WO2017145664A1 - Optimization system, optimization method, and optimization program - Google Patents

Optimization system, optimization method, and optimization program Download PDF

Info

Publication number
WO2017145664A1
WO2017145664A1 PCT/JP2017/003358 JP2017003358W WO2017145664A1 WO 2017145664 A1 WO2017145664 A1 WO 2017145664A1 JP 2017003358 W JP2017003358 W JP 2017003358W WO 2017145664 A1 WO2017145664 A1 WO 2017145664A1
Authority
WO
WIPO (PCT)
Prior art keywords
distribution
optimization
sample
function
sampling
Prior art date
Application number
PCT/JP2017/003358
Other languages
French (fr)
Japanese (ja)
Inventor
優輔 村岡
遼平 藤巻
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Priority to JP2018501089A priority Critical patent/JP6973370B2/en
Publication of WO2017145664A1 publication Critical patent/WO2017145664A1/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/04Forecasting or optimisation specially adapted for administrative or management purposes, e.g. linear programming or "cutting stock problem"
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/06Resources, workflows, human or project management; Enterprise or organisation planning; Enterprise or organisation modelling

Definitions

  • the present invention relates to an optimization system, an optimization method, and an optimization program for optimizing a problem including an uncertain variable.
  • Robust optimization is one of the most effective approaches to alleviate such uncertainties, and the worst case scenario for a set of slidable input values (hereinafter sometimes referred to as uncertain sets). This is a method of obtaining a robust solution by optimizing the objective function when assumed.
  • an uncertain set of elliptical ranges is particularly important, which corresponds to a multivariate Gaussian generation process with uncertain inputs.
  • several methods for solving a robust optimization problem using an uncertain set of elliptic ranges are known (for example, see Non-Patent Document 1).
  • Non-Patent Document 2 describes an approximate solution for robust optimization by sampling.
  • Non-Patent Document 3 describes a method of applying robust optimization to a portfolio.
  • Equation 1 ⁇ is an uncertain (data) set and satisfies Equation 2 below.
  • This uncertain set corresponds to the confidence interval of the Gaussian distribution N ( ⁇ , ⁇ ).
  • this optimization problem can be solved as SOCP (second ⁇ order ⁇ cone programming).
  • Non-Patent Document 2 describes a method for approximating a robust optimization problem by using samples from the bag. According to the method described in Non-Patent Document 2, Assuming that, the target robust optimization problem is formulated as shown in Equation 3 below. J represents the number of constraints.
  • Equation 3 f is a linear function of x, and g (x, ⁇ ) is a convex function of x.
  • f and g are functional forms that can be solved by any convex optimization solver for an arbitrary ⁇ .
  • this problem can be solved by some convex optimization problem solver for any ⁇ .
  • Equation 4 ⁇ (1) ,..., ⁇ (N) are sampled from ⁇ .
  • ⁇ (1) ,..., ⁇ (N) may be uniformly sampled from the ridges. Then, using this sample, this problem is approximated as shown in Equation 4 below.
  • Non-Patent Document 2 there is no framework for solving robust optimization problems using uncertain sets based on non-Gaussian distributions. It is difficult to use the method described in Non-Patent Document 2.
  • the present invention provides an optimization system, an optimization method, and an optimization program that can efficiently solve a robust optimization problem even when a correlated uncertain variable that follows a non-Gaussian distribution is assumed. Objective.
  • the optimization system includes a sampling means for defining a distribution of uncertain variables that follow a non-Gaussian distribution by a copula function and a marginal distribution, and generates a sample from the defined distribution, and an uncertain variable using the generated sample.
  • an optimization means for solving a robust optimization problem including:
  • Another optimization system is characterized by comprising optimization means for solving an optimization problem including uncertain variables that follow a non-Gaussian distribution by robust optimization.
  • the optimization method according to the present invention defines a distribution of uncertain variables according to a non-Gaussian distribution by a copula function and a marginal distribution, generates a sample from the defined distribution, and includes a robust variable including the uncertain variable using the generated sample. It is characterized by solving optimization problems.
  • the optimization program according to the present invention uses a sampling process for defining a distribution of uncertain variables according to a non-Gaussian distribution by a copula function and a marginal distribution, and generating a sample from the defined distribution, and the generated sample. And performing an optimization process for solving a robust optimization problem including uncertain variables.
  • the robust optimization problem can be efficiently solved even when a correlated uncertain variable according to a non-Gaussian distribution is assumed.
  • FIG. FIG. 1 is a block diagram showing a configuration example of a first embodiment of an optimization system according to the present invention.
  • the optimization system of this embodiment solves a robust optimization problem using an uncertain variable that follows a non-Gaussian distribution.
  • the optimization system of this embodiment includes a sampling unit 10 and an optimization unit 20.
  • the sampling means 10 generates a sample used for optimization from an uncertain variable that follows a non-Gaussian distribution.
  • the sampling means 10 receives the copula function 11 and the peripheral distribution 12, and generates a sample from the non-Gaussian distribution using the input copula function 11 and the peripheral distribution 12.
  • the sampling means 10 may read and input the copula function 11 and the peripheral distribution 12 from, for example, a storage unit (not shown) realized by a magnetic disk or the like, or an input device connected via a communication network (You may receive and input from (not shown).
  • the sampling means 10 can be said to be an input means (first input means) for inputting the marginal distribution 12 of uncertain variables and a copula function 11 that follow a non-Gaussian distribution.
  • the expression format of the input copula function 11 and the peripheral distribution 12 is arbitrary.
  • the sampling means 10 may input information indicating the type and parameters of the copula function 11 and the peripheral distribution 12, or may input a function or a mathematical expression itself.
  • the distribution of a multidimensional random variable ⁇ is calculated by the copula function C (u 1 ,..., U D ) and the peripheral distribution F 1 ( ⁇ 1 ),..., F D ( ⁇ D ). It is possible to define. Note that ⁇ satisfies the following. Sklar's theorem is described in, for example, Theorem 2.2 in Reference Document 1 below. The contents of the following Reference 1 are incorporated herein as constituting a part of this specification. ⁇ Reference 1> Elidan, Gal, "Copula bayesian networks.”, Advances in neural information processing systems, p.2, 2010.
  • the sampling unit 10 defines the distribution of the uncertain variable according to the non-Gaussian distribution by the input copula function 11 and the peripheral distribution 12, and generates a sample of the uncertain variable from the defined distribution.
  • the sampling unit 10 may generate a random number based on a distribution defined by the copula function 11 and the marginal distribution 12 to generate an uncertain variable sample.
  • the sampling means 10 can use any copula function 11 having a method for generating samples from a defined distribution.
  • the sampling means 10 is generated by, for example, a multivariate function G (for example, a multivariate Gaussian distribution) and its peripheral distributions G 1 ,..., G D (for example, a Gaussian distribution marginalized from the multivariate function G)
  • G for example, a multivariate Gaussian distribution
  • G D for example, a Gaussian distribution marginalized from the multivariate function G
  • a copula as shown in Equation 5 may be used.
  • sampling means 10 may use any one-dimensional distribution that can calculate the cumulative distribution F 1 (x 1 ),..., F D (x D ) and an inverse function.
  • the sampling means 10 may use, for example, a lognormal distribution, an exponential distribution, an empirical distribution, or a combination thereof.
  • the allowable risk can be controlled by the sample size.
  • a sample is not directly defined, and this sample in which the sampling means 10 considers the risk is directly used.
  • Sampling means 10 includes copula function C (copula function 11), marginal distribution F 1 ,..., F D (marginal distribution 12), confidence level ⁇ (hereinafter also referred to as “d”) and problem definition f,
  • the target ⁇ distribution is input by g j .
  • the problem definition f, g j corresponds to f, g j used in Equation 3 described above.
  • the confidence level ⁇ corresponds to the confidence interval and is determined in advance.
  • Equation 6 d x is the dimension of the original problem, and ⁇ is an appropriate small number determined according to sampling. Taking advantage of this property, the sampling means 10 may determine N that satisfies the above-described Expression 6.
  • the sampling means 10 first samples ⁇ (1) ,..., ⁇ (N) from the target ⁇ distribution. At this time, the sampling means 10 may generate a sample with a particularly high risk based on the problem definitions f and g j . As a method for generating a sample with a high risk, the sampling means 10 may sample a sample with a high probability density ⁇ loss that causes an error by, for example, importance sampling.
  • the importance sampling is described in Reference Document 2 below, for example. The contents of the following Reference 2 are incorporated herein as constituting a part of this specification. ⁇ Reference 2> Glynn, Peter W and Iglehart, Donald L, "Importance sampling for stochastic simulations", Management Science, INFORMS, vol.35, No.
  • FIG. 2 is a flowchart illustrating an example of the sampling operation according to the first embodiment.
  • the sampling means 10 samples t (n) from the distribution function G (step S11).
  • G d is the marginal distribution of the d-th variable of G
  • D is the number of marginal distributions.
  • the optimization means 20 receives the uncertain variable sample 21 generated by the sampling means 10 and the optimization problem 22, and uses the input sample 21 to solve the optimization problem 22 by robust optimization.
  • the optimization problem 22 is an optimization problem (f (x, ⁇ )) including uncertain variables, and is defined in advance by a user or the like.
  • the optimization unit 20 has a function of solving an optimization problem including an uncertain variable that follows a non-Gaussian distribution by robust optimization.
  • the optimization means 20 inputs the optimization problem 22, it can be said that it also functions as an input means (second input means).
  • the method by which the optimization means 20 solves the robust optimization problem is arbitrary.
  • the optimization unit 20 may solve the robust optimization problem using, for example, a modification of the problem described in Non-Patent Document 2. For example, following the operation of the sampling illustrated in FIG. 2, the optimization means 20, as shown in Equation 4 above, samples zeta (1), ..., it may be converted problems with zeta (N). That is, the optimization means 20 may convert the problem into a “non-robust” version of the problem with these samples.
  • the optimization unit 20 can obtain an optimization result by solving the converted problem.
  • the sampling means 10 and the optimization means 20 are realized by a CPU of a computer that operates according to a program (optimization program).
  • the program may be stored in a storage unit (not shown) included in the optimization system, and the CPU may read the program and operate as the sampling unit 10 and the optimization unit 20 according to the program.
  • the function of the optimization system may be provided in SaaS (Software as Service) format.
  • each of the sampling means 10 and the optimization means 20 may be realized by dedicated hardware.
  • a part or all of each component of each device may be realized by a general-purpose or dedicated circuit (circuitry), a processor, or a combination thereof. These may be configured by a single chip or may be configured by a plurality of chips connected via a bus. Part or all of each component of each device may be realized by a combination of the above-described circuit and the like and a program.
  • each device when some or all of the constituent elements of each device are realized by a plurality of information processing devices and circuits, the plurality of information processing devices and circuits may be arranged in a concentrated manner or distributedly arranged. May be.
  • the information processing apparatus, the circuit, and the like may be realized as a form in which each is connected via a communication network, such as a client and server system and a cloud computing system.
  • FIG. 3 is a flowchart illustrating an operation example of the optimization system according to the first embodiment.
  • the sampling means 10 inputs the copula function 11 and the marginal distribution 12 (step S21).
  • the sampling means 10 defines a distribution of uncertain variables based on the inputted copula function and the peripheral distribution (step S22), and generates a sample from the defined distribution (step S23).
  • the optimization unit 20 solves the robust optimization problem including the uncertain variable using the generated sample (step S24), and outputs the optimal solution.
  • the sampling means 10 defines the distribution of uncertain variables according to the non-Gaussian distribution by the copula function 11 and the peripheral distribution 12, and generates a sample from the defined distribution. Then, the optimization unit 20 solves the robust optimization problem including the uncertain variable using the generated sample. That is, the optimization means 20 solves an optimization problem including an uncertain variable that follows a non-Gaussian distribution by robust optimization. Therefore, the robust optimization problem can be efficiently solved even when an uncertain correlated variable that follows a non-Gaussian distribution is assumed.
  • Non-Patent Document 2 a sample that approximates a set is generated after defining a set of certain uncertain variables.
  • the figure of the set of corresponding uncertain variables such as an ellipse assumed in the case of a normal distribution is unknown. is there. For this reason, it has been difficult to apply a general sampling method from a non-Gaussian distribution to a method as described in Non-Patent Document 2 (sampling approximation method for robust optimization).
  • Non-Patent Document 2 instead of using the method described in Non-Patent Document 2, a sample corresponding to the risk of non-Gaussian distribution is obtained by directly sampling from non-Gaussian distribution. Therefore, even when a correlated uncertain variable that follows a non-Gaussian distribution is assumed, the robust optimization problem can be efficiently solved.
  • Embodiment 2 a second embodiment of the optimization system according to the present invention will be described.
  • the optimization system performs sampling from the entire non-Gaussian distribution and performs robust optimization based on the sampling.
  • a method for performing robust optimization by controlling the magnitude of the probability that an uncertain variable is included in a non-Gaussian distribution in order to improve the accuracy of the sample will be described.
  • a copula function 11 defined based on a distribution function that can define a multidimensional confidence interval is assumed.
  • An example of such a copula function is a normal copula (Gaussian copula).
  • the confidence interval can be defined as an ellipse.
  • FIG. 4 is a flowchart illustrating an example of sampling operation according to the second embodiment.
  • the sampling means 10 samples t (n) uniformly from the curved surface of the confidence interval of the multivariate distribution function G (step S31).
  • the curved surface of the confidence interval indicates a boundary in a multidimensional space determined based on the G confidence interval.
  • ⁇ (n) [F 1 ⁇ 1 (u 1 (n) ),..., F D ⁇ 1 (u D (n) )] is calculated (step S13).
  • FIG. 5 is a flowchart illustrating another example of the sampling operation according to the second embodiment.
  • the sampling means 10 calculates a confidence level corresponding to G and ⁇ as an ellipse set shown in Expression 7 below (step S41).
  • is a quantity representing a risk that can permit a constraint violation, and specifically, is set so that the square of ⁇ becomes a point of ⁇ percent of the chi-square distribution.
  • the sampling means 10 samples t (n) uniformly from the curved surface determined based on the ellipse set (step S42).
  • the processing until ⁇ (n) is calculated is the same as the processing from step S12 to step S13 in FIG.
  • the sampling unit 10 generates a sample from the curved surface of the confidence interval of the defined distribution function.
  • the distribution function is a function that can define a multidimensional confidence interval. Therefore, in addition to the effect of the first embodiment, the probability of the range to be considered by sampling can be controlled, so that the accuracy of the optimization result can be further improved.
  • the sampling means 10 may define a confidence interval of a normal copula and generate a sample from the curved surface of the confidence interval of the defined distribution function.
  • the sampling means 10 may generate samples uniformly from the curved surface of the confidence interval.
  • the portfolio optimization problem is an issue where correlation is very important.
  • FIG. 6 is an explanatory diagram illustrating an example of a distribution of past return ratios of two products.
  • the x-axis represents the return ratio of the product 1
  • the y-axis represents the return ratio of the product 2.
  • This distribution is data obtained by observing past data.
  • a range A shown in FIG. 6 is a range including a variable with a probability of 50%.
  • variable 1 log normal distribution of the return ratio of product 1
  • variable 2 log normal distribution of the return ratio of product 2
  • FIG. 7 is an explanatory diagram showing an example in which 100 samples are generated from FIG. This sample corresponds to the sample 21 of the first embodiment.
  • the sampling unit 10 may generate a sample based on a Gaussian confidence interval of a Gaussian copula.
  • FIG. 8 is an explanatory diagram illustrating another example in which 100 samples are generated from the samples illustrated in FIG. 6 based on the 50% confidence interval. Compared with the generation of the sample illustrated in FIG. 7, it can be seen that the sample illustrated in FIG. 8 is uniformly generated along the curved surface of the confidence interval.
  • Optimizer 20 inputs the above-described sample and the problem shown in Equation 7 and solves this optimization problem.
  • the optimization unit 20 creates an optimization problem in which an expression obtained by substituting the value of the sample generated for the return ratio is added as a constraint.
  • FIG. 9 is a block diagram showing an outline of the present invention.
  • the optimization system according to the present invention defines a distribution of uncertain variables according to a non-Gaussian distribution by a copula function and a marginal distribution, and a sampling means 81 (for example, sampling means 10) that generates a sample from the defined distribution.
  • Optimization means 82 for example, optimization means 20 for solving a robust optimization problem including uncertain variables using the obtained samples.
  • Such a configuration can efficiently solve the robust optimization problem even when an uncertain correlated variable that follows a non-Gaussian distribution is assumed.
  • the distribution function may be a function that can define a multidimensional confidence interval.
  • the sampling means 81 may generate a sample from the curved surface of the confidence interval of the defined distribution function.
  • the sampling unit 81 may define a confidence interval of a normal copula and generate a sample from the curved surface of the confidence interval of the defined distribution function.
  • the sampling unit 81 may generate samples uniformly from the curved surface of the confidence interval.
  • FIG. 10 is a block diagram showing another outline of the present invention.
  • Another optimization system according to the present invention includes optimization means 91 (for example, optimization means 20) that solves an optimization problem including uncertain variables that follow a non-Gaussian distribution by robust optimization. Even with such a configuration, it is possible to efficiently solve the robust optimization problem even when an uncertain correlated variable according to a non-Gaussian distribution is assumed.
  • the optimization system inputs first input means (for example, sampling means 10) for inputting a marginal distribution of uncertain variables and a copula function according to a non-Gaussian distribution, and an optimization problem including the uncertain variables.
  • the second input means for example, the optimization means 20 may be provided.
  • the optimization means 91 solves the optimization problem by the robust optimization using the samples generated from the copula function and the marginal distribution. Also good.
  • the present invention is suitably applied to, for example, an optimization system that solves an optimization problem using these indices.

Landscapes

  • Engineering & Computer Science (AREA)
  • Business, Economics & Management (AREA)
  • Strategic Management (AREA)
  • Economics (AREA)
  • Human Resources & Organizations (AREA)
  • Entrepreneurship & Innovation (AREA)
  • Marketing (AREA)
  • Game Theory and Decision Science (AREA)
  • Development Economics (AREA)
  • Operations Research (AREA)
  • Quality & Reliability (AREA)
  • Tourism & Hospitality (AREA)
  • Physics & Mathematics (AREA)
  • General Business, Economics & Management (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Educational Administration (AREA)
  • Complex Calculations (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

A sampling means 81 defines a distribution of uncertainty variables according to the non-Gaussian distribution by a copula function and a peripheral distribution and generates samples from the defined distribution. An optimization means 82 uses the generated sample to solve a robust optimization problem including the uncertainty variables.

Description

最適化システム、最適化方法および最適化プログラムOptimization system, optimization method and optimization program
 本発明は、不確実変数を含む問題を最適化する最適化システム、最適化方法および最適化プログラムに関する。 The present invention relates to an optimization system, an optimization method, and an optimization program for optimizing a problem including an uncertain variable.
 近年の実用的なオペレーションズ・リサーチでは、機械学習により生成される予測値やノイズを含むセンサからの観測結果など、確率過程から生成される多くの不確実な入力を用いて定義される最適化関数または制約条件を含む最適化問題を解く場面が存在する。このような場合、入力値の変化がたとえ小さかったとしても、最適結果が大きく変化し得るという問題が知られている。 In recent practical operations research, optimization functions defined using many uncertain inputs generated from stochastic processes, such as prediction values generated by machine learning and observation results from sensors including noise Or there is a scene where an optimization problem including constraints is solved. In such a case, there is a known problem that even if the change in the input value is small, the optimum result can change greatly.
 ロバスト最適化は、このような不確実さを軽減する最も有効なアプローチの一つであり、摺動し得る入力値の集合(以下、不確実集合と記すこともある。)で最悪なシナリオを想定した場合の目的関数を最適化することによりロバスト解を得る方法である。 Robust optimization is one of the most effective approaches to alleviate such uncertainties, and the worst case scenario for a set of slidable input values (hereinafter sometimes referred to as uncertain sets). This is a method of obtaining a robust solution by optimizing the objective function when assumed.
 実際、楕円範囲の不確実集合が特に重要であり、これは不確実な入力を有する多変量ガウス生成過程に対応する。また、楕円範囲の不確実集合を用いたロバスト最適化問題の解法もいくつか知られている(例えば、非特許文献1参照)。 In fact, an uncertain set of elliptical ranges is particularly important, which corresponds to a multivariate Gaussian generation process with uncertain inputs. Also, several methods for solving a robust optimization problem using an uncertain set of elliptic ranges are known (for example, see Non-Patent Document 1).
 なお、非特許文献2には、サンプリングによるロバスト最適化の近似解法が記載されている。また、非特許文献3には、ロバスト最適化をポートフォリオに適用する方法が記載されている。 Note that Non-Patent Document 2 describes an approximate solution for robust optimization by sampling. Non-Patent Document 3 describes a method of applying robust optimization to a portfolio.
 上述するポートフォリオ最適化は、安定した結果を得るためにリスクが非常に重要となる典型的な問題である。例えば、非特許文献3の記載によれば、xを資産dの投資の重みとし、ζを資産dのリターン比とすると、ロバスト最適化問題は、以下の式1のように定式化される。 The portfolio optimization described above is a typical problem where risk is very important for obtaining stable results. For example, according to the description of Non-Patent Document 3, if x d is the investment weight of asset d and ζ d is the return ratio of asset d, the robust optimization problem is formulated as The
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 式1において、Ζは不確実(データ)集合であり、以下の式2を満たす。 In Equation 1, Ζ is an uncertain (data) set and satisfies Equation 2 below.
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 この不確実集合は、ガウス分布N(μ,Σ)の信頼区間に対応する。ここで、非特許文献1に記載された方法を用いることで、この最適化問題をSOCP(second order cone programming )として解くことができる。 This uncertain set corresponds to the confidence interval of the Gaussian distribution N (μ, Σ). Here, by using the method described in Non-Patent Document 1, this optimization problem can be solved as SOCP (second 方法 order 記載 cone programming).
 しかし、リターン比は対数正規分布から分配されると考えられているため、このガウシアン不確実集合を用いた場合、適切なリスクを特定することが困難であった。そのため、周辺分布が対数正規分布であるような分布の信頼区間として不確実集合Ζを解くことがより好ましい。 However, since the return ratio is thought to be distributed from a lognormal distribution, it was difficult to identify an appropriate risk when using this Gaussian uncertainty set. For this reason, it is more preferable to solve the uncertain set と し て as a confidence interval of a distribution whose peripheral distribution is a lognormal distribution.
 また、ζの分布モデルが未知であり、ζがガウス分布でないように見えるデータの場合、非ガウス分布である経験分布を使用することも1つの可能な方法である。 Also, in the case of data where the distribution model of ζ is unknown and ζ appears not to be a Gaussian distribution, it is also possible to use an empirical distribution that is a non-Gaussian distribution.
 一般的なロバスト最適化問題を解く方法として、非特許文献2には、Ζからのサンプルを使用してロバスト最適化問題を近似する方法が記載されている。非特許文献2に記載された方法によれば、
Figure JPOXMLDOC01-appb-M000003
 と想定した場合、対象とするロバスト最適化問題は、以下の式3のように定式化される。なお、jは制約の数を示す。
As a method for solving a general robust optimization problem, Non-Patent Document 2 describes a method for approximating a robust optimization problem by using samples from the bag. According to the method described in Non-Patent Document 2,
Figure JPOXMLDOC01-appb-M000003
Assuming that, the target robust optimization problem is formulated as shown in Equation 3 below. J represents the number of constraints.
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000004
 式3において、fはxの線形関数であり、g(x,ζ)は、xの凸関数である。fおよびgは、任意のζについて何らかの凸最適化ソルバにより解くことのできる関数形であると仮定する。この問題の“非ロバスト”版(具体的には、上述する問題からmaxζを除いた問題)を想定すると、任意のζについて何らかの凸最適化問題ソルバによってこの問題を解くことが可能である。 In Equation 3, f is a linear function of x, and g (x, ζ) is a convex function of x. Assume that f and g are functional forms that can be solved by any convex optimization solver for an arbitrary ζ. Assuming a “non-robust” version of this problem (specifically, a problem that excludes max ζ from the problems described above), this problem can be solved by some convex optimization problem solver for any ζ.
 この方法では、まず、Ζからζ(1),…,ζ(N)がサンプリングされる。例えば、ζ(1),…,ζ(N)は、Ζから一様にサンプリングされてもよい。そして、このサンプルを使用して、この問題を以下に示す式4のように近似する。 In this method, first, ζ (1) ,..., Ζ (N) are sampled from Ζ. For example, ζ (1) ,..., Ζ (N) may be uniformly sampled from the ridges. Then, using this sample, this problem is approximated as shown in Equation 4 below.
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000005
 全ての制約g(x,ζ(N))は、“非ロバスト”版として、同様の形式(例えば、線形、二次錐、など)を有するため、この問題は、“非ロバスト”版を解くのと同様のソルバを用いて解くことが可能である。 Since all constraints g (x, ζ (N) ) have a similar form (eg, linear, quadratic cone, etc.) as a “non-robust” version, this problem solves the “non-robust” version. It is possible to solve using the same solver as.
 しかし、非ガウス分布に基づく不確実集合を用いてロバスト最適化問題を解く枠組みは存在せず、特に、非ガウス分布でΖの定義が存在しない場合、非ガウス分布を用いたロバスト最適化問題に非特許文献2に記載された方法を使用することは困難である。 However, there is no framework for solving robust optimization problems using uncertain sets based on non-Gaussian distributions. It is difficult to use the method described in Non-Patent Document 2.
 そこで、本発明は、非ガウス分布に従う相関のある不確実変数を仮定した場合にも効率的にロバスト最適化問題を解くことができる最適化システム、最適化方法および最適化プログラムを提供することを目的とする。 Therefore, the present invention provides an optimization system, an optimization method, and an optimization program that can efficiently solve a robust optimization problem even when a correlated uncertain variable that follows a non-Gaussian distribution is assumed. Objective.
 本発明による最適化システムは、非ガウス分布に従う不確実変数の分布をコピュラ関数および周辺分布により定義し、定義された分布からサンプルを生成するサンプリング手段と、生成されたサンプルを用いて不確実変数を含むロバスト最適化問題を解く最適化手段とを備えたことを特徴とする。 The optimization system according to the present invention includes a sampling means for defining a distribution of uncertain variables that follow a non-Gaussian distribution by a copula function and a marginal distribution, and generates a sample from the defined distribution, and an uncertain variable using the generated sample. And an optimization means for solving a robust optimization problem including:
 本発明による他の最適化システムは、非ガウス分布に従う不確実変数を含む最適化問題をロバスト最適化により解く最適化手段を備えたことを特徴とする。 Another optimization system according to the present invention is characterized by comprising optimization means for solving an optimization problem including uncertain variables that follow a non-Gaussian distribution by robust optimization.
 本発明による最適化方法は、非ガウス分布に従う不確実変数の分布をコピュラ関数および周辺分布により定義し、定義された分布からサンプルを生成し、生成されたサンプルを用いて不確実変数を含むロバスト最適化問題を解くことを特徴とする。 The optimization method according to the present invention defines a distribution of uncertain variables according to a non-Gaussian distribution by a copula function and a marginal distribution, generates a sample from the defined distribution, and includes a robust variable including the uncertain variable using the generated sample. It is characterized by solving optimization problems.
 本発明による最適化プログラムは、コンピュータに、非ガウス分布に従う不確実変数の分布をコピュラ関数および周辺分布により定義し、定義された分布からサンプルを生成するサンプリング処理、および、生成されたサンプルを用いて不確実変数を含むロバスト最適化問題を解く最適化処理を実行させることを特徴とする。 The optimization program according to the present invention uses a sampling process for defining a distribution of uncertain variables according to a non-Gaussian distribution by a copula function and a marginal distribution, and generating a sample from the defined distribution, and the generated sample. And performing an optimization process for solving a robust optimization problem including uncertain variables.
 本発明によれば、非ガウス分布に従う相関のある不確実変数を仮定した場合にも効率的にロバスト最適化問題を解くことができる。 According to the present invention, the robust optimization problem can be efficiently solved even when a correlated uncertain variable according to a non-Gaussian distribution is assumed.
本発明による最適化システムの第1の実施形態の構成例を示すブロック図である。It is a block diagram which shows the structural example of 1st Embodiment of the optimization system by this invention. 第1の実施形態のサンプリングの動作例を示すフローチャートである。It is a flowchart which shows the operation example of sampling of 1st Embodiment. 第1の実施形態の最適化システムの動作例を示すフローチャートである。It is a flowchart which shows the operation example of the optimization system of 1st Embodiment. 第2の実施形態のサンプリングの動作例を示すフローチャートである。It is a flowchart which shows the operation example of the sampling of 2nd Embodiment. 第2の実施形態のサンプリングの他の動作例を示すフローチャートである。It is a flowchart which shows the other operation example of the sampling of 2nd Embodiment. 2商品の過去のリターン比の分布の例を示す説明図である。It is explanatory drawing which shows the example of distribution of the past return ratio of 2 goods. サンプルを生成した例を示す説明図である。It is explanatory drawing which shows the example which produced | generated the sample. サンプルを生成した他の例を示す説明図である。It is explanatory drawing which shows the other example which produced | generated the sample. 本発明の概要を示すブロック図である。It is a block diagram which shows the outline | summary of this invention. 本発明の他の概要を示すブロック図である。It is a block diagram which shows the other outline | summary of this invention.
 以下、本発明の実施形態を図面を参照して説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
実施形態1.
 図1は、本発明による最適化システムの第1の実施形態の構成例を示すブロック図である。本実施形態の最適化システムは、非ガウス分布に従う不確実変数を用いてロバスト最適化問題を解くものである。本実施形態の最適化システムは、サンプリング手段10と、最適化手段20とを備えている。
Embodiment 1. FIG.
FIG. 1 is a block diagram showing a configuration example of a first embodiment of an optimization system according to the present invention. The optimization system of this embodiment solves a robust optimization problem using an uncertain variable that follows a non-Gaussian distribution. The optimization system of this embodiment includes a sampling unit 10 and an optimization unit 20.
 サンプリング手段10は、非ガウス分布に従う不確実変数から最適化に用いられるサンプルを生成する。本実施形態では、サンプリング手段10は、コピュラ関数11および周辺分布12を入力し、入力されたコピュラ関数11および周辺分布12を用いて非ガウス分布からサンプルを生成する。 The sampling means 10 generates a sample used for optimization from an uncertain variable that follows a non-Gaussian distribution. In the present embodiment, the sampling means 10 receives the copula function 11 and the peripheral distribution 12, and generates a sample from the non-Gaussian distribution using the input copula function 11 and the peripheral distribution 12.
 サンプリング手段10は、コピュラ関数11および周辺分布12を、例えば磁気ディスク等により実現される記憶部(図示せず)から読み取って入力してもよいし、通信ネットワークを介して接続された入力装置(図示せず)から受信して入力してもよい。すなわち、サンプリング手段10は、非ガウス分布に従う不確実変数の周辺分布12およびコピュラ関数11を入力する入力手段(第一入力手段)ということができる。 The sampling means 10 may read and input the copula function 11 and the peripheral distribution 12 from, for example, a storage unit (not shown) realized by a magnetic disk or the like, or an input device connected via a communication network ( You may receive and input from (not shown). In other words, the sampling means 10 can be said to be an input means (first input means) for inputting the marginal distribution 12 of uncertain variables and a copula function 11 that follow a non-Gaussian distribution.
 なお、入力されるコピュラ関数11および周辺分布12の表現形式は任意である。サンプリング手段10は、例えば、コピュラ関数11および周辺分布12について、種類およびパラメータを示す情報を入力してもよく、関数や数式そのものを入力してもよい。 Note that the expression format of the input copula function 11 and the peripheral distribution 12 is arbitrary. For example, the sampling means 10 may input information indicating the type and parameters of the copula function 11 and the peripheral distribution 12, or may input a function or a mathematical expression itself.
 ここで、Sklar の定理により、コピュラ関数C(u,…,u)および周辺分布F(ζ),…,F(ζ)により、多次元のランダムな変数ζの分布を定義することが可能である。なお、ζは、以下を満たす。また、Sklar の定理は、例えば、以下の参考文献1のTheorem 2.2 に記載されている。ここに本明細書の一部を構成するものとして以下の参考文献1の内容を援用する。
 <参考文献1>
 Elidan, Gal, "Copula bayesian networks.", Advances in neural information processing systems, p.2, 2010.
Here, according to Sklar's theorem, the distribution of a multidimensional random variable ζ is calculated by the copula function C (u 1 ,..., U D ) and the peripheral distribution F 11 ),..., F DD ). It is possible to define. Note that ζ satisfies the following. Sklar's theorem is described in, for example, Theorem 2.2 in Reference Document 1 below. The contents of the following Reference 1 are incorporated herein as constituting a part of this specification.
<Reference 1>
Elidan, Gal, "Copula bayesian networks.", Advances in neural information processing systems, p.2, 2010.
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000006
 すなわち、ζの分布をコピュラ関数Cおよび周辺分布F,…,Fで定義することが可能である。そこで、サンプリング手段10は、非ガウス分布に従う不確実変数の分布を、入力されたコピュラ関数11および周辺分布12により定義し、定義された分布から不確実変数のサンプルを生成する。サンプリング手段10は、例えば、コピュラ関数11および周辺分布12で定義される分布に基づく乱数を生成して、不確実変数のサンプルを生成してもよい。 That is, Copula function C and marginal distribution F 1 the distribution of the zeta, ..., can be defined by F D. Therefore, the sampling unit 10 defines the distribution of the uncertain variable according to the non-Gaussian distribution by the input copula function 11 and the peripheral distribution 12, and generates a sample of the uncertain variable from the defined distribution. For example, the sampling unit 10 may generate a random number based on a distribution defined by the copula function 11 and the marginal distribution 12 to generate an uncertain variable sample.
 サンプリング手段10は、定義された分布からサンプルを生成する方法を有する任意のコピュラ関数11を使用することが可能である。サンプリング手段10は、例えば、多変量関数G(例えば、多変量ガウス分布)およびその周辺分布G,…,G(例えば、多変量関数Gから周辺化されたガウス分布)により生成される以下の式5に示すようなコピュラを使用してもよい。 The sampling means 10 can use any copula function 11 having a method for generating samples from a defined distribution. The sampling means 10 is generated by, for example, a multivariate function G (for example, a multivariate Gaussian distribution) and its peripheral distributions G 1 ,..., G D (for example, a Gaussian distribution marginalized from the multivariate function G) A copula as shown in Equation 5 may be used.
Figure JPOXMLDOC01-appb-M000007
Figure JPOXMLDOC01-appb-M000007
 また、サンプリング手段10は、累積分布F(x),…,F(x)および逆関数を計算可能な任意の一次元分布を使用してもよい。サンプリング手段10は、例えば、対数正規分布、指数分布もしくは経験分布またはこれらの結合を使用してもよい。 Further, the sampling means 10 may use any one-dimensional distribution that can calculate the cumulative distribution F 1 (x 1 ),..., F D (x D ) and an inverse function. The sampling means 10 may use, for example, a lognormal distribution, an exponential distribution, an empirical distribution, or a combination thereof.
 なお、非特許文献2にも記載されているように、サンプルサイズは解が制約に違反する確率に対応するため、サンプルサイズによって許容リスクを制御することが可能である。本実施形態では、Ζを定義せず、サンプリング手段10がリスクを考慮したこのサンプルが直接使用される。 As described in Non-Patent Document 2, since the sample size corresponds to the probability that the solution violates the constraint, the allowable risk can be controlled by the sample size. In this embodiment, a sample is not directly defined, and this sample in which the sampling means 10 considers the risk is directly used.
 以下、サンプリング手段10がサンプルを生成する具体的な手順を説明する。サンプリング手段10は、コピュラ関数C(コピュラ関数11)、周辺分布F,…,F(周辺分布12)、信頼レベルδ(以下、“d”と記すこともある。)および問題定義f,gにより、対象とするζの分布を入力する。問題定義f,gは、上述する式3で用いられるf,gに対応する。また、信頼レベルδは、信頼区間に対応し、予め定められる。 Hereinafter, a specific procedure in which the sampling unit 10 generates a sample will be described. Sampling means 10 includes copula function C (copula function 11), marginal distribution F 1 ,..., F D (marginal distribution 12), confidence level δ (hereinafter also referred to as “d”) and problem definition f, The target ζ distribution is input by g j . The problem definition f, g j corresponds to f, g j used in Equation 3 described above. The confidence level δ corresponds to the confidence interval and is determined in advance.
 サンプリング手段10は、サンプリング数Nを、例えば、信頼レベルδに基づく上限分析に基づいて設定してもよい。具体的には、確率分布のδ信頼区間でg(x,δ)<=0を満たすように想定するところ、これを「ある確率分布でg(x,δ)>0が、δ以下になるようにする」と言い換える。 The sampling means 10 may set the sampling number N based on, for example, an upper limit analysis based on the confidence level δ. Specifically, when it is assumed that g j (x, δ) <= 0 in the δ confidence interval of the probability distribution, this is expressed as “g j (x, δ)> 0 is less than δ in a certain probability distribution. In other words.
 ここで、ある確率分布でサンプリングをした場合、以下に示す式6を満たす場合、「確率ε以下で、g(x,δ)>0が、δ以下になるようにする」が満たされるということが知られている。
  N>1/ε(log1/δ+d) (式6)
Here, when sampling is performed with a certain probability distribution, when Expression 6 shown below is satisfied, “the probability ε or less and g j (x, δ)> 0 should be δ or less” is satisfied. It is known.
N> 1 / ε (log1 / δ + d x ) (Formula 6)
 式6において、dは元の問題の次元であり、εはサンプリングに応じて定められる適当な小さい数である。この性質を生かし、サンプリング手段10は、上記の式6を満たすNを決定すればよい。 In Equation 6, d x is the dimension of the original problem, and ε is an appropriate small number determined according to sampling. Taking advantage of this property, the sampling means 10 may determine N that satisfies the above-described Expression 6.
 サンプリング手段10は、まず、対象とするζの分布からζ(1),…,ζ(N)をサンプリングする。このとき、サンプリング手段10は、問題定義f,gに基づいて、特にリスクが高いサンプルを生成してもよい。リスクが高いサンプルを生成する方法として、サンプリング手段10は、誤差の発生する確率密度×損失の高いサンプルを、例えばimportance sampling によりサンプルしてもよい。importance sampling は、例えば、以下の参考文献2に記載されている。ここに本明細書の一部を構成するものとして以下の参考文献2の内容を援用する。
 <参考文献2>
 Glynn, Peter W and Iglehart, Donald L, "Importance sampling for stochastic simulations", Management Science, INFORMS, vol.35, No.11, p.1367-1392, 1989
 そして、例えば、上述する式5の分布関数Gに基づくコピュラ関数の場合、サンプリング手段10は、以下に例示するステップS11からステップS13の処理により、ζ(1),…,ζ(N)をサンプリングできる。図2は、第1の実施形態のサンプリングの動作例を示すフローチャートである。
The sampling means 10 first samples ζ (1) ,..., Ζ (N) from the target ζ distribution. At this time, the sampling means 10 may generate a sample with a particularly high risk based on the problem definitions f and g j . As a method for generating a sample with a high risk, the sampling means 10 may sample a sample with a high probability density × loss that causes an error by, for example, importance sampling. The importance sampling is described in Reference Document 2 below, for example. The contents of the following Reference 2 are incorporated herein as constituting a part of this specification.
<Reference 2>
Glynn, Peter W and Iglehart, Donald L, "Importance sampling for stochastic simulations", Management Science, INFORMS, vol.35, No. 11, p.1367-1392, 1989
Then, for example, in the case of a copula function based on the distribution function G of the formula 5 above, sampling means 10, by the processing of step S13 from step S11 illustrated below, zeta (1), ..., sampling the zeta (N) it can. FIG. 2 is a flowchart illustrating an example of the sampling operation according to the first embodiment.
 まず、サンプリング手段10は、分布関数Gからt(n)をサンプリングする(ステップS11)。次に、サンプリング手段10は、1からDまでの各dについて、u (n)=G -1(t(n))を計算する(ステップS12)。ここで、Gは、Gのd番目の変数の周辺分布であり、Dは周辺分布の数である。そして、サンプリング手段10は、ζ(n)=[F -1(u (n)),…,F -1(u (n))]を計算する(ステップS13)。 First, the sampling means 10 samples t (n) from the distribution function G (step S11). Next, the sampling means 10 calculates u d (n) = G d −1 (t (n) ) for each d from 1 to D (step S12). Here, G d is the marginal distribution of the d-th variable of G, and D is the number of marginal distributions. Then, the sampling means 10 calculates ζ (n) = [F 1 −1 (u 1 (n) ),..., F D −1 (u D (n) )] (step S13).
 最適化手段20は、サンプリング手段10により生成された不確実変数のサンプル21と、最適化問題22を入力し、入力されたサンプル21を用いて最適化問題22をロバスト最適化により解く。最適化問題22は、不確実変数を含む最適化問題(f(x,ζ))であり、予めユーザ等により定義される。すなわち、最適化手段20は、非ガウス分布に従う不確実変数を含む最適化問題をロバスト最適化により解く機能を備える。また、最適化手段20は、最適化問題22を入力することから、入力手段(第二入力手段)の機能も兼ねていると言える。 The optimization means 20 receives the uncertain variable sample 21 generated by the sampling means 10 and the optimization problem 22, and uses the input sample 21 to solve the optimization problem 22 by robust optimization. The optimization problem 22 is an optimization problem (f (x, ζ)) including uncertain variables, and is defined in advance by a user or the like. In other words, the optimization unit 20 has a function of solving an optimization problem including an uncertain variable that follows a non-Gaussian distribution by robust optimization. Moreover, since the optimization means 20 inputs the optimization problem 22, it can be said that it also functions as an input means (second input means).
 最適化手段20がロバスト最適化問題を解く方法は任意である。最適化手段20は、例えば、非特許文献2に記載された問題の変形を用いて、ロバスト最適化問題を解いてもよい。例えば、図2に例示するサンプリングの動作に続き、最適化手段20は、上述する式4のように、サンプルζ(1),…,ζ(N)で問題を変換してもよい。すなわち、最適化手段20は、これらのサンプルで問題を “非ロバスト”版の問題に変換してもよい。最適化手段20は、変換された問題を解くことで最適化結果を得ることができる。 The method by which the optimization means 20 solves the robust optimization problem is arbitrary. The optimization unit 20 may solve the robust optimization problem using, for example, a modification of the problem described in Non-Patent Document 2. For example, following the operation of the sampling illustrated in FIG. 2, the optimization means 20, as shown in Equation 4 above, samples zeta (1), ..., it may be converted problems with zeta (N). That is, the optimization means 20 may convert the problem into a “non-robust” version of the problem with these samples. The optimization unit 20 can obtain an optimization result by solving the converted problem.
 サンプリング手段10と、最適化手段20とは、プログラム(最適化プログラム)に従って動作するコンピュータのCPUによって実現される。例えば、プログラムは、最適化システムが備える記憶部(図示せず)に記憶され、CPUは、そのプログラムを読み込み、プログラムに従って、サンプリング手段10および最適化手段20として動作してもよい。また、最適化システムの機能がSaaS(Software as a Service )形式で提供されてもよい。 The sampling means 10 and the optimization means 20 are realized by a CPU of a computer that operates according to a program (optimization program). For example, the program may be stored in a storage unit (not shown) included in the optimization system, and the CPU may read the program and operate as the sampling unit 10 and the optimization unit 20 according to the program. Further, the function of the optimization system may be provided in SaaS (Software as Service) format.
 また、サンプリング手段10と、最適化手段20とは、それぞれが専用のハードウェアで実現されていてもよい。また、各装置の各構成要素の一部又は全部は、汎用または専用の回路(circuitry )、プロセッサ等やこれらの組合せによって実現されもよい。これらは、単一のチップによって構成されてもよいし、バスを介して接続される複数のチップによって構成されてもよい。各装置の各構成要素の一部又は全部は、上述した回路等とプログラムとの組合せによって実現されてもよい。 Further, each of the sampling means 10 and the optimization means 20 may be realized by dedicated hardware. Moreover, a part or all of each component of each device may be realized by a general-purpose or dedicated circuit (circuitry), a processor, or a combination thereof. These may be configured by a single chip or may be configured by a plurality of chips connected via a bus. Part or all of each component of each device may be realized by a combination of the above-described circuit and the like and a program.
 また、各装置の各構成要素の一部又は全部が複数の情報処理装置や回路等により実現される場合には、複数の情報処理装置や回路等は、 集中配置されてもよいし、分散配置されてもよい。例えば、情報処理装置や回路等は、クライアントアンドサーバシステム、クラウドコンピューティングシステム等、各々が通信ネットワークを介して接続される形態として実現されてもよい。 In addition, when some or all of the constituent elements of each device are realized by a plurality of information processing devices and circuits, the plurality of information processing devices and circuits may be arranged in a concentrated manner or distributedly arranged. May be. For example, the information processing apparatus, the circuit, and the like may be realized as a form in which each is connected via a communication network, such as a client and server system and a cloud computing system.
 次に、本実施形態の動作例を説明する。図3は、第1の実施形態の最適化システムの動作例を示すフローチャートである。サンプリング手段10は、コピュラ関数11および周辺分布12を入力する(ステップS21)。サンプリング手段10は、入力されたコピュラ関数および周辺分布により不確実変数の分布を定義し(ステップS22)、定義された分布からサンプルを生成する(ステップS23)。そして、最適化手段20は、生成されたサンプルを用いて不確実変数を含むロバスト最適化問題を解き(ステップS24)、最適解を出力する。 Next, an operation example of this embodiment will be described. FIG. 3 is a flowchart illustrating an operation example of the optimization system according to the first embodiment. The sampling means 10 inputs the copula function 11 and the marginal distribution 12 (step S21). The sampling means 10 defines a distribution of uncertain variables based on the inputted copula function and the peripheral distribution (step S22), and generates a sample from the defined distribution (step S23). Then, the optimization unit 20 solves the robust optimization problem including the uncertain variable using the generated sample (step S24), and outputs the optimal solution.
 以上のように、本実施形態によれば、サンプリング手段10が、非ガウス分布に従う不確実変数の分布をコピュラ関数11および周辺分布12により定義し、定義された分布からサンプルを生成する。そして、最適化手段20が、生成されたサンプルを用いて不確実変数を含むロバスト最適化問題を解く。すなわち、最適化手段20が、非ガウス分布に従う不確実変数を含む最適化問題をロバスト最適化により解く。よって、非ガウス分布に従う相関のある不確実変数を仮定した場合にも効率的にロバスト最適化問題を解くことができる。 As described above, according to this embodiment, the sampling means 10 defines the distribution of uncertain variables according to the non-Gaussian distribution by the copula function 11 and the peripheral distribution 12, and generates a sample from the defined distribution. Then, the optimization unit 20 solves the robust optimization problem including the uncertain variable using the generated sample. That is, the optimization means 20 solves an optimization problem including an uncertain variable that follows a non-Gaussian distribution by robust optimization. Therefore, the robust optimization problem can be efficiently solved even when an uncertain correlated variable that follows a non-Gaussian distribution is assumed.
 例えば、非特許文献2に記載された方法では、ある不確実変数の集合を定義したうえで集合を近似するサンプルを生成する。しかし、本実施形態で説明したような非ガウス分布に従う不確実変数を用いたロバスト最適化問題では、正規分布の場合に想定される楕円のような対応する不確実変数の集合の図形は不明である。そのため、一般的な非ガウス分布からのサンプリング方法を、非特許文献2に記載されているような方法(ロバスト最適化のサンプリング近似解法)に適用することは困難であった。 For example, in the method described in Non-Patent Document 2, a sample that approximates a set is generated after defining a set of certain uncertain variables. However, in the robust optimization problem using uncertain variables that follow a non-Gaussian distribution as described in this embodiment, the figure of the set of corresponding uncertain variables such as an ellipse assumed in the case of a normal distribution is unknown. is there. For this reason, it has been difficult to apply a general sampling method from a non-Gaussian distribution to a method as described in Non-Patent Document 2 (sampling approximation method for robust optimization).
 しかし、本実施形態では、非特許文献2に記載された方法を使用するのではなく、非ガウス分布から直接サンプリングすることで、非ガウス分布のリスクに対応するサンプルを得るようにしている。そのため、非ガウス分布に従う相関のある不確実変数を仮定した場合にも、効率的にロバスト最適化問題を解くことが可能になる。 However, in this embodiment, instead of using the method described in Non-Patent Document 2, a sample corresponding to the risk of non-Gaussian distribution is obtained by directly sampling from non-Gaussian distribution. Therefore, even when a correlated uncertain variable that follows a non-Gaussian distribution is assumed, the robust optimization problem can be efficiently solved.
実施形態2.
 次に、本発明による最適化システムの第2の実施形態を説明する。第1の実施形態では、最適化システムが非ガウス分布全体からのサンプリングを行い、サンプリングに基づくロバスト最適化を実行した。本実施形態では、サンプルの精度を向上させるため、非ガウス分布で不確実変数の含まれる確率の大きさを制御してロバスト最適化を実行する方法を説明する。
Embodiment 2. FIG.
Next, a second embodiment of the optimization system according to the present invention will be described. In the first embodiment, the optimization system performs sampling from the entire non-Gaussian distribution and performs robust optimization based on the sampling. In the present embodiment, a method for performing robust optimization by controlling the magnitude of the probability that an uncertain variable is included in a non-Gaussian distribution in order to improve the accuracy of the sample will be described.
 本実施形態の構成は、第1の実施形態と同様である。ただし、本実施形態では、サンプリングにより考慮する範囲の確率を制御するため、多次元の信頼区間が定義可能な分布関数に基づいて定義されるコピュラ関数11を想定する。このようなコピュラ関数の一例として、正規コピュラ(ガウシアンコピュラ)が挙げられる。例えば、分布関数が多次元正規分布の場合、信頼区間を楕円として定義可能である。 The configuration of this embodiment is the same as that of the first embodiment. However, in this embodiment, in order to control the probability of the range to be considered by sampling, a copula function 11 defined based on a distribution function that can define a multidimensional confidence interval is assumed. An example of such a copula function is a normal copula (Gaussian copula). For example, when the distribution function is a multidimensional normal distribution, the confidence interval can be defined as an ellipse.
 以下、上述する式5の多変量分布関数Gに基づくコピュラが用いられる場合を例に、本実施形態のサンプリング手段10の動作を説明する。図4は、第2の実施形態のサンプリングの動作例を示すフローチャートである。 Hereinafter, the operation of the sampling means 10 of the present embodiment will be described by taking as an example the case where a copula based on the multivariate distribution function G of Equation 5 described above is used. FIG. 4 is a flowchart illustrating an example of sampling operation according to the second embodiment.
 まず、サンプリング手段10は、多変量分布関数Gの信頼区間の曲面から一様にt(n)をサンプリングする(ステップS31)。ここで、信頼区間の曲面とは、Gの信頼区間に基づいて定められる多次元空間上の境界を示す。 First, the sampling means 10 samples t (n) uniformly from the curved surface of the confidence interval of the multivariate distribution function G (step S31). Here, the curved surface of the confidence interval indicates a boundary in a multidimensional space determined based on the G confidence interval.
 以下、図1に示すステップS12からステップS13の処理と同様に、サンプリング手段10は、1からDまでの各dについて、u (n)=G -1(t(n))を計算し(ステップS12)。ζ(n)=[F -1(u (n)),…,F -1(u (n))]を計算する(ステップS13)。 Thereafter, the sampling means 10 calculates u d (n) = G d −1 (t (n) ) for each d from 1 to D, similarly to the processing from step S12 to step S13 shown in FIG. (Step S12). ζ (n) = [F 1 −1 (u 1 (n) ),..., F D −1 (u D (n) )] is calculated (step S13).
 次に、多変量分布関数Gが多変量ガウス分布(G=N(μ,Σ))である場合を例に、本実施形態のサンプリング手段10の動作をさらに説明する。図5は、第2の実施形態のサンプリングの他の動作例を示すフローチャートである。 Next, the operation of the sampling means 10 of this embodiment will be further described by taking as an example the case where the multivariate distribution function G is a multivariate Gaussian distribution (G = N (μ, Σ)). FIG. 5 is a flowchart illustrating another example of the sampling operation according to the second embodiment.
 まず、サンプリング手段10は、以下の式7に示す楕円集合として、Gおよびδに対応する信頼レベルを計算する(ステップS41)。ここで、εは、制約違反を許容可能なリスクを表わす量であり、具体的には、εの二乗が、カイ二乗分布のδパーセントの点になるように設定される。 First, the sampling means 10 calculates a confidence level corresponding to G and δ as an ellipse set shown in Expression 7 below (step S41). Here, ε is a quantity representing a risk that can permit a constraint violation, and specifically, is set so that the square of ε becomes a point of δ percent of the chi-square distribution.
Figure JPOXMLDOC01-appb-M000008
Figure JPOXMLDOC01-appb-M000008
 次に、サンプリング手段10は、楕円集合に基づいて定められる曲面から一様にt(n)をサンプリングする(ステップS42)。以下、ζ(n)を計算するまでの処理は、図2のステップS12からステップS13の処理と同様である。 Next, the sampling means 10 samples t (n) uniformly from the curved surface determined based on the ellipse set (step S42). Hereinafter, the processing until ζ (n) is calculated is the same as the processing from step S12 to step S13 in FIG.
 以上のように、本実施形態によれば、サンプリング手段10が、定義される分布関数の信頼区間の曲面からサンプルを生成する。なお、分布関数は、多次元の信頼区間が定義可能な関数である。よって、第1の実施形態の効果に加え、サンプリングにより考慮する範囲の確率を制御できるため、最適化結果の精度をより向上させることができる。 As described above, according to the present embodiment, the sampling unit 10 generates a sample from the curved surface of the confidence interval of the defined distribution function. The distribution function is a function that can define a multidimensional confidence interval. Therefore, in addition to the effect of the first embodiment, the probability of the range to be considered by sampling can be controlled, so that the accuracy of the optimization result can be further improved.
 具体的には、サンプリング手段10は、正規コピュラの信頼区間を定義し、定義される分布関数の信頼区間の曲面からサンプルを生成してもよい。また、サンプリング手段10は、信頼区間の曲面から一様にサンプルを生成してもよい。 Specifically, the sampling means 10 may define a confidence interval of a normal copula and generate a sample from the curved surface of the confidence interval of the defined distribution function. The sampling means 10 may generate samples uniformly from the curved surface of the confidence interval.
 以下、具体例を用いて、本実施形態の最適化システムの動作を説明する。以下では、本実施形態の最適化システムを用いて、ポートフォリオの最適化問題を解く方法を具体的に説明する。ポートフォリオの最適化問題は、相関が非常に重要な問題である。 Hereinafter, the operation of the optimization system of this embodiment will be described using a specific example. Hereinafter, a method for solving a portfolio optimization problem using the optimization system of the present embodiment will be described in detail. The portfolio optimization problem is an issue where correlation is very important.
 投資で考慮される指標として、リターン比(=将来価格/現在価格)が挙げられる。ここで、2つの商品(商品1、商品2)の投資量とリターン比を考慮すると、ポートフォリオの最適化問題は、以下の式8に示す問題を解くことと言える。この問題は、第1の実施形態の最適化問題22に対応する。 ◇ Return ratio (= future price / current price) is an index considered for investment. Here, considering the investment amount and return ratio of two products (product 1 and product 2), it can be said that the portfolio optimization problem solves the problem shown in the following Expression 8. This problem corresponds to the optimization problem 22 of the first embodiment.
 min_{商品1への投資量、商品2への投資量}
     -(商品1のリターン比)×(商品1への投資量)
     -(商品2のリターン比)×(商品2への投資量) (式8)
 
 ただし、(商品1の現在価格)×(商品1への投資量)
    +(商品2の現在価格)×(商品2への投資量)<=(予算)
min_ {Investment amount for product 1, investment amount for product 2}
-(Return ratio of product 1) x (Investment amount in product 1)
-(Return ratio of product 2) x (Investment amount in product 2) (Formula 8)

However, (current price of product 1) x (amount of investment in product 1)
+ (Current price of product 2) x (investment amount in product 2) <= (budget)
 リターン比は、将来価格により算出される不確実な指標であるため、本問題をロバスト最適化問題として解くことが好ましい。一方、リターン比は、対数正規分布に従うことが知られている。図6は、2商品の過去のリターン比の分布の例を示す説明図である。図6(及び、後述する図7および図8)に例示するグラフのx軸は商品1のリターン比を表わし、y軸は商品2のリターン比を表わす。この分布は、過去のデータを観測して得られたデータである。本具体例では、2商品で過去のリターン比が図6に例示する分布になっているものとする。また、図6に示す範囲Aは、確率50%で変数が含まれる範囲であるとする。 Since the return ratio is an uncertain index calculated from the future price, it is preferable to solve this problem as a robust optimization problem. On the other hand, it is known that the return ratio follows a lognormal distribution. FIG. 6 is an explanatory diagram illustrating an example of a distribution of past return ratios of two products. In the graph illustrated in FIG. 6 (and FIG. 7 and FIG. 8 described later), the x-axis represents the return ratio of the product 1, and the y-axis represents the return ratio of the product 2. This distribution is data obtained by observing past data. In this specific example, it is assumed that the past return ratio of two products has a distribution illustrated in FIG. Further, it is assumed that a range A shown in FIG. 6 is a range including a variable with a probability of 50%.
 例えば、ガウシアンコピュラのパラメータθ=-0.79とする。これは、第1の実施形態のコピュラ関数11に対応する。また、商品1のリターン比(以下、変数1と記す。)の対数正規分布、商品2のリターン比(以下、変数2と記す。)の対数正規分布は、例えば、それぞれ以下のように推定されるとする。これは、第1の実施形態の周辺分布12に対応する。
 変数1の対数正規分布(loc,scale,shape)=(-0.18,0.97,0.84)
 変数2の対数正規分布(loc,scale,shape)=(-0.52,0.56,0.43)
For example, a Gaussian copula parameter θ = −0.79. This corresponds to the copula function 11 of the first embodiment. The log normal distribution of the return ratio of product 1 (hereinafter referred to as variable 1) and the log normal distribution of the return ratio of product 2 (hereinafter referred to as variable 2) are estimated as follows, for example. Let's say. This corresponds to the peripheral distribution 12 of the first embodiment.
Lognormal distribution of variable 1 (loc, scale, shape) = (-0.18,0.97,0.84)
Lognormal distribution of variable 2 (loc, scale, shape) = (-0.52,0.56,0.43)
 サンプリング手段10は、これらの情報を入力し、サンプルを生成する。図7は、図6から100個のサンプルを生成した例を示す説明図である。このサンプルは、第1の実施形態のサンプル21に対応する。 Sampling means 10 inputs such information and generates a sample. FIG. 7 is an explanatory diagram showing an example in which 100 samples are generated from FIG. This sample corresponds to the sample 21 of the first embodiment.
 また、サンプリング手段10は、第2の実施形態で示すように、ガウシアンコピュラのガウシアンの信頼区間に基づいてサンプルを生成してもよい。図8は、50%の信頼区間に基づいて図6に例示するサンプルから100個のサンプルを生成した他の例を示す説明図である。図8に例示するサンプルは、図7に例示するサンプルの生成と比較し、信頼区間の曲面に沿って一様にサンプルが生成されていることが分かる。 Further, as shown in the second embodiment, the sampling unit 10 may generate a sample based on a Gaussian confidence interval of a Gaussian copula. FIG. 8 is an explanatory diagram illustrating another example in which 100 samples are generated from the samples illustrated in FIG. 6 based on the 50% confidence interval. Compared with the generation of the sample illustrated in FIG. 7, it can be seen that the sample illustrated in FIG. 8 is uniformly generated along the curved surface of the confidence interval.
 最適化手段20は、上述するサンプルおよび式7に示す問題を入力し、この最適化問題を解く。最適化手段20は、例えば、非特許文献2に記載された方法に従い、リターン比に生成されたサンプルの値を代入した式を制約として追加した最適化問題を作成する。そして、最適化手段20は、線形計画ソルバを用いて問題を解く。これにより、例えば、商品1の投資量=12、商品2の投資量=88という最適化結果が得られる。 Optimizer 20 inputs the above-described sample and the problem shown in Equation 7 and solves this optimization problem. For example, according to the method described in Non-Patent Document 2, the optimization unit 20 creates an optimization problem in which an expression obtained by substituting the value of the sample generated for the return ratio is added as a constraint. And the optimization means 20 solves a problem using a linear programming solver. Thereby, for example, an optimization result that the investment amount of the product 1 = 12 and the investment amount of the product 2 = 88 is obtained.
 次に、本発明の概要を説明する。図9は、本発明の概要を示すブロック図である。本発明による最適化システムは、非ガウス分布に従う不確実変数の分布をコピュラ関数および周辺分布により定義し、定義された分布からサンプルを生成するサンプリング手段81(例えば、サンプリング手段10)と、生成されたサンプルを用いて不確実変数を含むロバスト最適化問題を解く最適化手段82(例えば、最適化手段20)とを備えている。 Next, the outline of the present invention will be described. FIG. 9 is a block diagram showing an outline of the present invention. The optimization system according to the present invention defines a distribution of uncertain variables according to a non-Gaussian distribution by a copula function and a marginal distribution, and a sampling means 81 (for example, sampling means 10) that generates a sample from the defined distribution. Optimization means 82 (for example, optimization means 20) for solving a robust optimization problem including uncertain variables using the obtained samples.
 そのような構成により、非ガウス分布に従う相関のある不確実変数を仮定した場合にも効率的にロバスト最適化問題を解くことができる。 Such a configuration can efficiently solve the robust optimization problem even when an uncertain correlated variable that follows a non-Gaussian distribution is assumed.
 また、分布関数は多次元の信頼区間が定義可能な関数であってもよい。このとき、サンプリング手段81は、定義される分布関数の信頼区間の曲面からサンプルを生成してもよい。そのような構成により、サンプリングにより考慮する範囲の確率を制御できるため、最適化結果の精度をより向上させることができる。 Also, the distribution function may be a function that can define a multidimensional confidence interval. At this time, the sampling means 81 may generate a sample from the curved surface of the confidence interval of the defined distribution function. With such a configuration, the probability of the range to be considered by sampling can be controlled, so that the accuracy of the optimization result can be further improved.
 具体的には、サンプリング手段81は、正規コピュラの信頼区間を定義し、定義される分布関数の信頼区間の曲面からサンプルを生成してもよい。また、サンプリング手段81は、信頼区間の曲面から一様にサンプルを生成してもよい。 Specifically, the sampling unit 81 may define a confidence interval of a normal copula and generate a sample from the curved surface of the confidence interval of the defined distribution function. The sampling unit 81 may generate samples uniformly from the curved surface of the confidence interval.
 図10は、本発明の他の概要を示すブロック図である。本発明による他の最適化システムは、非ガウス分布に従う不確実変数を含む最適化問題をロバスト最適化により解く最適化手段91(例えば、最適化手段20)を備えている。このような構成によっても、非ガウス分布に従う相関のある不確実変数を仮定した場合にも効率的にロバスト最適化問題を解くことができる。 FIG. 10 is a block diagram showing another outline of the present invention. Another optimization system according to the present invention includes optimization means 91 (for example, optimization means 20) that solves an optimization problem including uncertain variables that follow a non-Gaussian distribution by robust optimization. Even with such a configuration, it is possible to efficiently solve the robust optimization problem even when an uncertain correlated variable according to a non-Gaussian distribution is assumed.
 具体的には、最適化システムは、非ガウス分布に従う不確実変数の周辺分布およびコピュラ関数を入力する第一入力手段(例えば、サンプリング手段10)と、不確実変数を含む最適化問題を入力する第二入力手段(例えば、最適化手段20とを備えていてもよい。そして、最適化手段91は、コピュラ関数および周辺分布から生成されるサンプルを用いて最適化問題をロバスト最適化により解いてもよい。 Specifically, the optimization system inputs first input means (for example, sampling means 10) for inputting a marginal distribution of uncertain variables and a copula function according to a non-Gaussian distribution, and an optimization problem including the uncertain variables. The second input means (for example, the optimization means 20 may be provided. The optimization means 91 solves the optimization problem by the robust optimization using the samples generated from the copula function and the marginal distribution. Also good.
 以上、実施形態及び実施例を参照して本願発明を説明したが、本願発明は上記実施形態および実施例に限定されるものではない。本願発明の構成や詳細には、本願発明のスコープ内で当業者が理解し得る様々な変更をすることができる。 As mentioned above, although this invention was demonstrated with reference to embodiment and an Example, this invention is not limited to the said embodiment and Example. Various changes that can be understood by those skilled in the art can be made to the configuration and details of the present invention within the scope of the present invention.
 この出願は、2016年2月26日に出願された日本特許出願2016-035527を基礎とする優先権を主張し、その開示の全てをここに取り込む。 This application claims priority based on Japanese Patent Application 2016-035527 filed on February 26, 2016, the entire disclosure of which is incorporated herein.
 金融関係で扱われる指標は、非ガウス分布に従うと考えられているため、本発明は、例えば、それらの指標を用いた最適化問題を解く最適化システムに好適に適用される。 Since it is considered that indices handled in the financial relationship follow a non-Gaussian distribution, the present invention is suitably applied to, for example, an optimization system that solves an optimization problem using these indices.
 10 サンプリング手段
 20 最適化手段
10 Sampling means 20 Optimization means

Claims (10)

  1.  非ガウス分布に従う不確実変数の分布をコピュラ関数および周辺分布により定義し、定義された分布からサンプルを生成するサンプリング手段と、
     生成されたサンプルを用いて前記不確実変数を含むロバスト最適化問題を解く最適化手段とを備えた
     ことを特徴とする最適化システム。
    A sampling means for defining a distribution of uncertain variables following a non-Gaussian distribution by a copula function and a marginal distribution, and generating a sample from the defined distribution;
    An optimization system comprising: an optimization unit that solves a robust optimization problem including the uncertain variable using the generated sample.
  2.  分布関数は多次元の信頼区間が定義可能な関数であり、
     サンプリング手段は、定義される分布関数の信頼区間の曲面からサンプルを生成する
     請求項1記載の最適化システム。
    Distribution function is a function that can define a multidimensional confidence interval,
    The optimization system according to claim 1, wherein the sampling unit generates a sample from the curved surface of the confidence interval of the defined distribution function.
  3.  サンプリング手段は、正規コピュラの信頼区間を定義し、定義される分布関数の信頼区間の曲面からサンプルを生成する
     請求項1または請求項2記載の最適化システム。
    The optimization system according to claim 1, wherein the sampling unit defines a confidence interval of a normal copula and generates a sample from a curved surface of a confidence interval of a defined distribution function.
  4.  サンプリング手段は、信頼区間の曲面から一様にサンプルを生成する
     請求項2または請求項3記載の最適化システム。
    The optimization system according to claim 2, wherein the sampling unit uniformly generates a sample from the curved surface of the confidence interval.
  5.  非ガウス分布に従う不確実変数を含む最適化問題をロバスト最適化により解く最適化手段を備えた
     ことを特徴とする最適化システム。
    An optimization system characterized by having an optimization means for solving optimization problems including uncertain variables that follow a non-Gaussian distribution by robust optimization.
  6.  非ガウス分布に従う不確実変数の周辺分布およびコピュラ関数を入力する第一入力手段と、
     前記不確実変数を含む最適化問題を入力する第二入力手段とを備え、
     最適化手段は、前記コピュラ関数および前記周辺分布から生成されるサンプルを用いて最適化問題をロバスト最適化により解く
     請求項5記載の最適化システム。
    A first input means for inputting a marginal distribution of uncertain variables following a non-Gaussian distribution and a copula function;
    Second input means for inputting an optimization problem including the uncertain variable,
    The optimization system according to claim 5, wherein the optimization unit solves the optimization problem by robust optimization using the sample generated from the copula function and the marginal distribution.
  7.  非ガウス分布に従う不確実変数の分布をコピュラ関数および周辺分布により定義し、定義された分布からサンプルを生成し、
     生成されたサンプルを用いて前記不確実変数を含むロバスト最適化問題を解く
     ことを特徴とする最適化方法。
    Define a distribution of uncertain variables that follow a non-Gaussian distribution with a copula function and a marginal distribution, generate a sample from the defined distribution,
    An optimization method characterized by solving a robust optimization problem including the uncertain variable using a generated sample.
  8.  分布関数は多次元の信頼区間が定義可能な関数であり、定義される前記分布関数の信頼区間の曲面からサンプルを生成する
     請求項7記載の最適化方法。
    The optimization method according to claim 7, wherein the distribution function is a function capable of defining a multidimensional confidence interval, and a sample is generated from a curved surface of the confidence interval of the distribution function to be defined.
  9.  コンピュータに、
     非ガウス分布に従う不確実変数の分布をコピュラ関数および周辺分布により定義し、定義された分布からサンプルを生成するサンプリング処理、および、
     生成されたサンプルを用いて前記不確実変数を含むロバスト最適化問題を解く最適化処理
     を実行させるための最適化プログラム。
    On the computer,
    A sampling process that defines a distribution of uncertain variables that follow a non-Gaussian distribution with a copula function and a marginal distribution, and generates a sample from the defined distribution; and
    The optimization program for performing the optimization process which solves the robust optimization problem containing the said uncertainty variable using the produced | generated sample.
  10.  分布関数は多次元の信頼区間が定義可能な関数であり、
     コンピュータに、
     サンプリング処理で、定義される分布関数の信頼区間の曲面からサンプルを生成させる
     請求項9記載の最適化プログラム。
    Distribution function is a function that can define a multidimensional confidence interval,
    On the computer,
    The optimization program according to claim 9, wherein a sample is generated from a curved surface of a confidence interval of a distribution function defined by sampling processing.
PCT/JP2017/003358 2016-02-26 2017-01-31 Optimization system, optimization method, and optimization program WO2017145664A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018501089A JP6973370B2 (en) 2016-02-26 2017-01-31 Optimization system, optimization method and optimization program

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016035527 2016-02-26
JP2016-035527 2016-02-26

Publications (1)

Publication Number Publication Date
WO2017145664A1 true WO2017145664A1 (en) 2017-08-31

Family

ID=59685053

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/003358 WO2017145664A1 (en) 2016-02-26 2017-01-31 Optimization system, optimization method, and optimization program

Country Status (2)

Country Link
JP (1) JP6973370B2 (en)
WO (1) WO2017145664A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107749638A (en) * 2017-10-19 2018-03-02 东南大学 The non-stop layer optimization method of the non-overlapped sampling of virtual power plant distributed random of more micro-capacitance sensor combinations
CN110097263A (en) * 2019-04-18 2019-08-06 新奥数能科技有限公司 The equipment of integrated energy system regulates and controls method and device
CN111652445A (en) * 2020-06-11 2020-09-11 广东科创工程技术有限公司 Sewage equipment optimized operation control method based on Gaussian distribution

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002183111A (en) * 2000-12-13 2002-06-28 Yamatake Corp Method and program for identifying curved surface model
JP2003108753A (en) * 2001-09-28 2003-04-11 Tokai Bank Ltd Risk management system of banking facility and processing method using the same
WO2006035507A1 (en) * 2004-09-29 2006-04-06 National Institute Of Information And Communications Technology Securities trade assisting system
JP2006268558A (en) * 2005-03-24 2006-10-05 Yamatake Corp Data processing method and program
US8170941B1 (en) * 2008-10-16 2012-05-01 Finanalytica, Inc. System and method for generating random vectors for estimating portfolio risk
US20140214722A1 (en) * 2013-01-25 2014-07-31 The Research Foundation Of The State University Of New York Real time evaluation of financial returns based on nearly elliptical models

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002183111A (en) * 2000-12-13 2002-06-28 Yamatake Corp Method and program for identifying curved surface model
JP2003108753A (en) * 2001-09-28 2003-04-11 Tokai Bank Ltd Risk management system of banking facility and processing method using the same
WO2006035507A1 (en) * 2004-09-29 2006-04-06 National Institute Of Information And Communications Technology Securities trade assisting system
JP2006268558A (en) * 2005-03-24 2006-10-05 Yamatake Corp Data processing method and program
US8170941B1 (en) * 2008-10-16 2012-05-01 Finanalytica, Inc. System and method for generating random vectors for estimating portfolio risk
US20140214722A1 (en) * 2013-01-25 2014-07-31 The Research Foundation Of The State University Of New York Real time evaluation of financial returns based on nearly elliptical models

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107749638A (en) * 2017-10-19 2018-03-02 东南大学 The non-stop layer optimization method of the non-overlapped sampling of virtual power plant distributed random of more micro-capacitance sensor combinations
CN107749638B (en) * 2017-10-19 2021-02-02 东南大学 Multi-microgrid combined virtual power plant distributed random non-overlapping sampling centerless optimization method
CN110097263A (en) * 2019-04-18 2019-08-06 新奥数能科技有限公司 The equipment of integrated energy system regulates and controls method and device
CN111652445A (en) * 2020-06-11 2020-09-11 广东科创工程技术有限公司 Sewage equipment optimized operation control method based on Gaussian distribution
CN111652445B (en) * 2020-06-11 2024-03-22 广东科创智水科技有限公司 Sewage equipment optimizing operation control method based on Gaussian distribution

Also Published As

Publication number Publication date
JP6973370B2 (en) 2021-11-24
JPWO2017145664A1 (en) 2018-12-13

Similar Documents

Publication Publication Date Title
US20190378044A1 (en) Processing dynamic data within an adaptive oracle-trained learning system using curated training data for incremental re-training of a predictive model
US20200302337A1 (en) Automatic selection of high quality training data using an adaptive oracle-trained learning framework
US10067746B1 (en) Approximate random number generator by empirical cumulative distribution function
CN113570064A (en) Method and system for performing predictions using a composite machine learning model
US10346782B2 (en) Adaptive augmented decision engine
WO2017145664A1 (en) Optimization system, optimization method, and optimization program
US11687804B2 (en) Latent feature dimensionality bounds for robust machine learning on high dimensional datasets
CN113610240A (en) Method and system for performing predictions using nested machine learning models
US11042880B1 (en) Authenticating users in the presence of small transaction volumes
Zheng et al. QoS probability distribution estimation for web services and service compositions
Bachoc et al. Gaussian processes with multidimensional distribution inputs via optimal transport and Hilbertian embedding
Sun et al. Quadratic approximation of cost functions in lost sales and perishable inventory control problems
US20210365350A1 (en) Determination method and storage medium
WO2020097313A1 (en) Method for supervised graph sparsification
JP2018067227A (en) Data analyzing apparatus, data analyzing method, and data analyzing processing program
JP2020047010A (en) Information estimation device and information estimation method
CN112990472A (en) Method and apparatus for eliminating quantum noise, electronic device, and medium
US20190034821A1 (en) Forecasting Run Rate Revenue with Limited and Volatile Historical Data Using Self-Learning Blended Time Series Techniques
CN114429218A (en) Method and apparatus for eliminating quantum noise, electronic device and medium
CN114580649A (en) Method and device for eliminating quantum Pagli noise, electronic equipment and medium
US11210604B1 (en) Processing dynamic data within an adaptive oracle-trained learning system using dynamic data set distribution optimization
CN114067415A (en) Regression model training method, object evaluation method, device, equipment and medium
Arputhamary et al. Performance Improved Holt-Winter's (PIHW) Prediction Algorithm for Big Data Environment
Bandi et al. Robust transient multi-server queues and feed-forward networks
Kobyz et al. Conditional probability density estimation using artificial neural network

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018501089

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17756106

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17756106

Country of ref document: EP

Kind code of ref document: A1