WO2017142033A1 - Volatile organic compound adsorbent and resin composition in which volatile organic compound adsorbent is blended - Google Patents

Volatile organic compound adsorbent and resin composition in which volatile organic compound adsorbent is blended Download PDF

Info

Publication number
WO2017142033A1
WO2017142033A1 PCT/JP2017/005755 JP2017005755W WO2017142033A1 WO 2017142033 A1 WO2017142033 A1 WO 2017142033A1 JP 2017005755 W JP2017005755 W JP 2017005755W WO 2017142033 A1 WO2017142033 A1 WO 2017142033A1
Authority
WO
WIPO (PCT)
Prior art keywords
mfi
organic compound
volatile organic
type zeolite
adsorbent
Prior art date
Application number
PCT/JP2017/005755
Other languages
French (fr)
Japanese (ja)
Inventor
裕史 小野
皆川 円
Original Assignee
水澤化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 水澤化学工業株式会社 filed Critical 水澤化学工業株式会社
Priority to SG11201806560RA priority Critical patent/SG11201806560RA/en
Priority to MYPI2018702603A priority patent/MY186075A/en
Priority to JP2018500202A priority patent/JP6861200B2/en
Priority to CN201780012226.5A priority patent/CN108698017B/en
Publication of WO2017142033A1 publication Critical patent/WO2017142033A1/en
Priority to PH12018501732A priority patent/PH12018501732A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/10Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate
    • B01J20/16Alumino-silicates
    • B01J20/18Synthetic zeolitic molecular sieves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B39/00Compounds having molecular sieve and base-exchange properties, e.g. crystalline zeolites; Their preparation; After-treatment, e.g. ion-exchange or dealumination
    • C01B39/02Crystalline aluminosilicate zeolites; Isomorphous compounds thereof; Direct preparation thereof; Preparation thereof starting from a reaction mixture containing a crystalline zeolite of another type, or from preformed reactants; After-treatment thereof
    • C01B39/36Pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11
    • C01B39/38Type ZSM-5
    • C01B39/40Type ZSM-5 using at least one organic template directing agent

Definitions

  • the present invention relates to a volatile organic compound adsorbent comprising MFI-type zeolite.
  • Zeolite is a crystalline aluminosilicate having SiO 2 , Al 2 O 3, etc. in the skeleton and having regular channels (pores).
  • MFI-type zeolite is rich in silica, and is widely known as containing 10-membered ring-shaped pores (5.1 ⁇ 5.5 ⁇ and / or 5.3 ⁇ 5.6 ⁇ ).
  • MFI-type zeolite also has an action of reducing a characteristic odor (hereinafter referred to as a resin odor) generated with deterioration of the resin (see Patent Document 4).
  • a resin odor a characteristic odor generated with deterioration of the resin
  • VOC volatile organic compounds
  • toluene, xylene, and ethyl acetate have a large influence on the environment, and are known to cause, for example, photochemical smog.
  • concentration of VOCs discharged and scattered from fixed sources such as factories by the prevention method is strictly limited. For this reason, an adsorbent for efficiently removing such a volatile organic compound from the exhaust gas is required.
  • the aforementioned MFI-type zeolite is frequently used as a VOC adsorbent because it exhibits high adsorptivity to various organic compounds.
  • the adsorption capacity is small, it is used in large quantities to obtain the desired effect.
  • capacitance of MFI type zeolite with respect to VOC is calculated
  • an object of the present invention is to provide a volatile organic compound adsorbent exhibiting excellent adsorptivity even when the volatile organic compound is present at a low concentration.
  • Another object of the present invention is to provide an adsorbent exhibiting excellent adsorptivity, particularly for toluene.
  • Another object of the present invention is to provide a resin composition containing a volatile organic compound adsorbent.
  • the present inventors conducted many experiments on the volatile organic compound adsorption performance of zeolite. As a result, the inventors have found that MFI-type zeolite obtained by synthesis at a low temperature exhibits excellent adsorptivity to VOC (toluene) in a low concentration atmosphere, and have completed the present invention.
  • the zeolite in the volatile organic compound adsorbent composed of MFI-type zeolite having a SiO 2 / Al 2 O 3 (molar ratio) of 50 or more, the zeolite has an (053) plane spacing in the X-ray diffraction spectrum. Volatility characterized in that (d value) is 2.99% or less and nitrogen adsorption amount at nitrogen partial pressure P N2 (P / P 0 ) 0.005 is 100 (cm 3 / g) or more.
  • An organic compound adsorbent is provided.
  • the volatile organic compound adsorbent of the present invention is (1) SiO 2 / Al 2 O 3 (molar ratio) is 90 or more, (2) The toluene adsorption amount at toluene partial pressure P T (P / P 0 ) 0.01 is 8.2% by mass or more, (3) The alkali metal content in terms of oxide is suppressed to 0.1% by mass or less, Is preferred.
  • a resin composition in which the volatile organic compound adsorbent is blended with a resin.
  • the resin composition in which the adsorbent of the present invention is blended with a resin (1) 0.005 to 100 parts by mass of the adsorbent per 100 parts by mass of the resin; (2) the resin is a thermoplastic resin; Is preferred.
  • the volatile organic compound adsorbent of the present invention has an extremely low toluene content, that is, an atmosphere having a toluene partial pressure P T (P / P 0 ) of 0.01, as shown in the examples described later.
  • the toluene adsorption amount in the atmosphere is 8.2% by mass or more, and the highest is 9.0% by mass or more.
  • none of the conventionally known MFI type zeolite adsorbents exhibit a toluene adsorptivity of 8.2% by mass or more in such a low toluene concentration atmosphere. Therefore, the volatile organic compound adsorbent of the present invention is suitably applied by being carried on an environmental purification facility used in a chemical factory or the like, for example, an exhaust rotor having a honeycomb structure.
  • FIG. 2 is an X-ray diffraction image of a volatile organic compound adsorbent composed of MFI-type zeolite obtained in Example 2.
  • FIG. The X-ray-diffraction image of (053) plane of Example 3, the comparative example 2, and the comparative example 3.
  • FIG. The nitrogen adsorption isotherm measurement result of Example 2, Comparative Example 1, Comparative Example 2, and Comparative Example 3.
  • 2 is a scanning electron micrograph of a volatile organic compound adsorbent composed of MFI type zeolite obtained in Example 1.
  • FIG. FIG. 6 is a scanning electron micrograph of a volatile organic compound adsorbent composed of MFI-type zeolite obtained in Example 6.
  • the adsorbent comprising the MFI type zeolite of the present invention is used for adsorbing and removing volatile organic compounds.
  • a volatile organic compound means an organic compound having a boiling point in the range of 50 to 260 ° C. under atmospheric pressure, such as toluene, xylene, ethyl acetate, ethanol, benzene, methyl ethyl ketone, dichloroethane, trichloroethane, and the like. Is toluene.
  • Such zeolite is silica-rich with a SiO 2 / Al 2 O 3 (molar ratio) of 50 or more, preferably 90 or more, more preferably 100 or more, most preferably 5000 or more, and therefore has low hydrophilicity and hydrophobicity. Excellent adsorbability for high organic compounds.
  • zeolite with a high aluminum content (the above molar ratio is less than 50) has high hydrophilicity and cannot obtain an excellent adsorptivity to VOC.
  • the MFI-type zeolite used in the present invention is produced by a reaction at a low temperature (80 to 130 ° C.).
  • the interplanar spacing (d value) of the (053) plane in the X-ray diffraction spectrum is as follows. 2.99 mm or less
  • nitrogen adsorption amount at nitrogen partial pressure P N2 (P / P 0 ) 0.005 is 100 (cm 3 / g) or more, preferably 103 (cm 3 / g) or more. . It will be described later that the d value and the nitrogen adsorption amount can be obtained by the reaction at a low temperature.
  • Said d value represents the space
  • the zeolite has no distortion, the pores are uniformly distributed, and the pore volume is large. That is, this MFI-type zeolite has fine and uniform distribution of micro-sized pores as described above in relation to having a small d value as described above.
  • P N2 P / P 0
  • a large nitrogen adsorption amount is exhibited.
  • showing the above nitrogen adsorption amount means that micro-sized pores are densely distributed, and as a result, it is extremely excellent for volatile organic compounds, particularly toluene. Adsorbability can be demonstrated.
  • the above MFI type zeolite has an alkali metal (hereinafter referred to as alkali) amount in terms of oxides suppressed to 1.70% by mass or less, preferably 1.25% by mass or less, and particularly 0.1% by mass or less. It is desirable.
  • alkali alkali metal
  • the MFI-type zeolite used in the present invention has a toluene adsorption amount of 8.
  • MFI type zeolite ⁇ Manufacture of MFI type zeolite>
  • the MFI-type zeolite described above is heated in a mixed gel containing a silica source and an alumina source in the presence of a template and a seed crystal, preferably in the presence of an alkali metal hydroxide for preparing a raw material to be described later.
  • the silica source and the alumina source are reacted (crystallization).
  • the silica source is preferably one having a high SiO 2 purity excluding impurities such as Na 2 O and Al 2 O 3 to some extent.
  • impurities such as Na 2 O and Al 2 O 3 to some extent.
  • tetraethyl orthosilicate, colloidal silica, silica gel dry powder, silica hydrogel, etc. are used. .
  • These silica sources are dissolved once in an aqueous solution at the time of reaction and reconstructed into MFI type zeolite. However, if there are few impurities or non-reactive components unnecessary for the reaction, the type of silica source is MFI type zeolite. Does not significantly affect crystallization.
  • silica gel dry powder or silica hydrogel that can be produced by a relatively simple method is preferable from the viewpoint of cost, and it is particularly desirable to use silica hydrogel.
  • Silica hydrogel is prepared by gradually dropping an alkali silicate such as sodium silicate into a mineral acid such as sulfuric acid with stirring to a final pH of about 3.0 to 9.0, followed by filtration and washing with water to be discharged. It can be easily obtained by washing until the pH of the solution reaches about 5.0 to 7.0.
  • the production of silica hydrogel may be performed during raw material mixing or before and after washing with water, or may be performed at room temperature.
  • alumina source for example, aluminum sulfate, basic aluminum sulfate, sodium aluminate or the like can be used, and sodium aluminate is particularly preferable.
  • the above mixed gel is, for example, MFI type having a molar ratio of 112 so that the SiO 2 / Al 2 O 3 (molar ratio) of the target MFI type zeolite is higher than that of SiO 2 / Al 2 O 3 (molar ratio).
  • Si component and Al component such that the molar ratio of the mixed gel is 120.
  • silica source and alumina source are mixed in an aqueous medium at room temperature. Can be obtained.
  • the silica source and the alumina source are mixed so that SiO 2 / Al 2 O 3 (molar ratio) has a predetermined quantitative ratio, but MFI-type zeolite containing a particularly large amount of Si component (for example, a molar ratio of 1000
  • SiO 2 / Al 2 O 3 molar ratio
  • MFI-type zeolite containing a particularly large amount of Si component for example, a molar ratio of 1000
  • a raw material used for industrial use may contain a small amount of Al component as an inevitable impurity.
  • the mixed gel containing the silica source and the alumina source is further mixed with a template and a seed crystal, preferably an alkali metal hydroxide, and is mixed as a seeded mixed gel in the presence of the template and the seed crystal at a low temperature.
  • MFI-type zeolite is obtained by crystallization by reaction.
  • the method of adding the template, the seed crystal, and the alkali metal hydroxide, and part or all of the mixed gel and / or part or all of the raw material of the mixed gel is preliminarily prior to crystallization. Can be used as a mixture.
  • the template is a structure-directing agent for forming pores in a 10-membered ring form unique to MFI-type zeolite, and an amine compound containing an n-alkyl group having 2 to 4 carbon atoms and a nitrogen cation in the molecule, for example, Further, a salt of a tetraalkyl (ethyl, n-propyl or n-butyl) ammonium cation and an anion (for example, Br ⁇ ), a hydroxide of the ammonium, or the like is used.
  • Si—O—Si chain in the reaction of the silica-alumina hydrosol (SiO chain by condensation), an intermediate including a charge is generated and a Si—O—Si chain is formed as shown in the following general formula. OH-Si-O - + SiOH ⁇ [OH-Si-O ... SiOH] - ⁇ OH-Si-O-Si -- OH ⁇ OH—Si—O—Si (—OH) —O ⁇ + H 2 O
  • the template cation protects the intermediate, and at the same time, the Si—O—Si chain is formed so as to surround the template cation.
  • a 10-membered ring structure unique to MFI-type zeolite can be formed.
  • TPA-Br tetrapropylammonium bromide
  • TPA / SiO 2 0.03 to 0.20 (molar ratio) with respect to the Si component of the mixed gel.
  • this amount varies greatly depending on the type of template, particularly the carbon number of the alkyl group.
  • a silica source is dissolved when a salt of quaternary ammonium and an anion such as Br or Cl is used as a template.
  • an alkali metal hydroxide for example, caustic soda
  • a 2 O / SiO 2 0.01 to 0.20 (molar ratio, A is an alkali metal element)
  • a 2 O / SiO 2 0.01 to 0.20 (molar ratio, A is an alkali metal element)
  • a 2 O / SiO 2 0.01 to 0.20 (molar ratio, A is an alkali metal element)
  • a 2 O / SiO 2 0.01 to 0.20 (molar ratio, A is an alkali metal element)
  • a 2 O / SiO 2 exceeds 0.20, in the obtained MFI-type zeolite, A large amount of the alkali metal that acts hydrophilically remains, and the adsorptivity of the present invention may not be sufficiently exhibited.
  • a 2 O / SiO 2 is preferably 0.15 or less, particularly preferably 0.10 or less.
  • the above reaction In order to produce the above-mentioned MFI type zeolite, it is necessary to carry out the above reaction at a low temperature, specifically 80 to 130 ° C., preferably 95 to 120 ° C., particularly preferably 95 to 98 ° C. . For this reason, the above reaction must be performed in the presence of seed crystals. As a result, crystallization is promoted, and the crystallization can be completed in a short time, for example, 48 hours or less, particularly 20 hours or less, while performing the reaction at a low temperature. As such a seed crystal, it is necessary to use the previously prepared MFI-type zeolite. Of the production methods as described later, an MFI-type zeolite containing a template may be used.
  • MFI-type zeolite from which the template is removed may be used.
  • This seed crystal is appropriately pulverized and then used in an amount of 0.02 to 20 parts by mass, preferably 0.05 to 5.0 parts by mass per 100 parts by mass of SiO 2 with respect to the Si component of the mixed gel.
  • the amount of seed crystals added is 0.05 parts by mass or less, the effect of shortening the time required for crystallization is weak.
  • the composition of the seed crystal affects the composition of the obtained MFI-type zeolite and, for example, an unnecessary interface is formed by core-shell formation. This is undesirable because the formation of distributed pores is hindered.
  • the amount is 5.0 parts by mass or more, there is no significant change in the crystallization time, and the amount of seed crystals used increases, leading to an increase in cost.
  • the reaction of the mixed gel in the presence of the template and the seed crystal is performed at 80 to 130 ° C., and thereby, the d value and the nitrogen adsorption amount described above are performed. It is possible to obtain a silica-rich MFI zeolite exhibiting the following.
  • the reaction temperature is set to a high temperature of about 180 ° C. or at least about 150 ° C., which completes the crystallization in a short time.
  • the reaction when the reaction is carried out at a temperature higher than 130 ° C., the d value of the obtained MFI-type zeolite (surface distance of (053) plane) exceeds 2.99 mm, and the nitrogen content
  • the pressure P N2 (P / P 0 ) is 0.005
  • the nitrogen adsorption amount becomes lower than 100 (cm 3 / g).
  • the reaction is carried out at a high temperature, the template undergoes thermal decomposition during crystallization of the MFI-type zeolite, or even if the template does not thermally decompose, This is not because vibrations are promoted, and as a result, the effect of the template for protecting the intermediate is weakened, and the crystal structure of the resulting MFI-type zeolite is distorted or the formed pores are distorted.
  • the present inventors have estimated. That is, in the present invention, since the reaction is performed at a low temperature as described above, decomposition and vibration of the template due to thermal energy are avoided, and as a result, distortion of the zeolite and distortion of the pores are prevented, and the size is uniform.
  • the obtained MFI-type zeolite has a small interplanar spacing d value of a specific plane ((053) plane) and exhibits a large nitrogen adsorption amount. It is.
  • the d value of the (053) plane is as small as 2.99 mm or less as in the present invention indicates that the MFI-type zeolite has a very dense crystal structure, that is, micro-sized pores are present. It can be said that the MFI type zeolite is densely and uniformly distributed.
  • the analysis of the d value of zeolite is not confused with other peaks in the XRD measurement range, and it is preferable to use a peak on a relatively high angle side (for example, around 30 °).
  • the (053) plane meets this condition, and it is analyzed that the volatile organic compound adsorbent comprising the MFI type zeolite of the present invention has a dense crystal structure.
  • the MFI type zeolite can be crystallized even at a reaction temperature of 80 ° C. or lower, the progress of the reaction becomes extremely slow and the practicality is lost.
  • the present invention prevents the distortion and pore distortion of the zeolite obtained as described above, and as a result of being able to finely distribute pores of uniform size, a high BET ratio as in the examples described later.
  • this reaction may be performed under atmospheric pressure or under pressure using an autoclave or the like.
  • it is preferable to carry out the reaction under atmospheric pressure because crystallization is sufficiently promoted even if it is carried out under atmospheric pressure by using seed crystals.
  • filtered water washing and drying are carried out, followed by calcination at a temperature of about 500 to 800 ° C. for about 0.5 to 10 hours, whereby the template in the zeolite is removed.
  • MFI type zeolite in which pores suitable for adsorption of the target VOC, particularly toluene, are densely distributed can be obtained.
  • the alkali content increases, and these alkalis act hydrophilicly.
  • the adsorptivity to the compound is greatly impaired.
  • the MFI-type zeolite that has undergone the calcination process is dispersed again in an aqueous solution, and dealkalization with an acid such as hydrochloric acid or sulfuric acid, or ion exchange between alkali and ammonium using various ammonium salts, and subsequent calcination of ammonium removal It is desirable to remove the alkali content by a series of dealkalization methods. In particular, a series of dealkalization methods using various ammonium salts are suitable.
  • the firing is preferably performed at 300 to 600 ° C. for about 0.5 to 10 hours.
  • the MFI-type zeolite thus obtained usually has a median diameter of 0.1 to 20 ⁇ m, preferably 0.5 to 10 ⁇ m. However, it is preferable that the MFI-type zeolite is appropriately pulverized into a powder for use. In consideration of ease of use, etc., the particle size is adjusted to a size of 1.0 to 4.0 ⁇ m for use. However, for example, when kneaded into a resin composition or mixed with a liquid containing a hydrophobic solvent such as a paint or a coating agent, it is submicron order (medium) to improve the dispersibility or increase the specific surface area. It can also be used after being finely pulverized to a diameter of 0.1 to 1.0 ⁇ m. Moreover, when filling in equipment, such as an adsorption column and an adsorption tower, after mixing appropriately with the binder generally used, it can shape
  • the volatile organic compound adsorbent of the present invention comprising the above-mentioned silica-rich MFI type zeolite exhibits high adsorptivity to volatile organic compounds typified by toluene, xylene and ethyl acetate, and these compounds have a low concentration. These compounds can be effectively adsorbed and removed even in the atmosphere existing in step (b). For this reason, such an adsorbent is suitably applied by being carried on an environmental purification facility used in a chemical factory or the like that discharges a gas containing a volatile organic compound, for example, an exhaust rotor having a honeycomb structure.
  • the volatile organic compound adsorbent of the present invention having such characteristics is blended in a resin and used for the preparation of a resin composition. From the obtained resin composition, preferably a master batch is prepared, and a film or various Various articles such as members are formed. At this time, the volatile organic compound adsorbent of the present invention can be added to the resin alone or in combination with other adsorbents and additives.
  • the blending amount of the volatile organic compound adsorbent of the present invention is not limited at all.
  • the adsorbent is in the range of 0.001 to 1000 parts by mass, preferably 0.005 to 100 parts by mass per 100 parts by mass of the resin. Can be blended.
  • the adsorbent of the present invention when the adsorbent of the present invention is applied to a resin for the purpose of reducing the unreacted monomer during resin processing and the characteristic resin odor caused by deterioration, the adsorbent is 0.005 to 100 parts by mass of the resin. It is preferably 10 parts by mass.
  • the volatile organic compound adsorbent of the present invention by adding the volatile organic compound adsorbent of the present invention to resins used in automobile parts and housing building materials, substances that cause odors, particularly sick house syndrome (toluene and aldehydes), which are peculiar to new cars and new buildings.
  • the effect of improving the living environment can be expected, for example, by adsorbing the above)), and it can be made into a highly functional fiber having a deodorizing function by being incorporated into the fiber in the fiber processing step.
  • the adsorbent is preferably 1 to 100 parts by mass per 100 parts by mass of the resin.
  • thermoplastic resin any of a thermoplastic resin and a thermosetting resin can be used. From the viewpoint of moldability, a thermoplastic resin is preferable. The following can be mentioned as an example of such a thermoplastic resin.
  • the volatile organic compound adsorbent of the present invention since the volatile organic compound adsorbent of the present invention has micro-sized pores densely and uniformly distributed, the active sites (for example, solid acid points) possessed by the MFI zeolite are also densely and uniformly distributed. It is expected that That is, the volatile organic compound adsorbent of the present invention is a catalyst to which MFI type zeolite is generally applied, for example, an acid catalyst, a disproportionation catalyst, an isomerization catalyst, a hydrocarbon synthesis catalyst, an FCC catalyst, and an olefin polymerization catalyst.
  • the use as a catalyst, a denitration catalyst, etc. or as a catalyst carrier is not limited at all.
  • the invention is illustrated by the following experimental example. Various measurements in the experiment were performed by the following methods.
  • Nitrogen adsorption is measured using a Tristar manufactured by micromeritics, and an adsorption isotherm in the range where the nitrogen partial pressure P N2 (P / P 0 ) is in the range of 0.005 to 0.95. Asked. The pretreatment was performed under vacuum conditions at 200 ° C. for 2 hours. For each adsorbent described later, the measured value at a nitrogen partial pressure P N2 (P / P 0 ) of 0.005 was taken as the nitrogen adsorption amount (cm 3 / g).
  • the measured value at a toluene partial pressure P T (P / P 0 ) of 0.01 was converted to an adsorbed amount per adsorbent unit mass to obtain an adsorbed amount of toluene (% by mass).
  • the liquid was filtered and subsequently washed with water having a volume three times that of the mixed gel to obtain an MFI type zeolite containing a template.
  • the median diameter of MFI-type zeolite after washing with filtered water was 10.0 ⁇ m.
  • the template was removed using a muffle furnace at 600 ° C. for 2 hours to obtain an MFI-type zeolite containing no template. (Milling of MFI type zeolite)
  • the MFI type zeolite was pulverized using a swirling jet mill. The median diameter of the powder after pulverization was 7.7 ⁇ m.
  • a mixed gel was prepared in the same manner as in Example 4, and finally 1.0% by mass of seed crystals (MFI type zeolite having a median diameter of 7.7 ⁇ m obtained in Comparative Example 4) with respect to SiO 2 was further added. Stirring was performed for 5 minutes to prepare a mixed gel containing seed crystals. Next, under stirring conditions, the temperature of the mixed gel containing seed crystals was raised to 95 ° C. over 1 hour in a temperature-controllable hot water layer, and a crystallization reaction was performed for 20 hours while maintaining 95 ° C.
  • the reaction solution was filtered and subsequently washed with 3 times the volume of water of the mixed gel to obtain an MFI-type zeolite containing a template.
  • the median diameter of MFI-type zeolite after washing with filtered water was 1.0 ⁇ m.
  • the template was removed using a muffle furnace under the condition of holding at 600 ° C. for 2 hours to obtain an MFI type zeolite containing no template.
  • the MFI-type zeolite was pulverized using a swirling jet mill in the same manner as in Comparative Example 4 to obtain a volatile organic compound adsorbent composed of the MFI-type zeolite.
  • the median diameter was 1.0 ⁇ m.
  • Example 2 90 g of water was added to 10 g of the volatile organic compound adsorbent composed of the MFI-type zeolite of Example 1 and redispersed by stirring. Then, 10 g of ammonium chloride was added, and exchange treatment was performed for 3 hours. After washing with filtered water, the obtained ammonium-MFI type zeolite was dried for 10 hours in a constant temperature drying shelf at 110 ° C., and then the ammonium was removed using a muffle furnace under the condition of holding at 500 ° C. for 3 hours to remove alkali. -An MFI type zeolite was obtained. The zeolite was pulverized again using a swirling jet mill to obtain a volatile organic compound adsorbent composed of MFI-type zeolite. The median diameter was 1.0 ⁇ m.
  • Example 3 A volatile organic compound adsorbent composed of MFI-type zeolite was obtained in the same manner as in Example 1 except that the reaction vessel was a 1.5 L autoclave with a built-in stirrer, the reaction temperature was 105 ° C., and the reaction time was 16 hours. It was. The median diameter was 2.0 ⁇ m.
  • seed crystals MFI-type zeolite having a median diameter of 7.7 ⁇ m obtained in Comparative Example 4
  • a volatile organic compound adsorbent composed of MFI-type zeolite was obtained in the same manner as in Example 1 except that the reaction vessel was a 1.5 L autoclave with a built-in stirrer and the reaction temperature was 120 ° C. The median diameter was 1.8 ⁇ m.
  • Example 6 The SiO 2 mass is 380 g, the MFI type zeolite having a median diameter of 1.0 ⁇ m obtained in Example 1 is used as a seed crystal, the seed crystal addition amount is 3.0 mass%, and the composition of each component is in molar ratio.
  • SiO 2 : Na 2 O: TPA-Br: H 2 O 1: 0.03: 0.045: 20
  • the raw materials including seed crystals were mixed under stirring conditions to obtain a mixed gel containing seed crystals. Was prepared. Subsequent operations were performed in the same manner as in Example 1 to obtain a volatile organic compound adsorbent composed of MFI-type zeolite. The median diameter was 0.7 ⁇ m.
  • Example 7 Using the same raw materials as in Example 5, the SiO 2 mass is 240 g, the MFI zeolite having a median diameter of 0.7 ⁇ m obtained in Example 6 is used as a seed crystal, and the addition amount of the seed crystal is 2.0 mass%.
  • Raw materials including seed crystals were mixed under stirring conditions to prepare a mixed gel containing seed crystals. Thereafter, a volatile organic compound adsorbent composed of MFI-type zeolite was obtained in the same manner as in Example 1 except that the crystallization reaction was performed for 48 hours. The median diameter was 0.5 ⁇ m.
  • Tables 2 and 3 show the test results on the physical properties, nitrogen adsorption amount and toluene adsorption amount of the MFI type zeolites of Comparative Examples 1 to 4 and the volatile organic compound adsorbents prepared in Examples 1 to 7.
  • the resin odor reduction performance was evaluated using the resin composition in which the adsorbent was blended and the polyethylene pellet not containing the adsorbent, which were obtained in the preparation of the resin composition.
  • a storage bottle containing polyethylene pellets was placed in a constant-temperature shelf dryer preheated at 50 ° C. and left as it was at 50 ° C. for 90 hours.

Abstract

A volatile organic compound adsorbent which is composed of an MFI type zeolite having an SiO2/Al2O3 (molar ratio) of 50 or more, and which is characterized in that the zeolite has an interplanar spacing (d) of the (053) plane of 2.99 Å or less in the X-ray diffraction spectrum and a nitrogen adsorption of 100 (cm3/g) or more at the nitrogen partial pressure PN2 (P/P0) of 0.005.

Description

揮発性有機化合物吸着剤および揮発性有機化合物吸着剤が配合された樹脂組成物Volatile organic compound adsorbent and resin composition containing volatile organic compound adsorbent
 本発明は、MFI型ゼオライトからなる揮発性有機化合物吸着剤に関するものである。 The present invention relates to a volatile organic compound adsorbent comprising MFI-type zeolite.
 ゼオライトは、SiO、Al等を骨格に持ち、規則的なチャンネル(細孔)を有する結晶性のアルミノケイ酸塩である。特にMFI型ゼオライトはシリカリッチであり、10員環構造の細孔(5.1×5.5Å及び/又は5.3×5.6Å)を含むものとして広く知られている。 Zeolite is a crystalline aluminosilicate having SiO 2 , Al 2 O 3, etc. in the skeleton and having regular channels (pores). In particular, MFI-type zeolite is rich in silica, and is widely known as containing 10-membered ring-shaped pores (5.1 × 5.5 Å and / or 5.3 × 5.6 Å).
 ゼオライトの結晶骨格中のAlは、親水性に影響を与えAl量が多いほど親水性が高く、少ないほど低下することが知られている。シリカリッチなMFI型ゼオライトは、Al量が少ないため親水性が低く、従って、疎水性の有機成分に対して高い吸着性を示し、更に、低分子量炭化水素の大きさに近い細孔径を有していることから、有機化合物に対する吸着剤としての使用が提案されている(特許文献1~3参照)。 It is known that Al 2 O 3 in the crystal skeleton of zeolite has an influence on hydrophilicity, and the higher the amount of Al, the higher the hydrophilicity and the lower the amount. Silica-rich MFI zeolite is low in hydrophilicity due to its low Al content, and therefore exhibits high adsorptivity to hydrophobic organic components, and has a pore size close to that of low molecular weight hydrocarbons. Therefore, use as an adsorbent for organic compounds has been proposed (see Patent Documents 1 to 3).
 また、MFI型ゼオライトは、樹脂の劣化などに伴い生じる特有の臭い(以下、樹脂臭と称す)を低減する作用も有している(特許文献4参照)。 Further, MFI-type zeolite also has an action of reducing a characteristic odor (hereinafter referred to as a resin odor) generated with deterioration of the resin (see Patent Document 4).
 ところで、トルエン、キシレン、酢酸エチル等の揮発性有機化合物(以下、VOCと略称することがある)は、環境に与える影響が大きく、例えば光化学スモッグの原因となることが知られており、大気汚染防止法により工場等の固定発生源から排出および飛散されるVOCは濃度が厳しく制限されている。このため、このような揮発性有機化合物を排出ガス中から効率良く除去するための吸着剤が求められている。 By the way, volatile organic compounds such as toluene, xylene, and ethyl acetate (hereinafter sometimes abbreviated as VOC) have a large influence on the environment, and are known to cause, for example, photochemical smog. The concentration of VOCs discharged and scattered from fixed sources such as factories by the prevention method is strictly limited. For this reason, an adsorbent for efficiently removing such a volatile organic compound from the exhaust gas is required.
 前述したMFI型ゼオライトは、種々の有機化合物に対して高い吸着性を示すため、VOC吸着剤として頻繁に用いられるのだが、吸着容量が少ないため、目的とする効果を得るために大量に使用する必要があった。このため、VOCに対するMFI型ゼオライトの吸着性能及び容量の向上が求められている。特に、トルエン等のVOCが大気中に低濃度で存在したときにおいても、十分な吸着性を発揮することができる吸着剤が求められている。 The aforementioned MFI-type zeolite is frequently used as a VOC adsorbent because it exhibits high adsorptivity to various organic compounds. However, since the adsorption capacity is small, it is used in large quantities to obtain the desired effect. There was a need. For this reason, the improvement of the adsorption | suction performance and capacity | capacitance of MFI type zeolite with respect to VOC is calculated | required. In particular, there is a demand for an adsorbent capable of exhibiting sufficient adsorptivity even when VOC such as toluene is present at a low concentration in the atmosphere.
特開H01-171554号公報JP H01-171554 特開H09-253483号公報JP H09-253484 A 特開2003-126689号公報Japanese Patent Laid-Open No. 2003-126589 特開2002-069315号公報JP 2002-069315 A
 従って、本発明の目的は、揮発性有機化合物が低濃度で存在する場合にも、優れた吸着性を示す揮発性有機化合物吸着剤を提供することにある。本発明の他の目的は、特にトルエンに対して優れた吸着性を示す吸着剤を提供することである。 Therefore, an object of the present invention is to provide a volatile organic compound adsorbent exhibiting excellent adsorptivity even when the volatile organic compound is present at a low concentration. Another object of the present invention is to provide an adsorbent exhibiting excellent adsorptivity, particularly for toluene.
 また、本発明の他の目的は、揮発性有機化合物吸着剤が配合されている樹脂組成物を提供することである。 Another object of the present invention is to provide a resin composition containing a volatile organic compound adsorbent.
 本発明者等は、ゼオライトの揮発性有機化合物吸着性能について多くの実験を行った。その結果、低温で合成して得られるMFI型ゼオライトが、低濃度雰囲気下にあるVOC(トルエン)に対して優れた吸着性を示すという知見を見出し、本発明を完成するに至った。 The present inventors conducted many experiments on the volatile organic compound adsorption performance of zeolite. As a result, the inventors have found that MFI-type zeolite obtained by synthesis at a low temperature exhibits excellent adsorptivity to VOC (toluene) in a low concentration atmosphere, and have completed the present invention.
 本発明によれば、SiO/Al(モル比)が50以上のMFI型ゼオライトからなる揮発性有機化合物吸着剤において、前記ゼオライトは、X線回折スペクトルにおいて(053)面の面間隔(d値)が2.99Å以下であり、且つ窒素分圧PN2(P/P)0.005での窒素吸着量が100(cm/g)以上であることを特徴とする揮発性有機化合物吸着剤が提供される。 According to the present invention, in the volatile organic compound adsorbent composed of MFI-type zeolite having a SiO 2 / Al 2 O 3 (molar ratio) of 50 or more, the zeolite has an (053) plane spacing in the X-ray diffraction spectrum. Volatility characterized in that (d value) is 2.99% or less and nitrogen adsorption amount at nitrogen partial pressure P N2 (P / P 0 ) 0.005 is 100 (cm 3 / g) or more. An organic compound adsorbent is provided.
 本発明の揮発性有機化合物吸着剤は、
(1)SiO/Al(モル比)が90以上であること、
(2)トルエン分圧P(P/P)0.01でのトルエン吸着量が8.2質量%以上であること、
(3)酸化物換算でのアルカリ金属含有量が0.1質量%以下に抑制されていること、
が好ましい。
The volatile organic compound adsorbent of the present invention is
(1) SiO 2 / Al 2 O 3 (molar ratio) is 90 or more,
(2) The toluene adsorption amount at toluene partial pressure P T (P / P 0 ) 0.01 is 8.2% by mass or more,
(3) The alkali metal content in terms of oxide is suppressed to 0.1% by mass or less,
Is preferred.
 また、本発明によれば、上記揮発性有機化合物吸着剤が樹脂に配合されている樹脂組成物が提供される。 Further, according to the present invention, there is provided a resin composition in which the volatile organic compound adsorbent is blended with a resin.
 本発明の吸着剤が樹脂に配合されている樹脂組成物は、
(1)前記樹脂100質量部あたり前記吸着剤が0.005~100質量部配合されていること、
(2)前記樹脂が熱可塑性樹脂であること、
が好ましい。
The resin composition in which the adsorbent of the present invention is blended with a resin,
(1) 0.005 to 100 parts by mass of the adsorbent per 100 parts by mass of the resin;
(2) the resin is a thermoplastic resin;
Is preferred.
 本発明の揮発性有機化合物吸着剤は、後述する実施例に示されているように、トルエン分圧P(P/P)が0.01である雰囲気、即ち、トルエン含有量が極めて少ない雰囲気中でのトルエン吸着量が8.2質量%以上、最も高いものでは9.0質量%以上である。例えば、従来公知のMFI型ゼオライト系吸着剤において、このような低トルエン濃度雰囲気で8.2質量%以上のトルエン吸着性を示すものはない。従って、本発明の揮発性有機化合物吸着剤は、化学工場等において使用される環境浄化用設備、例えばハニカム構造を有する排気用ローターに担持されて好適に適用される。 The volatile organic compound adsorbent of the present invention has an extremely low toluene content, that is, an atmosphere having a toluene partial pressure P T (P / P 0 ) of 0.01, as shown in the examples described later. The toluene adsorption amount in the atmosphere is 8.2% by mass or more, and the highest is 9.0% by mass or more. For example, none of the conventionally known MFI type zeolite adsorbents exhibit a toluene adsorptivity of 8.2% by mass or more in such a low toluene concentration atmosphere. Therefore, the volatile organic compound adsorbent of the present invention is suitably applied by being carried on an environmental purification facility used in a chemical factory or the like, for example, an exhaust rotor having a honeycomb structure.
実施例2で得られたMFI型ゼオライトからなる揮発性有機化合物吸着剤のX線回折像。2 is an X-ray diffraction image of a volatile organic compound adsorbent composed of MFI-type zeolite obtained in Example 2. FIG. 実施例3、比較例2及び比較例3の(053)面のX線回折像。The X-ray-diffraction image of (053) plane of Example 3, the comparative example 2, and the comparative example 3. FIG. 実施例2、比較例1、比較例2及び比較例3の窒素吸着等温線測定結果。The nitrogen adsorption isotherm measurement result of Example 2, Comparative Example 1, Comparative Example 2, and Comparative Example 3. 実施例2、比較例2及び比較例3のトルエン吸着等温線測定結果。The toluene adsorption isotherm measurement result of Example 2, Comparative Example 2 and Comparative Example 3. 実施例1で得られたMFI型ゼオライトからなる揮発性有機化合物吸着剤の走査型電子顕微鏡写真。2 is a scanning electron micrograph of a volatile organic compound adsorbent composed of MFI type zeolite obtained in Example 1. FIG. 実施例6で得られたMFI型ゼオライトからなる揮発性有機化合物吸着剤の走査型電子顕微鏡写真。FIG. 6 is a scanning electron micrograph of a volatile organic compound adsorbent composed of MFI-type zeolite obtained in Example 6. FIG.
 本発明のMFI型ゼオライトからなる吸着剤は、揮発性有機化合物を吸着除去するために使用されるものである。揮発性有機化合物は、大気圧下での沸点が50~260℃の範囲の有機化合物を意味し、例えば、トルエン、キシレン、酢酸エチル、エタノール、ベンゼン、メチルエチルケトン、ジクロロエタン、トリクロロエタン等であり、好適には、トルエンである。 The adsorbent comprising the MFI type zeolite of the present invention is used for adsorbing and removing volatile organic compounds. A volatile organic compound means an organic compound having a boiling point in the range of 50 to 260 ° C. under atmospheric pressure, such as toluene, xylene, ethyl acetate, ethanol, benzene, methyl ethyl ketone, dichloroethane, trichloroethane, and the like. Is toluene.
<MFI型ゼオライト>
 吸着剤として用いるMFI型ゼオライトは、該ゼオライトに特有の10員環形態の細孔が形成されているため、図1に示されているようなX線回折ピークを示す。例えば、2θ=7.9°付近に(011)面、2θ=8.9°付近に(200)面、及び2θ=23.1°付近に(051)面のシャープな回折ピークを示す。
 かかるゼオライトは、SiO/Al(モル比)が50以上、好ましくは90以上、より好ましくは100以上、最も好ましくは5000以上とシリカリッチであり、従って、親水性が低く、疎水性の高い有機化合物に対して優れた吸着性を示す。反対に、アルミ含有量が多い(上記モル比が50未満)ゼオライトは親水性が高く、VOCに対して優れた吸着性を得ることはできない。
<MFI type zeolite>
The MFI type zeolite used as the adsorbent has X-ray diffraction peaks as shown in FIG. 1 because the pores have a 10-membered ring shape unique to the zeolite. For example, a sharp diffraction peak of (011) plane near 2θ = 7.9 °, (200) plane near 2θ = 8.9 °, and (051) plane near 2θ = 23.1 ° is shown.
Such zeolite is silica-rich with a SiO 2 / Al 2 O 3 (molar ratio) of 50 or more, preferably 90 or more, more preferably 100 or more, most preferably 5000 or more, and therefore has low hydrophilicity and hydrophobicity. Excellent adsorbability for high organic compounds. On the other hand, zeolite with a high aluminum content (the above molar ratio is less than 50) has high hydrophilicity and cannot obtain an excellent adsorptivity to VOC.
 本発明において使用される、MFI型ゼオライトは低温(80~130℃)での反応により製造されるものであり、この結果として、X線回折スペクトルにおいて(053)面の面間隔(d値)が2.99Å以下であり、且つ窒素分圧PN2(P/P)0.005での窒素吸着量が100(cm/g)以上、好適には103(cm/g)以上である。低温での反応により、このようなd値及び窒素吸着量が得られることについては後述する。 The MFI-type zeolite used in the present invention is produced by a reaction at a low temperature (80 to 130 ° C.). As a result, the interplanar spacing (d value) of the (053) plane in the X-ray diffraction spectrum is as follows. 2.99 mm or less, and nitrogen adsorption amount at nitrogen partial pressure P N2 (P / P 0 ) 0.005 is 100 (cm 3 / g) or more, preferably 103 (cm 3 / g) or more. . It will be described later that the d value and the nitrogen adsorption amount can be obtained by the reaction at a low temperature.
 上記のd値は、ゼオライト中の細孔が有する特定の面同士の間隔を表すものである。d値が小さい場合には、ゼオライトにはひずみがなく且つ細孔が均一に分布しており、その細孔容積も大きい。
 即ち、このMFI型ゼオライトは、上記のような小さなd値を有していることに関連して、既述した大きさのミクロサイズの細孔が緻密かつ均一に分布しており、この結果、上記のように窒素分圧PN2(P/P)が0.005と低い雰囲気下でも大きな窒素吸着量を示すものである。換言すると、上記のような窒素吸着量を示すことは、ミクロサイズの細孔が緻密に分布していることを意味し、この結果、揮発性有機化合物、特にトルエンに対しては、極めて優れた吸着性を発揮することができる。
Said d value represents the space | interval of the specific surfaces which the pore in a zeolite has. When the d value is small, the zeolite has no distortion, the pores are uniformly distributed, and the pore volume is large.
That is, this MFI-type zeolite has fine and uniform distribution of micro-sized pores as described above in relation to having a small d value as described above. As a result, As described above, even if the nitrogen partial pressure P N2 (P / P 0 ) is as low as 0.005, a large nitrogen adsorption amount is exhibited. In other words, showing the above nitrogen adsorption amount means that micro-sized pores are densely distributed, and as a result, it is extremely excellent for volatile organic compounds, particularly toluene. Adsorbability can be demonstrated.
 また、上記のMFI型ゼオライトは、酸化物換算でのアルカリ金属(以下、アルカリ)量が1.70質量%以下、好ましくは1.25質量%以下、特に0.1質量%以下に抑制されていることが望ましい。即ち、このようなアルカリ分(例えばNaやK)は、製法上、不可避的不純成分としてゼオライト中に混入するものであるが、この量が多いと、ゼオライトの親水性が増大してしまい、有機成分に対する吸着性が大きく低下してしまうこととなるが、本発明では、このようなアルカリ量が少量に抑制されているため、アルカリによる有機化合物に対する吸着性の低下が有効に回避され、この結果、VOCに対して高い吸着性を確保することができる。例えば、後述する実施例に示されているように、本発明で用いるMFI型ゼオライトは、トルエン分圧P(P/P)が0.01である雰囲気中でのトルエン吸着量が8.2質量%以上であるが、酸化物換算でのアルカリ量が0.1質量%以下に抑制されているものでは、9質量%以上であり、特に10質量%に近いトルエン吸着量を示す。 Further, the above MFI type zeolite has an alkali metal (hereinafter referred to as alkali) amount in terms of oxides suppressed to 1.70% by mass or less, preferably 1.25% by mass or less, and particularly 0.1% by mass or less. It is desirable. That is, such an alkali component (for example, Na or K) is mixed in the zeolite as an unavoidable impure component in the manufacturing method, but if this amount is large, the hydrophilicity of the zeolite increases, and organic Although the adsorptivity with respect to a component will fall significantly, in this invention, since such an alkali amount is suppressed to a small quantity, the fall of the adsorptivity with respect to the organic compound by an alkali is avoided effectively, As a result, , High adsorptivity to VOC can be ensured. For example, as shown in the examples described later, the MFI-type zeolite used in the present invention has a toluene adsorption amount of 8. in an atmosphere where the toluene partial pressure P T (P / P 0 ) is 0.01. When the alkali amount in terms of oxide is suppressed to 0.1% by mass or less although it is 2% by mass or more, it is 9% by mass or more, and particularly shows a toluene adsorption amount close to 10% by mass.
<MFI型ゼオライトの製造>
 上述したMFI型ゼオライトは、シリカ源とアルミナ源とを含む混合ゲル中で、テンプレート及び種晶の存在下、好ましくは、後述する原料調製のため、さらにアルカリ金属水酸化物の存在下で加熱して、シリカ源とアルミナ源とを反応させること(結晶化)により製造される。
<Manufacture of MFI type zeolite>
The MFI-type zeolite described above is heated in a mixed gel containing a silica source and an alumina source in the presence of a template and a seed crystal, preferably in the presence of an alkali metal hydroxide for preparing a raw material to be described later. The silica source and the alumina source are reacted (crystallization).
 上記シリカ源は、NaOやAl等の不純物をある程度除いたSiO純度の高いものであることが望ましく、例えばテトラエチルオルトシリケート、コロイダルシリカ、シリカゲル乾燥粉末、シリカヒドロゲル等が用いられる。これらのシリカ源は、反応時に水溶液中に一度溶解し、MFI型ゼオライトへと再構築されるわけだが、反応に不要な不純物もしくは非反応性成分が少なければ、シリカ源の種類はMFI型ゼオライトの結晶化に大きく影響しない。
 ただし、コストの面から比較的簡便な方法で製造が可能な、シリカゲル乾燥粉末、又はシリカヒドロゲルが好ましく、特にシリカヒドロゲルを用いることが望ましい。シリカヒドロゲルは、例えば硫酸等の鉱酸中にケイ酸ソーダ等のケイ酸アルカリを撹拌下に徐々に滴下し、最終pHを3.0~9.0程度にし、濾過した後、排出される水洗液のpHが5.0~7.0程度になるまで洗浄することにより容易に得られる。シリカヒドロゲルの製造は、原料混合中もしくは水洗前後に加温しても良いし、常温で行っても良い。
 また、アルミナ源としては、例えば硫酸アルミニウム、塩基性硫酸アルミニウム、アルミン酸ナトリウム等を使用することができるが、特にアルミン酸ナトリウムが好適である。
 上記の混合ゲルは、目標とするMFI型ゼオライトのSiO/Al(モル比)よりも高いSiO/Al(モル比)となるように、例えばモル比112のMFI型ゼオライトを得る時は、混合ゲルのモル比を120とする等、Si成分とAl成分とを含有するものであり、一般的には、シリカ源とアルミナ源とを水性媒体中、常温下で混合することにより得られる。
The silica source is preferably one having a high SiO 2 purity excluding impurities such as Na 2 O and Al 2 O 3 to some extent. For example, tetraethyl orthosilicate, colloidal silica, silica gel dry powder, silica hydrogel, etc. are used. . These silica sources are dissolved once in an aqueous solution at the time of reaction and reconstructed into MFI type zeolite. However, if there are few impurities or non-reactive components unnecessary for the reaction, the type of silica source is MFI type zeolite. Does not significantly affect crystallization.
However, silica gel dry powder or silica hydrogel that can be produced by a relatively simple method is preferable from the viewpoint of cost, and it is particularly desirable to use silica hydrogel. Silica hydrogel is prepared by gradually dropping an alkali silicate such as sodium silicate into a mineral acid such as sulfuric acid with stirring to a final pH of about 3.0 to 9.0, followed by filtration and washing with water to be discharged. It can be easily obtained by washing until the pH of the solution reaches about 5.0 to 7.0. The production of silica hydrogel may be performed during raw material mixing or before and after washing with water, or may be performed at room temperature.
As the alumina source, for example, aluminum sulfate, basic aluminum sulfate, sodium aluminate or the like can be used, and sodium aluminate is particularly preferable.
The above mixed gel is, for example, MFI type having a molar ratio of 112 so that the SiO 2 / Al 2 O 3 (molar ratio) of the target MFI type zeolite is higher than that of SiO 2 / Al 2 O 3 (molar ratio). When obtaining zeolite, it contains Si component and Al component such that the molar ratio of the mixed gel is 120. Generally, silica source and alumina source are mixed in an aqueous medium at room temperature. Can be obtained.
 尚、シリカ源とアルミナ源とは、SiO/Al(モル比)が所定の量比となるように混合されるが、Si成分を特に多く含むMFI型ゼオライト(例えばモル比が1000以上)を製造する場合には、アルミナ源の使用を省略することもできる。即ち、工業用途に用いられる原料には、不可避的不純物として少量のAl成分が含まれている場合があるからである。 The silica source and the alumina source are mixed so that SiO 2 / Al 2 O 3 (molar ratio) has a predetermined quantitative ratio, but MFI-type zeolite containing a particularly large amount of Si component (for example, a molar ratio of 1000 In the case of manufacturing the above, the use of an alumina source can be omitted. That is, a raw material used for industrial use may contain a small amount of Al component as an inevitable impurity.
 シリカ源とアルミナ源とを含む混合ゲルには、更に、テンプレート及び種晶、好ましくは、さらにアルカリ金属水酸化物が混合され、種晶入り混合ゲルとして、テンプレート及び種晶の存在下で、低温で反応させて結晶化することによりMFI型ゼオライトが得られる。
 テンプレート及び種晶、アルカリ金属水酸化物のそれぞれの添加方法は特に制限がなく、混合ゲルの一部あるいは全部、及び/又は、混合ゲルの原料の一部あるいは全部と、結晶化に先立ち、あらかじめ混合して使用することができる。
The mixed gel containing the silica source and the alumina source is further mixed with a template and a seed crystal, preferably an alkali metal hydroxide, and is mixed as a seeded mixed gel in the presence of the template and the seed crystal at a low temperature. MFI-type zeolite is obtained by crystallization by reaction.
There are no particular restrictions on the method of adding the template, the seed crystal, and the alkali metal hydroxide, and part or all of the mixed gel and / or part or all of the raw material of the mixed gel is preliminarily prior to crystallization. Can be used as a mixture.
 テンプレートは、MFI型ゼオライトに特有の10員環形態の細孔を形成するための構造規定剤であり、分子中に炭素数が2~4のn-アルキル基と窒素カチオンを含むアミン化合物、例えば、テトラアルキル(エチル、n-プロピルあるいはn-ブチル)アンモニウムのカチオンとアニオン(例えばBr)との塩や該アンモニウムの水酸化物等が使用される。 The template is a structure-directing agent for forming pores in a 10-membered ring form unique to MFI-type zeolite, and an amine compound containing an n-alkyl group having 2 to 4 carbon atoms and a nitrogen cation in the molecule, for example, Further, a salt of a tetraalkyl (ethyl, n-propyl or n-butyl) ammonium cation and an anion (for example, Br ), a hydroxide of the ammonium, or the like is used.
 即ち、シリカアルミナヒドロゾルの反応(縮合によるSiO連鎖)に際して、以下の概略式に示されるようにして-電荷を含む中間体が生成してSi-O-Siの連鎖が形成されていく。
  OH-Si-O +Si-OH → [OH-Si-O…SiOH]
       → OH-Si-O-Si-OH
       → OH-Si-O-Si(-OH)-O +H
 上記のようなSi-O-Siの連鎖に際して、上記のテンプレートのカチオンが中間体を保護すると同時に、このようなテンプレートのカチオンを囲むようにSi-O-Siの連鎖が形成されていき、結果として、MFI型ゼオライトに特有の10員環構造を形成することができる。
That is, in the reaction of the silica-alumina hydrosol (SiO chain by condensation), an intermediate including a charge is generated and a Si—O—Si chain is formed as shown in the following general formula.
OH-Si-O - + SiOH → [OH-Si-O ... SiOH] -
→ OH-Si-O-Si -- OH
→ OH—Si—O—Si (—OH) —O + H 2 O
In the Si—O—Si chain as described above, the template cation protects the intermediate, and at the same time, the Si—O—Si chain is formed so as to surround the template cation. As a result, a 10-membered ring structure unique to MFI-type zeolite can be formed.
 このようなテンプレートは、例えばテトラプロピルアンモニウムブロマイド(TPA-Br)であれば、混合ゲルのSi成分に対して、TPA/SiO=0.03~0.20(モル比)の量で使用されるが、この量はテンプレートの種類、特にアルキル基の炭素数によって大きく異なる。
 尚、上記第4級アンモニウムの水酸化物をテンプレートとして使用するときには必要でないが、第4級アンモニウムとBrやCl等のアニオンとの塩等をテンプレートとして使用する場合には、シリカ源を溶解するため、混合ゲルのSi成分に対して、AO/SiO=0.01~0.20(モル比、Aはアルカリ金属元素)のアルカリ金属水酸化物(例えば苛性ソーダ等)が添加される。この場合、アルカリ金属水酸化物の添加量が多いほど結晶化に要する時間を短縮する効果が得られるが、AO/SiOが0.20を超えると、得られるMFI型ゼオライト中に、親水的に作用するアルカリ金属が大量に残存してしまい、本発明の吸着性が十分に発揮されない場合がある。このため、好ましくはAO/SiOは0.15以下、特に好ましくは0.10以下とすることが望ましい。
If such a template is, for example, tetrapropylammonium bromide (TPA-Br), it is used in an amount of TPA / SiO 2 = 0.03 to 0.20 (molar ratio) with respect to the Si component of the mixed gel. However, this amount varies greatly depending on the type of template, particularly the carbon number of the alkyl group.
Although not necessary when the quaternary ammonium hydroxide is used as a template, a silica source is dissolved when a salt of quaternary ammonium and an anion such as Br or Cl is used as a template. Therefore, an alkali metal hydroxide (for example, caustic soda) of A 2 O / SiO 2 = 0.01 to 0.20 (molar ratio, A is an alkali metal element) is added to the Si component of the mixed gel. . In this case, the effect of shortening the time required for crystallization is obtained as the addition amount of the alkali metal hydroxide is increased. However, when A 2 O / SiO 2 exceeds 0.20, in the obtained MFI-type zeolite, A large amount of the alkali metal that acts hydrophilically remains, and the adsorptivity of the present invention may not be sufficiently exhibited. For this reason, A 2 O / SiO 2 is preferably 0.15 or less, particularly preferably 0.10 or less.
 また、上述したMFI型ゼオライトを製造するには、上記の反応を低温、具体的には、80~130℃、好ましくは95~120℃、特に好ましくは95~98℃で行うことが必要である。このため、上記の反応は種晶の存在下で行わなければならない。これにより、結晶化が促進され、低温で反応を行いながらも短時間、例えば48時間以下、特に20時間以下で結晶化を完結させることができる。
 このような種晶としては、先んじて調製したMFI型ゼオライトを使用することが必要であるが、後述するような製造法のうち、テンプレートを含むMFI型ゼオライトであっても良いし、例えば焼成等によりテンプレートを除去したMFI型ゼオライトでも良い。この種晶は適宜粉砕を行った後、混合ゲルのSi成分に対して、SiO100質量部当り0.02~20質量部、好ましくは0.05~5.0質量部の量で使用される。
 なお、種晶の添加量が0.05質量部以下であると、結晶化に要する時間を短縮する効果が弱い。添加量が過剰である場合は、種晶の組成が、得られるMFI型ゼオライトの組成に影響を与えるとともに、例えばコアシェル化によって不要な界面が形成される等、本発明が目的とする、緻密に分布した細孔の形成が阻害されるため望ましくない。特に、5.0質量部以上では結晶化に有する時間に大きな変化はなく、種晶の使用量が増えコストアップにつながるため望ましくない。
In order to produce the above-mentioned MFI type zeolite, it is necessary to carry out the above reaction at a low temperature, specifically 80 to 130 ° C., preferably 95 to 120 ° C., particularly preferably 95 to 98 ° C. . For this reason, the above reaction must be performed in the presence of seed crystals. As a result, crystallization is promoted, and the crystallization can be completed in a short time, for example, 48 hours or less, particularly 20 hours or less, while performing the reaction at a low temperature.
As such a seed crystal, it is necessary to use the previously prepared MFI-type zeolite. Of the production methods as described later, an MFI-type zeolite containing a template may be used. MFI-type zeolite from which the template is removed may be used. This seed crystal is appropriately pulverized and then used in an amount of 0.02 to 20 parts by mass, preferably 0.05 to 5.0 parts by mass per 100 parts by mass of SiO 2 with respect to the Si component of the mixed gel. The
If the amount of seed crystals added is 0.05 parts by mass or less, the effect of shortening the time required for crystallization is weak. When the addition amount is excessive, the composition of the seed crystal affects the composition of the obtained MFI-type zeolite and, for example, an unnecessary interface is formed by core-shell formation. This is undesirable because the formation of distributed pores is hindered. In particular, when the amount is 5.0 parts by mass or more, there is no significant change in the crystallization time, and the amount of seed crystals used increases, leading to an increase in cost.
 さらに、上記で述べたように、テンプレート及び種晶の存在下での混合ゲル(種晶入り混合ゲル)の反応は、80~130℃で行われ、これにより、前述したd値や窒素吸着量を示すシリカリッチのMFI型ゼオライトを得ることが可能となる。
 例えば、従来公知の方法でMFI型ゼオライトを製造する場合、反応温度は180℃前後、低くとも150℃程度の高い温度に設定されており、これにより結晶化を短時間で完結するが、本発明者等の研究によると、130℃よりも高温で反応が実施されると、得られるMFI型ゼオライトのd値((053)面の面間隔)が2.99Åを越えてしまい、また、窒素分圧PN2(P/P)が0.005での窒素吸着量は100(cm/g)よりも低くなってしまう。この理由は正確に解明されていないが、高温で反応を行うと、MFI型ゼオライトの結晶化中にテンプレートが熱分解を起こしてしまう、もしくはテンプレートが熱分解しなくとも、その熱エネルギーによりテンプレートの振動が促進されてしまい、結果として中間体を保護するテンプレートの効果が弱まり、得られるMFI型ゼオライトの結晶構造にひずみが生成したり、あるいは形成される細孔にゆがみが生じてしまうためではないかと、本発明者等は推定している。
 即ち、本発明では、上記のように低温で反応を行うため、熱エネルギーによるテンプレートの分解及び振動が回避され、この結果として、得られるゼオライトのひずみや細孔のゆがみが防止され、均一な大きさの細孔を緻密に分布させることができ、従って、得られるMFI型ゼオライトは、特定の面((053)面)の面間隔d値が小さく、且つ大きな窒素吸着量を示すと考えられるわけである。特に、(053)面のd値が本発明にあるように2.99Å以下と小さいことは、MFI型ゼオライトが極めて緻密な結晶構造を持つことを示しており、即ち、ミクロサイズの細孔が緻密かつ均一に分布したMFI型ゼオライトであると言える。通常、ゼオライトのd値の解析はXRDの測定範囲の中で、他のピークと混同しづらく、比較的高角度側(例えば30°付近)のピークを用いることが好適である。MFI型ゼオライトの場合、(053)面がこの条件に合致しており、本発明のMFI型ゼオライトからなる揮発性有機化合物吸着剤が緻密な結晶構造を有していることが解析される。
 尚、反応温度が80℃以下でもMFI型ゼオライトの結晶化は可能であるが、反応の進行が極めて遅くなってしまい、実用性を欠いてしまうこととなる。
Furthermore, as described above, the reaction of the mixed gel in the presence of the template and the seed crystal (mixed gel containing the seed crystal) is performed at 80 to 130 ° C., and thereby, the d value and the nitrogen adsorption amount described above are performed. It is possible to obtain a silica-rich MFI zeolite exhibiting the following.
For example, when MFI-type zeolite is produced by a conventionally known method, the reaction temperature is set to a high temperature of about 180 ° C. or at least about 150 ° C., which completes the crystallization in a short time. According to their research, when the reaction is carried out at a temperature higher than 130 ° C., the d value of the obtained MFI-type zeolite (surface distance of (053) plane) exceeds 2.99 mm, and the nitrogen content When the pressure P N2 (P / P 0 ) is 0.005, the nitrogen adsorption amount becomes lower than 100 (cm 3 / g). The reason for this is not exactly understood, but if the reaction is carried out at a high temperature, the template undergoes thermal decomposition during crystallization of the MFI-type zeolite, or even if the template does not thermally decompose, This is not because vibrations are promoted, and as a result, the effect of the template for protecting the intermediate is weakened, and the crystal structure of the resulting MFI-type zeolite is distorted or the formed pores are distorted. The present inventors have estimated.
That is, in the present invention, since the reaction is performed at a low temperature as described above, decomposition and vibration of the template due to thermal energy are avoided, and as a result, distortion of the zeolite and distortion of the pores are prevented, and the size is uniform. Therefore, it is considered that the obtained MFI-type zeolite has a small interplanar spacing d value of a specific plane ((053) plane) and exhibits a large nitrogen adsorption amount. It is. In particular, the d value of the (053) plane is as small as 2.99 mm or less as in the present invention indicates that the MFI-type zeolite has a very dense crystal structure, that is, micro-sized pores are present. It can be said that the MFI type zeolite is densely and uniformly distributed. Usually, the analysis of the d value of zeolite is not confused with other peaks in the XRD measurement range, and it is preferable to use a peak on a relatively high angle side (for example, around 30 °). In the case of MFI type zeolite, the (053) plane meets this condition, and it is analyzed that the volatile organic compound adsorbent comprising the MFI type zeolite of the present invention has a dense crystal structure.
Although the MFI type zeolite can be crystallized even at a reaction temperature of 80 ° C. or lower, the progress of the reaction becomes extremely slow and the practicality is lost.
 本発明は、上記のように得られるゼオライトのひずみや細孔のゆがみが防止され、均一な大きさの細孔を緻密に分布させることができた結果、後述する実施例のように高いBET比表面積を有している。即ち、本発明の揮発性有機化合物吸着剤は、430m/g以上、好ましくは440m/g以上、特に好ましくは450m/g以上のBET比表面積を有する。 The present invention prevents the distortion and pore distortion of the zeolite obtained as described above, and as a result of being able to finely distribute pores of uniform size, a high BET ratio as in the examples described later. Has a surface area. That is, the volatile organic compound adsorbent of the present invention has a BET specific surface area of 430 m 2 / g or more, preferably 440 m 2 / g or more, particularly preferably 450 m 2 / g or more.
 また、反応温度が上記の低温領域である限りにおいて、この反応は大気圧下で行ってもよいし、オートクレーブ等を用いて加圧下で行ってもよいが、加圧下で行ってもさほどメリットはなく、種晶の使用により大気圧下で行っても十分に結晶化が促進されているため、コスト等の観点から、大気圧下で反応を実施することが好ましい。 Further, as long as the reaction temperature is in the low temperature range, this reaction may be performed under atmospheric pressure or under pressure using an autoclave or the like. In view of cost and the like, it is preferable to carry out the reaction under atmospheric pressure because crystallization is sufficiently promoted even if it is carried out under atmospheric pressure by using seed crystals.
 上記の反応後には、常法にしたがい、ろ過水洗及び乾燥を行った後、500~800℃程度の温度で0.5~10時間程度の焼成を行い、これにより、ゼオライト中のテンプレートが除去され、目的とするVOC、特にトルエンの吸着に適した細孔が緻密に分布しているMFI型ゼオライトを得ることができる。 After the above reaction, according to a conventional method, filtered water washing and drying are carried out, followed by calcination at a temperature of about 500 to 800 ° C. for about 0.5 to 10 hours, whereby the template in the zeolite is removed. MFI type zeolite in which pores suitable for adsorption of the target VOC, particularly toluene, are densely distributed can be obtained.
 尚、上記ゼオライトの合成に際してNaやK等のアルカリ分を多く使用した場合には、アルカリ含有量が多くなってしまい、これらのアルカリ分は親水的に作用するため、得られるMFI型ゼオライトの有機化合物に対する吸着性が大きく損なわれてしまう。この場合、焼成工程を経たMFI型ゼオライトを水溶液中に再度分散し、塩酸や硫酸等の酸による脱アルカリ法、もしくは各種アンモニウム塩を用いたアルカリとアンモニウムのイオン交換、及びそれに引き続くアンモニウム除去の焼成を行う一連の脱アルカリ法で、アルカリ分を除去することが望ましい。
 特に各種アンモニウム塩を用いた一連の脱アルカリ法が好適であるが、この場合、例えば焼成後のMFI型ゼオライトに対して10~200質量部程度の塩化アンモニウムを用いることが好ましく、引き続くアンモニウム除去のための焼成は、300~600℃で0.5から10時間程度行うことが好ましい。
In addition, when a large amount of alkali such as Na or K is used in the synthesis of the above zeolite, the alkali content increases, and these alkalis act hydrophilicly. The adsorptivity to the compound is greatly impaired. In this case, the MFI-type zeolite that has undergone the calcination process is dispersed again in an aqueous solution, and dealkalization with an acid such as hydrochloric acid or sulfuric acid, or ion exchange between alkali and ammonium using various ammonium salts, and subsequent calcination of ammonium removal It is desirable to remove the alkali content by a series of dealkalization methods.
In particular, a series of dealkalization methods using various ammonium salts are suitable. In this case, for example, it is preferable to use about 10 to 200 parts by mass of ammonium chloride with respect to the calcined MFI-type zeolite, and subsequent ammonium removal. The firing is preferably performed at 300 to 600 ° C. for about 0.5 to 10 hours.
 かくして得られるMFI型ゼオライトは通常、中位径が0.1~20μm、好ましくは0.5~10μmの大きさであるが、適宜粉末状に粉砕して使用に供されることが好ましく、取扱いの容易性等を考慮して、1.0~4.0μmの大きさに粒度調整して使用に供される。但し、例えば樹脂組成物に混練させたり、塗料やコーティング剤等の疎水溶媒を含む液体に混ぜて用いたりする場合においては、分散性を向上させたり、比表面積増大のため、サブミクロンオーダー(中位径0.1~1.0μm)に至るまで更に細かく粉砕して用いることもできる。また、吸着カラムや吸着塔などの設備に充填する際には、例えば一般的に用いられるバインダーと適切に混合した後に、成型して粒状体として用いることもできる。 The MFI-type zeolite thus obtained usually has a median diameter of 0.1 to 20 μm, preferably 0.5 to 10 μm. However, it is preferable that the MFI-type zeolite is appropriately pulverized into a powder for use. In consideration of ease of use, etc., the particle size is adjusted to a size of 1.0 to 4.0 μm for use. However, for example, when kneaded into a resin composition or mixed with a liquid containing a hydrophobic solvent such as a paint or a coating agent, it is submicron order (medium) to improve the dispersibility or increase the specific surface area. It can also be used after being finely pulverized to a diameter of 0.1 to 1.0 μm. Moreover, when filling in equipment, such as an adsorption column and an adsorption tower, after mixing appropriately with the binder generally used, it can shape | mold and use as a granular material, for example.
 上述したシリカリッチのMFI型ゼオライトからなる本発明の揮発性有機化合物吸着剤は、トルエン、キシレン、酢酸エチルに代表される揮発性有機化合物に対して高い吸着性を示し、これらの化合物が低濃度で存在する雰囲気中からも、これら化合物を効果的に吸着除去することができる。このため、かかる吸着剤は、揮発性有機化合物を含むガスを排出する化学工場等において使用される環境浄化用設備、例えばハニカム構造を有する排気用ローターに担持されて好適に適用される。 The volatile organic compound adsorbent of the present invention comprising the above-mentioned silica-rich MFI type zeolite exhibits high adsorptivity to volatile organic compounds typified by toluene, xylene and ethyl acetate, and these compounds have a low concentration. These compounds can be effectively adsorbed and removed even in the atmosphere existing in step (b). For this reason, such an adsorbent is suitably applied by being carried on an environmental purification facility used in a chemical factory or the like that discharges a gas containing a volatile organic compound, for example, an exhaust rotor having a honeycomb structure.
 また、かかる特徴を有する本発明の揮発性有機化合物吸着剤は、樹脂に配合されて樹脂組成物の調製に供され、得られた樹脂組成物から、好ましくはマスターバッチを調整し、フィルムや各種部材などの種々の物品が成形される。この時、本発明の揮発性有機化合物吸着剤は、単独で樹脂に添加することもできるし、他の吸着材や添加剤と併用することもできる。本発明の揮発性有機化合物吸着剤の配合量に何ら制限はないが、例えば、樹脂100質量部あたり前記吸着剤が0.001~1000質量部、好ましくは0.005~100質量部の範囲で配合することができる。特に、樹脂加工時の未反応モノマーや劣化に伴い生じる特有の樹脂臭を低減する目的で、本発明の吸着剤を樹脂に適用する場合は、樹脂100質量部あたり前記吸着剤が0.005~10質量部であることが好ましい。
 また、自動車部材や住宅建材に使用される樹脂に対し本発明の揮発性有機化合物吸着剤を添加することで、新車や新築建造物特有の臭い、特にシックハウス症候群の原因となる物質(トルエンやアルデヒド類)を吸着する等、生活環境改善の効果が期待でき、繊維加工工程で繊維に含有させることで消臭機能を持つ高機能繊維とすることもできる。このような場合は、樹脂100質量部あたり前記吸着剤が1~100質量部であることが好ましい。
Further, the volatile organic compound adsorbent of the present invention having such characteristics is blended in a resin and used for the preparation of a resin composition. From the obtained resin composition, preferably a master batch is prepared, and a film or various Various articles such as members are formed. At this time, the volatile organic compound adsorbent of the present invention can be added to the resin alone or in combination with other adsorbents and additives. The blending amount of the volatile organic compound adsorbent of the present invention is not limited at all. For example, the adsorbent is in the range of 0.001 to 1000 parts by mass, preferably 0.005 to 100 parts by mass per 100 parts by mass of the resin. Can be blended. In particular, when the adsorbent of the present invention is applied to a resin for the purpose of reducing the unreacted monomer during resin processing and the characteristic resin odor caused by deterioration, the adsorbent is 0.005 to 100 parts by mass of the resin. It is preferably 10 parts by mass.
In addition, by adding the volatile organic compound adsorbent of the present invention to resins used in automobile parts and housing building materials, substances that cause odors, particularly sick house syndrome (toluene and aldehydes), which are peculiar to new cars and new buildings. The effect of improving the living environment can be expected, for example, by adsorbing the above)), and it can be made into a highly functional fiber having a deodorizing function by being incorporated into the fiber in the fiber processing step. In such a case, the adsorbent is preferably 1 to 100 parts by mass per 100 parts by mass of the resin.
 基材樹脂としては、熱可塑性樹脂及び熱硬化性樹脂のいずれも使用することができるが、成形性の観点から、熱可塑性樹脂が好適である。このような熱可塑性樹脂の例としては、以下のものを挙げることができる。
 低密度ポリエチレン、高密度ポリエチレン、ポリプロピレン、ポリ1-ブテン、ポリ4-メチル-1-ペンテンあるいはエチレン、プロピレン、1-ブテン、4-メチル-1-ペンテン等のα-オレフィン同士のランダムあるいはブロック共重合体、環状オレフィン共重合体などのオレフィン系樹脂;
 エチレン・酢酸ビニル共重合体、エチレン・ビニルアルコール共重合体、エチレン・塩化ビニル共重合体等のエチレン・ビニル系共重合体;
 ポリスチレン、アクリロニトリル・スチレン共重合体、ABS、α-メチルスチレン・スチレン共重合体等のスチレン系樹脂;
 ポリ塩化ビニル、ポリ塩化ビニリデン、塩化ビニル・塩化ビニリデン共重合体、ポリアクリル酸メチル、ポリメタクリル酸メチル等のビニル系樹脂;
 ナイロン6、ナイロン6-6、ナイロン6-10、ナイロン11、ナイロン12等のポリアミド樹脂;
 ポリエチレンテレフタレート(PET)、ポリブチレンテレフタレート、ポリエチレンナフタレート、及びこれらの共重合ポリエステル等のポリエステル樹脂;
 ポリカーボネート樹脂;
 ポリフエニレンオキサイド樹脂;
 ポリ乳酸などの生分解性樹脂;
 上記で例示した熱可塑性樹脂は、それぞれ単独で使用することもできるが、2種以上のブレンド物として使用することもできる。
 本発明においては特に、オレフィン系樹脂及びポリエステル樹脂が好適であり、オレフィン系樹脂が基材樹脂として最も好適である。
As the base resin, any of a thermoplastic resin and a thermosetting resin can be used. From the viewpoint of moldability, a thermoplastic resin is preferable. The following can be mentioned as an example of such a thermoplastic resin.
Low-density polyethylene, high-density polyethylene, polypropylene, poly-1-butene, poly-4-methyl-1-pentene, or random or block co-polymerization of α-olefins such as ethylene, propylene, 1-butene, 4-methyl-1-pentene Olefin resins such as polymers and cyclic olefin copolymers;
Ethylene / vinyl acetate copolymers, ethylene / vinyl alcohol copolymers, ethylene / vinyl copolymers such as ethylene / vinyl chloride copolymers;
Styrene resins such as polystyrene, acrylonitrile / styrene copolymer, ABS, α-methylstyrene / styrene copolymer;
Vinyl resins such as polyvinyl chloride, polyvinylidene chloride, vinyl chloride / vinylidene chloride copolymer, polymethyl acrylate, polymethyl methacrylate;
Polyamide resins such as nylon 6, nylon 6-6, nylon 6-10, nylon 11 and nylon 12;
Polyester resins such as polyethylene terephthalate (PET), polybutylene terephthalate, polyethylene naphthalate, and copolymerized polyesters thereof;
Polycarbonate resin;
Polyphenylene oxide resin;
Biodegradable resins such as polylactic acid;
The thermoplastic resins exemplified above can be used alone, but can also be used as a blend of two or more.
In the present invention, olefinic resins and polyester resins are particularly suitable, and olefinic resins are most suitable as the base resin.
 また、本発明の揮発性有機化合物吸着剤はミクロサイズの細孔が緻密かつ均一に分布していることから、MFI型ゼオライトの有する活性点(例えば固体酸点)も緻密かつ均一に分布しているものと予想される。すなわち、本発明の揮発性有機化合物吸着剤は、MFI型ゼオライトが一般的に適用される触媒、例えば酸触媒、不均化触媒、異性化触媒、炭化水素合成触媒、FCC用触媒、オレフィン重合用触媒、及び脱硝触媒等として、又は触媒担体としての使用を何ら制限するものではない。 In addition, since the volatile organic compound adsorbent of the present invention has micro-sized pores densely and uniformly distributed, the active sites (for example, solid acid points) possessed by the MFI zeolite are also densely and uniformly distributed. It is expected that That is, the volatile organic compound adsorbent of the present invention is a catalyst to which MFI type zeolite is generally applied, for example, an acid catalyst, a disproportionation catalyst, an isomerization catalyst, a hydrocarbon synthesis catalyst, an FCC catalyst, and an olefin polymerization catalyst. The use as a catalyst, a denitration catalyst, etc. or as a catalyst carrier is not limited at all.
 本発明を次の実験例で説明する。
 尚、実験における各種の測定は、以下の方法で行った。
The invention is illustrated by the following experimental example.
Various measurements in the experiment were performed by the following methods.
(1)X線回折
(面間隔d値解析のための測定及び解析条件)
 相対湿度75%に調湿済みのデシケーター中に乾燥試料を入れ、室温下で48時間以上静置し、水分を飽和量吸着させた。取出した試料の、2Θ=29.6~30.2°にかけて、X線回折測定した。なお、X線回折測定はリガク社製のultima4を用いて、Cu-Kαにて下記の条件で測定を行った。
  ターゲット:Cu
  フィルター:湾曲結晶グラファイトモノクロメーター
  検出器:SC
  電圧:40kV
  電流:50mA
  ステップサイズ:0.005°
  計数時間:10sec/step
  スリット:DS2/3° RS0.3mm SS2/3°
目的とした範囲のX線回折のうち、最大ピークを持つ角度について、下記式に基づきd値(Å)を求めた。
(ブラッグの条件)
d=nλ/2sinΘ
  d   :面間隔
  n   :整数
  λ   :波長
  sinΘ:結晶面とX線がなす角度
(結晶型の確認)
 結晶の確認はd値の測定に用いた条件のうち、以下を変更して行った。
  測定範囲   :3~40°
  電流     :40mA
  ステップサイズ:0.02°
  計数時間   :0.6sec/step
(1) X-ray diffraction (measurement and analysis conditions for d-value analysis of surface spacing)
A dried sample was placed in a desiccator that had been conditioned at a relative humidity of 75%, and allowed to stand at room temperature for 48 hours or more to adsorb a saturated amount of water. The extracted sample was subjected to X-ray diffraction measurement at 2Θ = 29.6 to 30.2 °. The X-ray diffraction measurement was performed using Cu-Kα under the following conditions using ultima 4 manufactured by Rigaku Corporation.
Target: Cu
Filter: Curved crystal graphite monochromator Detector: SC
Voltage: 40 kV
Current: 50 mA
Step size: 0.005 °
Counting time: 10 sec / step
Slit: DS2 / 3 ° RS0.3mm SS2 / 3 °
Of the X-ray diffraction in the target range, the d value (Å) was determined based on the following formula for the angle having the maximum peak.
(Bragg condition)
d = nλ / 2sinΘ
d: spacing between planes n: integer λ: wavelength sin Θ: angle formed between crystal plane and X-ray (confirmation of crystal type)
The confirmation of the crystal was performed by changing the following among the conditions used for measuring the d value.
Measurement range: 3 to 40 °
Current: 40 mA
Step size: 0.02 °
Counting time: 0.6 sec / step
(2)窒素吸着等温線の測定
 窒素吸着の測定には、micromeritics社製のTristarを用い、窒素分圧PN2(P/P)が0.005~0.95の範囲における吸着等温線を求めた。前処理は、真空条件下で200℃、2時間の条件で行った。後述する各吸着剤について、窒素分圧PN2(P/P)が0.005における測定値を窒素吸着量(cm/g)とした。
(2) Measurement of nitrogen adsorption isotherm Nitrogen adsorption is measured using a Tristar manufactured by micromeritics, and an adsorption isotherm in the range where the nitrogen partial pressure P N2 (P / P 0 ) is in the range of 0.005 to 0.95. Asked. The pretreatment was performed under vacuum conditions at 200 ° C. for 2 hours. For each adsorbent described later, the measured value at a nitrogen partial pressure P N2 (P / P 0 ) of 0.005 was taken as the nitrogen adsorption amount (cm 3 / g).
(3)トルエン吸着等温線の測定
トルエン吸着の測定には、日本ベル社製のBelsorp
Maxを用い、トルエン分圧P(P/P)が0.0001~0.10の範囲における吸着等温線を求めた。前処理は、真空条件下で150℃、2時間の条件で行った。平衡判定時間は300秒とした。トルエンは和光純薬工業(株)製クロマトグラフ用グレードを使用した。後述する各吸着剤について、トルエン分圧P(P/P)が0.01における測定値を吸着剤単位質量あたりの吸着量に換算し、トルエン吸着量(質量%)とした。
(3) Measurement of toluene adsorption isotherm For the measurement of toluene adsorption, Belsorb made by Nippon Bell Co., Ltd.
Using Max, an adsorption isotherm was obtained when the toluene partial pressure P T (P / P 0 ) was in the range of 0.0001 to 0.10. The pretreatment was performed under vacuum conditions at 150 ° C. for 2 hours. The equilibrium judgment time was 300 seconds. Toluene used was a grade for chromatograph manufactured by Wako Pure Chemical Industries, Ltd. For each adsorbent described later, the measured value at a toluene partial pressure P T (P / P 0 ) of 0.01 was converted to an adsorbed amount per adsorbent unit mass to obtain an adsorbed amount of toluene (% by mass).
(4)組成解析
 酸化物換算でのアルカリ金属含有量及びSiO2/Al23(モル比)の算出に必要な元素分析については、(株)リガク製Rigaku ZSX primus IIを用い、ターゲットはRh、分析線はKαで、その他は以下の条件で測定を行った。
 なお、試料は110℃で2時間乾燥した物を基準とした。
Figure JPOXMLDOC01-appb-T000001
(4) Composition analysis About elemental analysis required for calculation of alkali metal content in terms of oxide and SiO 2 / Al 2 O 3 (molar ratio), Rigaku ZSX primus II manufactured by Rigaku Corporation was used, and the target was Rh and the analytical line were Kα, and the others were measured under the following conditions.
The sample was based on a product dried at 110 ° C. for 2 hours.
Figure JPOXMLDOC01-appb-T000001
(5)中位径(D50%)の測定
 体積基準での中位径(μm)は、マルバーン社製のレーザー回折型粒度分布測定装置マスターサイザー3000を使用し、溶媒に水を用いて測定した。
(5) Measurement of median diameter (D50%) The median diameter (μm) on a volume basis was measured using a laser diffraction type particle size distribution measuring device Mastersizer 3000 manufactured by Malvern and using water as a solvent. .
(6)BET比表面積
 (2)で求めた吸着等温線から、BET法による比表面積を算出した。
(6) BET specific surface area The specific surface area by BET method was computed from the adsorption isotherm calculated | required by (2).
(比較例1)
 水澤化学工業株式会社製MFI型ゼオライトであるシルトンMT-100(SiO/Al=105)を使用した。なお、シルトンは水澤化学工業株式会社の登録商標である。
(Comparative Example 1)
Silton MT-100 (SiO 2 / Al 2 O 3 = 105) which is MFI type zeolite manufactured by Mizusawa Chemical Co., Ltd. was used. Shilton is a registered trademark of Mizusawa Chemical Industry Co., Ltd.
(比較例2)
 東ソー株式会社製MFI型ゼオライト、HSZ890HOAを使用した。
(Comparative Example 2)
MFI type zeolite made by Tosoh Corporation, HSZ890HOA was used.
(比較例3)
 ユニオン昭和株式会社製MFI型ゼオライト、ABSCENTS-3000を使用した。
(Comparative Example 3)
MFI type zeolite made by Union Showa Co., Ltd., ABSCENTS-3000 was used.
(比較例4)
(シリカヒドロゲルの調製)
 40質量%硫酸及び3号ケイ酸ソーダ(SiO=22.8質量%、NaO=7.6質量%、HO=69.6質量%)を用い、従来公知の方法でシリカヒドロゲルを調製した。組成解析を行ったところ、SiO=38.5質量%、NaO=0.02質量%、HO=61.4質量%であった。
(MFI型ゼオライトの合成)
 2Lのステンレスジョッキ中で、シリカヒドロゲル、TPA-Br、49質量%NaOH及び水を、SiO質量を200gとして、各成分がモル比でSiO:NaO:TPA-Br:HO=1:0.025:0.045:16となるように室温、撹拌下で混合し、混合ゲルを調製した。
 次に、混合ゲルを撹拌羽内蔵型の1.5Lオートクレーブに移し、撹拌条件下で170℃まで2.5時間で昇温し、昇温後170℃を保持したまま12時間結晶化反応を行った。反応終了後、液をろ過し、引き続いて混合ゲルの3倍の容積の水で水洗を行い、テンプレートを含むMFI型ゼオライトを得た。濾過水洗後のMFI型ゼオライトの中位径は10.0μmであった。
 110℃の恒温乾燥棚で10時間乾燥を行った後、マッフル炉を用い、600℃、2時間保持の条件でテンプレートの除去を行い、テンプレートを含まないMFI型ゼオライトを得た。
(MFI型ゼオライトの粉砕)
 旋回式ジェットミルを用いてMFI型ゼオライトの粉砕を行った。粉砕後粉末の中位径は7.7μmであった。
(Comparative Example 4)
(Preparation of silica hydrogel)
Silica hydrogel by a conventionally known method using 40% by mass sulfuric acid and No. 3 sodium silicate (SiO 2 = 22.8% by mass, Na 2 O = 7.6% by mass, H 2 O = 69.6% by mass) Was prepared. When the composition analysis was conducted, SiO 2 = 38.5 mass%, Na 2 O = 0.02 mass%, and H 2 O = 61.4 mass%.
(Synthesis of MFI type zeolite)
In a 2 L stainless steel mug, silica hydrogel, TPA-Br, 49 mass% NaOH and water, SiO 2 mass is 200 g, and each component is in a molar ratio of SiO 2 : Na 2 O: TPA-Br: H 2 O = The mixture gel was prepared by mixing at room temperature with stirring so that the ratio was 1: 0.025: 0.045: 16.
Next, the mixed gel was transferred to a 1.5 L autoclave with a built-in stirring blade, heated to 170 ° C. over 2.5 hours under stirring conditions, and then subjected to a crystallization reaction for 12 hours while maintaining 170 ° C. after the temperature rising. It was. After completion of the reaction, the liquid was filtered and subsequently washed with water having a volume three times that of the mixed gel to obtain an MFI type zeolite containing a template. The median diameter of MFI-type zeolite after washing with filtered water was 10.0 μm.
After drying for 10 hours in a constant temperature drying shelf at 110 ° C., the template was removed using a muffle furnace at 600 ° C. for 2 hours to obtain an MFI-type zeolite containing no template.
(Milling of MFI type zeolite)
The MFI type zeolite was pulverized using a swirling jet mill. The median diameter of the powder after pulverization was 7.7 μm.
(実施例1)
 SiO質量を200gとして、各成分の組成がモル比でSiO:NaO:TPA-Br:HO=1:0.03:0.05:16となるように変更した他は比較例4と同様に混合ゲルを調製し、最後にSiOに対して1.0質量%の種晶(比較例4で得られた中位径7.7μmのMFI型ゼオライト)を添加して更に5分間撹拌を行い、種晶入り混合ゲルを調製した。
 次に、撹拌条件下、種晶入り混合ゲルを温度制御可能な温水層中で、95℃まで1時間で昇温し、95℃を保持したまま20時間結晶化反応を行った。反応終了後、反応液をろ過し、引き続いて混合ゲルの3倍の容積の水で水洗を行ない、テンプレートを含むMFI型ゼオライトを得た。濾過水洗後のMFI型ゼオライトの中位径は1.0μmであった。
 110℃の恒温乾燥棚で10時間乾燥を行った後、マッフル炉を用い、600℃、2時間保持の条件でテンプレートの除去を行い、テンプレートを含まないMFI型ゼオライトを得た。
 その後、比較例4と同様に旋回式ジェットミルを用いて、MFI型ゼオライトの粉砕を行い、MFI型ゼオライトからなる揮発性有機化合物吸着剤を得た。中位径は1.0μmであった。
Example 1
Comparison was made except that the composition of each component was changed to SiO 2 : Na 2 O: TPA-Br: H 2 O = 1: 0.03: 0.05: 16 with a SiO 2 mass of 200 g. A mixed gel was prepared in the same manner as in Example 4, and finally 1.0% by mass of seed crystals (MFI type zeolite having a median diameter of 7.7 μm obtained in Comparative Example 4) with respect to SiO 2 was further added. Stirring was performed for 5 minutes to prepare a mixed gel containing seed crystals.
Next, under stirring conditions, the temperature of the mixed gel containing seed crystals was raised to 95 ° C. over 1 hour in a temperature-controllable hot water layer, and a crystallization reaction was performed for 20 hours while maintaining 95 ° C. After completion of the reaction, the reaction solution was filtered and subsequently washed with 3 times the volume of water of the mixed gel to obtain an MFI-type zeolite containing a template. The median diameter of MFI-type zeolite after washing with filtered water was 1.0 μm.
After drying for 10 hours in a constant temperature drying shelf at 110 ° C., the template was removed using a muffle furnace under the condition of holding at 600 ° C. for 2 hours to obtain an MFI type zeolite containing no template.
Thereafter, the MFI-type zeolite was pulverized using a swirling jet mill in the same manner as in Comparative Example 4 to obtain a volatile organic compound adsorbent composed of the MFI-type zeolite. The median diameter was 1.0 μm.
(実施例2)
 実施例1のMFI型ゼオライトからなる揮発性有機化合物吸着剤10gに対し、90gの水を添加して撹拌により再分散した後、10gの塩化アンモニウムを添加して、3時間交換処理を行った。濾過水洗後、得られたアンモニウム―MFI型ゼオライトを、110℃の恒温乾燥棚で10時間乾燥した後、マッフル炉を用いて、500℃、3時間保持の条件でアンモニウムの除去を行い、脱アルカリ―MFI型ゼオライトを得た。このゼオライトを再度旋回式ジェットミルを用いて粉砕し、MFI型ゼオライトからなる揮発性有機化合物吸着剤を得た。中位径は、1.0μmであった。
(Example 2)
90 g of water was added to 10 g of the volatile organic compound adsorbent composed of the MFI-type zeolite of Example 1 and redispersed by stirring. Then, 10 g of ammonium chloride was added, and exchange treatment was performed for 3 hours. After washing with filtered water, the obtained ammonium-MFI type zeolite was dried for 10 hours in a constant temperature drying shelf at 110 ° C., and then the ammonium was removed using a muffle furnace under the condition of holding at 500 ° C. for 3 hours to remove alkali. -An MFI type zeolite was obtained. The zeolite was pulverized again using a swirling jet mill to obtain a volatile organic compound adsorbent composed of MFI-type zeolite. The median diameter was 1.0 μm.
(実施例3)
 反応容器を撹拌機内蔵型の1.5Lオートクレーブ、反応温度を105℃、反応時間を16時間とした以外は、実施例1と同様の操作でMFI型ゼオライトからなる揮発性有機化合物吸着剤を得た。中位径は、2.0μmであった。
(Example 3)
A volatile organic compound adsorbent composed of MFI-type zeolite was obtained in the same manner as in Example 1 except that the reaction vessel was a 1.5 L autoclave with a built-in stirrer, the reaction temperature was 105 ° C., and the reaction time was 16 hours. It was. The median diameter was 2.0 μm.
(実施例4)
 混合ゲルの組成をモル比でSiO:NaO:TPA-Br:HO=1:0.025:0.045:16とし、反応容器を撹拌機内蔵型の1.5Lオートクレーブ、反応温度を110℃、反応時間を18時間とした以外は、実施例1と同様の操作でMFI型ゼオライトからなる揮発性有機化合物吸着剤を得た。中位径は、4.0μmであった。
(Example 4)
The composition of the mixed gel was SiO 2 : Na 2 O: TPA-Br: H 2 O = 1: 0.025: 0.045: 16 in a molar ratio, and the reaction vessel was a 1.5 L autoclave with a built-in stirrer, reaction A volatile organic compound adsorbent composed of MFI-type zeolite was obtained in the same manner as in Example 1, except that the temperature was 110 ° C. and the reaction time was 18 hours. The median diameter was 4.0 μm.
(実施例5)
 実施例1に示した原料に加え、アルミン酸ナトリウム(Al=23.0質量%、NaO=19.2質量%、HO=57.8質量%)を用い、混合ゲルの組成がモル比でSiO:Al:NaO:TPA-Br:HO=1:0.008:0.05:0.04:16となるように室温、撹拌下で混合し、最後にSiOに対して1.0質量%の種晶(比較例4で得られた中位径7.7μmのMFI型ゼオライト)を添加し、種晶入り混合ゲルを調製した。その後、反応容器を、撹拌機内蔵型の1.5Lオートクレーブ、反応温度を120℃とした以外は、実施例1と同様の操作でMFI型ゼオライトからなる揮発性有機化合物吸着剤を得た。中位径は、1.8μmであった。
(Example 5)
In addition to the raw materials shown in Example 1, sodium aluminate (Al 2 O 3 = 23.0% by mass, Na 2 O = 19.2% by mass, H 2 O = 57.8% by mass) was used as a mixed gel. At a room temperature under stirring so that the composition of SiO 2 : Al 2 O 3 : Na 2 O: TPA-Br: H 2 O = 1: 0.008: 0.05: 0.04: 16 Finally, 1.0% by mass of seed crystals (MFI-type zeolite having a median diameter of 7.7 μm obtained in Comparative Example 4) with respect to SiO 2 was added to prepare a mixed gel containing seed crystals. Thereafter, a volatile organic compound adsorbent composed of MFI-type zeolite was obtained in the same manner as in Example 1 except that the reaction vessel was a 1.5 L autoclave with a built-in stirrer and the reaction temperature was 120 ° C. The median diameter was 1.8 μm.
(実施例6)
 SiO質量を380gとし、実施例1で得られた中位径1.0μmのMFI型ゼオライトを種晶とし、種晶の添加量を3.0質量%とし、各成分の組成がモル比でSiO:NaO:TPA-Br:HO=1:0.03:0.045:20となるように種晶を含めた原料を撹拌条件下で混合して、種晶入り混合ゲルを調製した。以降の操作は、実施例1と同様の操作でMFI型ゼオライトからなる揮発性有機化合物吸着剤を得た。中位径は0.7μmであった。
(Example 6)
The SiO 2 mass is 380 g, the MFI type zeolite having a median diameter of 1.0 μm obtained in Example 1 is used as a seed crystal, the seed crystal addition amount is 3.0 mass%, and the composition of each component is in molar ratio. SiO 2 : Na 2 O: TPA-Br: H 2 O = 1: 0.03: 0.045: 20 The raw materials including seed crystals were mixed under stirring conditions to obtain a mixed gel containing seed crystals. Was prepared. Subsequent operations were performed in the same manner as in Example 1 to obtain a volatile organic compound adsorbent composed of MFI-type zeolite. The median diameter was 0.7 μm.
(実施例7)
 実施例5と同じ原料を用い、SiO質量を240gとして、実施例6で得られた中位径0.7μmのMFI型ゼオライトを種晶とし、種晶の添加量を2.0質量%とし、各成分の組成がモル比でSiO:Al:NaO:TPA-Br:HO=1:0.0077:0.12:0.04:20.3となるように種晶を含めた原料を撹拌条件下で混合して、種晶入り混合ゲルを調製した。その後、結晶化反応を48時間とした他は、実施例1と同様の操作でMFI型ゼオライトからなる揮発性有機化合物吸着剤を得た。中位径は0.5μmであった。
(Example 7)
Using the same raw materials as in Example 5, the SiO 2 mass is 240 g, the MFI zeolite having a median diameter of 0.7 μm obtained in Example 6 is used as a seed crystal, and the addition amount of the seed crystal is 2.0 mass%. The composition of each component is SiO 2 : Al 2 O 3 : Na 2 O: TPA-Br: H 2 O = 1: 0.0077: 0.12: 0.04: 20.3 in molar ratio. Raw materials including seed crystals were mixed under stirring conditions to prepare a mixed gel containing seed crystals. Thereafter, a volatile organic compound adsorbent composed of MFI-type zeolite was obtained in the same manner as in Example 1 except that the crystallization reaction was performed for 48 hours. The median diameter was 0.5 μm.
 比較例1~4のMFI型ゼオライト及び実施例1~7で調製された揮発性有機化合物吸着剤の物性、窒素吸着量、トルエン吸着量についての試験結果を表2及び表3に示す。 Tables 2 and 3 show the test results on the physical properties, nitrogen adsorption amount and toluene adsorption amount of the MFI type zeolites of Comparative Examples 1 to 4 and the volatile organic compound adsorbents prepared in Examples 1 to 7.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
応用例;吸着剤が配合されている樹脂組成物の作製
 日本ポリプロ株式会社製ポリエチレンペレット(製品名LF440B)に、実施例6の吸着剤を混合し、東洋精機製作所製ラボプラストミルを用いて170℃で溶融混練し、チップ状に裁断することで、樹脂100質量部あたりの吸着剤の配合量が0.5部となる樹脂組成物を得た。尚、吸着剤以外の成分は添加していない。
Application example: Preparation of resin composition containing adsorbent Adsorbent of Example 6 was mixed with polyethylene pellets (product name: LF440B) manufactured by Nippon Polypro Co., Ltd., and 170 using a lab plast mill manufactured by Toyo Seiki Seisakusho. By melt-kneading at 0 ° C. and cutting into chips, a resin composition having an adsorbent content of 0.5 parts per 100 parts by mass of the resin was obtained. In addition, components other than the adsorbent are not added.
樹脂臭吸着能の評価;
 上記樹脂組成物の作製で得られた、吸着剤が配合されている樹脂組成物と吸着剤を含まないポリエチレンペレットを用いて、樹脂臭の低減性能を評価した。
 500mLのスクリュー口保存ビンの中に吸着剤が配合されている樹脂組成物または吸着剤を含まないポリエチレンペレットをそれぞれ5g計り取り、ビンのスクリュー部分にテフロンテープを三重に巻きつけた後蓋を閉めて密封した。これを各被験者分(5人分)用意した。50℃で予温した恒温棚乾燥機の中にポリエチレンペレット入りの保存ビンを入れ、そのまま50℃、90時間放置した。恒温棚乾燥機から2種類の保存ビンを取り出し、開封したのち直ちに臭いをかぎ、臭いの程度(0:全く臭わない、1:微かに臭う、2:臭う)をそれぞれの被験者が評価した。なお、被験者に対しどちらのペレットが入っているか分からない状態で試験を行った。試験結果を表4に示した。
Evaluation of resin odor adsorption capacity;
The resin odor reduction performance was evaluated using the resin composition in which the adsorbent was blended and the polyethylene pellet not containing the adsorbent, which were obtained in the preparation of the resin composition.
Weigh each 5g of resin composition containing adsorbent in a 500mL screw mouth storage bottle or polyethylene pellets without adsorbent, wrap Teflon tape around the bottle's screw part in triplicate, and then close the lid. And sealed. This was prepared for each subject (for 5 people). A storage bottle containing polyethylene pellets was placed in a constant-temperature shelf dryer preheated at 50 ° C. and left as it was at 50 ° C. for 90 hours. Two types of storage bottles were taken out from the thermostatic shelf dryer, opened and immediately smelled, and the degree of odor (0: no odor, 1: slightly odor, 2: odor) was evaluated by each subject. In addition, it tested in the state which does not know which pellet is contained with respect to the test subject. The test results are shown in Table 4.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004

Claims (7)

  1.  SiO/Al(モル比)が50以上のMFI型ゼオライトからなる揮発性有機化合物吸着剤において、
     前記ゼオライトは、X線回折スペクトルにおいて(053)面の面間隔(d値)が2.99Å以下であり、
     且つ窒素分圧PN2(P/P)0.005での窒素吸着量が100(cm/g)以上であることを特徴とする揮発性有機化合物吸着剤。
    In the volatile organic compound adsorbent composed of MFI-type zeolite having a SiO 2 / Al 2 O 3 (molar ratio) of 50 or more,
    The zeolite has an (053) plane spacing (d value) of 2.99 mm or less in the X-ray diffraction spectrum,
    A volatile organic compound adsorbent having a nitrogen adsorption amount of 100 (cm 3 / g) or more at a nitrogen partial pressure P N2 (P / P 0 ) of 0.005.
  2.  SiO/Al(モル比)が90以上である、請求項1に記載の吸着剤。 The adsorbent according to claim 1, wherein SiO 2 / Al 2 O 3 (molar ratio) is 90 or more.
  3.  トルエン分圧P(P/P)0.01でのトルエン吸着量が8.2質量%以上である、請求項1または2記載の吸着剤。 Toluene adsorption amount of toluene partial pressure P T (P / P 0) 0.01 is 8.2% by mass or more, according to claim 1 or 2 sorbent according.
  4.  酸化物換算でのアルカリ金属含有量が0.1質量%以下に抑制されている、請求項1~3の何れかに記載の吸着剤。 The adsorbent according to any one of claims 1 to 3, wherein the alkali metal content in terms of oxide is suppressed to 0.1 mass% or less.
  5.  請求項1~4の何れかに記載の吸着剤が樹脂に配合されている樹脂組成物。 A resin composition in which the adsorbent according to any one of claims 1 to 4 is blended with a resin.
  6.  前記樹脂100質量部あたり前記吸着剤が0.005~100質量部配合されている事を特徴とする請求項5に記載の樹脂組成物。 6. The resin composition according to claim 5, wherein 0.005 to 100 parts by mass of the adsorbent is blended per 100 parts by mass of the resin.
  7.  前記樹脂が熱可塑性樹脂である請求項5に記載の樹脂組成物。 The resin composition according to claim 5, wherein the resin is a thermoplastic resin.
PCT/JP2017/005755 2016-02-18 2017-02-16 Volatile organic compound adsorbent and resin composition in which volatile organic compound adsorbent is blended WO2017142033A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
SG11201806560RA SG11201806560RA (en) 2016-02-18 2017-02-16 Volatile Organic Compound Adsorbent and Resin Composition blended with the Volatile Organic Compound Adsorbent
MYPI2018702603A MY186075A (en) 2016-02-18 2017-02-16 Volatile organic compound adsorbent and resin composition blended with the volatile organic compound adsorbent
JP2018500202A JP6861200B2 (en) 2016-02-18 2017-02-16 Resin composition containing volatile organic compound adsorbent and volatile organic compound adsorbent
CN201780012226.5A CN108698017B (en) 2016-02-18 2017-02-16 Volatile organic compound adsorbent and resin composition blended with volatile organic compound adsorbent
PH12018501732A PH12018501732A1 (en) 2016-02-18 2018-08-15 Volatile organic compound adsorbent and resin composition blended with the volatile organic compound adsorbent

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016028664 2016-02-18
JP2016-028664 2016-02-18

Publications (1)

Publication Number Publication Date
WO2017142033A1 true WO2017142033A1 (en) 2017-08-24

Family

ID=59626028

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/005755 WO2017142033A1 (en) 2016-02-18 2017-02-16 Volatile organic compound adsorbent and resin composition in which volatile organic compound adsorbent is blended

Country Status (6)

Country Link
JP (1) JP6861200B2 (en)
CN (1) CN108698017B (en)
MY (1) MY186075A (en)
PH (1) PH12018501732A1 (en)
SG (1) SG11201806560RA (en)
WO (1) WO2017142033A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020033242A (en) * 2018-08-31 2020-03-05 水澤化学工業株式会社 Mfi type zeolite excellent in o-xylene adsorptivity and manufacturing method therefor
WO2021015129A1 (en) * 2019-07-25 2021-01-28 東ソー株式会社 Hydrophobic zeolite, method for producing same and use of same
KR102332552B1 (en) * 2021-05-25 2021-12-02 (주)그린에어존 Eco-friendly inorganic coating composition for reducing radon

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58156528A (en) * 1982-03-03 1983-09-17 ユニオン・カ−バイド・コ−ポレ−シヨン Synthesis of high silica zeolite
JPH01171554A (en) * 1987-12-28 1989-07-06 Mizusawa Ind Chem Ltd Deodorant
JPH09253483A (en) * 1996-03-21 1997-09-30 Idemitsu Kosan Co Ltd Adsorbent for cleaning off hydrocarbons in exhaust gas
JP2002069315A (en) * 2000-04-27 2002-03-08 Degussa Ag Colorless plastic releasing little contaminant, packaging material, structure member, decorating object, textile fabric and their products made thereof and master batch for producing the plastic
JP2011157406A (en) * 2010-01-28 2011-08-18 Kuraray Co Ltd Method for suppressing generation of odor component from oxygen-absorbing resin composition
US20150182940A1 (en) * 2013-12-31 2015-07-02 Algenol Biofuels Inc. Compositions, Systems And Methods For Separating Ethanol From Water And Methods Of Making Compositions For Separating Ethanol From Water

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1281495C (en) * 2004-01-19 2006-10-25 复旦大学 Method for preparing Fe-ZSM-5 zeolite microsphere using kieselguhr as raw material
DE102011104006A1 (en) * 2010-12-10 2012-06-14 Süd-Chemie AG Granulated zeolites with high adsorption capacity for the adsorption of organic molecules
CN104148010B (en) * 2013-05-16 2016-06-08 中国石油化工股份有限公司 Binder free height silicon MFI zeolite adsorbents and its preparation method
CN104709923A (en) * 2013-12-14 2015-06-17 上海泉灵信息科技有限公司 Novel technology for direct method synthesis of ZSM-5 molecular sieve
CN104888694A (en) * 2015-05-28 2015-09-09 同济大学 Adsorbing material for efficiently adsorbing indoor formaldehyde and methylbenzene gases

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58156528A (en) * 1982-03-03 1983-09-17 ユニオン・カ−バイド・コ−ポレ−シヨン Synthesis of high silica zeolite
JPH01171554A (en) * 1987-12-28 1989-07-06 Mizusawa Ind Chem Ltd Deodorant
JPH09253483A (en) * 1996-03-21 1997-09-30 Idemitsu Kosan Co Ltd Adsorbent for cleaning off hydrocarbons in exhaust gas
JP2002069315A (en) * 2000-04-27 2002-03-08 Degussa Ag Colorless plastic releasing little contaminant, packaging material, structure member, decorating object, textile fabric and their products made thereof and master batch for producing the plastic
JP2011157406A (en) * 2010-01-28 2011-08-18 Kuraray Co Ltd Method for suppressing generation of odor component from oxygen-absorbing resin composition
US20150182940A1 (en) * 2013-12-31 2015-07-02 Algenol Biofuels Inc. Compositions, Systems And Methods For Separating Ethanol From Water And Methods Of Making Compositions For Separating Ethanol From Water

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
AGUADO,J. ET AL.: "Low temperature synthesis and properties of ZSM-5 aggregates formed by ultra-small nanocrystals", MICROPOROUS AND MESOPOROUS MATERIALS, vol. 75, 2004, pages 41 - 49, XP004587735, DOI: doi:10.1016/j.micromeso.2004.06.027 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020033242A (en) * 2018-08-31 2020-03-05 水澤化学工業株式会社 Mfi type zeolite excellent in o-xylene adsorptivity and manufacturing method therefor
JP7085948B2 (en) 2018-08-31 2022-06-17 水澤化学工業株式会社 MFI-type zeolite with excellent o-xylene adsorption and its manufacturing method
WO2021015129A1 (en) * 2019-07-25 2021-01-28 東ソー株式会社 Hydrophobic zeolite, method for producing same and use of same
KR102332552B1 (en) * 2021-05-25 2021-12-02 (주)그린에어존 Eco-friendly inorganic coating composition for reducing radon

Also Published As

Publication number Publication date
MY186075A (en) 2021-06-18
PH12018501732A1 (en) 2019-06-17
JP6861200B2 (en) 2021-04-21
CN108698017A (en) 2018-10-23
SG11201806560RA (en) 2018-09-27
JPWO2017142033A1 (en) 2018-12-06
CN108698017B (en) 2021-07-27

Similar Documents

Publication Publication Date Title
JP3443428B2 (en) Method for modifying synthetic mesoporous crystalline material
US6762143B2 (en) Catalyst containing microporous zeolite in mesoporous support
US8673253B2 (en) Amorphous silicon-containing material with hierarchical porosity
AU2007267719B2 (en) Hydrothermally stable alumina
JP5386489B2 (en) Silicon-containing crystallized material with hierarchical porosity
WO2017142033A1 (en) Volatile organic compound adsorbent and resin composition in which volatile organic compound adsorbent is blended
US7879311B2 (en) Zeolites with uniform intracrystal textural pores
CA2477713C (en) Preparation of mfi-type crystalline zeolitic aluminosilicate
Ryzhikov et al. Energetic performances of pure silica STF and MTT-type zeolites under high pressure water intrusion
CN107074565B (en) Zeolite material having outstanding macroporosity in single crystal and method for producing same
CN112694101B (en) Core-shell molecular sieve, synthesis method and application thereof
WO2020106836A2 (en) Silica alumina composition with improved stability and method for making same
CN112585090A (en) Method for producing Cu-P co-supported zeolite, catalyst precursor composition and treatment solution that can be used for same, and method for producing layered catalyst
JP2000086236A (en) Acidic activated alumina and its production
CN112930323B (en) Pentasil type zeolite and process for producing the same
AU723919B2 (en) Mesoporous material
JP5679317B2 (en) Method for producing volatile organic compound adsorbent
WO2018221194A1 (en) Cha aluminosilicate and production method therefor, and exhaust gas purification catalyst, exhaust gas purification apparatus and exhaust gas purification method using same
RU2801455C2 (en) Silica-alumina composition with improved stability and method for its production
JP6373173B2 (en) Modified Y-type zeolite dehumidifier
JP7414636B2 (en) Gas adsorbent, method for producing the gas adsorbent, and gas adsorption method
JP7085948B2 (en) MFI-type zeolite with excellent o-xylene adsorption and its manufacturing method
JP2021143078A (en) Hydrophobic mfi zeolite, method for producing the same, and applications thereof
JP6992653B2 (en) Pentacil-type zeolite and its manufacturing method
CN112585091A (en) Cu-P co-supported zeolite, and selective reduction catalyst and exhaust gas catalyst each using same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17753288

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2018500202

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 11201806560R

Country of ref document: SG

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17753288

Country of ref document: EP

Kind code of ref document: A1