WO2017145313A1 - Dynamo-electric machine - Google Patents

Dynamo-electric machine Download PDF

Info

Publication number
WO2017145313A1
WO2017145313A1 PCT/JP2016/055566 JP2016055566W WO2017145313A1 WO 2017145313 A1 WO2017145313 A1 WO 2017145313A1 JP 2016055566 W JP2016055566 W JP 2016055566W WO 2017145313 A1 WO2017145313 A1 WO 2017145313A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat
rotating electrical
electrical machine
fan
unit
Prior art date
Application number
PCT/JP2016/055566
Other languages
French (fr)
Japanese (ja)
Inventor
康太郎 塩田
丈典 馬場
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2016/055566 priority Critical patent/WO2017145313A1/en
Publication of WO2017145313A1 publication Critical patent/WO2017145313A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/20Stationary parts of the magnetic circuit with channels or ducts for flow of cooling medium
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K9/00Arrangements for cooling or ventilating
    • H02K9/22Arrangements for cooling or ventilating by solid heat conducting material embedded in, or arranged in contact with, the stator or rotor, e.g. heat bridges
    • H02K9/227Heat sinks
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K9/00Arrangements for cooling or ventilating
    • H02K9/19Arrangements for cooling or ventilating for machines with closed casing and closed-circuit cooling using a liquid cooling medium, e.g. oil

Definitions

  • the present invention relates to a rotating electrical machine including a heat dissipation component.
  • high-frequency sensors such as encoders for detecting the rotational position, such as servo motors
  • high frequency noise has been applied from the outside like rotating electrical machines driven by inverters.
  • the importance of noise countermeasures for rotating electrical machines is increasing as the number of rotating electrical machines equipped with CPUs and ASICs for signal processing increases.
  • the conventional rotating electric machine is configured as described above, and when the cooling fan having the electric motor is separated by a partition in the metal container in which the rotating electric machine is stored, the weight of the rotating electric machine itself is increased and the heat dissipation performance is increased. There is a problem of incurring deterioration. On the contrary, when the separation is not performed by the partition walls, noise is emitted through the power source of the fan or the input / output port of the electronic device, which has a problem in that it adversely affects the rotating electrical machine control.
  • the present invention has been made to solve the above-described problems, and without damaging the insulation performance, by simply installing a heat lane as a heat transfer section, it is possible to exhibit high heat dissipation performance.
  • the purpose is to shield noise from an electromagnetic noise source without installing a shielding partition wall that leads to a significant increase in the weight of the rotating electrical machine itself.
  • a plurality of heat transfer portions that are in contact with the core back portion that constitutes the stator and that have heat conductivity and are solid or hollow inside, and heat transfer that has heat conductivity A thermal diffusion part joined to the part.
  • a heat transfer portion is inserted or brought into contact with the core back portion, and cooling by heat radiation from the outer frame of the rotating electrical machine or forced air cooling by a fan is performed on the heat diffusion portion joined to the heat transfer portion.
  • the heat diffusing unit is installed so as to face the noise source and the fan or position detecting unit that becomes the noise propagation path, and at least the heat transfer unit or the heat diffusing unit is grounded. While improving, the tolerance with respect to electromagnetic noise can be strengthened, As a result, it becomes possible to provide a rotary electric machine with a small size and high output.
  • FIG. 1 is a structural diagram of a heat dissipation component showing Example 1 of the present invention. It is sectional drawing of the rotary electric machine which attached the thermal radiation component which shows Example 1 of this invention. It is a shape schematic diagram of the stator core which shows Example 1 of this invention. It is sectional drawing of the rotary electric machine which attached the thermal radiation component which shows Example 1 of this invention. It is a shape schematic diagram of the stator core which shows Example 1 of this invention. It is a structural diagram of the heat dissipation component showing Example 2 of the present invention. It is sectional drawing of the rotary electric machine which attached the heat radiating component which shows Example 2 of this invention.
  • FIG. 6 is a structural diagram of a heat dissipation component showing Embodiment 4 of the present invention.
  • FIG. 6 is a structural diagram of a heat dissipation component showing Embodiment 4 of the present invention.
  • FIG. 1 is a structural diagram of a heat dissipation component showing Embodiment 1 of the present invention.
  • the heat dissipating component 1 is composed of a heat lane 2 which is a rod-like and elongated inside and a plurality of solid heat transfer parts and a disk-like heat diffusion part 3, and on one side of the heat diffusion part 3, along the outer periphery One end of the heat lane 2 is joined at equal intervals.
  • Both the heat lane 2 and the thermal diffusion unit 3 have good thermal conductivity, and are made of, for example, a material that shields radio waves such as copper, or a metal material that can be magnetically shielded such as an iron-based material.
  • the heat diffusion part 3 shown in FIG. 1 has a disk shape, but may have a structure in which a metal net is stretched in a cup-like or annular hollow part.
  • FIG. 2 is a cross-sectional view of a rotating electrical machine to which a heat dissipating component showing Embodiment 1 of the present invention is attached.
  • the rotating electrical machine 10 includes a stator 53 that is wound, a rotor 51 that rotates inside the stator 53, and a rotating shaft 52 that is attached to the rotor 51.
  • Reference numerals 56 a and 56 b denote bearings for holding the rotating shaft 52.
  • the stator 53 is energized and controlled by the drive driver 54. As a result, the rotor 51 rotates and the rotating shaft 52 rotates.
  • the child core 11 corresponds to a main heat dissipation path for the generated heat.
  • the plurality of rod-shaped heat lanes 2 are attached to the inside of the stator core 11 and serve to guide the generated heat to the outside of the rotating electrical machine 10.
  • the heat guided to the outside of the rotating electrical machine 10 is transmitted to the heat diffusing unit 3 joined to the heat lane 2, and the heat diffusing unit 3 serves as a heat radiating plate.
  • the heat diffusing unit 3 is installed at a position facing the fan 13 driven by the fan power supply 55 and is forcibly cooled by the fan 13.
  • the heat diffusing unit 3 is installed at a position facing the encoder 12 that is a position detecting unit that functions as a sensor of the rotating electrical machine 10, and the stator core 11 and the heat lane 2 are grounded.
  • an electromagnetic shield is formed around the encoder 12 by the heat diffusion unit 3. By forming this electromagnetic shielding, electromagnetic radiation noise caused by the clock of the encoder 12 is prevented from propagating to the fan power supply 55 and released to the outside of the rotating electrical machine 10, or conversely, noise propagated from the fan power supply 55 is Can be prevented.
  • a ground terminal is provided in the heat diffusing section 3, and this ground terminal is connected to the ground of the rotating electrical machine 10, the ground of the heat lane 2, the ground of the encoder 12, and the ground of the fan 13, respectively. Also good.
  • the heat lane 2 is attached so as to penetrate the end cover 14 provided at the opposite end of the rotating electrical machine 10, but in order to prevent water and dust from entering the rotating electrical machine 10, By sealing the penetration portion where the heat lane 2 penetrates the end cover 14 with a rubber bush or resin, it is possible to configure the fully-closed rotating electrical machine 10.
  • FIG. 3 is a schematic diagram of the shape of the stator core showing the first embodiment of the present invention.
  • the stator 53 is configured by connecting a plurality of stator cores 11 in an annular shape.
  • the stator core 11 includes a core back portion 25 corresponding to the outer peripheral portion of the stator 53 and a teeth portion 26 to which a winding is applied. In the first embodiment of the present invention, the magnetic path of the core back portion 25 is blocked.
  • a hole 21 for inserting the heat lane 2 is provided in a portion that is not present. Since a gap generated when the heat lane 2 is inserted into the hole 21 becomes a thermal resistance, the thermal resistance value can be reduced by sealing the gap with a resin or grease having a good thermal conductivity.
  • the heat lane 2 is a hollow conduit and is made of a soft material
  • one end of the heat lane 2 is closed, the inside of the pipe line is pressurized from the other end, and the heat lane 2 itself is expanded and deformed.
  • the gap generated when the heat lane 2 is inserted into the hole 21 can be sealed, and the heat lane 2 can be fixed to the stator core 11.
  • FIG. 4 is a cross-sectional view of a rotating electrical machine to which a heat dissipating component showing Embodiment 1 of the present invention is attached.
  • the fan 13 is installed on the side surface of the rotating electrical machine 10 along the direction of the rotating shaft 52 in order to shorten the overall length of the rotating electrical machine 10.
  • the heat lane 2 is a rod-shaped metal material
  • the heat diffusing unit 3 is placed on the front surface of the fan 13 by bending the heat lane 2.
  • the heat lane 2 is inserted into the hole 21 provided in the core back portion 25, the air diffusion portion 3 connected to the heat lane 2 is subjected to forced air cooling by the fan 13, and the heat diffusion portion 3 is further connected to the noise source and Since it is installed so as to face the fan 13 and the encoder 12 serving as a noise propagation path, and at least the heat lane 2 or the heat diffusion unit 3 is grounded, the heat radiation is improved and the resistance to electromagnetic noise is enhanced. As a result, it is possible to provide a rotating electric machine that is small and has high output.
  • FIG. 6 is a structural diagram of a heat dissipating component showing Embodiment 2 of the present invention.
  • the heat dissipating component 100 is composed of a plurality of rod-like and elongate heat lanes 21 and a disk-shaped heat diffusing portion 31, and one end of the heat lane 21 is joined to one side of the heat diffusing portion 31 along the outer periphery at equal intervals. Is done.
  • Each of the heat lanes 21 has a hollow cylindrical shape having a through hole inside, and the through hole of the hollow portion penetrates through the heat diffusing portion 31.
  • FIG. 7 is a sectional view of a rotating electrical machine to which a heat dissipating component showing Embodiment 2 of the present invention is attached. As shown in FIG. 7, an opening 15 exists in a part of the load side opposite to the mounting side of the heat dissipating component 100 that is the anti-load side of the rotating electrical machine 10. By moving the air inside, the plurality of stator cores 11 constituting the stator 53 can be cooled more efficiently, and the same effect as in the first embodiment of the present invention can be obtained.
  • FIG. FIG. 8 is a cross-sectional view of a rotating electrical machine to which a heat dissipation component showing Embodiment 3 of the present invention is attached.
  • the heat diffusing unit 3 is installed at a position facing the fan 13 driven by the fan power supply 55 and is forcibly cooled by the fan 13, but in the third embodiment of the present invention, As shown in FIG. 8, the heat diffusion part 32 is directly joined to the outer frame 71 of the rotating electrical machine 10.
  • the heat of the heat diffusing unit 32 can be transmitted to the outer frame 71, the stator 53 can be cooled, and the fan 13 can be made unnecessary.
  • the heat diffusion unit 32 is grounded, an electromagnetic shield is formed around the encoder 12, and the same effect as in the first embodiment of the present invention can be obtained.
  • the heat lane 2 is attached so as to penetrate the inside of the stator core 11, but as shown in FIG. 9, the heat lane 22 is attached so as to be in contact with the end face on the counterload side of the stator 53.
  • the same effects as those of the first embodiment of the present invention can be obtained.
  • Example 4 10 and 11 are structural diagrams of heat dissipating parts showing Embodiment 4 of the present invention.
  • the heat dissipating component 101 is composed of a plurality of rod-shaped and elongated heat lanes 23 and a disk-shaped heat diffusing portion 33, and one end of the heat lane 23 is joined at equal intervals along the outer periphery on one surface of the heat diffusing portion 33. Is done.
  • Each of the heat lanes 23 has a hollow cylindrical shape having a through hole inside, and the through hole of the hollow portion penetrates to the heat diffusion portion 33. As shown in FIGS.
  • a hollow heat lane 23 is attached in advance to the inside of the plurality of stator cores 11 constituting the stator 53, and the adjacent heat lanes 23 are alternately connected to the pipe connection member 41 and the heat diffusion.
  • the pipes are formed by connecting the adjacent heat lanes 23 provided in the inside of the section 33 with a cavity 42 that connects the adjacent heat lanes 23.
  • the joining is performed by welding or pipe screws, and by flowing cooling water, a refrigerant, or the like in the formed pipe line, the plurality of stator cores 11 constituting the stator 53 can be cooled. The same effect as in the first embodiment can be obtained.
  • the servo motor having the encoder 12 is taken as an example, but electronic devices such as a tension control motor having a torque sensor and a so-called intelligent motor having a switching element and a drive driver are mounted.
  • electronic devices such as a tension control motor having a torque sensor and a so-called intelligent motor having a switching element and a drive driver are mounted.
  • the present invention can also be applied to a rotating electric machine having a noise source such as a rotating electric machine or a brush of a DC motor.

Abstract

This dynamo-electric machine 10 solves the conventional problems of deterioration of radiation performance and reduction in insulation performance due to an increase in the weight of the dynamo-electric machine itself and the structure thereof, and comprises: a stator 53 having a core back portion 25 provided with a plurality of holes 21; and a fan 13. The dynamo-electric machine 10 is configured by comprising: a plurality of electrically and heat conductive solid or hollow heat lanes 2 each having a rod-like, elongated shape which are inserted into the holes 21; and a thermal diffusion unit 3 which is joined to the heat lanes 2 and arranged to face the fan 13.

Description

回転電機Rotating electric machine
この発明は、放熱部品を備えた回転電機に関する。 The present invention relates to a rotating electrical machine including a heat dissipation component.
近年、回転電機の小型化、高出力化が進み、それに伴い回転電機の放熱性改善が重要になっている。従来の回転電機は、反負荷側の回転軸近傍に冷却ファンを取付けることで冷却しているが、サーボモータ等の可変速度回転型の回転電機においては、反負荷側軸取付けの回転電機の場合、充分な冷却性能が得られず、独立の電動機を有する冷却ファンを持つことが多い(例えば、特許文献1参照)。 In recent years, miniaturization and high output of rotating electrical machines have progressed, and accordingly, improvement of heat dissipation of the rotating electrical machines has become important. Conventional rotating electrical machines are cooled by installing a cooling fan near the rotating shaft on the anti-load side, but in the case of variable-speed rotating electric rotating machines such as servo motors, In many cases, sufficient cooling performance cannot be obtained, and a cooling fan having an independent electric motor is provided (for example, see Patent Document 1).
また、回転電機を冷却するための別方法として、回転電機内部のスロット中心側の空間に、冷却用管体としての冷却管を配置する方法が提案されている(例えば、特許文献2参照)。 Further, as another method for cooling the rotating electrical machine, a method has been proposed in which a cooling pipe as a cooling tube is disposed in a space on the slot center side inside the rotating electrical machine (see, for example, Patent Document 2).
一方、回転電機の冷却と共に、近年インバータ駆動の回転電機のように外部から高周波雑音が印加されることが増加したり、サーボモータのように回転位置を検出するためのエンコーダ等の高精度なセンサ類や、信号処理のためのCPUやASICを内部に備えた回転電機が増加したりと、回転電機の雑音対策の重要性が増してきている。 On the other hand, high-frequency sensors such as encoders for detecting the rotational position, such as servo motors, have recently increased with the cooling of rotating electrical machines, and high frequency noise has been applied from the outside like rotating electrical machines driven by inverters. The importance of noise countermeasures for rotating electrical machines is increasing as the number of rotating electrical machines equipped with CPUs and ASICs for signal processing increases.
特開平08-289505号公報(第7頁、第1図)Japanese Patent Application Laid-Open No. 08-289505 (page 7, FIG. 1) 特開2003-230253号公報(第7頁、第2図)Japanese Patent Laid-Open No. 2003-230253 (page 7, FIG. 2)
従来の回転電機は、以上のように構成されており、電動機を有する冷却ファンを、回転電機が収納された金属容器内に隔壁で分離して配置した場合、回転電機自体の重量増や放熱性の悪化を招くという問題点がある。逆に、隔壁で分離しない場合は、雑音がファンの電源や電子機器の入出力ポートを通じて放出され、回転電機制御に悪影響を与えるという問題点がある。 The conventional rotating electric machine is configured as described above, and when the cooling fan having the electric motor is separated by a partition in the metal container in which the rotating electric machine is stored, the weight of the rotating electric machine itself is increased and the heat dissipation performance is increased. There is a problem of incurring deterioration. On the contrary, when the separation is not performed by the partition walls, noise is emitted through the power source of the fan or the input / output port of the electronic device, which has a problem in that it adversely affects the rotating electrical machine control.
さらに、回転電機の動作電圧の高電圧化や、回転電機と駆動ドライバを組合せることにより発生するサージ電圧の影響により、冷却管自身が回転電機の絶縁性能を悪化させるという問題点がある。 Furthermore, there is a problem that the cooling pipe itself deteriorates the insulation performance of the rotating electrical machine due to the influence of the surge voltage generated by increasing the operating voltage of the rotating electrical machine and combining the rotating electrical machine and the drive driver.
この発明は、上述のような問題を解決するためになされたもので、絶縁性能を損なわず、単に熱伝達部であるヒートレーンを設置することにより、高い放熱性能を発揮することが可能となると同時に、大幅な回転電機自体の重量増につながる遮蔽隔壁を設置せずに電磁雑音源からの雑音を遮蔽することを目的とする。 The present invention has been made to solve the above-described problems, and without damaging the insulation performance, by simply installing a heat lane as a heat transfer section, it is possible to exhibit high heat dissipation performance. The purpose is to shield noise from an electromagnetic noise source without installing a shielding partition wall that leads to a significant increase in the weight of the rotating electrical machine itself.
この発明に係る回転電機においては、固定子を構成するコアバック部に接触される、熱伝導性を有し内部が中実もしくは中空の複数の熱伝達部と、熱伝導性を有し熱伝達部と接合する熱拡散部と、を具備する。 In the rotating electrical machine according to the present invention, a plurality of heat transfer portions that are in contact with the core back portion that constitutes the stator and that have heat conductivity and are solid or hollow inside, and heat transfer that has heat conductivity A thermal diffusion part joined to the part.
この発明は、コアバック部に熱伝達部を挿入もしくは接触させ、この熱伝達部に接合される熱拡散部に対して回転電機の外枠からの放熱による冷却、もしくはファンによる強制空冷を行う。さらに、熱拡散部を雑音源および雑音伝搬経路となるファンや位置検出部に対して対向するように設置すると共に、少なくとも熱伝達部もしくは熱拡散部は接地されるようにしたので、放熱性を改善しつつ電磁雑音に対する耐性を強化でき、その結果、小型で高出力な回転電機を提供することが可能となる。 According to the present invention, a heat transfer portion is inserted or brought into contact with the core back portion, and cooling by heat radiation from the outer frame of the rotating electrical machine or forced air cooling by a fan is performed on the heat diffusion portion joined to the heat transfer portion. Furthermore, the heat diffusing unit is installed so as to face the noise source and the fan or position detecting unit that becomes the noise propagation path, and at least the heat transfer unit or the heat diffusing unit is grounded. While improving, the tolerance with respect to electromagnetic noise can be strengthened, As a result, it becomes possible to provide a rotary electric machine with a small size and high output.
この発明の実施例1を示す放熱部品の構造図である。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a structural diagram of a heat dissipation component showing Example 1 of the present invention. この発明の実施例1を示す放熱部品を取付けた回転電機の断面図である。It is sectional drawing of the rotary electric machine which attached the thermal radiation component which shows Example 1 of this invention. この発明の実施例1を示す固定子コアの形状模式図である。It is a shape schematic diagram of the stator core which shows Example 1 of this invention. この発明の実施例1を示す放熱部品を取付けた回転電機の断面図である。It is sectional drawing of the rotary electric machine which attached the thermal radiation component which shows Example 1 of this invention. この発明の実施例1を示す固定子コアの形状模式図である。It is a shape schematic diagram of the stator core which shows Example 1 of this invention. この発明の実施例2を示す放熱部品の構造図である。It is a structural diagram of the heat dissipation component showing Example 2 of the present invention. この発明の実施例2を示す放熱部品を取付けた回転電機の断面図である。It is sectional drawing of the rotary electric machine which attached the heat radiating component which shows Example 2 of this invention. この発明の実施例3を示す放熱部品の構造図である。It is a structural diagram of the heat dissipation component showing Example 3 of the present invention. この発明の実施例3を示す放熱部品の構造図である。It is a structural diagram of the heat dissipation component showing Example 3 of the present invention. この発明の実施例4を示す放熱部品の構造図である。FIG. 6 is a structural diagram of a heat dissipation component showing Embodiment 4 of the present invention. この発明の実施例4を示す放熱部品の構造図である。FIG. 6 is a structural diagram of a heat dissipation component showing Embodiment 4 of the present invention.
実施例1.
図1は、この発明の実施例1を示す放熱部品の構造図である。放熱部品1は棒状で細長形状の内部が中実の複数の熱伝達部であるヒートレーン2と円板形状の熱拡散部3で構成され、熱拡散部3の片面上には、外周に沿ってヒートレーン2の片端部が等間隔で接合される。ヒートレーン2と熱拡散部3は共に熱伝導性が良く、例えば、銅のような電波を遮蔽する材料や、あるいは鉄系材料のような磁気遮蔽が可能な金属材料で構成される。図1に示す熱拡散部3は円板形状であるが、カップ状や円環状の中空部に金網を張ったような構造でも良い。
Example 1.
FIG. 1 is a structural diagram of a heat dissipation component showing Embodiment 1 of the present invention. The heat dissipating component 1 is composed of a heat lane 2 which is a rod-like and elongated inside and a plurality of solid heat transfer parts and a disk-like heat diffusion part 3, and on one side of the heat diffusion part 3, along the outer periphery One end of the heat lane 2 is joined at equal intervals. Both the heat lane 2 and the thermal diffusion unit 3 have good thermal conductivity, and are made of, for example, a material that shields radio waves such as copper, or a metal material that can be magnetically shielded such as an iron-based material. The heat diffusion part 3 shown in FIG. 1 has a disk shape, but may have a structure in which a metal net is stretched in a cup-like or annular hollow part.
図2は、この発明の実施例1を示す放熱部品を取付けた回転電機の断面図である。図2に示すように、回転電機10は巻線が施された固定子53と、固定子53の内部で回転する回転子51と、回転子51に取付けられた回転軸52で構成される。56aと56bは回転軸52を保持する軸受である。固定子53は駆動ドライバ54によって通電、制御され、その結果、回転子51が回転し、回転軸52が回転する。 FIG. 2 is a cross-sectional view of a rotating electrical machine to which a heat dissipating component showing Embodiment 1 of the present invention is attached. As shown in FIG. 2, the rotating electrical machine 10 includes a stator 53 that is wound, a rotor 51 that rotates inside the stator 53, and a rotating shaft 52 that is attached to the rotor 51. Reference numerals 56 a and 56 b denote bearings for holding the rotating shaft 52. The stator 53 is energized and controlled by the drive driver 54. As a result, the rotor 51 rotates and the rotating shaft 52 rotates.
回転電機10で発生する熱の大半は、固定子53に施された巻線のジュール熱と固定子53を構成する複数の固定子コア11で発生する渦電流やヒステリシス損失によるものであり、固定子コア11は発生した熱の主要な放熱経路にあたる。棒状の複数のヒートレーン2は固定子コア11の内部に取付けられ、発生した熱を回転電機10の外に導く役割を果たす。 Most of the heat generated in the rotating electrical machine 10 is due to Joule heat of the windings applied to the stator 53 and eddy currents and hysteresis loss generated in the plurality of stator cores 11 constituting the stator 53. The child core 11 corresponds to a main heat dissipation path for the generated heat. The plurality of rod-shaped heat lanes 2 are attached to the inside of the stator core 11 and serve to guide the generated heat to the outside of the rotating electrical machine 10.
回転電機10の外に導かれた熱は、ヒートレーン2と接合された熱拡散部3に伝わり、熱拡散部3が放熱板の役割を果たす。熱拡散部3は、ファン電源55によって駆動されたファン13と対向する位置に設置されており、ファン13によって強制冷却される。 The heat guided to the outside of the rotating electrical machine 10 is transmitted to the heat diffusing unit 3 joined to the heat lane 2, and the heat diffusing unit 3 serves as a heat radiating plate. The heat diffusing unit 3 is installed at a position facing the fan 13 driven by the fan power supply 55 and is forcibly cooled by the fan 13.
熱拡散部3は、回転電機10のセンサの役割を果たす位置検出部であるエンコーダ12と対向する位置に設置されており、また、固定子コア11とヒートレーン2は接地されているため、結果的に熱拡散部3によって、エンコーダ12の周りには電磁遮蔽が形成されることになる。この電磁遮蔽の形成により、エンコーダ12のクロックによる電磁放射雑音がファン電源55に伝搬して回転電機10の外に放出されることを防止したり、逆にファン電源55から伝搬した雑音がエンコーダ12に影響を及ぼすことを防止することができる。 The heat diffusing unit 3 is installed at a position facing the encoder 12 that is a position detecting unit that functions as a sensor of the rotating electrical machine 10, and the stator core 11 and the heat lane 2 are grounded. In addition, an electromagnetic shield is formed around the encoder 12 by the heat diffusion unit 3. By forming this electromagnetic shielding, electromagnetic radiation noise caused by the clock of the encoder 12 is prevented from propagating to the fan power supply 55 and released to the outside of the rotating electrical machine 10, or conversely, noise propagated from the fan power supply 55 is Can be prevented.
さらに、この電磁遮蔽効果を高めるために、熱拡散部3にアース端子を設け、このアース端子を回転電機10のアース、ヒートレーン2のアース、エンコーダ12のアース、ファン13のアースとそれぞれ接続させても良い。 Further, in order to enhance the electromagnetic shielding effect, a ground terminal is provided in the heat diffusing section 3, and this ground terminal is connected to the ground of the rotating electrical machine 10, the ground of the heat lane 2, the ground of the encoder 12, and the ground of the fan 13, respectively. Also good.
図2では、ヒートレーン2は回転電機10の反負荷側端部に設けられたエンドカバー14を貫通するように取付けられているが、回転電機10の内部への水や埃の侵入を防ぐため、ヒートレーン2がエンドカバー14を貫通している貫通部分を、ゴムブッシュや樹脂で封止することで、全閉型の回転電機10を構成することが可能となる。 In FIG. 2, the heat lane 2 is attached so as to penetrate the end cover 14 provided at the opposite end of the rotating electrical machine 10, but in order to prevent water and dust from entering the rotating electrical machine 10, By sealing the penetration portion where the heat lane 2 penetrates the end cover 14 with a rubber bush or resin, it is possible to configure the fully-closed rotating electrical machine 10.
図3は、この発明の実施例1を示す固定子コアの形状模式図である。固定子53は固定子コア11を複数個円環状に繋げることで構成される。固定子コア11は、固定子53の外周部にあたるコアバック部25と巻線が施されるティース部26で構成されるが、この発明の実施例1では、コアバック部25の磁路を遮らない部分にヒートレーン2を挿入するための穴21を設けている。ヒートレーン2を穴21に挿入した際に生じる隙間は熱抵抗となるため、この隙間を熱伝導性の良い樹脂やグリス等で封止することで熱抵抗値を減少させることができる。ヒートレーン2が中空状の導管であり、かつ軟質な材料で構成されている場合は、ヒートレーン2の片端部を閉じて、もう一方の片端部から管路内部を加圧し、ヒートレーン2自身を拡張変形させることで、ヒートレーン2を穴21に挿入した際に生じる隙間を封止すると共に、ヒートレーン2を固定子コア11に対して固定することができる。 FIG. 3 is a schematic diagram of the shape of the stator core showing the first embodiment of the present invention. The stator 53 is configured by connecting a plurality of stator cores 11 in an annular shape. The stator core 11 includes a core back portion 25 corresponding to the outer peripheral portion of the stator 53 and a teeth portion 26 to which a winding is applied. In the first embodiment of the present invention, the magnetic path of the core back portion 25 is blocked. A hole 21 for inserting the heat lane 2 is provided in a portion that is not present. Since a gap generated when the heat lane 2 is inserted into the hole 21 becomes a thermal resistance, the thermal resistance value can be reduced by sealing the gap with a resin or grease having a good thermal conductivity. When the heat lane 2 is a hollow conduit and is made of a soft material, one end of the heat lane 2 is closed, the inside of the pipe line is pressurized from the other end, and the heat lane 2 itself is expanded and deformed. By doing so, the gap generated when the heat lane 2 is inserted into the hole 21 can be sealed, and the heat lane 2 can be fixed to the stator core 11.
図4は、この発明の実施例1を示す放熱部品を取付けた回転電機の断面図である。図4では、回転電機10の全長を短縮するため、回転電機10の回転軸52の方向に沿った側面にファン13を設置している。回転電機10の回転軸52の方向に沿った側面にファン13を設置する場合、ヒートレーン2は棒状の金属材料であることから、ヒートレーン2を曲げることで、ファン13の前面に熱拡散部3を設置することができる。この場合も、図2で示した構成と同様に、回転電機10より発せられる、主として駆動ドライバ54から伝搬する高周波雑音がファン電源55に伝搬することを防止することができる。 FIG. 4 is a cross-sectional view of a rotating electrical machine to which a heat dissipating component showing Embodiment 1 of the present invention is attached. In FIG. 4, the fan 13 is installed on the side surface of the rotating electrical machine 10 along the direction of the rotating shaft 52 in order to shorten the overall length of the rotating electrical machine 10. When the fan 13 is installed on the side surface along the direction of the rotating shaft 52 of the rotating electrical machine 10, since the heat lane 2 is a rod-shaped metal material, the heat diffusing unit 3 is placed on the front surface of the fan 13 by bending the heat lane 2. Can be installed. Also in this case, similarly to the configuration shown in FIG. 2, it is possible to prevent the high-frequency noise mainly transmitted from the drive driver 54 from the rotating electrical machine 10 from propagating to the fan power supply 55.
このようにコアバック部25に設けた穴21にヒートレーン2を挿入し、このヒートレーン2に接続される熱拡散部3に対してファン13による強制空冷を行い、さらに熱拡散部3を雑音源及び雑音伝搬経路となるファン13やエンコーダ12に対して対向するように設置すると共に、少なくともヒートレーン2もしくは熱拡散部3は接地されるようにしたので、放熱性を改善しつつ電磁雑音に対する耐性を強化でき、その結果、小型で高出力な回転電機を提供することが可能となる。 In this way, the heat lane 2 is inserted into the hole 21 provided in the core back portion 25, the air diffusion portion 3 connected to the heat lane 2 is subjected to forced air cooling by the fan 13, and the heat diffusion portion 3 is further connected to the noise source and Since it is installed so as to face the fan 13 and the encoder 12 serving as a noise propagation path, and at least the heat lane 2 or the heat diffusion unit 3 is grounded, the heat radiation is improved and the resistance to electromagnetic noise is enhanced. As a result, it is possible to provide a rotating electric machine that is small and has high output.
この発明の実施例1においては、図3に示すように、ヒートレーン2をコアバック部25に設けた穴21に挿入する場合について説明したが、図5に示すように、コアバック部25の外周部に切欠き61を設け、ヒートレーン21をこの切欠き61に接触するように挿入しても同様の効果を得ることができる。さらには、コアバック部25の外周面に直接ヒートレーン21を接触させても同様の効果を得ることができる。 In the first embodiment of the present invention, the case where the heat lane 2 is inserted into the hole 21 provided in the core back portion 25 as shown in FIG. 3 has been described. However, as shown in FIG. A similar effect can be obtained by providing a notch 61 in the part and inserting the heat lane 21 so as to contact the notch 61. Furthermore, the same effect can be obtained even if the heat lane 21 is brought into direct contact with the outer peripheral surface of the core back portion 25.
実施例2.
図6は、この発明の実施例2を示す放熱部品の構造図である。放熱部品100は棒状で細長形状の複数のヒートレーン21と円板形状の熱拡散部31で構成され、熱拡散部31の片面上には、外周に沿ってヒートレーン21の片端部が等間隔で接合される。ヒートレーン21はいずれも内部に貫通穴を有する中空の筒形状であり、その中空部の貫通穴は熱拡散部31を突き抜けて貫通している。
Example 2
FIG. 6 is a structural diagram of a heat dissipating component showing Embodiment 2 of the present invention. The heat dissipating component 100 is composed of a plurality of rod-like and elongate heat lanes 21 and a disk-shaped heat diffusing portion 31, and one end of the heat lane 21 is joined to one side of the heat diffusing portion 31 along the outer periphery at equal intervals. Is done. Each of the heat lanes 21 has a hollow cylindrical shape having a through hole inside, and the through hole of the hollow portion penetrates through the heat diffusing portion 31.
図7は、この発明の実施例2を示す放熱部品を取付けた回転電機の断面図である。図7に示すように、回転電機10の反負荷側である放熱部品100の取付け側と逆側である負荷側の一部には開口部15が存在し、ファン13の給排気によりヒートレーン21の内部を空気が移動することで、より効率良く固定子53を構成する複数の固定子コア11を冷却することができ、この発明の実施例1と同様の効果を得ることができる。 FIG. 7 is a sectional view of a rotating electrical machine to which a heat dissipating component showing Embodiment 2 of the present invention is attached. As shown in FIG. 7, an opening 15 exists in a part of the load side opposite to the mounting side of the heat dissipating component 100 that is the anti-load side of the rotating electrical machine 10. By moving the air inside, the plurality of stator cores 11 constituting the stator 53 can be cooled more efficiently, and the same effect as in the first embodiment of the present invention can be obtained.
実施例3.
図8は、この発明の実施例3を示す放熱部品を取付けた回転電機の断面図である。この発明の実施例1では、熱拡散部3は、ファン電源55によって駆動されたファン13と対向する位置に設置されており、ファン13によって強制冷却されていたが、この発明の実施例3では、図8に示すように、熱拡散部32を回転電機10の外枠71に直接接合している。このような構成をとることで、熱拡散部32の熱を外枠71に伝達することができ、固定子53を冷却することができると共に、ファン13を不要にすることができる。さらに、熱拡散部32を接地するため、エンコーダ12の周りには電磁遮蔽が形成されることになり、この発明の実施例1と同様の効果を得ることができる。
Example 3 FIG.
FIG. 8 is a cross-sectional view of a rotating electrical machine to which a heat dissipation component showing Embodiment 3 of the present invention is attached. In the first embodiment of the present invention, the heat diffusing unit 3 is installed at a position facing the fan 13 driven by the fan power supply 55 and is forcibly cooled by the fan 13, but in the third embodiment of the present invention, As shown in FIG. 8, the heat diffusion part 32 is directly joined to the outer frame 71 of the rotating electrical machine 10. By adopting such a configuration, the heat of the heat diffusing unit 32 can be transmitted to the outer frame 71, the stator 53 can be cooled, and the fan 13 can be made unnecessary. Furthermore, since the heat diffusion unit 32 is grounded, an electromagnetic shield is formed around the encoder 12, and the same effect as in the first embodiment of the present invention can be obtained.
 また、図8ではヒートレーン2は固定子コア11の内部を貫通するように取付けているが、図9に示すように、ヒートレーン22が固定子53の反負荷側の端面に接触するように取付けても良く、この発明の実施例1と同様の効果を得ることができる。 In FIG. 8, the heat lane 2 is attached so as to penetrate the inside of the stator core 11, but as shown in FIG. 9, the heat lane 22 is attached so as to be in contact with the end face on the counterload side of the stator 53. The same effects as those of the first embodiment of the present invention can be obtained.
実施例4.
図10と図11は、この発明の実施例4を示す放熱部品の構造図である。放熱部品101は棒状で細長形状の複数のヒートレーン23と円板形状の熱拡散部33で構成され、熱拡散部33の片面上には、外周に沿ってヒートレーン23の片端部が等間隔で接合される。ヒートレーン23はいずれも内部に貫通穴を有する中空の筒形状であり、熱拡散部33までその中空部の貫通穴は貫通している。図9と図10に示すように、中空のヒートレーン23を予め固定子53を構成する複数の固定子コア11の内部に取付け、隣接するヒートレーン23同士を、交互に管路接続部材41と熱拡散部33の内部に設けた隣接するヒートレーン23の間を接続する空洞部42で接続して、一本の管路を形成する。接合は溶接や管用ねじでもって行われ、形成された管路内に冷却水や冷媒等を流すことで、固定子53を構成する複数の固定子コア11を冷却することができ、この発明の実施例1と同様の効果を得ることができる。
Example 4
10 and 11 are structural diagrams of heat dissipating parts showing Embodiment 4 of the present invention. The heat dissipating component 101 is composed of a plurality of rod-shaped and elongated heat lanes 23 and a disk-shaped heat diffusing portion 33, and one end of the heat lane 23 is joined at equal intervals along the outer periphery on one surface of the heat diffusing portion 33. Is done. Each of the heat lanes 23 has a hollow cylindrical shape having a through hole inside, and the through hole of the hollow portion penetrates to the heat diffusion portion 33. As shown in FIGS. 9 and 10, a hollow heat lane 23 is attached in advance to the inside of the plurality of stator cores 11 constituting the stator 53, and the adjacent heat lanes 23 are alternately connected to the pipe connection member 41 and the heat diffusion. The pipes are formed by connecting the adjacent heat lanes 23 provided in the inside of the section 33 with a cavity 42 that connects the adjacent heat lanes 23. The joining is performed by welding or pipe screws, and by flowing cooling water, a refrigerant, or the like in the formed pipe line, the plurality of stator cores 11 constituting the stator 53 can be cooled. The same effect as in the first embodiment can be obtained.
この発明の実施例4では、隣接するヒートレーン23同士を接続して管路を形成しているが、接続の順番はこの方法に限ったものではない。 In Embodiment 4 of the present invention, adjacent heat lanes 23 are connected to form a pipe line, but the connection order is not limited to this method.
なお、この発明では、エンコーダ12を有するサーボモータを実施例として取り上げたが、トルクセンサを有するような張力制御用モータや、スイッチング素子を持ち駆動ドライバを有する、いわゆるインテリジェントモータなどの電子機器を搭載する回転電機、DCモータのブラシのように雑音源を持つ回転電機にも適用できる。 In the present invention, the servo motor having the encoder 12 is taken as an example, but electronic devices such as a tension control motor having a torque sensor and a so-called intelligent motor having a switching element and a drive driver are mounted. The present invention can also be applied to a rotating electric machine having a noise source such as a rotating electric machine or a brush of a DC motor.
1、100、101 放熱部品、2、21、22、23 ヒートレーン、3、31、32、33 熱拡散部、10 回転電機、11 固定子コア、12 エンコーダ、13 ファン、14 エンドカバー、15 開口部、21 穴、25 コアバック部、26 ティース部、41 管路接続部材、42 空洞部、51 回転子、52 回転軸、53 固定子、54 駆動ドライバ、55 ファン電源、56a、56b 軸受、61 切欠き、71 外枠。 1, 100, 101 Heat dissipation component 2, 21, 22, 23 Heat lane 3, 31, 32, 33 Heat diffusion part 10, Rotary electric machine, 11 Stator core, 12 Encoder, 13 Fan, 14 End cover, 15 Opening , 21 hole, 25 core back part, 26 tooth part, 41 pipe connection member, 42 hollow part, 51 rotor, 52 rotating shaft, 53 stator, 54 drive driver, 55 fan power supply, 56a, 56b bearing, 61 cut Missing, 71 outer frame.

Claims (9)

  1. 固定子を構成するコアバック部に接触される、熱伝導性を有し内部が中実もしくは中空の複数の熱伝達部と、
    熱伝導性を有し前記熱伝達部と接合する熱拡散部と、
    を具備することを特徴とする回転電機。
    A plurality of heat transfer parts which are in contact with the core back part constituting the stator and have a thermal conductivity and are solid or hollow inside;
    A thermal diffusion part having thermal conductivity and joined to the heat transfer part;
    A rotating electrical machine comprising:
  2. 前記熱伝達部は前記コアバック部に設けられた穴に挿入されることで接触することを特徴とする請求項1に記載の回転電機。 2. The rotating electrical machine according to claim 1, wherein the heat transfer unit is brought into contact with the heat transfer unit by being inserted into a hole provided in the core back unit.
  3. 前記熱伝達部と前記熱拡散部は導電性を有し、少なくとも前記熱伝達部もしくは前記熱拡散部は接地されることを特徴とする請求項1又は請求項2に記載の回転電機。 The rotating electrical machine according to claim 1, wherein the heat transfer unit and the heat diffusion unit have conductivity, and at least the heat transfer unit or the heat diffusion unit is grounded.
  4. 前記熱拡散部は前記回転電機の外枠に接合されることを特徴とする請求項1乃至請求項3のいずれかに記載の回転電機。 The rotating electrical machine according to any one of claims 1 to 3, wherein the heat diffusion portion is joined to an outer frame of the rotating electrical machine.
  5. 前記外枠は接地されることを特徴とする請求項4に記載の回転電機。 The rotating electrical machine according to claim 4, wherein the outer frame is grounded.
  6. 前記回転電機はファンを具備すると共に、前記熱拡散部は前記ファンと対向配置されることを特徴とする請求項1乃至請求項3のいずれかに記載の回転電機。 4. The rotating electrical machine according to claim 1, wherein the rotating electrical machine includes a fan, and the heat diffusion unit is disposed to face the fan.
  7. 前記回転電機は位置検出部を具備し、前記熱拡散部は前記位置検出部と対向配置されることを特徴とする請求項1乃至請求項6のいずれかに記載の回転電機。 The rotating electrical machine according to any one of claims 1 to 6, wherein the rotating electrical machine includes a position detection unit, and the heat diffusion unit is disposed to face the position detection unit.
  8. 前記位置検出部は接地されることを特徴とする請求項7に記載の回転電機。 The rotating electrical machine according to claim 7, wherein the position detection unit is grounded.
  9. 前記熱拡散部は内部に管路を有することを特徴とする請求項1乃至請求項8のいずれかに記載の回転電機。 The rotating electrical machine according to any one of claims 1 to 8, wherein the heat diffusion portion has a pipe line inside.
PCT/JP2016/055566 2016-02-25 2016-02-25 Dynamo-electric machine WO2017145313A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/055566 WO2017145313A1 (en) 2016-02-25 2016-02-25 Dynamo-electric machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/055566 WO2017145313A1 (en) 2016-02-25 2016-02-25 Dynamo-electric machine

Publications (1)

Publication Number Publication Date
WO2017145313A1 true WO2017145313A1 (en) 2017-08-31

Family

ID=59684846

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/055566 WO2017145313A1 (en) 2016-02-25 2016-02-25 Dynamo-electric machine

Country Status (1)

Country Link
WO (1) WO2017145313A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3114199A1 (en) * 2020-09-17 2022-03-18 Alstom Transport Technologies Railway electric motor comprising a cooling device and associated railway vehicle

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5713946A (en) * 1980-06-25 1982-01-25 Hitachi Ltd Rotary electric machine
JPH07123646A (en) * 1993-10-19 1995-05-12 Yamaha Motor Co Ltd Structure for cooling motor
JPH10174371A (en) * 1996-12-13 1998-06-26 Matsushita Electric Ind Co Ltd Cooler of motor
JP2003070208A (en) * 2001-08-29 2003-03-07 Yaskawa Electric Corp Ac servomotor
JP2006353067A (en) * 2005-06-20 2006-12-28 Asmo Co Ltd Control circuit unit for motor and manufacturing method therefor, and motor equipped with the control circuit unit for motor
JP2008289244A (en) * 2007-05-16 2008-11-27 Toyota Motor Corp Cooling structure of rotary electric machine
JP2008543266A (en) * 2005-05-31 2008-11-27 ヴァレオ エキプマン エレクトリク モトゥール Electronic modules for rotating electrical equipment
JP2009038940A (en) * 2007-08-03 2009-02-19 Nissan Motor Co Ltd Motor cooling device, motor cooling method, and vehicle mounted with motor having motor cooling device
JP2010268541A (en) * 2009-05-12 2010-11-25 Mitsubishi Electric Corp Rotating electrical machine

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5713946A (en) * 1980-06-25 1982-01-25 Hitachi Ltd Rotary electric machine
JPH07123646A (en) * 1993-10-19 1995-05-12 Yamaha Motor Co Ltd Structure for cooling motor
JPH10174371A (en) * 1996-12-13 1998-06-26 Matsushita Electric Ind Co Ltd Cooler of motor
JP2003070208A (en) * 2001-08-29 2003-03-07 Yaskawa Electric Corp Ac servomotor
JP2008543266A (en) * 2005-05-31 2008-11-27 ヴァレオ エキプマン エレクトリク モトゥール Electronic modules for rotating electrical equipment
JP2006353067A (en) * 2005-06-20 2006-12-28 Asmo Co Ltd Control circuit unit for motor and manufacturing method therefor, and motor equipped with the control circuit unit for motor
JP2008289244A (en) * 2007-05-16 2008-11-27 Toyota Motor Corp Cooling structure of rotary electric machine
JP2009038940A (en) * 2007-08-03 2009-02-19 Nissan Motor Co Ltd Motor cooling device, motor cooling method, and vehicle mounted with motor having motor cooling device
JP2010268541A (en) * 2009-05-12 2010-11-25 Mitsubishi Electric Corp Rotating electrical machine

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3114199A1 (en) * 2020-09-17 2022-03-18 Alstom Transport Technologies Railway electric motor comprising a cooling device and associated railway vehicle
EP3972094A1 (en) * 2020-09-17 2022-03-23 ALSTOM Transport Technologies Electric railway motor comprising a cooling device and associated railway vehicle

Similar Documents

Publication Publication Date Title
JP5220765B2 (en) AFPM coreless multi-generator and motor
JP5253789B2 (en) Brushless motor
TWI643433B (en) Rotary electric machine
JP2007037262A (en) Rotating electric machine with integrated inverter
JP5885179B2 (en) Mechanical and electric rotating machine
JP2007318885A (en) Brushless motor
JP2009022157A (en) Drive unit for hand tool device
JP2011041359A (en) Motor with built-in drive circuit
WO2014199769A1 (en) Rotating electric machine
CN103138484A (en) Cooling structure for brushless motor
JP2009095139A (en) Electric motor
JP2015065789A (en) Brushless motor and washing machine including the same
JP7395592B2 (en) Electric motor and air conditioner using it
JP2006353077A (en) Induction motor
US20140125166A1 (en) Rotating electrical machine
JP2008259383A (en) Brushless motor
WO2017145313A1 (en) Dynamo-electric machine
JP5885846B2 (en) Electric motor
WO2020179788A1 (en) Electric motor, fan, air conditioning device, and method for manufacturing electric motor
JP6964796B2 (en) Rotor, Consequent Pole Rotor, Motor, Blower, Refrigeration and Air Conditioner, Rotor Manufacturing Method, and Consequential Pole Rotor Manufacturing Method
JP5708432B2 (en) Rotating electric machine and air conditioner using the same
US10608504B2 (en) Rotary electric machine
JP7183401B2 (en) MOTOR, BLOWER, AIR CONDITIONER, AND MOTOR MANUFACTURING METHOD
JP2009130958A (en) Rotating electric machine
JP2017216862A (en) Controller built-in type rotary electric machine

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16891470

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 16891470

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP