WO2017143521A1 - 一种安全通信方法及核心网节点 - Google Patents

一种安全通信方法及核心网节点 Download PDF

Info

Publication number
WO2017143521A1
WO2017143521A1 PCT/CN2016/074365 CN2016074365W WO2017143521A1 WO 2017143521 A1 WO2017143521 A1 WO 2017143521A1 CN 2016074365 W CN2016074365 W CN 2016074365W WO 2017143521 A1 WO2017143521 A1 WO 2017143521A1
Authority
WO
WIPO (PCT)
Prior art keywords
core network
network node
hplmn
terminal
vplmn
Prior art date
Application number
PCT/CN2016/074365
Other languages
English (en)
French (fr)
Inventor
应江威
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP16890975.2A priority Critical patent/EP3407635A4/en
Priority to PCT/CN2016/074365 priority patent/WO2017143521A1/zh
Priority to CN201680081558.4A priority patent/CN108702620A/zh
Publication of WO2017143521A1 publication Critical patent/WO2017143521A1/zh
Priority to US16/110,469 priority patent/US20190014472A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L63/00Network architectures or network communication protocols for network security
    • H04L63/06Network architectures or network communication protocols for network security for supporting key management in a packet data network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L63/00Network architectures or network communication protocols for network security
    • H04L63/08Network architectures or network communication protocols for network security for authentication of entities
    • H04L63/0876Network architectures or network communication protocols for network security for authentication of entities based on the identity of the terminal or configuration, e.g. MAC address, hardware or software configuration or device fingerprint
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L63/00Network architectures or network communication protocols for network security
    • H04L63/08Network architectures or network communication protocols for network security for authentication of entities
    • H04L63/0892Network architectures or network communication protocols for network security for authentication of entities by using authentication-authorization-accounting [AAA] servers or protocols
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L63/00Network architectures or network communication protocols for network security
    • H04L63/20Network architectures or network communication protocols for network security for managing network security; network security policies in general
    • H04L63/205Network architectures or network communication protocols for network security for managing network security; network security policies in general involving negotiation or determination of the one or more network security mechanisms to be used, e.g. by negotiation between the client and the server or between peers or by selection according to the capabilities of the entities involved
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W12/00Security arrangements; Authentication; Protecting privacy or anonymity
    • H04W12/06Authentication
    • H04W12/068Authentication using credential vaults, e.g. password manager applications or one time password [OTP] applications
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/04Large scale networks; Deep hierarchical networks
    • H04W84/042Public Land Mobile systems, e.g. cellular systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/16Gateway arrangements

Definitions

  • the present invention relates to the field of communications technologies, and in particular, to a secure communication method and a core network node.
  • the information of the mobile communication system is transmitted on the wireless channel, which is easily eavesdropped, intercepted and tampered by the attacker, and the information of the communication system is often private.
  • the communication data needs to be secure. protection.
  • Cellular Internet of Thing (IoT) communication Cellular IoT data involves many data with high sensitivity, important, high privacy requirements and high security level requirements, which need not only security protection, It is also necessary to avoid accessing the data by the Visited Public Land Mobile Network (VPLMN).
  • a set of security mechanisms mainly involves three aspects: authentication, key agreement, and algorithm negotiation.
  • the existing mobile communication system uses authentication and key agreement mechanism (AKA) to implement authentication and key agreement; in addition, user equipment (User Equipment, UE) and evolved Node B (evolved NodeB abbreviated as: eNB or eNodeB) Algorithm negotiation is performed between the access stratum security mode command (AS SMC) and the non-access stratum security mode signaling between the UE and the Mobility Management Entity (MME). No Access Stratum Security Mode Command, NAS SMC) performs algorithm negotiation. Similarly, in order to ensure the security of Cellular IoT communication, it is also necessary to implement authentication, key agreement, and algorithm negotiation between the corresponding UE and the Home Public Land Mobile Network (HPLMN).
  • AKA authentication and key agreement mechanism
  • HPLMN Home Public Land Mobile Network
  • the communication scenario of the terminal includes a non-roaming scenario and a roaming scenario.
  • the user's security authentication can be completed in the Home Public Land Mobile Network (HPLMN) for secure communication.
  • HPLMN Home Public Land Mobile Network
  • VPLMN public land mobile network
  • HLR Home Location Register
  • HSS Home Subscriber Server
  • the embodiment of the invention provides a secure communication method and a core network node, so as to prevent the VPLMN network from acquiring the communication key used by the HPLMN network and improving communication security.
  • a secure communication method in which a core network node in a public land mobile network VPLMN transmits a first authentication data request to a first core network node in a home public land mobile network HPLMN, the first authentication data request
  • the terminal identifier of the terminal roaming into the VPLMN is included.
  • the first core network node in the home public land mobile network HPLMN receives the first authentication data request sent by the core network node in the public land mobile network VPLMN and sends a second authentication data request to the home location register HLR or the home subscriber server HSS,
  • the second authentication data request includes a terminal identifier that is included in the first authentication data request and roams to a terminal in the VPLMN.
  • the HLR or HSS generates an authentication vector for the core network node in the VPLMN to securely authenticate the terminal, and an end-to-end security for securing secure communication between the terminal and the second core network node in the HPLMN Key.
  • the HLR or the HSS sends a second authentication data response to a first core network node in the HPLMN, the second authentication data response including the authentication vector and the end-to-end security key.
  • a first core network node in the HPLMN receives a second authentication data response sent by the HLR or the HSS, and returns a first authentication data response to a core network node in the VPLMN, and to the HPLMN
  • the second core network node sends an end-to-end notification, where the first authentication data response includes the authentication vector, and the end-to-end key notification includes the terminal identifier and an end-to-end security key.
  • the second core network node in the HPLMN receives the end-to-end key notification sent by the first core network node in the HPLMN, parses the end-to-end security key, and selects the end-to-end security algorithm in the security algorithm supported by the terminal. Ending security algorithm to complete key agreement and algorithm negotiation between the terminal and the second core network node in the HPLMN, the second core network node in the HPLMN is based on the end-to-end security key and the selected end-to-end
  • the terminal security algorithm performs secure communication with the terminal corresponding to the terminal identifier, which can prevent the security key in the HPLMN from being acquired by the VPLMN, and protects the end-to-end security between the UE and the HPLMN network. In the embodiment of the present invention, no direct interaction is required between the HLR/HSS and the second core network node in the HPLMN, so that the interface between the second core network node and the HLR/HSS in the HPLMN can be avoided.
  • the core network node in the VPLMN may be in the first core network node in the HPLMN if it is determined that the communication data of the terminal in the VPLMN needs to be routed to the core network node of the HPLMN. Send the first authentication data request.
  • the core network node in the VPLMN determines that the communication data of the terminal in the VPLMN needs to be routed to the core network node of the HPLMN by using the terminal identifier sent by the terminal, where the terminal identifier can represent that the communication data of the terminal needs to be routed. Go to the core network node of the HPLMN; or the core network node in the VPLMN determines that the communication data of the terminal in the VPLMN needs to be routed to the core network node of the HPLMN, and the indication information is used to indicate the terminal. The communication data needs to be routed to the core network node of the HPLMN.
  • the core network node in the VPLMN may select a second core network node in the HPLMN for the terminal, and include the second core network node in the selected HPLMN in the first authentication data request. Address, the address of the second core network node in the selected HPLMN is sent to the first core network node in the HPLMN, and the first core network node in the HPLMN is based on Addressing the address of the second core network node, and transmitting an end-to-end key notification to the second core network node in the HPLMN indicated by the address.
  • the above-mentioned secure communication method can be applied to a General Packet Radio Service (GPRS) system.
  • the core network node in the VPLMN may be a serving general packet radio service GPRS support node SGSN in the VPLMN, a first core network node in the HPLMN is an SGSN in the HPLMN, and a second in the HPLMN
  • the core network node is a Gateway General Packet Radio Service GPRS Support Node in the HPLMN.
  • the above-mentioned secure communication method can also be applied to a System Architecture Evolution (SAE) system.
  • SAE System Architecture Evolution
  • the core network node in the VPLMN may be the mobility management entity MME in the VPLMN
  • the first core network node in the HPLMN is the MME in the HPLMN
  • the second core network node in the HPLMN is A packet data network gateway in the HPLMN.
  • the above-mentioned secure communication method is applied to different communication scenarios, and different algorithm negotiation processes may be adopted between the second core network node in the HPLMN and the terminal roaming into the VPLMN.
  • the core network node in the VPLMN sends the security algorithm supported by the terminal to the first core network node in the HPLMN, and the first core network node in the HPLMN sends the security algorithm supported by the terminal to the second core network node in the HPLMN, in the HPLMN.
  • the second core network node selects the required end-to-end security algorithm in the security algorithm supported by the terminal, and sends the selected end-to-end security algorithm to the terminal for complete algorithm negotiation.
  • the core network node in the VPLMN may include a security algorithm supported by the terminal in the first authentication data request sent to the first core network node in the HPLMN.
  • the security algorithm supported by the terminal can be reported to the core network node in the VPLMN through the network capability supported by the terminal.
  • the first core network node in the HPLMN may include the security algorithm supported by the terminal in an end-to-end key notification sent to the second core network node in the HPLMN.
  • the second core network node in the HPLMN may complete the security algorithm supported by the terminal and the selected end-to-end security algorithm based on an integrity protection algorithm and an integrity key.
  • sexual protection generating a message verification value, and sending the message verification value, the security algorithm supported by the terminal, and the selected end-to-end security algorithm to the terminal corresponding to the terminal identifier.
  • the second core network node in the HPLMN may include the message verification value, the security algorithm supported by the terminal, and the selection in the reply message of the end-to-end key notification sent to the first core network node in the HPLMN.
  • the end-to-end security algorithm The first core network node in the HPLMN includes the message verification value, the security algorithm supported by the terminal, and the selected end-to-end security algorithm in the first authentication data response sent to the core network node in the VPLMN.
  • the core network node in the VPLMN receives the first authentication data response, and sends the message verification value, the security algorithm supported by the terminal, and the selected end-to-end security algorithm to the terminal identifier.
  • the terminal completes algorithm negotiation between the second core network node and the terminal in the HPLMN.
  • the activation process of the PDP context may be used to perform algorithm negotiation between the second core network node and the terminal in the HPLMN to obtain an end-to-end security algorithm.
  • the implementation process is as follows:
  • the core network node in the VPLMN sends a Create PDP Context Request message to the second core network node in the HPLMN, where the Create PDP Context Request message includes a security algorithm supported by the terminal.
  • the second core network node in the HPLMN obtains a create PDP context request message sent by the core network node in the VPLMN, and determines a security algorithm supported by the terminal by using the create PDP context request message, and the security supported by the terminal
  • the end-to-end security algorithm is chosen in the algorithm.
  • a second core network node in the HPLMN returns a create PDP context response message to a core network node in the VPLMN, where the create PDP context response message includes an end-to-end selected by a second core network node in the HPLMN Security algorithm.
  • the second core network node in the HPLMN in the embodiment of the present invention may perform, according to the integrity protection algorithm and the integrity key, the security algorithm supported by the terminal and the selected end-to-end security algorithm. Integrity protection, generating a message verification value, and sending the message verification value, the security algorithm supported by the terminal, and the selected end-to-end security algorithm to the terminal corresponding to the terminal identifier, that is, the creating PDP context
  • the response message includes a verification value, a security algorithm supported by the terminal, and the selected end-to-end security algorithm.
  • the core network node in the VPLMN receives the Create PDP Context Response message returned by the second core network node in the HPLMN, and selects the second core network node in the HPLMN included in the Create PDP Context Response message.
  • the end-to-end security algorithm sends the terminal corresponding to the terminal identifier.
  • the second core network node in the HPLMN generates a message verification value
  • the second core network node and the terminal in the HPLMN can perform algorithm negotiation in the session creation process to obtain an end-to-end security algorithm, and the implementation process is as follows:
  • the core network node in the VPLMN sends a create session request message to the second core network node in the HPLMN, where the create session request message includes a security algorithm supported by the terminal.
  • the second core network node in the HPLMN obtains a create session request message sent by the core network node in the VPLMN, and determines a security algorithm supported by the terminal by using the create session request message, and is in a security algorithm supported by the terminal. Choose an end-to-end security algorithm.
  • a second core network node in the HPLMN returns a create session response message to a core network node in the VPLMN, where the create session response message includes an end-to-end security algorithm selected by a second core network node in the HPLMN .
  • the second core network node in the HPLMN in the embodiment of the present invention may perform, according to the integrity protection algorithm and the integrity key, the security algorithm supported by the terminal and the selected end-to-end security algorithm. Integrity protection, generating a message verification value, and sending the message verification value, the security algorithm supported by the terminal, and the selected end-to-end security algorithm to the terminal corresponding to the terminal identifier, that is, the creation session response
  • the message includes a verification value, a security algorithm supported by the terminal, and the selected end-to-end security algorithm.
  • the core network node in the VPLMN receives the create session response message returned by the second core network node in the HPLMN, and selects the second core network node in the HPLMN included in the create session response message.
  • the end-to-end security algorithm sends the end corresponding to the terminal identifier end.
  • the second core network node in the HPLMN generates a message verification value
  • the second core network node and the terminal in the HPLMN can perform algorithm negotiation through a separate algorithm negotiation process to obtain an end-to-end security algorithm, and the implementation process is as follows:
  • the core network node in the VPLMN sends an algorithm negotiation request message to the second core network node in the HPLMN, where the algorithm negotiation request message includes a security algorithm supported by the terminal.
  • the second core network node in the HPLMN obtains an algorithm negotiation request message sent by the core network node in the VPLMN, and determines a security algorithm supported by the terminal by using the algorithm negotiation request message, and is in the security algorithm supported by the terminal. Choose an end-to-end security algorithm.
  • the second core network node in the HPLMN returns an algorithm negotiation response message to the core network node in the VPLMN, where the algorithm negotiation response message includes an end-to-end security algorithm selected by the second core network node in the HPLMN. .
  • the second core network node in the HPLMN in the embodiment of the present invention may perform, according to the integrity protection algorithm and the integrity key, the security algorithm supported by the terminal and the selected end-to-end security algorithm. Integrity protection, generating a message verification value, and sending the message verification value, the security algorithm supported by the terminal, and the selected end-to-end security algorithm to the terminal corresponding to the terminal identifier, that is, the algorithm negotiates a response
  • the message includes a verification value, a security algorithm supported by the terminal, and the selected end-to-end security algorithm.
  • the core network node in the VPLMN receives an algorithm negotiation response message returned by the second core network node in the HPLMN, and selects the second core network node in the HPLMN included in the algorithm negotiation response message.
  • the end-to-end security algorithm sends the terminal corresponding to the terminal identifier.
  • the second core network node in the HPLMN generates a message verification value
  • a core network node which is applied to the VPLMN and has the function of implementing the behavior of the core network node in the VPLMN in the above method design.
  • the functions may be implemented by hardware or by corresponding software implemented by hardware.
  • the hardware or software includes one or more modules corresponding to the functions described above.
  • the core network node in the VPLMN includes a processor, a receiver, and a transmitter configured to support a core network node to perform a corresponding function in the above method.
  • the receiver and the transmitter are configured to support communication between a core network node and a terminal in the VPLMN, a core network node in the VPLMN, and a first core network node and a second core network node in the HPLMN, Perform the interaction of the information involved in the above method.
  • the core network node in the VPLMN may also include a memory for coupling with the processor that holds the necessary program instructions and data for the core network node.
  • a first core network node in the HPLMN having the function of implementing the behavior of the first core network node in the HPLMN in the above method design.
  • the functions may be implemented by hardware or by corresponding software implemented by hardware.
  • the hardware or software includes one or more modules corresponding to the functions described above.
  • the structure of the first core network node in the HPLMN includes a receiver and a transmitter.
  • the receiver and the transmitter are configured to support communication between a first core network node in the HPLMN and a core network node in the VPLMN, a first core network node in the HPLMN, and a second core network node in the HPLMN , the interaction of the information involved in the above method.
  • a second core network node in the HPLMN having the function of implementing the behavior of the second core network node in the HPLMN in the above method design.
  • the functions may be implemented by hardware or by corresponding software implemented by hardware.
  • the hardware or software includes one or more modules corresponding to the functions described above.
  • the structure of the second core network node in the HPLMN includes a processor, a receiver, and a transmitter, and the processor is configured to support a second core network node in the HPLMN to perform the foregoing method.
  • the receiver and the transmitter are used to support the HPLMN
  • the communication between the second core network node and the core network node in the VPLMN, the second core network node in the HPLMN, and the first core network node in the HPLMN performs the interaction of information involved in the foregoing method.
  • a communication system comprising a core network node in a VPLMN related to the above aspect, a first core network node in the HPLMN, and a second core network node in the HPLMN.
  • an embodiment of the present invention provides a computer storage medium for storing computer software instructions used by a core network node in the VPLMN, which includes a program designed to perform the above aspects.
  • an embodiment of the present invention provides a computer storage medium for storing computer software instructions used by a first core network node in the HPLMN, including a program designed to perform the above aspects.
  • an embodiment of the present invention provides a computer storage medium for storing computer software instructions used by a second core network node in the HPLMN, including a program designed to perform the above aspects.
  • the secure communication method provided by the embodiment of the present invention can prevent the security key in the HPLMN from being acquired by the VPLMN, and protect the end-to-end security between the UE and the HPLMN network.
  • no direct interaction is required between the HLR/HSS and the second core network node in the HPLMN, so that the interface between the second core network node and the HLR/HSS in the HPLMN can be avoided.
  • FIG. 1 is a schematic structural diagram of a communication scenario to which an embodiment of the present invention is applied;
  • FIG. 2 is a schematic diagram of a GPRS system architecture
  • FIG. 3 is a schematic diagram of the architecture of the SAE system
  • FIG. 4 is a process of key negotiation in a secure communication method in a GPRS scenario according to an embodiment of the present invention.
  • FIG. 5A to FIG. 5B are flowcharts showing an implementation of a secure communication method in a GPRS scenario according to an embodiment of the present invention
  • FIG. 6 is a flowchart of an implementation of a key negotiation process in a secure communication method in an SAE scenario according to an embodiment of the present disclosure
  • FIGS. 7A to 7C are flowcharts showing an implementation of a secure communication method in an SAE scenario according to an embodiment of the present invention.
  • FIG. 8 is a schematic structural diagram of a core network node in a VPLMN according to an embodiment of the present disclosure
  • FIG. 9 is another schematic structural diagram of a core network node in a VPLMN according to an embodiment of the present disclosure.
  • FIG. 10 is a schematic structural diagram of a first core network node in an HPLMN according to an embodiment of the present disclosure.
  • FIG. 11 is another schematic structural diagram of a first core network node in an HPLMN according to an embodiment of the present disclosure.
  • FIG. 12 is a schematic structural diagram of a second core network node in an HPLMN according to an embodiment of the present disclosure.
  • FIG. 13 is another schematic structural diagram of a second core network node in an HPLMN according to an embodiment of the present invention.
  • the communication method provided by the embodiment of the present invention can be applied to the communication architecture in the roaming scenario shown in FIG. 1.
  • the terminal accesses the network through a radio access network in a Visited Public Land Mobile Network (VPLMN).
  • VPLMN Visited Public Land Mobile Network
  • a Home Location Register (HLR) or a Home Subscriber Server (HSS) in the Home Public Land Mobile Network (HPLMN) may be generated for the terminal and the HPLMN second core network node.
  • HLR Home Location Register
  • HSS Home Subscriber Server
  • HPLMN Home Public Land Mobile Network
  • a security key for secure communication After the core network node in the VPLMN completes the security authentication for the terminal roaming into its network, the terminal can access the packet data network (Packet Data Network) through the second core network node in the HPLMN network.
  • PDN Packet Data Network
  • the corresponding application server The corresponding application server.
  • the first core network node of the HPLMN network may associate the authentication and key agreement (AKA) in the VPLMN network. Routing (authentication data request) to the HPLMN network and further to the HLR or HSS of the HPLMN network, and passing the security key generated by the HLR or HSS to the second core of the HPLMN network by the first core network node of the HPLMN network.
  • the network node selects a security algorithm used by the terminal to communicate with the terminal by the second core network node in the HPLMN network to ensure that the key used by the HPLMN network is not acquired by the VPLMN network, thereby ensuring end-to-end security of communication between the UE and the HPLMN network.
  • the communication method provided by the embodiment of the present invention can be applied to the General Packet Radio Service (GPRS) system shown in FIG. 2 or the System Architecture Evolution (SAE) system shown in FIG. 3.
  • GPRS General Packet Radio Service
  • SAE System Architecture Evolution
  • the core network node in the VPLMN network in the GPRS system may be a Serving GPRS Support Node (SGSN) in the VPLMN network.
  • SGSN Serving GPRS Support Node
  • the first core network node of the HPLMN network may be an SGSN in the HPLMN network.
  • the SGSN in the HPLMN network is referred to as SGSN-H.
  • the second core network node of the HPLMN network may be a Gateway GPRS Support Node (GGSN) in the HPLMN network.
  • GGSN-H Gateway GPRS Support Node
  • the core network node in the VPLMN network in the SAE system may be a Mobility Management Entity (MME) in the VPLMN network.
  • MME Mobility Management Entity
  • the first core network node of the HPLMN network may be an MME in the HPLMN network.
  • the second core network node of the HPLMN network may be a Packet Data Network Gateway (P-GW) in the HPLMN network.
  • P-GW Packet Data Network Gateway
  • the P-GW in the HPLMN network is referred to as P. -GW -H.
  • the terminal may include various handheld devices having wireless communication functions, in-vehicle devices, wearable devices, computing devices, or other processing devices connected to the wireless modem, and various forms of User Equipment (UE), mobile stations (Mobile) Station, MS), terminal, terminal equipment, etc.
  • UE User Equipment
  • MS mobile stations
  • terminal equipment etc.
  • a plurality means two or more.
  • "and/or” describing the association relationship of the associated objects, indicating that there may be three relationships, for example, A and/or B, which may indicate that there are three cases where A exists separately, A and B exist at the same time, and B exists separately.
  • the character "/" generally indicates that the contextual object is an "or" relationship.
  • /MME-V can be replaced with the core network node in the VPLMN
  • SGSN-H/MME-H can be replaced with the first core network node in the HPLMN
  • GGSN-H/P-GW-H can be replaced with the second in the HPLMN Core network node.
  • FIG. 4 is a flowchart of an implementation of a key negotiation process in a secure communication method in a GPRS system according to an embodiment of the present invention. As shown in FIG. 4, the method includes:
  • the SGSN-V sends a first authentication data request to the SGSN-H.
  • the SGSN-V can implement the routing of the AKA signaling into the HPLMN network by sending an authentication data request to the SGSN-H.
  • the authentication data request sent by the SGSN-V to the SGSN-H is referred to as a first authentication data request, and the first authentication data request may include a terminal roaming to the terminal in the VPLMN.
  • logo The terminal identifier in the embodiment of the present invention may be an International Mobile Subscriber Identification Number (IMSI), or a Temporary Mobile Subscriber Identity (TMSI) or a Globally Unique Temporary UE Identity (Globally Unique Temporary UE Identity). , GUTI).
  • IMSI International Mobile Subscriber Identification Number
  • TMSI Temporary Mobile Subscriber Identity
  • GUTI Globally Unique Temporary UE Identity
  • the SGSN-V may send the first authentication number to the SGSN-H if it is determined that the communication data of the terminal in the VPLMN needs to be routed to the core network node of the HPLMN. Upon request.
  • the SGSN-V may determine that the communication data of the terminal in the VPLMN needs to be routed to the core network node of the HPLMN as follows:
  • the first mode the terminal roaming to the VPLMN sends a terminal identifier to the SGSN-V, where the terminal identifier may be included in an attach or routing area update request sent by the terminal to the SGSN-V, and the terminal identifier may be characterized.
  • the communication data of the terminal needs to be routed to the core network node of the HPLMN, and the SGSN-V can determine that the communication data of the terminal in the VPLMN needs to be routed to the core network node of the HPLMN through the terminal identifier sent by the terminal.
  • the second mode the terminal roaming to the VPLMN sends the terminal identifier and the indication information to the SGSN-V, where the terminal identifier and the indication information may be included in the attach or routing area update request sent by the terminal to the SGSN-V.
  • the terminal identifier cannot indicate that the communication data of the terminal in the VPLMN needs to be routed to the core network node of the HPLMN, and the indication information is used to indicate that the communication data of the terminal needs to be routed to the core network node of the HPLMN.
  • the SGSN-V may determine, by using the indication information sent by the terminal, that the communication data of the terminal in the VPLMN needs to be routed to the core network node of the HPLMN.
  • the SGSN-H receives the first authentication data request sent by the SGSN-V, and sends a second authentication data request to the HLR or the HSS.
  • the authentication data request that is convenient for sending the SGSN-H to the HLR or the HSS is referred to as a second authentication data request.
  • the second authentication data request includes a terminal identifier that roams to a terminal in the VPLMN.
  • the HLR or the HSS searches for the subscription information of the terminal according to the terminal identifier included in the second authentication data request sent by the SGSN-H, and generates an authentication vector (Authentication Vectors, AV) and an end-to-end security key.
  • AV Authentication Vectors
  • the authentication vector is used by the SGSN-V to perform security authentication on the terminal, and the end-to-end security key is used to secure communication between the terminal and the second core network node in the HPLMN. .
  • the end-to-end security key may include, for example, an encryption key (Ciphering Key, CK) and Integrity Key (IK), for convenience of description, the CK included in the end-to-end security key is called Kc_m2m, and the IK included in the end-to-end security key is called Ki_m2m.
  • CK Ciphering Key
  • IK Integrity Key
  • the difference from the prior art is that not only the authentication vector AV but also the end-to-end security keys (Kc_m2m and Ki_m2m) are generated.
  • the HLR/HSS sends a second authentication data response to the SGSN-H, where the second authentication data response includes an authentication vector AV and an end-to-end security key (Kc_m2m and Ki_m2m) to generate the generated authentication vector AV and the end.
  • the end security keys (Kc_m2m and Ki_m2m) are sent to the SGSN-H.
  • the SGSN-H receives the second authentication data response sent by the HLR/HSS, obtains the authentication vector AV and the end-to-end security key (Kc_m2m and Ki_m2m), and sends an end-to-end key notification to the GGSN-H,
  • the end-to-end key notification includes an end-to-end security key (Kc_m2m and Ki_m2m) and a terminal identifier (such as an IMSI) roaming to the terminal in the VPLMN.
  • the SGSN-V may select the GGSN-H that performs secure communication with the terminal, and includes the address of the selected GGSN-H in the first authentication data request sent to the SGSN-H, so the SGSN-H in the S105 may be based on the The address of the GGSN-H included in the authentication data request is sent to the corresponding GGSN-H by the end-to-end security key (Kc_m2m and Ki_m2m) and the terminal identifier (such as IMSI) roaming to the terminal in the VPLMN.
  • Kc_m2m and Ki_m2m the end-to-end security key
  • the terminal identifier such as IMSI
  • the GGSN-H receives the end-to-end key notification sent by the GGSN-H, and saves the end-to-end security key (Kc_m2m and Ki_m2m) in the end-to-end key notification and the terminal identifier of the terminal roaming to the VPLMN (such as IMSI), and the end-to-end security keys (Kc_m2m and Ki_m2m) and the terminal identifiers roaming to the terminals in the VPLMN have a fixed correspondence.
  • the GGSN-H sends a reply message of the end-to-end key notification to the SGSN-H.
  • the SGSN-H sends a first authentication data response to the SGSN-V, where the first authentication data response includes an authentication vector AV.
  • the SGSN-H sends the first authentication data response to the SGSN-V in S108, and the execution sequence of the SGSN-H sending the end-to-end key notification to the GGSN-H in S105 is in no particular order.
  • S109 The terminal and the SGSN-V perform based on the authentication vector included in the first authentication data response. Security authentication and key negotiation.
  • the terminal generates an end-to-end security key for secure communication with the GGSN-H.
  • the terminal and the SGSN-V perform key agreement to enable the terminal to obtain an end-to-end security key for secure communication between the terminal and the second core network node in the HPLMN.
  • Performing algorithm negotiation between the terminal and the GGSN-H to obtain an end-to-end security algorithm, and the terminal corresponding to the terminal identifier is based on the end-to-end security key and the end-to-end security algorithm between the terminal and the GGSN-H Conduct secure communication.
  • a packet data protocol (PDP) context activation process may be used between the terminal and the GGSN-H to perform algorithm negotiation, and an end-to-end security algorithm is obtained.
  • PDP packet data protocol
  • FIG. 5A is a flowchart of an implementation of a secure communication method in a GPRS system according to an embodiment of the present invention.
  • the key negotiation process of the secure communication method shown in FIG. 5A can be implemented by using the method flow shown in FIG. 4, and details are not described herein again. The following focuses on the algorithm negotiation process.
  • the implementation process is as follows:
  • the terminal sends an activation PDP context request message to the SGSN-V, where the activation PDP context request message includes a security algorithm supported by the terminal.
  • the SGSN-V sends a Create PDP Context Request message to the GGSN-H, where the Create PDP Context Request message includes a security algorithm supported by the terminal.
  • the GGSN-H obtains a Create PDP Context Request message sent by the SGSN-V, determines a security algorithm supported by the terminal by using the Create PDP Context Request message, and selects an end-to-end in a security algorithm supported by the terminal.
  • the security algorithm may include an integrity protection algorithm alg_int_H, and may of course also include an encryption protection algorithm alg_enc_H.
  • the GGSN-H returns a Create PDP Context Response message to the SGSN-V, where the Create PDP Context Response message includes an end-to-end security algorithm selected by the second core network node in the HPLMN.
  • the GGSN-H may perform integrity protection on the security algorithm supported by the terminal and the selected end-to-end security algorithm based on an integrity protection algorithm and an integrity key, and generate The message verification value MAC-I_H, and the message verification value, the security algorithm supported by the terminal, and the selected end-to-end security algorithm are sent to the terminal corresponding to the terminal identifier, that is,
  • the create PDP context response message includes a verification value, a security algorithm supported by the terminal, and the selected end-to-end security algorithm.
  • the message verification value generated by the GGSN-H in the embodiment of the present invention is used to enable the terminal to identify that the end-to-end security algorithm is indeed sent by the GGSN-H.
  • the SGSN-V receives the Create PDP Context Response message returned by the GGSN-H, and the verification value included in the Create PDP Context Response message, the security algorithm supported by the terminal, and the selected end-to-end The security algorithm sends the terminal corresponding to the terminal identifier.
  • S116 The terminal and the GGSN-H perform secure communication based on the end-to-end security key and the end-to-end security algorithm.
  • algorithm negotiation may be performed between the terminal and the GGSN-H during the key negotiation process.
  • FIG. 5B is a flowchart showing another implementation of a secure communication method in a GPRS system according to an embodiment of the present invention. As shown in FIG. 5B, the method includes:
  • S201, S202, S203, S204, and S205 are similar to S101, S102, S103, S104, and S105 in FIG. 4, respectively, in that the SGSN-V sends the first authentication data request to the SGSN-H and the SGSN-H.
  • the end-to-end key notification sent to the GGSN-H also includes a security algorithm supported by the terminal.
  • S206 is similar to S106, except that in this step, the GGSN-H can select the end-to-end security for secure communication with the terminal based on the security algorithm supported by the terminal included in the end-to-end key notification.
  • the algorithm sends the selected end-to-end security algorithm to the SGSN-H through a reply message of the end-to-end key notification.
  • GGSN-H can also generate message verification values in this step.
  • the GGSN-H sends a reply message of the end-to-end key notification to the SGSN-H, which is different from S107, wherein the end-to-end key notification reply message further includes the end-to-end security selected by the GGSN-H. algorithm.
  • the reply message of the end-to-end key notification includes a message verification value, a security algorithm supported by the terminal, and a second core network node in the HPLMN.
  • the SGSN-H sends a first authentication data response to the SGSN-V.
  • the difference from the S108 is that the first authentication data response further includes an end-to-end security algorithm selected by the GGSN-H.
  • the first authentication data response further includes a message verification value, a security algorithm supported by the terminal, and an end-to-end security algorithm selected by the second core network node in the HPLMN. .
  • S209 is similar to S109, and performs security authentication and key agreement based on the authentication vector included in the first authentication data response.
  • S210 is similar to S110 in that the terminal generates an end-to-end security key for secure communication with the GGSN-H.
  • the SGSN-V sends the end-to-end security algorithm selected by the GGSN-H included in the first authentication data response to the terminal corresponding to the terminal identifier.
  • the SGSN-V sends the message verification value, the security algorithm supported by the terminal, and the end-to-end security algorithm selected by the GGSN-H to the terminal identifier. Corresponding terminal.
  • S212 The terminal and the GGSN-H perform secure communication based on the end-to-end security key and the end-to-end security algorithm.
  • FIG. 6 is a flowchart of an implementation of key negotiation in a secure communication method in an SAE system according to an embodiment of the present invention.
  • S301, S302, S303, S304, S305, S306, S307, S308, S309, and S310 in FIG. 6 are the same as S101, S102, S103, S104, S105, S106, S107, S108, S109, and S110 in FIG. 4, respectively.
  • the SGSN-V is replaced by MME-V
  • SGSN-H is replaced by MME-H
  • GGSN-H is replaced by P-GW-H.
  • the MME-V may determine, by using the terminal identifier or the indication information sent by the terminal to the MME-V, that the communication data of the terminal in the VPLMN needs to be routed to the core network node of the HPLMN, where
  • the terminal identity or the indication information may be included in an attach or tracking area update request. That is, the MME-V can update the attachment or tracking area sent by the terminal to the MME-V.
  • the communication identifier data included in the request may be used to identify the terminal identifier of the core network node of the HPLMN, or the terminal identifier and indication information included in the attach or tracking area update request may be sent to the MME-V by the terminal to determine the VPLMN.
  • the communication data of the terminal needs to be routed to the core network node of the HPLMN.
  • the MME-H can exchange information between the Serving Gateway (S-GW-H) and the P-GW-H in the HPLMN.
  • the algorithm can be negotiated between the terminal and the P-GW-H during the session creation process to obtain an end-to-end security algorithm.
  • FIG. 7A is a flowchart of an implementation of a secure communication method in an SAE system according to an embodiment of the present invention.
  • the key negotiation process of the secure communication method shown in FIG. 7A can be implemented by using the method flow shown in FIG. 6, and details are not described herein again. The following focuses on the algorithm negotiation process.
  • the implementation process is as follows:
  • S311 The MME-V sends a create session request message to the P-GW-H, where the create session request message includes a security algorithm supported by the terminal.
  • the P-GW-H acquires a create session request message sent by the MME-V, determines a security algorithm supported by the terminal by using the create session request message, and selects an end-to-end in a security algorithm supported by the terminal.
  • the security algorithm may include an integrity protection algorithm alg_int_H, and may of course also include an encryption protection algorithm alg_enc_H.
  • the P-GW-H returns a create session response message to the MME-V, where the create session response message includes an end-to-end security algorithm selected by the second core network node in the HPLMN.
  • the P-GW-H may perform integrity protection on the security algorithm supported by the terminal and the selected end-to-end security algorithm based on an integrity protection algorithm and an integrity key. And generating a message verification value MAC-I_H, and sending the message verification value, the security algorithm supported by the terminal, and the selected end-to-end security algorithm to the terminal corresponding to the terminal identifier, that is, creating the session response
  • the message includes a verification value, a security algorithm supported by the terminal, and the selected end-to-end security algorithm.
  • the message verification value generated by the GGSN-H in the embodiment of the present invention is used to enable the terminal to identify the end-to-end
  • the security algorithm is indeed sent by GGSN-H.
  • S314 The MME-V receives the create session response message returned by the P-GW-H, and sends the selected end-to-end security algorithm included in the create session response message to the terminal corresponding to the terminal identifier. .
  • the P-GW-H generates a message verification value
  • S315 The terminal and the P-GW-H perform secure communication based on the end-to-end security key and the end-to-end security algorithm.
  • the MME-V can perform information interaction between the Serving Gateway (S-GW-V) and the P-GW-H in the VPLMN, that is, the MME-V can be used first.
  • the create session request message is sent to the S-GW-V, and the create session request message is sent by the S-GW-V to the P-GW-H.
  • an end-to-end security algorithm may be obtained by using a separate algorithm negotiation process between the terminal and the P-GW-H.
  • the specific implementation process is as shown in FIG.
  • FIG. 7B is a flowchart showing another implementation method of performing secure communication in an SAE system according to an embodiment of the present invention.
  • S401, S402, S403, S404, S405, S406, S407, S408, S409, and S410 are respectively associated with S301, S302, S303, S304, S305, S306, S307, S308 in FIG. S309 and S310 are the same and will not be described here.
  • S411, S412, S413, S414, and S415 are similar to S311, S312, S313, S314, and S315 in FIG. 6, respectively, except that the creation session request message is replaced with an algorithm negotiation request message, and the creation session is The response message is replaced with an algorithm negotiation response message, so it will not be described here.
  • algorithm negotiation can be performed between the terminal and the P-GW-H during key negotiation.
  • FIG. 7C is a flowchart showing another implementation method of performing secure communication in an SAE system according to an embodiment of the present invention.
  • the method execution steps shown in FIG. 7C are similar to the method execution steps in the secure communication method shown in FIG. 5B, except that SGSN-V is replaced with MME-V, SGSN-H is replaced with MME-H, GGSN- Replace H with P-GW-H.
  • the MME-V may send, to the MME-V, the terminal identifier of the core network node that needs to be routed to the HPLMN, which is included in the attach or tracking area update request, and may be used to indicate the communication data of the terminal, or through the terminal. Sending the terminal identifier and indication information included in the attach or tracking area update request to the MME-V, and determining that the communication data of the terminal in the VPLMN needs to be routed to the core network node of the HPLMN.
  • the MME-H in FIG. 7C can exchange information between the Serving Gateway (S-GW-H) and the P-GW-H in the HPLMN.
  • the secure communication method provided by the embodiment of the present invention increases the signaling interaction between the SGSN-V/MME-V and the SGSN-H/MME-H.
  • the SGSN-V/MME-V determines that the communication data of the terminal needs to be routed to the HPLMN
  • the SGSN-V/MME-V sends an authentication request message to the SGSN-H/MME-H in the HPLMN
  • the authentication request message includes the terminal identifier and forwards it to the HLR/HSS, so that the HLR/HSS generates the end-to-end Security key.
  • the end-to-end security key and the terminal identifier are sent to the GGSN-H/P-GW-H through the SGSN-H/MME-H, and the algorithm is negotiated between the terminal and the GGSN-H/P-GW-H. Key agreement and algorithm negotiation between the terminal and the GGSN-H/P-GW-H protects the end-to-end security between the UE and the HPLMN network.
  • the security parameter can be sent to the GGSN/P-GW of the HPLMN network without going through the VPLMN network without opening the interface between the HLR/HSS and the HPLMN GGSN/P-GW. A new interface between the GGSN and the HSS is avoided.
  • FIG. 8 is a schematic structural diagram of a core network node 100 in a VPLMN provided by an embodiment of the present invention, as shown in FIG. 8.
  • the core network node 100 in the VPLMN includes a transmitting unit 101, a receiving unit 102, and a processing unit 103, where:
  • the sending unit 101 is configured to send a first authentication data request to the first core network node in the HPLMN, where the first authentication data request includes a terminal identifier of the terminal roaming to the VPLMN.
  • the receiving unit 102 is configured to receive a first authentication data response sent by the first core network node in the HPLMN according to the terminal identifier included in the first authentication data request sent by the sending unit 101, where the first authentication data response is Includes the authentication vector.
  • the processing unit 103 is configured to perform security authentication and key negotiation on the terminal corresponding to the terminal identifier according to the authentication vector received by the receiving unit 102. Wherein, the key agreement enables the terminal to obtain an end-to-end security key for secure communication between the terminal and a second core network node in the HPLMN.
  • the processing unit 103 is further configured to:
  • the transmitting unit 101 Before the transmitting unit 101 sends the first authentication data request to the first core network node in the HPLMN, it is determined that the communication data of the terminal in the VPLMN needs to be routed to the core network node of the HPLMN.
  • the processing unit 103 is specifically configured to determine, by using the following manner, that communication data of the terminal in the VPLMN needs to be routed to a core network node of the HPLMN:
  • the terminal identifier of the terminal in the VPLMN needs to be routed to the core network node of the HPLMN, and the terminal identifier can represent that the communication data of the terminal needs to be routed to the core network node of the HPLMN.
  • the communication data of the terminal in the VPLMN needs to be routed to the core network node of the HPLMN by using the indication information sent by the terminal, and the indication information is used to indicate that the communication data of the terminal needs to be routed to the core network node of the HPLMN.
  • the GPRS system, the terminal identifier and the indication information may be included in an attach or routing area update request sent by the terminal.
  • the terminal identifier and the indication information may be included in an attach or tracking area update request sent by the terminal.
  • the core network node in the VPLMN is a serving general packet radio service GPRS support node SGSN in the VPLMN
  • the first core network node in the HPLMN is an SGSN in the HPLMN, where the HPLMN is in the HPLMN.
  • the second core network node is a Gateway General Packet Radio Service GPRS Support Node in the HPLMN.
  • the core network node in the VPLMN is mobility management in the VPLMN.
  • the entity MME, the first core network node in the HPLMN is an MME in the HPLMN, and the second core network node in the HPLMN is a packet data network gateway in the HPLMN.
  • the first authentication data request further includes a security algorithm supported by the terminal.
  • the first authentication data response further includes a message verification value, a security algorithm supported by the terminal, and an end-to-end security algorithm selected by the second core network node in the HPLMN.
  • the message verification value is a second core network node in the HPLMN, and the security algorithm supported by the terminal and the end-to-end security algorithm are integrity-protected based on an integrity protection algorithm and an integrity key. Generated.
  • the sending unit 101 is further configured to: after the receiving unit 102 receives the first authentication data response sent by the first core network node in the HPLMN, the message verification value, the security algorithm supported by the terminal, and The end-to-end security algorithm selected by the second core network node in the HPLMN is sent to the terminal corresponding to the terminal identifier.
  • the sending unit 101 is further configured to: after the processing unit 103 performs security authentication on the terminal corresponding to the terminal identifier, send an algorithm negotiation request to the second core network node in the HPLMN, where The algorithm negotiation request includes a security algorithm supported by the terminal.
  • the receiving unit 102 is further configured to receive an algorithm negotiation response message returned by the second core network node in the HPLMN.
  • the algorithm negotiation response message includes a message verification value, a security algorithm supported by the terminal, and an end-to-end security algorithm selected by the second core network node in the HPLMN.
  • the message verification value is a second core network node in the HPLMN, and the security algorithm supported by the terminal and the end-to-end security algorithm are integrity-protected based on an integrity protection algorithm and an integrity key. Generated.
  • the sending unit 101 is further configured to send the message verification value, the security algorithm supported by the terminal, and the end-to-end security algorithm selected by the second core network node in the HPLMN to the terminal corresponding to the terminal identifier. .
  • the first authentication data request further includes an address of the second core network node in the HPLMN, where the second core network node in the HPLMN is selected by the core network node in the VPLMN for the terminal The core network node in the HPLMN that performs secure communication.
  • the embodiment of the present invention provides a VPLMN based on the secure communication method provided by the foregoing embodiment.
  • the core network node 1000 in FIG. 9 is a schematic structural diagram of a core network node 1000 in a VPLMN provided by an embodiment of the present invention. As shown in FIG. 9, the core network node 1000 in the VPLMN includes a transmitter 1001, and a receiver 1002. The processor 1003 and the memory 1004.
  • the memory 1004 is configured to store program code executed by the processor 1003.
  • the processor 1003 is configured to invoke a program stored in the memory 1004, and send, by the transmitter 1001, a first authentication data request to a first core network node in the HPLMN, where the first authentication data request includes roaming into the VPLMN. Terminal identification of the terminal. Receiving, by the receiver 1002, a first authentication data response sent by the first core network node in the HPLMN according to the terminal identifier included in the first authentication data request, where the first authentication data response includes an authentication vector. And performing security authentication and key agreement on the terminal corresponding to the terminal identifier according to the received authentication vector. Wherein, the key agreement enables the terminal to obtain an end-to-end security key for secure communication between the terminal and a second core network node in the HPLMN.
  • the processor 1003 also performs the processing of the core network node (SGSN-V/MME-V) in the VPLMNs referred to in Figures 4 through 7C and/or other processes for the techniques described herein.
  • the receiver 1002 and the transmitter 1001 are configured to support a core network node (SGSN-V/MME-V) in the VPLMN and a second core network node (GGSN-H/P-GW-H) in the HPLMN. Communication between the core network node (SGSN-V/MME-V) in the VPLMN and the first core network node (SGSN-H/MME-H) in the HPLMN, performing the interaction of information involved in the above method , will not repeat them here.
  • Embodiments of the present invention provide a computer storage medium for storing computer software instructions for use in a core network node in the VPLMN, which includes a program designed to perform the above aspects.
  • the embodiment of the present invention further provides a first core network node 200 in the HPLMN, where the HPLMN includes a second core network node different from the core network node, and
  • FIG. 10 A schematic diagram of the structure of the first core network node 200 in the HPLMN provided by the embodiment of the present invention.
  • the first core network node 200 in the HPLMN includes a receiving unit 201 and a sending unit 202, where:
  • the receiving unit 201 is configured to receive a first authentication data request sent by a core network node in the VPLMN, and receive a second authentication data response sent by the HLR or the HSS, where the second authentication data response includes an authentication vector and An end-to-end security key, wherein the end-to-end security key is used to secure secure communication between the terminal and a second core network node in the HPLMN, wherein the first authentication data request is A terminal identifier that roams to a terminal in the VPLMN is included.
  • the sending unit 202 is configured to send, according to the first authentication data request received by the receiving unit 201, a second authentication data request to the home location register HLR or the home subscriber server HSS, and to the second core network node in the HPLMN. Transmitting an end-to-end key notification and returning a first authentication data response to a core network node in the VPLMN.
  • the second authentication data request includes a terminal identifier that is roamed to the terminal in the VPLMN, where the end-to-end key notification includes the terminal identifier, an end-to-end security key, and the first authentication data.
  • the response includes an authentication vector, and the authentication vector is used by the core network node in the VPLMN to perform security authentication and key agreement with the terminal corresponding to the terminal identifier according to the authentication vector.
  • the first core network node 200 is a serving general packet radio service GPRS support node SGSN in the HPLMN
  • a core network node in the VPLMN is an SGSN in the VPLMN, and a number in the HPLMN
  • the secondary core network node is a gateway general packet radio service GPRS support node in the HPLMN.
  • the first core network node 200 is a mobility management entity MME in the HPLMN
  • the core network node in the VPLMN is an MME in the VPLMN and a second core network node in the HPLMN. Is the packet data network gateway in the HPLMN.
  • the first authentication data request and the end-to-end key notification further include a security algorithm supported by the terminal;
  • the receiving unit 201 is further configured to receive, by the second core network node in the HPLMN, The end-to-end key notification feedback end-to-end key notification reply message; wherein the end-to-end key notification reply message includes a message verification value, a security algorithm supported by the terminal, and the HPLMN An end-to-end security algorithm selected by the second core network node;
  • the first authentication data response further includes a message verification value, a security algorithm supported by the terminal, and the HPLMN
  • the second core network node selects an end-to-end security algorithm; wherein the message verification value is a second core network node in the HPLMN, and supports the terminal based on an integrity protection algorithm and an integrity key.
  • the security algorithm and the selected end-to-end security algorithm are generated by integrity protection.
  • the first authentication data request further includes an address of the second core network node in the HPLMN, where the second core network node in the HPLMN is selected by the core network node in the VPLMN for the terminal
  • the core network node in the HPLMN that performs secure communication.
  • the sending unit 202 specifically sends an end-to-end key notification to the second core network node in the HPLMN by sending an end-to-end secret to the second core network node in the HPLMN indicated by the address. Key notification.
  • the embodiment of the present invention provides a first core network node 2000 in the HPLMN
  • FIG. 11 is a schematic structural diagram of the first core network node 2000 in the HPLMN according to an embodiment of the present invention.
  • the first core network node 2000 in the HPLMN includes a receiver 2001 and a transmitter 2002.
  • the receiver 2001 is configured to receive a first authentication data request sent by a core network node in the VPLMN, and receive a second authentication data response sent by the HLR or the HSS, where the second authentication data response includes an authentication vector and an end-to-end a security key, wherein the end-to-end security key is used to secure communication between the terminal and a second core network node in the HPLMN, wherein the first authentication data request includes roaming to The terminal identifier of the terminal in the VPLMN.
  • the transmitter 2002 is configured to send a second authentication data request to the HLR or the HSS based on the first authentication data request received by the receiver 2001, and send an end-to-end key notification to the second core network node in the HPLMN.
  • the second authentication data request includes a terminal identifier that is roamed to the terminal in the VPLMN, where the end-to-end key notification includes the terminal identifier, an end-to-end security key, and the first authentication data.
  • the response includes an authentication vector, and the authentication vector is used by the core network node in the VPLMN to perform security authentication and key agreement with the terminal corresponding to the terminal identifier according to the authentication vector.
  • the receiver 2001 and the transmitter 2002 are also used to support the first core network node (SGSN-H/MME-H) and the core in the VPLMN in the HPLMN shown in FIG. 4 to FIG. 7C in the foregoing method embodiment.
  • the communication between the network node (SGSN-V/MME-V) and the second core network node (GGSN-H/P-GW-H) in the HPLMN performs the interaction of the information involved in the foregoing method, and details are not described herein. .
  • Embodiments of the present invention provide a computer storage medium for storing computer software instructions for use in a first core network node in the HPLMN, including a program designed to perform the above aspects.
  • the embodiment of the present invention further provides a second core network node 300 in the HPLMN
  • FIG. 12 shows the structure of the second core network node 300 in the HPLMN according to the embodiment of the present invention.
  • the second core network node 300 in the HPLMN includes a receiving unit 301, a processing unit 302, and a transmitting unit 303, wherein the HPLMN includes a first core network node different from the core network node. .
  • the receiving unit 301 is configured to receive an end-to-end key notification sent by the first core network node in the HPLMN.
  • the end-to-end key notification includes a terminal identifier and an end-to-end security key, where the terminal identifier is used to identify a terminal that needs to route communication data to a core network node of the HPLMN, where the end-to-end security key is
  • the HLR or HSS of the terminal is generated according to a second authentication data request routed by the core network node in the VPLMN to the HPLMN network, and is used to secure communication between the terminal and the second core network node in the HPLMN.
  • the processing unit 302 is configured to select an end-to-end security algorithm according to the terminal identifier and the end-to-end security key included in the end-to-end key notification, and based on the end-to-end security key and the end-to-end
  • the terminal security algorithm performs secure communication with the terminal corresponding to the terminal identifier.
  • the sending unit 303 is configured to send the end-to-end security algorithm selected by the processing unit 302 to the terminal corresponding to the terminal identifier.
  • the second core network node 300 is a gateway general packet radio service GPRS support node in the HPLMN, and a core network node in the VPLMN is in the VPLMN.
  • the second core network node 300 is a gateway general packet radio service GPRS support node in the HPLMN
  • the core network node in the VPLMN is a mobility management entity MME in the VPLMN
  • the HPLMN The first core network node in the MME is the MME in the HPLMN.
  • the first authentication data request and the end-to-end key notification further include a security algorithm supported by the terminal.
  • the end-to-end security algorithm includes an integrity protection algorithm
  • the end-to-end security key includes an integrity protection key.
  • the processing unit 302 selects an end-to-end security algorithm by using a second core network node in the HPLMN to obtain the end-to-end key notification sent by the first core network node in the HPLMN.
  • the end-to-end key notification determines the security algorithm supported by the terminal.
  • the second core network node in the HPLMN selects an end-to-end security algorithm among the security algorithms supported by the terminal.
  • the processing unit 302 is further configured to: perform integrity protection on the security algorithm supported by the terminal and the selected end-to-end security algorithm based on the integrity protection algorithm and the integrity key, Generate a message verification value.
  • the sending unit 303 specifically sends the selected end-to-end security algorithm to the terminal corresponding to the terminal identifier by sending an end-to-end key notification reply to the first core network node in the HPLMN.
  • the reply message of the end-to-end key notification includes a message verification value, a security algorithm supported by the terminal, and an end-to-end security algorithm selected by the second core network node in the HPLMN, and passes the HPLMN
  • the first core network node and the core network node in the VPLMN send the message verification value, the security algorithm supported by the terminal, and the selected end-to-end security algorithm to the terminal corresponding to the terminal identifier.
  • the end-to-end security algorithm includes an integrity protection algorithm
  • the end-to-end security key includes an integrity protection key
  • the receiving unit 301 is further configured to: obtain an algorithm negotiation request sent by a core network node in the VPLMN, where the algorithm negotiation request includes a security algorithm supported by the terminal.
  • the processing unit 302 specifically selects an end-to-end security algorithm by using the algorithm negotiation request to determine a security algorithm supported by the terminal, and selecting the security algorithm supported by the terminal. Choose an end-to-end security algorithm.
  • the processing unit 302 is further configured to: perform integrity protection on the security algorithm supported by the terminal and the selected end-to-end security algorithm based on the integrity protection algorithm and the integrity key, Generate a message verification value.
  • the sending unit 303 is specifically configured to: send the selected end-to-end security algorithm to the terminal corresponding to the terminal identifier by: returning an algorithm negotiation response message to the core network node in the VPLMN, where the algorithm
  • the negotiation response message includes a message verification value, a security algorithm supported by the terminal, and an end-to-end security algorithm selected by the second core network node in the HPLMN, and the message is verified by a core network node in the VPLMN.
  • the value, the security algorithm supported by the terminal, and the end-to-end security algorithm selected by the second core network node in the HPLMN are sent to the terminal corresponding to the terminal identifier.
  • the embodiment of the present invention further provides a second core network node 3000 in the HPLMN
  • FIG. 13 is a schematic structural diagram of the second core network node 3000 in the HPLMN according to the embodiment of the present invention.
  • the second core network node 3000 in the HPLMN as shown in FIG. 13 includes a processor 3001, a receiver 3002, a transmitter 3003, and a memory 3004.
  • the memory 3004 is configured to store program code executed by the processor 3001.
  • the processor 3001 is configured to invoke a program stored in the memory 3004, receive an end-to-end key notification sent by the first core network node in the HPLMN through the receiver 3002, and select the end-to-end security through the transmitter 3003. Sending an algorithm to the terminal corresponding to the terminal identifier, and selecting an end-to-end security algorithm according to the terminal identifier and the end-to-end security key included in the end-to-end key notification, and based on the end-to-end security key And the end-to-end security algorithm, and the terminal corresponding to the terminal identifier performs secure communication.
  • the processor 3001 is configured to support the second core network node (GGSN-H/P-GW-H) in the HPLMN shown in FIG. 4 to FIG. 7C of the foregoing method embodiment to perform the corresponding function in the foregoing method.
  • the receiver 3002 and the transmitter 3003 are configured to support a second core network node (GGSN-H/P-GW-H) in the HPLMN and a core network node (SGSN-V/MME-V) in the VPLMN. Communication between the second core network node (GGSN-H/P-GW-H) in the HPLMN and the first core network node (SGSN-H/MME-H) in the HPLMN, performing the information involved in the foregoing method The interaction is not repeated here.
  • Embodiments of the present invention provide a computer storage medium for storing computer software instructions for a second core network node in the HPLMN, including a program designed to perform the above aspects.
  • the embodiment of the present invention further provides a communication system, which includes the core network node in the VPLMN, the first core network node in the HPLMN, and the second core network node in the HPLMN, and has corresponding functions. I will not repeat them here.
  • the method for performing secure communication for a roaming terminal can prevent the security key in the HPLMN from being acquired by the VPLMN, and protect the end-to-end security between the UE and the HPLMN network.
  • no direct interaction is required between the HLR/HSS and the second core network node in the HPLMN, so that the interface between the second core network node and the HLR/HSS in the HPLMN can be avoided.
  • FIG. 1 These computer program instructions can be provided to a processor of a general purpose computer, special purpose computer, embedded processor, or other programmable data processing device to produce a machine for the execution of instructions for execution by a processor of a computer or other programmable data processing device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Security & Cryptography (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Computer Hardware Design (AREA)
  • Computing Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Business, Economics & Management (AREA)
  • Accounting & Taxation (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)

Abstract

一种安全通信方法及核心网节点,该方法中归属公用陆地移动网络HPLMN的第一核心网节点接收拜访公共陆地移动网络VPLMN的核心网节点发送的第一认证数据请求,并向归属位置寄存器HLR或归属用户服务器HSS发送第二认证数据请求,所述HLR或所述HSS生成端到端安全密钥,所述HPLMN中的第一核心网节点将所述端到端安全密钥发送给所述HPLMN中的第二核心网节点,所述HPLMN中的第二核心网节点基于所述端到端安全密钥与漫游到所述VPLMN中的终端进行安全通信,能够保证HPLMN网络使用的密钥不被VPLMN网络获取。

Description

一种安全通信方法及核心网节点 技术领域
本发明涉及通信技术领域,尤其涉及一种安全通信方法及核心网节点。
背景技术
移动通信系统的信息是在无线信道上传递的,很容易被攻击者窃听、截获和篡改,而通信系统的信息往往是具有私密性的,为了确保用户数据的安全传输,需要对通信数据进行安全保护。
例如蜂窝网(Cellular)物联网(Internet of Thing,IoT)通信中,Cellular IoT数据,会涉及很多高敏感度、重要、高隐私需求以及高安全等级需求的数据,这些数据不仅需要得到安全保护,还需要避免拜访公共陆地移动网络(Visited Public Land Mobile Network,VPLMN)解密这些数据。一套安全机制主要涉及三个方面:认证、密钥协商、算法协商。现有移动通信系统使用认证和密钥协商机制(Authentication Key Agreement,AKA)来实现认证和密钥协商;另外,用户设备(User Equipment,UE)和演进的节点B(evolved NodeB简称:eNB或者eNodeB)之间通过接入层安全模式信令(Access Stratum Security Mode Command,AS SMC)进行算法协商,UE和移动性管理实体(Mobility Management Entity,MME)之间通过非接入层安全模式信令(No Access Stratum Security Mode Command,NAS SMC)进行算法协商。同样地,为了保证Cellular IoT通信的安全,也需要实现相应的UE和归属公用陆地移动网络(Home Public Land Mobile Network,HPLMN)之间的认证、密钥协商、和算法协商。
另外,移动通信系统中,终端的通信场景包括非漫游场景和漫游场景。在非漫游场景下,可在归属公用陆地移动网络(Home Public Land Mobile Network,HPLMN)中完成对用户的安全认证,进行安全通信。在漫游场景下,则需要在拜访公共陆地移动网络(Visited Public Land Mobile Network, VPLMN)网络内对漫游用户完成安全认证,进行安全通信。在VPLMN网络中进行安全认证,VPLMN网络需要从HPLMN网络中获取到密钥,例如从归属位置寄存器(Home Location Register,HLR)或归属用户服务器(Home Subscriber Server,HSS)处获取到密钥,再进行安全认证,然而针对漫游用户而言,一些较敏感较隐私的通信数据,可能不便让VPLMN网络获知,采用上述对漫游用户进行安全认证和密钥协商的过程,则有可能导致通信数据在VPLMN中泄露。
故针对漫游用户提供一种新的安全协商机制,以避免VPLMN网络获取HPLMN网络使用的通信密钥,提高通信安全,势在必行。
发明内容
本发明实施例提供一种安全通信方法及核心网节点,以避免VPLMN网络获取HPLMN网络使用的通信密钥,提高通信安全。
第一方面,提供一种安全通信方法,拜访公共陆地移动网络VPLMN中的核心网节点向归属公用陆地移动网络HPLMN中的第一核心网节点发送第一认证数据请求,所述第一认证数据请求中包括漫游到所述VPLMN中的终端的终端标识。
归属公用陆地移动网络HPLMN中的第一核心网节点接收拜访公共陆地移动网络VPLMN中的核心网节点发送的第一认证数据请求并向归属位置寄存器HLR或归属用户服务器HSS发送第二认证数据请求,所述第二认证数据请求中包括所述第一认证数据请求中包括的漫游到所述VPLMN中终端的终端标识。
HLR或HSS生成用于VPLMN中的核心网节点对所述终端进行安全认证的认证向量,以及用于保护所述终端与所述HPLMN中的第二核心网节点之间安全通信的端到端安全密钥。所述HLR或所述HSS向所述HPLMN中的第一核心网节点发送第二认证数据响应,所述第二认证数据响应中包括所述认证向量和所述端到端安全密钥。
所述HPLMN中的第一核心网节点接收所述HLR或所述HSS发送的第二认证数据响应,并向所述VPLMN中的核心网节点返回第一认证数据响应,以及向所述HPLMN中的第二核心网节点发送端到端通知,所述第一认证数据响应中包括所述认证向量,所述端到端密钥通知中包括所述终端标识、端到端安全密钥。
HPLMN中的第二核心网节点接收所述HPLMN中的第一核心网节点发送的端到端密钥通知,解析得到所述端到端安全密钥,并在终端支持的安全算法中选择端到端安全算法,从而完成终端和HPLMN中的第二核心网节点之间的密钥协商和算法协商,HPLMN中的第二核心网节点基于所述端到端安全密钥和所述选择的端到端安全算法与所述终端标识对应的终端之间进行安全通信,能够避免HPLMN中的安全密钥被VPLMN获取,保护了UE和HPLMN网络之间的端到端安全。并且本发明实施例中HLR/HSS与HPLMN中的第二核心网节点之间无需进行直接交互,故可避免开启HPLMN中的第二核心网节点与HLR/HSS之间的接口。
一种可能的设计中,所述VPLMN中的所述核心网节点可在确定所述VPLMN中的终端的通信数据需要路由到HPLMN的核心网节点的情况下,向HPLMN中的第一核心网节点发送第一认证数据请求。
可选的,所述VPLMN中的核心网节点通过终端发送的终端标识,确定所述VPLMN中的终端的通信数据需要路由到HPLMN的核心网节点,所述终端标识能够表征终端的通信数据需要路由到HPLMN的核心网节点;或者所述VPLMN中的核心网节点通过终端发送的指示信息,确定所述VPLMN中的终端的通信数据需要路由到HPLMN的核心网节点,所述指示信息用于指示终端的通信数据需要路由到HPLMN的核心网节点。
另一种可能的设计中,所述VPLMN中的所述核心网节点可为终端选择HPLMN中第二核心网节点,并在所述第一认证数据请求中包括选择的HPLMN中第二核心网节点的地址,将选择的HPLMN中第二核心网节点的地址发送给HPLMN中的第一核心网节点,HPLMN中的第一核心网节点依据所 述第二核心网节点的地址,向所述地址指示的所述HPLMN中的第二核心网节点发送端到端密钥通知。
上述涉及的安全通信方法可应用于通用分组无线服务(General Packet Radio Service,GPRS)系统。所述VPLMN中的核心网节点可以为所述VPLMN中的服务通用分组无线服务GPRS支持节点SGSN、所述HPLMN中的第一核心网节点为所述HPLMN中的SGSN,所述HPLMN中的第二核心网节点为所述HPLMN中的网关通用分组无线服务GPRS支持节点。
上述涉及的安全通信方法还可应用于系统架构演进(System Architecture Evolution,SAE)系统。所述VPLMN中的核心网节点可以是所述VPLMN中的移动性管理实体MME、所述HPLMN中的第一核心网节点为所述HPLMN中的MME,所述HPLMN中的第二核心网节点为所述HPLMN中的分组数据网网关。
上述涉及的安全通信方法应用于不同的通信场景下,HPLMN中的第二核心网节点与漫游到VPLMN中的终端之间可采用不同的算法协商过程。
一种可能的设计中,适用于GPRS通信场景和SAE场景,可在密钥协商过程中进行算法协商,具体过程如下:
VPLMN中的核心网节点将终端支持的安全算法发送给HPLMN中的第一核心网节点,HPLMN中的第一核心网节点将终端支持的安全算法发送给HPLMN中的第二核心网节点,HPLMN中的第二核心网节点在终端支持的安全算法中选择所需要的端到端安全算法,并将选择的端到端安全算法发送给终端,完整算法协商。
具体的,VPLMN中的核心网节点可在向HPLMN中的第一核心网节点发送的第一认证数据请求中包括终端支持的安全算法。其中,终端支持的安全算法可通过终端支持的网络能力上报给VPLMN中的核心网节点。
HPLMN中的第一核心网节点可在向HPLMN中的第二核心网节点发送的端到端密钥通知中包括所述终端支持的安全算法。
可选的,HPLMN中的第二核心网节点可基于完整性保护算法和完整性密钥,对所述终端支持的安全算法和所述选择的所述端到端安全算法进行完整 性保护,生成消息验证值,并将所述消息验证值、所述终端支持的安全算法以及选择的所述端到端安全算法发送给所述终端标识对应的终端。
具体的,HPLMN中的第二核心网节点可在向HPLMN中的第一核心网节点发送的端到端密钥通知的回复消息中包括所述消息验证值、所述终端支持的安全算法以及选择的所述端到端安全算法。HPLMN中的第一核心网节点在向VPLMN中的核心网节点发送的所述第一认证数据响应中包括所述消息验证值、所述终端支持的安全算法以及选择的所述端到端安全算法,所述VPLMN中的核心网节点接收所述第一认证数据响应,将所述消息验证值、所述终端支持的安全算法以及选择的所述端到端安全算法发送给所述终端标识对应的终端,完成HPLMN中的第二核心网节点与终端之间的算法协商。
另一种可能的设计中,对于GPRS通信场景,HPLMN中的第二核心网节点与终端之间,可采用PDP上下文的激活流程来进行算法协商,得到端到端安全算法,实现过程如下:
VPLMN中的核心网节点向所述HPLMN中的第二核心网节点发送创建PDP上下文请求消息,所述创建PDP上下文请求消息中包括终端支持的安全算法。所述HPLMN中的第二核心网节点获取所述VPLMN中的核心网节点发送的创建PDP上下文请求消息,通过所述创建PDP上下文请求消息确定终端支持的安全算法,并在所述终端支持的安全算法中选择端到端安全算法。
所述HPLMN中的第二核心网节点向所述VPLMN中的核心网节点返回创建PDP上下文响应消息,所述创建PDP上下文响应消息中包括所述HPLMN中的第二核心网节点选择的端到端安全算法。
可选的,本发明实施例中HPLMN中的第二核心网节点可基于完整性保护算法和完整性密钥,对所述终端支持的安全算法和所述选择的所述端到端安全算法进行完整性保护,生成消息验证值,并将所述消息验证值、所述终端支持的安全算法以及选择的所述端到端安全算法发送给所述终端标识对应的终端,即所述创建PDP上下文响应消息中包括验证值、所述终端支持的安全算法以及选择的所述端到端安全算法。
所述VPLMN中的核心网节点接收所述HPLMN中的第二核心网节点返回的创建PDP上下文响应消息,将所述创建PDP上下文响应消息中包括的所述HPLMN中的第二核心网节点选择的所述端到端安全算法发送给所述终端标识对应的终端。
可选的,若所述HPLMN中的第二核心网节点生成消息验证值,则将所述消息验证值、所述终端支持的安全算法以及选择的所述端到端安全算法发送给所述终端标识对应的终端。
又一种可能的设计中,对于SAE通信场景,HPLMN中的第二核心网节点与终端之间,可在会话创建过程中进行算法协商,得到端到端安全算法,实现过程如下:
VPLMN中的核心网节点向所述HPLMN中的第二核心网节点发送创建会话请求消息,所述创建会话请求消息中包括终端支持的安全算法。所述HPLMN中的第二核心网节点获取所述VPLMN中的核心网节点发送的创建会话请求消息,通过所述创建会话请求消息确定终端支持的安全算法,并在所述终端支持的安全算法中选择端到端安全算法。
所述HPLMN中的第二核心网节点向所述VPLMN中的核心网节点返回创建会话响应消息,所述创建会话响应消息中包括所述HPLMN中的第二核心网节点选择的端到端安全算法。
可选的,本发明实施例中HPLMN中的第二核心网节点可基于完整性保护算法和完整性密钥,对所述终端支持的安全算法和所述选择的所述端到端安全算法进行完整性保护,生成消息验证值,并将所述消息验证值、所述终端支持的安全算法以及选择的所述端到端安全算法发送给所述终端标识对应的终端,即所述创建会话响应消息中包括验证值、所述终端支持的安全算法以及选择的所述端到端安全算法。
所述VPLMN中的核心网节点接收所述HPLMN中的第二核心网节点返回的创建会话响应消息,将所述创建会话响应消息中包括的所述HPLMN中的第二核心网节点选择的所述端到端安全算法发送给所述终端标识对应的终 端。
可选的,若所述HPLMN中的第二核心网节点生成消息验证值,则将所述消息验证值、所述终端支持的安全算法以及选择的所述端到端安全算法发送给所述终端标识对应的终端。
再一种可能的设计中,对于SAE通信场景,HPLMN中的第二核心网节点与终端之间,可通过单独的算法协商过程中进行算法协商,得到端到端安全算法,实现过程如下:
VPLMN中的核心网节点向所述HPLMN中的第二核心网节点发送算法协商请求消息,所述算法协商请求消息中包括终端支持的安全算法。所述HPLMN中的第二核心网节点获取所述VPLMN中的核心网节点发送的算法协商请求消息,通过所述算法协商请求消息确定终端支持的安全算法,并在所述终端支持的安全算法中选择端到端安全算法。
所述HPLMN中的第二核心网节点向所述VPLMN中的核心网节点返回算法协商响应消息,所述算法协商响应消息中包括所述HPLMN中的第二核心网节点选择的端到端安全算法。
可选的,本发明实施例中HPLMN中的第二核心网节点可基于完整性保护算法和完整性密钥,对所述终端支持的安全算法和所述选择的所述端到端安全算法进行完整性保护,生成消息验证值,并将所述消息验证值、所述终端支持的安全算法以及选择的所述端到端安全算法发送给所述终端标识对应的终端,即所述算法协商响应消息中包括验证值、所述终端支持的安全算法以及选择的所述端到端安全算法。
所述VPLMN中的核心网节点接收所述HPLMN中的第二核心网节点返回的算法协商响应消息,将所述算法协商响应消息中包括的所述HPLMN中的第二核心网节点选择的所述端到端安全算法发送给所述终端标识对应的终端。
可选的,若所述HPLMN中的第二核心网节点生成消息验证值,则将所述消息验证值、所述终端支持的安全算法以及选择的所述端到端安全算法发送 给所述终端标识对应的终端。
第二方面,提供一种核心网节点,该核心网节点应用于VPLMN中,具有实现上述方法设计中VPLMN中的核心网节点的行为的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的模块。
在一种可能的设计中,该VPLMN中的核心网节点的结构中包括处理器、接收器和发射器,所述处理器被配置为支持核心网节点执行上述方法中相应的功能。所述接收器和所述发射器用于支持该VPLMN中的核心网节点与终端之间、该VPLMN中的核心网节点与HPLMN中的第一核心网节点和第二核心网节点之间的通信,进行上述方法涉及的信息的交互。该VPLMN中的核心网节点还可以包括存储器,所述存储器用于与处理器耦合,其保存核心网节点必要的程序指令和数据。
第三方面,提供一种HPLMN中的第一核心网节点,具有实现上述方法设计中HPLMN中的第一核心网节点的行为的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的模块。
在一种可能的设计中,该HPLMN中的第一核心网节点的结构中包括接收器和发射器。所述接收器和所述发射器用于支持该HPLMN中的第一核心网节点与VPLMN中的核心网节点、该HPLMN中的第一核心网节点和HPLMN中的第二核心网节点之间的通信,进行上述方法涉及的信息的交互。
第四方面,提供一种HPLMN中的第二核心网节点,具有实现上述方法设计中HPLMN中的第二核心网节点的行为的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的模块。
在一种可能的设计中,该HPLMN中的第二核心网节点的结构中包括处理器、接收器和发射器,所述处理器被配置为支持HPLMN中的第二核心网节点执行上述方法中相应的功能。所述接收器和所述发射器用于支持该HPLMN中 的第二核心网节点与VPLMN中的核心网节点、该HPLMN中的第二核心网节点和HPLMN中的第一核心网节点之间的通信,进行上述方法涉及的信息的交互。
第五方面,提供一种通信系统,该通信系统包括上述方面涉及的VPLMN中的核心网节点、HPLMN中的第一核心网节点和HPLMN中的第二核心网节点。
第六方面,本发明实施例提供了一种计算机存储介质,用于储存为上述VPLMN中的核心网节点所用的计算机软件指令,其包含用于执行上述方面所设计的程序。
第七方面,本发明实施例提供了一种计算机存储介质,用于储存为上述HPLMN中的第一核心网节点所用的计算机软件指令,其包含用于执行上述方面所设计的程序。
第八方面,本发明实施例提供了一种计算机存储介质,用于储存为上述HPLMN中的第二核心网节点所用的计算机软件指令,其包含用于执行上述方面所设计的程序。
相较于现有针对漫游的终端进行安全通信的方法,本发明实施例提供的安全通信方法能够避免HPLMN中的安全密钥被VPLMN获取,保护了UE和HPLMN网络之间的端到端安全。并且本发明实施例中HLR/HSS与HPLMN中的第二核心网节点之间无需进行直接交互,故可避免开启HPLMN中的第二核心网节点与HLR/HSS之间的接口。
附图说明
图1为本发明实施例适用的通信场景架构示意图;
图2为GPRS系统架构示意图;
图3为SAE系统架构示意图;
图4为本发明实施例提供的GPRS场景下的安全通信方法中密钥协商过程 的一种实施流程图;
图5A至图5B为本发明实施例提供的GPRS场景下的安全通信方法的实施流程图;
图6为本发明实施例提供的SAE场景下的安全通信方法中密钥协商过程的一种实施流程图;
图7A至图7C为本发明实施例提供的SAE场景下的安全通信方法的实施流程图;
图8为本发明实施例提供的VPLMN中的核心网节点的结构示意图;
图9为本发明实施例提供的VPLMN中的核心网节点的另一结构示意图;
图10为本发明实施例提供的HPLMN中的第一核心网节点的结构示意图;
图11为本发明实施例提供的HPLMN中的第一核心网节点的另一结构示意图;
图12为本发明实施例提供的HPLMN中的第二核心网节点的结构示意图;
图13为本发明实施例提供的HPLMN中的第二核心网节点的另一结构示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行详细地描述。
本发明实施例提供的通信方法可应用于图1所示的漫游场景下的通信架构。图1中,终端在拜访公共陆地移动网络(Visited Public Land Mobile Network,VPLMN)中通过无线接入网接入网络。归属公用陆地移动网络(Home Public Land Mobile Network,HPLMN)中的归属位置寄存器(Home Location Register,HLR)或归属用户服务器(Home Subscriber Server,HSS)可生成用于终端与HPLMN第二核心网节点之间进行安全通信的安全密钥。VPLMN中的核心网节点对漫游入其网络内的终端完成安全认证后,终端可通过HPLMN网络中的第二核心网节点接入到分组数据网(Packet Data Network, PDN)相应的应用服务器。
本发明实施例中为避免VPLMN网络获取HPLMN网络使用的通信密钥,可通过HPLMN网络的第一核心网节点将VPLMN网络中的鉴权和密钥协商(Authentication and Key Agreement,AKA)相关的信令(认证数据请求)路由到HPLMN网络中并进一步发送给HPLMN网络的HLR或HSS,并由HPLMN网络的第一核心网节点将HLR或HSS生成的安全密钥传递给HPLMN网络中的第二核心网节点,由HPLMN网络中的第二核心网节点选择与终端通信使用的安全算法,以保证HPLMN网络使用的密钥不被VPLMN网络获取,从而保证UE和HPLMN网络之间通信的端到端安全。
本发明实施例提供的通信方法可适用于图2所示的通用分组无线服务(General Packet Radio Service,GPRS)系统或者图3所示的系统架构演进(System Architecture Evolution,SAE)系统。
GPRS系统中VPLMN网络中的核心网节点可以是VPLMN网络中的服务GPRS支持节点(Serving GPRS Support Node,SGSN),本发明实施例以下为描述方便,将VPLMN网络中的SGSN称为SGSN-V。HPLMN网络的第一核心网节点可以是HPLMN网络中的SGSN,本发明实施例以下为描述方便,将HPLMN网络中的SGSN称为SGSN-H。HPLMN网络的第二核心网节点可以是HPLMN网络中的网关GPRS支持节点(Gateway GPRS Support Node,GGSN),本发明实施例以下为描述方便,将HPLMN网络中的GGSN称为GGSN-H。
SAE系统中VPLMN网络中的核心网节点可以是VPLMN网络中的移动性管理实体(Mobility Management Entity,MME),本发明实施例以下为描述方便,将VPLMN网络中的MME称为MME-V。HPLMN网络的第一核心网节点可以是HPLMN网络中的MME,本发明实施例以下为描述方便,将HPLMN网络中的MME称为MME-H。HPLMN网络的第二核心网节点可以是HPLMN网络中的分组数据网络网关实体(Packet Data Network Gateway,P-GW),本发明实施例以下为描述方便,将HPLMN网络中的P-GW称为P-GW -H。
本发明实施例中,名词“网络”和“系统”经常交替使用,但本领域的技术人员可以理解其含义。终端可以包括各种具有无线通信功能的手持设备、车载设备、可穿戴设备、计算设备或连接到无线调制解调器的其它处理设备,以及各种形式的用户设备(User Equipment,UE),移动台(Mobile station,MS),终端(terminal),终端设备(Terminal Equipment)等等。
本发明实施例中“多个”是指两个或两个以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。字符“/”一般表示前后关联对象是一种“或”的关系。
本发明实施例以下将分别以GPRS系统和SAE系统为例,对本发明实施例涉及的安全通信方法进行详细说明,可以理解的是,本发明实施例以下实施例及附图中涉及的SGSN-V/MME-V可以替换为VPLMN中的核心网节点,SGSN-H/MME-H可以替换为HPLMN中的第一核心网节点,GGSN-H/P-GW-H可以替换为HPLMN中的第二核心网节点。
图4所示为本发明实施例提供的GPRS系统中安全通信方法中密钥协商过程的一种实施流程图,如图4所示,包括:
S101:SGSN-V向SGSN-H发送第一认证数据请求。
本发明实施例中SGSN-V可通过向SGSN-H发送认证数据请求实现将AKA信令路由到HPLMN网络中。本发明实施例以下为描述方便,将SGSN-V向SGSN-H发送的认证数据请求称为第一认证数据请求,在该第一认证数据请求中可包括漫游到所述VPLMN中的终端的终端标识。本发明实施例中所述终端标识可以是国际移动用户识别码(International Mobile Subscriber Identification Number,IMSI)、或临时识别码(Temporary Mobile Subscriber Identity,TMSI)或全球唯一临时UE标识(Globally Unique Temporary UE Identity,GUTI)。
可选的,本发明实施例中SGSN-V可在确定所述VPLMN中的终端的通信数据需要路由到HPLMN的核心网节点的情况下,向SGSN-H发送第一认证数 据请求。
本发明实施例中SGSN-V可采用如下方式确定VPLMN中的终端的通信数据需要路由到HPLMN的核心网节点:
第一种方式:漫游到所述VPLMN中的终端向SGSN-V发送终端标识,该终端标识可以包含在所述终端向SGSN-V发送的附着或路由区更新请求中,且该终端标识可以表征终端的通信数据需要路由到HPLMN的核心网节点,则SGSN-V可通过终端发送的终端标识确定所述VPLMN中的终端的通信数据需要路由到HPLMN的核心网节点。
第二种方式:漫游到所述VPLMN中的终端向SGSN-V发送终端标识和指示信息,该终端标识和指示信息可以包含在所述终端向SGSN-V发送的附着或路由区更新请求中,该终端标识不能表征所述VPLMN中的终端的通信数据需要路由到HPLMN的核心网节点,所述指示信息用于指示终端的通信数据需要路由到HPLMN的核心网节点。SGSN-V可通过终端发送的指示信息,确定所述VPLMN中的终端的通信数据需要路由到HPLMN的核心网节点。
S102:SGSN-H接收SGSN-V发送的第一认证数据请求,并向HLR或HSS发送第二认证数据请求。
本发明实施例中为描述方便将SGSN-H向HLR或HSS发送的认证数据请求称为第二认证数据请求。所述第二认证数据请求中包括漫游到所述VPLMN中终端的终端标识。
S103:HLR或HSS依据SGSN-H发送的第二认证数据请求中包括的终端标识查找终端的签约信息,并生成认证向量(Authentication Vectors,AV)和端到端安全密钥。
本发明实施例中所述认证向量用于SGSN-V对终端进行安全认证,所述端到端安全密钥用于保护所述终端与所述HPLMN中的第二核心网节点之间的安全通信。
所述端到端安全密钥例如可以包括加密密钥(Ciphering Key,CK)和完 整性密钥(Integrity Key,IK),为描述方便可将端到端安全密钥中包括的CK称为Kc_m2m,将端到端安全密钥中包括的IK称为Ki_m2m。
本发明实施例中HLR/HSS接收到SGSN-H发送的第二认证数据请求后,不同于现有技术之处在于不仅生成认证向量AV,还生成端到端安全密钥(Kc_m2m和Ki_m2m)。
S104:HLR/HSS向SGSN-H发送第二认证数据响应,所述第二认证数据响应中包括认证向量AV和端到端安全密钥(Kc_m2m和Ki_m2m),以将生成的认证向量AV和端到端安全密钥(Kc_m2m和Ki_m2m)发送给SGSN-H。
S105:SGSN-H接收HLR/HSS发送的第二认证数据响应,获取到认证向量AV和端到端安全密钥(Kc_m2m和Ki_m2m),并向GGSN-H发送端到端密钥通知,所述端到端密钥通知中包括端到端安全密钥(Kc_m2m和Ki_m2m)和漫游到所述VPLMN中终端的终端标识(比如IMSI)。
S101中,SGSN-V可选择与终端进行安全通信的GGSN-H,并在向SGSN-H发送的第一认证数据请求中包括选择的GGSN-H的地址,故S105中SGSN-H可基于第一认证数据请求中包括的GGSN-H的地址,将端到端安全密钥(Kc_m2m和Ki_m2m)和漫游到所述VPLMN中终端的终端标识(比如IMSI)发送给对应的GGSN-H。
S106:GGSN-H接收GGSN-H发送的端到端密钥通知,并保存端到端密钥通知中的端到端安全密钥(Kc_m2m和Ki_m2m)和漫游到所述VPLMN中终端的终端标识(比如IMSI),且端到端安全密钥(Kc_m2m和Ki_m2m)和漫游到所述VPLMN中终端的终端标识之间具有固定的对应关系。
S107:GGSN-H向SGSN-H发送端到端密钥通知的回复消息。
S108:SGSN-H向SGSN-V发送第一认证数据响应,所述第一认证数据响应中包括认证向量AV。
需要说明的是S108中SGSN-H向SGSN-V发送第一认证数据响应,以及S105中SGSN-H向GGSN-H发送端到端密钥通知的执行顺序不分先后。
S109:终端和SGSN-V基于所述第一认证数据响应中包括的认证向量进行 安全认证和密钥协商。
S110:终端生成用于与GGSN-H之间进行安全通信的端到端安全密钥。
本发明实施例中,终端和SGSN-V进行密钥协商使得所述终端得到用于所述终端与HPLMN中的第二核心网节点之间进行安全通信的端到端安全密钥。终端和GGSN-H之间进行算法协商得到端到端安全算法,终端和GGSN-H之间基于所述端到端安全密钥和所述端到端安全算法,与所述终端标识对应的终端进行安全通信。
本发明实施例中终端和GGSN-H之间可采用分组数据协议(Packet Data Protocol,PDP)上下文的激活流程来进行算法协商,得到端到端安全算法。
图5A为本发明实施例提供的GPRS系统中安全通信方法的一种实施流程图。图5A所示为的安全通信方法的密钥协商过程可采用图4所示的方法流程实现,在此不再赘述。以下着重对算法协商过程进行说明,实现过程如下:
S111:终端向所述SGSN-V发送激活PDP上下文请求消息,所述激活PDP上下文请求消息中包括终端支持的安全算法。
S112:所述SGSN-V向所述GGSN-H发送创建PDP上下文请求消息,所述创建PDP上下文请求消息中包括终端支持的安全算法。
S113:所述GGSN-H获取所述SGSN-V发送的创建PDP上下文请求消息,通过所述创建PDP上下文请求消息确定终端支持的安全算法,并在所述终端支持的安全算法中选择端到端安全算法,所述端到端安全算法例如可包括完整性保护算法alg_int_H,当然也可包括加密保护算法alg_enc_H。
S114:所述GGSN-H向所述SGSN-V返回创建PDP上下文响应消息,所述创建PDP上下文响应消息中包括所述HPLMN中的第二核心网节点选择的端到端安全算法。
可选的,本发明实施例中GGSN-H可基于完整性保护算法和完整性密钥,对所述终端支持的安全算法和所述选择的所述端到端安全算法进行完整性保护,生成消息验证值MAC-I_H,并将所述消息验证值、所述终端支持的安全算法以及选择的所述端到端安全算法发送给所述终端标识对应的终端,即所 述创建PDP上下文响应消息中包括验证值、所述终端支持的安全算法以及选择的所述端到端安全算法。
本发明实施例中GGSN-H生成的消息验证值用于使得终端识别该端到端安全算法确实是GGSN-H发送的。
S115:所述SGSN-V接收所述GGSN-H返回的创建PDP上下文响应消息,将所述创建PDP上下文响应消息中包括的验证值、所述终端支持的安全算法以及选择的所述端到端安全算法发送给所述终端标识对应的终端。
S116:所述终端与所述GGSN-H基于所述端到端安全密钥和所述端到端安全算法进行安全通信。
本发明实施例中终端和GGSN-H之间可在进行密钥协商过程中进行算法协商。
图5B所示为本发明实施例提供的GPRS系统中安全通信方法的另一种实施流程图,如图5B所示,包括:
S201、S202、S203、S204、S205分别与图4中的S101、S102、S103、S104、S105相似,不同之处在于在SGSN-V向SGSN-H发送的第一认证数据请求中以及SGSN-H向GGSN-H中发送的端到端密钥通知中还包括终端支持的安全算法。
S206与S106相似,不同之处在于在此步骤中GGSN-H可基于所述端到端密钥通知中包括的所述终端支持的安全算法,选择与终端之间进行安全通信的端到端安全算法,并将选择的端到端安全算法通过端到端密钥通知的回复消息发送给SGSN-H。
类似的,在此步骤中GGSN-H同样可生成消息验证值。
S207:GGSN-H向SGSN-H发送端到端密钥通知的回复消息,不同于S107之处在于,所述端到端密钥通知的回复消息中还包括GGSN-H选择的端到端安全算法。
若GGSN-H生成有消息验证值,则所述端到端密钥通知的回复消息中包括消息验证值、所述终端支持的安全算法以及所述HPLMN中的第二核心网节点 选择的端到端安全算法。
S208:SGSN-H向SGSN-V发送第一认证数据响应,不同于S108之处在于,所述第一认证数据响应中还包括GGSN-H选择的端到端安全算法。
若GGSN-H生成有消息验证值,则所述第一认证数据响应中还包括消息验证值、所述终端支持的安全算法以及所述HPLMN中的第二核心网节点选择的端到端安全算法。
S209与S109类似,基于所述第一认证数据响应中包括的认证向量进行安全认证和密钥协商。
S210与S110类似,终端生成用于与GGSN-H之间进行安全通信的端到端安全密钥。
S211:SGSN-V将所述述第一认证数据响应中包括的GGSN-H选择的端到端安全算法,发送给所述终端标识对应的终端。
若GGSN-H生成有消息验证值,则所述SGSN-V将所述消息验证值、所述终端支持的安全算法以及所述GGSN-H选择的端到端安全算法,发送给所述终端标识对应的终端。
S212:所述终端与所述GGSN-H基于所述端到端安全密钥和所述端到端安全算法进行安全通信。
图6所示为本发明实施例提供的SAE系统中安全通信方法中密钥协商的一种实施流程图。
图6中S301、S302、S303、S304、S305、S306、S307、S308、S309和S310分别与图4中的S101、S102、S103、S104、S105、S106、S107、S108、S109和S110相同,不同之处在于,SGSN-V替换为MME-V、SGSN-H替换为MME-H、GGSN-H替换为P-GW-H。
需要说明的是,SAE系统中,MME-V可通过终端向MME-V发送的终端标识或指示信息,确定所述VPLMN中的终端的通信数据需要路由到HPLMN的核心网节点,其中,所述终端标识或所述指示信息可以包含在附着或跟踪区更新请求中。即MME-V可通过终端向MME-V发送的附着或跟踪区更新请 求中包括的可以表征终端的通信数据需要路由到HPLMN的核心网节点的终端标识,或者通过终端向MME-V发送附着或跟踪区更新请求中包括的终端标识和指示信息,确定所述VPLMN中的终端的通信数据需要路由到HPLMN的核心网节点。
另外,需要说明的是,图6中进行密钥协商过程中,MME-H可通过HPLMN中的服务网关(Serving Gateway,S-GW-H)与P-GW-H之间进行信息的交互。
SAE系统中,终端和P-GW-H之间可在会话创建过程中进行算法协商,得到端到端安全算法。
图7A为本发明实施例提供的SAE系统中安全通信方法的一种实施流程图。图7A所示为的安全通信方法的密钥协商过程可采用图6所示的方法流程实现,在此不再赘述。以下着重对算法协商过程进行说明,实现过程如下:
S311:所述MME-V向所述P-GW-H发送创建会话请求消息,所述创建会话请求消息中包括终端支持的安全算法。
S312:所述P-GW-H获取所述MME-V发送的创建会话请求消息,通过所述创建会话请求消息确定终端支持的安全算法,并在所述终端支持的安全算法中选择端到端安全算法,所述端到端安全算法例如可包括完整性保护算法alg_int_H,当然也可包括加密保护算法alg_enc_H。
S313:所述P-GW-H向所述MME-V返回创建会话响应消息,所述创建会话响应消息中包括所述HPLMN中的第二核心网节点选择的端到端安全算法。
可选的,本发明实施例中P-GW-H可基于完整性保护算法和完整性密钥,对所述终端支持的安全算法和所述选择的所述端到端安全算法进行完整性保护,生成消息验证值MAC-I_H,并将所述消息验证值、所述终端支持的安全算法以及选择的所述端到端安全算法发送给所述终端标识对应的终端,即所述创建会话响应消息中包括验证值、所述终端支持的安全算法以及选择的所述端到端安全算法。
本发明实施例中GGSN-H生成的消息验证值用于使得终端识别该端到端 安全算法确实是GGSN-H发送的。
S314:所述MME-V接收所述P-GW-H返回的创建会话响应消息,将所述创建会话响应消息中包括的选择的所述端到端安全算法发送给所述终端标识对应的终端。
可选的,若P-GW-H生成有消息验证值,则将所述创建会话响应消息中包括的验证值、所述终端支持的安全算法以及选择的所述端到端安全算法发送给所述终端标识对应的终端。
S315:所述终端与所述P-GW-H基于所述端到端安全密钥和所述端到端安全算法进行安全通信。
需要说明的是,图7A中,MME-V可通过VPLMN中的服务网关(Serving Gateway,S-GW-V)与P-GW-H之间进行信息的交互,即所述MME-V可先将创建会话请求消息发送给S-GW-V,由S-GW-V将该创建会话请求消息发送给P-GW-H。
本发明实施例中终端和P-GW-H之间还可通过单独的算法协商过程得到端到端安全算法,具体实现过程如图7所示的算法协商过程。
图7B所示为本发明实施例提供的SAE系统中进行安全通信的另一方法实施流程。
图7B所示的方法实施流程中S401、S402、S403、S404、S405、S406、S407、S408、S409和S410分别与图6中的S301、S302、S303、S304、S305、S306、S307、S308、S309和S310相同,在此不再赘述。
S411、S412、S413、S414和S415分别与图6中的S311、S312、S313、S314和S315类似,不同之处在于,将所述创建会话请求消息替换为算法协商请求消息,将所述创建会话响应消息替换为算法协商响应消息,故在此不再赘述。
SAE系统中,终端和P-GW-H之间可在进行密钥协商过程中进行算法协商。
图7C所示为本发明实施例提供的SAE系统中进行安全通信的再一方法实施流程。
图7C所示的各方法执行步骤与图5B所示的安全通信方法中的各方法执行步骤类似,不同之处在于SGSN-V替换为MME-V、SGSN-H替换为MME-H、GGSN-H替换为P-GW-H。
需要说明的是,SAE系统中,MME-V可通过终端向MME-V发送附着或跟踪区更新请求中包括的可以表征终端的通信数据需要路由到HPLMN的核心网节点的终端标识,或者通过终端向MME-V发送附着或跟踪区更新请求中包括的终端标识和指示信息,确定所述VPLMN中的终端的通信数据需要路由到HPLMN的核心网节点。
另外,需要说明的是,图7C中MME-H可通过HPLMN中的服务网关(Serving Gateway,S-GW-H)与P-GW-H之间进行信息的交互。
本发明实施例提供的安全通信方法增加了SGSN-V/MME-V和SGSN-H/MME-H之间的信令交互,当SGSN-V/MME-V确定终端的通信数据需要路由到HPLMN中时,SGSN-V/MME-V向HPLMN中的SGSN-H/MME-H发送认证请求消息,认证请求消息中包括终端标识,并转发给HLR/HSS,从而使得HLR/HSS生成端到端安全密钥。通过SGSN-H/MME-H将端到端安全密钥,以及终端标识发送给GGSN-H/P-GW-H,终端和GGSN-H/P-GW-H之间进行算法协商,从而完成终端和GGSN-H/P-GW-H之间的密钥协商和算法协商,保护了UE和HPLMN网络之间的端到端安全。
另外,本发明实施例中可以做到在不开启HLR/HSS和HPLMN GGSN/P-GW之间接口的情况下,使得安全参数不需要经过VPLMN网络而发到HPLMN网络的GGSN/P-GW,避免了GGSN和HSS之间开设新的接口。
基于上述实施例提供的安全通信方法,本发明实施例提供一种VPLMN中的核心网节点100,图8所示为本发明实施例提供的VPLMN中的核心网节点100的结构示意图,如图8所示,VPLMN中的核心网节点100包括发送单元101、接收单元102和处理单元103,其中:
发送单元101,用于向HPLMN中的第一核心网节点发送第一认证数据请求,所述第一认证数据请求中包括漫游到所述VPLMN中的终端的终端标识。
接收单元102,用于接收所述HPLMN中的第一核心网节点根据所述发送单元101发送的第一认证数据请求中包括的终端标识发送的第一认证数据响应,所述第一认证数据响应中包括认证向量。
处理单元103,用于依据所述接收单元102接收的所述认证向量,与所述终端标识对应的终端进行安全认证和密钥协商。其中,密钥协商使得所述终端得到用于所述终端与HPLMN中的第二核心网节点之间进行安全通信的端到端安全密钥。
其中,所述处理单元103,还用于:
在所述发送单元101向HPLMN中的第一核心网节点发送第一认证数据请求之前,确定所述VPLMN中的终端的通信数据需要路由到HPLMN的核心网节点。
具体的,所述处理单元103,具体用于采用如下方式确定所述VPLMN中的终端的通信数据需要路由到HPLMN的核心网节点:
通过终端发送的终端标识,确定所述VPLMN中的终端的通信数据需要路由到HPLMN的核心网节点,所述终端标识能够表征终端的通信数据需要路由到HPLMN的核心网节点。或者
通过终端发送的指示信息,确定所述VPLMN中的终端的通信数据需要路由到HPLMN的核心网节点,所述指示信息用于指示终端的通信数据需要路由到HPLMN的核心网节点。
其中,GPRS系统中,所述终端标识和所述指示信息可以包含在所述终端发送的附着或路由区更新请求中。SAE系统中,所述终端标识和所述指示信息可以包含在所述终端发送的附着或跟踪区更新请求中。
可选的,所述VPLMN中的核心网节点为所述VPLMN中的服务通用分组无线服务GPRS支持节点SGSN、所述HPLMN中的第一核心网节点为所述HPLMN中的SGSN,所述HPLMN中的第二核心网节点为所述HPLMN中的网关通用分组无线服务GPRS支持节点。
可选的,所述VPLMN中的核心网节点为所述VPLMN中的移动性管理 实体MME、所述HPLMN中的第一核心网节点为所述HPLMN中的MME,所述HPLMN中的第二核心网节点为所述HPLMN中的分组数据网网关。
可选的,所述第一认证数据请求中还包括终端支持的安全算法。所述第一认证数据响应中还包括消息验证值、所述终端支持的安全算法以及所述HPLMN中的第二核心网节点选择的端到端安全算法。其中,所述消息验证值为所述HPLMN中的第二核心网节点,基于完整性保护算法和完整性密钥,对所述终端支持的安全算法和所述端到端安全算法进行完整性保护所生成的。所述发送单元101,还用于在所述接收单元102接收所述HPLMN中的第一核心网节点发送的第一认证数据响应之后,将所述消息验证值、所述终端支持的安全算法以及所述HPLMN中的第二核心网节点选择的端到端安全算法发送给所述终端标识对应的终端。
可选的,所述发送单元101,还用于:在所述处理单元103对所述终端标识对应的终端进行安全认证之后,向所述HPLMN中的第二核心网节点发送算法协商请求,所述算法协商请求中包括终端支持的安全算法。所述接收单元102,还用于接收所述HPLMN中的第二核心网节点返回的算法协商响应消息。所述算法协商响应消息中包括消息验证值、所述终端支持的安全算法以及所述HPLMN中的第二核心网节点选择的端到端安全算法。其中,所述消息验证值为所述HPLMN中的第二核心网节点,基于完整性保护算法和完整性密钥,对所述终端支持的安全算法和所述端到端安全算法进行完整性保护所生成的。所述发送单元101,还用于将所述消息验证值、所述终端支持的安全算法以及所述HPLMN中的第二核心网节点选择的端到端安全算法发送给所述终端标识对应的终端。
可选的,所述第一认证数据请求中还包括所述HPLMN中第二核心网节点的地址,所述HPLMN中第二核心网节点为所述VPLMN中的核心网节点为所述终端所选择进行安全通信的HPLMN中的核心网节点。
基于上述实施例提供的安全通信方法,本发明实施例提供一种VPLMN 中的核心网节点1000,图9所示为本发明实施例提供的VPLMN中的核心网节点1000的结构示意图,如图9所示,VPLMN中的核心网节点1000包括发射器1001,接收器1002,处理器1003和存储器1004。
存储器1004,用于存储处理器1003执行的程序代码。
处理器1003,用于调用所述存储器1004存储的程序,通过发射器1001向HPLMN中的第一核心网节点发送第一认证数据请求,所述第一认证数据请求中包括漫游到所述VPLMN中的终端的终端标识。通过接收器1002接收所述HPLMN中的第一核心网节点根据所述第一认证数据请求中包括的终端标识发送的第一认证数据响应,所述第一认证数据响应中包括认证向量。并用于依据接收到的所述认证向量与所述终端标识对应的终端进行安全认证和密钥协商。其中,密钥协商使得所述终端得到用于所述终端与HPLMN中的第二核心网节点之间进行安全通信的端到端安全密钥。
处理器1003还执行图4至图7C中涉及的VPLMN中的核心网节点(SGSN-V/MME-V)的处理过程和/或用于本申请所描述的技术的其他过程。所述接收器1002和所述发射器1001用于支持该VPLMN中的核心网节点(SGSN-V/MME-V)与HPLMN中的第二核心网节点(GGSN-H/P-GW-H)之间、该VPLMN中的核心网节点(SGSN-V/MME-V)与HPLMN中的第一核心网节点(SGSN-H/MME-H)之间的通信,进行上述方法涉及的信息的交互,在此不再赘述。
本发明实施例提供了一种计算机存储介质,用于储存为上述VPLMN中的核心网节点所用的计算机软件指令,其包含用于执行上述方面所设计的程序。
基于上述实施例提供的安全通信方法,本发明实施例还提供一种HPLMN中的第一核心网节点200,所述HPLMN中包括不同于所述核心网节点的第二核心网节点,图10所示为本发明实施例提供的HPLMN中的第一核心网节点200的结构示意图,如图10所示,HPLMN中的第一核心网节点200包括接收单元201和发送单元202,其中:
接收单元201,用于接收VPLMN中的核心网节点发送的第一认证数据请求,以及接收所述HLR或所述HSS发送的第二认证数据响应,所述第二认证数据响应中包括认证向量和端到端安全密钥,其中,所述端到端安全密钥用于保护所述终端与所述HPLMN中的第二核心网节点之间的安全通信,其中,所述第一认证数据请求中包括漫游到所述VPLMN中终端的终端标识。
发送单元202,用于基于所述接收单元201接收的所述第一认证数据请求向归属位置寄存器HLR或归属用户服务器HSS发送第二认证数据请求,并向所述HPLMN中的第二核心网节点发送端到端密钥通知以及向所述VPLMN中的核心网节点返回第一认证数据响应。
其中,所述第二认证数据请求中包括漫游到所述VPLMN中终端的终端标识,所述端到端密钥通知中包括所述终端标识、端到端安全密钥,所述第一认证数据响应中包括认证向量,所述认证向量用于所述VPLMN中的核心网节点依据所述认证向量,与所述终端标识对应的终端进行安全认证和密钥协商。
可选的,所述第一核心网节点200为所述HPLMN中的服务通用分组无线服务GPRS支持节点SGSN,所述VPLMN中的核心网节点为所述VPLMN中的SGSN、所述HPLMN中的第二核心网节点为所述HPLMN中的网关通用分组无线服务GPRS支持节点。
可选的,所述第一核心网节点200为所述HPLMN中的移动性管理实体MME,所述VPLMN中的核心网节点为所述VPLMN中的MME、所述HPLMN中的第二核心网节点为所述HPLMN中的分组数据网网关。
可选的,所述第一认证数据请求和所述端到端密钥通知中还包括终端支持的安全算法;所述接收单元201,还用于接收所述HPLMN中的第二核心网节点针对所述端到端密钥通知反馈的端到端密钥通知的回复消息;其中,所述端到端密钥通知的回复消息中包括消息验证值、所述终端支持的安全算法以及所述HPLMN中的第二核心网节点选择的端到端安全算法;所述第一认证数据响应中还包括消息验证值、所述终端支持的安全算法以及所述HPLMN 中的第二核心网节点选择的端到端安全算法;其中,所述消息验证值为所述HPLMN中的第二核心网节点,基于完整性保护算法和完整性密钥,对所述终端支持的安全算法和所述选择的所述端到端安全算法进行完整性保护所生成的。
可选的,所述第一认证数据请求中还包括所述HPLMN中第二核心网节点的地址,所述HPLMN中第二核心网节点为所述VPLMN中的核心网节点为所述终端所选择进行安全通信的HPLMN中的核心网节点。所述发送单元202,具体采用如下方式向所述HPLMN中的第二核心网节点发送端到端密钥通知:向所述地址指示的所述HPLMN中的第二核心网节点发送端到端密钥通知。
基于上述实施例提供的安全通信方法,本发明实施例提供一种HPLMN中的第一核心网节点2000,图11所示为本发明实施例提供的HPLMN中的第一核心网节点2000的结构示意图,如图11所示,HPLMN中的第一核心网节点2000包括接收器2001和发射器2002。
其中,接收器2001用于接收VPLMN中的核心网节点发送的第一认证数据请求,以及接收HLR或HSS发送的第二认证数据响应,所述第二认证数据响应中包括认证向量和端到端安全密钥,其中,所述端到端安全密钥用于保护所述终端与所述HPLMN中的第二核心网节点之间的安全通信,其中,所述第一认证数据请求中包括漫游到所述VPLMN中终端的终端标识。发射器2002用于基于所述接收器2001接收的所述第一认证数据请求向HLR或HSS发送第二认证数据请求,并向所述HPLMN中的第二核心网节点发送端到端密钥通知以及向所述VPLMN中的核心网节点返回第一认证数据响应。其中,所述第二认证数据请求中包括漫游到所述VPLMN中终端的终端标识,所述端到端密钥通知中包括所述终端标识、端到端安全密钥,所述第一认证数据响应中包括认证向量,所述认证向量用于所述VPLMN中的核心网节点依据所述认证向量,与所述终端标识对应的终端进行安全认证和密钥协商。
所述接收器2001和所述发射器2002还用于支持上述方法实施例中图4至图7C所示的HPLMN中的第一核心网节点(SGSN-H/MME-H)与VPLMN中的核心网节点(SGSN-V/MME-V)和HPLMN中的第二核心网节点(GGSN-H/P-GW-H)之间的通信,进行上述方法涉及的信息的交互,在此不再赘述。
本发明实施例提供了一种计算机存储介质,用于储存为上述HPLMN中的第一核心网节点所用的计算机软件指令,其包含用于执行上述方面所设计的程序。
基于上述实施例提供的安全通信方法,本发明实施例还提供一种HPLMN中的第二核心网节点300,图12所示为本发明实施例提供的HPLMN中的第二核心网节点300的结构示意图,如图12所示,HPLMN中的第二核心网节点300包括接收单元301、处理单元302和发送单元303,其中,所述HPLMN中包括不同于所述核心网节点的第一核心网节点。
接收单元301,用于接收所述HPLMN中的第一核心网节点发送的端到端密钥通知。所述端到端密钥通知中包括终端标识和端到端安全密钥,所述终端标识用于标识需要将通信数据路由到HPLMN的核心网节点的终端,所述端到端安全密钥为所述终端的HLR或HSS依据所述VPLMN中的核心网节点路由到所述HPLMN网络的第二认证数据请求所生成,并用于保护终端与HPLMN中的第二核心网节点之间的安全通信。
处理单元302,用于根据所述端到端密钥通知中包括的终端标识和端到端安全密钥,选择端到端安全算法,以及基于所述端到端安全密钥和所述端到端安全算法,与所述终端标识对应的终端进行安全通信。
发送单元303,用于将所述处理单元302选择的端到端安全算法发送给所述终端标识对应的终端。
可选的,所述第二核心网节点300为所述HPLMN中的网关通用分组无线服务GPRS支持节点,所述VPLMN中的核心网节点为所述VPLMN中的 服务通用分组无线服务GPRS支持节点SGSN、所述HPLMN中的第一核心网节点为所述HPLMN中的SGSN。
可选的,所述第二核心网节点300为所述HPLMN中的网关通用分组无线服务GPRS支持节点,所述VPLMN中的核心网节点为所述VPLMN中的移动性管理实体MME、所述HPLMN中的第一核心网节点为所述HPLMN中的MME。
可选的,所述第一认证数据请求和所述端到端密钥通知中还包括终端支持的安全算法。所述端到端安全算法包括完整性保护算法,所述端到端安全密钥包括完整性保护密钥。所述处理单元302,采用如下方式选择端到端安全算法:所述HPLMN中的第二核心网节点获取所述HPLMN中的第一核心网节点发送的所述端到端密钥通知,通过所述端到端密钥通知确定终端支持的安全算法。所述HPLMN中的第二核心网节点在所述终端支持的安全算法中选择端到端安全算法。所述处理单元302,还用于:基于所述完整性保护算法和所述完整性密钥,对所述终端支持的安全算法和所述选择的所述端到端安全算法进行完整性保护,生成消息验证值。所述发送单元303,具体采用如下方式将所述选择的端到端安全算法发送给所述终端标识对应的终端:向所述HPLMN中的第一核心网节点发送端到端密钥通知的回复消息,所述端到端密钥通知的回复消息中包括消息验证值、所述终端支持的安全算法以及所述HPLMN中的第二核心网节点选择的端到端安全算法,并通过所述HPLMN中的第一核心网节点和所述VPLMN中的核心网节点,将消息验证值、所述终端支持的安全算法以及所述选择的端到端安全算法发送给所述终端标识对应的终端。
可选的,所述端到端安全算法包括完整性保护算法,所述端到端安全密钥包括完整性保护密钥。所述接收单元301,还用于:获取所述VPLMN中的核心网节点发送的算法协商请求,所述算法协商请求中包括终端支持的安全算法。所述处理单元302,具体采用如下方式选择端到端安全算法:通过所述算法协商请求确定终端支持的安全算法,并在所述终端支持的安全算法中选 择端到端安全算法。所述处理单元302,还用于:基于所述完整性保护算法和所述完整性密钥,对所述终端支持的安全算法和所述选择的所述端到端安全算法进行完整性保护,生成消息验证值。所述发送单元303,具体用于采用如下方式将所述选择的端到端安全算法发送给所述终端标识对应的终端:向所述VPLMN中的核心网节点返回算法协商响应消息,所述算法协商响应消息中包括消息验证值、所述终端支持的安全算法以及所述HPLMN中的第二核心网节点选择的端到端安全算法,并通过所述VPLMN中的核心网节点将所述消息验证值、所述终端支持的安全算法以及所述HPLMN中的第二核心网节点选择的端到端安全算法发送给所述终端标识对应的终端。
基于上述实施例提供的通信方法,本发明实施例还提供一种HPLMN中的第二核心网节点3000,图13所示为本发明实施例提供的HPLMN中的第二核心网节点3000的结构示意图,如图13所示HPLMN中的第二核心网节点3000包括处理器3001、接收器3002、发射器3003和存储器3004。
存储器3004,用于存储处理器3001执行的程序代码。
处理器3001,用于调用所述存储器3004存储的程序,通过接收器3002接收所述HPLMN中的第一核心网节点发送的端到端密钥通知,通过发射器3003将选择的端到端安全算法发送给所述终端标识对应的终端,并根据所述端到端密钥通知中包括的终端标识和端到端安全密钥选择端到端安全算法,以及基于所述端到端安全密钥和所述端到端安全算法,与所述终端标识对应的终端进行安全通信。
所述处理器3001被配置为支持上述方法实施例图4至图7C所示的HPLMN中的第二核心网节点(GGSN-H/P-GW-H)执行上述方法中相应的功能。所述接收器3002和所述发射器3003用于支持该HPLMN中的第二核心网节点(GGSN-H/P-GW-H)与VPLMN中的核心网节点(SGSN-V/MME-V)、该HPLMN中的第二核心网节点(GGSN-H/P-GW-H)和HPLMN中的第一核心网节点(SGSN-H/MME-H)之间的通信,进行上述方法涉及的信息的交互,在此不再赘述。
本发明实施例提供了一种计算机存储介质,用于储存为上述HPLMN中的第二核心网节点所用的计算机软件指令,其包含用于执行上述方面所设计的程序。
本发明实施例还提供一种通信系统,该通信系统包括上述方面涉及的VPLMN中的核心网节点、HPLMN中的第一核心网节点和HPLMN中的第二核心网节点,并具有相应的功能,在此不再赘述。
本发明实施例提供的针对漫游的终端进行安全通信的方法,能够避免HPLMN中的安全密钥被VPLMN获取,保护了UE和HPLMN网络之间的端到端安全。并且本发明实施例中HLR/HSS与HPLMN中的第二核心网节点之间无需进行直接交互,故可避免开启HPLMN中的第二核心网节点与HLR/HSS之间的接口。
本领域普通技术人员可以理解实现上述实施例方法中的全部或部分步骤是可以通过程序来指令处理器完成,所述的程序可以存储于计算机可读存储介质中,所述存储介质是非短暂性(英文:non-transitory)介质,例如随机存取存储器,只读存储器,快闪存储器,硬盘,固态硬盘,磁带(英文:magnetic tape),软盘(英文:floppy disk),光盘(英文:optical disc)及其任意组合。
本发明是参照本发明实施例的方法和设备各自的流程图和方框图来描述的。应理解可由计算机程序指令实现流程图和方框图中的每一流程和方框、以及流程图和方框图中的流程和方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和方框图一个方框或多个方框中指定的功能的装置。
以上所述,仅为本发明较佳的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到的变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应该以权利要求的保护范围为准。

Claims (36)

  1. 一种安全通信方法,其特征在于,包括:
    拜访公共陆地移动网络VPLMN中的核心网节点向归属公用陆地移动网络HPLMN中的第一核心网节点发送第一认证数据请求,所述第一认证数据请求中包括漫游到所述VPLMN中的终端的终端标识;
    所述VPLMN中的核心网节点接收所述HPLMN中的第一核心网节点根据所述第一认证数据请求中包括的终端标识发送的第一认证数据响应,所述第一认证数据响应中包括认证向量;
    所述VPLMN中的核心网节点依据所述认证向量,与所述终端标识对应的终端进行安全认证和密钥协商;
    其中,密钥协商使得所述终端得到用于所述终端与HPLMN中的第二核心网节点之间进行安全通信的端到端安全密钥。
  2. 如权利要求1所述的方法,其特征在于,所述VPLMN中的核心网节点向HPLMN中的第一核心网节点发送第一认证数据请求之前,还包括:
    所述VPLMN中的所述核心网节点确定所述VPLMN中的终端的通信数据需要路由到HPLMN的核心网节点。
  3. 如权利要求2所述的方法,其特征在于,所述VPLMN中的所述核心网节点确定所述VPLMN中的终端的通信数据需要路由到HPLMN的核心网节点,包括:
    所述VPLMN中的核心网节点通过终端发送的终端标识,确定所述VPLMN中的终端的通信数据需要路由到HPLMN的核心网节点,所述终端标识能够表征终端的通信数据需要路由到HPLMN的核心网节点;或者
    所述VPLMN中的核心网节点通过终端发送的指示信息,确定所述VPLMN中的终端的通信数据需要路由到HPLMN的核心网节点,所述指示信息用于指示终端的通信数据需要路由到HPLMN的核心网节点。
  4. 如权利要求1至3任一项所述的方法,其特征在于,所述VPLMN中 的核心网节点为所述VPLMN中的服务通用分组无线服务GPRS支持节点SGSN、所述HPLMN中的第一核心网节点为所述HPLMN中的SGSN,所述HPLMN中的第二核心网节点为所述HPLMN中的网关通用分组无线服务GPRS支持节点。
  5. 如权利要求1至3任一项所述的方法,其特征在于,所述VPLMN中的核心网节点为所述VPLMN中的移动性管理实体MME、所述HPLMN中的第一核心网节点为所述HPLMN中的MME,所述HPLMN中的第二核心网节点为所述HPLMN中的分组数据网网关。
  6. 如权利要求1至5任一项所述的方法,其特征在于,所述第一认证数据请求中还包括终端支持的安全算法;
    所述第一认证数据响应中还包括消息验证值、所述终端支持的安全算法以及所述HPLMN中的第二核心网节点选择的端到端安全算法;
    其中,所述消息验证值为所述HPLMN中的第二核心网节点,基于完整性保护算法和完整性密钥,对所述终端支持的安全算法和所述端到端安全算法进行完整性保护所生成的;
    所述VPLMN中的核心网节点接收所述HPLMN中的第一核心网节点发送的第一认证数据响应之后,所述方法还包括:
    所述VPLMN中的核心网节点将所述消息验证值、所述终端支持的安全算法以及所述HPLMN中的第二核心网节点选择的端到端安全算法发送给所述终端标识对应的终端。
  7. 如权利要求5所述的方法,其特征在于,对所述终端标识对应的终端进行安全认证之后,所述方法还包括:
    所述VPLMN中的核心网节点向所述HPLMN中的第二核心网节点发送算法协商请求,所述算法协商请求中包括终端支持的安全算法;
    所述VPLMN中的核心网节点接收所述HPLMN中的第二核心网节点返回的算法协商响应消息;
    所述算法协商响应消息中包括消息验证值、所述终端支持的安全算法以 及所述HPLMN中的第二核心网节点选择的端到端安全算法;
    其中,所述消息验证值为所述HPLMN中的第二核心网节点,基于完整性保护算法和完整性密钥,对所述终端支持的安全算法和所述端到端安全算法进行完整性保护所生成的;
    所述VPLMN中的核心网节点将所述消息验证值、所述终端支持的安全算法以及所述HPLMN中的第二核心网节点选择的端到端安全算法发送给所述终端标识对应的终端。
  8. 如权利要求1至7任一项所述的方法,其特征在于,所述第一认证数据请求中还包括所述HPLMN中第二核心网节点的地址,所述HPLMN中第二核心网节点为所述VPLMN中的核心网节点为所述终端所选择进行安全通信的HPLMN中的核心网节点。
  9. 一种安全通信方法,其特征在于,包括:
    归属公用陆地移动网络HPLMN中的第一核心网节点接收拜访公共陆地移动网络VPLMN中的核心网节点发送的第一认证数据请求;并
    基于所述第一认证数据请求向归属位置寄存器HLR或归属用户服务器HSS发送第二认证数据请求,其中,所述第一认证数据请求和所述第二认证数据请求中均包括漫游到所述VPLMN中的终端的终端标识;
    所述HPLMN中的第一核心网节点接收所述HLR或所述HSS根据所述第二认证数据请求中的终端标识发送的第二认证数据响应,所述第二认证数据响应中包括认证向量和端到端安全密钥,其中,所述端到端安全密钥用于保护所述终端与所述HPLMN中的第二核心网节点之间的安全通信;
    所述HPLMN中的第一核心网节点向所述HPLMN中的第二核心网节点发送端到端密钥通知,其中,所述端到端密钥通知中包括所述终端标识、端到端安全密钥;
    所述HPLMN中的第一核心网节点向所述VPLMN中的核心网节点返回第一认证数据响应,所述第一认证数据响应中包括认证向量,所述认证向量 用于所述VPLMN中的核心网节点依据所述认证向量,与所述终端标识对应的终端进行安全认证和密钥协商。
  10. 如权利要求9所述的方法,其特征在于,所述VPLMN中的核心网节点为所述VPLMN中的服务通用分组无线服务GPRS支持节点SGSN、所述HPLMN中的第一核心网节点为所述HPLMN中的SGSN,所述HPLMN中的第二核心网节点为所述HPLMN中的网关通用分组无线服务GPRS支持节点。
  11. 如权利要求9所述的方法,其特征在于,所述VPLMN中的核心网节点为所述VPLMN中的移动性管理实体MME、所述HPLMN中的第一核心网节点为所述HPLMN中的MME,所述HPLMN中的第二核心网节点为所述HPLMN中的分组数据网网关。
  12. 如权利要求9至11任一项所述的方法,其特征在于,所述第一认证数据请求和所述端到端密钥通知中还包括终端支持的安全算法;
    所述方法还包括:
    所述HPLMN中的第一核心网节点接收所述HPLMN中的第二核心网节点针对所述端到端密钥通知反馈的端到端密钥通知的回复消息;
    其中,所述端到端密钥通知的回复消息中包括消息验证值、所述终端支持的安全算法以及所述HPLMN中的第二核心网节点选择的端到端安全算法;
    所述第一认证数据响应中还包括消息验证值、所述终端支持的安全算法以及所述HPLMN中的第二核心网节点选择的端到端安全算法;
    其中,所述消息验证值为所述HPLMN中的第二核心网节点,基于完整性保护算法和完整性密钥,对所述终端支持的安全算法和所述选择的所述端到端安全算法进行完整性保护所生成的。
  13. 如权利要求9至12任一项所述的方法,其特征在于,所述第一认证数据请求中还包括所述HPLMN中第二核心网节点的地址,所述HPLMN中第二核心网节点为所述VPLMN中的核心网节点为所述终端所选择进行安全通信的HPLMN中的核心网节点;
    所述HPLMN中的第一核心网节点向所述HPLMN中的第二核心网节点 发送端到端密钥通知,包括:
    所述HPLMN中的第一核心网节点向所述地址指示的所述HPLMN中的第二核心网节点发送端到端密钥通知。
  14. 一种安全通信方法,其特征在于,包括:
    归属公用陆地移动网络HPLMN中的第二核心网节点接收所述HPLMN中的第一核心网节点发送的端到端密钥通知;
    所述端到端密钥通知中包括终端标识和端到端安全密钥,所述终端标识用于标识需要将通信数据路由到HPLMN的核心网节点的终端,所述端到端安全密钥为所述终端的归属位置寄存器HLR或归属用户服务器HSS依据所述VPLMN中的核心网节点路由到所述HPLMN网络的第二认证数据请求所生成,并用于保护终端与HPLMN中的第二核心网节点之间的安全通信;
    所述HPLMN中的第二核心网节点根据所述端到端密钥通知中包括的终端标识和端到端安全密钥,选择端到端安全算法并将选择的端到端安全算法发送给所述终端标识对应的终端;
    所述HPLMN中的第二核心网节点基于所述端到端安全密钥和所述端到端安全算法,与所述终端标识对应的终端进行安全通信。
  15. 如权利要求14所述的方法,其特征在于,所述VPLMN中的核心网节点为所述VPLMN中的服务通用分组无线服务GPRS支持节点SGSN、所述HPLMN中的第一核心网节点为所述HPLMN中的SGSN,所述HPLMN中的第二核心网节点为所述HPLMN中的网关通用分组无线服务GPRS支持节点。
  16. 如权利要求14所述的方法,其特征在于,所述VPLMN中的核心网节点为所述VPLMN中的移动性管理实体MME、所述HPLMN中的第一核心网节点为所述HPLMN中的MME,所述HPLMN中的第二核心网节点为所述HPLMN中的分组数据网网关。
  17. 如权利要求14至16任一项所述的方法,其特征在于,所述第一认证数据请求和所述端到端密钥通知中还包括终端支持的安全算法;
    所述端到端安全算法包括完整性保护算法,所述端到端安全密钥包括完整性保护密钥;
    所述HPLMN中的第二核心网节点选择端到端安全算法并将所述选择的端到端安全算法发送给所述终端标识对应的终端,包括:
    所述HPLMN中的第二核心网节点获取所述HPLMN中的第一核心网节点发送的所述端到端密钥通知,通过所述端到端密钥通知确定终端支持的安全算法;
    所述HPLMN中的第二核心网节点在所述终端支持的安全算法中选择端到端安全算法;
    所述HPLMN中的第二核心网节点,基于所述完整性保护算法和所述完整性密钥,对所述终端支持的安全算法和所述选择的所述端到端安全算法进行完整性保护,生成消息验证值;
    所述HPLMN中的第二核心网节点向所述HPLMN中的第一核心网节点发送端到端密钥通知的回复消息,所述端到端密钥通知的回复消息中包括消息验证值、所述终端支持的安全算法以及所述HPLMN中的第二核心网节点选择的端到端安全算法,并
    通过所述HPLMN中的第一核心网节点和所述VPLMN中的核心网节点,将消息验证值、所述终端支持的安全算法以及所述选择的端到端安全算法发送给所述终端标识对应的终端。
  18. 如权利要求16所述的方法,其特征在于,所述端到端安全算法包括完整性保护算法,所述端到端安全密钥包括完整性保护密钥;
    所述HPLMN中的第二核心网节点选择端到端安全算法并将所述选择的端到端安全算法发送给所述终端标识对应的终端,包括:
    所述HPLMN中的第二核心网节点获取所述VPLMN中的核心网节点发送的算法协商请求,所述算法协商请求中包括终端支持的安全算法;
    所述HPLMN中的第二核心网节点通过所述算法协商请求确定终端支持的安全算法,并在所述终端支持的安全算法中选择端到端安全算法;
    所述HPLMN中的第二核心网节点,基于所述完整性保护算法和所述完整性密钥,对所述终端支持的安全算法和所述选择的所述端到端安全算法进行完整性保护,生成消息验证值;
    所述HPLMN中的第二核心网节点向所述VPLMN中的核心网节点返回算法协商响应消息,所述算法协商响应消息中包括消息验证值、所述终端支持的安全算法以及所述HPLMN中的第二核心网节点选择的端到端安全算法,并
    通过所述VPLMN中的核心网节点将所述消息验证值、所述终端支持的安全算法以及所述HPLMN中的第二核心网节点选择的端到端安全算法发送给所述终端标识对应的终端。
  19. 一种拜访公共陆地移动网络VPLMN中的核心网节点,其特征在于,包括:
    发送单元,用于向归属公用陆地移动网络HPLMN中的第一核心网节点发送第一认证数据请求,所述第一认证数据请求中包括漫游到所述VPLMN中的终端的终端标识;
    接收单元,用于接收所述HPLMN中的第一核心网节点根据所述第一认证数据请求中包括的终端标识发送的第一认证数据响应,所述第一认证数据响应中包括认证向量;
    处理单元,用于依据所述接收单元接收的所述认证向量,与所述终端标识对应的终端进行安全认证和密钥协商;
    其中,密钥协商使得所述终端得到用于所述终端与HPLMN中的第二核心网节点之间进行安全通信的端到端安全密钥。
  20. 如权利要求19所述的核心网节点,其特征在于,所述处理单元,还用于:
    在所述发送单元向HPLMN中的第一核心网节点发送第一认证数据请求之前,确定所述VPLMN中的终端的通信数据需要路由到HPLMN的核心网 节点。
  21. 如权利要求20所述的核心网节点,其特征在于,所述处理单元,具体用于采用如下方式确定所述VPLMN中的终端的通信数据需要路由到HPLMN的核心网节点:
    通过终端发送的终端标识,确定所述VPLMN中的终端的通信数据需要路由到HPLMN的核心网节点,所述终端标识能够表征终端的通信数据需要路由到HPLMN的核心网节点;或者
    通过终端发送的指示信息,确定所述VPLMN中的终端的通信数据需要路由到HPLMN的核心网节点,所述指示信息用于指示终端的通信数据需要路由到HPLMN的核心网节点。
  22. 如权利要求19至21任一项所述的核心网节点,其特征在于,所述核心网节点为所述VPLMN中的服务通用分组无线服务GPRS支持节点SGSN、所述HPLMN中的第一核心网节点为所述HPLMN中的SGSN,所述HPLMN中的第二核心网节点为所述HPLMN中的网关通用分组无线服务GPRS支持节点。
  23. 如权利要求19至21任一项所述的核心网节点,其特征在于,所述核心网节点为所述VPLMN中的移动性管理实体MME、所述HPLMN中的第一核心网节点为所述HPLMN中的MME,所述HPLMN中的第二核心网节点为所述HPLMN中的分组数据网网关。
  24. 如权利要求19至23任一项所述的核心网节点,其特征在于,所述第一认证数据请求中还包括终端支持的安全算法;
    所述第一认证数据响应中还包括消息验证值、所述终端支持的安全算法以及所述HPLMN中的第二核心网节点选择的端到端安全算法;
    其中,所述消息验证值为所述HPLMN中的第二核心网节点,基于完整性保护算法和完整性密钥,对所述终端支持的安全算法和所述端到端安全算法进行完整性保护所生成的;
    所述发送单元,还用于在所述接收单元接收所述HPLMN中的第一核心 网节点发送的第一认证数据响应之后,将所述消息验证值、所述终端支持的安全算法以及所述HPLMN中的第二核心网节点选择的端到端安全算法发送给所述终端标识对应的终端。
  25. 如权利要求23所述的核心网节点,其特征在于,所述发送单元,还用于:
    在所述处理单元对所述终端标识对应的终端进行安全认证之后,向所述HPLMN中的第二核心网节点发送算法协商请求,所述算法协商请求中包括终端支持的安全算法;
    所述接收单元,还用于接收所述HPLMN中的第二核心网节点返回的算法协商响应消息;
    所述算法协商响应消息中包括消息验证值、所述终端支持的安全算法以及所述HPLMN中的第二核心网节点选择的端到端安全算法;
    其中,所述消息验证值为所述HPLMN中的第二核心网节点,基于完整性保护算法和完整性密钥,对所述终端支持的安全算法和所述端到端安全算法进行完整性保护所生成的;
    所述发送单元,还用于将所述消息验证值、所述终端支持的安全算法以及所述HPLMN中的第二核心网节点选择的端到端安全算法发送给所述终端标识对应的终端。
  26. 如权利要求19至25任一项所述的核心网节点,其特征在于,所述第一认证数据请求中还包括所述HPLMN中第二核心网节点的地址,所述HPLMN中第二核心网节点为所述VPLMN中的核心网节点为所述终端所选择进行安全通信的HPLMN中的核心网节点。
  27. 一种归属公用陆地移动网络HPLMN中的第一核心网节点,所述HPLMN中包括不同于所述核心网节点的第二核心网节点,其特征在于,包括:
    接收单元,用于接收拜访公共陆地移动网络VPLMN中的核心网节点发送的第一认证数据请求,以及接收所述HLR或所述HSS发送的第二认证数据 响应,所述第二认证数据响应中包括认证向量和端到端安全密钥,其中,所述端到端安全密钥用于保护所述终端与所述HPLMN中的第二核心网节点之间的安全通信,其中,所述第一认证数据请求中包括漫游到所述VPLMN中终端的终端标识,
    发送单元,用于基于所述接收单元接收的所述第一认证数据请求向归属位置寄存器HLR或归属用户服务器HSS发送第二认证数据请求,并向所述HPLMN中的第二核心网节点发送端到端密钥通知以及向所述VPLMN中的核心网节点返回第一认证数据响应;
    其中,所述第二认证数据请求中包括漫游到所述VPLMN中终端的终端标识,所述端到端密钥通知中包括所述终端标识、端到端安全密钥,所述第一认证数据响应中包括认证向量,所述认证向量用于所述VPLMN中的核心网节点依据所述认证向量,与所述终端标识对应的终端进行安全认证和密钥协商。
  28. 如权利要求27所述的第一核心网节点,其特征在于,所述第一核心网节点为所述HPLMN中的服务通用分组无线服务GPRS支持节点SGSN,所述VPLMN中的核心网节点为所述VPLMN中的SGSN、所述HPLMN中的第二核心网节点为所述HPLMN中的网关通用分组无线服务GPRS支持节点。
  29. 如权利要求27所述的第一核心网节点,其特征在于,所述第一核心网节点为所述HPLMN中的移动性管理实体MME,所述VPLMN中的核心网节点为所述VPLMN中的MME、所述HPLMN中的第二核心网节点为所述HPLMN中的分组数据网网关。
  30. 如权利要求27至29任一项所述的第一核心网节点,其特征在于,所述第一认证数据请求和所述端到端密钥通知中还包括终端支持的安全算法;
    所述接收单元,还用于接收所述HPLMN中的第二核心网节点针对所述端到端密钥通知反馈的端到端密钥通知的回复消息;
    其中,所述端到端密钥通知的回复消息中包括消息验证值、所述终端支 持的安全算法以及所述HPLMN中的第二核心网节点选择的端到端安全算法;
    所述第一认证数据响应中还包括消息验证值、所述终端支持的安全算法以及所述HPLMN中的第二核心网节点选择的端到端安全算法;
    其中,所述消息验证值为所述HPLMN中的第二核心网节点,基于完整性保护算法和完整性密钥,对所述终端支持的安全算法和所述选择的所述端到端安全算法进行完整性保护所生成的。
  31. 如权利要求27至30任一项所述的第一核心网节点,其特征在于,所述第一认证数据请求中还包括所述HPLMN中第二核心网节点的地址,所述HPLMN中第二核心网节点为所述VPLMN中的核心网节点为所述终端所选择进行安全通信的HPLMN中的核心网节点;
    所述发送单元,具体采用如下方式向所述HPLMN中的第二核心网节点发送端到端密钥通知:
    向所述地址指示的所述HPLMN中的第二核心网节点发送端到端密钥通知。
  32. 一种归属公用陆地移动网络HPLMN中的第二核心网节点,所述HPLMN中包括不同于所述核心网节点的第一核心网节点,其特征在于,包括:
    接收单元,用于接收所述HPLMN中的第一核心网节点发送的端到端密钥通知;
    所述端到端密钥通知中包括终端标识和端到端安全密钥,所述终端标识用于标识需要将通信数据路由到HPLMN的核心网节点的终端,所述端到端安全密钥为所述终端的归属位置寄存器HLR或归属用户服务器HSS依据所述VPLMN中的核心网节点路由到所述HPLMN网络的第二认证数据请求所生成,并用于保护终端与HPLMN中的第二核心网节点之间的安全通信;
    处理单元,用于根据所述端到端密钥通知中包括的终端标识和端到端安全密钥,选择端到端安全算法,以及基于所述端到端安全密钥和所述端到端安全算法,与所述终端标识对应的终端进行安全通信;
    发送单元,用于将所述处理单元选择的端到端安全算法发送给所述终端标识对应的终端。
  33. 如权利要求32所述的第二核心网节点,其特征在于,所述第二核心网节点为所述HPLMN中的网关通用分组无线服务GPRS支持节点,所述VPLMN中的核心网节点为所述VPLMN中的服务通用分组无线服务GPRS支持节点SGSN、所述HPLMN中的第一核心网节点为所述HPLMN中的SGSN。
  34. 如权利要求32所述的第二核心网节点,其特征在于,所述第二核心网节点为所述HPLMN中的网关通用分组无线服务GPRS支持节点,所述VPLMN中的核心网节点为所述VPLMN中的移动性管理实体MME、所述HPLMN中的第一核心网节点为所述HPLMN中的MME。
  35. 如权利要求32至34任一项所述的第二核心网节点,其特征在于,所述第一认证数据请求和所述端到端密钥通知中还包括终端支持的安全算法;
    所述端到端安全算法包括完整性保护算法,所述端到端安全密钥包括完整性保护密钥;
    所述处理单元,采用如下方式选择端到端安全算法:
    所述HPLMN中的第二核心网节点获取所述HPLMN中的第一核心网节点发送的所述端到端密钥通知,通过所述端到端密钥通知确定终端支持的安全算法;
    所述HPLMN中的第二核心网节点在所述终端支持的安全算法中选择端到端安全算法;
    所述处理单元,还用于:基于所述完整性保护算法和所述完整性密钥,对所述终端支持的安全算法和所述选择的所述端到端安全算法进行完整性保护,生成消息验证值;
    所述发送单元,具体采用如下方式将所述选择的端到端安全算法发送给所述终端标识对应的终端:
    向所述HPLMN中的第一核心网节点发送端到端密钥通知的回复消息, 所述端到端密钥通知的回复消息中包括消息验证值、所述终端支持的安全算法以及所述HPLMN中的第二核心网节点选择的端到端安全算法,并
    通过所述HPLMN中的第一核心网节点和所述VPLMN中的核心网节点,将消息验证值、所述终端支持的安全算法以及所述选择的端到端安全算法发送给所述终端标识对应的终端。
  36. 如权利要求34所述的第二核心网节点,其特征在于,所述端到端安全算法包括完整性保护算法,所述端到端安全密钥包括完整性保护密钥;
    所述接收单元,还用于:获取所述VPLMN中的核心网节点发送的算法协商请求,所述算法协商请求中包括终端支持的安全算法;
    所述处理单元,具体采用如下方式选择端到端安全算法:
    通过所述算法协商请求确定终端支持的安全算法,并在所述终端支持的安全算法中选择端到端安全算法;
    所述处理单元,还用于:
    基于所述完整性保护算法和所述完整性密钥,对所述终端支持的安全算法和所述选择的所述端到端安全算法进行完整性保护,生成消息验证值;
    所述发送单元,具体用于采用如下方式将所述选择的端到端安全算法发送给所述终端标识对应的终端:
    向所述VPLMN中的核心网节点返回算法协商响应消息,所述算法协商响应消息中包括消息验证值、所述终端支持的安全算法以及所述HPLMN中的第二核心网节点选择的端到端安全算法,并
    通过所述VPLMN中的核心网节点将所述消息验证值、所述终端支持的安全算法以及所述HPLMN中的第二核心网节点选择的端到端安全算法发送给所述终端标识对应的终端。
PCT/CN2016/074365 2016-02-23 2016-02-23 一种安全通信方法及核心网节点 WO2017143521A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP16890975.2A EP3407635A4 (en) 2016-02-23 2016-02-23 Secure communication method and core network node
PCT/CN2016/074365 WO2017143521A1 (zh) 2016-02-23 2016-02-23 一种安全通信方法及核心网节点
CN201680081558.4A CN108702620A (zh) 2016-02-23 2016-02-23 一种安全通信方法及核心网节点
US16/110,469 US20190014472A1 (en) 2016-02-23 2018-08-23 Secure Communication Method and Core Network Node

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/074365 WO2017143521A1 (zh) 2016-02-23 2016-02-23 一种安全通信方法及核心网节点

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/110,469 Continuation US20190014472A1 (en) 2016-02-23 2018-08-23 Secure Communication Method and Core Network Node

Publications (1)

Publication Number Publication Date
WO2017143521A1 true WO2017143521A1 (zh) 2017-08-31

Family

ID=59685846

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/074365 WO2017143521A1 (zh) 2016-02-23 2016-02-23 一种安全通信方法及核心网节点

Country Status (4)

Country Link
US (1) US20190014472A1 (zh)
EP (1) EP3407635A4 (zh)
CN (1) CN108702620A (zh)
WO (1) WO2017143521A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108282775A (zh) * 2017-12-22 2018-07-13 中国科学院信息工程研究所 面向移动专用网络的动态附加认证方法及系统
CN113039765A (zh) * 2018-09-21 2021-06-25 诺基亚技术有限公司 用于网络功能之间的安全消息收发的方法和装置

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020208913A1 (ja) * 2019-04-11 2020-10-15 株式会社Nttドコモ ネットワークノード
CN116233838A (zh) * 2019-04-29 2023-06-06 瑞典爱立信有限公司 5g中的多个认证过程的处理

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1602611A (zh) * 2001-12-07 2005-03-30 艾利森电话股份有限公司 端到端加密数据电信的合法侦听
CN101420695A (zh) * 2008-12-16 2009-04-29 天津工业大学 一种基于无线局域网的3g用户快速漫游认证方法
US20110307694A1 (en) * 2010-06-10 2011-12-15 Ioannis Broustis Secure Registration of Group of Clients Using Single Registration Procedure

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8693642B2 (en) * 2009-04-16 2014-04-08 Alcatel Lucent Emergency call handling in accordance with authentication procedure in communication network
CN101594616B (zh) * 2009-07-08 2012-05-23 华为终端有限公司 认证方法、服务器、用户设备及通信系统
TWI584668B (zh) * 2011-09-29 2017-05-21 內數位專利控股公司 致能存取與客籍網路整合之應用方法及裝置
EP2894890A1 (en) * 2014-01-09 2015-07-15 Koninklijke KPN N.V. Conditional access to a wireless network
GB2525205B (en) * 2014-04-15 2020-12-16 Vodafone Ip Licensing Ltd Provisioning a network subscription
US9992670B2 (en) * 2014-08-12 2018-06-05 Vodafone Ip Licensing Limited Machine-to-machine cellular communication security
US10123365B2 (en) * 2016-07-05 2018-11-06 Samsung Electronics Co., Ltd. Method and apparatus for specified attach procedure and mobility and paging support in data communication network
US10021557B1 (en) * 2017-08-18 2018-07-10 Verizon Patent And Licensing Inc. Universal GUTI for simplified device onboarding

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1602611A (zh) * 2001-12-07 2005-03-30 艾利森电话股份有限公司 端到端加密数据电信的合法侦听
CN101420695A (zh) * 2008-12-16 2009-04-29 天津工业大学 一种基于无线局域网的3g用户快速漫游认证方法
US20110307694A1 (en) * 2010-06-10 2011-12-15 Ioannis Broustis Secure Registration of Group of Clients Using Single Registration Procedure

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3407635A4 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108282775A (zh) * 2017-12-22 2018-07-13 中国科学院信息工程研究所 面向移动专用网络的动态附加认证方法及系统
CN108282775B (zh) * 2017-12-22 2021-01-01 中国科学院信息工程研究所 面向移动专用网络的动态附加认证方法及系统
CN113039765A (zh) * 2018-09-21 2021-06-25 诺基亚技术有限公司 用于网络功能之间的安全消息收发的方法和装置
CN113039765B (zh) * 2018-09-21 2023-09-12 诺基亚技术有限公司 用于网络功能之间的安全消息收发的方法和装置

Also Published As

Publication number Publication date
EP3407635A1 (en) 2018-11-28
CN108702620A (zh) 2018-10-23
US20190014472A1 (en) 2019-01-10
EP3407635A4 (en) 2018-11-28

Similar Documents

Publication Publication Date Title
CN108293223B (zh) 一种数据传输方法、用户设备和网络侧设备
CN107018676B (zh) 用户设备与演进分组核心之间的相互认证
KR101167781B1 (ko) 콘텍스트 전달을 인증하는 시스템 및 방법
CN113490205B (zh) 针对具有简化移动性过程的网络架构和安全的方法和装置
US11582602B2 (en) Key obtaining method and device, and communications system
CN108141754A (zh) 用于涉及移动性管理实体重定位的移动性过程的装置和方法
KR102100159B1 (ko) 이동 통신 시스템에서 서비스 발견 및 그룹 통신을 위한 보안 지원 방법 및 시스템
CN111869182B (zh) 对设备进行认证的方法、通信系统、通信设备
CN109922474B (zh) 触发网络鉴权的方法及相关设备
EP3258718B1 (en) Gprs system key enhancement method, sgsn device, ue, hlr/hss and gprs system
KR102094216B1 (ko) 이동 통신 시스템 환경에서 프락시미티 기반 서비스 단말 간 발견 및 통신을 지원하기 위한 보안 방안 및 시스템
Vintilă et al. Security analysis of LTE access network
JP6904363B2 (ja) システム、基地局、コアネットワークノード、及び方法
WO2017143521A1 (zh) 一种安全通信方法及核心网节点
WO2019214351A1 (zh) 消息处理方法及装置
CN111264071A (zh) 安全性建立方法、终端装置及网络装置
CN114928842A (zh) 一种认证结果更新的方法和通信装置
US20200169885A1 (en) Method and system for supporting security and information for proximity based service in mobile communication system environment
CN111866870B (zh) 密钥的管理方法和装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2016890975

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2016890975

Country of ref document: EP

Effective date: 20180822