WO2017145563A1 - Rotor blade, drone, and helicopter - Google Patents

Rotor blade, drone, and helicopter Download PDF

Info

Publication number
WO2017145563A1
WO2017145563A1 PCT/JP2017/001030 JP2017001030W WO2017145563A1 WO 2017145563 A1 WO2017145563 A1 WO 2017145563A1 JP 2017001030 W JP2017001030 W JP 2017001030W WO 2017145563 A1 WO2017145563 A1 WO 2017145563A1
Authority
WO
WIPO (PCT)
Prior art keywords
rotor blade
chord length
radius
helicopter
vortex
Prior art date
Application number
PCT/JP2017/001030
Other languages
French (fr)
Japanese (ja)
Inventor
原田 正志
Original Assignee
国立研究開発法人宇宙航空研究開発機構
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立研究開発法人宇宙航空研究開発機構 filed Critical 国立研究開発法人宇宙航空研究開発機構
Priority to PCT/JP2017/006310 priority Critical patent/WO2017146028A1/en
Priority to JP2018501694A priority patent/JP6778440B2/en
Publication of WO2017145563A1 publication Critical patent/WO2017145563A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C39/00Aircraft not otherwise provided for
    • B64C39/02Aircraft not otherwise provided for characterised by special use
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C27/00Rotorcraft; Rotors peculiar thereto
    • B64C27/32Rotors
    • B64C27/46Blades
    • B64C27/467Aerodynamic features

Definitions

  • the present invention relates to a rotor blade used in a drone, a helicopter, etc., and a drone and a helicopter having such a rotor blade.
  • a drone called a drone with four or more rotor blades is actively used for photographing and observation purposes.
  • the drone usually uses a plastic two-bladed fixed-pitch rotor, and the weight of the payload and the flight time are affected by the performance of this rotor blade.
  • the rotor blade shape varies, and the chord length of the root is wide, which seems to have applied the classical propeller theory (Non-patent Document 1) from simple taper, and the chord length is sharply reduced from there to the tip. There is a transition to a smaller taper ratio, with rounded tips.
  • Non-patent Document 2 developed by GEN CORPORATION as a manned small helicopter, and a simple taper is adopted for the rotor blade.
  • Westland Linx in the UK has achieved a world speed record using a rotor blade with an enlarged tip chord length called BERP (Non-patent Document 3, Patent Document 1) and a receding angle. Yes.
  • This rotor blade functions as a dog tooth used in an airplane with a discontinuous leading edge with an enlarged chord at the tip, generating a vertical vortex and suppressing peeling of the upper surface, earning a lift coefficient on the reverse side,
  • the purpose is to reduce the wave resistance on the forward side by the receding angle of the tip.
  • the helicopter has to trade off the maximum speed with the figure of merit (non-patent document 4) obtained by dividing the actual lift by the theoretical maximum lift calculated from the simple motion theory, rotor rotation area and input power.
  • a rectangular shape or a shape with a weak taper at the tip is often used.
  • the drone since the drone takes a long time to hover, there is a high demand to increase the flight time and the payload by using a rotor blade having a high figure of merit.
  • Non-Patent Document 1 There is a method by Adkins et al. (Non-Patent Document 1) as an effective method for designing a rotor blade having a large figure of merit.
  • the method of Adkins et al. could not reflect the contraction (reduction in the radius of the cylindrical flow) or the vortex (roll-up) observed in the actual wake of the rotor blade. Therefore, the figure of merit was not the maximum.
  • an object of the present invention is to provide a rotor blade capable of increasing the figure of merit, a drone having such a rotor blade, and a helicopter.
  • the rotor blade according to the present invention is a rotor blade having a solidity of 10% or less, and the shape of the rotor blade is inversely tapered in a region having a radius of 50% to 90%.
  • the maximum chord length value is less than twice the minimum chord length at a radius of 50% to 90%, and the tip gradually narrows The angle at which the base is attached decreases as it goes to the base.
  • the drone which concerns on another form of this invention has the rotor blade of the said structure.
  • a helicopter according to still another embodiment of the present invention has the rotor blade having the above-described configuration.
  • the figure of merit is high according to the present invention, and if used for drones, helicopters, etc., flight time and payload weight can be increased.
  • FIG. 1 It is a top view of the rotor blade which concerns on one Embodiment of this invention.
  • the trajectory of the blade tip vortex of the rotor blade is shown.
  • a) is a trajectory of the blade tip vortex of the rotor blade by the method of Adkins et al.
  • b) is a trajectory of the blade tip vortex of the rotor blade by the Harada vortex method of the present inventor.
  • FIG. 1 is a top view of a rotor blade according to an embodiment of the present invention. As shown in FIG. 1, the rotor blade 1 is provided on a hub 2 having a shaft hole 3.
  • the method of Adkins et al. Can handle only a wake having a constant pitch and a constant radius, as shown in FIG.
  • the vortex radius contracts in the same manner as in the experiment as shown in FIG. 2B, and is released from the rotor blade 1 as shown in FIG.
  • a discharge vortex model in which the vortex to be concentrated is concentrated at the blade tip and the center of rotation by rolling up behind, a rotor blade 1 having the following form is obtained, and by using such a rotor blade 1 A high figure of merit is obtained.
  • the rotor blade 1 has a solidity of 10% or less.
  • the shape of the rotor blade 1 is as follows.
  • FIG. 4 shows the chord length distribution when the Harada vortex method of the present inventor is optimized using the vortex model of FIG. 2 a), and FIG. 5 shows the mounting angle.
  • Table 1 the calculation conditions are shown in Table 1.
  • FIG. 4 shows the chord length of the root.
  • Some commercially available drones cut the chord length at the base of this rotor blade to about 4 cm.
  • FIG. 6 shows the chord length distribution when the Harada vortex method of the present inventor is optimized using the vortex model of FIG. 2 b), and
  • FIG. 7 shows the mounting angle. The figure of merit at this time is 78.8%.
  • the tangent line AB at the tip of the obtained chord length has a negative slope
  • the tangent line CD at a radius of 65% has a positive slope
  • the maximum value H is taken at point G.
  • This H value is more than twice F.
  • the obtained tangent IJ near the tip of the mounting angle has a positive value, takes a minimum value N at a point M near a radius of 60%, takes a maximum value P at a point O near a radius of 30%, and near the base.
  • the tangent line KL has a negative value. Even in this shape, the chord length is 7 cm near the base of the wing, which is not realistic.
  • the tangent line AB at the tip of the obtained chord length has a negative gradient
  • the tangent line CD at a radius of 65% has a positive gradient
  • a local minimum at a point E near a radius of 60% Take F and take the maximum value H at point G near the root.
  • This H value is more than twice F. Also, the obtained tangent IJ near the tip of the mounting angle has a positive value, takes a minimum value N at a point M near a radius of 60%, takes a maximum value P at a point O near a radius of 30%, and near the base.
  • the tangent line KL has a negative value.
  • the rotor blade 1 according to this embodiment has a high figure of merit, and if used in a drone, helicopter, etc., the flight time and payload weight can be increased.
  • the present invention can be applied to a fixed pitch coaxial double reversing rotor type manned helicopter, a fixed pitch coaxial double reversing rotor type unmanned helicopter, and the like.
  • FIG. 10 shows the propeller coordinate system and the discharge vortex. It is considered that the propeller moves in the x-axis direction while rotating, and a discharge vortex is left in the moved locus.
  • FIG. 11 shows an enlarged view of the first blade. There are i-th representative point from the axis of rotation on r i apart blades, j-th emission vortices are discretized into short line segments as shown in Fig white circles.
  • the induced velocity in the x direction caused by the discharge vortex of the j-th unit intensity at the i-th representative point is X ij and the induced velocity in the z-direction is Z ij
  • w i ⁇ Z ij ⁇ j (2)
  • X ij and Z ij are constants obtained from Biosavart's law
  • ⁇ j is the j-th emission vortex.
  • FIG. 12 shows the cross section of the blade and the inflow speed.
  • FIG. 13 shows the force acting on the blade blade element.
  • c i 2 ⁇ i / C L V i (9)
  • the local resistance dD i acting on the i th blade element is given by the following equation using the resistance coefficient C D.
  • dD i 1/2 ⁇ ⁇ V i 2 C D c i db (10)
  • C D but is a function of the Reynolds number and C L, using a constant C L, C D is good as a constant as a insensitive to Reynolds number.
  • the axial component of the resultant force of the local lift dL i and the local resistance dD i is the local thrust dT i , and the tangential component is dN i .
  • dT i dL i cos ⁇ i -dD i sin ⁇ i (11)
  • T B ⁇ dT i (14)
  • P B ⁇ dP i (15) Given in. Here, B is the number of blades.

Landscapes

  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Mechanical Engineering (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Toys (AREA)

Abstract

[Problem] To be able to provide a high figure of merit and increase flight time and payload weight when used, for example, in a drone or a helicopter. [Solution] A rotor blade 1 has a solidity of 10% or less. The shape of the rotor blade 1 is as follows: (1) the rotor blade has an inversely tapered part in a region from 50% to 90% in radius; (2) the rotor blade has a maximum chord length near the base, and the value thereof is at most twice the minimum value of the chord length within the range from 50% to 90% in radius; (3) the tip end gradually narrows; and (4) the angle of incidence of the base decreases toward the base.

Description

ロータブレード、ドローン及びヘリコプタRotor blades, drones and helicopters
 本発明は、ドローンやヘリコプタなどに用いられるロータブレード、そのようなロータブレードを有するドローン及びヘリコプタに関する。 The present invention relates to a rotor blade used in a drone, a helicopter, etc., and a drone and a helicopter having such a rotor blade.
 近年、4発以上のロータブレードを持つドローンと呼ばれる飛行体が撮影、観測目的で盛んに利用されている。ドローンは通常プラスチック製の2枚羽の固定ピッチロータを使用しており、このロータブレードの性能によりペイロードの重さ及び飛行時間が左右される。ロータブレード形状は様々であり、単純テーパから古典プロペラ理論(非特許文献1)を応用したと思われる、付け根の翼弦長が広く、そこから先端に向けて急激に翼弦長を減らし、ある程度小さなテーパ比に移行し、先端を丸めた形状のものなどが見られる。 In recent years, a drone called a drone with four or more rotor blades is actively used for photographing and observation purposes. The drone usually uses a plastic two-bladed fixed-pitch rotor, and the weight of the payload and the flight time are affected by the performance of this rotor blade. The rotor blade shape varies, and the chord length of the root is wide, which seems to have applied the classical propeller theory (Non-patent Document 1) from simple taper, and the chord length is sharply reduced from there to the tip. There is a transition to a smaller taper ratio, with rounded tips.
 また有人小型ヘリコプタとしてGEN CORPORATIONが開発したGEN H-4(非特許文献2)同様に固定ピッチブレードを使用しており、ロータブレードに単純テーパを採用している。ヘリコプタの分野では英国のWestrand LinxがBERP(非特許文献3,特許文献1)と呼ばれる先端の翼弦長を拡大し、後退角を持たせたロータブレードを使用し、世界速度記録を達成している。本ロータブレードは先端の翼弦を拡大した不連続な前縁を飛行機で使用されるドッグツースとして機能させ、縦渦を発生させて上面の剥離を抑えることで後退側での揚力係数を稼ぐとともに、先端の後退角によって前進側での造波抵抗を減少させる事を目的としている。 Also, a fixed pitch blade is used as in GEN H-4 (Non-patent Document 2) developed by GEN CORPORATION as a manned small helicopter, and a simple taper is adopted for the rotor blade. In the field of helicopter, Westland Linx in the UK has achieved a world speed record using a rotor blade with an enlarged tip chord length called BERP (Non-patent Document 3, Patent Document 1) and a receding angle. Yes. This rotor blade functions as a dog tooth used in an airplane with a discontinuous leading edge with an enlarged chord at the tip, generating a vertical vortex and suppressing peeling of the upper surface, earning a lift coefficient on the reverse side, The purpose is to reduce the wave resistance on the forward side by the receding angle of the tip.
 ヘリコプタは単純運動理論とロータ回転面積と入力パワから求められる理論最大揚力で実際の揚力を除したフィギュアオブメリット(非特許文献4)と最大速度をトレードオフしなければならないため、ロータブレード形状は矩形か先端に弱いテーパがついた形状のものが多く使用されている。これに対してドローンはホバリングする時間が長いためフィギュアオブメリットの高いロータブレードを使用し、飛行時間及びペイロードを増加させようとする要求が高い。 The helicopter has to trade off the maximum speed with the figure of merit (non-patent document 4) obtained by dividing the actual lift by the theoretical maximum lift calculated from the simple motion theory, rotor rotation area and input power. A rectangular shape or a shape with a weak taper at the tip is often used. On the other hand, since the drone takes a long time to hover, there is a high demand to increase the flight time and the payload by using a rotor blade having a high figure of merit.
米国特許第5,174,721号公報US Pat. No. 5,174,721
 フィギュアオブメリットの大きいロータブレードを設計する際に有効な手法としてAdkinsらの方法(非特許文献1)がある。しかしAdkinsらの方法は実際のロータブレードの後流に見られる縮流(筒状の流れの半径の縮小)や、渦巻き込み(ロールアップ)を反映できなかった。そのためフィギュアオブメリットは最大とはなっていなかった。 There is a method by Adkins et al. (Non-Patent Document 1) as an effective method for designing a rotor blade having a large figure of merit. However, the method of Adkins et al. Could not reflect the contraction (reduction in the radius of the cylindrical flow) or the vortex (roll-up) observed in the actual wake of the rotor blade. Therefore, the figure of merit was not the maximum.
 以上のような事情に鑑み、本発明の目的は、フィギュアオブメリットが高くする事ができるロータブレード、そのようなロータブレードを有するドローン及びヘリコプタを提供することにある。 In view of the circumstances as described above, an object of the present invention is to provide a rotor blade capable of increasing the figure of merit, a drone having such a rotor blade, and a helicopter.
 上記課題を解決するために、本発明に係るロータブレードは、ソリディティが10%以下となるロータブレードであり、前記ロータブレードの形状が、半径50%から90%の領域で逆テーパとなっている部分を持ち、付け根付近に最大翼弦長を持ち、前記最大翼弦長の値は半径50%から90%にある翼弦長の極小値の2倍以下であり、先端は徐々に細くなっており、付け根の取付け角は付け根に行くほど減少している。 In order to solve the above-mentioned problems, the rotor blade according to the present invention is a rotor blade having a solidity of 10% or less, and the shape of the rotor blade is inversely tapered in a region having a radius of 50% to 90%. With a maximum chord length near the root, the maximum chord length value is less than twice the minimum chord length at a radius of 50% to 90%, and the tip gradually narrows The angle at which the base is attached decreases as it goes to the base.
 本発明の別形態に係るドローンは、上記構成のロータブレードを有する。
 本発明の更に別形態に係るヘリコプタは、上記構成のロータブレードを有する。
The drone which concerns on another form of this invention has the rotor blade of the said structure.
A helicopter according to still another embodiment of the present invention has the rotor blade having the above-described configuration.
 本発明により、フィギュアオブメリットが高く、ドローン、ヘリコプタなどに使用すれば、飛行時間、ペイロード重量を増す事ができる。 The figure of merit is high according to the present invention, and if used for drones, helicopters, etc., flight time and payload weight can be increased.
本発明の一実施形態に係るロータブレードの上面図である。It is a top view of the rotor blade which concerns on one Embodiment of this invention. ロータブレードの翼端渦の軌跡を示している。a)はAdkinsらの方法によるロータブレードの翼端渦の軌跡であり、b)は本発明者である原田の渦法によるロータブレードの翼端渦の軌跡である。The trajectory of the blade tip vortex of the rotor blade is shown. a) is a trajectory of the blade tip vortex of the rotor blade by the method of Adkins et al., and b) is a trajectory of the blade tip vortex of the rotor blade by the Harada vortex method of the present inventor. モデル化した放出渦のロールアップを示すブラフである。A bluff showing the roll-up of the modeled discharge vortex. 従来方法の最適な翼弦長分布を示すブラフである。It is a bluff showing the optimum chord length distribution of the conventional method. 従来方法の最適な取付角を示すブラフである。It is a bluff showing the optimum mounting angle of the conventional method. 本発明の翼弦長分布の特徴を示すブラフである。It is a bluff which shows the characteristic of chord length distribution of this invention. 本発明の取付角の特徴を示すブラフである。It is a bluff which shows the characteristic of the attachment angle of this invention. より好ましい本発明の翼弦長分布の特徴を示すブラフである。It is a bluff showing the characteristics of the chord length distribution of the present invention that is more preferable. より好ましい本発明の取付角の特徴を示すブラフである。It is the bluff which shows the characteristic of the mounting angle of this invention more preferable. 原田の渦法を説明するための図であり、プロペラの座標系と放出渦を示している。It is a figure for demonstrating Harada's vortex method, and has shown the coordinate system and discharge | emission vortex of a propeller. 原田の渦法を説明するための図であり、図10における一枚目のブレードの拡大図を示している。It is a figure for demonstrating Harada's vortex method, and has shown the enlarged view of the 1st blade in FIG. 原田の渦法を説明するための図であり、ブレードの断面と流入速度を示している。It is a figure for demonstrating Harada's vortex method, and has shown the cross section and inflow velocity of a blade. 原田の渦法を説明するための図であり、ブレード翼素に働く力を示している。It is a figure for demonstrating Harada's vortex method, and has shown the force which acts on a blade blade element.
 以下、図面を参照しながら、本発明の実施形態を説明する。
 図1は本発明の一実施形態に係るロータブレードの上面図である。
 図1に示すように、ロータブレード1は、シャフト穴3を有するハブ2に設けられている。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a top view of a rotor blade according to an embodiment of the present invention.
As shown in FIG. 1, the rotor blade 1 is provided on a hub 2 having a shaft hole 3.
 ここで、Adkinsらの方法では図2のa)に示す、一定ピッチかつ一定半径の後流しか扱えない。これに対して、本発明者である原田の渦法(後述する)では図2のb)に示すように渦半径が実験と同様に収縮し、かつ図3に示すようにロータブレード1から放出する渦が後方でロールアップにより翼端と回転中心に集中する放出渦モデルを適用する事で、以下の形態を特徴するロータブレード1を得、そのような形態のロータブレード1を使用する事で高いフィギュアオブメリットを得るものである。
 ロータブレード1は、ソリディティが10%以下である。
 ロータブレード1の形状は、以下の通りである。
(1)半径50%から90%の領域で逆テーパとなっている部分を持つこと。
(2)付け根付近に最大翼弦長を持ち、その値は半径50%から90%にある翼弦長の極小値の2倍以下であること。
(3)先端は徐々に細くなっていること。
(4)付け根の取付け角は付け根に行くほど減少していること。
 図4に本発明者である原田の渦法を図2のa)の渦モデルを用いて最適化した際の翼弦長分布を、また図5に取付角を示す。ここで計算条件を表1に示す。
Here, the method of Adkins et al. Can handle only a wake having a constant pitch and a constant radius, as shown in FIG. On the other hand, in the Harada vortex method (which will be described later), which is the present inventor, the vortex radius contracts in the same manner as in the experiment as shown in FIG. 2B, and is released from the rotor blade 1 as shown in FIG. By applying a discharge vortex model in which the vortex to be concentrated is concentrated at the blade tip and the center of rotation by rolling up behind, a rotor blade 1 having the following form is obtained, and by using such a rotor blade 1 A high figure of merit is obtained.
The rotor blade 1 has a solidity of 10% or less.
The shape of the rotor blade 1 is as follows.
(1) To have a portion having a reverse taper in a region having a radius of 50% to 90%.
(2) The maximum chord length is near the root, and the value is not more than twice the minimum chord length at a radius of 50% to 90%.
(3) The tip is gradually becoming thinner.
(4) The attachment angle of the base should be reduced toward the base.
FIG. 4 shows the chord length distribution when the Harada vortex method of the present inventor is optimized using the vortex model of FIG. 2 a), and FIG. 5 shows the mounting angle. Here, the calculation conditions are shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 図4に示すように付け根の翼弦長が7.5cmに達しているため、実際的ではない。市販のドローンの中にはこのロータブレードの付け根の翼弦長を4cm程度に切り落として使用している例がある。
 図6に本発明者である原田の渦法を図2のb)の渦モデルを用いて最適化した際の翼弦長分布を、また図7に取付角を示す。このときのフィギュアオブメリットは78.8%である。
As shown in FIG. 4, the chord length of the root has reached 7.5 cm, which is not practical. Some commercially available drones cut the chord length at the base of this rotor blade to about 4 cm.
FIG. 6 shows the chord length distribution when the Harada vortex method of the present inventor is optimized using the vortex model of FIG. 2 b), and FIG. 7 shows the mounting angle. The figure of merit at this time is 78.8%.
 得られた翼弦長の先端の接線ABは負の勾配を持ち、半径65%付近での接線CDは正の勾配を持ち、半径60%付近の点Eにおいて極小値Fをとり、付け根付近の点Gで最大値Hをとる。 The tangent line AB at the tip of the obtained chord length has a negative slope, the tangent line CD at a radius of 65% has a positive slope, takes a local minimum value F at a point E near a radius of 60%, and is near the root. The maximum value H is taken at point G.
 このHの値はFの2倍以上である。また得られた取付角の先端付近の接線IJは正の値を持ち、半径60%付近の点Mで極小値Nをとり、半径30%付近の点Oで極大値Pをとり、付け根付近の接線KLは負の値を持つ。この形状でも翼付け根付近で翼弦長が7cmとなり現実的ではない。 This H value is more than twice F. Also, the obtained tangent IJ near the tip of the mounting angle has a positive value, takes a minimum value N at a point M near a radius of 60%, takes a maximum value P at a point O near a radius of 30%, and near the base. The tangent line KL has a negative value. Even in this shape, the chord length is 7 cm near the base of the wing, which is not realistic.
 本発明者である原田の渦法は評価関数を最小化する事で解を得るので翼弦長が4cmを超えるときに値が大きくなるペナルティ関数を評価関数に加えることで翼弦長の制限を課す事ができる。このときの翼弦長を図8に、取付角を図9に示す。このときのフィギュアオブメリットは78.6%である。 Since Harada's vortex method, which is the present inventor, obtains a solution by minimizing the evaluation function, adding a penalty function that increases when the chord length exceeds 4 cm to limit the chord length. Can be imposed. The chord length at this time is shown in FIG. 8, and the mounting angle is shown in FIG. The figure of merit at this time is 78.6%.
 先の結果と同様に、得られた翼弦長の先端の接線ABは負の勾配を持ち、半径65%付近での接線CDは正の勾配を持ち、半径60%付近の点Eにおいて極小値Fをとり、付け根付近の点Gで最大値Hをとる。 Similar to the previous result, the tangent line AB at the tip of the obtained chord length has a negative gradient, the tangent line CD at a radius of 65% has a positive gradient, and a local minimum at a point E near a radius of 60%. Take F and take the maximum value H at point G near the root.
 このHの値はFの2倍以上である。また得られた取付角の先端付近の接線IJは正の値を持ち、半径60%付近の点Mで極小値Nをとり、半径30%付近の点Oで極大値Pをとり、付け根付近の接線KLは負の値を持つ。 This H value is more than twice F. Also, the obtained tangent IJ near the tip of the mounting angle has a positive value, takes a minimum value N at a point M near a radius of 60%, takes a maximum value P at a point O near a radius of 30%, and near the base. The tangent line KL has a negative value.
 従って、この実施形態に係るロータブレード1は、フィギュアオブメリットが高く、ドローン、ヘリコプタなどに使用すれば、飛行時間、ペイロード重量を増す事ができる。
 本発明は、固定ピッチ同軸2重反転ロータ式有人ヘリコプタや固定ピッチ同軸2重反転ロータ式無人ヘリコプタなどに適用する事ができる。
Therefore, the rotor blade 1 according to this embodiment has a high figure of merit, and if used in a drone, helicopter, etc., the flight time and payload weight can be increased.
The present invention can be applied to a fixed pitch coaxial double reversing rotor type manned helicopter, a fixed pitch coaxial double reversing rotor type unmanned helicopter, and the like.
 次に、上述した原田の渦法を説明する。
 図10にプロペラの座標系と放出渦を示す。プロペラは回転しながらx軸方向に移動し、移動した軌跡に放出渦が残されると考える。
 図11に一枚目のブレードの拡大図を示す。回転軸からr離れたブレード上にi番目の代表点があり、j番目の放出渦は図中白丸で示された様に短い線分に離散化する。j番目の単位強度の放出渦がi番目の代表点に引き起こすx方向の誘導速度をXij、z方向の誘導速度をZijとすると、i番目の代表点に引き起こされるx方向の誘導速度u、z方向の誘導速度wはそれぞれ
   u=ΣXijг                 (1)
   w=ΣZijг                 (2)
で与えられる。ここで、Xij、Zijはビオサバールの法則から得られる定数であり、гはj番目の放出渦である。
Next, the Harada vortex method described above will be described.
FIG. 10 shows the propeller coordinate system and the discharge vortex. It is considered that the propeller moves in the x-axis direction while rotating, and a discharge vortex is left in the moved locus.
FIG. 11 shows an enlarged view of the first blade. There are i-th representative point from the axis of rotation on r i apart blades, j-th emission vortices are discretized into short line segments as shown in Fig white circles. Assuming that the induced velocity in the x direction caused by the discharge vortex of the j-th unit intensity at the i-th representative point is X ij and the induced velocity in the z-direction is Z ij , the induced velocity u in the x-direction caused by the i-th representative point u. The i and z-direction guiding speeds w i are respectively u i = ΣX ij г j (1)
w i = ΣZ ij г j (2)
Given in. Here, X ij and Z ij are constants obtained from Biosavart's law, and г j is the j-th emission vortex.
 図12にブレードの断面と流入速度を示す。ブレードに流入する空気の接線方向成分をUとするとU
   U=rΩ-w                 (3)
で与えられる。ここでΩはプロペラの回転角速度である。またブレードに流入する空気の軸方向成分をUとするとU
   U=U-u                   (4)
で与えられる。ここでUはプロペラの前進速度である。流入角φ及び流入速度Vはそれぞれ次式で与えられる。
   φ=tan-1(U/U)            (5)
   V=√(U +U )              (6)
FIG. 12 shows the cross section of the blade and the inflow speed. When the tangential component of the air flowing into the blades and U T U T is U T = r i Ω-w i (3)
Given in. Here, Ω is the rotational angular velocity of the propeller. Further, when the axial component of the air flowing into the blades and U P U P is U P = U-u i ( 4)
Given in. Here, U is the propeller forward speed. The inflow angle φ i and the inflow speed V i are given by the following equations, respectively.
φ i = tan -1 (U P / U T) (5)
V i = √ (U P 2 + U T 2) (6)
 図13にブレード翼素に働く力を示す。i番目の翼素に働く局所揚力dLはクッタ=ジューコフスキーの定理により
   dL=ρVгdb               (7)
で与えられる。ここでρは空気密度、dbは翼素の幅である。または、揚力係数Cを用いて
   dL=1/2・ρV db         (8)
で表される。ここで、cはi番目の翼素の翼弦長である。(7)、(8)式よりcは次式で与えられる。
   c=2г/C                (9)
 i番目の翼素に働く局所抵抗dDは抵抗係数Cを用いて次式で与えられる。
   dD=1/2・ρV db         (10)
 Cはレイノルズ数とCの関数であるが、Cに定数を用い、Cがレイノルズ数に対しては鈍感であるとして定数としてよい。
 局所揚力dLと局所抵抗dDの合力の軸方向分力は局所推力dTとなり、接線方向分力をdNとするとそれぞれ、
   dT=dLcosφ-dDsinφ      (11)
   dN=dLsinφ+dDcosφ      (12)
となる。局所吸収パワdPはdNΩであるから次式で与えられる。
   dP=(dLsinφ+dDcosφ)rΩ  (13)
 結局、推力と吸収パワは(11)式と(13)式よりそれぞれ
   T=BΣdT                   (14)
   P=BΣdP                   (15)
で与えられる。ここでBはブレード枚数である。
FIG. 13 shows the force acting on the blade blade element. The local lift dL i acting on the i th blade element is given by the Kutta-Jukovsky theorem as follows: dL i = ρV i г i db (7)
Given in. Here, ρ is the air density, and db is the width of the blade element. Or, using the lift coefficient C L , dL i = 1/2 · ρV i 2 C L c i db (8)
It is represented by Here, c i is the chord length of the i th blade element. (7), c i from equation (8) is given by the following equation.
c i = 2г i / C L V i (9)
The local resistance dD i acting on the i th blade element is given by the following equation using the resistance coefficient C D.
dD i = 1/2 · ρV i 2 C D c i db (10)
C D but is a function of the Reynolds number and C L, using a constant C L, C D is good as a constant as a insensitive to Reynolds number.
The axial component of the resultant force of the local lift dL i and the local resistance dD i is the local thrust dT i , and the tangential component is dN i .
dT i = dL i cosφ i -dD i sinφ i (11)
dN i = dL i sin φ i + dD i cos φ i (12)
It becomes. Since the local absorption power dP i is dN i r i Ω, it is given by the following equation.
dP i = (dL i sin φ i + dD i cos φ i ) r i Ω (13)
Eventually, the thrust and absorption power are calculated from the equations (11) and (13) respectively. T = BΣdT i (14)
P = BΣdP i (15)
Given in. Here, B is the number of blades.
 プロペラの最適設計問題はC、C、Ω、設計パワPを設定し、гiを未知数として、
[条件]:P=P
 のもとで
[目的関数]:-T
 を最小化する
最適化問題に帰着する。
The optimal design problem for the propeller is C L , C D , Ω, design power P 0 , and гi as an unknown,
[Condition]: P = P 0
[Objective function]: -T
This results in an optimization problem that minimizes.
1 ロータブレード
2 ハブ
3 シャフト穴
1 Rotor blade 2 Hub 3 Shaft hole

Claims (3)

  1.  ソリディティが10%以下となるロータブレードであり、
     前記ロータブレードの形状が、
     半径50%から90%の領域で逆テーパとなっている部分を持ち、
     付け根付近に最大翼弦長を持ち、前記最大翼弦長の値は半径50%から90%にある翼弦長の極小値の2倍以下であり、
     先端は徐々に細くなっており、
     付け根の取付け角は付け根に行くほど減少している
     ロータブレード。
    A rotor blade with a solidity of 10% or less,
    The shape of the rotor blade is
    It has a part that is inversely tapered in the radius 50% to 90% region,
    It has a maximum chord length near the root, and the value of the maximum chord length is less than twice the minimum value of the chord length at a radius of 50% to 90%,
    The tip is gradually getting thinner
    The mounting angle of the base decreases as it goes to the base.
  2.  請求項1に記載のロータブレードを有するドローン。 A drone having the rotor blade according to claim 1.
  3.  請求項1に記載のロータブレードを有するヘリコプタ。 A helicopter having the rotor blade according to claim 1.
PCT/JP2017/001030 2016-02-23 2017-01-13 Rotor blade, drone, and helicopter WO2017145563A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2017/006310 WO2017146028A1 (en) 2016-02-23 2017-02-21 Rotor blade, drone, and helicopter
JP2018501694A JP6778440B2 (en) 2016-02-23 2017-02-21 How to design rotor blades, drones, helicopters and rotor blades

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-031659 2016-02-23
JP2016031659 2016-02-23

Publications (1)

Publication Number Publication Date
WO2017145563A1 true WO2017145563A1 (en) 2017-08-31

Family

ID=59685058

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2017/001030 WO2017145563A1 (en) 2016-02-23 2017-01-13 Rotor blade, drone, and helicopter
PCT/JP2017/006310 WO2017146028A1 (en) 2016-02-23 2017-02-21 Rotor blade, drone, and helicopter

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/006310 WO2017146028A1 (en) 2016-02-23 2017-02-21 Rotor blade, drone, and helicopter

Country Status (2)

Country Link
JP (1) JP6778440B2 (en)
WO (2) WO2017145563A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180127086A1 (en) * 2016-11-10 2018-05-10 Coretronic Intelligent Robotics Corporation Aerial Vehicle and Propeller Thereof

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6856930B2 (en) * 2017-02-15 2021-04-14 国立研究開発法人宇宙航空研究開発機構 Rotor, drone and helicopter
US20230257113A1 (en) 2020-06-30 2023-08-17 Sony Group Corporation Propeller, flying object, and method for manufacturing propeller

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB752080A (en) * 1952-07-18 1956-07-04 Aristides Warto Improvements in or relating to rotor blades for helicopters
US5174721A (en) * 1990-10-13 1992-12-29 Westland Helicopters Limited Helicopter rotor blades
JP2009173152A (en) * 2008-01-24 2009-08-06 Mitsubishi Heavy Ind Ltd Helicopter, its rotor, and its control method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB752080A (en) * 1952-07-18 1956-07-04 Aristides Warto Improvements in or relating to rotor blades for helicopters
US5174721A (en) * 1990-10-13 1992-12-29 Westland Helicopters Limited Helicopter rotor blades
JP2009173152A (en) * 2008-01-24 2009-08-06 Mitsubishi Heavy Ind Ltd Helicopter, its rotor, and its control method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180127086A1 (en) * 2016-11-10 2018-05-10 Coretronic Intelligent Robotics Corporation Aerial Vehicle and Propeller Thereof

Also Published As

Publication number Publication date
JPWO2017146028A1 (en) 2018-12-13
JP6778440B2 (en) 2020-11-04
WO2017146028A1 (en) 2017-08-31

Similar Documents

Publication Publication Date Title
Pereira Hover and wind-tunnel testing of shrouded rotors for improved micro air vehicle design
US5131604A (en) Helicopter antitorque device
US10988245B2 (en) Segmented duct for tilting proprotors
US10822079B2 (en) Aircraft
CN107672802B (en) Slotted duct type rotor wing aircraft with rolling flow
US8337156B2 (en) Method of flight in an expanded speed range using thrust vectoring propellers
US5108044A (en) Shroud-fin integration shelf for a helicopter empennage structure
Ning et al. An experimental study on the aerodynamic and aeroacoustic performances of a bio-inspired UAV propeller
JP7116459B2 (en) Ducted fan, multicopter, vertical take-off and landing aircraft, CPU cooling fan and radiator cooling fan
WO2017145563A1 (en) Rotor blade, drone, and helicopter
JPS62299466A (en) Propeller
JP6856930B2 (en) Rotor, drone and helicopter
US8226349B2 (en) Delta blade propeller apparatus
US11267564B2 (en) Aircraft with rotating ducted fan
US20210094681A1 (en) Main rotor blade and helicopter
US6899525B2 (en) Blade and wing configuration
Yaakub et al. Aerodynamic prediction of helicopter rotor in forward flight using blade element theory
Liu et al. Aerodynamics properties and design method of high efficiency-light propeller of stratospheric airships
CN106218886A (en) Many rotorcraft blades and many gyroplanes
CN112977816B (en) Rotor craft's paddle and rotor craft
Sapit et al. Aerodynamics drone propeller analysis by using computational fluid dynamics
Colman et al. Wind tunnel test results and performance prediction for a ducted fan with collective and cyclic pitch actuation for VTOL with efficient cruise
Sandak et al. Aeroelastically adaptive propeller using blades’ root flexibility
Pereira et al. Hover Tests of Micro Aerial Vehicle‐Scale Shrouded Rotors, Part II: Flow Field Measurements
CA3020210C (en) Aerodynamic regulation of airscrew, fan and wind turbine blades with bores and/or cutting and/or notching

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17756005

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17756005

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP