WO2017141982A1 - Multi-walled carbon nanotube–containing composition and production method therefor, and production method for single-walled and/or double-walled carbon nanotube–containing composition - Google Patents

Multi-walled carbon nanotube–containing composition and production method therefor, and production method for single-walled and/or double-walled carbon nanotube–containing composition Download PDF

Info

Publication number
WO2017141982A1
WO2017141982A1 PCT/JP2017/005569 JP2017005569W WO2017141982A1 WO 2017141982 A1 WO2017141982 A1 WO 2017141982A1 JP 2017005569 W JP2017005569 W JP 2017005569W WO 2017141982 A1 WO2017141982 A1 WO 2017141982A1
Authority
WO
WIPO (PCT)
Prior art keywords
containing composition
walled
carbon nanotube
group
walled carbon
Prior art date
Application number
PCT/JP2017/005569
Other languages
French (fr)
Japanese (ja)
Inventor
福島 孝典
良晃 庄子
大志 竹延
直樹 今津
大井 亮
Original Assignee
国立大学法人東京工業大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人東京工業大学 filed Critical 国立大学法人東京工業大学
Priority to JP2018500167A priority Critical patent/JP6857364B2/en
Priority to CN201780010179.0A priority patent/CN108778993B/en
Publication of WO2017141982A1 publication Critical patent/WO2017141982A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/20Compounding polymers with additives, e.g. colouring
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/24Conductive material dispersed in non-conductive organic material the conductive material comprising carbon-silicon compounds, carbon or silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables

Definitions

  • the present invention relates to a multi-walled carbon nanotube-containing composition and a method for producing the same.
  • the present invention also relates to a method for producing a single-walled and / or double-walled carbon nanotube-containing composition.
  • Carbon nanotubes are about half as light as aluminum, yet have about 20 times the strength of steel, excellent elasticity, and excellent conductivity, so a wide range R & D is actively promoted in the field. According to the layer structure, it is roughly classified into a single layer (single wall) and a multilayer (multiwall), and the characteristics are different from each other.
  • Single-walled CNTs have a substantially cylindrical shape by rolling one sheet of graphite.
  • Multi-walled CNTs are multi-layered CNTs, and multi-walled CNTs in particular are two-layered CNTs. .
  • CNTs themselves have excellent intrinsic conductivity. Multi-walled CNTs have mechanical strength equivalent to that of diamond, and have excellent conductivity and elasticity.
  • CNT Due to the excellent conductivity of CNT, for example, it is expected to be used for wiring of semiconductor circuits, vias, electrodes for fuel cells, conductive composites, solar cells, secondary battery electrodes, electronic paper, various sensors, etc. .
  • transparent conductors using CNTs are known.
  • the CNT is obtained as a mixture of metallic CNT and semiconducting CNT at the time of synthesis. If semiconducting CNT can be changed to metallic CNT, CNT can be easily used as a conductive material.
  • Non-Patent Document 1 Non-patent documents 2 to 4 will be described later.
  • the present invention has been made in view of the above background, and a first object of the present invention is to provide a multi-walled carbon nanotube-containing composition having excellent electrical conductivity and excellent temporal stability of conductive properties, and a method for producing the same.
  • the second object is to provide a method for producing a single-walled and / or double-walled carbon nanotube-containing composition capable of producing a carbon nanotube-containing composition that is excellent in conductivity and resistance value stability in a high-temperature environment. Is to provide.
  • a method for producing a multi-walled carbon nanotube-containing composition comprising a contact step of contacting a carbon nanotube with a two-coordinate boron cation salt, wherein the total number of the carbon nanotubes is 100%.
  • a method for producing a multi-walled carbon nanotube-containing composition containing 35% or more of three or more layers of carbon nanotubes.
  • the two-coordinate boron cation is represented by the following general formula (1) [Wherein R 1 and R 2 are each independently a phenyl group, a mesityl group, a 1,5-dimethylphenyl group, a 1,3,5-triisopropylphenyl group, a 1,5-diisopropylphenyl group, 1, It is a compound selected from the group consisting of 3,5-tris (trifluoromethyl) phenyl group and 1,5-bis (trifluoromethyl) phenyl group. ] [1] The method for producing a multi-walled carbon nanotube-containing composition according to [1].
  • the counter anion of the two-coordinate boron cation salt includes at least one of a fluorine-based anion and a carborane derivative, and the fluorine-based anion includes BF 4 ⁇ , PF 6 ⁇ , TFSI, tetraphenylborate, tetrakis It is at least one selected from the group consisting of (pentafluorophenyl) borate, and the carborane derivative is monocarbacrode decaborate (HCB 11 H 11 ⁇ ), monocarba crosound decachlorododecaborate ( The method for producing a multi-walled carbon nanotube-containing composition according to [1] or [2], which is at least one selected from the group consisting of HCB 11 Cl 11 ⁇ ).
  • the contact step includes (i) coating the carbon nanotube on a substrate, and contacting the obtained coating film and the two-coordinate boron cation salt, (ii) the carbon nanotube and the (Iii) including at least one selected from the step of mixing the carbon nanotube powder and the powder of the bicoordinate boron cation salt [1] to [3]
  • the method for producing a multi-walled carbon nanotube-containing composition according to any one of [3].
  • It includes multi-walled carbon nanotubes and a counter anion of a two-coordinate boron cation salt, and the multi-walled carbon nanotubes have 35% or more of three or more layers of carbon nanotubes when the total number of carbon nanotubes is 100%.
  • the counter anion includes at least one of a fluorine-based anion and a carborane derivative
  • the fluorine-based anion is selected from the group consisting of BF 4 ⁇ , PF 6 ⁇ , TFSI, tetraphenyl borate, and tetrakis (pentafluorophenyl) borate.
  • the carborane derivative is selected from the group consisting of monocarbacrode decaborate (HCB 11 H 11 ⁇ ) and monocarbacrosoundecachlorododecaborate (HCB 11 Cl 11 ⁇ ).
  • a composition comprising at least one multi-walled carbon nanotube.
  • the two-coordinate boron cation is represented by the following general formula (1): [Wherein R 1 and R 2 are each independently a phenyl group, a mesityl group, a 1,5-dimethylphenyl group, a 1,3,5-triisopropylphenyl group, a 1,5-diisopropylphenyl group, 1, It is a compound selected from the group consisting of 3,5-tris (trifluoromethyl) phenyl group and 1,5-bis (trifluoromethyl) phenyl group. ] [7] The method for producing a single-walled and / or double-walled carbon nanotube-containing composition according to [7].
  • the counter anion of the two-coordinate boron cation salt includes at least one of a fluorine-based anion and a carborane derivative
  • the fluorine-based anion is at least one selected from the group consisting of BF 4 ⁇ , PF 6 ⁇ , TFSI, tetraphenyl borate, tetrakis (pentafluorophenyl) borate
  • the carborane derivative is at least one selected from the group consisting of monocarbar crosode decaborate (HCB 11 H 11 ⁇ ) and mono carb crosound undecachloro dodecaborate (HCB 11 Cl 11 ⁇ ) [ [7]
  • a method for producing a single-walled and / or double-walled carbon nanotube-containing composition according to [8].
  • the contact step includes (I) coating the single-walled and / or double-walled carbon nanotube-containing material on a substrate, and coating the obtained bicoordinate boron cation salt on the resulting coating film [7]
  • the present invention it is possible to provide a carbon nanotube-containing composition that is excellent in electrical conductivity and stability over time of conductive characteristics, and has an excellent effect. Further, it is possible to provide a method for producing a doped single-walled and / or double-walled carbon nanotube-containing composition capable of producing a CNT-containing composition that is excellent in conductivity and resistance value stability in a high-temperature environment. It has the effect.
  • Et 3 Si + [(C 6 F 5) 4 B] shows the chemical formula of one mesitylene adduct.
  • Mes 2 B + is a diagram showing a [(C 6 F 5) 4 B] one formula.
  • the method for producing a multi-walled carbon nanotube-containing composition according to the first embodiment includes a contacting step in which a multi-coordinate boron cation salt is brought into contact with the multi-walled carbon nanotube.
  • the multi-walled carbon nanotube according to the first embodiment includes 35% or more of multi-walled carbon nanotubes of three or more layers, where the total number of carbon nanotubes is 100%.
  • the carbon nanotube may be abbreviated as CNT.
  • CNTs are broadly classified into single layers (single wall) and multilayers (multiwall) according to the layer structure.
  • a multilayer CNT containing 35% or more of CNT is used.
  • Such multilayer CNTs can be produced by a gas phase flow method, an arc discharge method, a catalyst-supported vapor phase growth method, or the like.
  • Commercially available multilayer CNTs may be used.
  • VGCF-H registered trademark, manufactured by Showa Denko KK
  • the ratio of three or more layers in the multi-walled CNT was determined as follows. That is, a coating film of a multilayer CNT-containing composition is formed, and this is directly observed with a transmission electron microscope. Single-layer, double-layer, and three-layer or more CNTs in a certain region (region where at least 100 can be observed) The ratio of the number of CNTs having three or more layers to the above was determined. In the case of a composition in which the multilayer CNT-containing composition is dispersed or dissolved in a solvent, it is appropriately diluted, formed a coating film, removed the solvent, and then directly observed with a transmission electron microscope. Similarly, the ratio of the number of CNTs having three or more layers was determined. At this time, the solvent may be substituted if necessary. Moreover, you may observe using a high-resolution transmission electron microscope. Other components contained in the CNT-containing composition may be measured without being removed or removed during the measurement.
  • the bi-coordinate boron cation salt is added as a doping agent to the multilayer CNT.
  • the two-coordinate boron cation in the two-coordinate boron cation salt functions as a strong oxidant. That is, when the bi-coordinate boron cation salt is brought into contact with the multilayer CNT, the bi-coordinate boron cation of the bi-coordinate boron cation salt functions as an oxidizing agent for the multi-wall CNT, and holes are formed in the multi-wall CNT. Thereby, the electroconductivity of multilayer CNT can be improved. Further, the counter anion of the bicoordinate boron cation salt is present as an anion counter around the multilayer CNT in which holes are formed. As a result, it is possible to improve the temporal stability of the conductive properties of the multilayer CNT.
  • the 2-coordinate boron cation is not particularly limited, preferred examples of the coordination group of the 2-coordinate boron cation include a phenyl group, a mesityl group (1,3,5-trimethylphenyl group), 1,5- Dimethylphenyl group, 1,3,5-triisopropylphenyl group, 1,5-diisopropylphenyl group, 1,3,5-tris (trifluoromethyl) phenyl group, 1,5-bis (trifluoromethyl) phenyl group A group having at least one selected from the group consisting of
  • R 1 and R 2 are each independently a phenyl group, mesityl group, 1,5-dimethylphenyl group, 1,3,5-triisopropylphenyl group, 1,5-diisopropylphenyl group, 1,3 , 5-tris (trifluoromethyl) phenyl group and 1,5-bis (trifluoromethyl) phenyl group.
  • the counter anion that forms a salt with the bicoordinate boron cation is preferably at least one of a fluorine-based anion and a carborane derivative.
  • a fluorine-based anion include at least one selected from the group consisting of BF 4 ⁇ , PF 6 ⁇ , TFSI, tetraphenyl borate, and tetrakis (pentafluorophenyl) borate.
  • the carborane derivative include at least one selected from the group consisting of monocarbar crosode decaborate (HCB 11 H 11 ⁇ ) and mono carber crosound undecachloro dodecaborate (HCB 11 Cl 11 ⁇ ). it can.
  • the solvent for dissolving the 2-coordinate boron cation salt a solvent that does not react with the boron cation is used.
  • nonpolar solvents such as orthodichlorobenzene, 1,2,4-trichlorobenzene and mesitylene are preferred.
  • the bicoordinate boron cation salt can be synthesized, for example, using the methods of Non-Patent Documents 1 to 3.
  • a dimesitylborinium ion Mes 2 B + (HCB 11 Cl 11 ⁇ ) having a monocarburose undecachlorododecaborate represented by the formula (2) as a counter anion can be synthesized by the following method. .
  • the dimesitylborinium ion Mes 2 B + [(C 6 F 5 ) 4 B ⁇ ] having tetrakis (pentafluorophenyl) borate as a counter anion is Mes 2 B + (HCB 11 Cl 11 ⁇ ).
  • Mes 2 B + [(C 6 F 5 ) 4 B ⁇ ] is obtained as colorless transparent crystals.
  • the method for producing a multilayer CNT-containing composition of the first embodiment includes a contact step in which a bi-coordinate boron cation salt is brought into contact with the multilayer CNT.
  • the contacting step may be any method as long as the multi-walled CNT can be oxidized with the bi-coordinated boron cation and the counter-anion of the bi-coordinated boron cation salt can remain in the multi-walled CNT.
  • Preferred examples include (i) to (iii) below.
  • a multilayer CNT is coated on a substrate, and the obtained coating film is brought into contact with a two-coordinate boron cation salt.
  • Multilayer CNT and a bicoordinate boron cation salt are mixed in a solvent.
  • a multilayer CNT powder and a bicoordinate boron cation salt powder are mixed. These steps are used alone or in combination.
  • a method of the above (i) that is, a method of contacting a bicoordinate boron cation salt with a coating film of multi-layer CNT, a method such as a spin coating method, a dip coating method, an ink jet method, a printing method, a spray method, a dispenser method, etc. Can be illustrated. These coating methods may be used in combination.
  • a multi-walled CNT-containing composition not containing a bi-coordinated boron cation (in this specification, also referred to as a multi-walled CNT-containing composition before doping) or a multi-walled CNT is prepared, dissolved in a good solvent, and spin-coated.
  • a coating film is obtained on a substrate using a method or the like.
  • a solution of a bicoordinate boron cation salt for example, a saturated solution of orthocyclobenzene
  • the substrate with a coating film is immersed in the solution (for example, 1 minute).
  • the bicoordinate boron cation functions as a strong oxidant, and holes are formed in the multilayer CNT.
  • the counter anion of the bicoordinate boron cation salt functions as a counter anion of the multilayer CNT.
  • the bicoordinate boron cation used as the oxidant is removed along with the solution. You may add a washing
  • the base material used for the coating film is appropriately selected from glass and resin according to the purpose and needs. When mechanical strength and transparency are required, glass is suitable, and (meth) acrylate resin and the like are suitable for applications that require transparency.
  • a base material is comprised from a single or several laminated body.
  • the following method can be exemplified as the method of (ii) above, that is, the method of contacting by mixing in a solvent.
  • a commercially available product such as VGCF-H (registered trademark, manufactured by Showa Denko) is prepared and dissolved in a good solvent.
  • the solvent include orthodichlorobenzene.
  • a bicoordinate boron cation salt is added thereto and mixed.
  • the doping concentration is not particularly limited, but is, for example, 0.01 to 30 mM.
  • a multilayer CNT-containing composition doped with a counter-anion of a bicoordinate boron cation salt is obtained.
  • the obtained multilayer CNT-containing composition can be formed into a film by coating, or can be molded by injection molding, extrusion molding, or sheet molding.
  • the above method (iii), that is, the method of mixing the powder of the multilayer CNT and the powder of the two-coordinate boron cation salt may be uniformly mixed using a mixer.
  • the bicoordinate boron cation oxidizes the multi-walled CNT and remains as a neutral compound, but does not affect the conductivity and stability over time. If a step of dissolving in a solvent is performed at the time of thin film formation or the like, most of it is removed.
  • the multilayer CNT powder and the powder of the two-coordinate boron cation salt to be used may be subjected to an airflow pulverization treatment or the like as necessary.
  • multilayer CNT and the counter-anion of the two-coordinate boron cation salt other compounds can be added to the multilayer CNT-containing composition.
  • Other compounds can be appropriately selected according to the purpose and needs. Suitable examples include resins and carbon fibers other than multilayer CNTs (for example, carbon black, ketjen black, milled carbon fiber). Further, a dispersant, an antifoaming agent, a plasticizer, an antioxidant, a binder, and the like may be added.
  • the resin include a thermoplastic resin and a thermosetting resin containing a curable compound. Photosensitive resins and conductive resins are also preferably used.
  • Preferable examples include a composite material composed of a multilayer CNT-containing composition comprising a thermoplastic resin, a multilayer CNT, a counter-anion of a two-coordinate boron cation salt, a conductive polymer, a multilayer CNT, and a pair of two-coordinate boron cation salts.
  • the composite material which consists of a multilayer CNT containing composition containing an anion is mentioned.
  • Thermoplastic resins include polystyrene, styrene / acrylonitrile copolymers, styrene / maleic anhydride copolymers, styrene (co) polymers such as (meth) acrylic acid ester / styrene copolymers; ABS resins, AES resins Rubber-reinforced resin such as ASA resin, MBS resin, HIPS resin; ⁇ -olefin (co) heavy comprising at least one ⁇ -olefin having 2 to 10 carbon atoms such as polyethylene, polypropylene, ethylene / propylene copolymer, etc.
  • Olefin resins such as polymers and modified polymers thereof (chlorinated polyethylene, etc.), cyclic olefins (eg, norbornene) copolymers; ionomers such as polyacrylic acid, ethylene / vinyl acetate copolymers, ethylene / vinyl alcohol copolymers Ethylene copolymers such as polyvinyl chloride, ethylene / vinyl chloride Nyl polymer, vinyl chloride resin such as polyvinylidene chloride; (co) polymer acrylic resin using one or more (meth) acrylic acid esters such as polymethyl methacrylate (PMMA); polyamide 6, polyamide Polyamide resins (PA) such as 6,6 polyamide 612: Polyester resins such as polycarbonate (PC), polyethylene terephthalate (PET), polybutylene phthalate (PBT), polyethylene naphthalate: polyacetal resin (POM), polyphenylene ether ( PPE), polyarylate resin; fluororesin such as polytetra
  • thermoplastic resins ABS resin, AES resin, ASA resin, AS resin, MBS resin, HIPS resin, polyethylene, polypropylene, polycarbonate (PC), polyphenylene ether (PPE), and polyamide (PA) are preferable. These can be used alone or in combination of two or more.
  • the thermoplastic resin composition in the first embodiment may contain other elastomer components.
  • Elastomers used to improve impact properties include olefin elastomers such as EPR and EPDM, styrene elastomers such as SBR made of a copolymer of styrene and butadiene, silicone elastomers, nitrile elastomers, and butadiene elastomers.
  • Urethane elastomers polyamide elastomers, ester elastomers, fluorine elastomers, natural rubbers, and modified products in which reaction sites (double bonds, carboxylic acid anhydride groups, etc.) are introduced into these elastomers can be used.
  • a conductive polymer can be used as the resin, and the conductive characteristics can be expressed by the synergistic effect of the multilayer CNT and the conductive polymer.
  • Resin and multilayer CNT content ratio can be designed as appropriate according to needs.
  • the content of the multilayer CNT with respect to the resin is, for example, 0.1 to 95% by mass.
  • multi-layer CNT by doping bi-coordinate boron cation salt into multi-layer CNT, multi-layer CNT can be oxidized by bi-coordinate boron cation of bi-coordinate boron cation salt, and holes can be formed in multi-layer CNT. . For this reason, a conductive characteristic can be improved. Further, the stable counter anion of the bicoordinate boron cation salt remains around the multi-walled CNT in which holes are formed, so that thermal stability and environmental resistance can be improved.
  • An electrode material is suitable for the use of the multilayer CNT-containing composition. Further, it is useful for a semiconductor layer such as a thin film transistor substrate. It is also useful for a wide range of applications such as sensors, actuators, building materials, paints, CNT paper, and medical equipment.
  • single-layer and / or double-wall CNTs are used instead of the multi-layer CNTs defined in the first embodiment.
  • “single-layer and / or double-walled CNT-containing material” means a total of a plurality of CNTs.
  • the existence form is not particularly limited. For example, they may exist independently, in a bundle form, in an intertwined form, or a mixed form thereof.
  • the CNT-containing material and the CNT are substantially the same, and in this embodiment, the CNT-containing material may be simply referred to as CNT.
  • 1st Embodiment and / or 2nd Embodiment and 2 coordination boron cation salt, an additive, a manufacturing method, etc. are applicable similarly except the point from which a composition of CNT differs.
  • the “single-layer and / or double-walled CNT-containing material” refers to one containing 70% or more of single-walled CNT and / or double-walled CNT out of the total number of CNTs.
  • Single-walled CNTs are CNTs in which one surface of graphite is wound in one layer, and including 70% or more means that 70 or more of 100 CNTs are single-walled CNTs.
  • the two-layer CNT is a CNT obtained by winding one surface of graphite into two layers, and including 70% or more means that 70 or more out of 100 CNTs are two-layer CNTs.
  • single-walled CNTs and / or double-walled CNTs When 70% or more of single-walled CNTs and / or double-walled CNTs are included in the total number of CNTs, the conductivity of the CNTs becomes extremely high. More preferably, 75 or more of 100 are included, and most preferably 80 or more of 100 are included. In general, single-walled CNTs and / or double-walled CNTs have higher crystallinity, smaller diameter, and more contact points per unit amount of CNT in the conductive layer than multi-walled CNTs of three or more layers. The conductivity tends to be high.
  • the number of CNT layers can be measured, for example, by preparing a sample as follows.
  • the CNT is a composition dispersed in a solvent such as a liquid
  • the solvent is an aqueous system
  • the CNT-containing material is appropriately diluted with water to a concentration that can be easily seen, and is dropped by several ⁇ L onto the collodion film and air-dried. Thereafter, the CNT-containing material on the collodion film is directly examined with a transmission electron microscope image.
  • the solvent when the solvent is non-aqueous, after removing the solvent by drying once, it is dispersed again in water, diluted as appropriate, dropped several ⁇ L onto the collodion film, air-dried, and a transmission electron microscope image is obtained. Observe. Further, when the CNT-containing material is not dispersed in the solvent, for example, the CNT-containing material can be extracted with a solvent and similarly observed with a high-resolution transmission electron microscope.
  • the monolayer and / or bilayer CNT-containing material may contain catalyst particles and a dispersant.
  • the “single-layer and / or two-layer CNT-containing composition” contains a single-layer and / or two-layer CNT-containing material and at least a counter anion of a two-coordinate boron cation salt. That is, the single-layer and / or double-walled CNT-containing composition refers to a composition containing at least a doping component in the single-layer and / or double-walled CNT-containing material.
  • the bicoordinate boron cation is represented by the following general formula (1), as in the first embodiment.
  • R 1 and R 2 are compounds selected from the same group as in the first embodiment.
  • the counter anion of the two-coordinate boron cation salt can be exemplified by the same compounds as in the first embodiment.
  • the bicoordinate boron cation salt As the bicoordinate boron cation salt, the above bicoordinate boron cation and a counter anion are used in combination. Among these, a combination of mesityl group (1,3,5-trimethylphenyl group) and tetrakis (pentafluorophenyl) borate is particularly preferable.
  • the solvent used when dissolving the 2-coordinate boron cation salt is not particularly limited.
  • the method for bringing the monolayer and / or bilayer CNT-containing material into contact with the bicoordinate boron cation salt is not particularly limited.
  • coating a bicoordinate boron cation salt with respect to the obtained coating film can be illustrated.
  • a solvent is appropriately used. Resin, glass, etc. can be illustrated as a raw material of the base material used for 2nd Embodiment.
  • polyesters such as polyethylene terephthalate (PET) and polyethylene naphthalate (PEN), polycarbonate (PC), polymethyl methacrylate (PMMA), polyimide, polyphenylene sulfide, aramid, polypropylene, polyethylene, polylactic acid, polyvinyl chloride, Polymethyl methacrylate, alicyclic acrylic resin, cycloolefin resin, triacetyl cellulose, and the like can be used.
  • PET polyethylene terephthalate
  • PEN polyethylene naphthalate
  • PC polycarbonate
  • PMMA polymethyl methacrylate
  • polyimide polyphenylene sulfide
  • aramid polypropylene
  • polyethylene polylactic acid
  • polyvinyl chloride Polymethyl methacrylate
  • alicyclic acrylic resin cycloolefin resin
  • triacetyl cellulose triacetyl cellulose, and the like
  • glass ordinary soda glass can be used.
  • these several base materials can also be
  • the method for applying the single-layer and / or double-layer CNT-containing material on the substrate is not particularly limited, and known application methods such as spray coating, dip coating, spin coating, knife coating, kiss coating, gravure coating, slot die Coating, screen printing, inkjet printing, pad printing, other main types of printing, roll coating, and the like can be used.
  • coating may be performed in multiple times and you may combine two different types of application
  • the method for applying the bicoordinate boron cation salt onto the monolayer and / or the bilayer CNT-containing material is not particularly limited, and known application methods such as spray coating, dip coating, spin coating, screen printing, inkjet printing, pad Printing, printing of other main types, roll coating, or the like can be used. Moreover, application
  • the single layer and / or double layer CNT-containing composition of the second embodiment can be preferably used as an electrode material.
  • the “mixed CNT-containing composition” according to the third embodiment is defined in any definition of the multilayer CNT-containing composition according to the first embodiment and the single-layer and / or double-wall CNT-containing composition according to the second embodiment. It is defined to refer to a CNT-containing composition that is not included. That is, out of the total number of CNTs, the multi-layer CNTs according to the first embodiment are more than 30% and less than 35%, and the single-layer and / or two-layer CNTs according to the second embodiment are more than 65% and less than 70%. It refers to a certain CNT-containing composition.
  • an electrode material is suitable. Further, it is useful for a semiconductor layer such as a thin film transistor substrate. It is also useful for a wide range of applications such as sensors, actuators, building materials, paints, CNT paper, and medical equipment.
  • the measurement method used in this example is shown below.
  • (1) Measuring method of the number of CNT layers Several microliters of CNTs were dropped on a collodion film and air-dried, and then observed with a transmission electron microscope at a magnification of 400,000 times. The number of layers was measured for 100 CNTs arbitrarily extracted from a visual field in which 10% or more of the visual field area was CNT in a 75 nm square visual field. When 100 lines could not be measured in one field of view, measurements were made from a plurality of fields until 100 lines were obtained. At this time, one CNT was counted as one if some CNTs were visible in the field of view. In addition, even if it is recognized as two in the field of view, it may be connected outside the field of view and become one, but in that case, it was counted as two.
  • the temperature and humidity in the small environmental tester are 80 ° C, the stable resistance between terminals after holding for 120 hours at a temperature of 80 ° C and humidity of 30% RH monitored by a temperature and humidity probe (Nippon Shintech, NS-04AP).
  • the inter-terminal resistance value [B] was 30% humidity.
  • Ni (10 nm) and Au (100 nm) were sequentially deposited on a glass substrate (15 mm ⁇ 15 mm ⁇ 1 mm) using a metal mask.
  • An electron beam deposition method was used for Ni deposition, and a low resistance heating deposition method was used for Au deposition.
  • CNT conductive layer formation example 1 Two-layer CNT (Toray Industries, Inc., diameter 1.7 nm) was used. The two-layer CNT ratio determined according to the method for measuring the number of CNT layers was 90%. Ultrasonic dispersion treatment was performed using a dispersant in water. The dispersion was applied to a glass substrate with a gold electrode by subbing to obtain a CNT conductive layer.
  • a colorless transparent crystal was precipitated by introducing hexane vapor into the obtained reaction mixture by vapor diffusion.
  • the crystals are collected by filtration and washed with dry hexane to give a dimesitylborinium ion (Mes 2 B + [(C 6 F 5 ) 4 B) having tetrakis (pentafluorophenyl) porate as a counter anion. ] - ) (See FIG. 2) was obtained as colorless transparent crystals in a yield of 92%.
  • Example 1 DWCNT / 2-coordinated boron cation salt
  • the conductive layer formed in accordance with CNT conductive layer formation example 1 was treated in accordance with a 2-coordinated boron cation salt coating (dimethylpolynium ion). Thereafter, the resistance value [A] between terminals at 25 ° C. and a humidity of 30% RH and the resistance value [B] between terminals at a temperature of 80 ° C. and a humidity of 30% RH were measured. The measurement results are shown in Table 1 below.
  • Example 2 SWCNT / 2-coordinated boron cation salt
  • the conductive layer formed according to CNT conductive layer formation example 2 was treated according to the application of 2-coordinated boron cation salt (dimethylborinium ion). Thereafter, the resistance value [A] between terminals at 25 ° C. and a humidity of 30% RH and the resistance value [B] between terminals at a temperature of 80 ° C. and a humidity of 30% RH were measured. The measurement results are shown in Table 1 below.
  • the inter-terminal resistance value [B] of Example 1 at 80 ° C. and a humidity of 30% RH is smaller than the inter-terminal resistance value [B] of Comparative Example 1 at 80 ° C. and a humidity of 30% RH.
  • the resistance value change rate [B] / [A] of Example 1 is smaller than the resistance value change rate [B] / [A] of Comparative Examples 1 and 2.
  • the resistance value [B] between terminals at 80 ° C. and a humidity of 30% RH in Example 2 is smaller than the resistance value [B] between terminals at 80 ° C.
  • the multilayer CNT-containing composition according to the present invention is suitable for a wide range of applications such as electrode materials, semiconductor layers such as thin film transistor substrates, sensors, actuators, building materials, paints, CNT paper, and medical equipment.
  • the single-layer and / or double-layer CNT-containing composition is suitable for use in electronic materials including electrode materials.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Materials Engineering (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Physics & Mathematics (AREA)
  • Dispersion Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Laminated Bodies (AREA)
  • Conductive Materials (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)

Abstract

Provided are a multi-walled CNT–containing composition that has excellent conductivity and excellent stability of the conductive properties over time, and a production method therefor. Additionally provided is a production method for a doped single-walled and/or double-walled CNT–containing composition whereby it is possible to produce a CNT–containing composition having excellent conductivity and resistance stability in a high temperature environment. The production method for the multi-walled CNT–containing composition includes a contact step for bringing a 2-coordinate boron cation salt into contact with multi-walled carbon nanotubes comprising at least 35% carbon nanotubes having three or more layers, with 100% being the total number of carbon nanotubes.

Description

多層カーボンナノチューブ含有組成物およびその製造方法、並びに単層および/又は2層カーボンナノチューブ含有組成物の製造方法Multi-walled carbon nanotube-containing composition and method for producing the same, and method for producing single-walled and / or double-walled carbon nanotube-containing composition
 本発明は、多層カーボンナノチューブ含有組成物およびその製造方法に関する。また、単層および/又は2層カーボンナノチューブ含有組成物の製造方法に関する。 The present invention relates to a multi-walled carbon nanotube-containing composition and a method for producing the same. The present invention also relates to a method for producing a single-walled and / or double-walled carbon nanotube-containing composition.
 カーボンナノチューブ(以下、CNTともいう)は、アルミニウムの凡そ1/2の軽さでありながら鋼鉄の約20倍の強度と、優れた弾力性を有し、導電性にも優れることから、広範な分野で精力的に研究開発がすすめられている。その層構造により、単層(シングルウオール)と多層(マルチウオール)とに大別され、互いに特性が異なる。単層CNTは、実質的にグラファイトの1枚面を巻いて筒状にした形状を有し、多層CNTは多層巻いたものをいい、多層CNTのうち特に2層巻いたものを2層CNTという。CNTは、それ自体が優れた真性の導電性を有する。多層CNTは、ダイヤモンドと同等の機械的強度を有し、導電性、弾性に優れた特性を有する。 Carbon nanotubes (hereinafter also referred to as CNTs) are about half as light as aluminum, yet have about 20 times the strength of steel, excellent elasticity, and excellent conductivity, so a wide range R & D is actively promoted in the field. According to the layer structure, it is roughly classified into a single layer (single wall) and a multilayer (multiwall), and the characteristics are different from each other. Single-walled CNTs have a substantially cylindrical shape by rolling one sheet of graphite. Multi-walled CNTs are multi-layered CNTs, and multi-walled CNTs in particular are two-layered CNTs. . CNTs themselves have excellent intrinsic conductivity. Multi-walled CNTs have mechanical strength equivalent to that of diamond, and have excellent conductivity and elasticity.
 CNTの優れた導電性から、例えば、半導体回路の配線、ビア、燃料電池用電極、導電性複合体、太陽電池、二次電池の電極、電子ペーパー、各種センサー等への利用が期待されている。また、CNTを用いた透明導電体が知られている。CNTは、合成時に金属性を有するCNTと半導体性を有するCNTとの混合物として得られる。半導体性のCNTを金属性のCNTに変化させることができれば、CNTを導電性材料として容易に利用することが可能となる。 Due to the excellent conductivity of CNT, for example, it is expected to be used for wiring of semiconductor circuits, vias, electrodes for fuel cells, conductive composites, solar cells, secondary battery electrodes, electronic paper, various sensors, etc. . In addition, transparent conductors using CNTs are known. The CNT is obtained as a mixture of metallic CNT and semiconducting CNT at the time of synthesis. If semiconducting CNT can be changed to metallic CNT, CNT can be easily used as a conductive material.
 このような背景から、ドーピングによって半導体性のCNTを金属性のCNTに変化させる方法が提案されている。具体的には、CNTに硝酸をドーピングすることによってCNTの伝導度を改善する方法が開示されている(非特許文献1)。なお、非特許文献2~4については後述する。 From such a background, a method of changing semiconducting CNTs to metallic CNTs by doping has been proposed. Specifically, a method for improving the conductivity of CNTs by doping nitric acid into CNTs is disclosed (Non-Patent Document 1). Non-patent documents 2 to 4 will be described later.
 しかしながら、ドーピング効果を経時的に持続させることが難しいという問題がある。 However, there is a problem that it is difficult to maintain the doping effect over time.
 本発明は、上記背景に鑑みて成されたものであり、その第一の目的は、良好な導電性および導電特性の経時的安定性に優れる多層カーボンナノチューブ含有組成物およびその製造方法を提供することであり、その第2の目的は、高温環境下での導電性および抵抗値安定性に優れるカーボンナノチューブ含有組成物を製造可能な単層および/又は2層カーボンナノチューブ含有組成物の製造方法を提供することである。 The present invention has been made in view of the above background, and a first object of the present invention is to provide a multi-walled carbon nanotube-containing composition having excellent electrical conductivity and excellent temporal stability of conductive properties, and a method for producing the same. The second object is to provide a method for producing a single-walled and / or double-walled carbon nanotube-containing composition capable of producing a carbon nanotube-containing composition that is excellent in conductivity and resistance value stability in a high-temperature environment. Is to provide.
 本発明者らが鋭意検討を重ねたところ、以下の態様において、本発明の課題を解決し得ることを見出し、本発明を完成するに至った。 As a result of extensive studies by the present inventors, it has been found that the problems of the present invention can be solved in the following modes, and the present invention has been completed.
[1]: 多層カーボンナノチューブ含有組成物の製造方法であって、カーボンナノチューブに、2配位ホウ素カチオン塩と接触させる接触工程を含み、前記カーボンナノチューブは、当該カーボンナノチューブの総数を100%としたときに、3層以上のカーボンナノチューブを35%以上含む多層カーボンナノチューブ含有組成物の製造方法。
[2]: 前記2配位ホウ素カチオンが、下記一般式(1)
Figure JPOXMLDOC01-appb-C000003
[式中、R,Rは、其々独立にフェニル基、メシチル基、1,5-ジメチルフェニル基、1,3,5-トリイソプロピルフェニル基、1,5-ジイソプロピルフェニル基、1,3,5-トリス(トリフルオロメチル)フェニル基および1,5-ビス(トリフルオロメチル)フェニル基からなる群より選択される化合物である。]
で表される[1]に記載の多層カーボンナノチューブ含有組成物の製造方法。
[3]: 前記2配位ホウ素カチオン塩の対アニオンが、フッ素系アニオンおよびカルボラン誘導体の少なくとも一方を含み、前記フッ素系アニオンは、BF 、PF 、TFSI、テトラフェニルボラート、テトラキス(ペンタフルオロフェニル)ボラートからなる群より選択される少なくとも一つであり、前記カルボラン誘導体は、モノカルバークロソードデカボラート(HCB1111 )、モノカルバークロソーウンデカクロロドデカボラート(HCB11Cl11 )からなる群より選択される少なくとも一つである[1]又は[2]に記載の多層カーボンナノチューブ含有組成物の製造方法。
[4]: 前記接触工程は、(i)基材上に前記カーボンナノチューブを塗工し、得られた塗工膜と前記2配位ホウ素カチオン塩を接触する、(ii)前記カーボンナノチューブと前記2配位ホウ素カチオン塩を溶媒中で混合する、(iii)前記カーボンナノチューブの粉体と前記2配位ホウ素カチオン塩の粉体を混合する工程から選択される少なくともいずれかを含む[1]~[3]のいずれかに記載の多層カーボンナノチューブ含有組成物の製造方法。
[5]: 多層カーボンナノチューブと、2配位ホウ素カチオン塩の対アニオンとを含み、前記多層カーボンナノチューブは、カーボンナノチューブの総数を100%としたときに、3層以上のカーボンナノチューブを35%以上含み、
 前記対アニオンは、フッ素系アニオンおよびカルボラン誘導体の少なくとも一方を含み、前記フッ素系アニオンは、BF 、PF 、TFSI、テトラフェニルボラート、テトラキス(ペンタフルオロフェニル)ボラートからなる群より選択される少なくとも一つであり、前記カルボラン誘導体は、モノカルバークロソードデカボラート(HCB1111 )、モノカルバークロソーウンデカクロロドデカボラート(HCB11Cl11 )からなる群より選択される少なくとも一つである多層カーボンナノチューブ含有組成物。
[6]: さらに、樹脂を含有してなる[5]に記載の多層カーボンナノチューブ含有組成物。
[7]: 単層および/又は2層カーボンナノチューブ含有組成物の製造方法であって、
 カーボンナノチューブの総数を100%としたときに、単層カーボンナノチューブおよび/又は2層カーボンナノチューブを70%以上含む単層および/又は2層カーボンナノチューブ含有物に、2配位ホウ素カチオン塩と接触させる接触工程を含み、
単層および/又は2層カーボンナノチューブ含有組成物の製造方法。
[8]: 前記2配位ホウ素カチオンが、下記一般式(1)
Figure JPOXMLDOC01-appb-C000004
[式中、R,Rは、其々独立にフェニル基、メシチル基、1,5-ジメチルフェニル基、1,3,5-トリイソプロピルフェニル基、1,5-ジイソプロピルフェニル基、1,3,5-トリス(トリフルオロメチル)フェニル基および1,5-ビス(トリフルオロメチル)フェニル基からなる群より選択される化合物である。]
で表される[7]に記載の単層および/又は2層カーボンナノチューブ含有組成物の製造方法。
[9]: 前記2配位ホウ素カチオン塩の対アニオンが、フッ素系アニオンおよびカルボラン誘導体の少なくとも一方を含み、
 前記フッ素系アニオンは、BF 、PF 、TFSI、テトラフェニルボラート、テトラキス(ペンタフルオロフェニル)ボラートからなる群より選択される少なくとも一つであり、
 前記カルボラン誘導体は、モノカルバークロソードデカボラート(HCB1111 )、モノカルバークロソーウンデカクロロドデカボラート(HCB11Cl11 )からなる群より選択される少なくとも一つである[7]又は[8]に記載の単層および/又は2層カーボンナノチューブ含有組成物の製造方法。
[10]: 前記接触工程は、
(i)基材の上に前記単層および/又は2層カーボンナノチューブ含有物を塗工し、得られた塗工膜上に、前記2配位ホウ素カチオン塩を塗布する工程を含む[7]~[9]のいずれかに記載の単層および/又は2層カーボンナノチューブ含有組成物の製造方法。
[1]: A method for producing a multi-walled carbon nanotube-containing composition, comprising a contact step of contacting a carbon nanotube with a two-coordinate boron cation salt, wherein the total number of the carbon nanotubes is 100%. Sometimes, a method for producing a multi-walled carbon nanotube-containing composition containing 35% or more of three or more layers of carbon nanotubes.
[2]: The two-coordinate boron cation is represented by the following general formula (1)
Figure JPOXMLDOC01-appb-C000003
[Wherein R 1 and R 2 are each independently a phenyl group, a mesityl group, a 1,5-dimethylphenyl group, a 1,3,5-triisopropylphenyl group, a 1,5-diisopropylphenyl group, 1, It is a compound selected from the group consisting of 3,5-tris (trifluoromethyl) phenyl group and 1,5-bis (trifluoromethyl) phenyl group. ]
[1] The method for producing a multi-walled carbon nanotube-containing composition according to [1].
[3]: The counter anion of the two-coordinate boron cation salt includes at least one of a fluorine-based anion and a carborane derivative, and the fluorine-based anion includes BF 4 , PF 6 , TFSI, tetraphenylborate, tetrakis It is at least one selected from the group consisting of (pentafluorophenyl) borate, and the carborane derivative is monocarbacrode decaborate (HCB 11 H 11 ), monocarba crosound decachlorododecaborate ( The method for producing a multi-walled carbon nanotube-containing composition according to [1] or [2], which is at least one selected from the group consisting of HCB 11 Cl 11 ).
[4]: The contact step includes (i) coating the carbon nanotube on a substrate, and contacting the obtained coating film and the two-coordinate boron cation salt, (ii) the carbon nanotube and the (Iii) including at least one selected from the step of mixing the carbon nanotube powder and the powder of the bicoordinate boron cation salt [1] to [3] The method for producing a multi-walled carbon nanotube-containing composition according to any one of [3].
[5]: It includes multi-walled carbon nanotubes and a counter anion of a two-coordinate boron cation salt, and the multi-walled carbon nanotubes have 35% or more of three or more layers of carbon nanotubes when the total number of carbon nanotubes is 100%. Including
The counter anion includes at least one of a fluorine-based anion and a carborane derivative, and the fluorine-based anion is selected from the group consisting of BF 4 , PF 6 , TFSI, tetraphenyl borate, and tetrakis (pentafluorophenyl) borate. And the carborane derivative is selected from the group consisting of monocarbacrode decaborate (HCB 11 H 11 ) and monocarbacrosoundecachlorododecaborate (HCB 11 Cl 11 ). A composition comprising at least one multi-walled carbon nanotube.
[6] The multi-walled carbon nanotube-containing composition according to [5], further comprising a resin.
[7]: A method for producing a single-walled and / or double-walled carbon nanotube-containing composition,
When the total number of carbon nanotubes is 100%, single-walled carbon nanotubes and / or double-walled carbon nanotubes containing 70% or more of single-walled carbon nanotubes and / or double-walled carbon nanotubes are brought into contact with the bicoordinate boron cation salt. Including a contact step,
A method for producing a single-walled and / or double-walled carbon nanotube-containing composition.
[8]: The two-coordinate boron cation is represented by the following general formula (1):
Figure JPOXMLDOC01-appb-C000004
[Wherein R 1 and R 2 are each independently a phenyl group, a mesityl group, a 1,5-dimethylphenyl group, a 1,3,5-triisopropylphenyl group, a 1,5-diisopropylphenyl group, 1, It is a compound selected from the group consisting of 3,5-tris (trifluoromethyl) phenyl group and 1,5-bis (trifluoromethyl) phenyl group. ]
[7] The method for producing a single-walled and / or double-walled carbon nanotube-containing composition according to [7].
[9]: The counter anion of the two-coordinate boron cation salt includes at least one of a fluorine-based anion and a carborane derivative,
The fluorine-based anion is at least one selected from the group consisting of BF 4 , PF 6 , TFSI, tetraphenyl borate, tetrakis (pentafluorophenyl) borate,
The carborane derivative is at least one selected from the group consisting of monocarbar crosode decaborate (HCB 11 H 11 ) and mono carb crosound undecachloro dodecaborate (HCB 11 Cl 11 ) [ [7] A method for producing a single-walled and / or double-walled carbon nanotube-containing composition according to [8].
[10]: The contact step includes
(I) coating the single-walled and / or double-walled carbon nanotube-containing material on a substrate, and coating the obtained bicoordinate boron cation salt on the resulting coating film [7] A method for producing a single-walled and / or double-walled carbon nanotube-containing composition according to any one of [9] to [9].
 本発明によれば、良好な導電性および導電特性の経時的安定性に優れるカーボンナノチューブ含有組成物を提供できるという優れた効果を奏する。また、高温環境下での導電性および抵抗値安定性に優れるCNT含有組成物を製造可能なドーピングされた単層および/又は2層カーボンナノチューブ含有組成物の製造方法を提供することができるという優れた効果を有する。 According to the present invention, it is possible to provide a carbon nanotube-containing composition that is excellent in electrical conductivity and stability over time of conductive characteristics, and has an excellent effect. Further, it is possible to provide a method for producing a doped single-walled and / or double-walled carbon nanotube-containing composition capable of producing a CNT-containing composition that is excellent in conductivity and resistance value stability in a high-temperature environment. It has the effect.
EtSi[(CB]のメシチレン付加体の化学式を示す図である。 Et 3 Si + [(C 6 F 5) 4 B] shows the chemical formula of one mesitylene adduct. Mes[(CB]の化学式を示す図である。Mes 2 B + is a diagram showing a [(C 6 F 5) 4 B] one formula.
 以下、本発明を適用した実施形態の一例について説明する。なお、本発明の趣旨に合致する限り、他の実施形態も本発明の範疇に含まれることは言うまでもない。また、本明細書において特定する数値は、実施形態に開示した方法により求められる値である。 Hereinafter, an example of an embodiment to which the present invention is applied will be described. Needless to say, other embodiments are also included in the scope of the present invention as long as they meet the spirit of the present invention. Moreover, the numerical value specified in this specification is a value calculated | required by the method disclosed by embodiment.
[第1実施形態]
 第1実施形態に係る多層カーボンナノチューブ含有組成物の製造方法は、多層カーボンナノチューブに、2配位ホウ素カチオン塩を接触させる接触工程を含む。第1実施形態に係る多層カーボンナノチューブは、カーボンナノチューブの総数を100%としたときに、3層以上の多層カーボンナノチューブを35%以上含む。以下、カーボンナノチューブをCNTと略記する場合がある。
[First Embodiment]
The method for producing a multi-walled carbon nanotube-containing composition according to the first embodiment includes a contacting step in which a multi-coordinate boron cation salt is brought into contact with the multi-walled carbon nanotube. The multi-walled carbon nanotube according to the first embodiment includes 35% or more of multi-walled carbon nanotubes of three or more layers, where the total number of carbon nanotubes is 100%. Hereinafter, the carbon nanotube may be abbreviated as CNT.
 CNTは、層構造により単層(シングルウオール)と多層(マルチウオール)に大別されるが、第1実施形態においては、前述した通り、CNTの総数を100%としたときに3層以上のCNTを35%以上含む多層CNTを用いる。このような多層CNTは、気相流動法、アーク放電法および触媒担持気相成長法等により製造することができる。市販されている多層CNTを用いてもよい。例えば、VGCF-H(登録商標、昭和電工社製)が例示できる。 CNTs are broadly classified into single layers (single wall) and multilayers (multiwall) according to the layer structure. In the first embodiment, as described above, when the total number of CNTs is 100%, three or more layers are included. A multilayer CNT containing 35% or more of CNT is used. Such multilayer CNTs can be produced by a gas phase flow method, an arc discharge method, a catalyst-supported vapor phase growth method, or the like. Commercially available multilayer CNTs may be used. For example, VGCF-H (registered trademark, manufactured by Showa Denko KK) can be exemplified.
 本明細書においては、多層CNTにおける3層以上の割合は以下のように求めた。すなわち、多層CNT含有組成物の塗膜を形成し、これを透過型電子顕微鏡によって直接観察し、一定の領域(少なくとも100本が観察できる領域)にある単層、2層および3層以上のCNTに対する3層以上のCNTの本数の割合を求めた。多層CNT含有組成物が、溶媒に分散または溶解している組成物の場合には、適宜、希釈を行い、塗膜を形成して溶媒を除去した後に透過型電子顕微鏡による直接観察を行い、上記と同様にして3層以上のCNTの本数の割合を求めた。この際、必要に応じて溶媒を置換してもよい。また、高分解能透過型電子顕微鏡を用いて観察してもよい。CNT含有組成物中に含まれている他の成分は、測定に際して除去しても除去せずに測定してもよい。 In this specification, the ratio of three or more layers in the multi-walled CNT was determined as follows. That is, a coating film of a multilayer CNT-containing composition is formed, and this is directly observed with a transmission electron microscope. Single-layer, double-layer, and three-layer or more CNTs in a certain region (region where at least 100 can be observed) The ratio of the number of CNTs having three or more layers to the above was determined. In the case of a composition in which the multilayer CNT-containing composition is dispersed or dissolved in a solvent, it is appropriately diluted, formed a coating film, removed the solvent, and then directly observed with a transmission electron microscope. Similarly, the ratio of the number of CNTs having three or more layers was determined. At this time, the solvent may be substituted if necessary. Moreover, you may observe using a high-resolution transmission electron microscope. Other components contained in the CNT-containing composition may be measured without being removed or removed during the measurement.
 2配位ホウ素カチオン塩は、多層CNTに対してドーピング剤として添加される。2配位ホウ素カチオン塩における2配位ホウ素カチオンは、強力な酸化剤として機能する。すなわち、多層CNTに2配位ホウ素カチオン塩を接触させると、2配位ホウ素カチオン塩の2配位ホウ素カチオンが多層CNTに対して酸化剤として機能し、多層CNTに正孔が形成される。これにより多層CNTの導電性を向上させることができる。また、2配位ホウ素カチオン塩の対アニオンは、正孔が形成された多層CNTの周囲にアニオンカウンターとして存在する。これにより、多層CNTの導電特性の経時的安定性向上を図ることができる。 The bi-coordinate boron cation salt is added as a doping agent to the multilayer CNT. The two-coordinate boron cation in the two-coordinate boron cation salt functions as a strong oxidant. That is, when the bi-coordinate boron cation salt is brought into contact with the multilayer CNT, the bi-coordinate boron cation of the bi-coordinate boron cation salt functions as an oxidizing agent for the multi-wall CNT, and holes are formed in the multi-wall CNT. Thereby, the electroconductivity of multilayer CNT can be improved. Further, the counter anion of the bicoordinate boron cation salt is present as an anion counter around the multilayer CNT in which holes are formed. As a result, it is possible to improve the temporal stability of the conductive properties of the multilayer CNT.
 2配位ホウ素カチオンは特に限定されないが、好ましい例として、2配位ホウ素カチオンの配位基として、少なくとも一方にフェニル基、メシチル基(1,3,5-トリメチルフェニル基)、1,5-ジメチルフェニル基、1,3,5-トリイソプロピルフェニル基、1,5-ジイソプロピルフェニル基、1,3,5-トリス(トリフルオロメチル)フェニル基、1,5-ビス(トリフルオロメチル)フェニル基からなる群より選択された少なくとも1つを有する基が例示できる。 Although the 2-coordinate boron cation is not particularly limited, preferred examples of the coordination group of the 2-coordinate boron cation include a phenyl group, a mesityl group (1,3,5-trimethylphenyl group), 1,5- Dimethylphenyl group, 1,3,5-triisopropylphenyl group, 1,5-diisopropylphenyl group, 1,3,5-tris (trifluoromethyl) phenyl group, 1,5-bis (trifluoromethyl) phenyl group A group having at least one selected from the group consisting of
 2配位ホウ素カチオンの好ましい例としては、下記一般式(1)で表される化合物がある。
Figure JPOXMLDOC01-appb-C000005
式中、R,Rは、其々独立にフェニル基、メシチル基、1,5-ジメチルフェニル基、1,3,5-トリイソプロピルフェニル基、1,5-ジイソプロピルフェニル基、1,3,5-トリス(トリフルオロメチル)フェニル基、1,5-ビス(トリフルオロメチル)フェニル基からなる群より選択される化合物である。
Preferable examples of the bicoordinate boron cation include a compound represented by the following general formula (1).
Figure JPOXMLDOC01-appb-C000005
In the formula, R 1 and R 2 are each independently a phenyl group, mesityl group, 1,5-dimethylphenyl group, 1,3,5-triisopropylphenyl group, 1,5-diisopropylphenyl group, 1,3 , 5-tris (trifluoromethyl) phenyl group and 1,5-bis (trifluoromethyl) phenyl group.
 2配位ホウ素カチオンと塩を形成する対アニオンは、フッ素系アニオンおよびカルボラン誘導体の少なくとも一方であることが好ましい。フッ素系アニオンとしては、BF 、PF 、TFSI、テトラフェニルボラート、テトラキス(ペンタフルオロフェニル)ボラートからなる群より選択される少なくとも一つが例示できる。また、カルボラン誘導体としては、モノカルバークロソードデカボラート(HCB1111 )、モノカルバークロソーウンデカクロロドデカボラート(HCB11Cl11 )からなる群より選択される少なくとも一つが例示できる。 The counter anion that forms a salt with the bicoordinate boron cation is preferably at least one of a fluorine-based anion and a carborane derivative. Examples of the fluorine-based anion include at least one selected from the group consisting of BF 4 , PF 6 , TFSI, tetraphenyl borate, and tetrakis (pentafluorophenyl) borate. Examples of the carborane derivative include at least one selected from the group consisting of monocarbar crosode decaborate (HCB 11 H 11 ) and mono carber crosound undecachloro dodecaborate (HCB 11 Cl 11 ). it can.
 2配位ホウ素カチオン塩を溶解する溶媒は、ホウ素カチオンと反応しない溶媒を用いる。例えば、オルトジクロロベンゼン、1,2,4-トリクロロベンゼン、メシチレン等の非極性溶媒が好ましい。 As the solvent for dissolving the 2-coordinate boron cation salt, a solvent that does not react with the boron cation is used. For example, nonpolar solvents such as orthodichlorobenzene, 1,2,4-trichlorobenzene and mesitylene are preferred.
 2配位ホウ素カチオン塩は、例えば、非特許文献1~3の方法を用いて合成できる。例えば、式(2)により表されるモノカルバークロソーウンデカクロロドデカボラートを対アニオンとするジメシチルボリニウムイオンMes(HCB11Cl11 )は、以下の方法により合成できる。
Figure JPOXMLDOC01-appb-C000006
The bicoordinate boron cation salt can be synthesized, for example, using the methods of Non-Patent Documents 1 to 3. For example, a dimesitylborinium ion Mes 2 B + (HCB 11 Cl 11 ) having a monocarburose undecachlorododecaborate represented by the formula (2) as a counter anion can be synthesized by the following method. .
Figure JPOXMLDOC01-appb-C000006
 まず、アルゴンないし窒素雰囲気下、酸素、水濃度それぞれ0.1ppm以下に制御されたグローブボックス中で、トリエチルシリルカチオンのモノカルバークロソーウンデカクロロドデカボラート塩[EtSi(HCB11Cl11 )](非特許文献2参照)の乾燥オルトジクロロベンゼン溶液にフルオロジメシチルボラン)を室温で加え、混合物を25℃で5分間撹拌する。減圧下、反応溶液を留去し、0.5mL程度に濃縮する。得られた反応混合物に、蒸気拡散法によりヘキサン蒸気を導入することで、無色透明結晶が析出する。この結晶をろ取し、乾燥ヘキサンで洗浄することにより、[Mes(HCB11Cl11 )]が無色透明結晶として得られる。 First, in a glove box in which oxygen and water concentrations are each controlled to be 0.1 ppm or less under an argon or nitrogen atmosphere, monocarburound undecachlorododecaborate salt [Et 3 Si + (HCB 11 Cl 11 -)] (fluoro dimethyl cytidine Ruboran) in dry o-dichlorobenzene solution of the non-Patent Document 2) at room temperature, the mixture is stirred for 5 minutes at 25 ° C.. The reaction solution is distilled off under reduced pressure and concentrated to about 0.5 mL. By introducing hexane vapor into the obtained reaction mixture by a vapor diffusion method, colorless transparent crystals are deposited. The crystals are collected by filtration and washed with dry hexane to obtain [Mes 2 B + (HCB 11 Cl 11 )] as colorless and transparent crystals.
 また、テトラキス(ペンタフルオロフェニル)ボラートを対アニオンとするジメシチルボリニウムイオンMes[(C]は、Mes(HCB11Cl11 )の場合と同様の操作により、EtSi(HCB11Cl11 )の代わりにEtSi[(C]のメシチレン付加体(非特許文献3参照)を用いることで、Mes[(C]が無色透明結晶として得られる。 Further, the dimesitylborinium ion Mes 2 B + [(C 6 F 5 ) 4 B ] having tetrakis (pentafluorophenyl) borate as a counter anion is Mes 2 B + (HCB 11 Cl 11 ). By using a mesitylene adduct of Et 3 Si + [(C 6 F 5 ) 4 B ] in place of Et 3 Si + (HCB 11 Cl 11 ) (see Non-Patent Document 3) Mes 2 B + [(C 6 F 5 ) 4 B ] is obtained as colorless transparent crystals.
 第1実施形態の多層CNT含有組成物の製造方法は、前述した様に、多層CNTに、2配位ホウ素カチオン塩を接触させる接触工程を含む。接触工程は,多層CNTを2配位ホウ素カチオンにより酸化し、且つ2配位ホウ素カチオン塩の対アニオンを多層CNTに残存できる方法であれば如何なる方法でもよい。好ましい例として、以下の(i)~(iii)がある。
(i)基材上に多層CNTを塗工し、得られた塗工膜と2配位ホウ素カチオン塩を接触する。
(ii)多層CNTと2配位ホウ素カチオン塩を溶媒中で混合する。
(iii)多層CNTの粉体と2配位ホウ素カチオン塩の粉体を混合する。
これらの工程は、単独または組み合わせて用いられる。
As described above, the method for producing a multilayer CNT-containing composition of the first embodiment includes a contact step in which a bi-coordinate boron cation salt is brought into contact with the multilayer CNT. The contacting step may be any method as long as the multi-walled CNT can be oxidized with the bi-coordinated boron cation and the counter-anion of the bi-coordinated boron cation salt can remain in the multi-walled CNT. Preferred examples include (i) to (iii) below.
(I) A multilayer CNT is coated on a substrate, and the obtained coating film is brought into contact with a two-coordinate boron cation salt.
(Ii) Multilayer CNT and a bicoordinate boron cation salt are mixed in a solvent.
(Iii) A multilayer CNT powder and a bicoordinate boron cation salt powder are mixed.
These steps are used alone or in combination.
 上記(i)の方法、すなわち、多層CNTの塗工膜に2配位ホウ素カチオン塩を接触する方法として、スピンコーティング法、ディップコーティング法、インクジェット法、印刷法、スプレー法、ディスペンサー法等の方法が例示できる。これらの塗布方法は組み合わせて用いてもよい。 As a method of the above (i), that is, a method of contacting a bicoordinate boron cation salt with a coating film of multi-layer CNT, a method such as a spin coating method, a dip coating method, an ink jet method, a printing method, a spray method, a dispenser method, etc. Can be illustrated. These coating methods may be used in combination.
 一例として、2配位ホウ素カチオンを含まない多層CNT含有組成物(本明細書においては、ドープ前多層CNT含有組成物ともいう)又は多層CNTを用意し、これを良溶媒に溶解させ、スピンコート法等を用いて基材上に塗膜を得る。次いで、2配位ホウ素カチオン塩の溶液(例えば、オルトシクロロベンゼン飽和溶液)を用意し、塗膜付き基材を当該溶液に浸漬する(例えば、1分)。この際、2配位ホウ素カチオンが強力な酸化剤として機能し、多層CNTに正孔が形成される。それに伴い、2配位ホウ素カチオン塩の対アニオンは、多層CNTのカウンターアニオンとして機能する。酸化剤として用いられた2配位ホウ素カチオンは、溶液と共に除去される。必要に応じて洗浄工程を追加してもよい。その後、常温または加熱乾燥する。これらの工程を経て、塗膜中に2配位ホウ素カチオン塩の対アニオンが残存した多層CNT含有組成物からなる塗膜が得られる。 As an example, a multi-walled CNT-containing composition not containing a bi-coordinated boron cation (in this specification, also referred to as a multi-walled CNT-containing composition before doping) or a multi-walled CNT is prepared, dissolved in a good solvent, and spin-coated. A coating film is obtained on a substrate using a method or the like. Next, a solution of a bicoordinate boron cation salt (for example, a saturated solution of orthocyclobenzene) is prepared, and the substrate with a coating film is immersed in the solution (for example, 1 minute). At this time, the bicoordinate boron cation functions as a strong oxidant, and holes are formed in the multilayer CNT. Accordingly, the counter anion of the bicoordinate boron cation salt functions as a counter anion of the multilayer CNT. The bicoordinate boron cation used as the oxidant is removed along with the solution. You may add a washing | cleaning process as needed. Thereafter, it is dried at room temperature or by heating. Through these steps, a coating film comprising a multi-walled CNT-containing composition in which the counter-anion of the bicoordinate boron cation salt remains in the coating film is obtained.
 塗工膜に用いる基材は、目的やニーズに応じてガラスや樹脂から適宜選定する。機械的強度や透明度が必要な場合には、ガラスが好適であり、透明性が必要とされる用途には(メタ)アクリレート樹脂等が好適である。基材は、単一または複数の積層体から構成される。 The base material used for the coating film is appropriately selected from glass and resin according to the purpose and needs. When mechanical strength and transparency are required, glass is suitable, and (meth) acrylate resin and the like are suitable for applications that require transparency. A base material is comprised from a single or several laminated body.
 上記(ii)の方法、すなわち、溶媒中で混合することにより接触させる方法として、以下の方法が例示できる。多層CNTとして、例えばVGCF-H(登録商標、昭和電工社製)等の市販品を用意し、これを良溶媒に溶解させる。溶媒としては、例えば、オルトジクロロベンゼンなどがある。次いで、これに2配位ホウ素カチオン塩を添加して混合する。ドーピング濃度は特に限定されないが、例えば、0.01~30mMである。これらの工程を経て、2配位ホウ素カチオン塩の対アニオンがドーピングされた多層CNT含有組成物が得られる。得られた多層CNT含有組成物は、塗工によりフィルム状としたり、射出成形、押し出し成形、シート成型により成形処理したりすることができる。 The following method can be exemplified as the method of (ii) above, that is, the method of contacting by mixing in a solvent. As the multi-walled CNT, for example, a commercially available product such as VGCF-H (registered trademark, manufactured by Showa Denko) is prepared and dissolved in a good solvent. Examples of the solvent include orthodichlorobenzene. Next, a bicoordinate boron cation salt is added thereto and mixed. The doping concentration is not particularly limited, but is, for example, 0.01 to 30 mM. Through these steps, a multilayer CNT-containing composition doped with a counter-anion of a bicoordinate boron cation salt is obtained. The obtained multilayer CNT-containing composition can be formed into a film by coating, or can be molded by injection molding, extrusion molding, or sheet molding.
 上記(iii)の方法、すなわち、多層CNTの粉体と2配位ホウ素カチオン塩の粉体を混合する方法は、混合機を用いて均一に混合を行えばよい。この場合、2配位ホウ素カチオンは多層CNTを酸化してニュートラルな化合物として残存することになるが、導電性や経時安定性には影響しない。薄膜形成時等において、溶媒に溶解する工程を行えば、その大半が除去される。なお、用いる多層CNT粉体と2配位ホウ素カチオン塩の粉体は、必要に応じて気流粉砕処理などを行ってもよい。また、粉体を混合する際に、他の化合物も合わせて混合する方法、或いは既に多層CNT等と混合されているドープ前多層CNT含有組成物と2配位ホウ素カチオン塩を混合する方法でもよい。 The above method (iii), that is, the method of mixing the powder of the multilayer CNT and the powder of the two-coordinate boron cation salt may be uniformly mixed using a mixer. In this case, the bicoordinate boron cation oxidizes the multi-walled CNT and remains as a neutral compound, but does not affect the conductivity and stability over time. If a step of dissolving in a solvent is performed at the time of thin film formation or the like, most of it is removed. Note that the multilayer CNT powder and the powder of the two-coordinate boron cation salt to be used may be subjected to an airflow pulverization treatment or the like as necessary. Further, when mixing the powder, a method of mixing other compounds together, or a method of mixing the pre-dope multi-walled CNT-containing composition already mixed with the multi-walled CNT etc. and the bicoordinate boron cation salt may be used. .
 多層CNT含有組成物には、多層CNTおよび2配位ホウ素カチオン塩の対アニオンの他に、他の化合物を添加することができる。他の化合物は目的およびニーズに応じて適宜選定できる。好適な例として樹脂、多層CNT以外の炭素繊維(例えば、カーボンブラック、ケッチェンブラック、ミルドカーボンファイバー)がある。また、分散剤、消泡剤、可塑剤、酸化防止剤および結着材等を加えてもよい。樹脂は、熱可塑性樹脂、硬化性化合物を含む熱硬化性樹脂等が例示できる。また、感光性樹脂、導電性樹脂も好適に用いられる。 In addition to the multilayer CNT and the counter-anion of the two-coordinate boron cation salt, other compounds can be added to the multilayer CNT-containing composition. Other compounds can be appropriately selected according to the purpose and needs. Suitable examples include resins and carbon fibers other than multilayer CNTs (for example, carbon black, ketjen black, milled carbon fiber). Further, a dispersant, an antifoaming agent, a plasticizer, an antioxidant, a binder, and the like may be added. Examples of the resin include a thermoplastic resin and a thermosetting resin containing a curable compound. Photosensitive resins and conductive resins are also preferably used.
 好適な例としては、熱可塑性樹脂、多層CNT、2配位ホウ素カチオン塩の対アニオンを含む多層CNT含有組成物からなる複合材料、導電性高分子、多層CNT、2配位ホウ素カチオン塩の対アニオンを含む多層CNT含有組成物からなる複合材料が挙げられる。 Preferable examples include a composite material composed of a multilayer CNT-containing composition comprising a thermoplastic resin, a multilayer CNT, a counter-anion of a two-coordinate boron cation salt, a conductive polymer, a multilayer CNT, and a pair of two-coordinate boron cation salts. The composite material which consists of a multilayer CNT containing composition containing an anion is mentioned.
 熱可塑性樹脂としては、ポリスチレン、スチレン・アクリロニトリル共重合体、スチレン・無水マレイン酸共重合体、(メタ)アクリル酸エステル・スチレン共重合体等のスチレン系(共)重合体;ABS樹脂、AES樹脂、ASA樹脂、MBS樹脂、HIPS樹脂等のゴム強化樹脂;ポリエチレン、ポリプロピレン、エチレン・プロピレン共重合体等の、炭素数2~10のα-オレフィンの少なくとも1種からなるα-オレフィン(共)重合体並びにその変性重合体(塩素化ポリエチレン等)、環状オレフィン(たとえばノルボルネン)共重合体等のオレフィン系樹脂;ポリアクリル酸等のアイオノマー、エチレン・酢酸ビニル共重合体、エチレン・ビニルアルコール共重合体等のエチレン系共重合体;ポリ塩化ビニル、エチレン・塩化ビニル重合体、ポリ塩化ビニリデン等の塩化ビニル系樹脂;ポリメタクリル酸メチル(PMMA)等の(メタ)アクリル酸エステルの1種以上を用いた(共)重合体のアクリル系樹脂;ポリアミド6、ポリアミド6、6ポリアミド612等のポリアミド系樹脂(PA):ポリカーボネート(PC)、ポリエチレンテレフタレート(PET)、ポリブチレンフタレート(PBT)、ポリエチレンナフタレート等のポリエステル系樹脂:ポリアセタール樹脂(POM)、ポリフェニレンエーテル(PPE)、ポリアリレート樹脂;ポリテトラフルオロエチレン、ポリフッ化ビニリデン等のフッ素樹脂:液晶ポリマー;ポリイミド、ポリアミドイミド、ポリエーテルイミド等のイミド樹脂:ポリエーテルケトン等のケトン系樹脂;ポリスルホン、ポリエーテルスルホン等のスルホン系樹脂;ウレタン系樹脂;ポリ酢酸ビニル;ポリエチレンオキシド:ポリビニルアルコール:ポリビニルエーテル:ポリビニルブチラート;フェノキシ樹脂;感光性樹脂;生分解性プラスチック等が挙げられる。 Thermoplastic resins include polystyrene, styrene / acrylonitrile copolymers, styrene / maleic anhydride copolymers, styrene (co) polymers such as (meth) acrylic acid ester / styrene copolymers; ABS resins, AES resins Rubber-reinforced resin such as ASA resin, MBS resin, HIPS resin; α-olefin (co) heavy comprising at least one α-olefin having 2 to 10 carbon atoms such as polyethylene, polypropylene, ethylene / propylene copolymer, etc. Olefin resins such as polymers and modified polymers thereof (chlorinated polyethylene, etc.), cyclic olefins (eg, norbornene) copolymers; ionomers such as polyacrylic acid, ethylene / vinyl acetate copolymers, ethylene / vinyl alcohol copolymers Ethylene copolymers such as polyvinyl chloride, ethylene / vinyl chloride Nyl polymer, vinyl chloride resin such as polyvinylidene chloride; (co) polymer acrylic resin using one or more (meth) acrylic acid esters such as polymethyl methacrylate (PMMA); polyamide 6, polyamide Polyamide resins (PA) such as 6,6 polyamide 612: Polyester resins such as polycarbonate (PC), polyethylene terephthalate (PET), polybutylene phthalate (PBT), polyethylene naphthalate: polyacetal resin (POM), polyphenylene ether ( PPE), polyarylate resin; fluororesin such as polytetrafluoroethylene and polyvinylidene fluoride: liquid crystal polymer; imide resin such as polyimide, polyamideimide, and polyetherimide: ketone resin such as polyetherketone; polysulfone, poly Urethane resins; sulfone-based resins such Terusuruhon polyvinyl acetate; polyethylene oxide: polyvinyl alcohol: polyvinyl ether: polyvinyl butyrate; phenoxy resins; photosensitive resin; biodegradable plastic and the like.
 これらの熱可塑性樹脂のうち、ABS樹脂、AES樹脂、ASA樹脂、AS樹脂、MBS樹脂、HIPS樹脂、ポリエチレン、ポリプロピレン、ポリカーボネート(PC)、ポリフェニレンエーテル(PPE)、ポリアミド(PA)が好ましい。これらは、1種単独または2種以上を併用できる。 Of these thermoplastic resins, ABS resin, AES resin, ASA resin, AS resin, MBS resin, HIPS resin, polyethylene, polypropylene, polycarbonate (PC), polyphenylene ether (PPE), and polyamide (PA) are preferable. These can be used alone or in combination of two or more.
 また、耐衝撃性向上のために、第1実施形態における熱可塑性樹脂組成物はその他のエラストマー成分を含有してもよい。衝撃性改良のために使用されるエラストマーとしては、EPRやEPDMのようなオレフィン系エラストマー、スチレンとブタジエンの共重合体から成るSBR等のスチレン系エラストマー、シリコーン系エラストマー、ニトリル系エラストマー、ブタジエン系エラストマー、ウレタン系エラストマー、ポリアミド系エラストマー、エステル系エラストマー、フッ素系エラストマー、天然ゴムおよびそれらのエラストマーに反応部位(二重結合、カルボン酸無水物基等)を導入した変性物のようなものが使用できる。また、樹脂として導電性高分子を用い、多層CNTと導電性高分子の相乗効果によって導電特性を発現させることができる。 Moreover, in order to improve impact resistance, the thermoplastic resin composition in the first embodiment may contain other elastomer components. Elastomers used to improve impact properties include olefin elastomers such as EPR and EPDM, styrene elastomers such as SBR made of a copolymer of styrene and butadiene, silicone elastomers, nitrile elastomers, and butadiene elastomers. , Urethane elastomers, polyamide elastomers, ester elastomers, fluorine elastomers, natural rubbers, and modified products in which reaction sites (double bonds, carboxylic acid anhydride groups, etc.) are introduced into these elastomers can be used. . Moreover, a conductive polymer can be used as the resin, and the conductive characteristics can be expressed by the synergistic effect of the multilayer CNT and the conductive polymer.
 樹脂と多層CNTの含有比は、ニーズに応じて適宜設計できる。樹脂に対する多層CNTの含有量は、例えば、0.1~95質量%である。 Resin and multilayer CNT content ratio can be designed as appropriate according to needs. The content of the multilayer CNT with respect to the resin is, for example, 0.1 to 95% by mass.
 第1実施形態によれば、2配位ホウ素カチオン塩を多層CNTにドーピングすることにより、2配位ホウ素カチオン塩の2配位ホウ素カチオンによって多層CNTを酸化し、多層CNTに正孔を形成できる。このため、導電特性を向上させることができる。更に、2配位ホウ素カチオン塩の安定な対アニオンが、正孔が形成された多層CNT周囲に残存することにより、熱安定性や環境耐性を向上させることができる。 According to the first embodiment, by doping bi-coordinate boron cation salt into multi-layer CNT, multi-layer CNT can be oxidized by bi-coordinate boron cation of bi-coordinate boron cation salt, and holes can be formed in multi-layer CNT. . For this reason, a conductive characteristic can be improved. Further, the stable counter anion of the bicoordinate boron cation salt remains around the multi-walled CNT in which holes are formed, so that thermal stability and environmental resistance can be improved.
 多層CNT含有組成物の用途としては、電極材料が好適である。また、薄膜トランジスタ基板等の半導体層に有用である。また、センサー、アクチュエーター、建材用途、塗料、CNTペーパー、医療機器など幅広い応用に有用である。 An electrode material is suitable for the use of the multilayer CNT-containing composition. Further, it is useful for a semiconductor layer such as a thin film transistor substrate. It is also useful for a wide range of applications such as sensors, actuators, building materials, paints, CNT paper, and medical equipment.
[第2実施形態]
 第2実施形態においては、第1実施形態において定義する多層CNTではなく、単層および/又は2層CNTを用いる。ここで「単層および/又は2層CNT含有物」は、複数のCNTが存在している総体を意味する。その存在形態は特に限定されず、例えば、其々が独立に若しくは束状、絡まり合う等の形態、又はこれらの混合形態で存在していてもよい。なお、本実施形態においてCNT含有物とCNTは、実質的には同一であり、本実施形態においてCNT含有物を単にCNTと記載する場合もある。
[Second Embodiment]
In the second embodiment, single-layer and / or double-wall CNTs are used instead of the multi-layer CNTs defined in the first embodiment. Here, “single-layer and / or double-walled CNT-containing material” means a total of a plurality of CNTs. The existence form is not particularly limited. For example, they may exist independently, in a bundle form, in an intertwined form, or a mixed form thereof. In the present embodiment, the CNT-containing material and the CNT are substantially the same, and in this embodiment, the CNT-containing material may be simply referred to as CNT.
 CNTの組成が異なる点を除き、第1実施形態および/又は第2実施形態と2配位ホウ素カチオン塩、添加剤、製造方法等は同様に適用できる。 1st Embodiment and / or 2nd Embodiment and 2 coordination boron cation salt, an additive, a manufacturing method, etc. are applicable similarly except the point from which a composition of CNT differs.
 第2実施形態に係る「単層および/又は2層CNT含有物」は、CNT全数のうち、単層CNTおよび/又は2層CNTを70%以上含むものをいう。単層CNTとは、グラファイトの1枚面を1層に巻いたCNTであり、これを70%以上含むとは、CNT全100本中70本以上が単層CNTであることをいう。2層CNTとは、グラファイトの1枚面を2層に巻いたCNTであり、これを70%以上含むとは、CNT全100本中70本以上が2層CNTであることをいう。 The “single-layer and / or double-walled CNT-containing material” according to the second embodiment refers to one containing 70% or more of single-walled CNT and / or double-walled CNT out of the total number of CNTs. Single-walled CNTs are CNTs in which one surface of graphite is wound in one layer, and including 70% or more means that 70 or more of 100 CNTs are single-walled CNTs. The two-layer CNT is a CNT obtained by winding one surface of graphite into two layers, and including 70% or more means that 70 or more out of 100 CNTs are two-layer CNTs.
 CNT全数のうち、単層CNTおよび/又は2層CNTを70%以上含むと、CNTの導電性が極めて高くなる。更に好ましくは100本中75本以上、最も好ましくは100本中80本以上が含まれている態様である。一般的に、単層CNTおよび/又は2層CNTは、3層以上の多層CNTに比べて結晶化度が高く、直径が小さく、導電層中のCNT単位量当たりの接触点が多くなることによって導電性が高くなる傾向にある。 When 70% or more of single-walled CNTs and / or double-walled CNTs are included in the total number of CNTs, the conductivity of the CNTs becomes extremely high. More preferably, 75 or more of 100 are included, and most preferably 80 or more of 100 are included. In general, single-walled CNTs and / or double-walled CNTs have higher crystallinity, smaller diameter, and more contact points per unit amount of CNT in the conductive layer than multi-walled CNTs of three or more layers. The conductivity tends to be high.
 CNTの層数は、例えば以下のようにサンプルを作製して測定することができる。CNTが、液体等の溶媒中に分散した組成物である場合において、溶媒が水系の場合、CNT含有物を水で見えやすい濃度に適宜希釈し、コロジオン膜上に数μL滴下して風乾させた後、直接、透過型電子顕微鏡像でコロジオン膜上のCNT含有物を調べる。一方、溶媒が非水系の場合には、一度乾燥により溶媒を除去した後、再度水中で分散させてから適宜希釈してコロジオン膜上に数μL滴下し、風乾した後、透過型電子顕微鏡像を観察する。また、CNT含有物が溶媒中に分散していない場合には、例えば溶媒でCNT含有物を抽出し、同様にして高分解能透過型電子顕微鏡で観察することによって調べることもできる。単層および/又は2層CNT含有物は、触媒粒子や分散剤を含んでいてもよい。 The number of CNT layers can be measured, for example, by preparing a sample as follows. In the case where the CNT is a composition dispersed in a solvent such as a liquid, when the solvent is an aqueous system, the CNT-containing material is appropriately diluted with water to a concentration that can be easily seen, and is dropped by several μL onto the collodion film and air-dried. Thereafter, the CNT-containing material on the collodion film is directly examined with a transmission electron microscope image. On the other hand, when the solvent is non-aqueous, after removing the solvent by drying once, it is dispersed again in water, diluted as appropriate, dropped several μL onto the collodion film, air-dried, and a transmission electron microscope image is obtained. Observe. Further, when the CNT-containing material is not dispersed in the solvent, for example, the CNT-containing material can be extracted with a solvent and similarly observed with a high-resolution transmission electron microscope. The monolayer and / or bilayer CNT-containing material may contain catalyst particles and a dispersant.
 本明細書において「単層および/又は2層CNT含有組成物」は、単層および/又は2層CNT含有物と、2配位ホウ素カチオン塩の少なくとも対アニオンを含有する。つまり、単層および/又は2層CNT含有組成物は、単層および/又は2層CNT含有物に、少なくともドーピング成分を含む組成物をいう。二配位ホウ素カチオンは、第1実施形態と同様、下記一般式(1)で表される。
Figure JPOXMLDOC01-appb-C000007
 R,Rは、第1実施形態と同様の群より選択される化合物である。また、2配位ホウ素カチオン塩の対アニオンも、第1実施形態と同様の化合物を例示できる。
In the present specification, the “single-layer and / or two-layer CNT-containing composition” contains a single-layer and / or two-layer CNT-containing material and at least a counter anion of a two-coordinate boron cation salt. That is, the single-layer and / or double-walled CNT-containing composition refers to a composition containing at least a doping component in the single-layer and / or double-walled CNT-containing material. The bicoordinate boron cation is represented by the following general formula (1), as in the first embodiment.
Figure JPOXMLDOC01-appb-C000007
R 1 and R 2 are compounds selected from the same group as in the first embodiment. In addition, the counter anion of the two-coordinate boron cation salt can be exemplified by the same compounds as in the first embodiment.
 2配位ホウ素カチオン塩としては、上記2配位ホウ素カチオンと対アニオンとを組み合わせて用いる。この中でも特に、メシチル基(1,3,5-トリメチルフェニル基)とテトラキス(ペンタフルオロフェニル)ボラートとの組み合わせが好ましい。2配位ホウ素カチオン塩を溶解する際に用いる溶媒は特に限定されない。 As the bicoordinate boron cation salt, the above bicoordinate boron cation and a counter anion are used in combination. Among these, a combination of mesityl group (1,3,5-trimethylphenyl group) and tetrakis (pentafluorophenyl) borate is particularly preferable. The solvent used when dissolving the 2-coordinate boron cation salt is not particularly limited.
 単層および/又は2層CNT含有物と2配位ホウ素カチオン塩とを接触させる方法は特に限定されない。好適な例として、基材の上に、単層および/又は2層CNT含有物を塗布し、得られた塗膜に対して、2配位ホウ素カチオン塩を塗布する方法が例示できる。これらの塗布の際には、適宜溶媒を用いる。第2実施形態に用いられる基材の素材としては、樹脂、ガラス等を例示できる。樹脂としては、ポリエチレンテレフタレート(PET),ポリエチレンナフタレート(PEN)等のポリエステル、ポリカーボネート(PC)、ポリメチルメタクリレート(PMMA)、ポリイミド、ポリフェニレンスルフィド、アラミド、ポリプロピレン、ポリエチレン、ポリ乳酸、ポリ塩化ビニル、ポリメタクリル酸メチル、脂環式アクリル樹脂、シクロオレフィン樹脂、およびトリアセチルセルロース等を用いることができる。ガラスとしては、通常のソーダーガラスを用いることができる。また、これらの複数の基材を組み合わせて用いることもできる。 The method for bringing the monolayer and / or bilayer CNT-containing material into contact with the bicoordinate boron cation salt is not particularly limited. As a suitable example, the method of apply | coating a monolayer and / or 2 layer CNT containing material on a base material, and apply | coating a bicoordinate boron cation salt with respect to the obtained coating film can be illustrated. In these coatings, a solvent is appropriately used. Resin, glass, etc. can be illustrated as a raw material of the base material used for 2nd Embodiment. Examples of the resin include polyesters such as polyethylene terephthalate (PET) and polyethylene naphthalate (PEN), polycarbonate (PC), polymethyl methacrylate (PMMA), polyimide, polyphenylene sulfide, aramid, polypropylene, polyethylene, polylactic acid, polyvinyl chloride, Polymethyl methacrylate, alicyclic acrylic resin, cycloolefin resin, triacetyl cellulose, and the like can be used. As the glass, ordinary soda glass can be used. Moreover, these several base materials can also be used in combination.
 単層および/又は2層CNT含有物を基材上に塗布する方法は特に限定されず、既知の塗布方法、例えば吹き付け塗装、浸漬コーティング、スピンコーティング、ナイフコーティング、キスコーティング、グラビアコーティング、スロットダイコーティング、スクリーン印刷、インクジェット印刷、パット印刷、他の主類の印刷、又はロールコーティング等を利用できる。また、塗布は複数回に分けて行ってもよく、異なる2種類の塗布方法を組み合わせてもよい。 The method for applying the single-layer and / or double-layer CNT-containing material on the substrate is not particularly limited, and known application methods such as spray coating, dip coating, spin coating, knife coating, kiss coating, gravure coating, slot die Coating, screen printing, inkjet printing, pad printing, other main types of printing, roll coating, and the like can be used. Moreover, application | coating may be performed in multiple times and you may combine two different types of application | coating methods.
 2配位ホウ素カチオン塩を単層および/又は2層CNT含有物上に塗布する方法は特に限定されず、既知の塗布方法、例えば吹き付け塗装、浸漬コーティング、スピンコーティング、スクリーン印刷、インクジェット印刷、パッド印刷、他の主類の印刷、又はロールコーティング等を利用できる。また、塗布は複数回に分けて行ってもよく、異なる2種類の塗布方法を組み合わせてもよい。 The method for applying the bicoordinate boron cation salt onto the monolayer and / or the bilayer CNT-containing material is not particularly limited, and known application methods such as spray coating, dip coating, spin coating, screen printing, inkjet printing, pad Printing, printing of other main types, roll coating, or the like can be used. Moreover, application | coating may be performed in multiple times and you may combine two different types of application | coating methods.
 第2実施形態の単層および/又は2層CNT含有組成物は、電極材料として好ましく用いることができる。 The single layer and / or double layer CNT-containing composition of the second embodiment can be preferably used as an electrode material.
[第3実施形態]
 第3実施形態に係る「混合CNT含有組成物」は、第1実施形態に係る多層CNT含有組成物および第2実施形態に係る単層および/又は2層CNT含有組成物のいずれの定義にも含まれないCNT含有組成物をいうものと定義する。すなわち、CNT全数のうち、第1実施形態に係る多層CNTが30%越え、35%未満であり、且つ第2実施形態に係る単層および/又は2層CNTが65%越え、70%未満であるCNT含有組成物をいう。
[Third Embodiment]
The “mixed CNT-containing composition” according to the third embodiment is defined in any definition of the multilayer CNT-containing composition according to the first embodiment and the single-layer and / or double-wall CNT-containing composition according to the second embodiment. It is defined to refer to a CNT-containing composition that is not included. That is, out of the total number of CNTs, the multi-layer CNTs according to the first embodiment are more than 30% and less than 35%, and the single-layer and / or two-layer CNTs according to the second embodiment are more than 65% and less than 70%. It refers to a certain CNT-containing composition.
 第3実施形態に係る混合CNT含有組成物によれば、電極材料が好適である。また、薄膜トランジスタ基板等の半導体層に有用である。また、センサー、アクチュエーター、建材用途、塗料、CNTペーパー、医療機器など幅広い応用に有用である。 According to the mixed CNT-containing composition according to the third embodiment, an electrode material is suitable. Further, it is useful for a semiconductor layer such as a thin film transistor substrate. It is also useful for a wide range of applications such as sensors, actuators, building materials, paints, CNT paper, and medical equipment.
 以下、本発明を実施例によりさらに詳細に説明するが、本発明は、これら実施例により限定されるものではない。 Hereinafter, the present invention will be described in more detail by way of examples, but the present invention is not limited to these examples.
 本実施例で用いた測定法を以下に示す。
(1) CNT層数の測定法
 CNTをコロジオン膜上に数μL滴下し風乾させた後、透過型電子顕微鏡を用いて40万倍で観察した。75nm四方の視野の中で、視野面積の10%以上がCNTである視野中から任意に抽出した100本のCNTについて層数を測定した。1つの視野中で100本の測定ができない場合、100本になるまで複数の視野から測定した。このとき、CNT1本とは視野中で一部CNTが見えていれば1本と計上した。また、視野中で2本と認識されても視野外で繋がって1本となっていることもあり得るが、その場合は2本と計上した。
The measurement method used in this example is shown below.
(1) Measuring method of the number of CNT layers Several microliters of CNTs were dropped on a collodion film and air-dried, and then observed with a transmission electron microscope at a magnification of 400,000 times. The number of layers was measured for 100 CNTs arbitrarily extracted from a visual field in which 10% or more of the visual field area was CNT in a 75 nm square visual field. When 100 lines could not be measured in one field of view, measurements were made from a plurality of fields until 100 lines were obtained. At this time, one CNT was counted as one if some CNTs were visible in the field of view. In addition, even if it is recognized as two in the field of view, it may be connected outside the field of view and become one, but in that case, it was counted as two.
(2)25℃、湿度30%RHの端子間抵抗値測定法
 小型環境試験器(エスペック株式会社製、SH-221)中に電極付導電積層体の両電極にクリップを付けた状態で入れ、温度25℃・湿度30%RHで30分間保持した。小型環境試験器中での端子間抵抗値は、マルチ入力データ収集システム(キーエンス株式会社製、NR-500、NR-TH08)を用いて30秒毎に記録した。小型環境試験器中の温度,湿度は、温湿度プローブ(日本シンテック株式会社製、NS-04AP)によりモニターした。温度25℃。湿度90%RHで30分保持した後の安定した端子間抵抗値を25℃、湿度30%RHの端子間抵抗値[A]とした。
(2) Resistance measurement method between terminals at 25 ° C. and humidity 30% RH In a small environmental tester (manufactured by Espec Co., Ltd., SH-221), with both electrodes of the conductive laminate with electrodes clipped, It was kept at a temperature of 25 ° C. and a humidity of 30% RH for 30 minutes. The inter-terminal resistance value in the small environmental tester was recorded every 30 seconds using a multi-input data collection system (manufactured by Keyence Corporation, NR-500, NR-TH08). The temperature and humidity in the small environmental tester were monitored with a temperature / humidity probe (manufactured by Nippon Shintech Co., Ltd., NS-04AP). Temperature 25 ° C. A stable inter-terminal resistance value after being held at a humidity of 90% RH for 30 minutes was defined as an inter-terminal resistance value [A] at 25 ° C. and a humidity of 30% RH.
(3)80℃、湿度30%RHの端子間抵抗値測定法
 小型環境試験器(エスベツク株式会社製、SH-221)中に電極付導電積層体の両電極にクリップを付けた状態で入れ、温度25℃。湿度90%RHで120時間保持した。小型環境試験器中での端子間抵抗値は、マルチ入力データ収集システム(キーエンス株式会社製、NR-500、NR-TH08)を用いて30秒毎に記録した。小型環境試験器中の温度、湿度は、温湿度プローブ(日本シンテック、NS-04AP)によりモニターした温度80℃・湿度30%RHで120時間保持した後の安定した端子間抵抗値を80℃、湿度30%の端子間抵抗値[B]とした。
(3) Resistance measurement method between terminals at 80 ° C. and humidity 30% RH A small environmental tester (SH-221, manufactured by ESBET Co., Ltd.) is put in a state where clips are attached to both electrodes of the conductive laminate with electrodes, Temperature 25 ° C. It was kept at a humidity of 90% RH for 120 hours. The inter-terminal resistance value in the small environmental tester was recorded every 30 seconds using a multi-input data collection system (manufactured by Keyence Corporation, NR-500, NR-TH08). The temperature and humidity in the small environmental tester are 80 ° C, the stable resistance between terminals after holding for 120 hours at a temperature of 80 ° C and humidity of 30% RH monitored by a temperature and humidity probe (Nippon Shintech, NS-04AP). The inter-terminal resistance value [B] was 30% humidity.
[基板作製例]
 ガラス基板(15mm×15mm×lmm)上にメタルマスクを用いてNi(10nm)とAu(100nm)とを順に蒸着した。Niの蒸着には電子ビーム蒸着法を、Auの蒸着には低抗加熱蒸着法を用いた。
[Substrate production example]
Ni (10 nm) and Au (100 nm) were sequentially deposited on a glass substrate (15 mm × 15 mm × 1 mm) using a metal mask. An electron beam deposition method was used for Ni deposition, and a low resistance heating deposition method was used for Au deposition.
[CNT導電層の形成例1]
 2層CNT(東レ株式会社製、直径1.7nm)を使用した。CNT層数の測定法に従って求めた2層CNT比率は90%であった。水中で分散剤を用いて超音波分散処理した。分散液はスビンコートにより金電極付ガラス基板に塗布することによりCNT導電層を得た。
[CNT conductive layer formation example 1]
Two-layer CNT (Toray Industries, Inc., diameter 1.7 nm) was used. The two-layer CNT ratio determined according to the method for measuring the number of CNT layers was 90%. Ultrasonic dispersion treatment was performed using a dispersant in water. The dispersion was applied to a glass substrate with a gold electrode by subbing to obtain a CNT conductive layer.
[CNT導電層の形成例2]
 アーク放電法(株式会社名城ナノカーポン製、SWCNT SO、直径~1.4nm)により合成された単層CNTを使用した。CNT層数の測定法に従って求めた単層CNT比率は70%であった。アーク放電法により合成された単層CNTはエタノール中で超書波分散させ、分散液をスプレーにより金電極付ガラス基板に塗布することによりCNT導電層を得た。
[CNT formation layer formation example 2]
Single-walled CNT synthesized by an arc discharge method (manufactured by Meijo Nano Carpon Co., Ltd., SWCNT SO, diameter˜1.4 nm) was used. The single-wall CNT ratio determined according to the method for measuring the number of CNT layers was 70%. Single-walled CNT synthesized by the arc discharge method was subjected to super-wave dispersion in ethanol, and the dispersion was applied to a glass substrate with a gold electrode by spraying to obtain a CNT conductive layer.
 [2配位ホウ素カチオン塩合成法例]
 アルゴンないし窒素雰囲気下、酸素濃度、水濃度を其々0.1ppm以下に制御されたグローブボックス中で、EtSi+[(CB]のメシチレン付加体(図1参照)(59.0mg、9.26×10-2mmol)の乾燥オルトジクロロベンゼン溶液(1.0mL)にフルオロジメシチルボラン(24.8mg、9.26×10-2mmol)を室温で加え、混合物を25℃で5分間撹拌した、減圧下、反応溶液を留去し、0.5mL程度に濃縮した。得られた反応混合物に蒸気拡散法によってへキサン蒸気を導入することで無色透明結晶が析出した。この結晶をろ取し、乾操へキサンで洗浄することにより、テトラキス(ぺンタフルオロフェニル)ポラートを対アニオンとするジメシチルボリニウムイオン(Mes[(CB])(図2参照)が無色透明結晶として収率92%で得られた。
[Example of a 2-coordinate boron cation salt synthesis method]
Et 3 Si + [(C 6 F 5 ) 4 B] one mesitylene adduct (see FIG. 1) in a glove box in which oxygen concentration and water concentration are controlled to 0.1 ppm or less in an argon or nitrogen atmosphere, respectively. ) (59.0 mg, 9.26 × 10 −2 mmol) in a dry orthodichlorobenzene solution (1.0 mL) was added fluorodimesitylborane (24.8 mg, 9.26 × 10 −2 mmol) at room temperature, The mixture was stirred at 25 ° C. for 5 minutes. The reaction solution was distilled off under reduced pressure and concentrated to about 0.5 mL. A colorless transparent crystal was precipitated by introducing hexane vapor into the obtained reaction mixture by vapor diffusion. The crystals are collected by filtration and washed with dry hexane to give a dimesitylborinium ion (Mes 2 B + [(C 6 F 5 ) 4 B) having tetrakis (pentafluorophenyl) porate as a counter anion. ] - ) (See FIG. 2) was obtained as colorless transparent crystals in a yield of 92%.
 [2配位ホウ素カチオン塩途布]
 室素雰囲気のグローブボックス(酸素と水が1ppm以下)内において2配位ホウ素カチオン塩合成法例記載の(Mes[(CB])のオルトシタロロベンゼン飽和溶液を準備し、CNT導電層に1分間浸し、その後ヒータ(60℃)上で10~15分加熱した。
[Two-coordinate boron cation salt distribution]
Ortho-sitalobenzene saturated solution of (Mes 2 B + [(C 6 F 5 ) 4 B] ) described in the example of the synthesis method of a two-coordinate boron cation salt in a glove box (oxygen and water of 1 ppm or less) in a room atmosphere. Was immersed in the CNT conductive layer for 1 minute, and then heated on a heater (60 ° C.) for 10 to 15 minutes.
(実施例1) DWCNT/2配位ホウ素カチオン塩
 CNT導電層の形成例1に従い形成した導電層に対して、2配位ホウ素カチオン塩塗布(ジメチルポリニウムイオン)に従って処理を実施した。その後、25℃湿度30%RHの端子間抵抗値[A]及び80℃、湿度30%RHの端子間抵抗値[B]を測定した。測定結果を以下の表1に示す。
(Example 1) DWCNT / 2-coordinated boron cation salt The conductive layer formed in accordance with CNT conductive layer formation example 1 was treated in accordance with a 2-coordinated boron cation salt coating (dimethylpolynium ion). Thereafter, the resistance value [A] between terminals at 25 ° C. and a humidity of 30% RH and the resistance value [B] between terminals at a temperature of 80 ° C. and a humidity of 30% RH were measured. The measurement results are shown in Table 1 below.
 (実施例2) SWCNT/2配位ホウ素カチオン塩
 CNT導電層の形成例2に従い形成した導電層に対して、2配位ホウ素カチオン塩塗布(ジメチルボリニウムイオン)に従って処理を実施した。その後、25℃湿度30%RHの端子間抵抗値[A]及び80℃、湿度30%RHの端子間抵抗値[B]を測定した。測定結果を以下の表1に示す。
(Example 2) SWCNT / 2-coordinated boron cation salt The conductive layer formed according to CNT conductive layer formation example 2 was treated according to the application of 2-coordinated boron cation salt (dimethylborinium ion). Thereafter, the resistance value [A] between terminals at 25 ° C. and a humidity of 30% RH and the resistance value [B] between terminals at a temperature of 80 ° C. and a humidity of 30% RH were measured. The measurement results are shown in Table 1 below.
 (比較例1) DWCNT
 CNT導電層の形成例1に従い形成した導電層に対して、25℃、湿度30%RHの端子間抵抗値[A]及び80℃、湿度30%RHの端子間低抗値[B]を測定した。測定結果を以下の表1に示す。
(Comparative Example 1) DWCNT
Measurement of resistance value [A] between terminals at 25 ° C. and humidity 30% RH and resistance value [B] between terminals at 80 ° C. and humidity 30% RH for the conductive layer formed according to CNT conductive layer formation example 1. did. The measurement results are shown in Table 1 below.
 (比較例2) DWCNT/硝酸
 CNT導電層の形成例1に従い形成した導電層に対して、濃硝酸をスピンコートにより塗布し、25℃、湿度30%RHの端子間低抗値[A]及び80℃、湿度30%RHの端子間抵抗値[B]を測定した。測定結果を以下の表1に示す。
(Comparative example 2) DWCNT / nitric acid Concentrated nitric acid was applied by spin coating to the conductive layer formed in accordance with formation example 1 of the CNT conductive layer, and the low resistance value [A] between terminals at 25 ° C and 30% RH was applied. The resistance value [B] between terminals at 80 ° C. and a humidity of 30% RH was measured. The measurement results are shown in Table 1 below.
 (比較例3) SWCNT
 CNT導電層の形成例2に従い形成した導電層に対して、25℃、湿度30%RHの端子間祇抗値[A]及び80℃、湿度30%RHの端子間抵抗値[B]を測定した。測定結果を以下の表1に示す。
(Comparative Example 3) SWCNT
Measurement of resistance value [A] between terminals at 25 ° C. and humidity 30% RH and resistance value [B] between terminals at 80 ° C. and humidity 30% RH for the conductive layer formed according to CNT conductive layer formation example 2. did. The measurement results are shown in Table 1 below.
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
 表1に示すように、実施例1の80℃、湿度30%RHの端子間抵抗値[B]は比較例1の80℃、湿度30%RHの端子間抵抗値[B]より小さく、また、実施例1の抵抗値変化率[B]/[A]は比較例1,2の抵抗値変化率[B]/[A]より小さい。さらに実施例2の80℃、湿度30%RHの端子間抵抗値[B]は比較例3の80℃、湿度30%RHの端子間抵抗値[B]より小さく、また、実施例2の抵抗値変化率[B]/[A]は比較例3の低抗値変化率[B]/[A]より小さい。実施例に係る単層および/または2層CNT含有組成物が、高温環境下での導電性及び抵抗値安定性に優れることを確認した。 As shown in Table 1, the inter-terminal resistance value [B] of Example 1 at 80 ° C. and a humidity of 30% RH is smaller than the inter-terminal resistance value [B] of Comparative Example 1 at 80 ° C. and a humidity of 30% RH. The resistance value change rate [B] / [A] of Example 1 is smaller than the resistance value change rate [B] / [A] of Comparative Examples 1 and 2. Furthermore, the resistance value [B] between terminals at 80 ° C. and a humidity of 30% RH in Example 2 is smaller than the resistance value [B] between terminals at 80 ° C. and a humidity of 30% RH in Comparative Example 3, and the resistance of Example 2 The value change rate [B] / [A] is smaller than the low resistance value change rate [B] / [A] of Comparative Example 3. It was confirmed that the single-layer and / or double-walled CNT-containing compositions according to the examples were excellent in conductivity and resistance value stability under a high temperature environment.
 本発明に係る多層CNT含有組成物によれば、電極材料、薄膜トランジスタ基板等の半導体層、センサー、アクチュエーター、建材用途、塗料、CNTペーパー、医療機器など幅広い応用に好適である。また、単層および/または2層CNT含有組成物によれば、電極材料をはじめとする電子材料用途に好適である。 The multilayer CNT-containing composition according to the present invention is suitable for a wide range of applications such as electrode materials, semiconductor layers such as thin film transistor substrates, sensors, actuators, building materials, paints, CNT paper, and medical equipment. In addition, the single-layer and / or double-layer CNT-containing composition is suitable for use in electronic materials including electrode materials.
 この出願は、2016年2月15日に出願された日本出願特願2016-026051、2016-026000を基礎とする優先権を主張し、その開示の全てをここに取り込む。 This application claims priority based on Japanese Patent Application Nos. 2016-026051 and 2016-026000 filed on Feb. 15, 2016, the entire disclosure of which is incorporated herein.

Claims (10)

  1.  多層カーボンナノチューブ含有組成物の製造方法であって、
     カーボンナノチューブの総数を100%としたときに、3層以上のカーボンナノチューブを35%以上含む多層カーボンナノチューブに、2配位ホウ素カチオン塩と接触させる接触工程を含む、
    多層カーボンナノチューブ含有組成物の製造方法。
    A method for producing a multi-walled carbon nanotube-containing composition comprising:
    Including a contacting step in which a multi-walled carbon nanotube containing 35% or more of three or more layers of carbon nanotubes is brought into contact with a two-coordinate boron cation salt when the total number of carbon nanotubes is 100%.
    A method for producing a multi-walled carbon nanotube-containing composition.
  2.  前記2配位ホウ素カチオン塩の2配位ホウ素カチオンが、下記一般式(1)
    Figure JPOXMLDOC01-appb-C000001
    [式中、R,Rは、其々独立にフェニル基、メシチル基、1,5-ジメチルフェニル基、1,3,5-トリイソプロピルフェニル基、1,5-ジイソプロピルフェニル基、1,3,5-トリス(トリフルオロメチル)フェニル基および1,5-ビス(トリフルオロメチル)フェニル基からなる群より選択される化合物である。]
    で表される請求項1に記載の多層カーボンナノチューブ含有組成物の製造方法。
    The bicoordinate boron cation of the bicoordinate boron cation salt is represented by the following general formula (1):
    Figure JPOXMLDOC01-appb-C000001
    [Wherein R 1 and R 2 are each independently a phenyl group, a mesityl group, a 1,5-dimethylphenyl group, a 1,3,5-triisopropylphenyl group, a 1,5-diisopropylphenyl group, 1, It is a compound selected from the group consisting of 3,5-tris (trifluoromethyl) phenyl group and 1,5-bis (trifluoromethyl) phenyl group. ]
    The manufacturing method of the multilayer carbon nanotube containing composition of Claim 1 represented by these.
  3.  前記2配位ホウ素カチオン塩の対アニオンが、フッ素系アニオンおよびカルボラン誘導体の少なくとも一方を含み、
     前記フッ素系アニオンは、BF 、PF 、TFSI、テトラフェニルボラート、テトラキス(ペンタフルオロフェニル)ボラートからなる群より選択される少なくとも一つであり、
     前記カルボラン誘導体は、モノカルバークロソードデカボラート(HCB1111 )、モノカルバークロソーウンデカクロロドデカボラート(HCB11Cl11 )からなる群より選択される少なくとも一つである請求項1又は2に記載の多層カーボンナノチューブ含有組成物の製造方法。
    The counter-anion of the bicoordinate boron cation salt includes at least one of a fluorine-based anion and a carborane derivative;
    The fluorine-based anion is at least one selected from the group consisting of BF 4 , PF 6 , TFSI, tetraphenyl borate, tetrakis (pentafluorophenyl) borate,
    The carborane derivative is at least one selected from the group consisting of monocarbacrode decaborate (HCB 11 H 11 ) and monocarbacroso undecachlorododecaborate (HCB 11 Cl 11 ). Item 3. A method for producing a multi-walled carbon nanotube-containing composition according to Item 1 or 2.
  4.  前記接触工程は、
    (i)基材上に前記カーボンナノチューブを塗工し、得られた塗工膜と前記2配位ホウ素カチオン塩を接触する、
    (ii)前記カーボンナノチューブと前記2配位ホウ素カチオン塩を溶媒中で混合する、
    (iii)前記カーボンナノチューブの粉体と前記2配位ホウ素カチオン塩の粉体を混合する工程から選択される少なくともいずれかを含む請求項1~3のいずれかに記載の多層カーボンナノチューブ含有組成物の製造方法。
    The contact step includes
    (I) coating the carbon nanotube on a substrate, and contacting the obtained coating film and the two-coordinate boron cation salt;
    (Ii) mixing the carbon nanotubes and the two-coordinate boron cation salt in a solvent;
    The multi-walled carbon nanotube-containing composition according to any one of claims 1 to 3, comprising at least one selected from the step of (iii) mixing the carbon nanotube powder and the two-coordinate boron cation salt powder. Manufacturing method.
  5.  カーボンナノチューブの総数を100%としたときに、3層以上のカーボンナノチューブを35%以上含む多層カーボンナノチューブと、
     2配位ホウ素カチオン塩の対アニオンとを含み、
     前記対アニオンは、
     フッ素系アニオンおよびカルボラン誘導体の少なくとも一方を含み、
     前記フッ素系アニオンは、BF 、PF TFSI、テトラフェニルボラート、テトラキス(ペンタフルオロフェニル)ボラートからなる群より選択される少なくとも一つであり、
     前記カルボラン誘導体は、モノカルバークロソードデカボラート(HCB1111 )、モノカルバークロソーウンデカクロロドデカボラート(HCB11Cl11 )からなる群より選択される少なくとも一つである多層カーボンナノチューブ含有組成物。
    When the total number of carbon nanotubes is 100%, multi-walled carbon nanotubes containing 35% or more of three or more layers of carbon nanotubes,
    A counter-anion of a two-coordinate boron cation salt,
    The counter anion is
    Including at least one of a fluorine-based anion and a carborane derivative,
    The fluorine anion, BF 4 -, PF 6 - TFSI, tetraphenylborate, at least one selected from the group consisting of tetrakis (pentafluorophenyl) borate,
    The carborane derivative is at least one selected from the group consisting of monocarburcrode decaborate (HCB 11 H 11 ) and monocarburco undecachlorododecaborate (HCB 11 Cl 11 ). Carbon nanotube-containing composition.
  6.  さらに、樹脂を含有してなる請求項5に記載の多層カーボンナノチューブ含有組成物。 The multi-walled carbon nanotube-containing composition according to claim 5, further comprising a resin.
  7.  単層および/又は2層カーボンナノチューブ含有組成物の製造方法であって、
     カーボンナノチューブの総数を100%としたときに、単層カーボンナノチューブおよび/又は2層カーボンナノチューブを70%以上含む単層および/又は2層カーボンナノチューブ含有物に、2配位ホウ素カチオン塩と接触させる接触工程を含む、
     単層および/又は2層カーボンナノチューブ含有組成物の製造方法。
    A method for producing a single-walled and / or double-walled carbon nanotube-containing composition comprising:
    When the total number of carbon nanotubes is 100%, single-walled carbon nanotubes and / or double-walled carbon nanotubes containing 70% or more of single-walled carbon nanotubes and / or double-walled carbon nanotubes are brought into contact with the bicoordinate boron cation salt. Including the contacting step,
    A method for producing a single-walled and / or double-walled carbon nanotube-containing composition.
  8.  前記2配位ホウ素カチオン塩の2配位ホウ素カチオンが、下記一般式(1)
    Figure JPOXMLDOC01-appb-C000002
    [式中、R,Rは、其々独立にフェニル基、メシチル基、1,5-ジメチルフェニル基、1,3,5-トリイソプロピルフェニル基、1,5-ジイソプロピルフェニル基、1,3,5-トリス(トリフルオロメチル)フェニル基および1,5-ビス(トリフルオロメチル)フェニル基からなる群より選択される化合物である。]
    で表される請求項7に記載の単層および/又は2層カーボンナノチューブ含有組成物の製造方法。
    The bicoordinate boron cation of the bicoordinate boron cation salt is represented by the following general formula (1):
    Figure JPOXMLDOC01-appb-C000002
    [Wherein R 1 and R 2 are each independently a phenyl group, a mesityl group, a 1,5-dimethylphenyl group, a 1,3,5-triisopropylphenyl group, a 1,5-diisopropylphenyl group, 1, It is a compound selected from the group consisting of 3,5-tris (trifluoromethyl) phenyl group and 1,5-bis (trifluoromethyl) phenyl group. ]
    The manufacturing method of the single-layer and / or double-walled carbon nanotube containing composition of Claim 7 represented by these.
  9.  前記2配位ホウ素カチオン塩の対アニオンが、フッ素系アニオンおよびカルボラン誘導体の少なくとも一方を含み、
     前記フッ素系アニオンは、BF 、PF 、TFSI、テトラフェニルボラート、テトラキス(ペンタフルオロフェニル)ボラートからなる群より選択される少なくとも一つであり、
     前記カルボラン誘導体は、モノカルバークロソードデカボラート(HCB1111 )、モノカルバークロソーウンデカクロロドデカボラート(HCB11Cl11 )からなる群より選択される少なくとも一つである請求項7又は8に記載の単層および/又は2層カーボンナノチューブ含有組成物の製造方法。
    The counter-anion of the bicoordinate boron cation salt includes at least one of a fluorine-based anion and a carborane derivative;
    The fluorine-based anion is at least one selected from the group consisting of BF 4 , PF 6 , TFSI, tetraphenyl borate, tetrakis (pentafluorophenyl) borate,
    The carborane derivative is at least one selected from the group consisting of monocarbacrode decaborate (HCB 11 H 11 ) and monocarbacroso undecachlorododecaborate (HCB 11 Cl 11 ). Item 9. The method for producing a single-walled and / or double-walled carbon nanotube-containing composition according to Item 7 or 8.
  10.  前記接触工程は、
    (i)基材の上に前記単層および/又は2層カーボンナノチューブ含有物を塗工し、得られた塗工膜上に、前記2配位ホウ素カチオン塩を塗布する工程を含む請求項7~9のいずれかに記載の単層および/又は2層カーボンナノチューブ含有組成物の製造方法。
    The contact step includes
    (I) applying the said single-layer and / or double-walled carbon nanotube containing material on a base material, and apply | coating the said 2 coordination boron cation salt on the obtained coating film. A method for producing the single-walled and / or double-walled carbon nanotube-containing composition according to any one of 1 to 9.
PCT/JP2017/005569 2016-02-15 2017-02-15 Multi-walled carbon nanotube–containing composition and production method therefor, and production method for single-walled and/or double-walled carbon nanotube–containing composition WO2017141982A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2018500167A JP6857364B2 (en) 2016-02-15 2017-02-15 A multi-walled carbon nanotube-containing composition and a method for producing the same, and a method for producing a single-walled and / or two-walled carbon nanotube-containing composition.
CN201780010179.0A CN108778993B (en) 2016-02-15 2017-02-15 Composition containing multi-layer carbon nanotubes, method for producing same, and method for producing composition containing single-layer and/or 2-layer carbon nanotubes

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2016-026000 2016-02-15
JP2016026051 2016-02-15
JP2016026000 2016-02-15
JP2016-026051 2016-02-15

Publications (1)

Publication Number Publication Date
WO2017141982A1 true WO2017141982A1 (en) 2017-08-24

Family

ID=59626149

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/005569 WO2017141982A1 (en) 2016-02-15 2017-02-15 Multi-walled carbon nanotube–containing composition and production method therefor, and production method for single-walled and/or double-walled carbon nanotube–containing composition

Country Status (3)

Country Link
JP (1) JP6857364B2 (en)
CN (1) CN108778993B (en)
WO (1) WO2017141982A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010520148A (en) * 2007-03-07 2010-06-10 カーボレックス インコーポレイテッド Boron-doped single-walled nanotubes (SWCNT)
JP2013095820A (en) * 2011-10-31 2013-05-20 Fujifilm Corp Conductive composition, and conductive film and conductive laminate using the same
WO2014133029A1 (en) * 2013-02-28 2014-09-04 国立大学法人奈良先端科学技術大学院大学 Method for selecting dopant, dopant composition, method for manufacturing carbon-nanotube/dopant composite, sheet-form material, and carbon-nanotube/dopant composite

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4360445B2 (en) * 2007-11-30 2009-11-11 東レ株式会社 Carbon nanotube aggregate and method for producing the same
CN103682152A (en) * 2012-09-25 2014-03-26 国际商业机器公司 Transparent conductive electrode and forming method therefor, organic light emitting diode (OLED) device and forming method therefor
CN103496689B (en) * 2013-09-23 2015-04-15 同济大学 Preparation method of boron-doped p type carbon nanotube with high seebeck coefficient

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010520148A (en) * 2007-03-07 2010-06-10 カーボレックス インコーポレイテッド Boron-doped single-walled nanotubes (SWCNT)
JP2013095820A (en) * 2011-10-31 2013-05-20 Fujifilm Corp Conductive composition, and conductive film and conductive laminate using the same
WO2014133029A1 (en) * 2013-02-28 2014-09-04 国立大学法人奈良先端科学技術大学院大学 Method for selecting dopant, dopant composition, method for manufacturing carbon-nanotube/dopant composite, sheet-form material, and carbon-nanotube/dopant composite

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
R.JACKSON ET AL.: "Advanced Functional Materials", STABILITY OF DOPED TRANSPARENT CARBON NANOTUBE ELECTRODES, vol. 18, no. 17, 2008, pages 2548 - 2554, XP001515302 *

Also Published As

Publication number Publication date
CN108778993B (en) 2022-03-29
JP6857364B2 (en) 2021-04-14
JPWO2017141982A1 (en) 2018-12-06
CN108778993A (en) 2018-11-09

Similar Documents

Publication Publication Date Title
Lee et al. Highly effective electromagnetic interference shielding materials based on silver nanowire/cellulose papers
Zhao et al. Drawn on paper: a reproducible humidity sensitive device by handwriting
JP5473148B2 (en) Transparent conductive film with improved conductivity and method for producing the same
Chen et al. Interplay of wall number and diameter on the electrical conductivity of carbon nanotube thin films
KR101537987B1 (en) Fabrication method of composite carbon nanotube fibers/yarns
Kim et al. Ultrastrong graphene–copper core–shell wires for high-performance electrical cables
Tachibana et al. A printed flexible humidity sensor with high sensitivity and fast response using a cellulose nanofiber/carbon black composite
CN101599316B (en) Light-transmitting electric conductor, method of manufacturing the same, destaticizing sheet, and electronic device
Park et al. High electrical conductivity and transparency in deoxycholate-stabilized carbon nanotube thin films
Wang et al. Conductive-on-demand: Tailorable polyimide/carbon nanotube nanocomposite thin film by dual-material aerosol jet printing
Benchirouf et al. Electromechanical behavior of chemically reduced graphene oxide and multi-walled carbon nanotube hybrid material
Zhang et al. Stable doping of single-walled carbon nanotubes for flexible transparent conductive films
Nguyen et al. Low vacuum annealing of cellulose acetate on nickel towards transparent conductive CNT–graphene hybrid films
Jiang et al. Transparent conductive flexible trilayer films for a deicing window and self-recover bending sensor based on a single-walled carbon nanotube/polyvinyl butyral interlayer
Leggiero et al. High conductivity copper–carbon nanotube hybrids via site-specific chemical vapor deposition
KR100675334B1 (en) Carbon nanotube films and their manufacturing process
Wang et al. Flexible electrothermal laminate films based on tannic acid-modified carbon nanotube/thermoplastic polyurethane composite
Ko et al. Foldable and water-resist electrodes based on carbon nanotubes/methyl cellulose hybrid conducting papers
Paleo et al. Vapor grown carbon nanofiber based cotton fabrics with negative thermoelectric power
Nguyen et al. Macroscopic, freestanding, and tubular graphene architectures fabricated via thermal annealing
Das et al. Electrical properties of solution cast films of polystyrene/polyaniline-multiwalled carbon nanotube nanocomposites
Yang et al. Synthesis and characterization of polypyrrole nanotubes/multi-walled carbon nanotubes composites with superior electrochemical performance
Wang et al. Percolating conductive networks in multiwall carbon nanotube-filled polymeric nanocomposites: towards scalable high-conductivity applications of disordered systems
Do et al. Solution-mediated selective nanosoldering of carbon nanotube junctions for improved device performance
Sarno et al. Cold wall chemical vapor deposition graphene-based conductive tunable film barrier

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17753238

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018500167

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17753238

Country of ref document: EP

Kind code of ref document: A1