を介して排気弁を開閉駆動する。 An exhaust cam 10c as a first cam is integrally formed on the outer periphery of the first cam shaft 10. An exhaust side rocker arm 6 that is pivotally supported by the cylinder head 5 and engages with an exhaust valve (not shown) is slidably contacted with the exhaust cam 10c. As the engine rotates, the exhaust cam 10c opens and closes the exhaust valve via the exhaust side rocker arm 6.
 また、第1カム軸10の外周部には、排気カム10cと並列する第2カムとしての吸気カム20cを一体に有する円筒状の第2カム軸20が、軸受B3,B4を介して相対回動可能に嵌合、支持される。この吸気カム20cには、シリンダヘッド5に揺動可能に軸支されて吸気弁(図示せず)に係合する吸気側ロッカアーム7が摺動可能に当接し、これにより、第2カム軸20の回転に伴い吸気カム20cが吸気側ロッカアーム7を介して吸気弁を開閉駆動する。 A cylindrical second camshaft 20 integrally having an intake cam 20c as a second cam in parallel with the exhaust cam 10c is provided on the outer periphery of the first camshaft 10 via bearings B3 and B4. It is movably fitted and supported. An intake side rocker arm 7 that is pivotally supported by the cylinder head 5 and engages with an intake valve (not shown) is slidably abutted on the intake cam 20c. As the engine rotates, the intake cam 20c opens and closes the intake valve via the intake side rocker arm 7.
 尚、本実施形態では、第1カム軸10を回転自在に支持する複数の上記軸受B1,B2のうちの一部の軸受B2が、吸気カム20cの側方で第2カム軸20の外周部に装着されていて、第2カム軸20及び軸受B3,B4を介して第1カム軸10を回転自在に支持している。 In the present embodiment, a part of the plurality of bearings B1 and B2 that rotatably support the first camshaft 10 is the outer peripheral portion of the second camshaft 20 on the side of the intake cam 20c. The first camshaft 10 is rotatably supported via the second camshaft 20 and the bearings B3 and B4.
 また第2カム軸20の外端部には、カムスプロケット30の内側面(図1で右側面)に隣接する円板状の従動フランジ21が、適当な固定手段(例えば圧入手段やスプライン嵌合等)で一体的に連結される。 A disc-shaped driven flange 21 adjacent to the inner side surface (the right side surface in FIG. 1) of the cam sprocket 30 is provided at the outer end portion of the second cam shaft 20 with appropriate fixing means (for example, press-fitting means or spline fitting). Etc.).
 カムスプロケット30には、それの外側面(図1で左側面)に隣接する遠心ウェイト50が所定の縮径位置(図2実線位置)と、該縮径位置よりも径方向外方に張り出した拡径位置(図2鎖線位置)との間で揺動し得るように、ピボットピン32を介して揺動可能に支持される。そのピボットピン32の基端部32aは、カムスプロケット30に適当な固定手段(本実施形態では圧入)に固着される。そして、遠心ウェイト50には、これを縮径位置に付勢する戻しばねとしての引張コイルばね51の一端が接続され、同ばね51の他端は、ピボットピン32の先端部32bに係止される。 In the cam sprocket 30, a centrifugal weight 50 adjacent to the outer side surface (the left side surface in FIG. 1) projects to a predetermined reduced diameter position (solid line position in FIG. 2) and radially outward from the reduced diameter position. It is supported by a pivot pin 32 so as to be swingable so that it can swing between the enlarged diameter position (chain line position in FIG. 2). The base end portion 32a of the pivot pin 32 is fixed to the cam sprocket 30 by appropriate fixing means (in this embodiment, press-fitting). The centrifugal weight 50 is connected to one end of a tension coil spring 51 as a return spring that urges the centrifugal weight 50 to the reduced diameter position, and the other end of the spring 51 is locked to the tip 32b of the pivot pin 32. The
 而して、遠心ウェイト50は、カムスプロケット30を軸方向に挟んで従動フランジ21とは反対側(より具体的に言えばカムスプロケット30から見て軸方向外方側)に配置されるものである。そして、その遠心ウェイト50と従動フランジ21とが駆動ピン22を介して相対回動可能に連結される。その駆動ピン22は、遠心ウェイト50のピボットピン32回りの揺動に連動して従動フランジ21(従って第2カム軸20)が第1カム軸10に対し相対回動するよう遠心ウェイト50から従動フランジ21へ駆動力を伝達可能である。しかも駆動ピン22は、ピボットピン32よりも、カムスプロケット30の径方向で外方に配置される。 Thus, the centrifugal weight 50 is disposed on the opposite side of the driven flange 21 with the cam sprocket 30 in the axial direction (more specifically, on the outer side in the axial direction when viewed from the cam sprocket 30). is there. Then, the centrifugal weight 50 and the driven flange 21 are connected via the drive pin 22 so as to be relatively rotatable. The drive pin 22 is driven from the centrifugal weight 50 so that the driven flange 21 (and hence the second cam shaft 20) rotates relative to the first cam shaft 10 in conjunction with the swing of the centrifugal weight 50 around the pivot pin 32. A driving force can be transmitted to the flange 21. Moreover, the drive pin 22 is disposed outward in the radial direction of the cam sprocket 30 with respect to the pivot pin 32.
 また、本実施形態では、遠心ウェイト50が縮径位置にあるときに、第1カム軸10と直交する投影面(即ち図2)で見て、ピボットピン32の中心と第1カム軸10中心とを結ぶ仮想直線上に駆動ピン22が配置される。尚、本発明では、駆動ピン22が上述のようにピボットピン32よりも、カムスプロケット30の径方向外方側であれば、駆動ピン22を上記仮想直線上より多少ずらした位置に配置してもよい。 In the present embodiment, when the centrifugal weight 50 is in the reduced diameter position, the center of the pivot pin 32 and the center of the first cam shaft 10 are viewed from the projection plane orthogonal to the first cam shaft 10 (that is, FIG. 2). Drive pins 22 are arranged on a virtual straight line connecting the two. In the present invention, if the drive pin 22 is located on the radially outer side of the cam sprocket 30 with respect to the pivot pin 32 as described above, the drive pin 22 is disposed at a position slightly shifted from the imaginary straight line. Also good.
 ところで遠心ウェイト50は、板状の基部50aと、その基部50aに連設される、該基部50aよりも厚肉の重錘部50bとを備えて、カムスプロケット30の周方向に沿う円弧状に形成される。その基部50aは、これの特に基端部分54が径方向に幅広に形成される。 By the way, the centrifugal weight 50 includes a plate-like base portion 50a and a weight portion 50b thicker than the base portion 50a connected to the base portion 50a, and has an arc shape along the circumferential direction of the cam sprocket 30. It is formed. The base portion 50a is formed with a particularly wide base end portion 54 in the radial direction.
 そして、従動フランジ21は、遠心ウェイト50の上記基部50aよりも厚肉に構成されており、この厚肉の基部50aに駆動ピン22の基端部22aが固着(本実施形態では圧入固定)される。 The driven flange 21 is configured to be thicker than the base portion 50a of the centrifugal weight 50, and the base end portion 22a of the drive pin 22 is fixed to the thick base portion 50a (in this embodiment, press-fitted and fixed). The
 また、遠心ウェイト50の幅広の基端部分54には、ピボットピン32の中間部を回転自在に貫通、支持させる軸受孔53と、駆動ピン22の先端部22bが嵌挿、連結される連結孔52とが並設される。そのうち、軸受孔53は円形孔に形成され、また連結孔52は、カムスプロケット30の径方向に延びる長孔に形成される。 Also, the wide base end portion 54 of the centrifugal weight 50 has a coupling hole into which a bearing hole 53 for rotatably penetrating and supporting an intermediate portion of the pivot pin 32 and a distal end portion 22b of the drive pin 22 are inserted and connected. 52 are juxtaposed. Among them, the bearing hole 53 is formed as a circular hole, and the connection hole 52 is formed as a long hole extending in the radial direction of the cam sprocket 30.
 カムスプロケット30には、駆動ピン22の中間部が貫通する貫通孔31が設けられる。この貫通孔31は、遠心ウェイト50の前記揺動に伴う駆動ピン22の、ピボットピン32回りの回動を許容する孔形状(即ち駆動ピン22の回動軌跡に沿う円弧孔状)に形成される。而して、後述するように第1カム軸10に対して第2カム軸20(従って第2カム20c)を相対回動させた際の第2カム20cの位相変化角度は、駆動ピン22が、円弧状をなす貫通孔31の一方の内側面36と当接する第1当接位置から、同孔31の他方の内側面35と当接する第2当接位置まで移動する量により規制される。 The cam sprocket 30 is provided with a through hole 31 through which an intermediate portion of the drive pin 22 passes. The through hole 31 is formed in a hole shape that allows the drive pin 22 to rotate around the pivot pin 32 accompanying the swinging of the centrifugal weight 50 (that is, an arc hole shape along the rotation locus of the drive pin 22). The Thus, as will be described later, the phase change angle of the second cam 20c when the second camshaft 20 (and hence the second cam 20c) is rotated relative to the first camshaft 10 is determined by the drive pin 22. It is regulated by the amount of movement from the first contact position that contacts one inner side surface 36 of the arc-shaped through hole 31 to the second contact position that contacts the other inner surface 35 of the hole 31.
 而して、駆動ピン22が上記第1当接位置にあるときには、遠心ウェイト50の揺動位置が戻しばねとしての引張コイルばね51の弾発力に抗して所定の縮径位置に規定され、また駆動ピン22が上記第2当接位置にあるときには、遠心ウェイト50の揺動位置が遠心ウェイト50の遠心力に抗して所定の拡径位置に規定される。 Thus, when the drive pin 22 is in the first contact position, the swing position of the centrifugal weight 50 is defined as a predetermined reduced diameter position against the elastic force of the tension coil spring 51 as a return spring. When the drive pin 22 is in the second contact position, the swing position of the centrifugal weight 50 is defined as a predetermined diameter-enlarged position against the centrifugal force of the centrifugal weight 50.
 次に、第1実施形態の作用について説明する。内燃機関が低速運転域にあるときは、遠心ウェイト50に作用する遠心力が小さいので、遠心ウェイト50は、引張コイルばね51の弾発力で所定の縮径位置(図2実線位置)に保持される。また、内燃機関の回転速度が増大すると、それと共に遠心力が増大する遠心ウェイト50が縮径位置から拡径位置(図2鎖線位置)に向けて揺動する。 Next, the operation of the first embodiment will be described. Since the centrifugal force acting on the centrifugal weight 50 is small when the internal combustion engine is in the low speed operation region, the centrifugal weight 50 is held at a predetermined reduced diameter position (solid line position in FIG. 2) by the elastic force of the tension coil spring 51. Is done. Further, when the rotational speed of the internal combustion engine increases, the centrifugal weight 50, which increases the centrifugal force with it, swings from the reduced diameter position toward the enlarged diameter position (chain line position in FIG. 2).
 かくして、遠心ウェイト50が、内燃機関の機関回転数の上昇に応じて遠心力で縮径位置から拡径位置へ揺動し、それに伴い、遠心ウェイト50が駆動ピン22を介して従動フランジ21(従って吸気カム20c付きの第2カム軸20)を第1カム軸10に対し相対回動させるので、吸,排気カム20c,10cのうち特に吸気カム20cの位相(延いては吸気カム20cに吸気側ロッカアーム7を介して連動する吸気弁の開閉時期)だけを、遠心ウェイト50の揺動に連動させて機関回転数の上昇変化に応じ変化(進角)させることができる。このように、例えば機関高速運転時に吸気カム20cだけを進角(図3参照)させることができるため、吸気バルブ開と排気バルブ開のオーバラップ期間を長くして掃気効率を高めて内燃機関の高速運転性能を向上させることができる。 Thus, the centrifugal weight 50 is swung from the reduced diameter position to the enlarged diameter position by centrifugal force as the engine speed of the internal combustion engine increases, and accordingly, the centrifugal weight 50 is driven via the drive pin 22 to the driven flange 21 ( Accordingly, since the second cam shaft 20 with the intake cam 20c is rotated relative to the first cam shaft 10, the phase of the intake cam 20c in particular among the intake and exhaust cams 20c, 10c (and hence the intake cam 20c is inhaled). Only the intake valve opening / closing timing linked via the side rocker arm 7 can be changed (advanced) in response to the increase in the engine speed in conjunction with the swing of the centrifugal weight 50. Thus, for example, only the intake cam 20c can be advanced (see FIG. 3) during high-speed operation of the engine, so that the overlap period between the intake valve opening and the exhaust valve opening is lengthened to improve the scavenging efficiency and High-speed driving performance can be improved.
 その上、本実施形態の駆動ピン22は、ピボットピン32よりもカムスプロケット30の径方向で外方に配置されていて、駆動ピン22と第1カム軸10間の腕長さL2をピボットピン32に邪魔されずに十分長く確保できるため、ピボットピン32及び駆動ピン22間の腕長さL1と、上記L2とのレバー比(L2/L1)を十分大きくできる。その結果、遠心ウェイト50の揺動力を効率よく増幅して従動フランジ21に伝達可能となるから、遠心ウェイト50の比較的小さな遠心力によっても従動フランジ21を強力に駆動できて、遠心ウェイト50を含む遠心機構の軽量小型化が図られる。 In addition, the drive pin 22 of the present embodiment is disposed outward in the radial direction of the cam sprocket 30 with respect to the pivot pin 32, and the arm length L2 between the drive pin 22 and the first cam shaft 10 is set to the pivot pin. Therefore, the lever ratio (L2 / L1) between the arm length L1 between the pivot pin 32 and the drive pin 22 and the L2 can be sufficiently increased. As a result, the swinging force of the centrifugal weight 50 can be efficiently amplified and transmitted to the driven flange 21, so that the driven flange 21 can be driven strongly by the relatively small centrifugal force of the centrifugal weight 50, The included centrifugal mechanism can be reduced in weight and size.
 また、本実施形態の遠心ウェイト50は、カムスプロケット30を挟んで従動フランジ21とは反対側に配置され、カムスプロケット30には、駆動ピン22が貫通する貫通孔31が設けられ、その貫通孔31は、遠心ウェイト50の前記揺動に伴う駆動ピン22のピボットピン32回りの回動を許容する孔(本実施形態では円弧状の長孔)形状を有している。これにより、従動フランジ21及び遠心ウェイト50を何れもカムスプロケット30の軸方向外側に配置した構造と比べて、カム位相可変機構の、第1カム軸10外端からの軸方向張出しを極力抑えることができ、動弁装置の軸方向小型化が図られる。 Further, the centrifugal weight 50 of the present embodiment is disposed on the opposite side of the driven flange 21 with the cam sprocket 30 interposed therebetween, and the cam sprocket 30 is provided with a through hole 31 through which the drive pin 22 passes. 31 has a hole shape (in this embodiment, an arc-shaped long hole) that allows the drive pin 22 to rotate around the pivot pin 32 in accordance with the swinging of the centrifugal weight 50. As a result, the axial extension of the cam phase variable mechanism from the outer end of the first camshaft 10 is suppressed as much as possible, compared to the structure in which the driven flange 21 and the centrifugal weight 50 are both arranged on the axially outer side of the cam sprocket 30. The axial movement of the valve gear can be reduced.
 しかも従動フランジ21(従ってこれと一体の第2カム軸20)と第1カム軸10との上記相対回動の際の吸気カム20cの位相変化角度は、駆動ピン22が貫通孔31の一方の内側面36との当接位置から、他方の内側面35との当接位置まで移動する量により規制されるため、上記貫通孔31の内壁により規制される駆動ピン22の移動量が、吸気カム20cの位相変化角度の限界値に直接対応することとなり、その位相変化角度の設定精度を高めることができる。 Moreover, the phase change angle of the intake cam 20c during the relative rotation between the driven flange 21 (therefore the second cam shaft 20 integrated therewith) and the first cam shaft 10 is such that the drive pin 22 is one of the through holes 31. Since the amount of movement of the drive pin 22 restricted by the inner wall of the through hole 31 is restricted by the amount of movement from the contact position with the inner side surface 36 to the contact position with the other inner side surface 35, the intake cam This directly corresponds to the limit value of the phase change angle of 20c, and the setting accuracy of the phase change angle can be improved.
 また本実施形態では、遠心ウェイト50が縮径位置にあるときに、第1カム軸10と直交する投影面(図2)で見て、ピボットピン32の中心と第1カム軸10中心とを結ぶ仮想直線上に駆動ピン22が配置されるので、規定のL2に対するL1の長さが遠心ウェイト50の縮径位置(即ち揺動初期位置)で最小となる。これにより、上述したようなL2を十分長く確保し得る効果とも相俟って、上記レバー比(L2/L1)の最大値を大きく設定可能となるため、駆動ピン22による従動フランジ21の駆動応答性が効果的に高められる。 Further, in the present embodiment, when the centrifugal weight 50 is in the reduced diameter position, the center of the pivot pin 32 and the center of the first cam shaft 10 are viewed from the projection plane (FIG. 2) orthogonal to the first cam shaft 10. Since the drive pin 22 is arranged on the imaginary straight line to be connected, the length of L1 with respect to the specified L2 is minimum at the diameter reduction position (that is, the swing initial position) of the centrifugal weight 50. This makes it possible to set the maximum value of the lever ratio (L2 / L1) in combination with the above-described effect that L2 can be secured sufficiently long, so that the drive response of the driven flange 21 by the drive pin 22 is achieved. Sexually enhanced.
 更に本実施形態の従動フランジ21は、遠心ウェイト50の比較的薄肉の板状基部50aよりも厚肉に構成されていて、駆動ピン22の基端部22aを固着しているので、従動フランジ21による駆動ピン22に対する支持剛性を高めることができる。その上、駆動ピン22の先端部22bが嵌挿、連結され且つカムスプロケット30の径方向に長い長孔で構成される連結孔52が、遠心ウェイト50の基部50aに設けられるから、遠心ウェイト50の揺動時、連結孔52のピボットピン32回りの回動半径と、駆動ピン22のカムスプロケット30中心回りの回動半径との差が、径方向に長い連結孔52(長孔)内での駆動ピン22の摺動により無理なく許容され、これにより、遠心ウェイト50の揺動力を連結孔52を通して駆動ピン22にスムーズに伝達可能となる。 Furthermore, the driven flange 21 of the present embodiment is configured to be thicker than the relatively thin plate-like base portion 50a of the centrifugal weight 50, and the base end portion 22a of the drive pin 22 is fixed. The support rigidity with respect to the drive pin 22 can be increased. In addition, since the distal end portion 22b of the drive pin 22 is inserted and connected, and the connection hole 52 formed by a long hole in the radial direction of the cam sprocket 30 is provided in the base portion 50a of the centrifugal weight 50, the centrifugal weight 50 The difference between the turning radius of the connecting hole 52 around the pivot pin 32 and the turning radius of the drive pin 22 around the center of the cam sprocket 30 is within the connecting hole 52 (long hole) that is long in the radial direction. Thus, the sliding force of the centrifugal weight 50 can be smoothly transmitted to the driving pin 22 through the connecting hole 52.
第2の実施の形態Second embodiment
 次に図4~図6を参照して、本発明の第2実施形態を説明する。前記した第1実施形態では、第1カム軸10上の第1カムを排気カム10c、また第2カム軸20上の第2カムを吸気カムとしたものを示したが、本第2実施形態では、第1カム軸10上の第1カム10cを吸気カム、また第2カム軸20上の第2カム20cを排気カムとしている。従って、その第1カム10c(吸気カム)に吸気側ロッカアーム7が摺接し、また第2カム20c(排気カム)に排気側ロッカアーム6が摺接する。 Next, a second embodiment of the present invention will be described with reference to FIGS. In the first embodiment described above, the first cam on the first cam shaft 10 is the exhaust cam 10c, and the second cam on the second cam shaft 20 is the intake cam. However, the second embodiment The first cam 10c on the first cam shaft 10 is an intake cam, and the second cam 20c on the second cam shaft 20 is an exhaust cam. Therefore, the intake side rocker arm 7 is in sliding contact with the first cam 10c (intake cam), and the exhaust side rocker arm 6 is in sliding contact with the second cam 20c (exhaust cam).
 その他の構成は、基本的に第1実施形態と同様であり、各構成部材には、第1実施形態と同様の参照符号を付してある。但し、本第2実施形態では、遠心ウェイト50、駆動ピン22及びピボットピン32の相互の配置構成(即ち相対位置関係)が第1実施形態と異なるものであり、即ち、図5で示す各部材の配置形態は、図2で示す各部材の配置形態とは鏡像関係にある。これにより、遠心ウェイト50の縮径位置から拡径位置への揺動に伴い、遠心ウェイト50が駆動ピン22を介して従動フランジ21(第2カム軸20)を第1カム軸10に対し相対回動させたとき(即ち機関回転数が上昇変化したとき)に、第2カム20c(排気カム)の位相を遠心ウェイト50の揺動に連動させて遅角(図6参照)させることができる。 Other configurations are basically the same as those in the first embodiment, and the same reference numerals as those in the first embodiment are given to the respective constituent members. However, in the second embodiment, the mutual arrangement (that is, relative positional relationship) of the centrifugal weight 50, the drive pin 22, and the pivot pin 32 is different from that of the first embodiment, that is, each member shown in FIG. This arrangement form is in a mirror image relationship with the arrangement form of each member shown in FIG. Thus, as the centrifugal weight 50 swings from the reduced diameter position to the enlarged diameter position, the centrifugal weight 50 moves the driven flange 21 (second cam shaft 20) relative to the first cam shaft 10 via the drive pin 22. When the engine is rotated (that is, when the engine speed increases), the phase of the second cam 20c (exhaust cam) can be retarded (see FIG. 6) in conjunction with the swing of the centrifugal weight 50. .
 而して、第2実施形態によれば、遠心ウェイト50が、内燃機関の機関回転数の上昇に応じて遠心力で縮径位置から拡径位置へ揺動して、駆動ピン22を介して従動フランジ21(第2カム軸20)を第1カム軸10に対し相対回動させたときに、第2カム20cとしての排気カムの位相(延いては排気カムに排気側ロッカアーム6を介して連動する排気弁の開閉時期)だけを機関回転数の上昇変化に応じ変化(遅角)させるので、例えば、内燃機関の高速運転域での掃気効率を高めて高速運転性能を向上させることができる。従って、特に排気効率アップを要求される内燃機関に好適である。 Thus, according to the second embodiment, the centrifugal weight 50 oscillates from the reduced diameter position to the enlarged diameter position by the centrifugal force according to the increase in the engine speed of the internal combustion engine, and via the drive pin 22. When the driven flange 21 (second camshaft 20) is rotated relative to the first camshaft 10, the phase of the exhaust cam as the second cam 20c (and thus the exhaust cam via the exhaust-side rocker arm 6). Only the exhaust valve opening / closing timing that is linked) is changed (retarded) according to the increase in the engine speed, so that, for example, the scavenging efficiency in the high-speed operation region of the internal combustion engine can be improved and the high-speed operation performance can be improved. . Therefore, it is particularly suitable for an internal combustion engine that requires an increase in exhaust efficiency.
 上記第2実施形態のその他の作用効果は、第1実施形態と基本的に同様である。 Other operational effects of the second embodiment are basically the same as those of the first embodiment.
第3の実施の形態Third embodiment
 次に図7を参照して、第3実施形態を説明する。本実施形態では、遠心ウェイト50を縮径方向に弾発する戻しばねが、遠心ウェイト50とカムスプロケット30間に介装した捩じりばね60で構成される。 Next, a third embodiment will be described with reference to FIG. In the present embodiment, the return spring that repels the centrifugal weight 50 in the diameter reducing direction is constituted by a torsion spring 60 interposed between the centrifugal weight 50 and the cam sprocket 30.
 その捩じりばね60の一端は、遠心ウェイト50の基部50aに固定の第1係止ピン61を介して遠心ウェイト50に、また同ばね60の他端は、カムスプロケット30に固定の第2係止ピン62を介してカムスプロケット30にそれぞれ係止される。また捩じりばね60の中間コイル部63は、ピボットピン32の周囲を囲繞されており、従って、ばね中間部の妄動が抑えられる。 One end of the torsion spring 60 is connected to the centrifugal weight 50 via a first locking pin 61 fixed to the base 50 a of the centrifugal weight 50, and the other end of the spring 60 is fixed to the cam sprocket 30. The cam sprocket 30 is locked via the locking pin 62. Further, the intermediate coil portion 63 of the torsion spring 60 is surrounded by the periphery of the pivot pin 32, and therefore, the reluctance of the spring intermediate portion is suppressed.
 而して、捩じりばね60の捩じり力により遠心ウェイト50が平時は縮径位置(図7(B)で実線位置)に保持される。また遠心ウェイト50は、機関回転数の増大変化に応じて遠心力で拡径位置(図7図(B)で鎖線位置)に向けて捩じりばね60の捩じり力に抗して揺動する。 Thus, the centrifugal weight 50 is held in the reduced diameter position (solid line position in FIG. 7B) during normal times by the torsional force of the torsion spring 60. Further, the centrifugal weight 50 swings against the torsional force of the torsion spring 60 toward the diameter-enlarged position (the chain line position in FIG. 7B) by centrifugal force in accordance with the increasing change in the engine speed. Move.
 第3実施形態の、その他の構成は、基本的に第1実施形態と同様であり、各構成部材には、第1実施形態と同様の参照符号を付してある。尚、上記第3実施形態も、第1実施形態と基本的に同様の作用効果を達成する。 Other configurations of the third embodiment are basically the same as those of the first embodiment, and the same reference numerals as those of the first embodiment are given to the respective constituent members. In addition, the said 3rd Embodiment also achieves the effect similar to 1st Embodiment fundamentally.
 以上、本発明の実施形態を説明したが、本発明はその要旨を逸脱しない範囲で種々の設計変更を行うことが可能である。 The embodiments of the present invention have been described above, but various design changes can be made without departing from the scope of the present invention.
 例えば、前記実施形態では、第1,第2カム10c,20cのうちの何れか一方を排気カム、また何れか他方を吸気カムとしたものを示したが、本発明では、第1,第2カム10c,20cを両方とも吸気カム(即ち第1,第2吸気カム)としてもよいし、或いは、第1,第2カム10c,20cを両方とも排気カム(即ち第1,第2排気カム)としてもよい。 For example, in the above-described embodiment, one of the first and second cams 10c and 20c is an exhaust cam and the other is an intake cam. However, in the present invention, the first and second cams are used. Both the cams 10c and 20c may be intake cams (ie, first and second intake cams), or both the first and second cams 10c and 20c are exhaust cams (ie, first and second exhaust cams). It is good.
 また、前記実施形態では、動弁装置が設けられる内燃機関を単気筒エンジンとしたものを示したが、多気筒(例えば2気筒)エンジンに適用してもよい。この場合は、各気筒毎に本発明のカム位相可変機構を設けるようにする。 In the above embodiment, the single-cylinder engine is used as the internal combustion engine provided with the valve gear, but the present invention may be applied to a multi-cylinder (for example, two-cylinder) engine. In this case, the cam phase variable mechanism of the present invention is provided for each cylinder.
 また、前記実施形態では、動弁装置が設けられる内燃機関をSOHCエンジンとしたものを示したが、本発明は、DOHCエンジンに適用してもよい。この場合は、吸気弁及び排気弁毎に設けられる吸気用カム軸及び排気用カム軸のうちの少なくとも一方のカム軸に本発明のカム位相可変機構を設けるようにする。 In the above embodiment, the SOHC engine is used as the internal combustion engine provided with the valve gear, but the present invention may be applied to a DOHC engine. In this case, the cam phase varying mechanism of the present invention is provided on at least one of the intake camshaft and the exhaust camshaft provided for each intake valve and exhaust valve.
 また、前記実施形態では自動二輪車用内燃機関を示したが、本発明は、自動二輪車以外の車両に搭載される内燃機関に適用してもよく、或いは車両用以外の用途の内燃機関(例えば定置式の内燃機関)に適用してもよい。 In the above embodiment, an internal combustion engine for a motorcycle is shown. However, the present invention may be applied to an internal combustion engine mounted on a vehicle other than a motorcycle, or an internal combustion engine for a purpose other than a vehicle (for example, a stationary engine). The present invention may be applied to an internal combustion engine of the type.
 また、前記実施形態では、遠心ウェイト50が、カム駆動輪(カムスプロケット30)を挟んで従動フランジ21とは反対側、特にカム駆動輪30の軸方向外側に配置されるものを示したが、本発明では、遠心ウェイト50をカム駆動輪30の軸方向内側に配置してもよく、この場合は、カム駆動輪30の軸方向外側に配置した従動フランジ21と第1カム軸10との間を、カム駆動輪30を緩く貫通する連結腕で一体的に結合すればよい。 In the above embodiment, the centrifugal weight 50 is disposed on the opposite side of the driven flange 21 with the cam drive wheel (cam sprocket 30) interposed therebetween, in particular, on the outer side in the axial direction of the cam drive wheel 30. In the present invention, the centrifugal weight 50 may be disposed on the inner side in the axial direction of the cam driving wheel 30. In this case, the centrifugal weight 50 is disposed between the driven flange 21 disposed on the outer side in the axial direction of the cam driving wheel 30 and the first cam shaft 10. May be integrally coupled with a connecting arm that penetrates the cam drive wheel 30 loosely.
 尚、機関回転数(特に車両用内燃機関の場合は車速)と吸,排気バルブの開閉タイミングとの最適な関係は、内燃機関の構造や仕様によって様々に設定可能である。例えば、前記実施形態では、高速運転域でバルブタイミングを変化させる制御例を示したが、例えば中速運転域で変化させるようにしてもよい。また、図3に示す第1実施形態では、高速運転域で第2カムとしての吸気カムを進角させたが、逆に排気カムを進角(図8参照)させて、排気バルブの閉弁タイミングを早めるようにしてもよく、この場合は、バルブオーバラップ期間を短くして未燃焼ガスの吹き抜けを抑制し、排気ガス中のハイドロカーボンを低減することができる。また図6に示す第2実施形態では、高速運転域で第2カムとしての排気カムを遅角させたが、逆に吸気カムを遅角(図9参照)させて、吸気バルブの閉弁タイミングを遅らせるようにしてもよく、この場合は、慣性過給効果により吸気効率を向上させることができる。
 
The optimum relationship between the engine speed (particularly the vehicle speed in the case of an internal combustion engine for vehicles) and the opening / closing timings of the intake and exhaust valves can be variously set depending on the structure and specifications of the internal combustion engine. For example, in the above-described embodiment, the control example in which the valve timing is changed in the high speed operation range has been described. However, for example, the valve timing may be changed in the medium speed operation range. Further, in the first embodiment shown in FIG. 3, the intake cam as the second cam is advanced in the high speed operation range, but conversely, the exhaust cam is advanced (see FIG. 8) to close the exhaust valve. The timing may be advanced, and in this case, the valve overlap period can be shortened to prevent the unburned gas from being blown out, and the hydrocarbon in the exhaust gas can be reduced. Further, in the second embodiment shown in FIG. 6, the exhaust cam as the second cam is retarded in the high speed operation range, but conversely, the intake cam is retarded (see FIG. 9) to close the intake valve closing timing. In this case, the intake efficiency can be improved by the inertia supercharging effect.

Claims (4)

  1.  第1カム(10c)を一体に有する第1カム軸(10)が、内燃機関のクランク軸に連動回転するカム駆動輪(30)に一体的に連結され、
     第2カム(20c)を一体に有する第2カム軸(20)が前記第1カム軸(10)に相対回動可能に支持されると共に、その第2カム軸(20)に、前記カム駆動輪(30)に隣接する従動フランジ(21)が一体的に連結され、
     前記カム駆動輪(30)には、そのカム駆動輪(30)を挟んで前記従動フランジ(21)とは反対側に配置した遠心ウェイト(50)が、所定の縮径位置と拡径位置との間で揺動し得るようにピボットピン(32)を介して支持されると共に、その遠心ウェイト(50)に、これを前記縮径位置に付勢する戻しばね(51,60)が接続され、
     前記従動フランジ(21)と前記遠心ウェイト(50)とが、前記カム駆動輪(30)に設けた貫通孔(31)を貫通する駆動ピン(22)を介して相互に連結されていて、その駆動ピン(22)により、遠心ウェイト(50)の前記揺動に連動して前記従動フランジ(21)が前記第1カム軸(10)に対し相対回動するよう遠心ウェイト(50)から従動フランジ(21)へ駆動力を伝達可能であり、
     前記貫通孔(31)は、遠心ウェイト(50)の前記揺動に伴う前記駆動ピン(22)の前記ピボットピン(32)回りの回動を許容する孔形状を有しており、
     前記駆動ピン(22)は、前記ピボットピン(32)よりも、前記カム駆動輪(30)の径方向で外方に配置されることを特徴とする、内燃機関用動弁装置におけるカム位相可変機構。
    A first camshaft (10) integrally having a first cam (10c) is integrally connected to a cam drive wheel (30) that rotates in conjunction with a crankshaft of an internal combustion engine,
    A second cam shaft (20) integrally having a second cam (20c) is supported on the first cam shaft (10) so as to be relatively rotatable, and the second cam shaft (20) is driven by the cam. A driven flange (21) adjacent to the ring (30) is integrally connected;
    The cam drive wheel (30) has a centrifugal weight (50) disposed on the opposite side of the driven flange (21) across the cam drive wheel (30), and has a predetermined reduced diameter position and an enlarged diameter position. A return spring (51, 60) is connected to the centrifugal weight (50) and biased to the reduced diameter position. ,
    The driven flange (21) and the centrifugal weight (50) are connected to each other via a drive pin (22) that passes through a through hole (31) provided in the cam drive wheel (30). A driven pin (22) is driven from the centrifugal weight (50) to the driven flange so that the driven flange (21) rotates relative to the first camshaft (10) in conjunction with the swing of the centrifugal weight (50). (21) can transmit the driving force,
    The through hole (31) has a hole shape that allows the drive pin (22) to rotate around the pivot pin (32) accompanying the swing of the centrifugal weight (50),
    The cam phase variable in the valve gear for an internal combustion engine, wherein the drive pin (22) is disposed outward in the radial direction of the cam drive wheel (30) with respect to the pivot pin (32). mechanism.
  2.  前記相対回動の際の前記第2カム(20c)の位相変化角度は、前記駆動ピン(22)が前記貫通孔(31)の一方の内側面(36)との当接位置から、同貫通孔(31)の他方の内側面(35)との当接位置まで移動する量により規制されることを特徴とする、請求項1に記載の内燃機関用動弁装置におけるカム位相可変機構。 The phase change angle of the second cam (20c) during the relative rotation is such that the drive pin (22) penetrates from the contact position with one inner surface (36) of the through hole (31). 2. The cam phase varying mechanism in the valve gear for an internal combustion engine according to claim 1, wherein the cam phase varying mechanism is regulated by an amount of movement to a contact position with the other inner side surface of the hole.
  3.  前記遠心ウェイト(50)が前記縮径位置にあるときに、前記第1カム軸(10)と直交する投影面で見て、前記ピボットピン(32)の中心と第1カム軸(10)中心とを結ぶ仮想直線上に前記駆動ピン(22)が配置されることを特徴とする、請求項1又は2に記載の内燃機関用動弁装置におけるカム位相可変機構。 When the centrifugal weight (50) is in the reduced diameter position, the center of the pivot pin (32) and the center of the first cam shaft (10) are viewed from the projection plane orthogonal to the first cam shaft (10). The cam phase varying mechanism in the valve gear for an internal combustion engine according to claim 1 or 2, wherein the drive pin (22) is arranged on a virtual straight line connecting the two.
  4.  前記遠心ウェイト(50)は、板状の基部(50a)と、その基部(50a)に連設される、該基部(50a)よりも厚肉の重錘部(50b)とを備え、
     前記従動フランジ(21)は、遠心ウェイト(50)の前記基部(50a)よりも厚肉に構成されていて、前記駆動ピン(22)の基端部(22a)を固着しており、
     前記駆動ピン(22)の先端部(22b)が嵌挿、連結され且つ前記カム駆動輪(30)の径方向に長い長孔で構成される連結孔(52)が、前記遠心ウェイト(50)の前記基部(50a)に設けられることを特徴とする、請求項1~3の何れか1項に記載の内燃機関用動弁装置におけるカム位相可変機構。
    The centrifugal weight (50) includes a plate-like base (50a) and a weight part (50b) thicker than the base (50a) connected to the base (50a).
    The driven flange (21) is configured to be thicker than the base (50a) of the centrifugal weight (50), and fixes the base end (22a) of the drive pin (22),
    The distal end portion (22b) of the drive pin (22) is inserted and connected, and a connection hole (52) constituted by a long hole in the radial direction of the cam drive wheel (30) is provided in the centrifugal weight (50). The cam phase varying mechanism in the valve gear for an internal combustion engine according to any one of claims 1 to 3, wherein the cam phase varying mechanism is provided at the base (50a).
PCT/JP2017/006212 2016-02-26 2017-02-20 Variable cam phase mechanism in valve operating device for internal combustion engine WO2017146002A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-036195 2016-02-26
JP2016036195A JP2017150453A (en) 2016-02-26 2016-02-26 Cam phase variable mechanism at internal combustion engine valve gear

Publications (1)

Publication Number Publication Date
WO2017146002A1 true WO2017146002A1 (en) 2017-08-31

Family

ID=59685729

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/006212 WO2017146002A1 (en) 2016-02-26 2017-02-20 Variable cam phase mechanism in valve operating device for internal combustion engine

Country Status (2)

Country Link
JP (1) JP2017150453A (en)
WO (1) WO2017146002A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113550806A (en) * 2021-08-10 2021-10-26 洛阳北方易初摩托车有限公司 Variable valve actuating mechanism for motorcycle engine with double overhead camshafts

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5076426A (en) * 1973-11-13 1975-06-23
JPH01157208U (en) * 1988-04-19 1989-10-30
JP2001173421A (en) * 1999-12-15 2001-06-26 Kawasaki Heavy Ind Ltd Automatic decompression device
JP2006022692A (en) * 2004-07-07 2006-01-26 Honda Motor Co Ltd Assembling type cam shaft structure for internal combustion engine
WO2007069467A1 (en) * 2005-12-13 2007-06-21 Yamaha Hatsudoki Kabushiki Kaisha Variable valve gear, and engine system and vehicle that have the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5076426A (en) * 1973-11-13 1975-06-23
JPH01157208U (en) * 1988-04-19 1989-10-30
JP2001173421A (en) * 1999-12-15 2001-06-26 Kawasaki Heavy Ind Ltd Automatic decompression device
JP2006022692A (en) * 2004-07-07 2006-01-26 Honda Motor Co Ltd Assembling type cam shaft structure for internal combustion engine
WO2007069467A1 (en) * 2005-12-13 2007-06-21 Yamaha Hatsudoki Kabushiki Kaisha Variable valve gear, and engine system and vehicle that have the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113550806A (en) * 2021-08-10 2021-10-26 洛阳北方易初摩托车有限公司 Variable valve actuating mechanism for motorcycle engine with double overhead camshafts
CN113550806B (en) * 2021-08-10 2022-08-02 洛阳北方易初摩托车有限公司 Variable valve actuating mechanism for motorcycle engine with double overhead camshafts

Also Published As

Publication number Publication date
JP2017150453A (en) 2017-08-31

Similar Documents

Publication Publication Date Title
JP4827865B2 (en) Variable valve operating device for internal combustion engine
JP3899576B2 (en) Variable valve mechanism and internal combustion engine with variable valve mechanism
JP5171521B2 (en) Variable valve gear for engine
JP4741541B2 (en) Engine valve gear
JPH0742514A (en) Intake/exhaust valve driving control device of internal combustion engine
US10364709B2 (en) Variable valve mechanism, engine, and automatic two-wheeled vehicle
WO2017146002A1 (en) Variable cam phase mechanism in valve operating device for internal combustion engine
JP2017218953A (en) Cam phase variable valve gear for internal combustion engine
JP2018162772A (en) Centrifugal operation device and cam phase variable mechanism in valve gear for internal combustion engine
JP2017218924A (en) Cam phase variable valve gear for internal combustion engine
JP5107848B2 (en) Variable valve gear for engine
JP4031973B2 (en) Variable valve operating device for internal combustion engine
JP3347419B2 (en) Camshaft phase change device
JP4305335B2 (en) Variable valve mechanism
JP2009191736A (en) Internal combustion engine
JP2018162699A (en) Centrifugal operation device and cam phase variable mechanism in valve gear for internal combustion engine
JPH05240007A (en) Valve driving device for four-cycle engine
JP2002147206A (en) Cam shaft for four-cycle engine
JP3989764B2 (en) Valve timing control device for internal combustion engine
JPH09195737A (en) Controller for driving intake and exhaust valve of internal combustion engine
JP3964158B2 (en) Valve timing control device for internal combustion engine
JP6834196B2 (en) Variable valve mechanism, engine and motorcycle
JP3738526B2 (en) Variable valve mechanism
JP4161210B2 (en) Variable valve operating device for internal combustion engine
JP3394390B2 (en) Intake and exhaust valve drive control device for internal combustion engine

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17756440

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17756440

Country of ref document: EP

Kind code of ref document: A1