WO2017145710A1 - Information processing device, information processing method, and program - Google Patents

Information processing device, information processing method, and program Download PDF

Info

Publication number
WO2017145710A1
WO2017145710A1 PCT/JP2017/004041 JP2017004041W WO2017145710A1 WO 2017145710 A1 WO2017145710 A1 WO 2017145710A1 JP 2017004041 W JP2017004041 W JP 2017004041W WO 2017145710 A1 WO2017145710 A1 WO 2017145710A1
Authority
WO
WIPO (PCT)
Prior art keywords
variable
livestock
information
information processing
processing apparatus
Prior art date
Application number
PCT/JP2017/004041
Other languages
French (fr)
Japanese (ja)
Inventor
由幸 小林
正範 勝
文一 中村
Original Assignee
ソニー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニー株式会社 filed Critical ソニー株式会社
Publication of WO2017145710A1 publication Critical patent/WO2017145710A1/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Systems or methods specially adapted for specific business sectors, e.g. utilities or tourism
    • G06Q50/02Agriculture; Fishing; Mining
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F16/00Information retrieval; Database structures therefor; File system structures therefor

Definitions

  • the present disclosure relates to an information processing apparatus, an information processing method, and a program.
  • an acquisition unit that acquires a plurality of livestock related information related to livestock, a storage unit that stores the livestock related information, and a variable of interest and a factor of the variable of interest based on the stored livestock related information
  • an information processing apparatus including a causal analysis unit that analyzes a relationship with a cause variable.
  • An information processing method comprising: analyzing a relationship with a cause variable.
  • a means for acquiring a plurality of livestock related information relating to livestock, a means for storing the livestock related information, a cause that causes the variable of interest based on the stored livestock related information A program for causing a computer to function as a means for analyzing a relationship with a variable is provided.
  • FIG. 2 is a schematic diagram illustrating an information processing apparatus according to an embodiment of the present disclosure and a configuration around the information processing apparatus.
  • FIG. It is a schematic diagram which shows the sensor used for the kind of sensing part, the sensing information detected by various sensors, the detail of sensing information, and sensing. It is a schematic diagram which shows the example of the information which an input information acquisition part acquires. It is a schematic diagram which shows the data stored in the database. It is a schematic diagram which shows the analysis result by a causal analysis part.
  • FIG. 6 is a schematic diagram showing a directed graph when the user further specifies a variable “meat quality” from the state of FIG. 5.
  • FIG. 10 is a characteristic diagram showing a result of analyzing a relationship between a noticed variable “wholesale price” and a variable “temperature” that is causal of “wholesale price”. It is a schematic diagram which shows the result of the causal analysis part performing the prediction display of the influence with respect to various variables. It is a schematic diagram which shows the directed graph at the time of designating an attention variable to "weight”.
  • FIG. 5 is a schematic diagram showing screens of “predicted performance display”, “cause variable list display”, and “cause variable influence display”. It is a flowchart which shows the process of the causal analysis by a causal analysis part. It is a schematic diagram which shows the mode of the discretization by a causal analysis part. It is a schematic diagram which shows UI for inputting cost.
  • FIG. 10 is a characteristic diagram showing a result of analyzing a relationship between a noticed variable “wholesale price” and a variable “temperature” that is causal of “wholesale price”. It is a schematic diagram which shows the
  • FIG. 5 is a characteristic diagram showing a relationship between a variable “cost” of interest and a variable “employee stress” that causes “cost”. It is a schematic diagram which shows the trade-off graph display of an effect and cost. It is a schematic diagram which shows the example which displayed the card
  • FIG. 10 is a schematic diagram illustrating an example in which an experiment proposal is made for a variable X whose dependency relationship does not appear in the directed graph even though the correlation with the variable of interest is high. It is a flowchart which shows the process of FIG. It is a flowchart which shows the process which estimates the magnitude
  • Example of configuration of information processing apparatus In the field of raising livestock, there is a need to know the cause and effect, such as what can be seen to understand the physical condition of the livestock and what is an index of good quality meat.
  • data of various sensors attached to livestock and various sensors installed in the farmer's environment are accumulated, causal analysis is performed on the data, and the analysis result is presented to the farmer who is a user.
  • the information processing apparatus 1000 includes a sensing information acquisition unit 100, a feature extraction unit 200, a database 300, a causal analysis unit 400, an input information acquisition unit 500, an operation information acquisition unit 600, and a presentation information output unit 700. It is configured.
  • a central processing unit such as a CPU and a program (software) for causing it to function.
  • the sensing information acquisition unit 100 acquires a sensor signal when a sensor (sensing unit 2000) attached to an individual animal, an environment where the animal is placed, a farmer, or the like senses time-series data, and the sensor signal Is stored in the database 300.
  • the sensing unit 2000 includes various sensors.
  • FIG. 2 is a schematic diagram showing the type of the sensing unit 2000, sensing information detected by various sensors, details of the sensing information, and sensors used for sensing.
  • an individual wearing sensor to be attached to a livestock individual an environmental sensor for obtaining environmental information such as a facility for raising livestock, a farm animal breeder, a robot, etc. Includes farmer-mounted sensors.
  • data to be sensed includes data sensed from livestock, data sensed from an environment such as a barn, and data sensed from a person such as a grower.
  • the sensing unit 2000 obtains the sensing information, direct information acquisition, acquisition by wired communication, acquisition by wireless communication, and the like can be mentioned, but the method is not limited.
  • the input information acquisition unit 500 acquires information other than that obtained by sensing according to a user's operation input, and stores it in the database 300.
  • the input information acquisition unit 500 acquires operation input information input by an input unit such as a keyboard or a mouse, for example. Examples of the method by which the input information acquisition unit 500 acquires operation input information include direct information acquisition, wired communication acquisition, and wireless communication acquisition, but the method is not limited.
  • FIG. 3 is a schematic diagram illustrating an example of information acquired by the input information acquisition unit 500.
  • the input information acquisition unit 500 acquires information related to livestock individuals and information related to farmers as shown in FIG. 3 and stores them in the database 300.
  • the feature extraction unit 200 extracts the feature from the information and performs the causal analysis.
  • the information is processed into usable information and stored in the database 300.
  • the feature extraction unit 200 calculates an amount of exercise (consumed calories) based on an individual's movement history and action type, and calculates an average value and a magnitude of change of each sensing information for each month.
  • the causal analysis unit 400 analyzes causality between variables for the data stored in the database 300.
  • the causal analysis unit 400 performs causal analysis periodically or at a timing designated by the user.
  • the analysis result by the causal analysis unit 400 is displayed as a directed graph or the like.
  • the causal analysis unit 400 includes a factor extraction unit 402, a directed graph estimation unit 404, a prediction performance analysis unit 406, an influence degree estimation unit 408, and a Pareto optimal solution calculation unit 410. Processing of each component of the causal analysis unit 400 will be described later.
  • the operation information acquisition unit 600 acquires information for operating the analysis result display by the causal analysis unit 400.
  • the operation information acquisition unit 600 acquires information input from an input unit such as a keyboard or a mouse.
  • the method by which the operation information acquisition unit 600 acquires information includes direct information acquisition, acquisition by wired communication, acquisition by wireless communication, and the like, but the method is not limited.
  • the presentation information output unit 700 outputs information for presenting the analysis result to the display device 3000.
  • FIG. 4 is a schematic diagram showing data stored in the database 300.
  • a cow is illustrated as a livestock, and an example in which various variables associated with a cow individual ID are stored is shown.
  • Variables include variables related to cow breeding and variables related to breeding results.
  • variables related to breeding delivery workers, castration personnel, basic feed, feed composition, exercise amount, sleep time, number of chewing, breeding density, average air volume, average temperature, average humidity, average noise, average brightness, average number of pests.
  • Examples include average breeding time, gender, frequent robot contact, and food consumption.
  • the variables related to the growth result include body weight, carcass weight, carcass yield, loin core, back fat thickness, fat cross, meat color, meat fat color, meat quality, price, and the like.
  • the causal analysis unit 400 analyzes the causality between variables for the data shown in FIG. Specifically, the causal analysis unit 400 performs a causal analysis using, for example, a known max-min Hill-Climbing method, and analyzes the causality between variables.
  • FIG. 5 is a schematic diagram illustrating an example of the analysis result.
  • the presentation information output unit 700 outputs information for presenting the analysis result by the causal analysis unit 400 to the display device 3000, whereby the analysis result illustrated in FIG. 5 is displayed on the display device 3000.
  • FIG. 5 a portion where each variable is connected by a line indicates that there is a cause and effect between the variables.
  • the operation information acquisition unit 600 acquires information for operating the analysis result display by the causal analysis unit 400.
  • FIG. 6 is a schematic diagram (directed graph) showing a case where the user further specifies the variable “meat quality” from the state of FIG. 5.
  • the useful graph estimation unit 404 of the causal analysis unit 400 analyzes the attention variable “meat” and the attention variable “meat” as shown in FIG. 6 based on the analysis result of the designated variable “meat quality” and the causal variable.
  • the presentation information output unit 700 outputs information for presenting the analysis result by the causal analysis unit 400 to the display device 3000, whereby the analysis result illustrated in FIG. 6 is displayed on the display device 3000.
  • the “meat quality” of cattle is due to the large number of contact with the robot, the amount of exercise, the noise, and the amount of food. Therefore, changing these variables changes the meat quality. I understand that. Therefore, in order to improve the “meat quality”, the user can take measures such as changing variables such as exercise amount and meal amount. Therefore, the user can understand the cause that has not been noticed so far in order to improve the meat quality, and can take a new countermeasure as a result.
  • FIG. 21 is a flowchart illustrating processing in which the influence degree estimation unit 408 estimates the magnitude of the influence.
  • step S40 the user designates an attention variable.
  • step S42 the variables that cause the variable of interest are listed.
  • step S44 the variables of interest are sorted in order of influence.
  • step S46 a causal variable is presented.
  • the specified variable and the causal variable are analyzed and displayed as in FIG.
  • the factor (causal) that is an analysis result is presented. Therefore, the user can change the noted variable by changing a variable having a factor (causal).
  • the causal analysis unit 400 the user can optimally change various variables when raising the cow. Since it can be understood which factors have an influence on indicators such as physical condition and meat quality of livestock, if the cause is known, measures can be taken to improve the indicators.
  • FIG. 7 is a characteristic diagram showing the result of analyzing the relationship between the noticed variable “Wholesale Price” and the variable “Temperature” causal of “Wholesale Price”.
  • the presentation information output unit 700 outputs information for presenting the analysis result of FIG. 7 to the display device 3000, whereby the analysis result shown in FIG. 7 is displayed on the display device 3000.
  • the user can recognize that there is a possibility that the “wholesale price” can be increased by setting the temperature to around 20 degrees.
  • FIGS. 6 and 7 may be presented in text. For example, if you increase the number of contact with cattle by 10%, the chance of getting sick will be reduced by 5%, or you may want to reduce the noise.
  • a sentence from the viewpoint of (cow) may be presented. Documenting may be performed by a technique such as a recurrent neural network (RNN). Further, these sentences may be synthesized by speech and uttered.
  • RNN recurrent neural network
  • the presentation of causal information recognizes user behavior and presents it at an appropriate time. For example, at the timing when the user feeds the cow, the wholesale price may increase if the amount is smaller than usual. Alternatively, the information may be presented in a fortune-telling style, such as “Today's lucky food is hay, lucky temperature is 18 degrees”.
  • FIG. 8 is a schematic diagram showing a result of the causal analysis unit 400 performing prediction display of influences on various variables. As shown in FIG. 8, when an action is taken, predictions about how the action affects a plurality of variables can be presented in a list. In the example of FIG. 8, when the food is changed from the current food to food A, the meat quality changes by 5%, the disease probability changes by 3%, and the cost changes by 2%.
  • the farmer may be encouraged to take a sensing action to clarify the result. For example, information such as “There is a possibility that the influence of the color may be understood if the color of the barn is changed” is presented to the user. It is possible to provide a service that reflects user behavior in sensing, accumulates the sensed data, and performs further analysis and presents the data.
  • the information processing device 1000 is connected to a device that actually controls the variables (for example, an air conditioner that controls the room temperature in the barn or a device that mixes food), and the variable that causes the factor is based on the causal analysis result. It is also possible to perform automatic control so that changes directly.
  • a device that actually controls the variables for example, an air conditioner that controls the room temperature in the barn or a device that mixes food
  • the variable that causes the factor is based on the causal analysis result. It is also possible to perform automatic control so that changes directly.
  • the operation information acquisition unit 600 acquires information for operating the display of the analysis result, the display of the analysis result transitions, and a more detailed analysis result can be obtained.
  • the variable of interest is designated as “weight”.
  • “basic feed ID”, “feed formulation ID”, “sleeping time”, and “breeding density” are extracted as variables that cause “weight” by the causal analysis unit 400, and the directed graph shown in FIG. 9 is obtained. It is done.
  • the screen transitions from the state shown in FIG. 9 to each screen of “predicted performance display”, “cause variable list display”, and “cause variable influence display” shown in FIG. be able to.
  • the analysis result of each screen can be obtained by performing the influence analysis of the factor on the result by generalized linear regression.
  • the body weight predicted on the basis of four variables (basic feed ID, feed composition ID, sleep time, breeding density) and “cause weight” (on the horizontal axis of the predicted performance display). "Weight” shown) and the actual weight are shown, and in this example, the correlation degree R is 0.89. Therefore, it can be seen that the weight can be predicted with high accuracy. When the predicted body weight 'matches the actual body weight, the correlation degree R is 1.0. This prediction is performed by the prediction unit 402 of the causal analysis unit 400.
  • FIG. 11 is a flowchart showing a causal analysis process performed by the causal analysis unit 400.
  • step S ⁇ b> 10 a causal analysis target data set is input to the causal analysis unit 400.
  • the data set shown in FIG. 4 is input to the causal analysis unit 400.
  • the continuous value variable is discretized for the input data. Only the discretized variables (variables having specific values such as 0, 1, 2, 3) that can be handled by the Max-min Hill climbing method described above are continuous values (such as 0.0 to 1.0). The variable with a continuous value of () cannot be handled, so discretization is performed. In the present embodiment, the interval between the minimum value and the maximum value is evenly discretized to a predetermined number.
  • FIG. 12 is a schematic diagram showing the state of the discretization process. When the continuous value is discretized in 8 steps (0, 1, 2,..., 7), the minimum value and the maximum value are divided into eight.
  • the DAG (directed graph) is estimated by the Max-min Hill climbing method. Thereby, for each variable of the data set, an estimation result as to which other variable is a factor can be obtained, and a directed graph as shown in FIG. 6 can be obtained.
  • the influence analysis of each factor is performed by generalized linear regression. Thereby, the relationship between the variable and the variable that causes it is obtained, and “prediction performance display”, “list display of the cause variable”, and “effect display of the cause variable” as shown in FIG. Can get a relationship.
  • FIG. 13 and FIG. 14 are schematic diagrams showing an example in which the system can automatically estimate the cost fluctuation due to the fluctuation of the variable for the variable that can be controlled among the variables and the cost that is difficult to calculate directly.
  • FIG. 13 illustrates a UI for inputting a cost
  • information input via the UI is acquired by the operation information acquisition unit 600.
  • FIG. 14 is a characteristic diagram showing the relationship between the variable “cost” of interest and the variable “employee stress” that causes “cost”.
  • a causal analysis result that “cost” decreases as “employee stress” increases is shown.
  • FIG. 15 is a schematic diagram showing a trade-off graph display of effect and cost.
  • the measure plan is presented in a scatter diagram with the vertical axis representing the effect (cow price) and the horizontal axis representing the running cost.
  • the measure plan to be presented is selected and presented as Pareto optimal (better than other solutions in either effect or cost) in two variables of effect and cost.
  • the running cost and the price change when the variable “food” that causes the cost is changed. It can be seen that changing the food to food A for the current situation (NOW) increases the running cost but also the price of the cow. It can also be seen that changing the food to the food B for the current situation reduces the running cost but also the price of the cow.
  • the user can recognize the merits and demerits of changing the food based on the analysis result of FIG. In FIG. 15, the measure plan that is not Pareto optimal is not displayed or the display priority is lowered.
  • FIG. 16 is a schematic diagram showing an example in which the cards C shown in FIG. 15 are displayed as a list.
  • One card describes one measure and the effects and costs obtained thereby. Cards can be sorted and displayed based on cost and effectiveness.
  • FIG. 22 is a flowchart showing a process performed by the Pareto optimal solution calculation unit 410 of the causal analysis unit 400 to perform the presentation of FIG. First, in step S50, the cause variable-attention variable-cost relationship is listed while changing the cause variable.
  • next step S52 the Pareto optimal solutions of the attention variable-cost relationship are listed.
  • next step S54 a measure plan is presented by the trade-off graph shown in FIG. 15 or the display by the card C shown in FIG.
  • next step S56 the user selects and adopts one of the measure plans.
  • FIG. 17 is a schematic diagram showing an example of providing a function capable of comparing and examining how the variable of interest changes in such a case when a combination pattern of variables changed by the user is input.
  • variables shown in bold indicate numerical values input and changed by the user.
  • the underlined variable indicates a variable whose value has changed due to the changed variable.
  • the influence estimation unit 408 of the causal analysis unit 400 estimates changes in other variables based on the numerical values changed by the user shown in bold. The user can recognize a variable whose value has been changed by changing the desired variable as appropriate. It is also possible to create and save a plurality of plans as shown in FIG.
  • FIG. 18 is a flowchart showing a process for obtaining the causal analysis result of FIG.
  • step S20 the user inputs a cause variable after intervention.
  • the variables shown in bold in FIG. 17 are changed.
  • the causal analysis unit estimates the values of other variables that are affected by the changed cause variable. Thereby, the value of the variable underlined in FIG. 17 is estimated.
  • step S24 a list of variable values is displayed.
  • step S26 the changed content is saved as a plan.
  • plan C is stored in the list shown in FIG.
  • a plurality of plans stored in the past are presented. As a result, the plans A and B saved in the past are presented together with the plan C as shown in FIG.
  • FIG. 19 is a schematic diagram showing an example in which an experiment proposal is made for a variable X whose dependency relationship does not appear in the directed graph even though the correlation with the target variable is high.
  • variable B is set as the variable of interest Y, and a high correlation with the variables A, C, and D can be confirmed.
  • variable A is a variable X for which an experiment proposal is made
  • a path of X ⁇ Y exists in the directed graph. Accordingly, no further change proposal (experimental proposal) is made for the variable A in which a path to the target variable Y exists.
  • variable C is a variable X for which an experiment is proposed
  • Y ⁇ X path in the directed graph. Accordingly, no further change proposal (experimental proposal) is made for the variable C in which a path to the target variable Y exists.
  • variable D is the variable X for which an experiment is proposed
  • X the variable X for which an experiment is proposed
  • FIG. 20 is a flowchart showing the processing of FIG. First, in step S30, other variables X having a high correlation with the target variable Y are listed. In the next step S32, it is determined whether or not a path of X ⁇ Y or Y ⁇ X exists in the directed graph. If there is no path, the process proceeds to step S34. In step S34, the acquisition of data with the variable X condition changed is proposed. On the other hand, if a path of X ⁇ Y or Y ⁇ X exists in the directed graph, the process ends without proposing acquisition of data.
  • variable D will automatically be removed from the proposal.
  • the correlation decreases as a result of increasing the data, it becomes clear that there is no cause and effect between the variable D and the variable B. In this case, it becomes out of the proposal when enumerating highly correlated variables. If the correlation remains even if the data is increased, some causality exists between the variable D and the variable B. Therefore, the path of the variable D ⁇ the variable B or the variable B ⁇ the variable D is present in the directed graph at the time of the causal analysis. Will appear. In this case, it is excluded from the proposal when determining whether or not an X ⁇ Y or Y ⁇ X path exists.
  • a plurality of data relating to livestock is accumulated in the database 300, and based on the accumulated data, the relationship between the attention variable and the cause variable that causes the attention variable is analyzed. To be presented to the user. Thereby, the user can understand the cause for improving the attention variable, and can take a new countermeasure as a result.
  • An acquisition unit that acquires a plurality of livestock related information related to livestock, An accumulating unit for accumulating the livestock related information; Based on the accumulated livestock related information, a causal analysis unit that analyzes the relationship between the attention variable and the cause variable that causes the attention variable;
  • An information processing apparatus comprising: (2) The information processing apparatus according to (1), wherein the causal analysis unit includes a directed graph estimation unit that estimates a directed graph indicating a relationship between the attention variable and the cause variable.
  • the information processing apparatus (4) The information processing apparatus according to (3), wherein the influence degree estimation unit estimates a change in the attention variable or another cause variable when an arbitrary cause variable is changed. (5) The information processing apparatus according to any one of (1) to (4), wherein the causal analysis unit includes a prediction unit that predicts the attention variable from the cause variable. (6) The causal analysis unit includes a Pareto optimal solution calculation unit that calculates a Pareto optimal solution for a plurality of patterns in which the variable of interest changes when the cause variable is changed. ). (7) The information processing apparatus according to any one of (1) to (6), wherein the livestock related information is sensing information detected by a sensor attached to a livestock subject to livestock.
  • the information processing apparatus according to any one of (1) to (7), wherein the livestock related information is sensing information in which a sensor detects a living environment of livestock that is a subject of livestock.
  • the information processing apparatus according to any one of (1) to (7), wherein the livestock related information is information input by a livestock farmer.
  • the information processing apparatus according to any one of (1) to (9), further including an operation information acquisition unit that acquires operation information for designating an analysis result by the causal analysis unit.
  • the information processing apparatus according to any one of (1) to (10), further including a presentation information output unit that outputs presentation information for presenting an analysis result by the causal analysis unit.
  • the information processing apparatus according to any one of (1) to (11), further including a feature extraction unit that extracts a feature amount from the livestock-related information and stores the feature amount in the storage unit.
  • the information processing apparatus according to any one of (1) to (12), further prompting acquisition of the livestock related information based on a degree of association between the attention variable and an arbitrary cause variable.
  • An information processing method comprising: (15) Means for obtaining a plurality of livestock related information relating to livestock, Means for accumulating the livestock related information, Means for analyzing the relationship between the attention variable and the causal variable that causes the attention variable based on the accumulated stock raising-related information; As a program to make the computer function as.
  • DESCRIPTION OF SYMBOLS 1000 Information processing apparatus 100 Sensing information acquisition part 200 Feature extraction part 300 Database 400 Causal analysis part 402 Prediction part 404 Useful graph estimation part 406 Predictive performance analysis part 408 Influence degree estimation part 410 Pareto optimal solution calculation part 500 Input information acquisition part 600 Operation Information acquisition unit 700 Presentation information output unit

Abstract

[Problem] To improve livestock products by analyzing a causal factor and optimally adjusting the causal factor in order to obtain desired products related to stockbreeding. [Solution] An information processing device related to the present disclosure is provided with: an acquiring unit which acquires a plurality of pieces of stockbreeding-related information that pertains to stockbreeding; an accumulating unit which accumulates the stockbreeding-related information; and a cause-and-effect analyzing unit which analyzes, on the basis of the accumulated stockbreeding-related information, the relationship between an attention variable and a cause variable which is a cause of the attention variable.

Description

情報処理装置、情報処理方法、及びプログラムInformation processing apparatus, information processing method, and program
 本開示は、情報処理装置、情報処理方法、及びプログラムに関する。 The present disclosure relates to an information processing apparatus, an information processing method, and a program.
 従来より、畜産農家等の現場においては、例えば牛を育成する際に、農家の経験値に基づいて最適な飼料を与え、適度な運動を与え、牛舎などの環境施設を最適に整えることで、所望の牛を育て上げ、卸売業者へ出荷することが行われている。 Traditionally, in the field of livestock farmers, for example, when raising cattle, by giving the optimum feed based on the farmer's experience, giving appropriate exercise, and optimally setting up environmental facilities such as cowshed, The desired cow is raised and shipped to a wholesaler.
 家畜を飼育する現場では、何を見れば家畜の体調が分かるか、何が良質な肉質の指標になっているかなど、因果を知りたいというニーズがある。このような指標には家畜個体の性質、農場、育成者などの要因によって異なることも多いため、一般的な知識とすることが難しかった。また、こういった知識を見出すためには、農家が家畜やそのおかれている状態をよく観察し、考察する必要があった。その場合もこういった知識を網羅的に見出すことは難しく、有益な因果が発見しきれないことがあった。各畜産農家のノウハウとして蓄積されており、継承されず失われることもあった。こういった知識は農家に属し、継承されず失われることがあった。 In livestock breeding, there is a need to know the cause and effect, such as what can be seen to understand the physical condition of the livestock and what is a good quality meat quality indicator. Such indicators often differ depending on factors such as the characteristics of livestock individuals, farms, breeders, etc., making it difficult to obtain general knowledge. In addition, in order to find such knowledge, it was necessary for farmers to closely observe and consider livestock and their conditions. Even in that case, it was difficult to find such knowledge comprehensively, and there were cases where it was not possible to discover useful causes. It has been accumulated as the know-how of each livestock farmer and was sometimes lost without being inherited. This knowledge belonged to the farmer and was lost without being inherited.
 このため、所望の畜産に係る物を得るために要因となる要素を分析し、要因となる要素を最適に調整することで、畜産品を改善することが望まれていた。 For this reason, it has been desired to improve livestock products by analyzing factors that are factors for obtaining a desired animal product and optimally adjusting the factors.
 本開示によれば、畜産に関する複数の畜産関連情報を取得する取得部と、前記畜産関連情報を蓄積する蓄積部と、蓄積した前記畜産関連情報に基づいて、注目変数と当該注目変数の要因となる原因変数との関係を解析する因果解析部と、を備える、情報処理装置が提供される。 According to the present disclosure, an acquisition unit that acquires a plurality of livestock related information related to livestock, a storage unit that stores the livestock related information, and a variable of interest and a factor of the variable of interest based on the stored livestock related information There is provided an information processing apparatus including a causal analysis unit that analyzes a relationship with a cause variable.
 また、本開示によれば、畜産に関する複数の畜産関連情報を取得することと、前記畜産関連情報を蓄積することと、蓄積した前記畜産関連情報に基づいて、注目変数と当該注目変数の要因となる原因変数との関係を解析することと、を備える、情報処理方法が提供される。 Further, according to the present disclosure, acquiring a plurality of livestock related information relating to livestock, storing the livestock related information, and based on the accumulated livestock related information, a variable of interest and a factor of the variable of interest An information processing method comprising: analyzing a relationship with a cause variable.
 また、本開示によれば、畜産に関する複数の畜産関連情報を取得する手段、前記畜産関連情報を蓄積する手段、蓄積した前記畜産関連情報に基づいて、注目変数と当該注目変数の要因となる原因変数との関係を解析する手段、としてコンピュータを機能させるためのプログラムが提供される。 Further, according to the present disclosure, a means for acquiring a plurality of livestock related information relating to livestock, a means for storing the livestock related information, a cause that causes the variable of interest based on the stored livestock related information A program for causing a computer to function as a means for analyzing a relationship with a variable is provided.
 以上説明したように本開示によれば、所望の畜産に係る物を得るために要因となる要素を分析し、要因となる要素を最適に調整することで、畜産品を改善することができる。
 なお、上記の効果は必ずしも限定的なものではなく、上記の効果とともに、または上記の効果に代えて、本明細書に示されたいずれかの効果、または本明細書から把握され得る他の効果が奏されてもよい。
As described above, according to the present disclosure, it is possible to improve livestock products by analyzing factors that are factors for obtaining a desired animal product and optimally adjusting the factors that are factors.
Note that the above effects are not necessarily limited, and any of the effects shown in the present specification, or other effects that can be grasped from the present specification, together with or in place of the above effects. May be played.
本開示の一実施形態に係る情報処理装置とその周辺の構成を示す模式図である。2 is a schematic diagram illustrating an information processing apparatus according to an embodiment of the present disclosure and a configuration around the information processing apparatus. FIG. センシング部の種類と、各種センサによって検出されるセンシング情報と、センシング情報の詳細と、センシングに使うセンサを示す模式図である。It is a schematic diagram which shows the sensor used for the kind of sensing part, the sensing information detected by various sensors, the detail of sensing information, and sensing. 入力情報取得部が取得する情報の例を示す模式図である。It is a schematic diagram which shows the example of the information which an input information acquisition part acquires. データベースに格納されたデータを示す模式図である。It is a schematic diagram which shows the data stored in the database. 因果解析部による解析結果を示す模式図である。It is a schematic diagram which shows the analysis result by a causal analysis part. 図5の状態から、ユーザが変数「肉質」を更に指定した場合の有向グラフを示す模式図である。FIG. 6 is a schematic diagram showing a directed graph when the user further specifies a variable “meat quality” from the state of FIG. 5. 注目した変数「卸価格」と、「卸価格」に因果のある変数「気温」との関係を解析した結果を示す特性図である。FIG. 10 is a characteristic diagram showing a result of analyzing a relationship between a noticed variable “wholesale price” and a variable “temperature” that is causal of “wholesale price”. 因果解析部が様々な変数に対する影響の予測表示を行った結果を示す模式図である。It is a schematic diagram which shows the result of the causal analysis part performing the prediction display of the influence with respect to various variables. 注目変数を「体重」に指定した場合の有向グラフを示す模式図である。It is a schematic diagram which shows the directed graph at the time of designating an attention variable to "weight". 「予測性能表示」、「原因となる変数のリスト表示」、「原因となる変数の影響表示」の各画面を示す模式図である。FIG. 5 is a schematic diagram showing screens of “predicted performance display”, “cause variable list display”, and “cause variable influence display”. 因果解析部による因果解析の処理を示すフローチャートである。It is a flowchart which shows the process of the causal analysis by a causal analysis part. 因果解析部による離散化の様子を示す模式図である。It is a schematic diagram which shows the mode of the discretization by a causal analysis part. コストを入力するためのUIを示す模式図である。It is a schematic diagram which shows UI for inputting cost. 注目する変数「コスト」と、「コスト」の要因となる変数「従業員ストレス」との関係を示す特性図である。FIG. 5 is a characteristic diagram showing a relationship between a variable “cost” of interest and a variable “employee stress” that causes “cost”. 効果とコストのトレードオフグラフ表示を示す模式図である。It is a schematic diagram which shows the trade-off graph display of an effect and cost. 図15に示すカードCを一覧表示した例を示す模式図である。It is a schematic diagram which shows the example which displayed the card | curd C shown in FIG. 15 as a list. ユーザの変更した変数の組み合わせパターンを入力しておいて、その場合に注目変数がどう変化するかについて比較検討可能な機能を提供する例を示す模式図である。It is a schematic diagram which shows the example which provides the function which can compare and examine how the attention variable changes in that case after the combination pattern of the variable which the user changed is input. 図17の因果解析結果を得るための処理を示すフローチャートである。It is a flowchart which shows the process for obtaining the causal analysis result of FIG. 注目変数と相関が高いにも関わらず、有向グラフ内には依存関係が表れていない変数Xについて実験提案を行う例を示す模式図である。FIG. 10 is a schematic diagram illustrating an example in which an experiment proposal is made for a variable X whose dependency relationship does not appear in the directed graph even though the correlation with the variable of interest is high. 図19の処理を示すフローチャートである。It is a flowchart which shows the process of FIG. 変数の影響の大きさを推定する処理を示すフローチャートである。It is a flowchart which shows the process which estimates the magnitude | size of the influence of a variable. 図15の提示を行うために因果解析部400のパレート最適解演算部410が行う処理を示すフローチャートである。16 is a flowchart showing processing performed by the Pareto optimal solution calculation unit 410 of the causal analysis unit 400 to perform the presentation of FIG. 15.
 以下に添付図面を参照しながら、本開示の好適な実施の形態について詳細に説明する。なお、本明細書及び図面において、実質的に同一の機能構成を有する構成要素については、同一の符号を付することにより重複説明を省略する。 Hereinafter, preferred embodiments of the present disclosure will be described in detail with reference to the accompanying drawings. In addition, in this specification and drawing, about the component which has the substantially same function structure, duplication description is abbreviate | omitted by attaching | subjecting the same code | symbol.
 なお、説明は以下の順序で行うものとする。
 1.情報処理装置の構成例
 2.因果解析の概要について
 3.因果解析の詳細について
The description will be made in the following order.
1. 1. Configuration example of information processing apparatus 2. Outline of causal analysis Details of causal analysis
 1.情報処理装置の構成例
 家畜を飼育する現場では、何を見れば家畜の体調が分かるか、何が良質な肉質の指標になっているかなど、因果を知りたいというニーズがある。本実施形態では、家畜に装着した各種センサ、農家の環境に設置された各種センサのデータを蓄積し、そのデータに対して因果解析を行い、解析結果をユーザである農家に提示する。
1. Example of configuration of information processing apparatus In the field of raising livestock, there is a need to know the cause and effect, such as what can be seen to understand the physical condition of the livestock and what is an index of good quality meat. In this embodiment, data of various sensors attached to livestock and various sensors installed in the farmer's environment are accumulated, causal analysis is performed on the data, and the analysis result is presented to the farmer who is a user.
 まず、図1を参照して、本開示の一実施形態に係る情報処理装置1000とその周辺の構成について説明する。図1に示すように、情報処理装置1000は、センシング情報取得部100、特徴抽出部200、データベース300、因果解析部400、入力情報取得部500、操作情報取得部600、提示情報出力部700を有して構成されている。なお、図1に示す各構成要素は、CPUなどの中央演算処理装置と、これを機能させるためのプログラム(ソフトウェア)により構成されることができる。 First, with reference to FIG. 1, a configuration of an information processing apparatus 1000 according to an embodiment of the present disclosure and its surroundings will be described. As illustrated in FIG. 1, the information processing apparatus 1000 includes a sensing information acquisition unit 100, a feature extraction unit 200, a database 300, a causal analysis unit 400, an input information acquisition unit 500, an operation information acquisition unit 600, and a presentation information output unit 700. It is configured. Each component shown in FIG. 1 can be configured by a central processing unit such as a CPU and a program (software) for causing it to function.
 センシング情報取得部100は、家畜の個体、家畜のおかれている環境、農家などに装着されたセンサ(センシング部2000)が時系列データをセンシングした際に、そのセンサ信号を取得し、センサ信号に係るデータをデータベース300に格納する。センシング部2000は、各種センサから構成される。 The sensing information acquisition unit 100 acquires a sensor signal when a sensor (sensing unit 2000) attached to an individual animal, an environment where the animal is placed, a farmer, or the like senses time-series data, and the sensor signal Is stored in the database 300. The sensing unit 2000 includes various sensors.
 図2は、センシング部2000の種類と、各種センサによって検出されるセンシング情報と、センシング情報の詳細と、センシングに使うセンサを示す模式図である。図2に示すように、センシング部2000の種類として、家畜の個体に装着される個体装着センサ、家畜を飼育する施設等の環境情報を取得する環境センサ、農家の家畜飼育者、ロボット等に装着される農家装着センサを含む。図2に示すように、センシングするデータとして、家畜からセンシングするもの、牛舎などの環境からセンシングするもの、育成者など人からセンシングするものが挙げられる。センシング部2000がセンシング情報を取得する手法は、直接的な情報取得の他、有線通信による取得、無線通信による取得などが挙げられるが、その手法は限定されるものではない。 FIG. 2 is a schematic diagram showing the type of the sensing unit 2000, sensing information detected by various sensors, details of the sensing information, and sensors used for sensing. As shown in FIG. 2, as a type of the sensing unit 2000, an individual wearing sensor to be attached to a livestock individual, an environmental sensor for obtaining environmental information such as a facility for raising livestock, a farm animal breeder, a robot, etc. Includes farmer-mounted sensors. As shown in FIG. 2, data to be sensed includes data sensed from livestock, data sensed from an environment such as a barn, and data sensed from a person such as a grower. Although the sensing unit 2000 obtains the sensing information, direct information acquisition, acquisition by wired communication, acquisition by wireless communication, and the like can be mentioned, but the method is not limited.
 入力情報取得部500は、ユーザの操作入力に応じて、センシングで得られる以外の情報を取得し、データベース300に格納する。入力情報取得部500は、例えば、キーボードやマウス等の入力部により入力された操作入力情報を取得する。入力情報取得部500が操作入力情報を取得する手法は、直接的な情報取得の他、有線通信による取得、無線通信による取得などが挙げられるが、その手法は限定されるものではない。 The input information acquisition unit 500 acquires information other than that obtained by sensing according to a user's operation input, and stores it in the database 300. The input information acquisition unit 500 acquires operation input information input by an input unit such as a keyboard or a mouse, for example. Examples of the method by which the input information acquisition unit 500 acquires operation input information include direct information acquisition, wired communication acquisition, and wireless communication acquisition, but the method is not limited.
 図3は、入力情報取得部500が取得する情報の例を示す模式図である。図3に示すように、入力情報取得部500は、図3に示すような家畜の個体に関連する情報、農家に関連する情報を取得し、データベース300に格納する。 FIG. 3 is a schematic diagram illustrating an example of information acquired by the input information acquisition unit 500. As shown in FIG. 3, the input information acquisition unit 500 acquires information related to livestock individuals and information related to farmers as shown in FIG. 3 and stores them in the database 300.
 特徴抽出部200は、センシング情報取得部100、入力情報取得部500が取得したセンサ信号に係る情報のうち、そのまま因果解析に使用できない情報があれば、当該情報から特徴を抽出し、因果解析に使用できる情報に加工してデータベース300に格納する。例えば、特徴抽出部200は、個体の移動履歴、行動種別を基に運動量(消費カロリー)を算出したり、各センシング情報の月例毎の平均値や変化の大きさ等を演算する。 If there is information that cannot be used for causal analysis as it is among the information related to the sensor signal acquired by the sensing information acquisition unit 100 and the input information acquisition unit 500, the feature extraction unit 200 extracts the feature from the information and performs the causal analysis. The information is processed into usable information and stored in the database 300. For example, the feature extraction unit 200 calculates an amount of exercise (consumed calories) based on an individual's movement history and action type, and calculates an average value and a magnitude of change of each sensing information for each month.
 因果解析部400は、データベース300に格納されたデータに対して変数間の因果を解析する。因果解析部400は、定期的に、又はユーザが指定したタイミングで因果解析を実行する。因果解析部400による解析結果は有向グラフ等により表示される。 The causal analysis unit 400 analyzes causality between variables for the data stored in the database 300. The causal analysis unit 400 performs causal analysis periodically or at a timing designated by the user. The analysis result by the causal analysis unit 400 is displayed as a directed graph or the like.
 因果解析部400は、要因抽出部402、有向グラフ推定部404、予測性能解析部406、影響度推定部408、パレート最適解演算部410を有して構成される。因果解析部400の各構成要素の処理については、後述する。 The causal analysis unit 400 includes a factor extraction unit 402, a directed graph estimation unit 404, a prediction performance analysis unit 406, an influence degree estimation unit 408, and a Pareto optimal solution calculation unit 410. Processing of each component of the causal analysis unit 400 will be described later.
 操作情報取得部600は、因果解析部400による解析結果の表示を操作するための情報を取得する。操作情報取得部600は、例えば、キーボードやマウス等の入力部から入力された情報を取得する。操作情報取得部600が情報を取得する手法は、直接的な情報取得の他、有線通信による取得、無線通信による取得などが挙げられるが、その手法は限定されるものではない。提示情報出力部700は、表示装置3000へ解析結果を提示するための情報を出力する。 The operation information acquisition unit 600 acquires information for operating the analysis result display by the causal analysis unit 400. For example, the operation information acquisition unit 600 acquires information input from an input unit such as a keyboard or a mouse. The method by which the operation information acquisition unit 600 acquires information includes direct information acquisition, acquisition by wired communication, acquisition by wireless communication, and the like, but the method is not limited. The presentation information output unit 700 outputs information for presenting the analysis result to the display device 3000.
 2.因果解析の概要について
 図4は、データベース300に格納されたデータを示す模式図である。ここでは、家畜として牛を例示し、牛の個体IDと紐付けられた各種変数が格納された例を示している。変数として、牛の育成に関する変数と、育成の結果に関する変数が挙げられる。育成に関する変数として、分娩担当者、去勢担当者、基本飼料、飼料配合、運動量、睡眠時間、咀嚼回数、飼育密度、平均風量、平均温度、平均湿度、平均騒音、平均明るさ、平均害虫数、平均飼育時間、性別、ロボットの接触の多さ、食事量等が挙げられる。育成の結果に関する変数は、体重、枝肉重量、枝肉歩留、ロース芯、背脂肪厚、脂肪交雑、肉色、肉脂肪色、肉質、価格等が挙げられる。
2. Outline of Causal Analysis FIG. 4 is a schematic diagram showing data stored in the database 300. Here, a cow is illustrated as a livestock, and an example in which various variables associated with a cow individual ID are stored is shown. Variables include variables related to cow breeding and variables related to breeding results. As variables related to breeding, delivery workers, castration personnel, basic feed, feed composition, exercise amount, sleep time, number of chewing, breeding density, average air volume, average temperature, average humidity, average noise, average brightness, average number of pests, Examples include average breeding time, gender, frequent robot contact, and food consumption. Examples of the variables related to the growth result include body weight, carcass weight, carcass yield, loin core, back fat thickness, fat cross, meat color, meat fat color, meat quality, price, and the like.
 因果解析部400は、図4に示すデータに対して変数間の因果を解析する。具体的に、因果解析部400は、例えば公知のmax-min hill-climbing法を用いた因果解析を行い、変数間の因果を解析する。図5は、解析結果の一例を示す模式図である。提示情報出力部700が、表示装置3000へ因果解析部400による解析結果を提示するための情報を出力することで、図5に示す解析結果が表示装置3000に表示される。 The causal analysis unit 400 analyzes the causality between variables for the data shown in FIG. Specifically, the causal analysis unit 400 performs a causal analysis using, for example, a known max-min Hill-Climbing method, and analyzes the causality between variables. FIG. 5 is a schematic diagram illustrating an example of the analysis result. The presentation information output unit 700 outputs information for presenting the analysis result by the causal analysis unit 400 to the display device 3000, whereby the analysis result illustrated in FIG. 5 is displayed on the display device 3000.
 図5において、各変数間が線で結ばれている箇所は、その変数間に因果があることを示している。上述したように、ユーザがキーボードやマウス等の入力部により入力を行うことで、操作情報取得部600は、因果解析部400による解析結果の表示を操作するための情報を取得する。図6は、図5の状態から、ユーザが変数「肉質」を更に指定した場合を示す模式図(有向グラフ)である。因果解析部400の有用グラフ推定部404は、指定された変数「肉質」と因果のある変数を解析した結果に基づいて、図6に示すような、注目変数「肉質」と注目変数「肉質」の要因となる原因変数(ロボットとの接触の多さ、運動量、騒音、食事量)とを紐付けした有用グラフを推定する。提示情報出力部700が、表示装置3000へ因果解析部400による解析結果を提示するための情報を出力することで、図6に示す解析結果が表示装置3000に表示される。 In FIG. 5, a portion where each variable is connected by a line indicates that there is a cause and effect between the variables. As described above, when the user inputs with an input unit such as a keyboard or a mouse, the operation information acquisition unit 600 acquires information for operating the analysis result display by the causal analysis unit 400. FIG. 6 is a schematic diagram (directed graph) showing a case where the user further specifies the variable “meat quality” from the state of FIG. 5. The useful graph estimation unit 404 of the causal analysis unit 400 analyzes the attention variable “meat” and the attention variable “meat” as shown in FIG. 6 based on the analysis result of the designated variable “meat quality” and the causal variable. A useful graph in which cause variables (the amount of contact with the robot, the amount of exercise, the noise, the amount of meal) associated with the above are linked is estimated. The presentation information output unit 700 outputs information for presenting the analysis result by the causal analysis unit 400 to the display device 3000, whereby the analysis result illustrated in FIG. 6 is displayed on the display device 3000.
 図6に示す解析結果によれば、牛の「肉質」は、ロボットとの接触の多さ、運動量、騒音、食事量、に因果があるため、これらの変数を変更することで肉質が変化することが判る。従って、ユーザは、「肉質」を改善するために例えば運動量、食事量などの変数を今までと変えるなどの措置をとることができる。従って、ユーザは、肉質を改善するために今まで気づかなかった原因が分かり、結果として新しい対策を行うことができる。 According to the analysis results shown in FIG. 6, the “meat quality” of cattle is due to the large number of contact with the robot, the amount of exercise, the noise, and the amount of food. Therefore, changing these variables changes the meat quality. I understand that. Therefore, in order to improve the “meat quality”, the user can take measures such as changing variables such as exercise amount and meal amount. Therefore, the user can understand the cause that has not been noticed so far in order to improve the meat quality, and can take a new countermeasure as a result.
 更に、因果解析部400の影響度推定部408による解析によれば、因果のある変数のうち、注目する変数への影響の大きさを提示することができる。図6の例では、「肉質」への影響の大きさ順に、1位が運動量(30%)、2位が食事量(15%)、3位が騒音量(6%)のように提示することもできる。これにより、ユーザは、「肉質」を改善するためには、運動量を変えることが最も効果的であると認識できる。図21は、影響度推定部408が影響の大きさを推定する処理を示すフローチャートである。先ず、ステップS40では、ユーザが注目変数を指定する。次のステップS42では、注目変数の原因となる変数を列挙する。次のステップS44では、注目変数を影響度順にソートする。次のステップS46では、原因となる変数を提示する。 Furthermore, according to the analysis by the influence degree estimation unit 408 of the causal analysis unit 400, it is possible to present the magnitude of the influence on the variable of interest among the causal variables. In the example of FIG. 6, in order of the magnitude of the influence on “meat quality”, the first place is presented as the amount of exercise (30%), the second place is the amount of meal (15%), and the third place is the amount of noise (6%). You can also. Thereby, the user can recognize that changing the amount of exercise is the most effective for improving the “meat quality”. FIG. 21 is a flowchart illustrating processing in which the influence degree estimation unit 408 estimates the magnitude of the influence. First, in step S40, the user designates an attention variable. In the next step S42, the variables that cause the variable of interest are listed. In the next step S44, the variables of interest are sorted in order of influence. In the next step S46, a causal variable is presented.
 同様に、他の変数に注目する場合、その変数を指定することで、指定した変数と因果のある変数が解析されて、図6と同様に表示される。このように、例えばユーザが改善したい変数(健康状態、肉質等)を入力すると、分析結果であるその要因(因果)が提示される。従って、ユーザは、要因(因果)のある変数を変えることで、注目した変数を変えることが可能となる。これにより、ユーザは、因果解析部400による解析結果に基づいて、牛を飼育する際の各種変数を最適に変化させることも可能となる。家畜の体調、肉質などの指標にどの要因がどのくらい影響しているのかが分かるため、原因が分かれば、指標を改善するための対策を打つことができる。 Similarly, when paying attention to other variables, by designating that variable, the specified variable and the causal variable are analyzed and displayed as in FIG. Thus, for example, when a user inputs a variable (health condition, meat quality, etc.) that the user wants to improve, the factor (causal) that is an analysis result is presented. Therefore, the user can change the noted variable by changing a variable having a factor (causal). Thereby, based on the analysis result by the causal analysis unit 400, the user can optimally change various variables when raising the cow. Since it can be understood which factors have an influence on indicators such as physical condition and meat quality of livestock, if the cause is known, measures can be taken to improve the indicators.
 また、図7は、注目した変数「卸価格」と、「卸価格」に因果のある変数「気温」との関係を解析した結果を示す特性図である。このように、注目する変数と、注目する変数と因果のある変数との関係をグラフで示すこともできる。提示情報出力部700が、表示装置3000へ図7の解析結果を提示するための情報を出力することで、図7に示す解析結果が表示装置3000に表示される。これにより、ユーザは、気温を20度前後にすることで、「卸価格」を高くできる可能性があることを認識できる。 FIG. 7 is a characteristic diagram showing the result of analyzing the relationship between the noticed variable “Wholesale Price” and the variable “Temperature” causal of “Wholesale Price”. In this way, the variable of interest and the relationship between the variable of interest and the causal variable can also be shown in a graph. The presentation information output unit 700 outputs information for presenting the analysis result of FIG. 7 to the display device 3000, whereby the analysis result shown in FIG. 7 is displayed on the display device 3000. Thereby, the user can recognize that there is a possibility that the “wholesale price” can be increased by setting the temperature to around 20 degrees.
 図6、図7に示す情報は、文章により提示を行っても良い。例えば、「牛との接触回数を10%増やすと病気になる確率が5%低くなります」のように提示を行っても良いし、「騒音を減らしてほしいよ~」などのように、個体(牛)の視点での文章を提示しても良い。文章化は、例えばリカレントニューラルネットワーク(RNN:Recurrent Neural Network)等の手法により行っても良い。更に、これら文章を音声合成して発話させてもよい。 The information shown in FIGS. 6 and 7 may be presented in text. For example, if you increase the number of contact with cattle by 10%, the chance of getting sick will be reduced by 5%, or you may want to reduce the noise. A sentence from the viewpoint of (cow) may be presented. Documenting may be performed by a technique such as a recurrent neural network (RNN). Further, these sentences may be synthesized by speech and uttered.
 因果情報の提示は、ユーザの行動を認識し、適切なタイミングで提示する。例えば、ユーザが牛にエサをあげるタイミングで、「いつもより量を少な目にすると卸価格がアップする可能性があります」などのように提示する。あるいは、占い風の文章で情報を提示しても良く、「今日のラッキーエサは干し草、ラッキー温度は18度」などのように提示を行っても良い。 The presentation of causal information recognizes user behavior and presents it at an appropriate time. For example, at the timing when the user feeds the cow, the wholesale price may increase if the amount is smaller than usual. Alternatively, the information may be presented in a fortune-telling style, such as “Today's lucky food is hay, lucky temperature is 18 degrees”.
 図8は、因果解析部400が様々な変数に対する影響の予測表示を行った結果を示す模式図である。図8に示すように、あるアクションをとった場合に、そのアクションが複数の変数に対してどのような影響を与えるかの予測を一覧で提示することもできる。図8の例では、エサを現状のものからエサAに変更すると、肉質が5%変化し、病気確率が3%変化し、コストが2%変化することが判る。 FIG. 8 is a schematic diagram showing a result of the causal analysis unit 400 performing prediction display of influences on various variables. As shown in FIG. 8, when an action is taken, predictions about how the action affects a plurality of variables can be presented in a list. In the example of FIG. 8, when the food is changed from the current food to food A, the meat quality changes by 5%, the disease probability changes by 3%, and the cost changes by 2%.
 また、因果分析結果があいまいな場合、結果をはっきりさせるセンシングのための行動を農家に働きかけても良い。例えば、「牛舎の色を変更すると色の影響が分かる可能性があります」などの情報を提示し、ユーザに働きかけるようにする。ユーザの行動をセンシングに反映させ、センシングしたデータを蓄積した上で、更なる分析を行って提示するサービスとして提供することができる。 Also, if the causal analysis result is ambiguous, the farmer may be encouraged to take a sensing action to clarify the result. For example, information such as “There is a possibility that the influence of the color may be understood if the color of the barn is changed” is presented to the user. It is possible to provide a service that reflects user behavior in sensing, accumulates the sensed data, and performs further analysis and presents the data.
 更に、情報処理装置1000と実際に変数の制御を行う装置(例えば、牛舎の室温を制御する空調装置、エサの配合を行う装置)を接続し、因果分析結果に基づいて要因となる変数を装置が直接変更するように自動制御を行っても良い。 Furthermore, the information processing device 1000 is connected to a device that actually controls the variables (for example, an air conditioner that controls the room temperature in the barn or a device that mixes food), and the variable that causes the factor is based on the causal analysis result. It is also possible to perform automatic control so that changes directly.
 3.因果解析の詳細について
 操作情報取得部600が解析結果の表示を操作するための情報を取得することで、解析結果の表示が遷移し、より詳細な解析結果を得ることができる。ここでは、注目する変数を「体重」に指定するものとする。これにより、因果解析部400により「体重」の要因となる変数として、「基本飼料ID」、「飼料配合ID」、「睡眠時間」、「飼育密度」が抽出され、図9に示す有向グラフが得られる。ユーザが所定の操作を行うと、図9に示す状態から図10に示す「予測性能表示」、「原因となる変数のリスト表示」、「原因となる変数の影響表示」の各画面に遷移することができる。なお、各画面の解析結果は、結果に対する要因の影響分析を一般化線形回帰により行うことで、得ることができる。
3. About the details of causal analysis When the operation information acquisition unit 600 acquires information for operating the display of the analysis result, the display of the analysis result transitions, and a more detailed analysis result can be obtained. Here, it is assumed that the variable of interest is designated as “weight”. As a result, “basic feed ID”, “feed formulation ID”, “sleeping time”, and “breeding density” are extracted as variables that cause “weight” by the causal analysis unit 400, and the directed graph shown in FIG. 9 is obtained. It is done. When the user performs a predetermined operation, the screen transitions from the state shown in FIG. 9 to each screen of “predicted performance display”, “cause variable list display”, and “cause variable influence display” shown in FIG. be able to. The analysis result of each screen can be obtained by performing the influence analysis of the factor on the result by generalized linear regression.
 図10に示す「予測性能表示」では、「体重」と因果のある4つの変数(基本飼料ID、飼料配合ID、睡眠時間、飼育密度)に基づいて予測した体重(予測性能表示の横軸に示す「体重’」)と、実際の体重との相関を示しており、この例では、相関度Rは0.89である。従って、体重は高い精度で予測できることが判る。予測した体重’と実際の体重が一致すると、相関度Rは1.0となる。この予測は、因果解析部400の予測部402により行われる。 In the “predicted performance display” shown in FIG. 10, the body weight predicted on the basis of four variables (basic feed ID, feed composition ID, sleep time, breeding density) and “cause weight” (on the horizontal axis of the predicted performance display). "Weight" shown) and the actual weight are shown, and in this example, the correlation degree R is 0.89. Therefore, it can be seen that the weight can be predicted with high accuracy. When the predicted body weight 'matches the actual body weight, the correlation degree R is 1.0. This prediction is performed by the prediction unit 402 of the causal analysis unit 400.
 図10に示すように、「原因となる変数のリスト表示」では、因果のある変数の影響度合いが表示される。影響度合いは、「基本飼料ID」が78.4%で最も高く、「飼料配合ID」は20.3%、「睡眠時間」は0.9%、「飼育密度」は0.4%である。従って、「体重」には「基本飼料ID」と「飼料配合ID」が大きく影響しており、これらの変数を制御すると体重が改善できる可能性があることが判る。特に「基本飼料ID」の影響度合いが最も大きいため、「体重」を変化させるためには、「基本飼料ID」を変化させることが最も効果的である。 As shown in FIG. 10, in the “list display of causal variables”, the degree of influence of causal variables is displayed. As for the degree of influence, “basic feed ID” is the highest at 78.4%, “feed formulation ID” is 20.3%, “sleeping time” is 0.9%, and “breeding density” is 0.4%. . Therefore, “basic feed ID” and “feed formulation ID” have a large influence on “body weight”, and it can be seen that there is a possibility that weight can be improved by controlling these variables. In particular, since the degree of influence of “basic feed ID” is the largest, it is most effective to change “basic feed ID” in order to change “weight”.
 「原因となる変数の影響表示」の画面には、「体重」に大きな影響を与える2つの変数(「基本飼料ID」、「飼料配合ID」)のそれぞれについて、変数のどの範囲が「体重」に与える影響が大きいかを示している。基本飼料IDの場合、IDが2、又は3の基本飼料を用いることで、体重を大きくできることが判る。従って、ユーザは、「体重」を増加するためには、IDが2~3の基本飼料を与えれば良いことが判る。この解析は、予測性能解析部406によって行われる。 On the “Indication of the influence of the causal variable” screen, for each of the two variables (“basic feed ID” and “feed formulation ID”) that greatly affect “weight”, which range of the variable is “weight” It shows whether the impact on In the case of the basic feed ID, it can be seen that the weight can be increased by using the basic feed with ID 2 or 3. Therefore, it can be understood that the user only needs to give a basic feed having an ID of 2 to 3 in order to increase the “weight”. This analysis is performed by the prediction performance analysis unit 406.
 一方、飼料配合IDの場合、IDが5.0以上の配合とすることで、体重が増加することが判る。従って、従って、ユーザは、「体重」を増加するためには、IDが5.0以上の配合で配合を行えば良いことが判る。 On the other hand, in the case of feed blending ID, it can be seen that weight is increased by blending with ID of 5.0 or more. Therefore, it can be understood that the user only needs to blend with a blend having an ID of 5.0 or more in order to increase the “weight”.
 図11は、因果解析部400による因果解析の処理を示すフローチャートである。先ず、ステップS10では、因果解析対象のデータセットが因果解析部400に入力される。これにより、図4に示すデータセットが因果解析部400に入力される。 FIG. 11 is a flowchart showing a causal analysis process performed by the causal analysis unit 400. First, in step S <b> 10, a causal analysis target data set is input to the causal analysis unit 400. As a result, the data set shown in FIG. 4 is input to the causal analysis unit 400.
 次のステップS12では、入力されたデータについて、連続値変数の離散化を行う。上述したMax-min hill climbing法で扱えるのは離散化された変数(0,1,2,3のように特定の値を持つ変数)のみであり、連続値(0.0~1.0などの連続的な値を持つ変数)は扱えないため、離散化処理を行う。本実施形態では、最小値から最大値の間をあらかじめ決めた数に均等に離散化する。図12は、離散化処理の様子を示す模式図である。連続値を8段階(0,1,2,…,7)に離散化する場合、最小値から最大値の間を8つに区切るようにする。 In the next step S12, the continuous value variable is discretized for the input data. Only the discretized variables (variables having specific values such as 0, 1, 2, 3) that can be handled by the Max-min Hill climbing method described above are continuous values (such as 0.0 to 1.0). The variable with a continuous value of () cannot be handled, so discretization is performed. In the present embodiment, the interval between the minimum value and the maximum value is evenly discretized to a predetermined number. FIG. 12 is a schematic diagram showing the state of the discretization process. When the continuous value is discretized in 8 steps (0, 1, 2,..., 7), the minimum value and the maximum value are divided into eight.
 次のステップS14では、Max-min hill climbing法によるDAG(有向グラフ)の推定を行う。これにより、データセットの持つ各変数について、他のどの変数が要因になっているのか、についての推定結果が得られ、図6に示したような有向グラフを得ることができる。 In the next step S14, the DAG (directed graph) is estimated by the Max-min Hill climbing method. Thereby, for each variable of the data set, an estimation result as to which other variable is a factor can be obtained, and a directed graph as shown in FIG. 6 can be obtained.
 次のステップS16では、一般化線形回帰による各要因の影響分析を行う。これにより、変数とその原因となる変数との関係性が得られ、図11に示したような「予測性能表示」、「原因となる変数のリスト表示」、「原因となる変数の影響表示」の関係を得ることができる。 In the next step S16, the influence analysis of each factor is performed by generalized linear regression. Thereby, the relationship between the variable and the variable that causes it is obtained, and “prediction performance display”, “list display of the cause variable”, and “effect display of the cause variable” as shown in FIG. Can get a relationship.
 図13及び図14は、各変数のうち、制御可能なものについてコストを入力可能とし、直接算出が難しいコストについては、変数の変動によるコスト変動をシステムが自動推定する例を示す模式図である。ここで、図13は、コストを入力するためのUIを示しており、UIを介して入力された情報は操作情報取得部600により取得される。また、図14は、注目する変数「コスト」と、「コスト」の要因となる変数「従業員ストレス」との関係を示す特性図である。ここでは、「従業員ストレス」が大きくなると、「コスト」が低下するという因果解析結果が示されている。因果解析の結果を用いることにより、変数「コスト」と他の変数の関係性を解析し、ある変数を変更した場合の「コスト」への影響を推定することができる。この際、コスト入力UIで入力した値(自明なコスト)を考慮した推定が可能となる。 FIG. 13 and FIG. 14 are schematic diagrams showing an example in which the system can automatically estimate the cost fluctuation due to the fluctuation of the variable for the variable that can be controlled among the variables and the cost that is difficult to calculate directly. . Here, FIG. 13 illustrates a UI for inputting a cost, and information input via the UI is acquired by the operation information acquisition unit 600. FIG. 14 is a characteristic diagram showing the relationship between the variable “cost” of interest and the variable “employee stress” that causes “cost”. Here, a causal analysis result that “cost” decreases as “employee stress” increases is shown. By using the result of causal analysis, it is possible to analyze the relationship between the variable “cost” and other variables, and to estimate the effect on “cost” when a certain variable is changed. At this time, estimation in consideration of the value (trivial cost) input through the cost input UI is possible.
 図15は、効果とコストのトレードオフグラフ表示を示す模式図である。図15に示すように、例えば、縦軸を効果(牛の価格)、横軸をランニングコストとした散布図に施策案を提示する。提示する施策案は、効果、コストの2変数におけるパレート最適(効果、コストのいずれかで他の解より優れている)であるものを選択して提示する。 FIG. 15 is a schematic diagram showing a trade-off graph display of effect and cost. As shown in FIG. 15, for example, the measure plan is presented in a scatter diagram with the vertical axis representing the effect (cow price) and the horizontal axis representing the running cost. The measure plan to be presented is selected and presented as Pareto optimal (better than other solutions in either effect or cost) in two variables of effect and cost.
 図15に示す例では、コストの要因となる変数「エサ」を変更した場合に、ランニングコストと価格が変化する様子が示されている。現状(NOW)に対してエサをエサAに変更するとランニングコストは上昇するが牛の価格も上がることが判る。また、現状に対してエサをエサBに変更すると、ランニングコストは低下するが牛の価格も低下することが判る。ユーザは、図15の解析結果に基づいて、エサを変更した場合のメリット、デメリットを認識することができる。なお、図15において、パレート最適でない施策案は表示しないか、又は表示優先度を下げるようにする。 In the example shown in FIG. 15, the running cost and the price change when the variable “food” that causes the cost is changed. It can be seen that changing the food to food A for the current situation (NOW) increases the running cost but also the price of the cow. It can also be seen that changing the food to the food B for the current situation reduces the running cost but also the price of the cow. The user can recognize the merits and demerits of changing the food based on the analysis result of FIG. In FIG. 15, the measure plan that is not Pareto optimal is not displayed or the display priority is lowered.
 図16は、図15に示すカードCを一覧表示した例を示す模式図である。1つのカードには、1つの施策とそれによって得られる効果、コストが記載されている。カードはコストや効果に基づいてソートして表示できる。 FIG. 16 is a schematic diagram showing an example in which the cards C shown in FIG. 15 are displayed as a list. One card describes one measure and the effects and costs obtained thereby. Cards can be sorted and displayed based on cost and effectiveness.
 図22は、図15の提示を行うために因果解析部400のパレート最適解演算部410が行う処理を示すフローチャートである。先ず、ステップS50では、原因変数を変化させながら、原因変数-注目変数-コストの関係をリストアップする。 FIG. 22 is a flowchart showing a process performed by the Pareto optimal solution calculation unit 410 of the causal analysis unit 400 to perform the presentation of FIG. First, in step S50, the cause variable-attention variable-cost relationship is listed while changing the cause variable.
 次のステップS52では、注目変数-コストの関係のパレート最適解を列挙する。次のステップS54では、図15に示すトレードオフグラフ、又は図16に示すカードCによる表示により、施策案を提示する。次のステップS56では、ユーザが施策案の1つを選択して採用する。 In the next step S52, the Pareto optimal solutions of the attention variable-cost relationship are listed. In the next step S54, a measure plan is presented by the trade-off graph shown in FIG. 15 or the display by the card C shown in FIG. In the next step S56, the user selects and adopts one of the measure plans.
 図17は、ユーザの変更した変数の組み合わせパターンを入力しておいて、その場合に注目変数がどう変化するかについて比較検討可能な機能を提供する例を示す模式図である。図17において、太字で示した変数はユーザが入力して変更した数値を示している。また、下線を付した変数は、変更した変数に影響を受けて値が変わった変数を示している。因果解析部400の影響度推定部408は、太字で示したユーザが変更した数値に基づいて、他の変数の変化を推定する。ユーザは所望の変数を適宜変更することで、これに影響を受けて値が変わった変数を認識できる。図17のように複数のプランを作成し、保存することも可能である。 FIG. 17 is a schematic diagram showing an example of providing a function capable of comparing and examining how the variable of interest changes in such a case when a combination pattern of variables changed by the user is input. In FIG. 17, variables shown in bold indicate numerical values input and changed by the user. The underlined variable indicates a variable whose value has changed due to the changed variable. The influence estimation unit 408 of the causal analysis unit 400 estimates changes in other variables based on the numerical values changed by the user shown in bold. The user can recognize a variable whose value has been changed by changing the desired variable as appropriate. It is also possible to create and save a plurality of plans as shown in FIG.
 図18は、図17の因果解析結果を得るための処理を示すフローチャートである。先ず、ステップS20では、ユーザが介入後の原因変数を入力する。これにより、図17に太字で示した変数が変更される。次のステップS22では、因果解析部が、変更した原因変数に影響を受ける他の変数の値を推定する。これにより、図17に下線を付した変数の値が推定される。次のステップS24では、変数値を一覧表示する。次のステップS26では、変更内容をプランとして保存する。これにより、図17に示すリストにおいて、例えばプランCが保存される。次のステップS28では、過去保存した複数プランの提示を行う。これにより、図17に示すように、過去に保存したプランA,BがプランCとともに提示される。 FIG. 18 is a flowchart showing a process for obtaining the causal analysis result of FIG. First, in step S20, the user inputs a cause variable after intervention. As a result, the variables shown in bold in FIG. 17 are changed. In the next step S22, the causal analysis unit estimates the values of other variables that are affected by the changed cause variable. Thereby, the value of the variable underlined in FIG. 17 is estimated. In the next step S24, a list of variable values is displayed. In the next step S26, the changed content is saved as a plan. Thus, for example, plan C is stored in the list shown in FIG. In the next step S28, a plurality of plans stored in the past are presented. As a result, the plans A and B saved in the past are presented together with the plan C as shown in FIG.
 上述したように、データが少なく因果分析結果があいまいな変数がある場合、その変数を取得するための行動をユーザに働きかけることができる。図19は、注目変数と相関が高いにも関わらず、有向グラフ内には依存関係が表れていない変数Xについて実験提案を行う例を示す模式図である。 As described above, when there is a variable with a small amount of data and a causal analysis result that is ambiguous, it is possible to encourage the user to take an action to acquire the variable. FIG. 19 is a schematic diagram showing an example in which an experiment proposal is made for a variable X whose dependency relationship does not appear in the directed graph even though the correlation with the target variable is high.
 図19に示すように、変数Bを注目変数Yとしたところ、変数A,C,Dと高い相関が確認できたとする。ここで,変数Aを実験提案を行う変数Xとした場合、有向グラフ内にX→Yのパスが存在する。従って、注目変数Yへのパスが存在する変数Aについては、更なる変更の提案(実験提案)は行わない。 As shown in FIG. 19, it is assumed that the variable B is set as the variable of interest Y, and a high correlation with the variables A, C, and D can be confirmed. Here, when the variable A is a variable X for which an experiment proposal is made, a path of X → Y exists in the directed graph. Accordingly, no further change proposal (experimental proposal) is made for the variable A in which a path to the target variable Y exists.
 同様に、変数Cを実験提案を行う変数Xとした場合、有向グラフ内にY→Xのパスが存在する。従って、注目変数Yへのパスが存在する変数Cについては、更なる変更の提案(実験提案)は行わない。 Similarly, when the variable C is a variable X for which an experiment is proposed, there is a Y → X path in the directed graph. Accordingly, no further change proposal (experimental proposal) is made for the variable C in which a path to the target variable Y exists.
 一方、変数Dを実験提案を行う変数Xとした場合、有向グラフ内にY→X、X→Yのいずれのパスも存在しない。従って、注目変数Yへのパスが存在しない変数Dについては、更なる変更の提案(実験提案)を行う。 On the other hand, if the variable D is the variable X for which an experiment is proposed, there is no Y → X or X → Y path in the directed graph. Therefore, for the variable D for which there is no path to the target variable Y, a further change proposal (experimental proposal) is made.
 図20は、図19の処理を示すフローチャートである。先ず、ステップS30では、注目変数Yと相関の高い他の変数Xを列挙する。次のステップS32では、有向グラフ内にX→Y又はY→Xのパスが存在するか否かを判定し、パスが存在しない場合はステップS34へ進む。ステップS34では、変数Xの条件を変えたデータの取得を提案する。一方、有向グラフ内にX→Y又はY→Xのパスが存在する場合は、データの取得を提案することなく処理を終了する。 FIG. 20 is a flowchart showing the processing of FIG. First, in step S30, other variables X having a high correlation with the target variable Y are listed. In the next step S32, it is determined whether or not a path of X → Y or Y → X exists in the directed graph. If there is no path, the process proceeds to step S34. In step S34, the acquisition of data with the variable X condition changed is proposed. On the other hand, if a path of X → Y or Y → X exists in the directed graph, the process ends without proposing acquisition of data.
 実際にユーザが提案通りに観測すると、自動的に変数は提案から外れる。データを増やした結果、相関が小さくなった場合、変数Dと変数Bの間には因果が存在しないことが明らかになる。この場合、相関の高い変数を列挙する時点で提案から外れるようになる。データを増やしても相関が残った場合、変数Dと変数Bの間に何らかの因果が存在することになるため、因果解析時点で有向グラフ内に変数D→変数Bもしくは変数B→変数Dのパスが現れることになる。この場合、X→YもしくはY→Xのパスが存在するかどうかの判定時に提案から外れるようになる。 If the user actually observes as suggested, the variable will automatically be removed from the proposal. When the correlation decreases as a result of increasing the data, it becomes clear that there is no cause and effect between the variable D and the variable B. In this case, it becomes out of the proposal when enumerating highly correlated variables. If the correlation remains even if the data is increased, some causality exists between the variable D and the variable B. Therefore, the path of the variable D → the variable B or the variable B → the variable D is present in the directed graph at the time of the causal analysis. Will appear. In this case, it is excluded from the proposal when determining whether or not an X → Y or Y → X path exists.
 以上説明したように本実施形態によれば、畜産に関する複数のデータをデータベース300に蓄積し、蓄積したデータに基づいて、注目変数と、この注目変数の要因となる原因変数との関係を解析してユーザに提示するようにした。これにより、ユーザは、注目変数を改善するための原因が分かり、結果として新しい対策を行うことができる。 As described above, according to the present embodiment, a plurality of data relating to livestock is accumulated in the database 300, and based on the accumulated data, the relationship between the attention variable and the cause variable that causes the attention variable is analyzed. To be presented to the user. Thereby, the user can understand the cause for improving the attention variable, and can take a new countermeasure as a result.
 以上、添付図面を参照しながら本開示の好適な実施形態について詳細に説明したが、本開示の技術的範囲はかかる例に限定されない。本開示の技術分野における通常の知識を有する者であれば、特許請求の範囲に記載された技術的思想の範疇内において、各種の変更例または修正例に想到し得ることは明らかであり、これらについても、当然に本開示の技術的範囲に属するものと了解される。 The preferred embodiments of the present disclosure have been described in detail above with reference to the accompanying drawings, but the technical scope of the present disclosure is not limited to such examples. It is obvious that a person having ordinary knowledge in the technical field of the present disclosure can come up with various changes or modifications within the scope of the technical idea described in the claims. Of course, it is understood that it belongs to the technical scope of the present disclosure.
 また、本明細書に記載された効果は、あくまで説明的または例示的なものであって限定的ではない。つまり、本開示に係る技術は、上記の効果とともに、または上記の効果に代えて、本明細書の記載から当業者には明らかな他の効果を奏しうる。 In addition, the effects described in this specification are merely illustrative or illustrative, and are not limited. That is, the technology according to the present disclosure can exhibit other effects that are apparent to those skilled in the art from the description of the present specification in addition to or instead of the above effects.
 なお、以下のような構成も本開示の技術的範囲に属する。
(1) 畜産に関する複数の畜産関連情報を取得する取得部と、
 前記畜産関連情報を蓄積する蓄積部と、
 蓄積した前記畜産関連情報に基づいて、注目変数と当該注目変数の要因となる原因変数との関係を解析する因果解析部と、
 を備える、情報処理装置。
(2) 前記因果解析部は、前記注目変数と前記原因変数との関係を示す有向グラフを推定する有向グラフ推定部を有する、前記(1)に記載の情報処理装置。
(3) 前記因果解析部は、前記注目変数に対する前記原因変数の影響度を推定する影響度推定部を有する、前記(1)又は(2)に記載の情報処理装置。
(4) 前記影響度推定部は、任意の前記原因変数を変えた場合に前記注目変数又は他の前記原因変数の変化を推定する、前記(3)に記載の情報処理装置。
(5) 前記因果解析部は、前記原因変数から前記注目変数を予測する予測部を有する、前記(1)~(4)のいずれかに記載の情報処理装置。
(6) 前記因果解析部は、前記原因変数を変化させた場合に前記注目変数が変化する複数のパターンについて、パレート最適解を演算するパレート最適解演算部を有する、前記(1)~(5)のいずれかに記載の情報処理装置。
(7) 前記畜産関連情報は、畜産の対象である家畜に装着されたセンサが検知したセンシング情報である、前記(1)~(6)のいずれかにに記載の情報処理装置。
(8) 前記畜産関連情報は、畜産の対象である家畜の生活環境をセンサが検知したセンシング情報である、前記(1)~(7)のいずれかに記載の情報処理装置。
(9) 前記畜産関連情報は、畜産農家が入力した情報である、前記(1)~(7)のいずれかに記載の情報処理装置。
(10) 前記因果解析部による解析結果を指定するための操作情報を取得する操作情報取得部を備える、前記(1)~(9)のいずれかに記載の情報処理装置。
(11)前記因果解析部による解析結果を提示するための提示情報を出力する提示情報出力部を備える、前記(1)~(10)のいずれかに記載の情報処理装置。
(12) 前記畜産関連情報から特徴量を抽出して前記蓄積部に蓄積させる特徴抽出部を備える、前記(1)~(11)のいずれかに記載の情報処理装置。
(13) 前記注目変数と任意の前記原因変数との関連度に基づいて、更なる前記畜産関連情報の取得を促す、前記(1)~(12)のいずれかに記載の情報処理装置。
(14) 畜産に関する複数の畜産関連情報を取得することと、
 前記畜産関連情報を蓄積することと、
 蓄積した前記畜産関連情報に基づいて、注目変数と当該注目変数の要因となる原因変数との関係を解析することと、
 を備える、情報処理方法。
(15) 畜産に関する複数の畜産関連情報を取得する手段、
 前記畜産関連情報を蓄積する手段、
 蓄積した前記畜産関連情報に基づいて、注目変数と当該注目変数の要因となる原因変数との関係を解析する手段、
 としてコンピュータを機能させるためのプログラム。
The following configurations also belong to the technical scope of the present disclosure.
(1) An acquisition unit that acquires a plurality of livestock related information related to livestock,
An accumulating unit for accumulating the livestock related information;
Based on the accumulated livestock related information, a causal analysis unit that analyzes the relationship between the attention variable and the cause variable that causes the attention variable;
An information processing apparatus comprising:
(2) The information processing apparatus according to (1), wherein the causal analysis unit includes a directed graph estimation unit that estimates a directed graph indicating a relationship between the attention variable and the cause variable.
(3) The information processing apparatus according to (1) or (2), wherein the causal analysis unit includes an influence degree estimation unit that estimates an influence degree of the cause variable with respect to the attention variable.
(4) The information processing apparatus according to (3), wherein the influence degree estimation unit estimates a change in the attention variable or another cause variable when an arbitrary cause variable is changed.
(5) The information processing apparatus according to any one of (1) to (4), wherein the causal analysis unit includes a prediction unit that predicts the attention variable from the cause variable.
(6) The causal analysis unit includes a Pareto optimal solution calculation unit that calculates a Pareto optimal solution for a plurality of patterns in which the variable of interest changes when the cause variable is changed. ).
(7) The information processing apparatus according to any one of (1) to (6), wherein the livestock related information is sensing information detected by a sensor attached to a livestock subject to livestock.
(8) The information processing apparatus according to any one of (1) to (7), wherein the livestock related information is sensing information in which a sensor detects a living environment of livestock that is a subject of livestock.
(9) The information processing apparatus according to any one of (1) to (7), wherein the livestock related information is information input by a livestock farmer.
(10) The information processing apparatus according to any one of (1) to (9), further including an operation information acquisition unit that acquires operation information for designating an analysis result by the causal analysis unit.
(11) The information processing apparatus according to any one of (1) to (10), further including a presentation information output unit that outputs presentation information for presenting an analysis result by the causal analysis unit.
(12) The information processing apparatus according to any one of (1) to (11), further including a feature extraction unit that extracts a feature amount from the livestock-related information and stores the feature amount in the storage unit.
(13) The information processing apparatus according to any one of (1) to (12), further prompting acquisition of the livestock related information based on a degree of association between the attention variable and an arbitrary cause variable.
(14) obtaining a plurality of livestock related information relating to livestock;
Storing the livestock related information;
Analyzing the relationship between the variable of interest and the causal variable that causes the variable of interest based on the accumulated livestock related information;
An information processing method comprising:
(15) Means for obtaining a plurality of livestock related information relating to livestock,
Means for accumulating the livestock related information,
Means for analyzing the relationship between the attention variable and the causal variable that causes the attention variable based on the accumulated stock raising-related information;
As a program to make the computer function as.
 1000  情報処理装置
 100   センシング情報取得部
 200   特徴抽出部
 300   データベース
 400   因果解析部
 402   予測部
 404   有用グラフ推定部
 406   予測性能解析部
 408   影響度推定部
 410   パレート最適解演算部
 500   入力情報取得部
 600   操作情報取得部
 700   提示情報出力部
 
DESCRIPTION OF SYMBOLS 1000 Information processing apparatus 100 Sensing information acquisition part 200 Feature extraction part 300 Database 400 Causal analysis part 402 Prediction part 404 Useful graph estimation part 406 Predictive performance analysis part 408 Influence degree estimation part 410 Pareto optimal solution calculation part 500 Input information acquisition part 600 Operation Information acquisition unit 700 Presentation information output unit

Claims (15)

  1.  畜産に関する複数の畜産関連情報を取得する取得部と、
     前記畜産関連情報を蓄積する蓄積部と、
     蓄積した前記畜産関連情報に基づいて、注目変数と、当該注目変数の要因となる原因変数との関係を解析する因果解析部と、
     を備える、情報処理装置。
    An acquisition unit for acquiring a plurality of livestock related information related to livestock;
    An accumulating unit for accumulating the livestock related information;
    Based on the accumulated livestock related information, a causal analysis unit that analyzes the relationship between the attention variable and the cause variable that causes the attention variable;
    An information processing apparatus comprising:
  2.  前記因果解析部は、前記注目変数と前記原因変数との関係を示す有向グラフを推定する有向グラフ推定部を有する、請求項1に記載の情報処理装置。 The information processing apparatus according to claim 1, wherein the causal analysis unit includes a directed graph estimation unit that estimates a directed graph indicating a relationship between the attention variable and the cause variable.
  3.  前記因果解析部は、前記注目変数に対する前記原因変数の影響度を推定する影響度推定部を有する、請求項1に記載の情報処理装置。 The information processing apparatus according to claim 1, wherein the causal analysis unit includes an influence degree estimation unit that estimates an influence degree of the cause variable with respect to the attention variable.
  4.  前記影響度推定部は、任意の前記原因変数を変えた場合に前記注目変数又は他の前記原因変数の変化を推定する、請求項3に記載の情報処理装置。 The information processing apparatus according to claim 3, wherein the influence degree estimation unit estimates a change in the attention variable or another cause variable when an arbitrary cause variable is changed.
  5.  前記因果解析部は、前記原因変数から前記注目変数を予測する予測部を有する、請求項1に記載の情報処理装置。 The information processing apparatus according to claim 1, wherein the causal analysis unit includes a prediction unit that predicts the attention variable from the cause variable.
  6.  前記因果解析部は、前記原因変数を変化させた場合に前記注目変数が変化する複数のパターンについて、パレート最適解を演算するパレート最適解演算部を有する、請求項1に記載の情報処理装置。 The information processing apparatus according to claim 1, wherein the causal analysis unit includes a Pareto optimal solution calculation unit that calculates a Pareto optimal solution for a plurality of patterns in which the variable of interest changes when the cause variable is changed.
  7.  前記畜産関連情報は、畜産の対象である家畜に装着されたセンサが検知したセンシング情報である、請求項1に記載の情報処理装置。 The information processing apparatus according to claim 1, wherein the livestock related information is sensing information detected by a sensor attached to livestock that is a target of livestock.
  8.  前記畜産関連情報は、畜産の対象である家畜の生活環境をセンサが検知したセンシング情報である、請求項1に記載の情報処理装置。 The information processing apparatus according to claim 1, wherein the livestock related information is sensing information in which a sensor detects a living environment of livestock that is a target of livestock.
  9.  前記畜産関連情報は、畜産農家が入力した情報である、請求項1に記載の情報処理装置。 The information processing apparatus according to claim 1, wherein the livestock related information is information input by a livestock farmer.
  10.  前記因果解析部による解析結果を指定するための操作情報を取得する操作情報取得部を備える、請求項1に記載の情報処理装置。 The information processing apparatus according to claim 1, further comprising an operation information acquisition unit that acquires operation information for designating an analysis result by the causal analysis unit.
  11.  前記因果解析部による解析結果を提示するための提示情報を出力する提示情報出力部を備える、請求項1に記載の情報処理装置。 The information processing apparatus according to claim 1, further comprising: a presentation information output unit that outputs presentation information for presenting an analysis result by the causal analysis unit.
  12.  前記畜産関連情報から特徴量を抽出して前記蓄積部に蓄積させる特徴抽出部を備える、請求項1に記載の情報処理装置。 The information processing apparatus according to claim 1, further comprising a feature extraction unit that extracts a feature amount from the livestock-related information and accumulates the feature amount in the accumulation unit.
  13.  前記注目変数と任意の前記原因変数との関連度に基づいて、更なる前記畜産関連情報の取得を促す、請求項1に記載の情報処理装置。 The information processing apparatus according to claim 1, further prompting acquisition of the livestock related information based on a degree of association between the attention variable and an arbitrary cause variable.
  14.  畜産に関する複数の畜産関連情報を取得することと、
     前記畜産関連情報を蓄積することと、
     蓄積した前記畜産関連情報に基づいて、注目変数と当該注目変数の要因となる原因変数との関係を解析することと、
     を備える、情報処理方法。
    Obtaining multiple livestock related information on livestock;
    Storing the livestock related information;
    Analyzing the relationship between the variable of interest and the causal variable that causes the variable of interest based on the accumulated livestock related information;
    An information processing method comprising:
  15.  畜産に関する複数の畜産関連情報を取得する手段、
     前記畜産関連情報を蓄積する手段、
     蓄積した前記畜産関連情報に基づいて、注目変数と当該注目変数の要因となる原因変数との関係を解析する手段、
     としてコンピュータを機能させるためのプログラム。
     
    Means for obtaining a plurality of livestock related information relating to livestock;
    Means for accumulating the livestock related information,
    Means for analyzing the relationship between the attention variable and the causal variable that causes the attention variable based on the accumulated stock raising-related information;
    As a program to make the computer function as.
PCT/JP2017/004041 2016-02-23 2017-02-03 Information processing device, information processing method, and program WO2017145710A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016032162 2016-02-23
JP2016-032162 2016-02-23

Publications (1)

Publication Number Publication Date
WO2017145710A1 true WO2017145710A1 (en) 2017-08-31

Family

ID=59685259

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/004041 WO2017145710A1 (en) 2016-02-23 2017-02-03 Information processing device, information processing method, and program

Country Status (1)

Country Link
WO (1) WO2017145710A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019194849A (en) * 2018-04-30 2019-11-07 富士通株式会社 Causal relationship for machine learning system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH078128A (en) * 1993-06-25 1995-01-13 Natl Fedelation Of Agricult Coop Assoc Breeding control system for livestock and poultry
JPH11242366A (en) * 1997-10-14 1999-09-07 Xerox Corp Method for setting machine
JP2006195916A (en) * 2005-01-17 2006-07-27 Hitachi Ltd Unit requirement production method, unit requirement production device and process evaluation method
WO2014097379A1 (en) * 2012-12-17 2014-06-26 三菱電機株式会社 Program-analysis support device and control device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH078128A (en) * 1993-06-25 1995-01-13 Natl Fedelation Of Agricult Coop Assoc Breeding control system for livestock and poultry
JPH11242366A (en) * 1997-10-14 1999-09-07 Xerox Corp Method for setting machine
JP2006195916A (en) * 2005-01-17 2006-07-27 Hitachi Ltd Unit requirement production method, unit requirement production device and process evaluation method
WO2014097379A1 (en) * 2012-12-17 2014-06-26 三菱電機株式会社 Program-analysis support device and control device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019194849A (en) * 2018-04-30 2019-11-07 富士通株式会社 Causal relationship for machine learning system
JP7275791B2 (en) 2018-04-30 2023-05-18 富士通株式会社 Causality for Machine Learning Systems

Similar Documents

Publication Publication Date Title
Berghof et al. Opportunities to improve resilience in animal breeding programs
KR102035672B1 (en) Apparatus for monitoring location and behavior of cattle and method thereof
EP3939418B1 (en) Automated livestock management system
Van Hertem et al. Automatic lameness detection based on consecutive 3D-video recordings
Maselyne et al. Validation of a High Frequency Radio Frequency Identification (HF RFID) system for registering feeding patterns of growing-finishing pigs
JP5156030B2 (en) Activity monitoring and display
WO2017159109A1 (en) Information processing device, information processing method, and program
Maselyne et al. Online warning systems for individual fattening pigs based on their feeding pattern
Cornou et al. Use of information from monitoring and decision support systems in pig production: Collection, applications and expected benefits
JP6873526B1 (en) A server that provides a service to acquire animal behavior information
Cullen et al. Optimizing multivariate behavioural syndrome models in locusts using automated video tracking
US10089435B1 (en) Device and method of correlating rodent vocalizations with rodent behavior
Visser et al. Phenomics for sustainable production in the South African dairy and beef cattle industry
Mertens et al. An intelligent control chart for monitoring of autocorrelated egg production process data based on a synergistic control strategy
WO2017145710A1 (en) Information processing device, information processing method, and program
Exadaktylos et al. Chapter Automatic Identification and Interpretation of Animal Sounds, Application to Livestock Production Optimisation
Turner et al. Development of a life cycle impact assessment methodology for animal welfare with an application in the poultry industry
Norton et al. Precision livestock farming: the future of livestock welfare monitoring and management
Ojukwu et al. Development of a computer vision system to detect inactivity in group-housed pigs
WO2022138839A1 (en) Animal intention determination program
KR20090090488A (en) Cattle disease managing system using biosensor and method thereof
JP2022101296A (en) Animal intention determination program
JP2022101291A (en) Domestic animal estrus determination program
Dominiak Spatial modeling of drinking patterns as a tool for reducing alarms in pig production
JP2021192197A (en) Meat quality determination program

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17756152

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17756152

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP