WO2017145983A1 - Damping force-adjusting shock absorber - Google Patents

Damping force-adjusting shock absorber Download PDF

Info

Publication number
WO2017145983A1
WO2017145983A1 PCT/JP2017/006130 JP2017006130W WO2017145983A1 WO 2017145983 A1 WO2017145983 A1 WO 2017145983A1 JP 2017006130 W JP2017006130 W JP 2017006130W WO 2017145983 A1 WO2017145983 A1 WO 2017145983A1
Authority
WO
WIPO (PCT)
Prior art keywords
valve
disk
opening
valve body
passage
Prior art date
Application number
PCT/JP2017/006130
Other languages
French (fr)
Japanese (ja)
Inventor
村上 裕
山岡 史之
Original Assignee
日立オートモティブシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立オートモティブシステムズ株式会社 filed Critical 日立オートモティブシステムズ株式会社
Priority to JP2018501667A priority Critical patent/JP6516916B2/en
Publication of WO2017145983A1 publication Critical patent/WO2017145983A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F9/00Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium
    • F16F9/32Details
    • F16F9/34Special valve constructions; Shape or construction of throttling passages
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F9/00Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium
    • F16F9/32Details
    • F16F9/44Means on or in the damper for manual or non-automatic adjustment; such means combined with temperature correction
    • F16F9/46Means on or in the damper for manual or non-automatic adjustment; such means combined with temperature correction allowing control from a distance, i.e. location of means for control input being remote from site of valves, e.g. on damper external wall

Definitions

  • the present invention relates to a damping force adjusting type shock absorber that generates a damping force by controlling a flow of a working fluid with respect to a stroke of a piston rod.
  • Some shock absorbers having good damping force characteristics form a back pressure chamber by laminating a plurality of disk valves having openings in a valve member engaged with a piston rod. (For example, Patent Document 1)
  • an object of the present invention is to provide a damping force adjusting type shock absorber capable of obtaining a good damping force characteristic.
  • a damping force adjusting shock absorber includes a cylinder in which a working fluid is sealed, a piston slidably fitted in the cylinder, a piston connected to the piston, and an outside of the cylinder.
  • a main body valve that controls the flow of working fluid generated by sliding of the piston in the cylinder to generate a damping force, and a pressure in the valve closing direction is applied to the main valve.
  • a damping force adjusting type shock absorber comprising: a pilot chamber; a pilot passage communicating the pilot chamber with an upstream passage of the main valve; and a control valve provided in the pilot passage.
  • a passage through which the fluid in the cylinder flows, a valve seat member having a seat portion formed outside a downstream opening of the passage, and a seat on the seat portion A sub-valve element that opens and closes the downstream opening of the passage, and a main valve element that is provided on the opposite side of the valve seat member of the sub-valve element,
  • the first opening has an opening area for restricting the flow of fluid flowing through the passage of the main valve
  • the second opening has an opening area larger than the first opening
  • an outer periphery of the main valve body A pressure chamber is formed to open the main valve body by separating the side from the second disk, and the main valve body is sandwiched on the inner peripheral side and the packing fixed to the outer peripheral side on the back surface is attached to the pilot member.
  • the damping force adjustment type shock absorber 1 has a double cylinder structure in which an outer cylinder 3 is provided outside a cylinder 2, and a reservoir 4 is formed between the cylinder 2 and the outer cylinder 3. Is done.
  • a piston 5 is slidably fitted into the cylinder 2, and the piston 5 divides the inside of the cylinder 2 into two chambers, a cylinder upper chamber 2A and a cylinder lower chamber 2B.
  • One end of a piston rod 6 is connected to the piston 5 by a nut 7, and the other end side of the piston rod 6 passes through the cylinder upper chamber 2 ⁇ / b> A, and is further attached to the upper ends of the cylinder 2 and the outer cylinder 3. 8 and the oil seal 9 are extended to the outside of the cylinder 2.
  • a base valve 10 that separates the cylinder lower chamber 2B and the reservoir 4 is provided at the lower end of the cylinder 2.
  • the piston 5 is provided with passages 11 and 12 communicating between the cylinder upper chamber 2A and the cylinder lower chamber 2B.
  • the passage 12 is provided with a check valve 13 that allows only fluid (working fluid) to flow from the cylinder lower chamber 2B side to the cylinder upper chamber 2A side.
  • the passage 11 is provided with a disk valve 14 that opens when the pressure of the oil liquid on the cylinder upper chamber 2A side reaches the set pressure and relieves the pressure to the cylinder lower chamber 2B side.
  • the base valve 10 is provided with passages 15 and 16 communicating the cylinder lower chamber 2B and the reservoir 4.
  • the passage 15 is provided with a check valve 17 that allows only fluid to flow from the reservoir 4 side to the cylinder lower chamber 2B side.
  • the passage 16 is provided with a disk valve 18 that opens when the pressure of the oil on the cylinder lower chamber 2B side reaches a predetermined pressure and relieves the pressure to the reservoir 4 side. Note that as the working fluid, an oil liquid is sealed in the cylinder 2, and an oil liquid and a gas are sealed in the reservoir 4.
  • the separator tube 20 is externally fitted to the cylinder 2 via seal members 19 at both ends in the vertical direction, and an annular passage 21 is formed between the cylinder 2 and the separator tube 20.
  • the annular passage 21 is communicated with the cylinder upper chamber 2 ⁇ / b> A through a passage 22 provided in a side wall near the upper end of the cylinder 2.
  • a cylindrical branch pipe 23 that protrudes laterally (to the right in FIG. 1) is formed at the lower portion of the separator tube 20.
  • An opening 24 that is concentric with the branch pipe 23 and larger in diameter than the branch pipe 23 is provided on the side wall of the outer cylinder 3, and a cylindrical valve case 25 is joined by welding or the like so as to surround the opening 24.
  • a damping force generation mechanism 31 is accommodated in the valve case 25.
  • the damping force generation mechanism 31 has a base end side (left end side in FIG. 1) interposed between the reservoir 4 and the annular passage 21, and a tip end side (FIG. 1 is provided so as to protrude radially outward (rightward in FIG. 1) from the outer cylinder 3.
  • the damping force generation mechanism 31 generates a damping force by controlling the flow of the oil liquid from the annular passage 21 to the reservoir 4 by the main valve 32. Further, the damping force to be generated is variably adjusted by adjusting the valve opening pressure of the main valve 32 with a solenoid 33 applied as a damping force variable actuator.
  • the damping force generation mechanism 31 has the above-described valve case 25 and the base end side (left end side in FIG. 2) fixed to the branch pipe 23 of the separator tube 20, and the tip end side (FIG. 2).
  • the annular flange portion 34A formed on the right end side of the passage member 34 is disposed in contact with the inner flange portion 25A on the proximal end side of the valve case 25 with a gap and the flange portion 34A of the passage member 34.
  • a valve member 35 (valve seat member) in contact therewith.
  • a threaded portion 39 is formed on the distal end side of the valve case 25, and the valve case 25 and the case member 71 of the solenoid 33 are coupled by a nut 38 screwed into the threaded portion 39.
  • An annular passage 40 communicating with the reservoir 4 is formed between the inner peripheral surface of the valve case 25 and the main valve 32.
  • a passage 41 upstream passage of the main valve 32
  • a passage 41 upstream passage of the main valve 32
  • An annular spacer 42 is sandwiched between the flange portion 34 ⁇ / b> A of the passage member 34 and the inner flange portion 25 ⁇ / b> A of the valve case 25.
  • a plurality of passages 43 (only two are shown in FIG. 2) communicating the passage 40 and the reservoir 4 are formed.
  • the flange portion 34A may be arranged directly on the inner flange portion 25A on the proximal end side of the valve case 25. In that case, a plurality of passages that connect the passage 40 and the reservoir 4 to the inner flange portion 25A are formed by cutting or the like.
  • the valve member 35 has a plurality of passages 44 (only two are shown in FIG. 2) provided in a circumferentially spaced manner around the shaft hole 35A. Each passage 44 communicates with the passage 41 of the passage member 34 on one side (left side in FIG. 2). Further, on the other end face (right side in FIG. 2) of the valve member 35, an annular recess 35B opened on the other side (right side in FIG. 2) of the passage 44, and a radially outer side of the annular recess 35B, that is, a passage. An annular seat portion 46 formed outside the downstream opening 44 and on which a sub-valve element described later is seated is provided. Then, the passage 44 of the valve member 35 circulates oil through the passage 41 on the annular passage 21 side and the passage 40 on the reservoir 4 side via a sub valve body or a main valve body described later.
  • the sub-valve element includes a first disk 83 and a second disk 84.
  • the first disc 83 and the second disc 84 are sandwiched between a boss portion 35C of the valve member 35 and a flange portion 47A of a pilot pin 47 described later on the inner peripheral side (lower side in FIG. 3).
  • the first disk 83 has a shaft hole 83A through which the pilot pin 47 is inserted.
  • the first disk 83 has a first opening 85 formed in an opening area that restricts the oil (fluid) flowing through the main valve 32, that is, restricts the oil flowing through the passage 44 of the valve member 35.
  • the first disk 83 has a plurality (three in the first embodiment) of first openings 85 arranged at equal intervals on a circle concentric with the shaft hole 83A.
  • the first disk 83 is seated on the seat portion 46 of the valve member 35 on the outer peripheral side (the upper side in FIG. 3).
  • the second disc 84 is provided so as to overlap the back side of the first disc 83, that is, the side opposite to the side seated on the seat portion 46.
  • the second disk 84 has a larger outer diameter and plate thickness than the first disk 83.
  • the second disk 84 is connected by a plurality of (three in the first embodiment) stays 88 extending in the disk radial direction, the outer peripheral part 86 and the inner peripheral part 87 being arranged at equal intervals around the shaft hole 84A. Is done.
  • the second disk 84 has a plurality of (three in the first embodiment) second openings 89 defined by the outer peripheral portion 86, the inner peripheral portion 87, and the adjacent stays 88. In other words, three second openings 89 are provided around the shaft hole 84A.
  • the second opening 89 has an opening area larger than that of the first opening 85 and communicates with the corresponding first opening 85.
  • the main valve body includes a first valve body 81 and a second valve body 82.
  • the first valve body 81 together with the first disk 83 and the second disk 84, has an inner peripheral side (lower side in FIG. 3) between a boss part 35 ⁇ / b> C of the valve member 35 and a flange part 47 ⁇ / b> A of a pilot pin 47 described later. It is pinched at.
  • the first valve body 81 has the same diameter as the outer diameter of the second disk 84 and is provided on the back side of the second disk, in other words, on the side opposite to the valve member 35 (valve seat member) of the sub-valve body. It is done.
  • the 1st valve body 81 is what is called a packing valve, and the packing 90 is fixed to the outer peripheral side of a back surface. And the 1st valve body 81 demarcates the back pressure chamber 52 (pilot chamber) by making the packing 90 slidably contact
  • the second valve element 82 is interposed between the first valve element 81 and the sub-valve element (second disc 84). Further, the second valve body 82 has an outer diameter (small diameter) and a plate thickness smaller than those of the first valve body 81, and closes each second opening 89 of the second disk 84. Thereby, a plurality (three in the first embodiment) of pressure chambers 91 defined by the respective second openings are formed between the second valve body 82 and the sub-valve body (second disk 84). The Each pressure chamber 91 communicates with the annular passage 21 via each corresponding first opening 85 of the first disk 83, each passage 44 of the valve member 35, and the passage 41 of the passage member 34.
  • spacers 92, 93, 94 and a spacer 95 are interposed between the first valve body 81 and the flange portion 47 ⁇ / b> A of the pilot pin 47.
  • the spacer 92 adjacent to the first valve body 81 has a smaller diameter than the other spacers 93, 94, 95.
  • the first valve body 81 is separated from the second disc 84 together with the second valve body 82 when the second valve body 82 receives the pressure of each pressure chamber 91.
  • the passage 44 (annular passage 21) of the valve member 35 is communicated with the passage 40 (reservoir 4), and the damping force of the valve characteristic by the main valve body is obtained.
  • the second disk 84 functions as a valve seat for the main valve body.
  • the piston speed that is, the moving speed of the piston rod 6 reaches a constant speed
  • the sub-valve bodies are separated from the seat portion 46.
  • the passage 44 (annular passage 21) of the valve member 35 is directly communicated with the passage 40 (reservoir 4), and the damping force of the valve characteristic by the sub-valve element is obtained.
  • the pilot pin 47 is formed in a cylindrical shape having a flange portion 47A at an axially intermediate portion, and an orifice 49 is provided at one end (left end in FIG. 2) of the shaft hole 47B. Is formed.
  • One end of the pilot pin 47 is press-fitted into the shaft hole 35 ⁇ / b> A of the valve member 35, and the other end (the right end in FIG. 2) is fitted into the shaft hole 50 ⁇ / b> A of the pilot body 50.
  • a passage 51 extending in the axial direction is formed between the shaft hole 50 ⁇ / b> A of the pilot body 50 and the other end side of the pilot pin 47.
  • the passage 51 is connected to a back pressure chamber 52 formed between the main valve body (first valve body 81) and the pilot body 50.
  • the pilot body 50 is formed in a bottomed cylindrical shape having a cylindrical portion 50B in which a stepped hole is formed inside and a bottom portion 50C that closes the cylindrical portion 50B, and the other end of the pilot pin 47 is formed on the bottom portion 50C.
  • a shaft hole 50A to be fitted is formed.
  • On one end side (left side in FIG. 2) of the bottom portion 50C of the pilot body 50 a protruding cylinder portion 50D that protrudes to the valve member 35 side (left side in FIG. 2) is formed.
  • the packing 90 of the first valve body 81 is fluid-tightly fitted to the inner peripheral surface of the protruding cylinder portion 50D, and the back pressure chamber 52 described above is interposed between the first valve body 81 and the pilot body 50. It is formed.
  • the internal pressure of the back pressure chamber 52 is the valve closing direction with respect to the main valve body, that is, the direction in which the first valve body 81 is pressed against the second valve body 82, and the sub-valve body in the seat portion 46 of the valve member 35. Acts in the direction of seating.
  • a seat portion 54 is formed at the center of the other side (right side in FIG. 2) of the bottom portion 50C of the pilot body 50 so as to surround the shaft hole 50A and on which the pilot valve member 53 is seated. Further, inside the cylindrical portion 50B of the pilot body 50, when the return spring 55 and the solenoid 33 that urges the pilot valve member 53 in a direction away from the seat portion 54 of the pilot body 50 are in a non-energized state (the pilot valve member 53 A disc valve 56 constituting a fail-safe valve (when it is farthest from the seat portion 54), a holding plate 57 in which a passage 57A is formed, and the like.
  • a cap 58 is fitted and fixed to the open end of the cylindrical portion 50B of the pilot body 50 with a return spring 55, a disk valve 56, a holding plate 57, and the like provided inside the cylindrical portion 50B.
  • the cap 58 is formed with a passage 59 serving as a flow path for flowing the oil liquid flowing to the solenoid 33 side through the passage 57A of the holding plate 57 to the passage 40 (reservoir 4 side).
  • the passage 59 is provided at, for example, four locations in the circumferential direction.
  • the pilot valve member 53 constitutes a pilot valve together with the pilot body 50.
  • the pilot valve member 53 is formed in a cylindrical shape, and a tip end portion that is attached to and detached from the seat portion 54 of the pilot body 50 is formed in a tapered shape.
  • One end of the operating pin 69 of the solenoid 33 is fitted and fixed inside the pilot valve member 53, and the valve opening pressure of the pilot valve member 53 is adjusted according to the energization of the solenoid 33.
  • a flange portion 53A that functions as a spring support is formed over the entire circumference.
  • the flange portion 53 ⁇ / b> A functions as a seat portion that contacts the disc valve 56 and constitutes a fail-safe valve.
  • the solenoid 33 includes a coil case 61 and the case member 71 described above.
  • the coil case 61 is formed in a cylindrical shape by molding the coil 61 ⁇ / b> A and the core 62, and the cable 63 is connected to the coil case 61.
  • the coil 61 ⁇ / b> A generates a magnetic force by power supply (energization) through the cable 63.
  • the core 62 is formed of a member made of a magnetic material.
  • the operating pin 69 is supported by a bush 78 incorporated in the stator core 73 and a bush 79 incorporated in the core 74 so as to be movable in the axial direction (left-right direction in FIG. 2).
  • a plunger 75 is coupled to the outer peripheral surface of the operating pin 69.
  • the plunger 75 referred to as a movable iron core is formed in a cylindrical shape by, for example, an iron-based magnetic material, and is energized by the coil 61A to generate a magnetic force, thereby being attracted to the core 74 and generating thrust.
  • the solenoid 33 When the solenoid 33 is in an energized state, the end of the plunger 75 on the main valve 32 side (left side in FIG. 2) is slidably fitted to the recess 74B of the core 74.
  • the damping force adjusting type shock absorber 1 is mounted between the sprung and unsprung parts of the vehicle suspension device.
  • the shock absorber 1 When the vehicle is traveling, if vibration in the vertical direction occurs due to unevenness on the road surface, the shock absorber 1 is displaced so that the piston rod 6 extends and contracts from the outer cylinder 3, and the damping force generating mechanism 31 applies the damping force.
  • the controller controls the current value to the coil 61 ⁇ / b> A of the solenoid 33 to adjust the valve opening pressure of the pilot valve member 53.
  • the damping force generated by the shock absorber 1 can be variably adjusted.
  • the check valve 13 of the piston 5 is closed by the movement of the piston 5 in the cylinder 2, and before the disk valve 14 is opened, the oil liquid (working fluid) on the cylinder upper chamber 2 ⁇ / b> A side is opened. Is pressurized. The pressurized oil liquid passes through the passage 22 and the annular passage 21 and flows from the branch pipe 23 of the separator tube 20 to the passage member 34 of the damping force generation mechanism 31. At this time, the oil liquid corresponding to the movement of the piston 5 flows from the reservoir 4 into the cylinder lower chamber 2B by opening the check valve 17 of the base valve 10.
  • the check valve 13 of the piston 5 opens as the piston 5 moves in the cylinder 2, and the check valve 17 of the passage 15 of the base valve 10 closes.
  • the oil in the piston lower chamber 2B flows into the cylinder upper chamber 2A, and the volume of oil that the piston rod 6 has entered into the cylinder 2 flows from the cylinder upper chamber 2A. It circulates to the reservoir 4 through the same route as in the above-described extension stroke.
  • the pressure in the cylinder lower chamber 2B reaches the valve opening pressure of the disk valve 18 of the base valve 10
  • the disk valve 18 is opened and the pressure in the cylinder lower chamber 2 B is relieved to the reservoir 4. Thereby, an excessive increase in pressure in the cylinder lower chamber 2B can be prevented.
  • the oil that has flowed into the passage 41 of the passage member 34 is before the main valve body, that is, the first valve body 81 and the second valve body 82 are opened (piston speed low speed region).
  • the pilot valve member 53 is pushed open through the shaft hole 35A of the valve member 35, the shaft hole 47B of the pilot pin 47, and the shaft hole 50A of the pilot body 50, and flows into the pilot body 50.
  • the oil that has flowed into the pilot body 50 passes between the flange 53A of the pilot valve member 53 and the disc valve 56, through the passage 57A of the holding plate 57, the passage 59 of the cap 58, and the passage 40 of the valve case 25. It flows to the reservoir 4.
  • the pressure in the cylinder upper chamber 2A, and hence the pressure in the passage 41 of the passage member 34 rises.
  • the pressure is transmitted to the pressure chamber 91 formed in the sub-valve body (second disk 84) through the first opening 85.
  • the main valve body that is, the first valve body 81 and the second valve body 82 are separated from the sub-valve body (second disk 84).
  • the oil liquid flows into the reservoir 4 via the passage 41 of the passage member 34, the passage 44 of the valve member 35, and the passage 40 of the valve case 25.
  • the sub valve body that is, the first disk 83 and the second disk 84 are separated from the seat portion 46 of the valve member 35 and opened.
  • the oil liquid flows to the reservoir 4 via the passage 41 of the passage member 34, the passage 44 of the valve member 35, and the passage 40 of the valve case 25.
  • the damping force is applied by the orifice 49 of the pilot pin 47 and the valve opening pressure of the pilot valve member 53.
  • a damping force corresponding to the opening degree of the valve element can be obtained.
  • the damping force can be directly controlled regardless of the piston speed.
  • the valve opening pressure of the pilot valve member 53 is reduced, and a soft-side damping force is generated.
  • the valve opening pressure of the pilot valve member 53 increases and a hard-side damping force is generated.
  • the internal pressure of the back pressure chamber 52 communicating through the upstream passage 51 changes. In this way, by controlling the valve opening pressure of the pilot valve member 53, the valve opening pressures of the main valve bodies (the first valve body 81 and the second valve body 82) can be adjusted simultaneously, and the damping force The characteristics can be adjusted over a wide range.
  • the pilot valve member 53 is retracted by the spring force of the return spring 55, and the passage 60 of the pilot body 50 (Pilot passage) is opened, the flange 53A of the pilot valve member 53 is brought into contact with the disc valve 56 (fail-safe disc valve), and the flow path between the valve chamber 67 and the passage 40 in the valve case 25 is closed. . In this state, the flow of the oil liquid from the passage 60 to the passage 40 in the valve case 25 in the valve chamber 67 is controlled by the disc valve 56.
  • valve opening pressure of the disc valve 56 A desired damping force can be obtained, and the internal pressure of the back pressure chamber 52, that is, the valve opening pressure of the main valve bodies (the first valve body 81 and the second valve body 82) can be adjusted. As a result, an appropriate damping force can be obtained even during a failure.
  • the damping force adjusting shock absorber 1 includes the following configuration.
  • the main valve 32 is separated from and seated on the seat portion 46 of the valve member 35 (valve seat member) to open and close the downstream opening of the flow path 44 of the valve member 35 (valve seat member), and the sub valve body.
  • a main valve body provided on the opposite side to the valve member 35.
  • the sub-valve element includes a first disk 83 formed with a first opening 85 and a second disk 84 formed with a second opening 89 communicating with the first opening 85.
  • the first opening 85 has an opening area that restricts (limits) the flow of oil (fluid) flowing through the flow path 44 of the valve member 35 (valve seat member).
  • the second opening 89 has an opening area larger than that of the first opening, and forms a pressure chamber 91 that opens the main valve body away from the sub valve body.
  • the main valve body includes a first valve body 81 that closes the back pressure chamber 52 (pilot chamber) by slidably contacting the packing 90 fixed to the outer peripheral side of the back surface with the pilot body 50 (pilot member); It includes a second valve element 82 that is interposed between the first valve element 81 and the sub-valve element (second disc 84) and has a smaller diameter than the first valve element 81.
  • the main valve body (first valve body 81 and second valve body 82) and the sub-valve body (first disk 83 and second disk 84) are stepped by the parallel flow of the oil liquid.
  • the valve opening pressure of the main valve body and the valve opening pressure of the sub valve body Can be adjusted individually, and the damping force generated by the damping force generating mechanism 31 can be adjusted in the very low speed region of the piston speed.
  • the outer diameter of the second valve element 82 is made smaller than the outer diameter of the first valve element 81, the main valve element is opened when the sub valve element functions as a valve seat, that is, when the main valve element is opened.
  • the contact area between the valve body (second valve body 82) and the sub-valve body (second disk 84) can be reduced. Thereby, the sticking of the main valve body and the sub-valve body, particularly in a low temperature environment, is suppressed, and it is possible to prevent the deviation of the valve opening timing, the occurrence of abnormal noise, etc. due to the sticking, A stable damping force can be obtained.
  • the pressure chamber 91 for opening the main valve body is formed by stacking the disks (second valve body 82, first disk 83, and second disk 84), the manufacturing is easy and the cost is low.
  • a damping force adjustable shock absorber 1 can be provided.
  • the first embodiment and the second embodiment are different in the structure of the sub-valve body of the main valve 32.
  • the sub-valve body includes a first disk 83, a second disk 84, a third disk 101, and a fourth disk 102.
  • the second disk 84 applied in the second embodiment is the same as the second disk 84 (see FIG. 4) applied in the first embodiment.
  • the first disk 83 includes a plurality (five in the second embodiment) of first elongated holes 103 arranged around the shaft hole 83A, and inside each first elongated hole 103 (on the shaft hole 83A side).
  • a plurality of second long holes 104 provided opposite to each other and a plurality of first openings 85 communicating the second long holes 104 opposed to the first long holes 103 at the center.
  • the first elongated hole 103 is formed on one side of the first disk 85 in the disk radial direction (the side far from the shaft hole 83A) via the first opening 85, and the other side of the first disk 85 in the disk radial direction.
  • a second long hole 104 is formed (on the side close to the shaft hole 83A).
  • each first elongated hole 103 extends in an arc along a circle concentric with the axial hole 83A.
  • each second long hole 104 extends in an arc along a circle concentric with the shaft hole 83A.
  • the first opening 85 of the first disk 83 in the second embodiment restricts the oil (fluid) flowing through the main valve 32, that is, has an opening area that restricts the oil flowing through the passage 44 of the valve member 35. It is formed.
  • the width of the first long hole 103 and the second long hole 104 that is, the length in the disk radial direction is the same, and is set larger than the length in the disk radial direction of the first opening 85.
  • the third disk 101 is formed to have the same diameter as the first disk 83 and is provided to overlap the valve member 35 side (one side) of the first disk 83. That is, the outer periphery of the third disk 101 is in contact (seat) with the seat portion 46 of the valve member 35 (valve seat member).
  • the third disk 101 has a plurality of (four in the second embodiment) third long holes 105 extending in an arc along a circle concentric with the shaft hole 101A. Even if the first disk 83 and the third disk 101 are assembled to the pilot pin 47 at any angle phase, the first long holes 103 of the first disk 83 are not connected to the third disk 101. It communicates with one of the third long holes 105.
  • the fourth disk 102 is formed to have the same diameter as the second disk 84, and is provided on the back side (the other side) of the first disk 83. That is, the fourth disk 102 is provided so as to overlap the second disk 84 on the side opposite to the second valve element 82. Further, the fourth disk 102 has a plurality (four in the second embodiment) of fourth elongated holes 106 extending in an arc along a circle concentric with the shaft hole 102A.
  • the first long holes 103 of the first disk 83 are not connected to the fourth disk 102. It communicates with one of the fourth long holes 106.
  • the fourth long hole 106 of the fourth disk 102 is formed in the second disk 84. One of the second openings 89 is communicated with.
  • the sub-valve element has a communication path including the third long hole 105, the first long hole 103, the first opening 85, the second long hole 104, and the fourth long hole 106. 107 is formed.
  • the communication passage 107 communicates the pressure chamber 91 in the sub-valve body with the passage 44 of the valve member 35 (valve seat member). Then, the oil liquid (fluid) flowing through the communication passage 107 toward the pressure chamber 91 flows from the outside in the disk radial direction (vertical direction in FIG. 6) to the inside (downward in FIG. 6). That is, the oil liquid passing through the communication passage 107 flows from the first long hole 103 to the second long hole 104 through the first opening 85.
  • the same operational effects as those of the first embodiment described above can be obtained.
  • the first embodiment when the first disk 83 and the second disk 84 are assembled to the pilot pin 47, the first openings 85 of the first disk 83 are not overlapped with the stays 88 of the second disk 84.
  • phase alignment In the second embodiment, such phase alignment is not necessary.
  • the outer diameter of the fourth disk 102 provided on the opposite side of the second disk 84 from the second disk 84 is the same as the outer diameter of the second disk 84.
  • the capacity of the pressure chamber 91 is increased. be able to.
  • the oil liquid in the sub-valve flows from the outer side to the inner side in the disk radial direction, that is, the oil liquid passes through the first opening 85 from the first long hole 103 to the second length.
  • the communication passage 107 is formed so as to flow to the hole 104.
  • the third disk 101 and the fourth disk 102 are replaced, and the oil in the sub-valve flows from the inner side to the outer side in the disk radial direction. That is, the communication path 107 can be formed such that the oil liquid flows from the second long hole 104 to the first long hole 103 through the first opening 85.
  • damping force adjustment type shock absorber based on the embodiment described above, for example, the following modes can be considered.
  • a cylinder in which a working fluid is sealed a piston slidably fitted in the cylinder, a piston connected to the piston, and extending to the outside of the cylinder.
  • a damping force adjusting shock absorber comprising: a pilot passage communicating the pilot chamber and an upstream passage of the main valve; and a control valve provided in the pilot passage, A passage through which a fluid in the cylinder flows, a valve seat member having a seat portion formed outside a downstream opening of the passage, and a seat on the seat portion.
  • the opening has an opening area that restricts a flow of fluid flowing through the passage of the main valve
  • the second opening has an opening area larger than the first opening
  • the outer peripheral side of the main valve body is
  • a pressure chamber is formed to open the main valve body by being separated from the second disk.
  • the main valve body is sandwiched on the inner peripheral side, and the packing fixed to the outer peripheral side on the back surface can slide on the pilot member.
  • the first pilot chamber is closed by contacting the pilot chamber And body, is interposed between the first valve body and said second disk, and close the second opening, than the first valve body and a second valve body diameter.
  • the first disk is formed on one side and the other side in the disk radial direction via the first opening, and each of the first disks communicates with the first opening.
  • a third disk having a third long hole communicating with the first long hole is provided on one side of the first disk, the first disk having a first long hole and a second long hole; On the other side, a fourth disk having a fourth long hole communicating with the second long hole is provided in an overlapping manner.
  • the first opening, the first long hole, the second long hole, the third long hole, and the fourth long hole are a passage of the valve seat member.
  • the pressure chamber are formed, and fluid flows from the outer side to the inner side in the disk radial direction in the communication path.
  • the first opening, the first long hole, the second long hole, the third long hole, and the fourth long hole are a passage of the valve seat member.
  • an outer diameter of a disk provided on the opposite side of the second disk from the second valve body is the second disk. It is the same diameter as the outer diameter.
  • 1 shock absorber 2 cylinder, 5 piston, 6 piston rod, 31 damping force generation mechanism, 32 main valve, 35 valve member (valve seat member), 41 passage 41 (upstream passage of main valve), 44 passage, 50 pilot Body (pilot member), 52 Back pressure chamber (pilot chamber), 53 Pilot valve member (control valve), 60 passage (pilot passage), 81 First valve body (main valve body), 82 Second valve body (main valve) Body), 83, first disk (sub valve body), 84, second disk (sub valve body), 85, first opening, 89, second opening, 90 packing

Abstract

Provided is a damping force-adjusting shock absorber with which stable damping force is obtained even in an ultra-low piston speed range. A second valve body 82 with a smaller diameter than a first valve body 81 is interposed between the first valve body 81 and subvalve bodies. It is thereby possible to reduce the area of contact between a main valve body (second valve body 82) and a subvalve body (second disc 84) when the main valve bodies (first valve body 81 and second valve body 82) are opened. As a result, it is possible to inhibit sticking between the main valve bodies and the subvalve bodies and obtain a stable damping force.

Description

減衰力調整式緩衝器Damping force adjustable shock absorber
 本発明は、ピストンロッドのストロークに対する作動流体の流れを制御して減衰力を発生する減衰力調整式緩衝器に関する。 The present invention relates to a damping force adjusting type shock absorber that generates a damping force by controlling a flow of a working fluid with respect to a stroke of a piston rod.
 良好な減衰力特性を得る緩衝器には、ピストンロッドに係合するバルブ部材に開口を有する複数のディスクバルブを積層することで、背圧室を形成するものがある。(例えば、特許文献1) Some shock absorbers having good damping force characteristics form a back pressure chamber by laminating a plurality of disk valves having openings in a valve member engaged with a piston rod. (For example, Patent Document 1)
特開2014-194259号公報JP 2014-194259 A
 減衰力調整式緩衝器では、さらに良好な減衰力特性を得ることが望まれている。そこで、本発明は、良好な減衰力特性を得ることができる減衰力調整式緩衝器を提供することを目的とする。 In the damping force adjusting type shock absorber, it is desired to obtain better damping force characteristics. Accordingly, an object of the present invention is to provide a damping force adjusting type shock absorber capable of obtaining a good damping force characteristic.
 本発明の一実施形態に係る減衰力調整式緩衝器は、作動流体が封入されたシリンダと、前記シリンダ内に摺動可能に嵌装されたピストンと、前記ピストンに連結され、前記シリンダの外部に延出するピストンロッドと、前記シリンダ内の前記ピストンの摺動により生じる作動流体の流れを制御して減衰力を発生させるメインバルブと、前記メインバルブに対して閉弁方向の圧力を作用させるパイロット室と、前記パイロット室と前記メインバルブの上流側通路とを連通するパイロット通路と、前記パイロット通路に設けられた制御弁と、を備える減衰力調整式緩衝器であって、前記メインバルブは、前記シリンダ内の流体が流通する通路、及び前記通路の下流側開口の外側に形成されたシート部を有する弁座部材と、前記シート部に離着座することで前記通路の下流側開口を開閉するサブ弁体と、前記サブ弁体の前記弁座部材とは反対側に重ねて設けられるメイン弁体と、を含み、前記サブ弁体は、内周側が挟持され、外周側が前記シート部に着座され、第1開口を有する第1ディスクと、内周側が挟持され、前記第1開口と連通する第2開口を有する第2ディスクと、を含み、前記第1開口は、前記メインバルブの通路を流通する流体の流れを絞る開口面積を有し、前記第2開口は、前記第1開口よりも大きい開口面積を有し、前記メイン弁体の外周側を前記第2ディスクから離座させて前記メイン弁体を開弁させる圧力室を形成し、前記メイン弁体は、内周側が挟持され、背面の外周側に固着されたパッキンを前記パイロット部材に摺動可能に当接させて前記パイロット室を閉塞する第1弁体と、前記第1弁体と前記第2ディスクとの間に介装され、前記第2開口を閉塞し、前記第1弁体よりも小径の第2弁体と、を含むことを特徴とする。 A damping force adjusting shock absorber according to an embodiment of the present invention includes a cylinder in which a working fluid is sealed, a piston slidably fitted in the cylinder, a piston connected to the piston, and an outside of the cylinder. A main body valve that controls the flow of working fluid generated by sliding of the piston in the cylinder to generate a damping force, and a pressure in the valve closing direction is applied to the main valve. A damping force adjusting type shock absorber comprising: a pilot chamber; a pilot passage communicating the pilot chamber with an upstream passage of the main valve; and a control valve provided in the pilot passage. , A passage through which the fluid in the cylinder flows, a valve seat member having a seat portion formed outside a downstream opening of the passage, and a seat on the seat portion A sub-valve element that opens and closes the downstream opening of the passage, and a main valve element that is provided on the opposite side of the valve seat member of the sub-valve element, A first disk having a first opening with a peripheral side sandwiched and an outer peripheral side seated on the seat portion; and a second disk having a second opening sandwiched on an inner peripheral side and communicating with the first opening; The first opening has an opening area for restricting the flow of fluid flowing through the passage of the main valve, the second opening has an opening area larger than the first opening, and an outer periphery of the main valve body A pressure chamber is formed to open the main valve body by separating the side from the second disk, and the main valve body is sandwiched on the inner peripheral side and the packing fixed to the outer peripheral side on the back surface is attached to the pilot member. To slidably contact the pilot chamber A first valve body to be closed, a second valve body interposed between the first valve body and the second disk, closing the second opening, and having a smaller diameter than the first valve body, It is characterized by including.
 本発明の一実施形態に係る減衰力調整式緩衝器によれば、良好な減衰力特性を得ることができる。 According to the damping force adjustment type shock absorber according to one embodiment of the present invention, a good damping force characteristic can be obtained.
第1実施形態に係る減衰力調整式緩衝器の一軸平面による断面図である。It is sectional drawing by the uniaxial plane of the damping force adjustment type buffer which concerns on 1st Embodiment. 第1実施形態の説明図であって、図1の要部(減衰力発生機構)を拡大して示す図である。It is explanatory drawing of 1st Embodiment, Comprising: It is a figure which expands and shows the principal part (damping force generation | occurrence | production mechanism) of FIG. 第1実施形態の説明図であって、図2の要部(弁体)を拡大して示す図である。It is explanatory drawing of 1st Embodiment, Comprising: It is a figure which expands and shows the principal part (valve body) of FIG. 第1実施形態の説明図であって、メイン弁体及びサブ弁体の構成を示す図である。It is explanatory drawing of 1st Embodiment, Comprising: It is a figure which shows the structure of a main valve body and a subvalve body. 第1実施形態の説明図であって、ピストン速度と減衰力との関係を示す図表である。It is explanatory drawing of 1st Embodiment, Comprising: It is a graph which shows the relationship between piston speed and damping force. 第2実施形態の説明図であって、図3に対応する図である。It is explanatory drawing of 2nd Embodiment, Comprising: It is a figure corresponding to FIG. 第2実施形態の説明図であって、メイン弁体及びサブ弁体の構成を示す図である。It is explanatory drawing of 2nd Embodiment, Comprising: It is a figure which shows the structure of a main valve body and a subvalve body.
 本発明の第1実施形態を添付した図を参照して説明する。なお、以下の説明において、図1における上下方向をそのまま上下方向と称する。
 図1に示されるように、減衰力調整式緩衝器1は、シリンダ2の外側に外筒3を設けた複筒構造であり、シリンダ2と外筒3との間には、リザーバ4が形成される。シリンダ2内には、ピストン5が摺動可能に嵌装され、当該ピストン5により、シリンダ2内がシリンダ上室2Aとシリンダ下室2Bとの2室に分画される。ピストン5には、ピストンロッド6の一端がナット7により連結され、ピストンロッド6の他端側は、シリンダ上室2Aを通過し、さらにシリンダ2及び外筒3の上端部に装着されたロッドガイド8及びオイルシール9に挿通され、シリンダ2の外部へ延出する。
A first embodiment of the present invention will be described with reference to the accompanying drawings. In the following description, the vertical direction in FIG. 1 is referred to as the vertical direction as it is.
As shown in FIG. 1, the damping force adjustment type shock absorber 1 has a double cylinder structure in which an outer cylinder 3 is provided outside a cylinder 2, and a reservoir 4 is formed between the cylinder 2 and the outer cylinder 3. Is done. A piston 5 is slidably fitted into the cylinder 2, and the piston 5 divides the inside of the cylinder 2 into two chambers, a cylinder upper chamber 2A and a cylinder lower chamber 2B. One end of a piston rod 6 is connected to the piston 5 by a nut 7, and the other end side of the piston rod 6 passes through the cylinder upper chamber 2 </ b> A, and is further attached to the upper ends of the cylinder 2 and the outer cylinder 3. 8 and the oil seal 9 are extended to the outside of the cylinder 2.
 なお、シリンダ2の下端部には、シリンダ下室2Bとリザーバ4とを分画するベースバルブ10が設けられる。ピストン5には、シリンダ上室2A、シリンダ下室2B間を連通する通路11、12が設けられる。通路12には、シリンダ下室2B側からシリンダ上室2A側への油液(作動流体)の流通のみを許容する逆止弁13が設けられる。また、通路11には、シリンダ上室2A側の油液の圧力が設定圧力に達したとき開弁し、この圧力をシリンダ下室2B側へリリーフするディスクバルブ14が設けられる。 A base valve 10 that separates the cylinder lower chamber 2B and the reservoir 4 is provided at the lower end of the cylinder 2. The piston 5 is provided with passages 11 and 12 communicating between the cylinder upper chamber 2A and the cylinder lower chamber 2B. The passage 12 is provided with a check valve 13 that allows only fluid (working fluid) to flow from the cylinder lower chamber 2B side to the cylinder upper chamber 2A side. Further, the passage 11 is provided with a disk valve 14 that opens when the pressure of the oil liquid on the cylinder upper chamber 2A side reaches the set pressure and relieves the pressure to the cylinder lower chamber 2B side.
 ベースバルブ10には、シリンダ下室2Bとリザーバ4とを連通する通路15、16が設けられる。通路15には、リザーバ4側からシリンダ下室2B側への油液の流通のみを許容する逆止弁17が設けられる。また、通路16には、シリンダ下室2B側の油液の圧力が所定圧力に達したときに開弁し、この圧力をリザーバ4側へリリーフするディスクバルブ18が設けられる。なお、作動流体として、シリンダ2内には油液が封入され、リザーバ4内には油液及びガスが封入される。 The base valve 10 is provided with passages 15 and 16 communicating the cylinder lower chamber 2B and the reservoir 4. The passage 15 is provided with a check valve 17 that allows only fluid to flow from the reservoir 4 side to the cylinder lower chamber 2B side. The passage 16 is provided with a disk valve 18 that opens when the pressure of the oil on the cylinder lower chamber 2B side reaches a predetermined pressure and relieves the pressure to the reservoir 4 side. Note that as the working fluid, an oil liquid is sealed in the cylinder 2, and an oil liquid and a gas are sealed in the reservoir 4.
 シリンダ2には、上下方向両端部に、シール部材19を介してセパレータチューブ20が外嵌され、シリンダ2とセパレータチューブ20との間には、環状通路21が形成される。環状通路21は、シリンダ2の上端部近傍の側壁に設けられた通路22により、シリンダ上室2Aに連通される。セパレータチューブ20の下部には、側方(図1における右方向)に突出する円筒形の枝管23が形成される。外筒3の側壁には、枝管23に対して同心で枝管23よりも大径の開口24が設けられ、この開口24を囲むようにして円筒形のバルブケース25が溶接等により結合される。当該バルブケース25内には、減衰力発生機構31が収容される。 The separator tube 20 is externally fitted to the cylinder 2 via seal members 19 at both ends in the vertical direction, and an annular passage 21 is formed between the cylinder 2 and the separator tube 20. The annular passage 21 is communicated with the cylinder upper chamber 2 </ b> A through a passage 22 provided in a side wall near the upper end of the cylinder 2. A cylindrical branch pipe 23 that protrudes laterally (to the right in FIG. 1) is formed at the lower portion of the separator tube 20. An opening 24 that is concentric with the branch pipe 23 and larger in diameter than the branch pipe 23 is provided on the side wall of the outer cylinder 3, and a cylindrical valve case 25 is joined by welding or the like so as to surround the opening 24. A damping force generation mechanism 31 is accommodated in the valve case 25.
(減衰力発生機構) 図1に示されるように、減衰力発生機構31は、基端側(図1における左端側)が、リザーバ4と環状通路21との間に介在し、先端側(図1における右端側)が、外筒3から径方向外向き(図1における右向き)へ突出するように設けられる。減衰力発生機構31は、環状通路21からリザーバ4への油液の流通を、メインバルブ32にて制御することにより、減衰力を発生する。また、メインバルブ32の開弁圧を、減衰力可変アクチュエータとして適用されるソレノイド33にて調整することにより、発生させる減衰力が可変に調整される。 (Damping Force Generation Mechanism) As shown in FIG. 1, the damping force generation mechanism 31 has a base end side (left end side in FIG. 1) interposed between the reservoir 4 and the annular passage 21, and a tip end side (FIG. 1 is provided so as to protrude radially outward (rightward in FIG. 1) from the outer cylinder 3. The damping force generation mechanism 31 generates a damping force by controlling the flow of the oil liquid from the annular passage 21 to the reservoir 4 by the main valve 32. Further, the damping force to be generated is variably adjusted by adjusting the valve opening pressure of the main valve 32 with a solenoid 33 applied as a damping force variable actuator.
 図2に示されるように、減衰力発生機構31は、前述のバルブケース25と、基端側(図2における左端側)が、セパレータチューブ20の枝管23に固定され、先端側(図2における右端側)に形成された環状のフランジ部34Aが、バルブケース25の基端側の内フランジ部25Aに対して隙間をもって配置される通路部材34と、当該通路部材34のフランジ部34Aに当接するバルブ部材35(弁座部材)と、を含む。バルブケース25の先端側にはねじ部39が形成され、当該ねじ部39に螺合したナット38により、バルブケース25とソレノイド33のケース部材71とが結合される。また、バルブケース25の内周面とメインバルブ32との間には、リザーバ4に連通する環状の通路40が形成される。 As shown in FIG. 2, the damping force generation mechanism 31 has the above-described valve case 25 and the base end side (left end side in FIG. 2) fixed to the branch pipe 23 of the separator tube 20, and the tip end side (FIG. 2). The annular flange portion 34A formed on the right end side of the passage member 34 is disposed in contact with the inner flange portion 25A on the proximal end side of the valve case 25 with a gap and the flange portion 34A of the passage member 34. And a valve member 35 (valve seat member) in contact therewith. A threaded portion 39 is formed on the distal end side of the valve case 25, and the valve case 25 and the case member 71 of the solenoid 33 are coupled by a nut 38 screwed into the threaded portion 39. An annular passage 40 communicating with the reservoir 4 is formed between the inner peripheral surface of the valve case 25 and the main valve 32.
 通路部材34の内側には、一方が環状通路21に連通し、他方がバルブ部材35まで延びる通路41(メインバルブ32の上流側通路)が形成される。また、通路部材34のフランジ部34Aとバルブケース25の内フランジ部25Aとにより、円環状のスペーサ42が挟持される。当該スペーサ42には、通路40とリザーバ4とを連通する複数本(図2には2本のみ表示)の通路43が形成される。なお、スペーサ42に代えて、バルブケース25の基端側の内フランジ部25Aに直接フランジ部34Aを配置するようにしてもよい。その場合には、内フランジ部25Aに通路40とリザーバ4とを連通する複数本の通路を切削などにより形成する。 Inside the passage member 34, a passage 41 (upstream passage of the main valve 32) is formed, one of which communicates with the annular passage 21 and the other extends to the valve member 35. An annular spacer 42 is sandwiched between the flange portion 34 </ b> A of the passage member 34 and the inner flange portion 25 </ b> A of the valve case 25. In the spacer 42, a plurality of passages 43 (only two are shown in FIG. 2) communicating the passage 40 and the reservoir 4 are formed. Instead of the spacer 42, the flange portion 34A may be arranged directly on the inner flange portion 25A on the proximal end side of the valve case 25. In that case, a plurality of passages that connect the passage 40 and the reservoir 4 to the inner flange portion 25A are formed by cutting or the like.
 バルブ部材35は、軸孔35Aの周囲に周方向に離間して設けられる複数本(図2には2本のみ表示)の通路44を有する。各通路44は、一側(図2における左側)が通路部材34の通路41に連通する。また、バルブ部材35の他側(図2における右側)の端面には、通路44の他側(図2における右側)が開口する環状凹部35Bと、当該環状凹部35Bの径方向外側、すなわち、通路44の下流側開口の外側に形成され、後述のサブ弁体が離着座する環状のシート部46と、が設けられる。そして、バルブ部材35の通路44は、環状通路21側の通路41とリザーバ4側の通路40とを、サブ弁体又は後述のメイン弁体を介して油液を流通させる。 The valve member 35 has a plurality of passages 44 (only two are shown in FIG. 2) provided in a circumferentially spaced manner around the shaft hole 35A. Each passage 44 communicates with the passage 41 of the passage member 34 on one side (left side in FIG. 2). Further, on the other end face (right side in FIG. 2) of the valve member 35, an annular recess 35B opened on the other side (right side in FIG. 2) of the passage 44, and a radially outer side of the annular recess 35B, that is, a passage. An annular seat portion 46 formed outside the downstream opening 44 and on which a sub-valve element described later is seated is provided. Then, the passage 44 of the valve member 35 circulates oil through the passage 41 on the annular passage 21 side and the passage 40 on the reservoir 4 side via a sub valve body or a main valve body described later.
(サブ弁体) 図3、図4を参照すると、サブ弁体は、第1ディスク83と第2ディスク84とを含む。第1ディスク83及び第2ディスク84は、内周側(図3における下側)が、バルブ部材35のボス部35Cと後述のパイロットピン47のフランジ部47Aとの間にて挟持される。第1ディスク83は、パイロットピン47が挿通される軸孔83Aを有する。また、第1ディスク83は、メインバルブ32を流通する油液(流体)を絞る、すなわち、バルブ部材35の通路44を流れる油液を制限する開口面積に形成された第1開口85を有する。また、第1ディスク83には、複数個(第1実施形態では3個)の第1開口85が、軸孔83Aに対して同心の円上に等間隔で配置される。そして、第1ディスク83は、外周側(図3における上側)が、バルブ部材35のシート部46に着座される。 (Sub-valve element) Referring to FIGS. 3 and 4, the sub-valve element includes a first disk 83 and a second disk 84. The first disc 83 and the second disc 84 are sandwiched between a boss portion 35C of the valve member 35 and a flange portion 47A of a pilot pin 47 described later on the inner peripheral side (lower side in FIG. 3). The first disk 83 has a shaft hole 83A through which the pilot pin 47 is inserted. Further, the first disk 83 has a first opening 85 formed in an opening area that restricts the oil (fluid) flowing through the main valve 32, that is, restricts the oil flowing through the passage 44 of the valve member 35. The first disk 83 has a plurality (three in the first embodiment) of first openings 85 arranged at equal intervals on a circle concentric with the shaft hole 83A. The first disk 83 is seated on the seat portion 46 of the valve member 35 on the outer peripheral side (the upper side in FIG. 3).
 第2ディスク84は、第1ディスク83の背面側、すなわち、シート部46に着座する側とは反対側に重ねて設けられる。また、第2ディスク84は、第1ディスク83に対して大きい外径及び板厚を有する。第2ディスク84は、外周部86と内周部87とが、軸孔84Aの周囲に等間隔で配置されたディスク径方向へ延びる複数本(第1実施形態では3本)のステー88により接続される。また、第2ディスク84は、外周部86、内周部87、及び隣接するステー88により画定される複数個(第1実施形態では3個)の第2開口89を有する。換言すると、軸孔84Aの周囲には、3つの第2開口89が設けられる。当該第2開口89は、第1開口85よりも大きい開口面積を有し、対応する各第1開口85に連通する。 The second disc 84 is provided so as to overlap the back side of the first disc 83, that is, the side opposite to the side seated on the seat portion 46. The second disk 84 has a larger outer diameter and plate thickness than the first disk 83. The second disk 84 is connected by a plurality of (three in the first embodiment) stays 88 extending in the disk radial direction, the outer peripheral part 86 and the inner peripheral part 87 being arranged at equal intervals around the shaft hole 84A. Is done. The second disk 84 has a plurality of (three in the first embodiment) second openings 89 defined by the outer peripheral portion 86, the inner peripheral portion 87, and the adjacent stays 88. In other words, three second openings 89 are provided around the shaft hole 84A. The second opening 89 has an opening area larger than that of the first opening 85 and communicates with the corresponding first opening 85.
(メイン弁体) 一方、メイン弁体は、第1弁体81と第2弁体82とを含む。第1弁体81は、第1ディスク83及び第2ディスク84と共に、内周側(図3における下側)が、バルブ部材35のボス部35Cと後述のパイロットピン47のフランジ部47Aとの間にて挟持される。第1弁体81は、第2ディスク84の外径と同一径であり、第2ディスクの背面側、換言すると、サブ弁体のバルブ部材35(弁座部材)とは反対側に重ねて設けられる。また、第1弁体81は、いわゆるパッキンバルブであり、背面の外周側にはパッキン90が固着される。そして、第1弁体81は、パッキン90を、パイロットボディ50(パイロット部材)の突出筒部50Dの内周面に摺動可能に当接させることにより、背圧室52(パイロット室)を画定(閉塞)する。つまり、背圧室52(パイロット室)は、パイロットボディ50(パイロット部材)を形成している。 (Main valve body) On the other hand, the main valve body includes a first valve body 81 and a second valve body 82. The first valve body 81, together with the first disk 83 and the second disk 84, has an inner peripheral side (lower side in FIG. 3) between a boss part 35 </ b> C of the valve member 35 and a flange part 47 </ b> A of a pilot pin 47 described later. It is pinched at. The first valve body 81 has the same diameter as the outer diameter of the second disk 84 and is provided on the back side of the second disk, in other words, on the side opposite to the valve member 35 (valve seat member) of the sub-valve body. It is done. Moreover, the 1st valve body 81 is what is called a packing valve, and the packing 90 is fixed to the outer peripheral side of a back surface. And the 1st valve body 81 demarcates the back pressure chamber 52 (pilot chamber) by making the packing 90 slidably contact | abuts to the internal peripheral surface of protrusion cylinder part 50D of the pilot body 50 (pilot member). (Block). That is, the back pressure chamber 52 (pilot chamber) forms a pilot body 50 (pilot member).
 他方、第2弁体82は、第1弁体81とサブ弁体(第2ディスク84)との間に介装される。また、第2弁体82は、第1弁体81よりも小さい外径(小径)及び板厚を有し、第2ディスク84の各第2開口89を閉塞する。これにより、第2弁体82とサブ弁体(第2ディスク84)との間には、各第2開口により画定される複数個(第1実施形態では3個)の圧力室91が形成される。各圧力室91は、第1ディスク83の対応する各第1開口85、バルブ部材35の各通路44、及び通路部材34の通路41を介して環状通路21に連通される。なお、第1弁体81とパイロットピン47のフランジ部47Aとの間には、スペーサ92、93、94、及びスペーサ95が介装されている。ここで、第1弁体81に隣接するスペーサ92は、他のスペーサ93、94、95よりも小径である。 On the other hand, the second valve element 82 is interposed between the first valve element 81 and the sub-valve element (second disc 84). Further, the second valve body 82 has an outer diameter (small diameter) and a plate thickness smaller than those of the first valve body 81, and closes each second opening 89 of the second disk 84. Thereby, a plurality (three in the first embodiment) of pressure chambers 91 defined by the respective second openings are formed between the second valve body 82 and the sub-valve body (second disk 84). The Each pressure chamber 91 communicates with the annular passage 21 via each corresponding first opening 85 of the first disk 83, each passage 44 of the valve member 35, and the passage 41 of the passage member 34. Note that spacers 92, 93, 94 and a spacer 95 are interposed between the first valve body 81 and the flange portion 47 </ b> A of the pilot pin 47. Here, the spacer 92 adjacent to the first valve body 81 has a smaller diameter than the other spacers 93, 94, 95.
 そして、第1弁体81は、第2弁体82が各圧力室91の圧力を受けることにより、第2弁体82と共に第2ディスク84から離座される。これにより、バルブ部材35の通路44(環状通路21)が通路40(リザーバ4)に連通され、メイン弁体によるバルブ特性の減衰力が得られる。この場合、第2ディスク84は、メイン弁体の弁座として機能する。一方、ピストン速度、すなわち、ピストンロッド6の移動速度が一定速度に達すると、サブ弁体(第1ディスク83及び第2ディスク84)がシート部46から離座される。これにより、バルブ部材35の通路44(環状通路21)が通路40(リザーバ4)に直接連通され、サブ弁体によるバルブ特性の減衰力が得られる。 The first valve body 81 is separated from the second disc 84 together with the second valve body 82 when the second valve body 82 receives the pressure of each pressure chamber 91. As a result, the passage 44 (annular passage 21) of the valve member 35 is communicated with the passage 40 (reservoir 4), and the damping force of the valve characteristic by the main valve body is obtained. In this case, the second disk 84 functions as a valve seat for the main valve body. On the other hand, when the piston speed, that is, the moving speed of the piston rod 6 reaches a constant speed, the sub-valve bodies (the first disk 83 and the second disk 84) are separated from the seat portion 46. Thereby, the passage 44 (annular passage 21) of the valve member 35 is directly communicated with the passage 40 (reservoir 4), and the damping force of the valve characteristic by the sub-valve element is obtained.
(パイロットバルブ) 図2に示されるように、パイロットピン47は、軸方向中間部にフランジ部47Aを有する円筒状に形成され、軸孔47Bの一端(図2における左側端)には、オリフィス49が形成される。また、パイロットピン47は、一端がバルブ部材35の軸孔35Aに圧入され、他端(図2におけるの右側端)が、パイロットボディ50の軸孔50Aに嵌合される。この状態で、パイロットボディ50の軸孔50Aと、パイロットピン47の他端側との間には、軸方向へ延びる通路51が形成される。通路51は、メイン弁体(第1弁体81)とパイロットボディ50との間に形成される背圧室52に接続される。 (Pilot Valve) As shown in FIG. 2, the pilot pin 47 is formed in a cylindrical shape having a flange portion 47A at an axially intermediate portion, and an orifice 49 is provided at one end (left end in FIG. 2) of the shaft hole 47B. Is formed. One end of the pilot pin 47 is press-fitted into the shaft hole 35 </ b> A of the valve member 35, and the other end (the right end in FIG. 2) is fitted into the shaft hole 50 </ b> A of the pilot body 50. In this state, a passage 51 extending in the axial direction is formed between the shaft hole 50 </ b> A of the pilot body 50 and the other end side of the pilot pin 47. The passage 51 is connected to a back pressure chamber 52 formed between the main valve body (first valve body 81) and the pilot body 50.
 パイロットボディ50は、内側に段付穴が形成された円筒部50Bと当該円筒部50Bを閉塞する底部50Cとを有する有底筒状に形成され、底部50Cには、パイロットピン47の他端が嵌合される軸孔50Aが形成される。パイロットボディ50の底部50Cの一端側(図2における左側)には、バルブ部材35側(図2における左側)に突出する突出筒部50Dが形成される。当該突出筒部50Dの内周面には、第1弁体81のパッキン90が液密に嵌合され、第1弁体81とパイロットボディ50との間には、前述の背圧室52が形成される。当該背圧室52の内圧は、メイン弁体に対して閉弁方向、すなわち、第1弁体81を第2弁体82に押し付ける方向、延いてはサブ弁体をバルブ部材35のシート部46に着座させる方向へ作用する。 The pilot body 50 is formed in a bottomed cylindrical shape having a cylindrical portion 50B in which a stepped hole is formed inside and a bottom portion 50C that closes the cylindrical portion 50B, and the other end of the pilot pin 47 is formed on the bottom portion 50C. A shaft hole 50A to be fitted is formed. On one end side (left side in FIG. 2) of the bottom portion 50C of the pilot body 50, a protruding cylinder portion 50D that protrudes to the valve member 35 side (left side in FIG. 2) is formed. The packing 90 of the first valve body 81 is fluid-tightly fitted to the inner peripheral surface of the protruding cylinder portion 50D, and the back pressure chamber 52 described above is interposed between the first valve body 81 and the pilot body 50. It is formed. The internal pressure of the back pressure chamber 52 is the valve closing direction with respect to the main valve body, that is, the direction in which the first valve body 81 is pressed against the second valve body 82, and the sub-valve body in the seat portion 46 of the valve member 35. Acts in the direction of seating.
 パイロットボディ50の底部50Cの他側(図2における右側)中央には、軸孔50Aを囲むように設けられ、パイロット弁部材53が離着座するシート部54が形成される。また、パイロットボディ50の円筒部50Bの内側には、パイロット弁部材53をパイロットボディ50のシート部54から離れる方向に付勢するリターンばね55、ソレノイド33が非通電状態のとき(パイロット弁部材53がシート部54から最も離れたとき)のフェールセーフバルブを構成するディスクバルブ56、通路57Aが形成された保持プレート57等が設けられる。 A seat portion 54 is formed at the center of the other side (right side in FIG. 2) of the bottom portion 50C of the pilot body 50 so as to surround the shaft hole 50A and on which the pilot valve member 53 is seated. Further, inside the cylindrical portion 50B of the pilot body 50, when the return spring 55 and the solenoid 33 that urges the pilot valve member 53 in a direction away from the seat portion 54 of the pilot body 50 are in a non-energized state (the pilot valve member 53 A disc valve 56 constituting a fail-safe valve (when it is farthest from the seat portion 54), a holding plate 57 in which a passage 57A is formed, and the like.
 また、パイロットボディ50の円筒部50Bの開口端には、当該円筒部50Bの内側に、リターンばね55、ディスクバルブ56、保持プレート57等を設けた状態にて、キャップ58が嵌合固定される。当該キャップ58には、保持プレート57の通路57Aを通じてソレノイド33側に流れた油液を、通路40(リザーバ4側)へ流通させる流路となる通路59が形成される。なお、通路59は、例えば円周方向の4箇所に設けられる。 A cap 58 is fitted and fixed to the open end of the cylindrical portion 50B of the pilot body 50 with a return spring 55, a disk valve 56, a holding plate 57, and the like provided inside the cylindrical portion 50B. . The cap 58 is formed with a passage 59 serving as a flow path for flowing the oil liquid flowing to the solenoid 33 side through the passage 57A of the holding plate 57 to the passage 40 (reservoir 4 side). The passage 59 is provided at, for example, four locations in the circumferential direction.
 パイロット弁部材53は、パイロットボディ50と共にパイロットバルブを構成する。パイロット弁部材53は、円筒状に形成され、パイロットボディ50のシート部54に離着座する先端部が先細りのテーパ状に形成される。パイロット弁部材53の内側には、ソレノイド33の作動ピン69の一端が嵌合固定され、ソレノイド33への通電に応じて、パイロット弁部材53の開弁圧が調節される。また、パイロット弁部材53の基端側(図2における右端側)には、全周にわたって、ばね受として機能するフランジ部53Aが形成される。そして、ソレノイド33が非通電状態のとき、すなわち、パイロット弁部材53がシート部54から最も離れたとき、フランジ部53Aは、ディスクバルブ56に当接するシート部として機能してフェールセーフバルブを構成する。 The pilot valve member 53 constitutes a pilot valve together with the pilot body 50. The pilot valve member 53 is formed in a cylindrical shape, and a tip end portion that is attached to and detached from the seat portion 54 of the pilot body 50 is formed in a tapered shape. One end of the operating pin 69 of the solenoid 33 is fitted and fixed inside the pilot valve member 53, and the valve opening pressure of the pilot valve member 53 is adjusted according to the energization of the solenoid 33. Further, on the base end side (right end side in FIG. 2) of the pilot valve member 53, a flange portion 53A that functions as a spring support is formed over the entire circumference. When the solenoid 33 is in a non-energized state, that is, when the pilot valve member 53 is farthest from the seat portion 54, the flange portion 53 </ b> A functions as a seat portion that contacts the disc valve 56 and constitutes a fail-safe valve. .
(ソレノイド) 図2に示されるように、ソレノイド33は、コイルケース61と、前述のケース部材71とを含む。コイルケース61は、コイル61A及びコア62をモールド成形することにより円筒状に形成され、コイルケース61には、ケーブル63が接続される。そして、コイル61Aは、ケーブル63を通じた電力供給(通電)により磁力を発生する。なお、コア62は、磁性体からなる部材により形成される。 (Solenoid) As shown in FIG. 2, the solenoid 33 includes a coil case 61 and the case member 71 described above. The coil case 61 is formed in a cylindrical shape by molding the coil 61 </ b> A and the core 62, and the cable 63 is connected to the coil case 61. The coil 61 </ b> A generates a magnetic force by power supply (energization) through the cable 63. The core 62 is formed of a member made of a magnetic material.
 作動ピン69は、ステータコア73に組み込まれたブッシュ78、及びコア74に組み込まれたブッシュ79により、軸線方向(図2における左右方向)へ移動可能に支持される。作動ピン69の外周面には、プランジャ75が結合される。可動鉄心と称されるプランジャ75は、例えば鉄系の磁性体により円筒状に形成され、コイル61Aに通電されて磁力が発生することにより、コア74に吸着されて推力を発生する。なお、ソレノイド33が通電状態であるとき、プランジャ75のメインバルブ32側(図2における左側)の端は、コア74の凹部74Bに対して摺動可能に嵌合される。 The operating pin 69 is supported by a bush 78 incorporated in the stator core 73 and a bush 79 incorporated in the core 74 so as to be movable in the axial direction (left-right direction in FIG. 2). A plunger 75 is coupled to the outer peripheral surface of the operating pin 69. The plunger 75 referred to as a movable iron core is formed in a cylindrical shape by, for example, an iron-based magnetic material, and is energized by the coil 61A to generate a magnetic force, thereby being attracted to the core 74 and generating thrust. When the solenoid 33 is in an energized state, the end of the plunger 75 on the main valve 32 side (left side in FIG. 2) is slidably fitted to the recess 74B of the core 74.
(作用) 次に、第1実施形態に係る減衰力調整式緩衝器1の作用を説明する。
 減衰力調整式緩衝器1は、車両のサスペンション装置のばね上、ばね下間に装着される。車両の走行時には、路面の凹凸等により上下方向の振動が発生すると、緩衝器1は、ピストンロッド6が外筒3から伸長、縮小するように変位し、減衰力発生機構31にて減衰力を発生させることにより、車両の振動を緩衝させる。このとき、コントローラによりソレノイド33のコイル61Aへの電流値を制御し、パイロット弁部材53の開弁圧を調整する。これにより、緩衝器1が発生する減衰力を可変に調整することができる。
(Operation) Next, the operation of the damping force adjusting shock absorber 1 according to the first embodiment will be described.
The damping force adjusting type shock absorber 1 is mounted between the sprung and unsprung parts of the vehicle suspension device. When the vehicle is traveling, if vibration in the vertical direction occurs due to unevenness on the road surface, the shock absorber 1 is displaced so that the piston rod 6 extends and contracts from the outer cylinder 3, and the damping force generating mechanism 31 applies the damping force. By generating, the vibration of the vehicle is buffered. At this time, the controller controls the current value to the coil 61 </ b> A of the solenoid 33 to adjust the valve opening pressure of the pilot valve member 53. Thereby, the damping force generated by the shock absorber 1 can be variably adjusted.
 ピストンロッド6の伸び行程時には、シリンダ2内のピストン5の移動によりピストン5の逆止弁13が閉弁し、ディスクバルブ14の開弁前にはシリンダ上室2A側の油液(作動流体)が加圧される。加圧された油液は、通路22及び環状通路21を通り、セパレータチューブ20の枝管23から減衰力発生機構31の通路部材34へ流入する。このとき、ピストン5が移動した分の油液は、リザーバ4から、ベースバルブ10の逆止弁17を開弁させてシリンダ下室2Bへ流入する。なお、シリンダ上室2Aの圧力がピストン5のディスクバルブ14の開弁圧力に達すると、ディスクバルブ14が開弁し、シリンダ上室2Aの圧力をシリンダ下室2Bへリリーフすることにより、シリンダ上室2Aの過度の圧力の上昇を防止する。 During the extension stroke of the piston rod 6, the check valve 13 of the piston 5 is closed by the movement of the piston 5 in the cylinder 2, and before the disk valve 14 is opened, the oil liquid (working fluid) on the cylinder upper chamber 2 </ b> A side is opened. Is pressurized. The pressurized oil liquid passes through the passage 22 and the annular passage 21 and flows from the branch pipe 23 of the separator tube 20 to the passage member 34 of the damping force generation mechanism 31. At this time, the oil liquid corresponding to the movement of the piston 5 flows from the reservoir 4 into the cylinder lower chamber 2B by opening the check valve 17 of the base valve 10. When the pressure in the cylinder upper chamber 2A reaches the valve opening pressure of the disk valve 14 of the piston 5, the disk valve 14 opens and the pressure in the cylinder upper chamber 2A is relieved to the cylinder lower chamber 2B. An excessive increase in pressure in the chamber 2A is prevented.
 一方、ピストンロッド6の縮み行程時には、シリンダ2内のピストン5の移動に伴いピストン5の逆止弁13が開弁し、ベースバルブ10の通路15の逆止弁17が閉弁する。そして、ディスクバルブ18の開弁前には、ピストン下室2Bの油液がシリンダ上室2Aへ流入し、ピストンロッド6がシリンダ2内に進入した体積分の油液が、シリンダ上室2Aから前述の伸び行程時と同一経路にてリザーバ4へ流通する。なお、シリンダ下室2B内の圧力がベースバルブ10のディスクバルブ18の開弁圧力に達すると、ディスクバルブ18が開弁して、シリンダ下室2Bの圧力をリザーバ4へリリーフする。これにより、シリンダ下室2Bの過度の圧力の上昇を防止することができる。 On the other hand, during the contraction stroke of the piston rod 6, the check valve 13 of the piston 5 opens as the piston 5 moves in the cylinder 2, and the check valve 17 of the passage 15 of the base valve 10 closes. Before the disc valve 18 is opened, the oil in the piston lower chamber 2B flows into the cylinder upper chamber 2A, and the volume of oil that the piston rod 6 has entered into the cylinder 2 flows from the cylinder upper chamber 2A. It circulates to the reservoir 4 through the same route as in the above-described extension stroke. When the pressure in the cylinder lower chamber 2B reaches the valve opening pressure of the disk valve 18 of the base valve 10, the disk valve 18 is opened and the pressure in the cylinder lower chamber 2 B is relieved to the reservoir 4. Thereby, an excessive increase in pressure in the cylinder lower chamber 2B can be prevented.
 他方、減衰力発生機構31では、通路部材34の通路41に流入した油液は、メイン弁体、すなわち、第1弁体81及び第2弁体82の開弁前(ピストン速度低速域)において、バルブ部材35の軸孔35A、パイロットピン47の軸孔47B、パイロットボディ50の軸孔50Aを通り、パイロット弁部材53を押し開き、パイロットボディ50の内側へ流入する。パイロットボディ50の内側に流入した油液は、パイロット弁部材53のフランジ部53Aとディスクバルブ56との間、保持プレート57の通路57A、キャップ58の通路59、バルブケース25の通路40を通ってリザーバ4へ流れる。 On the other hand, in the damping force generation mechanism 31, the oil that has flowed into the passage 41 of the passage member 34 is before the main valve body, that is, the first valve body 81 and the second valve body 82 are opened (piston speed low speed region). The pilot valve member 53 is pushed open through the shaft hole 35A of the valve member 35, the shaft hole 47B of the pilot pin 47, and the shaft hole 50A of the pilot body 50, and flows into the pilot body 50. The oil that has flowed into the pilot body 50 passes between the flange 53A of the pilot valve member 53 and the disc valve 56, through the passage 57A of the holding plate 57, the passage 59 of the cap 58, and the passage 40 of the valve case 25. It flows to the reservoir 4.
 ピストン速度の上昇に伴い、シリンダ上室2Aの圧力、延いては通路部材34の通路41の圧力が上昇すると、当該圧力は、バルブ部材35の通路44及び第1ディスク83(サブ弁体)の第1開口85を介して、サブ弁体(第2ディスク84)内に形成された圧力室91に伝達される。当該圧力室91の圧力がメイン弁体の開弁圧力に達すると、メイン弁体、すなわち、第1弁体81及び第2弁体82が、サブ弁体(第2ディスク84)から離座して開弁し、その結果、油液は、通路部材34の通路41、バルブ部材35の通路44、及びバルブケース25の通路40を経由してリザーバ4へ流れる。 As the piston speed increases, the pressure in the cylinder upper chamber 2A, and hence the pressure in the passage 41 of the passage member 34, rises. The pressure is transmitted to the pressure chamber 91 formed in the sub-valve body (second disk 84) through the first opening 85. When the pressure in the pressure chamber 91 reaches the valve opening pressure of the main valve body, the main valve body, that is, the first valve body 81 and the second valve body 82 are separated from the sub-valve body (second disk 84). As a result, the oil liquid flows into the reservoir 4 via the passage 41 of the passage member 34, the passage 44 of the valve member 35, and the passage 40 of the valve case 25.
 さらに、ピストン速度が一定速度(図5におけるV1)に達すると、サブ弁体、すなわち、第1ディスク83及び第2ディスク84が、バルブ部材35のシート部46から離座して開弁し、その結果、油液は、通路部材34の通路41、バルブ部材35の通路44、及びバルブケース25の通路40を経由してリザーバ4へ流れる。これにより、ピストンロッド6の伸び行程及び縮み行程の両行程時に、メイン弁体及びサブ弁体の開弁前は、パイロットピン47のオリフィス49、及びパイロット弁部材53の開弁圧力にて減衰力を発生させ、メイン弁体又はサブ弁体の開弁後は、当該弁体の開度に応じた減衰力を得ることができる。この場合、ソレノイド33のコイル61Aへの通電にてパイロット弁部材53の開弁圧力を調整することにより、ピストン速度に拘わらず、減衰力を直接制御することができる。 Further, when the piston speed reaches a constant speed (V1 in FIG. 5), the sub valve body, that is, the first disk 83 and the second disk 84 are separated from the seat portion 46 of the valve member 35 and opened. As a result, the oil liquid flows to the reservoir 4 via the passage 41 of the passage member 34, the passage 44 of the valve member 35, and the passage 40 of the valve case 25. As a result, during both the expansion stroke and the contraction stroke of the piston rod 6, before the main valve body and the sub valve body are opened, the damping force is applied by the orifice 49 of the pilot pin 47 and the valve opening pressure of the pilot valve member 53. After the main valve element or the sub-valve element is opened, a damping force corresponding to the opening degree of the valve element can be obtained. In this case, by adjusting the valve opening pressure of the pilot valve member 53 by energizing the coil 61A of the solenoid 33, the damping force can be directly controlled regardless of the piston speed.
 具体的には、コイル61Aへの通電電流を小さくしてプランジャ75の推力を小さくすると、パイロット弁部材53の開弁圧力が低下し、ソフト側の減衰力が発生する。一方、コイル61Aへの通電電流を大きくしてプランジャ75の推力を大きくすると、パイロット弁部材53の開弁圧力が上昇し、ハード側の減衰力が発生する。このとき、パイロット弁部材53の開弁圧力に応じて、上流側の通路51を介して連通する背圧室52の内圧が変化する。このように、パイロット弁部材53の開弁圧力を制御することにより、メイン弁体(第1弁体81及び第2弁体82)の開弁圧力を同時に調整することが可能であり、減衰力特性の調整を広範囲に行うことができる。 Specifically, when the energization current to the coil 61A is reduced to reduce the thrust of the plunger 75, the valve opening pressure of the pilot valve member 53 is reduced, and a soft-side damping force is generated. On the other hand, when the energizing current to the coil 61A is increased to increase the thrust of the plunger 75, the valve opening pressure of the pilot valve member 53 increases and a hard-side damping force is generated. At this time, according to the valve opening pressure of the pilot valve member 53, the internal pressure of the back pressure chamber 52 communicating through the upstream passage 51 changes. In this way, by controlling the valve opening pressure of the pilot valve member 53, the valve opening pressures of the main valve bodies (the first valve body 81 and the second valve body 82) can be adjusted simultaneously, and the damping force The characteristics can be adjusted over a wide range.
 また、コイル61Aの断線、車載コントローラの故障等のフェイル発生時に、プランジャ75の推力が失われた場合には、リターンばね55のばね力によりパイロット弁部材53を後退させてパイロットボディ50の通路60(パイロット通路)を開き、パイロット弁部材53のフランジ部53Aをディスクバルブ56(フェールセーフディスクバルブ)に当接させ、弁室67と、バルブケース25内の通路40との間の流路を閉じる。この状態では、弁室67内の、通路60からバルブケース25内の通路40への油液の流れが、ディスクバルブ56により制御されるため、ディスクバルブ56の開弁圧力を調節することにより、所望の減衰力を得ることができ、さらに背圧室52の内圧、すなわち、メイン弁体(第1弁体81及び第2弁体82)の開弁圧力を調整することができる。その結果、フェイル時においても適切な減衰力を得ることができる。 Further, when the thrust of the plunger 75 is lost at the time of failure such as disconnection of the coil 61A or failure of the vehicle-mounted controller, the pilot valve member 53 is retracted by the spring force of the return spring 55, and the passage 60 of the pilot body 50 (Pilot passage) is opened, the flange 53A of the pilot valve member 53 is brought into contact with the disc valve 56 (fail-safe disc valve), and the flow path between the valve chamber 67 and the passage 40 in the valve case 25 is closed. . In this state, the flow of the oil liquid from the passage 60 to the passage 40 in the valve case 25 in the valve chamber 67 is controlled by the disc valve 56. Therefore, by adjusting the valve opening pressure of the disc valve 56, A desired damping force can be obtained, and the internal pressure of the back pressure chamber 52, that is, the valve opening pressure of the main valve bodies (the first valve body 81 and the second valve body 82) can be adjusted. As a result, an appropriate damping force can be obtained even during a failure.
(効果) 第1実施形態に係る減衰力調整式緩衝器1は以下の構成を含む。
 メインバルブ32は、バルブ部材35(弁座部材)のシート部46に離着座させてバルブ部材35(弁座部材)の流路44の下流側開口を開閉させるサブ弁体と、当該サブ弁体のバルブ部材35とは反対側に重ねて設けられるメイン弁体とを含む。
 サブ弁体は、第1開口85が形成された第1ディスク83と、第1開口85と連通する第2開口89が形成された第2ディスク84とを含む。
 第1開口85は、バルブ部材35(弁座部材)の流路44を流通する油液(流体)の流れを絞る(制限する)開口面積を有する。
 第2開口89は、第1開口よりも大きい開口面積を有し、メイン弁体をサブ弁体から離座させて開弁させる圧力室91を形成する。
 メイン弁体は、背面の外周側に固着されたパッキン90をパイロットボディ50(パイロット部材)に摺動可能に当接させて背圧室52(パイロット室)を閉塞する第1弁体81と、当該第1弁体81とサブ弁体(第2ディスク84)との間に介装され、第1弁体81よりも小径の第2弁体82とを含む。
(Effect) The damping force adjusting shock absorber 1 according to the first embodiment includes the following configuration.
The main valve 32 is separated from and seated on the seat portion 46 of the valve member 35 (valve seat member) to open and close the downstream opening of the flow path 44 of the valve member 35 (valve seat member), and the sub valve body. And a main valve body provided on the opposite side to the valve member 35.
The sub-valve element includes a first disk 83 formed with a first opening 85 and a second disk 84 formed with a second opening 89 communicating with the first opening 85.
The first opening 85 has an opening area that restricts (limits) the flow of oil (fluid) flowing through the flow path 44 of the valve member 35 (valve seat member).
The second opening 89 has an opening area larger than that of the first opening, and forms a pressure chamber 91 that opens the main valve body away from the sub valve body.
The main valve body includes a first valve body 81 that closes the back pressure chamber 52 (pilot chamber) by slidably contacting the packing 90 fixed to the outer peripheral side of the back surface with the pilot body 50 (pilot member); It includes a second valve element 82 that is interposed between the first valve element 81 and the sub-valve element (second disc 84) and has a smaller diameter than the first valve element 81.
 第1実施形態によれば、メイン弁体(第1弁体81及び第2弁体82)とサブ弁体(第1ディスク83及び第2ディスク84)とが、油液の並列流れにより段階的に開弁される、換言すると、サブ弁体の開弁の前後における減衰力特性の傾き(図5参照)を変えることができるので、メイン弁体の開弁圧力とサブ弁体の開弁圧力とを個別に調節することが可能であり、ピストン速度の微低速領域における、減衰力発生機構31が発生する減衰力を調整することができる。
 また、第2弁体82の外径を第1弁体81の外径に対して小径としたので、サブ弁体が弁座として機能するとき、すなわち、メイン弁体の開弁時における、メイン弁体(第2弁体82)とサブ弁体(第2ディスク84)との接触面積を減らすことができる。これにより、特に低温環境下におけるメイン弁体とサブ弁体との貼り付きが抑止され、当該貼り付きに起因する、開弁タイミングのずれ、異音の発生等を防止することが可能であり、安定した減衰力を得ることができる。
 また、メイン弁体を開弁させる圧力室91を、ディスク(第2弁体82、第1ディスク83、及び第2ディスク84)を積層して形成したので、製造が容易で、且つ低コストの減衰力調整式緩衝器1を提供することができる。
According to the first embodiment, the main valve body (first valve body 81 and second valve body 82) and the sub-valve body (first disk 83 and second disk 84) are stepped by the parallel flow of the oil liquid. In other words, since the inclination of the damping force characteristic (see FIG. 5) before and after the opening of the sub valve body can be changed, the valve opening pressure of the main valve body and the valve opening pressure of the sub valve body Can be adjusted individually, and the damping force generated by the damping force generating mechanism 31 can be adjusted in the very low speed region of the piston speed.
Further, since the outer diameter of the second valve element 82 is made smaller than the outer diameter of the first valve element 81, the main valve element is opened when the sub valve element functions as a valve seat, that is, when the main valve element is opened. The contact area between the valve body (second valve body 82) and the sub-valve body (second disk 84) can be reduced. Thereby, the sticking of the main valve body and the sub-valve body, particularly in a low temperature environment, is suppressed, and it is possible to prevent the deviation of the valve opening timing, the occurrence of abnormal noise, etc. due to the sticking, A stable damping force can be obtained.
In addition, since the pressure chamber 91 for opening the main valve body is formed by stacking the disks (second valve body 82, first disk 83, and second disk 84), the manufacturing is easy and the cost is low. A damping force adjustable shock absorber 1 can be provided.
(第2実施形態) 本発明の第2実施形態を添付した図を参照して説明する。なお、前述した第1実施形態に係る減衰力調整式緩衝器1と同一または相当の構成要素については、同一の名称及び符号を付与するとともに詳細な説明を省略する。 (Second Embodiment) A second embodiment of the present invention will be described with reference to the accompanying drawings. In addition, about the component which is the same as that of the damping force adjustment type shock absorber 1 which concerns on 1st Embodiment mentioned above, or an equivalent component, the same name and code | symbol are provided, and detailed description is abbreviate | omitted.
 図3及び図4と図6及び図7とを参照すると、第1実施形態と第2実施形態とは、メインバルブ32のサブ弁体の構造が異なる。図6、図7に示されるように、第2実施形態において、サブ弁体は、第1ディスク83、第2ディスク84、第3ディスク101、及び第4ディスク102を含む。なお、第2実施形態で適用される第2ディスク84は、第1実施形態で適用される第2ディスク84(図4参照)と同一である。 Referring to FIGS. 3 and 4 and FIGS. 6 and 7, the first embodiment and the second embodiment are different in the structure of the sub-valve body of the main valve 32. As shown in FIGS. 6 and 7, in the second embodiment, the sub-valve body includes a first disk 83, a second disk 84, a third disk 101, and a fourth disk 102. The second disk 84 applied in the second embodiment is the same as the second disk 84 (see FIG. 4) applied in the first embodiment.
 第1ディスク83は、軸孔83Aの周囲に等配された複数個(第2実施形態では5個)の第1長孔103と、各第1長孔103の内側(軸孔83A側)に相対して設けられる複数個の第2長孔104と、各第1長孔103と相対する各第2長孔104とを中央で連通する複数個の第1開口85とを有する。換言すると、第1開口85を介して、第1ディスク85のディスク径方向一側(軸孔83Aから遠い側)に、第1長孔103が形成され、第1ディスク85のディスク径方向他側(軸孔83Aに近い側)に、第2長孔104が形成される。 The first disk 83 includes a plurality (five in the second embodiment) of first elongated holes 103 arranged around the shaft hole 83A, and inside each first elongated hole 103 (on the shaft hole 83A side). A plurality of second long holes 104 provided opposite to each other and a plurality of first openings 85 communicating the second long holes 104 opposed to the first long holes 103 at the center. In other words, the first elongated hole 103 is formed on one side of the first disk 85 in the disk radial direction (the side far from the shaft hole 83A) via the first opening 85, and the other side of the first disk 85 in the disk radial direction. A second long hole 104 is formed (on the side close to the shaft hole 83A).
 図6に示されるように、各第1長孔103は、軸孔83Aに対して同心の円に沿って弧状に延びる。同様に、各第2長孔104は、軸孔83Aに対して同心の円に沿って弧状に延びる。なお、第2実施形態における第1ディスク83の第1開口85は、メインバルブ32を流通する油液(流体)を絞る、すなわち、バルブ部材35の通路44を流れる油液を制限する開口面積に形成される。また、第1長孔103及び第2長孔104の幅、すなわち、ディスク径方向長さは同一で、且つ第1開口85のディスク径方向長さよりも大きく設定される。 As shown in FIG. 6, each first elongated hole 103 extends in an arc along a circle concentric with the axial hole 83A. Similarly, each second long hole 104 extends in an arc along a circle concentric with the shaft hole 83A. The first opening 85 of the first disk 83 in the second embodiment restricts the oil (fluid) flowing through the main valve 32, that is, has an opening area that restricts the oil flowing through the passage 44 of the valve member 35. It is formed. Further, the width of the first long hole 103 and the second long hole 104, that is, the length in the disk radial direction is the same, and is set larger than the length in the disk radial direction of the first opening 85.
 一方、第3ディスク101は、第1ディスク83と同一径に形成され、第1ディスク83のバルブ部材35側(一側)に重ねて設けられる。すなわち、第3ディスク101は、外周側がバルブ部材35(弁座部材)のシート部46に当接(着座)される。また、第3ディスク101は、軸孔101Aに対して同心の円に沿って弧状に延びる複数個(第2実施形態では4個)の第3長孔105を有する。そして、第1ディスク83と第3ディスク101とが、如何なる角度位相にてパイロットピン47に組み付けられた場合であっても、第1ディスク83の各第1長孔103は、第3ディスク101のいずれかの第3長孔105に連通される。 On the other hand, the third disk 101 is formed to have the same diameter as the first disk 83 and is provided to overlap the valve member 35 side (one side) of the first disk 83. That is, the outer periphery of the third disk 101 is in contact (seat) with the seat portion 46 of the valve member 35 (valve seat member). The third disk 101 has a plurality of (four in the second embodiment) third long holes 105 extending in an arc along a circle concentric with the shaft hole 101A. Even if the first disk 83 and the third disk 101 are assembled to the pilot pin 47 at any angle phase, the first long holes 103 of the first disk 83 are not connected to the third disk 101. It communicates with one of the third long holes 105.
 他方、第4ディスク102は、第2ディスク84と同一径に形成され、第1ディスク83の背面側(他側)に重ねて設けられる。すなわち、第4ディスク102は、第2ディスク84の第2弁体82とは反対側に重ねて設けられる。また、第4ディスク102は、軸孔102Aに対して同心の円に沿って弧状に延びる複数個(第2実施形態では5個)の第4長孔106を有する。 On the other hand, the fourth disk 102 is formed to have the same diameter as the second disk 84, and is provided on the back side (the other side) of the first disk 83. That is, the fourth disk 102 is provided so as to overlap the second disk 84 on the side opposite to the second valve element 82. Further, the fourth disk 102 has a plurality (four in the second embodiment) of fourth elongated holes 106 extending in an arc along a circle concentric with the shaft hole 102A.
 そして、第1ディスク83と第4ディスク102とが、如何なる角度位相にてパイロットピン47に組み付けられた場合であっても、第1ディスク83の各第1長孔103は、第4ディスク102のいずれかの第4長孔106に連通される。同様に、第2ディスク84と第4ディスク102とが、如何なる角度位相にてパイロットピン47に組み付けられた場合であっても、第4ディスク102の第4長孔106は、第2ディスク84のいずれかの第2開口89に連通される。 Even if the first disk 83 and the fourth disk 102 are assembled to the pilot pin 47 at any angular phase, the first long holes 103 of the first disk 83 are not connected to the fourth disk 102. It communicates with one of the fourth long holes 106. Similarly, even if the second disk 84 and the fourth disk 102 are assembled to the pilot pin 47 at any angular phase, the fourth long hole 106 of the fourth disk 102 is formed in the second disk 84. One of the second openings 89 is communicated with.
 これにより、図6に示されるように、サブ弁体には、第3長孔105、第1長孔103、第1開口85、第2長孔104、及び第4長孔106からなる連通路107が形成される。当該連通路107は、サブ弁体内の圧力室91をバルブ部材35(弁座部材)の通路44に連通する。そして、連通路107を圧力室91へ向かって流れる油液(流体)は、ディスク径方向(図6における上下方向)の外側から内側へ向かって(図6における下方向へ)流れる。すなわち、連通路107を通過する油液は、第1長孔103から第1開口85を通って第2長孔104へ流れる。 As a result, as shown in FIG. 6, the sub-valve element has a communication path including the third long hole 105, the first long hole 103, the first opening 85, the second long hole 104, and the fourth long hole 106. 107 is formed. The communication passage 107 communicates the pressure chamber 91 in the sub-valve body with the passage 44 of the valve member 35 (valve seat member). Then, the oil liquid (fluid) flowing through the communication passage 107 toward the pressure chamber 91 flows from the outside in the disk radial direction (vertical direction in FIG. 6) to the inside (downward in FIG. 6). That is, the oil liquid passing through the communication passage 107 flows from the first long hole 103 to the second long hole 104 through the first opening 85.
 第2実施形態によれば、前述した第1実施形態と同一の作用効果を得ることができる。また、第1実施形態では、第1ディスク83及び第2ディスク84をパイロットピン47に組み付けるとき、第1ディスク83の各第1開口85が第2ディスク84の各ステー88に重ならないようにする、いわゆる位相合せを行う必要があるのに対して、第2実施形態では、このような位相合せが不要である。これにより、第2実施形態では、組付性を向上させることが可能であり、さらに、組付ミスによる減衰力調整式緩衝器1の動作不良を防止することができる。
 また、第2実施形態では、第2ディスク84の第2弁体82とは反対側に重ねて設けられる第4ディスク102の外径を、第2ディスク84の外径と同一径にしたので、第2ディスク84よりも小径の第1ディスク83が、第2ディスク84の第2弁体82とは反対側に重ねて設けられる第1実施形態と比較した場合、圧力室91を大容量化することができる。
According to the second embodiment, the same operational effects as those of the first embodiment described above can be obtained. In the first embodiment, when the first disk 83 and the second disk 84 are assembled to the pilot pin 47, the first openings 85 of the first disk 83 are not overlapped with the stays 88 of the second disk 84. In contrast, it is necessary to perform so-called phase alignment. In the second embodiment, such phase alignment is not necessary. Thereby, in 2nd Embodiment, it is possible to improve an assembly | attachment property, Furthermore, the malfunctioning of the damping force adjustment type buffer 1 by an assembly mistake can be prevented.
In the second embodiment, the outer diameter of the fourth disk 102 provided on the opposite side of the second disk 84 from the second disk 84 is the same as the outer diameter of the second disk 84. Compared to the first embodiment in which the first disk 83 having a smaller diameter than the second disk 84 is provided on the opposite side of the second disk 84 from the second valve body 82, the capacity of the pressure chamber 91 is increased. be able to.
 なお、第2実施形態では、サブ弁体内の油液が、ディスク径方向の外側から内側へ向かって流れる、すなわち、油液が、第1長孔103から第1開口85を通って第2長孔104へ流れるように連通路107を形成したが、例えば、第3ディスク101と第4ディスク102とを入れ替えて、サブ弁体内の油液が、ディスク径方向の内側から外側へ向かって流れる、すなわち、油液が、第2長孔104から第1開口85を通って第1長孔103へ流れるように連通路107を形成することができる。 In the second embodiment, the oil liquid in the sub-valve flows from the outer side to the inner side in the disk radial direction, that is, the oil liquid passes through the first opening 85 from the first long hole 103 to the second length. The communication passage 107 is formed so as to flow to the hole 104. For example, the third disk 101 and the fourth disk 102 are replaced, and the oil in the sub-valve flows from the inner side to the outer side in the disk radial direction. That is, the communication path 107 can be formed such that the oil liquid flows from the second long hole 104 to the first long hole 103 through the first opening 85.
 以上説明した実施形態に基づく減衰力調整式緩衝器として、例えば、以下に述べる態様のものが考えられる。
 減衰力調整式緩衝器の第1の態様としては、作動流体が封入されたシリンダと、前記シリンダ内に摺動可能に嵌装されたピストンと、前記ピストンに連結され、前記シリンダの外部に延出するピストンロッドと、前記シリンダ内の前記ピストンの摺動により生じる作動流体の流れを制御して減衰力を発生させるメインバルブと、前記メインバルブに対して閉弁方向の圧力を作用させるパイロット室と、前記パイロット室と前記メインバルブの上流側通路とを連通するパイロット通路と、前記パイロット通路に設けられた制御弁と、を備える減衰力調整式緩衝器であって、前記メインバルブは、前記シリンダ内の流体が流通する通路、及び前記通路の下流側開口の外側に形成されたシート部を有する弁座部材と、前記シート部に離着座することで前記通路の下流側開口を開閉するサブ弁体と、前記サブ弁体の前記弁座部材とは反対側に重ねて設けられるメイン弁体と、を含み、前記サブ弁体は、内周側が挟持され、外周側が前記シート部に着座され、第1開口を有する第1ディスクと、内周側が挟持され、前記第1開口と連通する第2開口を有する第2ディスクと、を含み、前記第1開口は、前記メインバルブの通路を流通する流体の流れを絞る開口面積を有し、前記第2開口は、前記第1開口よりも大きい開口面積を有し、前記メイン弁体の外周側を前記第2ディスクから離座させて前記メイン弁体を開弁させる圧力室を形成し、前記メイン弁体は、内周側が挟持され、背面の外周側に固着されたパッキンをパイロット部材に摺動可能に当接させて前記パイロット室を閉塞する第1弁体と、前記第1弁体と前記第2ディスクとの間に介装され、前記第2開口を閉塞し、前記第1弁体よりも小径の第2弁体とを含む。
 第2の態様としては、第1の態様において、前記第1ディスクは、前記第1開口を介してディスク径方向の一側及び他側に形成され、各々が前記第1開口に連通される第1長孔及び第2長孔を有し、前記第1ディスクの一側には、前記第1長孔に連通される第3長孔を有する第3ディスクが重ねて設けられ、前記第1ディスクの他側には、前記第2長孔に連通される第4長孔を有する第4ディスクが重ねて設けられる。
 第3の態様としては、第2の態様において、前記第1開口、前記第1長孔、前記第2長孔、前記第3長孔、及び前記第4長孔は、前記弁座部材の通路と前記圧力室とを連通する連通路を形成し、前記連通路には、流体がディスク径方向の外側から内側へ流れる。
 第4の態様としては、第2の態様において、前記第1開口、前記第1長孔、前記第2長孔、前記第3長孔、及び前記第4長孔は、前記弁座部材の通路と前記圧力室とを連通する連通路を形成し、前記連通路には、流体がディスク径方向の内側から外側へ流れる。
 第5の態様としては、第1の態様乃至第4の態様のいずれかにおいて、前記第2ディスクの前記第2弁体とは反対側に重ねて設けられるディスクの外径は、前記第2ディスクの外径と同一径である。
As the damping force adjustment type shock absorber based on the embodiment described above, for example, the following modes can be considered.
As a first aspect of the damping force adjusting shock absorber, a cylinder in which a working fluid is sealed, a piston slidably fitted in the cylinder, a piston connected to the piston, and extending to the outside of the cylinder. A piston rod that exits, a main valve that generates a damping force by controlling the flow of working fluid generated by sliding of the piston in the cylinder, and a pilot chamber that applies pressure in the valve closing direction to the main valve A damping force adjusting shock absorber comprising: a pilot passage communicating the pilot chamber and an upstream passage of the main valve; and a control valve provided in the pilot passage, A passage through which a fluid in the cylinder flows, a valve seat member having a seat portion formed outside a downstream opening of the passage, and a seat on the seat portion. A sub-valve element that opens and closes the downstream opening of the passage, and a main valve element that is provided on the opposite side of the valve seat member of the sub-valve element, and the inner side of the sub-valve element is sandwiched And a first disk having a first opening with an outer peripheral side seated on the seat portion, and a second disk having a second opening sandwiched on an inner peripheral side and communicating with the first opening, The opening has an opening area that restricts a flow of fluid flowing through the passage of the main valve, the second opening has an opening area larger than the first opening, and the outer peripheral side of the main valve body is A pressure chamber is formed to open the main valve body by being separated from the second disk. The main valve body is sandwiched on the inner peripheral side, and the packing fixed to the outer peripheral side on the back surface can slide on the pilot member. The first pilot chamber is closed by contacting the pilot chamber And body, is interposed between the first valve body and said second disk, and close the second opening, than the first valve body and a second valve body diameter.
As a second aspect, in the first aspect, the first disk is formed on one side and the other side in the disk radial direction via the first opening, and each of the first disks communicates with the first opening. A third disk having a third long hole communicating with the first long hole is provided on one side of the first disk, the first disk having a first long hole and a second long hole; On the other side, a fourth disk having a fourth long hole communicating with the second long hole is provided in an overlapping manner.
As a third aspect, in the second aspect, the first opening, the first long hole, the second long hole, the third long hole, and the fourth long hole are a passage of the valve seat member. And the pressure chamber are formed, and fluid flows from the outer side to the inner side in the disk radial direction in the communication path.
As a fourth aspect, in the second aspect, the first opening, the first long hole, the second long hole, the third long hole, and the fourth long hole are a passage of the valve seat member. And the pressure chamber are formed, and fluid flows from the inner side to the outer side in the radial direction of the disk.
As a fifth aspect, in any one of the first to fourth aspects, an outer diameter of a disk provided on the opposite side of the second disk from the second valve body is the second disk. It is the same diameter as the outer diameter.
 以上、本発明の幾つかの実施形態のみを説明したが、本発明の新規の教示や利点から実質的に外れることなく例示の実施形態に、多様な変更または改良を加えることが可能であることが当業者には容易に理解できるであろう。従って、その様な変更または改良を加えた形態も本発明の技術的範囲に含むことを意図する。上記実施形態を任意に組み合わせても良い。 Although only a few embodiments of the present invention have been described above, various modifications or improvements can be made to the illustrated embodiments without substantially departing from the novel teachings and advantages of the present invention. Will be easily understood by those skilled in the art. Therefore, it is intended that the embodiment added with such changes or improvements is also included in the technical scope of the present invention. You may combine the said embodiment arbitrarily.
 本願は、2016年2月24日付出願の日本国特許出願第2016-033223号に基づく優先権を主張する。2016年2月24日付出願の日本国特許出願第2016-033223号の明細書、特許請求の範囲、図面、及び要約書を含む全開示内容は、参照により本願に全体として組み込まれる。 This application claims priority based on Japanese Patent Application No. 2016-033223 filed on Feb. 24, 2016. The entire disclosure including the specification, claims, drawings, and abstract of Japanese Patent Application No. 2016-033223 filed on Feb. 24, 2016 is incorporated herein by reference in its entirety.
1 緩衝器、2 シリンダ、5 ピストン、6 ピストンロッド、31 減衰力発生機構、32 メインバルブ、35 バルブ部材(弁座部材)、41 通路41(メインバルブの上流側通路)、44 通路、50 パイロットボディ(パイロット部材)、52 背圧室(パイロット室)、53 パイロット弁部材(制御弁)、60 通路(パイロット通路)、81 第1弁体(メイン弁体)、82 第2弁体(メイン弁体)、83 第1ディスク(サブ弁体)、84 第2ディスク(サブ弁体)、85 第1開口、89 第2開口、90 パッキン 1 shock absorber, 2 cylinder, 5 piston, 6 piston rod, 31 damping force generation mechanism, 32 main valve, 35 valve member (valve seat member), 41 passage 41 (upstream passage of main valve), 44 passage, 50 pilot Body (pilot member), 52 Back pressure chamber (pilot chamber), 53 Pilot valve member (control valve), 60 passage (pilot passage), 81 First valve body (main valve body), 82 Second valve body (main valve) Body), 83, first disk (sub valve body), 84, second disk (sub valve body), 85, first opening, 89, second opening, 90 packing

Claims (5)

  1.  減衰力調整式緩衝器であって、該減衰力調整式緩衝器は、
     作動流体が封入されたシリンダと、
     前記シリンダ内に摺動可能に嵌装されたピストンと、
     前記ピストンに連結され、前記シリンダの外部に延出するピストンロッドと、
     前記シリンダ内の前記ピストンの摺動により生じる作動流体の流れを制御して減衰力を発生させるメインバルブと、
     前記メインバルブに対して閉弁方向の圧力を作用させるパイロット室と、
     前記パイロット室を形成するパイロット部材と、
     前記パイロット室と前記メインバルブの上流側通路とを連通するパイロット通路と、
     前記パイロット通路に設けられた制御弁と、を備え、
     前記メインバルブは、
     前記シリンダ内の流体が流通する通路と、前記通路の下流側開口の外側に形成されたシート部とを有する弁座部材と、
     前記シート部に離着座することで前記通路の下流側開口を開閉するサブ弁体と、
     前記サブ弁体のうち前記弁座部材とは反対側に重ねて設けられるメイン弁体と、を含み、
     前記サブ弁体は、
     第1ディスクであって、該第1ディスクの内周側が前記弁座部材と前記パイロット部材とによって挟持され、該第1ディスクの外周側が前記シート部に着座され、第1開口を有する第1ディスクと、
     第2ディスクであって、該第2ディスクの内周側が前記弁座部材と前記パイロット部材とによって挟持され、前記第1開口と連通する第2開口を有する第2ディスクと、を含み、
     前記第1開口は、前記メインバルブの通路を流通する流体の流れを絞る開口面積を有し、
     前記第2開口は、前記第1開口よりも大きい開口面積を有しており、該第2開口によって、前記メイン弁体の外周側を前記第2ディスクから離座させて前記メイン弁体を開弁させる圧力室が形成されており、
     前記メイン弁体は、
     第1弁体であって、該第1弁体の内周側が前記弁座部材と前記パイロット部材とによって挟持され、該第1弁体の背面の外周側に固着されたパッキンを前記パイロット部材に摺動可能に当接させて前記パイロット室を閉塞する第1弁体と、
     前記第1弁体と前記第2ディスクとの間に介装され、前記第2開口を閉塞し、前記第1弁体よりも小径の第2弁体と、
    を含むことを特徴とする減衰力調整式緩衝器。
    A damping force adjustable shock absorber, the damping force adjustable shock absorber,
    A cylinder filled with a working fluid;
    A piston slidably fitted in the cylinder;
    A piston rod connected to the piston and extending to the outside of the cylinder;
    A main valve that generates a damping force by controlling a flow of a working fluid generated by sliding of the piston in the cylinder;
    A pilot chamber that applies pressure in the valve closing direction to the main valve;
    A pilot member forming the pilot chamber;
    A pilot passage communicating the pilot chamber and the upstream passage of the main valve;
    A control valve provided in the pilot passage,
    The main valve is
    A valve seat member having a passage through which the fluid in the cylinder flows, and a seat portion formed outside a downstream opening of the passage;
    A sub-valve element that opens and closes the downstream side opening of the passage by being seated on the seat portion; and
    A main valve body provided on the opposite side to the valve seat member among the sub valve bodies, and
    The sub-valve is
    A first disk having a first opening having an inner peripheral side of the first disk sandwiched between the valve seat member and the pilot member, and an outer peripheral side of the first disk seated on the seat portion When,
    A second disc, the second disc having an inner peripheral side sandwiched between the valve seat member and the pilot member and having a second opening communicating with the first opening,
    The first opening has an opening area for restricting a flow of fluid flowing through the passage of the main valve,
    The second opening has an opening area larger than that of the first opening, and the second opening causes the outer peripheral side of the main valve body to be separated from the second disk to open the main valve body. A pressure chamber is formed,
    The main valve body is
    A first valve body, an inner peripheral side of the first valve body being sandwiched between the valve seat member and the pilot member, and a gasket fixed to the outer peripheral side of the back surface of the first valve body is used as the pilot member. A first valve body that slidably contacts and closes the pilot chamber;
    A second valve body interposed between the first valve body and the second disk, closing the second opening, and having a smaller diameter than the first valve body;
    A damping force adjustable shock absorber.
  2.  請求項1に記載の減衰力調整式緩衝器において、
     前記第1ディスクは、前記第1開口を介してディスク径方向の一側及び他側に形成され、各々が前記第1開口に連通される第1長孔及び第2長孔を有し、
     前記第1ディスクの一側には、前記第1長孔に連通される第3長孔を有する第3ディスクが重ねて設けられ、
     前記第1ディスクの他側には、前記第2長孔に連通される第4長孔を有する第4ディスクが重ねて設けられることを特徴とする減衰力調整式緩衝器。
    The damping force adjustable shock absorber according to claim 1,
    The first disk is formed on one side and the other side of the disk radial direction through the first opening, each having a first long hole and a second long hole communicating with the first opening,
    A third disk having a third long hole communicating with the first long hole is provided on one side of the first disk,
    A damping force adjusting type shock absorber, wherein a fourth disk having a fourth long hole communicating with the second long hole is provided on the other side of the first disk.
  3.  請求項2に記載の減衰力調整式緩衝器において、
     前記第1開口、前記第1長孔、前記第2長孔、前記第3長孔、及び前記第4長孔は、前記弁座部材の通路と前記圧力室とを連通する連通路を形成し、
     前記連通路には、流体がディスク径方向の外側から内側へ流れることを特徴とする減衰力調整式緩衝器。
    The damping force adjustment type shock absorber according to claim 2,
    The first opening, the first elongated hole, the second elongated hole, the third elongated hole, and the fourth elongated hole form a communication path that connects the passage of the valve seat member and the pressure chamber. ,
    A damping force adjusting type shock absorber, characterized in that a fluid flows from the outer side to the inner side in the disk radial direction in the communication path.
  4.  請求項2に記載の減衰力調整式緩衝器において、
     前記第1開口、前記第1長孔、前記第2長孔、前記第3長孔、及び前記第4長孔は、前記弁座部材の通路と前記圧力室とを連通する連通路を形成し、
     前記連通路には、流体がディスク径方向の内側から外側へ流れることを特徴とする減衰力調整式緩衝器。
    The damping force adjustment type shock absorber according to claim 2,
    The first opening, the first elongated hole, the second elongated hole, the third elongated hole, and the fourth elongated hole form a communication path that connects the passage of the valve seat member and the pressure chamber. ,
    A damping force adjusting type shock absorber, wherein a fluid flows in the communication path from the inner side to the outer side in the disk radial direction.
  5.  請求項1乃至4のいずれか1項に記載の減衰力調整式緩衝器において、
     前記第2ディスクの前記第2弁体とは反対側に重ねて設けられるディスクの外径は、前記第2ディスクの外径と同一径であることを特徴とする減衰力調整式緩衝器。
    The damping force adjustment type shock absorber according to any one of claims 1 to 4,
    The damping force adjusting type shock absorber according to claim 1, wherein an outer diameter of a disk provided on the opposite side of the second disk to the second valve body is the same as an outer diameter of the second disk.
PCT/JP2017/006130 2016-02-24 2017-02-20 Damping force-adjusting shock absorber WO2017145983A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018501667A JP6516916B2 (en) 2016-02-24 2017-02-20 Damping force adjustable shock absorber

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-033223 2016-02-24
JP2016033223 2016-02-24

Publications (1)

Publication Number Publication Date
WO2017145983A1 true WO2017145983A1 (en) 2017-08-31

Family

ID=59686656

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/006130 WO2017145983A1 (en) 2016-02-24 2017-02-20 Damping force-adjusting shock absorber

Country Status (2)

Country Link
JP (1) JP6516916B2 (en)
WO (1) WO2017145983A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6466041B1 (en) * 2018-07-31 2019-02-06 株式会社ショーワ Valve mechanism and shock absorber
WO2020137891A1 (en) * 2018-12-25 2020-07-02 日立オートモティブシステムズ株式会社 Shock absorber
WO2022168817A1 (en) * 2021-02-04 2022-08-11 日立Astemo株式会社 Shock absorber

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11218176A (en) * 1998-01-29 1999-08-10 Toyota Motor Corp Shock absorber and leaf valve
JP2006292092A (en) * 2005-04-12 2006-10-26 Hitachi Ltd Damping force adjusting hydraulic shock absorber
JP2013113425A (en) * 2011-11-30 2013-06-10 Hitachi Automotive Systems Ltd Hydraulic shock absorber
JP2014070654A (en) * 2012-09-27 2014-04-21 Hitachi Automotive Systems Ltd Attenuation force adjustment type buffer
JP2014194259A (en) * 2013-03-29 2014-10-09 Hitachi Automotive Systems Ltd Buffer
JP2015059573A (en) * 2013-09-17 2015-03-30 カヤバ工業株式会社 Attenuation valve

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11218176A (en) * 1998-01-29 1999-08-10 Toyota Motor Corp Shock absorber and leaf valve
JP2006292092A (en) * 2005-04-12 2006-10-26 Hitachi Ltd Damping force adjusting hydraulic shock absorber
JP2013113425A (en) * 2011-11-30 2013-06-10 Hitachi Automotive Systems Ltd Hydraulic shock absorber
JP2014070654A (en) * 2012-09-27 2014-04-21 Hitachi Automotive Systems Ltd Attenuation force adjustment type buffer
JP2014194259A (en) * 2013-03-29 2014-10-09 Hitachi Automotive Systems Ltd Buffer
JP2015059573A (en) * 2013-09-17 2015-03-30 カヤバ工業株式会社 Attenuation valve

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6466041B1 (en) * 2018-07-31 2019-02-06 株式会社ショーワ Valve mechanism and shock absorber
WO2020026362A1 (en) * 2018-07-31 2020-02-06 株式会社ショーワ Valve mechanism and shock absorber
EP3832158A4 (en) * 2018-07-31 2022-03-16 Showa Corporation Valve mechanism and shock absorber
US11821489B2 (en) 2018-07-31 2023-11-21 Hitachi Astemo, Ltd. Valve mechanism and shock absorber
WO2020137891A1 (en) * 2018-12-25 2020-07-02 日立オートモティブシステムズ株式会社 Shock absorber
KR20210090271A (en) * 2018-12-25 2021-07-19 히다치 아스테모 가부시키가이샤 buffer
JPWO2020137891A1 (en) * 2018-12-25 2021-09-27 日立Astemo株式会社 Buffer
JP7012884B2 (en) 2018-12-25 2022-01-28 日立Astemo株式会社 Buffer
KR102559735B1 (en) 2018-12-25 2023-07-25 히다치 아스테모 가부시키가이샤 buffer
WO2022168817A1 (en) * 2021-02-04 2022-08-11 日立Astemo株式会社 Shock absorber

Also Published As

Publication number Publication date
JPWO2017145983A1 (en) 2018-11-22
JP6516916B2 (en) 2019-05-22

Similar Documents

Publication Publication Date Title
JP5387841B2 (en) Damping force adjustable shock absorber
JP5120629B2 (en) Damping force adjustable shock absorber and suspension control device using the same
JP5648790B2 (en) Shock absorber
US9810281B2 (en) Damping force control type shock absorber
JP6440861B2 (en) Shock absorber and method of assembling the shock absorber
JP6465983B2 (en) Shock absorber
JP6808837B2 (en) Buffer
JP7182656B2 (en) Mechanism used for shock absorbers
JP6652895B2 (en) Damping force adjustable shock absorber
WO2017145983A1 (en) Damping force-adjusting shock absorber
KR102587418B1 (en) Damping force adjustable shock absorber
JP2017048825A (en) Shock absorber
JP5678348B2 (en) Damping force adjustable shock absorber
JP7069353B2 (en) Buffer
JP5894874B2 (en) Shock absorber
WO2022168817A1 (en) Shock absorber
US20220065321A1 (en) Shock absorber
US20240083208A1 (en) Solenoid, damping force adjustment mechanism, and damping force adjustable shock absorber
JP2015197106A (en) Damping force adjustable shock absorber
JP2024048011A (en) solenoid
JP2022141301A (en) Cylinder device
JP2021156377A (en) Shock absorber
JP2015068479A (en) Damping-force regulation damper

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018501667

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17756421

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17756421

Country of ref document: EP

Kind code of ref document: A1