WO2017141711A1 - Electric propulsion device for ship, and propulsion force control device used in electric propulsion device for ship - Google Patents

Electric propulsion device for ship, and propulsion force control device used in electric propulsion device for ship Download PDF

Info

Publication number
WO2017141711A1
WO2017141711A1 PCT/JP2017/003687 JP2017003687W WO2017141711A1 WO 2017141711 A1 WO2017141711 A1 WO 2017141711A1 JP 2017003687 W JP2017003687 W JP 2017003687W WO 2017141711 A1 WO2017141711 A1 WO 2017141711A1
Authority
WO
WIPO (PCT)
Prior art keywords
speed
pitch
engine
rotational speed
control unit
Prior art date
Application number
PCT/JP2017/003687
Other languages
French (fr)
Japanese (ja)
Inventor
学 徳本
集平 藤本
Original Assignee
ダイハツディーゼル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ダイハツディーゼル株式会社 filed Critical ダイハツディーゼル株式会社
Priority to CN201780011513.4A priority Critical patent/CN108698680B/en
Publication of WO2017141711A1 publication Critical patent/WO2017141711A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H3/00Propeller-blade pitch changing
    • B63H3/10Propeller-blade pitch changing characterised by having pitch control conjoint with propulsion plant control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H21/00Use of propulsion power plant or units on vessels
    • B63H21/12Use of propulsion power plant or units on vessels the vessels being motor-driven
    • B63H21/17Use of propulsion power plant or units on vessels the vessels being motor-driven by electric motor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H23/00Transmitting power from propulsion power plant to propulsive elements
    • B63H23/22Transmitting power from propulsion power plant to propulsive elements with non-mechanical gearing
    • B63H23/24Transmitting power from propulsion power plant to propulsive elements with non-mechanical gearing electric
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63JAUXILIARIES ON VESSELS
    • B63J3/00Driving of auxiliaries
    • B63J3/04Driving of auxiliaries from power plant other than propulsion power plant
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P9/00Arrangements for controlling electric generators for the purpose of obtaining a desired output
    • H02P9/04Control effected upon non-electric prime mover and dependent upon electric output value of the generator

Definitions

  • the present invention relates to a marine vessel electric propulsion device for propelling a vessel by supplying an electric power to a variable pitch propeller, and a propulsion control device applied to the marine vessel electric propulsion device.
  • a marine electric propulsion device for obtaining the rotational driving force of a motor driven by the electric power of a generator connected to an internal combustion engine to rotate the propeller
  • CPP variable pitch propeller
  • an electric propulsion device for increasing and decreasing the propulsion of the ship.
  • An internal combustion engine such as a diesel engine used as a main engine of a ship has specifications such as rated output and the like in consideration of so-called marine characteristics of the ship.
  • the vertical axis is the engine output of the main engine and the horizontal axis is the ship speed
  • the relationship between the engine output and the ship speed is represented by a cubic curve.
  • This cubic curve is widely known as a curve showing the above-mentioned marine characteristics (hereinafter sometimes referred to as a marine characteristic curve). That is, the marine property means that the engine output of the main engine is proportional to the cube of the speed of the ship.
  • the marine characteristic curve has the vertical axis as the engine output of the main engine and the horizontal axis as the propeller speed (or the rotational speed of the main engine). In some cases, it may be represented by a cubic curve.
  • FIG. 5 shows an example of a marine characteristic curve for each pitch of the CPP when CPP is used as a ship propulsion device.
  • the vertical axis is the engine output of the main engine, and the horizontal axis is the propeller speed.
  • the propeller design of the CPP is a point T1 that satisfies the most fuel efficient condition (for example, the reference pitch is ⁇ a, the engine output is Pa, and the propeller rotational speed is Na) under operating conditions that the ship normally uses
  • a marine characteristic curve L1 passing through the propeller design point T1 is indicated by a dotted line.
  • the reference pitch ⁇ a, the diameter, the wing shape, etc. of the CPP are designed so as to obtain a boat speed with good fuel efficiency.
  • an automatic speed control that automatically controls the speed of the ship.
  • the automatic ship speed control device either the propeller rotation speed (the rotation speed of the main engine) or the CPP pitch, or the propeller Control both the number of revolutions and the pitch so as to maintain the target speed.
  • the propeller speed is kept constant and the pitch is changed to control the ship speed.
  • the ship speed increases as shown in.
  • the boat speed increases along the marine characteristic curve as shown by arrow D2 in FIG.
  • the iso-ship speed curve Vk shown in FIG. 6 is a curve connecting points of an engine output at which a predetermined boat speed is obtained and a propeller rotational speed, and draws a mortar-like curve.
  • the lowest part of each isospeed curve is the point where the fuel efficiency is the best and the engine output is the minimum.
  • the marine characteristic curve L1 passing through the propeller design point T1 substantially matches the curve connecting the bottoms of the isoship speed curve Vk.
  • the propeller speed Na is equal to the ship speed curve Vk at a low ship speed.
  • the conventional automatic ship speed control device does not perform ship speed control according to the characteristics of the ship speed curve having different ship speeds, depending on the control method that can be taken, the fuel consumption at the time of ship speed control may be extreme. May be accompanied by Generally, since the engine output is proportional to the cube of the ship speed, if it is necessary to increase the engine output by a factor of 3 with respect to the increase in the ship speed, the fuel consumption is also approximately 3 for the increase in the ship speed. And the fuel efficiency may be significantly degraded.
  • the present invention has been made in view of the above-mentioned circumstances, and its object is to reduce the energy loss generated during the navigation of the ship and to perform the electric propulsion device for the ship capable of performing efficient propulsion control, and propulsion It is in providing a force control device.
  • the present invention is an electric propulsion device for ships, which supplies electric power to a variable pitch propeller to promote the ship.
  • the electric propulsion device for a ship includes a generator engine having a generator connected to an output shaft of an internal combustion engine, and an electric motor for rotationally driving by the AC power generated by the generator engine and supplying the electric power to the variable pitch propeller. And a control device for controlling the pitch of the variable pitch propeller and the rotational speed of the internal combustion engine so as to achieve a target value corresponding to the speed command signal based on a speed command signal input from a ship steering system. And.
  • the control device generates rotational speed of the internal combustion engine from a predetermined first set speed to a second set speed so as to generate AC power in a frequency band from a first predetermined frequency to a second frequency. It has a rotational speed control unit that controls within a speed range, and a pitch control unit that controls the pitch of the variable pitch propeller. When the speed command signal is out of a predetermined reference range, the rotational speed control unit maintains the rotational speed of the internal combustion engine at either the first set speed or the second set speed, and the pitch The control unit controls the variable pitch propeller to a pitch according to the target value.
  • the pitch control unit maintains the pitch of the variable pitch propeller at a predetermined reference pitch corresponding to the speed range, and the rotation speed control unit
  • the internal combustion engine is controlled to a rotational speed corresponding to the target value so as to follow a marine characteristic curve determined by the engine output of the internal combustion engine and the propeller rotational speed of the variable pitch propeller.
  • the rotational speed control unit of the control device controls the rotation of the internal combustion engine when the speed command signal from the steering device is out of the reference range in view of the use condition of the ship.
  • the speed is maintained at either the first set speed or the second set speed, and the pitch control unit controls the variable pitch propeller at a pitch according to the target value.
  • the rotational speed control unit maintains the rotational speed of the internal combustion engine at the first set speed, and the pitch control unit
  • the variable pitch propeller is controlled to a pitch according to the target value.
  • the rotational speed control unit maintains the rotational speed of the internal combustion engine at the second set speed, and the pitch control unit
  • the variable pitch propeller is controlled to a pitch according to the target value.
  • the speed range lower than the first set speed it is difficult to control the boat speed by the rotational speed of the internal combustion engine, and even if it can be controlled, the efficiency may be deteriorated.
  • controlling the pitch of the variable pitch propeller while maintaining the rotational speed at the first set speed enables efficient propulsion control with low energy loss. It has been realized.
  • the pitch control unit of the control device maintains the pitch of the variable pitch propeller at a predetermined reference pitch corresponding to the speed range.
  • the rotational speed control unit controls the internal combustion engine to a rotational speed according to the target value so as to follow a marine characteristic curve determined by the engine output of the internal combustion engine and the propeller rotational speed of the variable pitch propeller.
  • boat speed control by the rotational speed of the internal combustion engine is easy, and fuel efficiency is good. For this reason, within the speed range, efficient control of propulsion power with low energy loss is realized by variably controlling the rotational speed within the speed range while maintaining the variable pitch propeller at the reference pitch. .
  • the frequency band is an allowable range of the power supply frequency supplied as a commercial power supply.
  • the power output from the power generation engine can be used as a commercial power source without frequency conversion. Therefore, power can be directly supplied from the power bus to the electrically driven load device used in the ship. That is, in the electric propulsion device for ships according to the present invention, power can be supplied to the load device without providing an inverter or the like that performs frequency conversion.
  • the first frequency is 50 Hz and the second frequency is 60 Hz.
  • the said marine characteristic curve approximates to the curve which ties the minimum of the iso-ship speed curve of the said ship.
  • a generator engine having a generator connected to an output shaft of an internal combustion engine, and an electric motor which is driven to rotate by AC power generated by the generator engine and supplies electric power to a variable pitch propeller.
  • the propulsive force control device controls the pitch of the variable pitch propeller and the rotational speed of the internal combustion engine so as to achieve the target value.
  • the propulsion control device generates rotational speed of the internal combustion engine from a first predetermined speed to a second predetermined speed so as to generate AC power in a frequency band from a first predetermined frequency to a second frequency.
  • a pitch control unit for controlling the pitch of the variable pitch propeller.
  • the rotational speed control unit maintains the rotational speed of the internal combustion engine at either the first set speed or the second set speed, and the pitch The control unit controls the variable pitch propeller to a pitch according to the target value.
  • the pitch control unit When the speed command signal is within the reference range, the pitch control unit maintains the pitch of the variable pitch propeller at a predetermined reference pitch corresponding to the speed range, and the rotational speed control unit is configured to:
  • the internal combustion engine is controlled to a rotational speed according to the target value so as to follow a marine characteristic curve determined by the engine output of the internal combustion engine and the propeller rotational speed of the variable pitch propeller.
  • the present invention in the electric propulsion device for ships, it is possible to perform efficient propulsion control by reducing the energy loss generated at the time of navigation of the ships.
  • FIG. 1 is a configuration diagram schematically showing a schematic configuration of an electric propulsion device according to an embodiment of the present invention.
  • FIG. 2 is a graph showing a marine characteristic curve showing the relationship between the propeller rotational speed and the engine output in the electric propulsion device, and a ship speed curve showing the relationship between the propeller rotational speed, the engine output and the ship speed.
  • FIG. 3 shows the correspondence among the boat speed command, control mode (control state), engine speed, generator frequency, motor speed, reduction ratio, propeller speed, pitch (blade angle) in the electric propulsion device.
  • FIG. FIG. 4 is a flow chart showing an example of a procedure of propulsion control processing executed by the controller of the electric propulsion device.
  • FIG. 5 is a graph showing a marine characteristic curve for explaining a conventional control method.
  • FIG. 6 is a graph showing a marine characteristic curve and an isoship speed curve for explaining a conventional control method.
  • the electric propulsion device 10 (an example of the electric propulsion device for a ship according to the present invention) comprises a variable pitch propeller 31 (hereinafter abbreviated as “CPP 31") which is a propulsion mechanism of a ship. It is rotated by the driving force to generate propulsion of the ship.
  • the electric propulsion device 10 includes a diesel engine 33 (an example of an internal combustion engine according to the present invention, hereinafter abbreviated as “engine 33”), and a generator 37 (an example of a generator according to the present invention).
  • an electric motor 39 (an example of the electric motor according to the present invention), a reduction gear 41, and a control device 35 (an example of a control device according to the present invention and a propulsion control apparatus) that integrally controls the operation of the electric propulsion device 10.
  • the engine 33 and the generator 37 realize the power generation engine of the present invention.
  • the electric propulsion device for ships according to the present invention is applicable to all ships promoted using CPP, and, for example, cargo ships such as container ships and tankers, passenger ships such as ferries and passenger ships, marine research ships, etc. It can be widely applied to vessels such as special vessels that carry out sea operations like this, navigation training vessels, and fishing boats used for fishing.
  • the engine 33 is used as a drive source for supplying rotational drive power to the generator 37 in a ship, and is, for example, a large diesel engine having an engine output of several hundred kW to several thousand kW.
  • the engine 33 is provided with an electronic governor 34.
  • the electronic governor 34 is controlled by a governor control unit 35A (an example of a rotational speed control unit of the present invention) included in the control device 35.
  • the electronic governor 34 changes the fuel rack position according to the signal input from the governor control unit 35A, and adjusts the injection amount of the fuel injection pump of the engine 33. Thereby, the rotational speed of the engine 33 is changed.
  • the engine 33 is provided with a speed sensor 24 for detecting the rotational speed of the engine 33.
  • the velocity signal detected by the velocity sensor 24 is fed back to the controller 35.
  • the engine 33 is illustrated as an example of the internal combustion engine, but the invention is not limited thereto.
  • An internal combustion engine capable of outputting rotational driving force like a gas engine or a gas turbine instead of the engine 33 For example, various types of institutions are applicable.
  • the speed sensor 24 may detect the speed from the power generation frequency of the generator 37, for example.
  • the generator 37 is connected to the output shaft 48 of the engine 33.
  • the input shaft of the generator 37 is directly connected to the output shaft of the engine 33 by a coupling (shaft joint) (not shown), and the rotational driving force of the output shaft 48 of the engine 33 is directly transmitted to the generator 37 as it is. Ru.
  • the generator 37 receives the rotational driving force transmitted from the output shaft 48 of the engine 33 to rotate, and generates AC power of a frequency according to the rotational speed.
  • the generator 37 is an 8-pole 3-phase synchronous generator.
  • the engine with respect to the generator 37 of the number of poles is eight poles
  • the rotation is controlled by the controller 35 so as to be within the speed range.
  • the output side of the generator 37 is connected to a common power bus via the disconnector 54. Therefore, the alternating current power generated by the generator 37 flows into the power bus while the disconnector 54 is closed.
  • Electric power is supplied from the power bus to the electric motor 39 via a feeder 51 such as a power cable for transmission and distribution.
  • a circuit breaker such as ACB (Air Circuit Breaker) or MCCB (Molded Case Circuit Breaker) in order to protect circuits and devices from excessive current. Is provided.
  • a feed line 52 different from the feed line 51 is provided in parallel with the power bus.
  • the feeder line 52 is for supplying power to the motor-driven load device 58 used on a ship.
  • the load device 58 corresponds to, for example, various electric devices such as an electric pump, a motor-operated valve, a motor, a steering device, an alarm device, etc. used for a ship.
  • the load apparatus 58 corresponds to, for example, an electric apparatus used by being connected to an in-board power supply.
  • neither of the feeders 51, 52 is provided with a frequency conversion device such as an inverter for converting the frequency of the AC power generated by the generator 37 into another frequency.
  • a frequency conversion device such as an inverter for converting the frequency of the AC power generated by the generator 37 into another frequency.
  • the switch and load device 58 connected to the power bus and the feeders 51 and 52 are designed to match the power supply frequency of a commercial power supply.
  • 50 Hz and 60 Hz commercial power supplies are provided. That is, the allowable range of the power supply frequency supplied as commercial power is in the range of 50 Hz to 60 Hz.
  • the fluctuation of the frequency of the generator 37 is 50 Hz to 60 Hz. That is, the generator 37 generates AC power in the frequency band of 50 Hz to 60 Hz.
  • an electric path protector such as a switch or a circuit breaker connected to the electric power bus or the electric supply lines 51, 52, and the load device 58 which receives electric power supply from the electric supply line 52 operate with AC power of 50 Hz to 60 Hz.
  • a versatile and inexpensive one designed as standard is applicable.
  • the motor 39 is rotationally driven by the input AC power of a predetermined frequency.
  • the motor 39 is a so-called squirrel cage three-phase induction motor using a six-pole cage rotor.
  • the motor 39 is rotationally driven at a rotational speed according to the frequency of the input AC power when the AC power supplied through the power supply path 51 or the power supply path 52 is input.
  • the motor 39 is rotated at a rotational speed of 1000min -1 by AC power 50Hz is input, rotates at a rotational speed of 1200Min -1 by AC power 60Hz is input.
  • the actual rotational speed of the output shaft of the motor 39 is a speed obtained by subtracting the sliding speed from the above-mentioned rotational speed.
  • the rotational speed of the motor 39 will be described without considering the sliding speed.
  • the reduction gear 41 is connected to the output shaft of the motor 39 via a transmission gear (not shown).
  • the reducer 41 reduces the rotational speed of the motor 39 at a predetermined reduction ratio and transmits the reduced speed to the propeller shaft 49 of the CPP 31.
  • the reduction gear ratio of the reduction gear 41 is set to 7.69. Therefore, CPP31 is motor 39 rotates at a rotational speed of 130min -1 rotates at a rotation speed of 1000min -1, motor 39 is rotated at a rotational speed of 156min -1 rotates at a rotation speed of 1200min -1.
  • the CPP 31 is a propulsion unit that generates thrust in the direction of its rotation axis to obtain a propulsive force for propelling a ship.
  • the CPP 31 is a screw propeller that can freely change the pitch of the blades 31A. By changing the pitch of the blades 31A, an arbitrary forward / backward propulsive force is generated while maintaining a constant rotational direction and a constant rotational speed.
  • the CPP 31 includes a pitch change mechanism 31B.
  • the plurality of blades 31A included in the CPP 31 are swingably attached to the propeller boss by the pitch inflection mechanism 31B, and the pitch (inclination angle) of the CPP 31 is changed, that is, inflected by the pitch inflection mechanism 31B. Can change the pitch.
  • the pitch of the CPP 31 is inflected by the pitch in-segment mechanism 31B being controlled by a later-described CPP control unit 35B (an example of a pitch control unit of the present invention) included in the control device
  • the control device 35 controls the electric propulsion device 10 to control the propulsion force applied to the ship by the electric propulsion device 10, and executes a propulsion force control process described later. Specifically, the control device 35 sets a target value corresponding to the speed command signal based on the speed command signal (ship speed command signal) input from the steering handle 15 (an example of the control device of the present invention) of the ship. The pitch of the CPP 31 and the rotational speed of the engine 33 are controlled to achieve (the target pitch or the target rotational speed).
  • the control device 35 includes a microcomputer including a CPU, a ROM, a RAM, and the like, a main control board, and an arithmetic device such as a PLC. The propulsion control process is performed by the arithmetic device.
  • the control device 35 has a governor control unit 35A and a CPP control unit 35B.
  • the governor control unit 35A and the CPP control unit 35B are functional units that are realized by the arithmetic device executing a control program in the ROM in the control device 35.
  • the governor control unit 35A and the CPP control unit 35B may be realized by an integrated circuit such as an IC.
  • the control handle 35 is connected to the control device 35 by a signal line or the like.
  • the steering handle 15 also has four scales “DEAD SLOW (fine speed)”, “SLOW (low speed)” and “HALF (medium speed)” that indicate ship speed in both forward and reverse. "FULL (high speed)” is engraved.
  • an electric signal (telegraph signal) corresponding to each boat speed is inputted from the potentiometer provided on the steering handle 15 to the control device 35 through the signal line. . This electrical signal is the speed command signal.
  • the electric signal indicates a target value (target pitch or target number of revolutions) corresponding to the operation position of the steering handle 15, and the control device 35 controls the pitch of the CPP 31 and the engine 33 to achieve the target value. Control the rotational speed.
  • the target value is stored in a storage device such as a RAM of the control device 35.
  • a current signal in the range of 4 mA to 20 mA is output as the electrical signal from the steering handle 15 to the control device 35.
  • a 4 mA signal is output.
  • a first electric signal (4 mA to 10 mA) for instructing control in a first control mode described later according to the operation position, which will be described later A second electric signal (10 mA to 18 mA) for instructing control in the second control mode is output, and a third electric signal (18 mA to 20 mA) for supporting control in a third control mode described later is output. Be done.
  • the range (range) of the second electric signal for instructing control in the second control mode is an example of a reference range of the present invention.
  • the above-mentioned electric signal is a mere example, and the signal form is not restricted to what was mentioned above.
  • the governor control unit 35A predetermines the rotational speed of the engine 33 so that the generator 37 generates the AC power in the frequency band of the second frequency F2 (60 Hz) from the predetermined first frequency F1 (50 Hz). Control is performed within the engine speed range from the first set speed N1 (750 min -1 ) to the second set speed (900 min -1 ).
  • the governor control unit 35 ⁇ / b> A controls the engine 33 such that the rotational speed corresponds to a first control mode to a third control mode described later.
  • the governor control unit 35A changes the fuel rack position of the electronic governor 34 provided in the engine 33, and adjusts the injection amount of the fuel injection pump according to each control mode, thereby the engine 33. Is controlled within the engine speed range from the first set speed N1 to the second set speed (900 min.sup.- 1 ).
  • the CPP control unit 35B controls the blade 31A by driving the pitch change mechanism 31B so as to have an arbitrary pitch.
  • the blades 31A of the CPP 31 can be varied from the pitch 0 to ⁇ max.
  • the reference pitch of the blades 31A of the CPP 31 is ⁇ a.
  • the CPP control unit 35B adjusts the blades 31A in the range of pitch 0 to ⁇ max so that the pitch corresponds to a first control mode to a third control mode described later during forward control of the ship. In the reverse control of the ship, the CPP control unit 35B adjusts the blades 31A in the range of pitch - ⁇ max to 0.
  • the rotational speed of the engine 33 is maintained at the first set speed N1 and is rotated, and the pitch of the CPP 31 is controlled from the speed command from the steering handle 15 within the range of 0 to ⁇ a. It is a control mode controlled to become a target value according to a signal.
  • the boat speed in the range indicated by arrow D1 in FIG. 2 can be controlled.
  • the first set speed N1 can be arbitrarily determined, in the present embodiment, the first set speed N1 is a rotational speed at which the generator 37 can generate electric power of the first frequency F1 (750 min It is defined in -1 ).
  • the rotational speed of the engine 33 corresponds to the speed command signal according to the operation position of the steering handle 15 in the engine speed range from the first set speed N1 to the second set speed N2.
  • This control mode is a control mode in which the pitch of CPP 31 is fixed to the reference pitch ⁇ a.
  • the second set speed N2 is set to a rotational speed (900 min -1 ) used under the condition with the highest fuel efficiency under the operation condition that the ship usually uses during the voyage.
  • the rotational speed of the engine 33 is maintained at the second set speed N2 and rotated, and the pitch of the CPP 31 is the speed command signal from the steering handle 15 within the range of ⁇ a to ⁇ max. It is a control mode controlled to become a target value according to. In this third control mode, it is possible to control the boat speed in the range indicated by arrow D3 in FIG.
  • the controller 35 in the first control mode, maintains the rotational speed of the engine 33 at the first set speed N 1 while keeping the control handle 15 in position.
  • the pitch of CPP 31 is controlled to be the target pitch according to.
  • the governor control unit 35A controls the rotational speed of the engine 33 to be maintained at the first set speed N1
  • the CPP control unit 35B sets the target according to the position of the steering handle 15.
  • the pitch of CPP 31 is variably controlled to be the pitch.
  • FIG. 2 shows a marine characteristic curve L1 showing the relationship between the propeller rotational speed and the engine output in the electric propulsion device 10, and an isoship speed curve Vk showing the relationship between the propeller rotational speed, the engine output and the ship speed.
  • the marine characteristic curve L1 approximates a curve connecting the minimum points of the iso-ship speed curve Vk of the ship.
  • FIG. 3 is a view showing the correspondence among the target speed, the control state, the engine speed, the reduction ratio, the generator frequency, the propeller speed, and the blade angle (pitch) in the electric propulsion device 10.
  • the marine characteristic curve L1, the iso-ship speed curve Vk, and the like in FIG. 2 are the same as in FIGS. 5 and 6, and thus the description thereof is omitted.
  • the control device 35 maintains the pitch of the CPP 31 at the reference pitch ⁇ a while the marine characteristic curve L1 determined by the engine output of the engine 33 and the rotational speed of the CPP 31 (see FIG. 2)
  • the rotational speed of the engine 33 is controlled within the engine speed range (750 min.sup.- 1 to 900 min.sup.- 1 ) so that
  • the CPP control unit 35B controls the pitch of the CPP 31 so as to maintain the reference pitch ⁇ a
  • the governor control unit 35A controls the target rotational speed according to the position of the steering handle 15.
  • the rotational speed of the engine 33 is controlled within the engine speed range so as to follow the marine characteristic curve L1.
  • the control device 35 controls the pitch of the CPP 31 so as to achieve the target pitch according to the position of the steering handle 15, while maintaining the rotational speed of the engine 33 at the second set speed N2.
  • the governor control unit 35A controls the rotational speed of the engine 33 to be maintained at the second set speed N2
  • the CPP control unit 35B sets the target according to the position of the steering handle 15.
  • the pitch of CPP 31 is controlled to be the pitch.
  • the controller 35 controls the electronic governor 34 to maintain the rotational speed of the engine 33 at the first set speed N1 (750 min -1 ) when the steering handle 15 is in the neutral position. Further, the control device 35 changes the CPP 31 to the pitch 0.
  • the state controlled in this manner is referred to as a standby mode. In the standby mode, since the engine 33 is rotating at the first set speed N1, the generator 37 generates power of the first frequency F1 (50 Hz) that can be used as inboard power. Further, since the pitch of the CPP 31 is 0, the electric propulsion device 10 does not apply propulsion to the ship.
  • control device 35 When in the standby mode, when the steering handle 15 is operated from the neutral position to forward, the control device 35 starts controlling the rotational speed of the engine 33 and controlling the pitch of the CPP 31 so as to advance the ship. .
  • step S11 the control device 35 determines whether the current control mode is the first control mode. Such determination is performed based on the electric signal as the speed command signal output from the steering handle 15. For example, it is determined whether the speed command signal is the first electrical signal. If it is determined in step S11 that the control mode is the first control mode, the process proceeds to step S12.
  • step S12 the governor control unit 35A of the control device 35 performs feedback based on a detection signal from the speed sensor 24 so as to maintain the rotational speed of the engine 33 at a predetermined 750 min -1 (first set speed N1). Perform control (constant speed control).
  • the generator 37 generates AC power of a constant frequency 50 Hz (first frequency F1) corresponding to the constant rotation speed 750 mi, and receives the AC power, and the motor 39 rotates at 1000 min ⁇ 1 , As a result, the CPP 31 rotates at a rotational speed of 133 min -1 .
  • the CPP control unit 35B of the control device 35 variably controls the pitch of the CPP 31 within the range from 0 to ⁇ a so as to achieve the target pitch according to the position of the steering handle 15.
  • step S11 If it is determined in step S11 that the first control mode is not set, the process proceeds to step S14.
  • step S14 the control device 35 determines whether the current control mode is the second control mode. Such determination is performed based on the electric signal as the speed command signal output from the steering handle 15. For example, it is determined whether the speed command signal is the second electrical signal. If it is determined in step S15 that the control mode is the second control mode, the process proceeds to step S15.
  • step S15 the CPP control unit 35B of the control device 35 controls the pitch indirection mechanism 31B such that the pitch of the CPP 31 maintains the reference pitch ⁇ a.
  • the governor control unit 35A of the control device 35 controls the electronic governor 34 so as to achieve the target rotational speed according to the position of the steering handle 15, and the rotational speed of the engine 33 Control within the range of 900 min -1 .
  • the generator 37 generates AC power of a frequency corresponding to the rotational speed of the engine 33, and the AC power is supplied to the motor 39.
  • rotational speed of CPP31 is controlled within a range of 130min -1 ⁇ 156min -1.
  • step S17 the control device 35 determines that the current control mode is the third control mode, and the governor control unit 35A of the control device 35 sets the rotational speed of the engine 33 to 900 min -1 (predetermined). The speed is increased to the second set speed N2), and feedback control (constant speed control) is performed based on the detection signal from the speed sensor 24 so as to maintain 900 min ⁇ 1 .
  • the generator 37 generates AC power of a constant frequency 60 Hz (second frequency F2) corresponding to the constant rotation speed 900 mi, and receives the AC power, and the motor 39 rotates at 1200 min ⁇ 1 , Thus, the CPP 31 rotates at a rotational speed of 156 min -1 .
  • the CPP control unit 35B of the control device 35 variably controls the pitch of the CPP 31 within the range from ⁇ a to ⁇ max so as to achieve the target pitch according to the position of the steering handle 15.
  • step S11 When the steering handle 15 is returned to the neutral position after steps S13, S16, and S18, a series of thrust control processing ends, and when the control handle 15 is not returned to the neutral position, the processing from step S11 is repeated (S19) ).
  • the governor control unit 35A maintains the rotational speed of the engine 33 at the first set speed N1 (750 min -1 ) in the first control mode, and the CPP control unit 35B. Since the pitch of CPP 31 is variably controlled to be the target pitch, energy loss during navigation of the ship can be suppressed and efficiency can be improved in the first control mode, which is a low speed control area.
  • the CPP control unit 35B maintains the reference pitch ⁇ a, and the governor control unit 35A follows the marine characteristic curve L1 within the engine speed range. Is variably controlled to achieve the target rotational speed. For this reason, in the second control mode, by controlling the rotational speed of the engine 33 in the engine speed range while maintaining the pitch of the CPP 31 at the reference pitch ⁇ a, efficient propulsion control with low energy loss is realized. It is possible to realize.
  • the governor control unit 35A maintains the rotational speed of the engine 33 at the second set speed N2 (900 min -1 ), and the CPP control unit 35B performs the CPP 31 pitch Variable control is performed to achieve the target pitch.
  • the generator 37 does not generate power outside the range of 50 Hz to 60 Hz in all control modes of the first control mode, the second control mode, and the third control mode. Therefore, the power generated by the generator 37 can be directly supplied to the load device 58 used on board. That is, in the electric propulsion device 10, the generated power can be supplied to the load device 58 without providing an inverter or the like that performs frequency conversion.
  • the reduction ratio of the reduction gear 41 can be reduced as compared with the conventional configuration, and the reduction gear 41 can be miniaturized. As a result, the gear loss of the reduction gear is reduced, the reduction efficiency of the reduction gear 41 is improved, and the efficiency of the electric propulsion device 10 is improved.
  • the electric propulsion device 10 configured by one engine 33, one generator 37, one motor 39, and one CPP 31 is illustrated, but the present invention is not limited to this configuration. It is not limited.
  • the present invention can also be applied to a marine electric propulsion apparatus configured to rotationally drive the motor 39 using alternating current power generated by a plurality of engines 33 and generators 37 by a power generation engine.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • Ocean & Marine Engineering (AREA)
  • Power Engineering (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)
  • Control Of Eletrric Generators (AREA)

Abstract

The purpose of the present invention is to reduce energy loss occurring during navigation of a ship and to efficiently control propulsion force. Provided is an electric propulsion device (10), wherein in a first control mode, a governor control unit (35A) maintains the speed of an engine 33 at a first set speed N1 (750 min-1), and a CPP control unit (35B) variably controls the pitch of a CPP (31) so as to meet a target pitch. Also, in a second control mode, the CPP control unit (35B) maintains the CPP (31) at a reference pitch αa, and the governor control unit (35A) controls the speed of the engine (33) within an engine speed range from the first set speed N1 to a second set speed N2 (900 min-1)) so as to follow a characteristic curve (L1) for a ship.

Description

船舶用電気推進装置、船舶用電気推進装置に用いられる推進力制御装置Electric propulsion device for ships, propulsion control device used for electric propulsion device for ships
 本発明は、電動力を可変ピッチプロペラに供給して船舶を推進させる船舶用電気推進装置、及び前記船舶用電気推進装置に適用される推進力制御装置に関する。 The present invention relates to a marine vessel electric propulsion device for propelling a vessel by supplying an electric power to a variable pitch propeller, and a propulsion control device applied to the marine vessel electric propulsion device.
 船舶に備えられたプロペラを回転駆動させて船舶を推進させる推進装置として、内燃機関に連結された発電機の電力によって駆動する電動機の回転駆動力を得て前記プロペラを回転させる船舶用電気推進装置が知られている。例えば、特許文献1には、前記電動機の出力軸に可変ピッチプロペラ(controllable pitch propeller:CPP。以下、CPPと略称する。)が連結されており、CPPのピッチ(翼角)を調整することにより、船舶の推進力を増減する電気推進装置が開示されている。 As a propulsion device for propelling a ship by rotationally driving a propeller provided on the ship, a marine electric propulsion device for obtaining the rotational driving force of a motor driven by the electric power of a generator connected to an internal combustion engine to rotate the propeller It has been known. For example, in Patent Document 1, a variable pitch propeller (CPP; hereinafter abbreviated as CPP) is connected to the output shaft of the motor, and the pitch (blade angle) of CPP is adjusted by adjusting the CPP. And an electric propulsion device for increasing and decreasing the propulsion of the ship.
 船舶の主機関として用いられるディーゼルエンジンなどの内燃機関は、船舶の所謂舶用特性を考慮して、その定格出力などの仕様が決定される。一般に、縦軸を主機関の機関出力とし、横軸を船舶の船速としたときに、機関出力と船速との関係は3乗曲線で表される。この3乗曲線は前記舶用特性を示す曲線(以下、舶用特性曲線と称する場合がある。)として広く知られている。つまり、前記舶用特性とは、主機関の機関出力が船舶の船速の3乗に比例する関係をいう。なお、基準ピッチでのプロペラ回転数と船速とが概ね比例する関係にあることから、前記舶用特性曲線は、縦軸を主機関の機関出力、横軸をプロペラ回転数(又は主機関の回転数)とした3乗曲線で表される場合がある。 An internal combustion engine such as a diesel engine used as a main engine of a ship has specifications such as rated output and the like in consideration of so-called marine characteristics of the ship. Generally, when the vertical axis is the engine output of the main engine and the horizontal axis is the ship speed, the relationship between the engine output and the ship speed is represented by a cubic curve. This cubic curve is widely known as a curve showing the above-mentioned marine characteristics (hereinafter sometimes referred to as a marine characteristic curve). That is, the marine property means that the engine output of the main engine is proportional to the cube of the speed of the ship. Since the propeller speed at the reference pitch and the ship speed are in a roughly proportional relationship, the marine characteristic curve has the vertical axis as the engine output of the main engine and the horizontal axis as the propeller speed (or the rotational speed of the main engine). In some cases, it may be represented by a cubic curve.
 ここで、船舶の推進装置としてCPPを用いた場合の前記CPPの各ピッチ毎の舶用特性曲線の一例を図5に示す。図5では、縦軸を主機関の機関出力、横軸をプロペラ回転数としている。また、図5には、CPPの取り得るピッチαk(k=1,2,・・・,11)それぞれの舶用特性曲線を実線で示している。一般に、船舶は、実際の航海中に遭遇する種々の海象において効率よく運航することが望まれる。また、船舶は寿命が長く、経年劣化などの影響を受けて船体や主機関の性能が低下すると舶用特性も変化するが、船舶は、その舶用特性が変化した場合でも、その長い寿命中において総合的に効率よく運航できることが望まれる。図5の例では、船舶が航海中に常用する運航条件において最も燃費効率のよい条件(例えば、基準ピッチがαa、機関出力がPa、プロペラ回転数がNa)を満たすポイントT1をCPPのプロペラ設計点とし、このプロペラ設計点T1を通る舶用特性曲線L1を点線で示している。一般に、前記プロペラ設計点T1における機関出力Paやプロペラ回転数Naを考慮して、燃費効率のよい船速を得られるように、CPPの基準ピッチαaや直径、翼型などが設計される。 Here, an example of a marine characteristic curve for each pitch of the CPP when CPP is used as a ship propulsion device is shown in FIG. In FIG. 5, the vertical axis is the engine output of the main engine, and the horizontal axis is the propeller speed. Further, FIG. 5 shows the marine characteristic curve of each of the pitches α k (k = 1, 2,..., 11) that can be taken by CPP as a solid line. In general, it is desirable for vessels to operate efficiently in various sea conditions encountered during actual voyages. In addition, although the ship's life is long and the performance of the hull and the main engine declines due to the influence of aging and so on, the marine characteristics also change, but even if the ship's characteristics change, the ship's overall life is long It is desirable to be able to operate efficiently. In the example of FIG. 5, the propeller design of the CPP is a point T1 that satisfies the most fuel efficient condition (for example, the reference pitch is αa, the engine output is Pa, and the propeller rotational speed is Na) under operating conditions that the ship normally uses A marine characteristic curve L1 passing through the propeller design point T1 is indicated by a dotted line. Generally, in consideration of the engine output Pa and propeller rotational speed Na at the propeller design point T1, the reference pitch αa, the diameter, the wing shape, etc. of the CPP are designed so as to obtain a boat speed with good fuel efficiency.
 従来、CPPを用いた電気推進装置によって船舶の船速を制御する方法として、自動に船速を制御する自動船速制御装置(Automatic Speed Control:ASC)が知られている。自動船速制御装置は、海象が変化するなどして実際の船速が目標速度に対して変化した場合に、プロペラ回転数(主機関の回転数)又はCPPのピッチのいずれか一方、或いはプロペラ回転数及びピッチの両方を制御して、目標速度を保持するように制御する。図6は、図5に等船速曲線Vk(k=1,2,・・・)を重ねた図である。例えば、実際の船速が通常航行時の目標速度V2よりも低い船速Vsに低下した場合、プロペラ回転数を一定にしてピッチを変化させて船速を制御する場合は、図6において矢印D1に示すように船速が増大する。一方、ピッチを一定にしてプロペラ回転数を制御する場合は、図6の矢印D2に示すように、舶用特性曲線に沿って船速が増大する。 2. Description of the Related Art Conventionally, as a method of controlling the speed of a ship by an electric propulsion device using CPP, an automatic speed control (ASC) that automatically controls the speed of the ship is known. When the actual ship speed changes with respect to the target speed due to a change in sea conditions, etc., the automatic ship speed control device either the propeller rotation speed (the rotation speed of the main engine) or the CPP pitch, or the propeller Control both the number of revolutions and the pitch so as to maintain the target speed. FIG. 6 is a diagram where FIG. 5 is overlaid with an isoship speed curve Vk (k = 1, 2,...). For example, when the actual ship speed is reduced to a ship speed Vs lower than the target speed V2 at the time of normal navigation, the propeller speed is kept constant and the pitch is changed to control the ship speed. The ship speed increases as shown in. On the other hand, in the case where the propeller rotation speed is controlled with the pitch kept constant, the boat speed increases along the marine characteristic curve as shown by arrow D2 in FIG.
特開2007-131081号公報JP 2007-131081 A
 ところで、図6に示される等船速曲線Vkは、所定の船速となる機関出力とプロペラ回転数とのポイントを結んだ曲線であり、すり鉢状の曲線を描く。図6に示されるように、各等船速曲線において最も底の部分は燃費効率が最良であり、機関出力が最小となる点である。図6では、プロペラ設計点T1を通る舶用特性曲線L1は、等船速曲線Vkの各底部を結んだ曲線と概ね一致していることが分かる。図6に示されるように、例えばプロペラ回転数を一定(例えばNa)に維持してピッチを変更する制御が行われる場合、プロペラ回転数Naにおいては、等船速曲線Vkは、船速が低いほど右肩上がりの傾向を示し、船速が大きいほど右肩下がりの傾向を示す。しかしながら、従来の自動船速制御装置は、船速の異なる等船速曲線の特性に応じて船速制御を行うものではないため、取り得る制御手法によっては、船速制御時に燃料消費量の極端な増大を伴うおそれがある。一般に、機関出力は船速の3乗に比例することから、船速の増加分に対して3倍の機関出力の増加を要する場合は、燃料消費量も船速の増加分に対して略3倍となり、燃費効率が著しく悪くなるという問題が生じうる。 By the way, the iso-ship speed curve Vk shown in FIG. 6 is a curve connecting points of an engine output at which a predetermined boat speed is obtained and a propeller rotational speed, and draws a mortar-like curve. As shown in FIG. 6, the lowest part of each isospeed curve is the point where the fuel efficiency is the best and the engine output is the minimum. In FIG. 6, it can be seen that the marine characteristic curve L1 passing through the propeller design point T1 substantially matches the curve connecting the bottoms of the isoship speed curve Vk. As shown in FIG. 6, for example, when control is performed to maintain the propeller rotation speed constant (for example, Na) and change the pitch, the propeller speed Na is equal to the ship speed curve Vk at a low ship speed. The higher the boat speed, the lower the right. However, since the conventional automatic ship speed control device does not perform ship speed control according to the characteristics of the ship speed curve having different ship speeds, depending on the control method that can be taken, the fuel consumption at the time of ship speed control may be extreme. May be accompanied by Generally, since the engine output is proportional to the cube of the ship speed, if it is necessary to increase the engine output by a factor of 3 with respect to the increase in the ship speed, the fuel consumption is also approximately 3 for the increase in the ship speed. And the fuel efficiency may be significantly degraded.
 本発明は、前記事情に鑑みてなされたものであり、その目的は、船舶の航行時に生じるエネルギー損失を低減して効率の良い推進力制御を行うことが可能な船舶用電気推進装置、及び推進力制御装置を提供することにある。 The present invention has been made in view of the above-mentioned circumstances, and its object is to reduce the energy loss generated during the navigation of the ship and to perform the electric propulsion device for the ship capable of performing efficient propulsion control, and propulsion It is in providing a force control device.
(1) 本発明は、電動力を可変ピッチプロペラに供給して船舶を推進させる船舶用電気推進装置である。前記船舶用電気推進装置は、内燃機関の出力軸に発電機が接続されてなる発電機関と、前記発電機関が発電する交流電力によって回転駆動して前記可変ピッチプロペラに前記電動力を供給する電動機と、船舶の操縦装置から入力される速度指令信号に基づいて、前記速度指令信号に対応する目標値となるように、前記可変ピッチプロペラのピッチ及び前記内燃機関の回転速度を制御する制御装置と、を備える。
 前記制御装置は、予め定められた第1周波数から第2周波数までの周波数帯域の交流電力を発電するように前記内燃機関の回転速度を予め定められた第1設定速度から第2設定速度までの速度範囲内で制御する回転速度制御部と、前記可変ピッチプロペラのピッチを制御するピッチ制御部と、を有する。
 前記速度指令信号が予め定められた基準範囲外の場合に、前記回転速度制御部は、前記内燃機関の回転速度を前記第1設定速度又は前記第2設定速度のいずれかに維持し、前記ピッチ制御部は、前記可変ピッチプロペラを前記目標値に応じたピッチに制御する。また、前記速度指令信号が前記基準範囲内の場合に、前記ピッチ制御部は、前記可変ピッチプロペラのピッチを前記速度範囲に対応して予め定められた基準ピッチに維持し、前記回転速度制御部は、前記内燃機関の機関出力及び前記可変ピッチプロペラのプロペラ回転数により決定される舶用特性曲線に沿うように前記内燃機関を前記目標値に応じた回転速度に制御する。
(1) The present invention is an electric propulsion device for ships, which supplies electric power to a variable pitch propeller to promote the ship. The electric propulsion device for a ship includes a generator engine having a generator connected to an output shaft of an internal combustion engine, and an electric motor for rotationally driving by the AC power generated by the generator engine and supplying the electric power to the variable pitch propeller. And a control device for controlling the pitch of the variable pitch propeller and the rotational speed of the internal combustion engine so as to achieve a target value corresponding to the speed command signal based on a speed command signal input from a ship steering system. And.
The control device generates rotational speed of the internal combustion engine from a predetermined first set speed to a second set speed so as to generate AC power in a frequency band from a first predetermined frequency to a second frequency. It has a rotational speed control unit that controls within a speed range, and a pitch control unit that controls the pitch of the variable pitch propeller.
When the speed command signal is out of a predetermined reference range, the rotational speed control unit maintains the rotational speed of the internal combustion engine at either the first set speed or the second set speed, and the pitch The control unit controls the variable pitch propeller to a pitch according to the target value. Further, when the speed command signal is within the reference range, the pitch control unit maintains the pitch of the variable pitch propeller at a predetermined reference pitch corresponding to the speed range, and the rotation speed control unit The internal combustion engine is controlled to a rotational speed corresponding to the target value so as to follow a marine characteristic curve determined by the engine output of the internal combustion engine and the propeller rotational speed of the variable pitch propeller.
 一般に、船舶は、港湾内や特定の航路において速度が制限されている。したがって、船舶が港湾内を航行しているときに、船舶用電気推進装置は、その出力範囲において出力の低い領域でプロペラを回転駆動させる。一方、港湾を出て外洋を航行する場合は、船舶に速度制限は課せられない。そのため、船舶が外港に出た後に、船舶用電気推進装置は、その出力範囲において出力の比較的高い領域であって燃費効率の最もよい条件でプロペラを回転駆動させる。タグボートのように港湾内で作業する船舶を除き、多くの船舶は、港湾内を低出力で航行する時間よりも外洋において高出力で航行する時間のほうが長い。そのため、一般に、船舶における舶用特性は、外洋での航行を基準に定められている。
 本発明の船舶用電気推進装置では、船舶の使用状況に鑑みて、操縦装置からの速度指令信号が前記基準範囲外の場合に、前記制御装置の前記回転速度制御部は、前記内燃機関の回転速度を前記第1設定速度又は前記第2設定速度のいずれかに維持し、前記ピッチ制御部は、前記可変ピッチプロペラを前記目標値に応じたピッチに制御する。例えば、前記速度指令信号が前記基準範囲の下限値よりも下の場合に、前記回転速度制御部は、前記内燃機関の回転速度を前記第1設定速度に維持し、前記ピッチ制御部は、前記可変ピッチプロペラを前記目標値に応じたピッチに制御する。また、前記速度指令信号が前記基準範囲の上限値よりも上の場合に、前記回転速度制御部は、前記内燃機関の回転速度を前記第2設定速度に維持し、前記ピッチ制御部は、前記可変ピッチプロペラを前記目標値に応じたピッチに制御する。
 一般に、第1設定速度未満の速度領域では、内燃機関の回転速度による船速制御が難しく、制御できたとしても効率が悪くなることがある。このため、前記第1設定速度未満の速度領域では、前記回転速度を前記第1設定速度に維持しつつ、可変ピッチプロペラのピッチを制御することにより、エネルギー損失の低い効率の良い推進力制御を実現している。
 一方、前記速度指令信号が前記基準範囲内の場合に、前記制御装置の前記ピッチ制御部は、前記可変ピッチプロペラのピッチを前記速度範囲に対応して予め定められた基準ピッチに維持し、前記回転速度制御部は、前記内燃機関の機関出力及び前記可変ピッチプロペラのプロペラ回転数により決定される舶用特性曲線に沿うように前記内燃機関を前記目標値に応じた回転速度に制御する。前記速度範囲内では、内燃機関の回転速度による船速制御が容易であり、しかも燃費効率がよい。このため、前記速度範囲内では、可変ピッチプロペラを基準ピッチに維持しつつ、前記回転速度を前記速度範囲内で可変制御することにより、エネルギー損失の低い効率の良い推進力制御を実現している。
In general, ships are limited in speed in ports and on specific routes. Therefore, when the ship is navigating in the harbor, the ship's electric propulsion device rotationally drives the propeller in an area of low output in its output range. On the other hand, when sailing out of a port and sailing in the open sea, no speed limit is imposed on the ship. Therefore, after the ship leaves the outside port, the electric propulsion device for ship rotates the propeller under the condition where the output is relatively high in the output range and the fuel efficiency is the best. With the exception of vessels that work in harbors, such as tugs, many vessels travel at high power in the open ocean longer than they travel at low power in ports. Therefore, in general, the marine characteristics of a ship are determined on the basis of navigation in the open sea.
In the electric propulsion device for a ship according to the present invention, the rotational speed control unit of the control device controls the rotation of the internal combustion engine when the speed command signal from the steering device is out of the reference range in view of the use condition of the ship. The speed is maintained at either the first set speed or the second set speed, and the pitch control unit controls the variable pitch propeller at a pitch according to the target value. For example, when the speed command signal is lower than the lower limit value of the reference range, the rotational speed control unit maintains the rotational speed of the internal combustion engine at the first set speed, and the pitch control unit The variable pitch propeller is controlled to a pitch according to the target value. Further, when the speed command signal is higher than the upper limit value of the reference range, the rotational speed control unit maintains the rotational speed of the internal combustion engine at the second set speed, and the pitch control unit The variable pitch propeller is controlled to a pitch according to the target value.
In general, in the speed range lower than the first set speed, it is difficult to control the boat speed by the rotational speed of the internal combustion engine, and even if it can be controlled, the efficiency may be deteriorated. For this reason, in a speed range lower than the first set speed, controlling the pitch of the variable pitch propeller while maintaining the rotational speed at the first set speed enables efficient propulsion control with low energy loss. It has been realized.
On the other hand, when the speed command signal is within the reference range, the pitch control unit of the control device maintains the pitch of the variable pitch propeller at a predetermined reference pitch corresponding to the speed range. The rotational speed control unit controls the internal combustion engine to a rotational speed according to the target value so as to follow a marine characteristic curve determined by the engine output of the internal combustion engine and the propeller rotational speed of the variable pitch propeller. Within the above speed range, boat speed control by the rotational speed of the internal combustion engine is easy, and fuel efficiency is good. For this reason, within the speed range, efficient control of propulsion power with low energy loss is realized by variably controlling the rotational speed within the speed range while maintaining the variable pitch propeller at the reference pitch. .
(2) 前記周波数帯域は、商用電源として供給される電源周波数の許容範囲である。 (2) The frequency band is an allowable range of the power supply frequency supplied as a commercial power supply.
 これにより、発電機関から出力される電力は、周波数変換しなくても商用電源として用いることができる。このため、その電力母線から、船内で用いられる電動駆動される負荷機器に直接に電力を供給することができる。つまり、本発明の船舶用電気推進装置において、周波数変換を行うインバータなどを設けることなく、前記負荷機器に電力を供給可能である。 Thus, the power output from the power generation engine can be used as a commercial power source without frequency conversion. Therefore, power can be directly supplied from the power bus to the electrically driven load device used in the ship. That is, in the electric propulsion device for ships according to the present invention, power can be supplied to the load device without providing an inverter or the like that performs frequency conversion.
(3) なお、前記第1周波数は50Hzであり、前記第2周波数は60Hzであることが好ましい。 (3) Preferably, the first frequency is 50 Hz and the second frequency is 60 Hz.
 一般に、汎用品としての電磁接触器や遮断器など電路保護器や、船内で用いられる電気機器は、50Hzから60Hzの交流電力で駆動するように標準設計されており、それ以外の周波数(例えば40Hz)の交流電力での駆動は保証されていない。そのため、前記周波数帯域が、50Hz~60Hzであれば、電路保護器や電気機器として、汎用性が高く安価なものを用いることができる。 In general, general-purpose electromagnetic contactors, circuit breakers such as circuit breakers, and electrical devices used in ships are standardly designed to be driven by AC power of 50 Hz to 60 Hz, and other frequencies (for example, 40 Hz) Driving with AC power is not guaranteed. Therefore, if the frequency band is 50 Hz to 60 Hz, it is possible to use an inexpensive and highly versatile electric circuit protector or an electric device.
(4) また、前記舶用特性曲線は、前記船舶の等船速曲線の最小点を結ぶ曲線に近似していることが好ましい。 (4) Moreover, it is preferable that the said marine characteristic curve approximates to the curve which ties the minimum of the iso-ship speed curve of the said ship.
(5) また、本発明は、内燃機関の出力軸に発電機が接続されてなる発電機関と、前記発電機関が発電する交流電力によって回転駆動して可変ピッチプロペラに電動力を供給する電動機と、を備え、前記電動力を前記可変ピッチプロペラに供給して船舶を推進させる船舶用電気推進装置に適用され、船舶の操縦装置から入力される速度指令信号に基づいて、前記速度指令信号に対応する目標値となるように、前記可変ピッチプロペラのピッチ及び前記内燃機関の回転速度を制御する推進力制御装置である。
 前記推進力制御装置は、予め定められた第1周波数から第2周波数までの周波数帯域の交流電力を発電するように前記内燃機関の回転速度を予め定められた第1設定速度から第2設定速度までの速度範囲内で制御する回転速度制御部と、前記可変ピッチプロペラのピッチを制御するピッチ制御部と、を有する。
 前記速度指令信号が予め定められた基準範囲外の場合に、前記回転速度制御部は、前記内燃機関の回転速度を前記第1設定速度又は前記第2設定速度のいずれかに維持し、前記ピッチ制御部は、前記可変ピッチプロペラを前記目標値に応じたピッチに制御する。前記速度指令信号が前記基準範囲内の場合に、前記ピッチ制御部は、前記可変ピッチプロペラのピッチを前記速度範囲に対応して予め定められた基準ピッチに維持し、前記回転速度制御部は、前記内燃機関の機関出力及び前記可変ピッチプロペラのプロペラ回転数により決定される舶用特性曲線に沿うように前記内燃機関を前記目標値に応じた回転速度に制御する。
(5) Further, according to the present invention, there is provided a generator engine having a generator connected to an output shaft of an internal combustion engine, and an electric motor which is driven to rotate by AC power generated by the generator engine and supplies electric power to a variable pitch propeller. , Applied to the electric propulsion device for a ship that propels the ship by supplying the electric power to the variable pitch propeller, and responds to the speed command signal based on the speed command signal input from the steering device of the ship. The propulsive force control device controls the pitch of the variable pitch propeller and the rotational speed of the internal combustion engine so as to achieve the target value.
The propulsion control device generates rotational speed of the internal combustion engine from a first predetermined speed to a second predetermined speed so as to generate AC power in a frequency band from a first predetermined frequency to a second frequency. And a pitch control unit for controlling the pitch of the variable pitch propeller.
When the speed command signal is out of a predetermined reference range, the rotational speed control unit maintains the rotational speed of the internal combustion engine at either the first set speed or the second set speed, and the pitch The control unit controls the variable pitch propeller to a pitch according to the target value. When the speed command signal is within the reference range, the pitch control unit maintains the pitch of the variable pitch propeller at a predetermined reference pitch corresponding to the speed range, and the rotational speed control unit is configured to: The internal combustion engine is controlled to a rotational speed according to the target value so as to follow a marine characteristic curve determined by the engine output of the internal combustion engine and the propeller rotational speed of the variable pitch propeller.
 本発明によれば、船舶用電気推進装置において、船舶の航行時に生じるエネルギー損失を低減して効率の良い推進力制御を行うことが可能である。 According to the present invention, in the electric propulsion device for ships, it is possible to perform efficient propulsion control by reducing the energy loss generated at the time of navigation of the ships.
図1は、本発明の実施形態に係る電気推進装置の概略構成を模式的に示す構成図である。FIG. 1 is a configuration diagram schematically showing a schematic configuration of an electric propulsion device according to an embodiment of the present invention. 図2は、電気推進装置におけるプロペラ回転数と機関出力との関係を示す舶用特性曲線、及びプロペラ回転数と機関出力と船速との関係を示す等船速曲線を示すグラフ図である。FIG. 2 is a graph showing a marine characteristic curve showing the relationship between the propeller rotational speed and the engine output in the electric propulsion device, and a ship speed curve showing the relationship between the propeller rotational speed, the engine output and the ship speed. 図3は、電気推進装置における、船速指令、制御モード(制御状態)、エンジン回転数、発電機周波数、電動機回転数、減速比、プロペラ回転数、ピッチ(翼角)それぞれの対応関係を示す図である。FIG. 3 shows the correspondence among the boat speed command, control mode (control state), engine speed, generator frequency, motor speed, reduction ratio, propeller speed, pitch (blade angle) in the electric propulsion device. FIG. 図4は、電気推進装置の制御装置によって実行される推進力制御処理の手順の一例を示すフローチャートである。FIG. 4 is a flow chart showing an example of a procedure of propulsion control processing executed by the controller of the electric propulsion device. 図5は、従来の制御方法を説明するための舶用特性曲線を示すグラフ図である。FIG. 5 is a graph showing a marine characteristic curve for explaining a conventional control method. 図6は、従来の制御方法を説明するための舶用特性曲線及び等船速曲線を示すグラフ図である。FIG. 6 is a graph showing a marine characteristic curve and an isoship speed curve for explaining a conventional control method.
 以下、適宜図面を参照しながら、本発明の実施形態について説明する。なお、以下の実施形態は、本発明を具体化した一例にすぎず、本発明の技術的範囲を限定するものではない。 Hereinafter, embodiments of the present invention will be described with reference to the drawings as appropriate. The following embodiments are merely examples embodying the present invention, and do not limit the technical scope of the present invention.
 本発明の実施形態に係る電気推進装置10(本発明の船舶用電気推進装置の一例)は、船舶の推進機構である可変ピッチプロペラ31(以下「CPP31」と略称する。)を電動機39による電気駆動力によって回転させて船舶の推進力を発生させるものである。この電気推進装置10は、図1に示されるように、ディーゼルエンジン33(本発明の内燃機関の一例、以下「エンジン33」と略称する。)と、発電機37(本発明の発電機の一例)と、電動機39(本発明の電動機の一例)と、減速機41と、電気推進装置10の動作を統括的に制御する制御装置35(本発明の制御装置、推進力制御装置の一例)と、を備えている。なお、エンジン33と発電機37とによって本発明の発電機関が実現される。 The electric propulsion device 10 according to the embodiment of the present invention (an example of the electric propulsion device for a ship according to the present invention) comprises a variable pitch propeller 31 (hereinafter abbreviated as "CPP 31") which is a propulsion mechanism of a ship. It is rotated by the driving force to generate propulsion of the ship. As shown in FIG. 1, the electric propulsion device 10 includes a diesel engine 33 (an example of an internal combustion engine according to the present invention, hereinafter abbreviated as “engine 33”), and a generator 37 (an example of a generator according to the present invention). And an electric motor 39 (an example of the electric motor according to the present invention), a reduction gear 41, and a control device 35 (an example of a control device according to the present invention and a propulsion control apparatus) that integrally controls the operation of the electric propulsion device 10. And. The engine 33 and the generator 37 realize the power generation engine of the present invention.
 ここで、本発明の船舶用電気推進装置は、CPPを用いて推進する全ての船舶に適用可能であり、例えば、コンテナ船やタンカーなどの貨物船、フェリーや客船などの旅客船、海洋調査船などのような海上作業を行う特殊船、航海練習船、漁業に用いられる漁船などの船舶に幅広く適用可能である。 Here, the electric propulsion device for ships according to the present invention is applicable to all ships promoted using CPP, and, for example, cargo ships such as container ships and tankers, passenger ships such as ferries and passenger ships, marine research ships, etc. It can be widely applied to vessels such as special vessels that carry out sea operations like this, navigation training vessels, and fishing boats used for fishing.
 エンジン33は、船舶において発電機37に回転駆動力を供給する駆動源として使用されるものであり、例えば、機関出力が数百kW~数千kWの大型のディーゼルエンジンである。エンジン33には、電子ガバナ34が設けられている。電子ガバナ34は、制御装置35が備えるガバナ制御部35A(本発明の回転速度制御部の一例)によって制御される。具体的には、電子ガバナ34は、ガバナ制御部35Aから入力された信号に応じて燃料ラック位置を変更して、エンジン33の燃料噴射ポンプの噴射量を調整する。これにより、エンジン33の回転速度が変更される。また、エンジン33には、エンジン33の回転速度を検知する速度センサー24が設けられている。速度センサー24によって検知された速度信号は制御装置35にフィードバックされる。なお、本実施形態では、内燃機関の一例としてエンジン33を例示するが、これに限られず、エンジン33に代えてガスエンジンやガスタービンなどのように、回転駆動力を出力可能な内燃機関であれば様々なタイプの機関が適用可能である。また、速度センサー24は、例えば発電機37の発電周波数から速度を検知するものでもよい。 The engine 33 is used as a drive source for supplying rotational drive power to the generator 37 in a ship, and is, for example, a large diesel engine having an engine output of several hundred kW to several thousand kW. The engine 33 is provided with an electronic governor 34. The electronic governor 34 is controlled by a governor control unit 35A (an example of a rotational speed control unit of the present invention) included in the control device 35. Specifically, the electronic governor 34 changes the fuel rack position according to the signal input from the governor control unit 35A, and adjusts the injection amount of the fuel injection pump of the engine 33. Thereby, the rotational speed of the engine 33 is changed. Further, the engine 33 is provided with a speed sensor 24 for detecting the rotational speed of the engine 33. The velocity signal detected by the velocity sensor 24 is fed back to the controller 35. In the present embodiment, the engine 33 is illustrated as an example of the internal combustion engine, but the invention is not limited thereto. An internal combustion engine capable of outputting rotational driving force like a gas engine or a gas turbine instead of the engine 33 For example, various types of institutions are applicable. Further, the speed sensor 24 may detect the speed from the power generation frequency of the generator 37, for example.
 発電機37は、エンジン33の出力軸48に接続されている。発電機37の入力軸は、エンジン33の出力軸に図示しないカップリング(軸継ぎ手)によって直接に連結されており、エンジン33の出力軸48の回転駆動力がそのままダイレクトに発電機37に伝達される。発電機37は、エンジン33の出力軸48から伝達された回転駆動力を受けて回転し、その回転速度に応じた周波数の交流電力を発電するものである。発電機37は、具体的には、8極3相の同期発電機である。本実施形態では、極数が8極の発電機37に対して、エンジン33の回転速度が750min-1(=第1設定速度N1)から900min-1(=第2設定速度N2)までの機関速度範囲内となるように制御装置35によって回転制御される。 The generator 37 is connected to the output shaft 48 of the engine 33. The input shaft of the generator 37 is directly connected to the output shaft of the engine 33 by a coupling (shaft joint) (not shown), and the rotational driving force of the output shaft 48 of the engine 33 is directly transmitted to the generator 37 as it is. Ru. The generator 37 receives the rotational driving force transmitted from the output shaft 48 of the engine 33 to rotate, and generates AC power of a frequency according to the rotational speed. Specifically, the generator 37 is an 8-pole 3-phase synchronous generator. In this embodiment, the engine with respect to the generator 37 of the number of poles is eight poles, the rotational speed of the engine 33 is 750min -1 (= first set speed N1) to 900 min -1 (= second set speed N2) The rotation is controlled by the controller 35 so as to be within the speed range.
 ここで、一般に、軸回転数Nと周波数fと極数Pとの間には、N=120f/P(min-1)の関係があるため、前記機関速度範囲(750min-1~900min-1)内でエンジン33の回転速度が制御されることによって、発電機37は、周波数fが50Hz(=第1周波数F1)から60Hz(=第2周波数F2)の周波数帯域の範囲内の交流電力を発電して出力する。具体的には、エンジン33の回転速度が750min-1のときに発電機37は50Hzの交流電力を発電し、エンジン33の回転速度が900min-1のときに発電機37は60Hzの交流電力を発電する。 Here, in general, there is a relationship of N = 120 f / P (min −1 ) between the shaft rotational speed N, the frequency f, and the number of poles P, so the engine speed range (750 min −1 to 900 min −1 ) By controlling the rotational speed of the engine 33, the generator 37 generates AC power within a frequency range of 50 Hz (= first frequency F1) to 60 Hz (= second frequency F2). Generate electricity and output. Specifically, the generator 37 when the rotational speed of the engine 33 is 750Min -1 is generating the AC power of 50 Hz, the AC power of the generator 37 is 60Hz when the rotational speed of the engine 33 is 900 min -1 Generate electricity.
 発電機37の出力側は、断路器54を介して共通の電力母線に接続されている。そのため、発電機37で発電された交流電力は、断路器54が閉にされた状態で前記電力母線に流れ込む。 The output side of the generator 37 is connected to a common power bus via the disconnector 54. Therefore, the alternating current power generated by the generator 37 flows into the power bus while the disconnector 54 is closed.
 前記電力母線から電動機39に送配電用の電力ケーブルなどの給電電路51を介して電力が供給される。前記電力母線から電動機39に至る給電電路51には、過電流から回路や機器を保護するために、ACB(Air Circuit Breaker:低圧気中遮断器)やMCCB(Molded Case Circuit Breaker)などの遮断器が設けられている。 Electric power is supplied from the power bus to the electric motor 39 via a feeder 51 such as a power cable for transmission and distribution. In the feed line 51 extending from the power bus to the motor 39, a circuit breaker such as ACB (Air Circuit Breaker) or MCCB (Molded Case Circuit Breaker) in order to protect circuits and devices from excessive current. Is provided.
 また、前記電力母線から並列して、給電電路51とは別の給電電路52が設けられている。給電電路52は、船舶に用いられる電動駆動される負荷機器58に電力を供給するためのものである。負荷機器58は、例えば、船舶に用いられる電動ポンプや電動弁、モーター、操縦装置、警報装置など、種々の電気機器が該当する。また、負荷機器58は、例えば、船内電源に接続して用いられる電気機器が該当する。 Further, a feed line 52 different from the feed line 51 is provided in parallel with the power bus. The feeder line 52 is for supplying power to the motor-driven load device 58 used on a ship. The load device 58 corresponds to, for example, various electric devices such as an electric pump, a motor-operated valve, a motor, a steering device, an alarm device, etc. used for a ship. Moreover, the load apparatus 58 corresponds to, for example, an electric apparatus used by being connected to an in-board power supply.
 なお、本実施形態では、給電電路51,52のいずれにも、発電機37によって発電された交流電力の周波数を別の周波数に変換するインバータなどの周波数変換装置は設けられていない。 In the present embodiment, neither of the feeders 51, 52 is provided with a frequency conversion device such as an inverter for converting the frequency of the AC power generated by the generator 37 into another frequency.
 ところで、前記電力母線や給電電路51,52に接続される開閉器や負荷機器58は、商業電源の電源周波数に適合するように設計されている。日本や諸外国では、50Hz及び60Hzの商用電源が提供されている。つまり、商用電源として供給される電源周波数の許容範囲は、50Hzから60Hzの範囲である。本実施形態では、上述したように、エンジン33の回転速度が750min-1から900min-1までの間でしか制御されないため、発電機37の周波数の変動は50Hzから60Hzとなる。つまり、発電機37は、周波数fが50Hzから60Hzの周波数帯域の交流電力を発電する。そのため、前記電力母線や給電電路51,52に接続される開閉器や遮断器などの電路保護器、並びに、給電電路52から電力供給を受ける負荷機器58は、50Hzから60Hzの交流電力で動作するように標準設計された汎用性の高い安価なものが適用可能である。 By the way, the switch and load device 58 connected to the power bus and the feeders 51 and 52 are designed to match the power supply frequency of a commercial power supply. In Japan and other countries, 50 Hz and 60 Hz commercial power supplies are provided. That is, the allowable range of the power supply frequency supplied as commercial power is in the range of 50 Hz to 60 Hz. In the present embodiment, as described above, since the rotational speed of the engine 33 is controlled only between 750 min -1 and 900 min -1 , the fluctuation of the frequency of the generator 37 is 50 Hz to 60 Hz. That is, the generator 37 generates AC power in the frequency band of 50 Hz to 60 Hz. Therefore, an electric path protector such as a switch or a circuit breaker connected to the electric power bus or the electric supply lines 51, 52, and the load device 58 which receives electric power supply from the electric supply line 52 operate with AC power of 50 Hz to 60 Hz. A versatile and inexpensive one designed as standard is applicable.
 電動機39は、入力された所定の周波数の交流電力によって回転駆動するものである。具体的には、電動機39は、6極のかご形の回転子を利用した所謂かご形三相誘導電動機である。電動機39は、給電電路51または給電電路52の何れかの電路を通って給電された交流電力が入力されると、入力された交流電力の周波数に応じた回転速度で回転駆動する。本実施形態では、電動機39は、50Hzの交流電力が入力されることにより1000min-1の回転速度で回転し、60Hzの交流電力が入力されることにより1200min-1の回転速度で回転する。なお、誘導電動機においては、回転子の回転速度には滑りが生じるため、電動機39の出力軸の実際の回転速度は、上述した回転速度に対して滑り速度を減じた速度となる。以下においては、説明の便宜上、電動機39の回転速度については前記滑り速度を考慮せずに説明する。 The motor 39 is rotationally driven by the input AC power of a predetermined frequency. Specifically, the motor 39 is a so-called squirrel cage three-phase induction motor using a six-pole cage rotor. The motor 39 is rotationally driven at a rotational speed according to the frequency of the input AC power when the AC power supplied through the power supply path 51 or the power supply path 52 is input. In this embodiment, the motor 39 is rotated at a rotational speed of 1000min -1 by AC power 50Hz is input, rotates at a rotational speed of 1200Min -1 by AC power 60Hz is input. In the induction motor, slippage occurs in the rotational speed of the rotor, so the actual rotational speed of the output shaft of the motor 39 is a speed obtained by subtracting the sliding speed from the above-mentioned rotational speed. In the following, for convenience of explanation, the rotational speed of the motor 39 will be described without considering the sliding speed.
 減速機41は、図示しない伝達ギヤを介して電動機39の出力軸に連結されている。減速機41は、電動機39の回転速度を所定の減速比で減速してCPP31のプロペラ軸49に伝達する。本実施形態では、減速機41の減速比は7.69に設定されている。このため、CPP31は、電動機39が1000min-1の回転速度で回転すると130min-1の回転速度で回転し、電動機39が1200min-1の回転速度で回転すると156min-1の回転速度で回転する。 The reduction gear 41 is connected to the output shaft of the motor 39 via a transmission gear (not shown). The reducer 41 reduces the rotational speed of the motor 39 at a predetermined reduction ratio and transmits the reduced speed to the propeller shaft 49 of the CPP 31. In the present embodiment, the reduction gear ratio of the reduction gear 41 is set to 7.69. Therefore, CPP31 is motor 39 rotates at a rotational speed of 130min -1 rotates at a rotation speed of 1000min -1, motor 39 is rotated at a rotational speed of 156min -1 rotates at a rotation speed of 1200min -1.
 CPP31は、その回転軸方向に推力を生じさせて船舶を推進させる推進力を得る推進機である。CPP31は、羽根31Aのピッチを自在に変更することができるスクリュープロペラである。羽根31Aのピッチを変えることにより、一定の回転方向及び一定の回転数のままで、任意の前後方向の推進力を生じさせる。CPP31は、ピッチ変節機構31Bを備えている。CPP31が備える複数の羽根31Aは、ピッチ変節機構31Bによってプロペラボスに対して揺動自在に装着されており、ピッチ変節機構31BによってCPP31のピッチ(翼角)を変化、つまり変節させことにより、CPP31のピッチを変化させることができる。CPP31のピッチは、制御装置35が備える後述のCPP制御部35B(本発明のピッチ制御部の一例)によってピッチ変節機構31Bが制御されることによって変節される。 The CPP 31 is a propulsion unit that generates thrust in the direction of its rotation axis to obtain a propulsive force for propelling a ship. The CPP 31 is a screw propeller that can freely change the pitch of the blades 31A. By changing the pitch of the blades 31A, an arbitrary forward / backward propulsive force is generated while maintaining a constant rotational direction and a constant rotational speed. The CPP 31 includes a pitch change mechanism 31B. The plurality of blades 31A included in the CPP 31 are swingably attached to the propeller boss by the pitch inflection mechanism 31B, and the pitch (inclination angle) of the CPP 31 is changed, that is, inflected by the pitch inflection mechanism 31B. Can change the pitch. The pitch of the CPP 31 is inflected by the pitch in-segment mechanism 31B being controlled by a later-described CPP control unit 35B (an example of a pitch control unit of the present invention) included in the control device 35.
 制御装置35は、電気推進装置10を制御して、電気推進装置10が船舶に付与する推進力を制御するものであり、後述の推進力制御処理を実行する。具体的には、制御装置35は、船舶の操縦ハンドル15(本発明の操縦装置の一例)から入力される速度指令信号(船速指令信号)に基づいて、前記速度指令信号に対応する目標値(目標ピッチ、又は目標回転数)になるようにCPP31のピッチ及びエンジン33の回転速度を制御する。制御装置35は、CPUやROM、RAMなどによって構成されたマイクロコンピュータやメイン制御ボード、PLCなどの演算装置を有しており、この演算装置によって前記推進力制御処理が実行される。 The control device 35 controls the electric propulsion device 10 to control the propulsion force applied to the ship by the electric propulsion device 10, and executes a propulsion force control process described later. Specifically, the control device 35 sets a target value corresponding to the speed command signal based on the speed command signal (ship speed command signal) input from the steering handle 15 (an example of the control device of the present invention) of the ship. The pitch of the CPP 31 and the rotational speed of the engine 33 are controlled to achieve (the target pitch or the target rotational speed). The control device 35 includes a microcomputer including a CPU, a ROM, a RAM, and the like, a main control board, and an arithmetic device such as a PLC. The propulsion control process is performed by the arithmetic device.
 制御装置35は、ガバナ制御部35A及びCPP制御部35Bを有する。ガバナ制御部35A及びCPP制御部35Bは、制御装置35において前記演算装置が前記ROM内の制御プログラムを実行することによって実現される機能部である。なお、ガバナ制御部35A及びCPP制御部35Bは、ICなどの集積回路によって実現されるものであってもよい。 The control device 35 has a governor control unit 35A and a CPP control unit 35B. The governor control unit 35A and the CPP control unit 35B are functional units that are realized by the arithmetic device executing a control program in the ROM in the control device 35. The governor control unit 35A and the CPP control unit 35B may be realized by an integrated circuit such as an IC.
 制御装置35には、操縦ハンドル15が信号線などによって接続されている。操縦ハンドル15には、「NEUTRAL(中立)」の目盛のほかに、前進及び後進ともに、船速を示す4つの目盛「DEAD SLOW(微速)」「SLOW(低速)」「HALF(中速)」「FULL(高速)」が刻まれている。操縦ハンドル15が前記目盛の範囲を操作されることにより、操縦ハンドル15に設けられたポテンショメーターから各船速に応じた電気信号(テレグラフ信号)が前記信号線を通って制御装置35に入力される。この電気信号が前記速度指令信号である。この電気信号は、操縦ハンドル15の操作位置に応じた目標値(目標ピッチ、又は目標回転数)を示すものであり、制御装置35は、前記目標値となるようにCPP31のピッチ及びエンジン33の回転速度を制御する。前記目標値は、制御装置35のRAMなどの記憶装置に記憶される。 The control handle 35 is connected to the control device 35 by a signal line or the like. In addition to the scale of "NEUTRAL (neutral)", the steering handle 15 also has four scales "DEAD SLOW (fine speed)", "SLOW (low speed)" and "HALF (medium speed)" that indicate ship speed in both forward and reverse. "FULL (high speed)" is engraved. When the steering handle 15 is operated within the range of the scale, an electric signal (telegraph signal) corresponding to each boat speed is inputted from the potentiometer provided on the steering handle 15 to the control device 35 through the signal line. . This electrical signal is the speed command signal. The electric signal indicates a target value (target pitch or target number of revolutions) corresponding to the operation position of the steering handle 15, and the control device 35 controls the pitch of the CPP 31 and the engine 33 to achieve the target value. Control the rotational speed. The target value is stored in a storage device such as a RAM of the control device 35.
 本実施形態では、操縦ハンドル15から制御装置35に、前記電気信号として、4mA~20mAの範囲の電流信号が出力される。例えば、操縦ハンドル15中立位置にあるときは4mAの信号が出力される。また、中立位置から前進側へ操縦ハンドル15が操作されると、その操作位置に応じて、後述する第1制御モードでの制御を指示するための第1電気信号(4mA~10mA)、後述する第2制御モードでの制御を指示するための第2電気信号(10mA~18mA)が出力され、後述する第3制御モードでの制御を支持するための第3電気信号(18mA~20mA)が出力される。ここで、前記第2制御モードでの制御を指示するための前記第2電気信号のレンジ(範囲)が、本発明の基準範囲の一例である。なお、上述の電気信号は単なる一例であり、その信号形態は上述したものに限られない。 In the present embodiment, a current signal in the range of 4 mA to 20 mA is output as the electrical signal from the steering handle 15 to the control device 35. For example, when the steering wheel 15 is in the neutral position, a 4 mA signal is output. Further, when the steering handle 15 is operated from the neutral position to the forward side, a first electric signal (4 mA to 10 mA) for instructing control in a first control mode described later according to the operation position, which will be described later A second electric signal (10 mA to 18 mA) for instructing control in the second control mode is output, and a third electric signal (18 mA to 20 mA) for supporting control in a third control mode described later is output. Be done. Here, the range (range) of the second electric signal for instructing control in the second control mode is an example of a reference range of the present invention. In addition, the above-mentioned electric signal is a mere example, and the signal form is not restricted to what was mentioned above.
 ガバナ制御部35Aは、予め定められた前記第1周波数F1(50Hz)から前記第2周波数F2(60Hz)の周波数帯域の交流電力を発電機37が発電するようにエンジン33の回転速度を予め定められた前記第1設定速度N1(750min-1)から第2設定速度(900min-1)までの前記機関速度範囲内で制御する。ガバナ制御部35Aは、後述の第1制御モード乃至第3制御モードに応じた回転速度となるようにエンジン33を制御する。具体的には、ガバナ制御部35Aは、エンジン33に設けられた電子ガバナ34の燃料ラック位置を変更して、前記各制御モードに応じて燃料噴射ポンプの噴射量を調整することにより、エンジン33の回転速度を前記第1設定速度N1から第2設定速度(900min-1)までの前記機関速度範囲内で制御する。 The governor control unit 35A predetermines the rotational speed of the engine 33 so that the generator 37 generates the AC power in the frequency band of the second frequency F2 (60 Hz) from the predetermined first frequency F1 (50 Hz). Control is performed within the engine speed range from the first set speed N1 (750 min -1 ) to the second set speed (900 min -1 ). The governor control unit 35 </ b> A controls the engine 33 such that the rotational speed corresponds to a first control mode to a third control mode described later. Specifically, the governor control unit 35A changes the fuel rack position of the electronic governor 34 provided in the engine 33, and adjusts the injection amount of the fuel injection pump according to each control mode, thereby the engine 33. Is controlled within the engine speed range from the first set speed N1 to the second set speed (900 min.sup.- 1 ).
 CPP制御部35Bは、任意のピッチになるようにピッチ変節機構31Bを駆動させて羽根31Aを制御する。本実施形態では、CPP31の羽根31Aは、ピッチ0~αmaxまで変化させることができる。ここで、CPP31の羽根31Aの基準ピッチをαaとする。本実施形態では、CPP制御部35Bは、船舶の前進制御時に、後述の第1制御モード乃至第3制御モードに応じたピッチとなるように、ピッチ0~αmaxの範囲で羽根31Aを調節する。なお、船舶の後進制御時には、CPP制御部35Bは、ピッチ-αmax~0の範囲で羽根31Aを調節する。 The CPP control unit 35B controls the blade 31A by driving the pitch change mechanism 31B so as to have an arbitrary pitch. In the present embodiment, the blades 31A of the CPP 31 can be varied from the pitch 0 to αmax. Here, the reference pitch of the blades 31A of the CPP 31 is αa. In the present embodiment, the CPP control unit 35B adjusts the blades 31A in the range of pitch 0 to αmax so that the pitch corresponds to a first control mode to a third control mode described later during forward control of the ship. In the reverse control of the ship, the CPP control unit 35B adjusts the blades 31A in the range of pitch -αmax to 0.
 ここで、前記第1制御モードは、エンジン33の回転速度を前記第1設定速度N1に維持して回転させ、CPP31のピッチを、0からαaの範囲内で、操縦ハンドル15からの前記速度指令信号に応じた目標値となるように制御する制御モードである。この第1制御モードにおいて、図2の矢印D1に示す範囲の船速を制御可能である。なお、前記第1設定速度N1は任意に決定することができるが、本実施形態では、前記第1設定速度N1は、発電機37において前記第1周波数F1の電力を発電可能な回転速度(750min-1)に定められている。また、前記第2制御モードは、エンジン33の回転速度を前記第1設定速度N1から前記第2設定速度N2までの前記機関速度範囲で操縦ハンドル15の操作位置に応じた前記速度指令信号に応じて変更させ、CPP31のピッチを前記基準ピッチαaに固定する制御モードである。この第2制御モードにおいて、図2の矢印D2に示す範囲の船速を制御可能である。なお、前記第2設定速度N2は、船舶が航海中に常用する運航条件において最も燃費効率のよい条件で用いられる回転速度(900min-1)に定められている。また、前記第3制御モードは、エンジン33の回転速度を前記第2設定速度N2に維持して回転させ、CPP31のピッチを、αaからαmaxの範囲内で、操縦ハンドル15からの前記速度指令信号に応じた目標値となるように制御する制御モードである。この第3制御モードにおいて、図3の矢印D3に示す範囲の船速を制御可能である。 Here, in the first control mode, the rotational speed of the engine 33 is maintained at the first set speed N1 and is rotated, and the pitch of the CPP 31 is controlled from the speed command from the steering handle 15 within the range of 0 to αa. It is a control mode controlled to become a target value according to a signal. In this first control mode, the boat speed in the range indicated by arrow D1 in FIG. 2 can be controlled. Although the first set speed N1 can be arbitrarily determined, in the present embodiment, the first set speed N1 is a rotational speed at which the generator 37 can generate electric power of the first frequency F1 (750 min It is defined in -1 ). In the second control mode, the rotational speed of the engine 33 corresponds to the speed command signal according to the operation position of the steering handle 15 in the engine speed range from the first set speed N1 to the second set speed N2. This control mode is a control mode in which the pitch of CPP 31 is fixed to the reference pitch αa. In this second control mode, it is possible to control the boat speed in the range indicated by arrow D2 in FIG. The second set speed N2 is set to a rotational speed (900 min -1 ) used under the condition with the highest fuel efficiency under the operation condition that the ship usually uses during the voyage. Further, in the third control mode, the rotational speed of the engine 33 is maintained at the second set speed N2 and rotated, and the pitch of the CPP 31 is the speed command signal from the steering handle 15 within the range of αa to αmax. It is a control mode controlled to become a target value according to. In this third control mode, it is possible to control the boat speed in the range indicated by arrow D3 in FIG.
 本実施形態では、図2及び図3に示されるように、制御装置35は、前記第1制御モードにおいて、エンジン33の回転速度を第1設定速度N1に維持しつつ、操縦ハンドル15の位置に応じた目標ピッチとなるようにCPP31のピッチを制御する。換言すると、前記第1制御モードにおいて、ガバナ制御部35Aは、エンジン33の回転速度を第1設定速度N1に維持するように制御し、CPP制御部35Bは、操縦ハンドル15の位置に応じた目標ピッチとなるようにCPP31のピッチを可変制御する。ここで、図2は、電気推進装置10におけるプロペラ回転数と機関出力との関係を示す舶用特性曲線L1、及びプロペラ回転数と機関出力と船速との関係を示す等船速曲線Vkを示すグラフ図である。図2において、舶用特性曲線L1は、船舶の等船速曲線Vkの最小点を結ぶ曲線に近似している。また、図3は、電気推進装置10における、目標速度、制御状態、エンジン回転数、減速比、発電機周波数、プロペラ回転数、翼角(ピッチ)それぞれの対応関係を示す図である。なお、図2における舶用特性曲線L1、等船速曲線Vk等については、図5及び図6と同様であるため、その説明を省略する。 In the present embodiment, as shown in FIG. 2 and FIG. 3, in the first control mode, the controller 35 maintains the rotational speed of the engine 33 at the first set speed N 1 while keeping the control handle 15 in position. The pitch of CPP 31 is controlled to be the target pitch according to. In other words, in the first control mode, the governor control unit 35A controls the rotational speed of the engine 33 to be maintained at the first set speed N1, and the CPP control unit 35B sets the target according to the position of the steering handle 15. The pitch of CPP 31 is variably controlled to be the pitch. Here, FIG. 2 shows a marine characteristic curve L1 showing the relationship between the propeller rotational speed and the engine output in the electric propulsion device 10, and an isoship speed curve Vk showing the relationship between the propeller rotational speed, the engine output and the ship speed. FIG. In FIG. 2, the marine characteristic curve L1 approximates a curve connecting the minimum points of the iso-ship speed curve Vk of the ship. FIG. 3 is a view showing the correspondence among the target speed, the control state, the engine speed, the reduction ratio, the generator frequency, the propeller speed, and the blade angle (pitch) in the electric propulsion device 10. The marine characteristic curve L1, the iso-ship speed curve Vk, and the like in FIG. 2 are the same as in FIGS. 5 and 6, and thus the description thereof is omitted.
 また、制御装置35は、前記第2制御モードにおいて、CPP31のピッチを前記基準ピッチαaに維持しつつ、エンジン33の機関出力及びCPP31の回転数により決定される舶用特性曲線L1(図2参照)に沿うように前記機関速度範囲(750min-1~900min-1)内でエンジン33の回転速度を制御する。換言すると、前記第2制御モードにおいて、CPP制御部35Bは、前記基準ピッチαaを維持するようにCPP31のピッチを制御し、ガバナ制御部35Aは、操縦ハンドル15の位置に応じた目標回転数となるように前記舶用特性曲線L1に沿うように前記機関速度範囲内でエンジン33の回転速度を制御する。 Further, in the second control mode, the control device 35 maintains the pitch of the CPP 31 at the reference pitch αa while the marine characteristic curve L1 determined by the engine output of the engine 33 and the rotational speed of the CPP 31 (see FIG. 2) The rotational speed of the engine 33 is controlled within the engine speed range (750 min.sup.- 1 to 900 min.sup.- 1 ) so that In other words, in the second control mode, the CPP control unit 35B controls the pitch of the CPP 31 so as to maintain the reference pitch αa, and the governor control unit 35A controls the target rotational speed according to the position of the steering handle 15. The rotational speed of the engine 33 is controlled within the engine speed range so as to follow the marine characteristic curve L1.
 また、制御装置35は、前記第3制御モードにおいて、エンジン33の回転速度を第2設定速度N2に維持しつつ、操縦ハンドル15の位置に応じた目標ピッチとなるようにCPP31のピッチを制御する。換言すると、前記第3制御モードにおいて、ガバナ制御部35Aは、エンジン33の回転速度を第2設定速度N2に維持するように制御し、CPP制御部35Bは、操縦ハンドル15の位置に応じた目標ピッチとなるようにCPP31のピッチを制御する。 Further, in the third control mode, the control device 35 controls the pitch of the CPP 31 so as to achieve the target pitch according to the position of the steering handle 15, while maintaining the rotational speed of the engine 33 at the second set speed N2. . In other words, in the third control mode, the governor control unit 35A controls the rotational speed of the engine 33 to be maintained at the second set speed N2, and the CPP control unit 35B sets the target according to the position of the steering handle 15. The pitch of CPP 31 is controlled to be the pitch.
 以下、図4のフローチャートを参照して、制御装置35によって実行される推進力制御処理の手順の一例について説明する。ここで、図4におけるS11、S12、…は処理手順(ステップ)の番号を表している。なお、以下の説明では、前進時の推進力制御処理を説明するが、後進時も同様に行われる。 Hereinafter, with reference to the flowchart of FIG. 4, an example of the procedure of the propulsion control process executed by the control device 35 will be described. Here, S11, S12,... In FIG. 4 indicate the numbers of the processing procedures (steps). In the following description, although propulsive force control processing at the time of forward movement is described, the same processing is performed at the time of reverse movement.
 制御装置35は、操縦ハンドル15が中立位置にあるときに、エンジン33の回転速度を第1設定速度N1(750min-1)に維持するように電子ガバナ34を制御する。また、制御装置35は、CPP31をピッチ0に変更する。以下、このように制御された状態を待機モードという。前記待機モードにおいては、エンジン33が第1設定速度N1で回転しているので、発電機37は、船内電力として利用可能な前記第1周波数F1(50Hz)の電力を発電している。また、CPP31のピッチが0であるため、電気推進装置10は、船舶に対して推進力を付与していない。 The controller 35 controls the electronic governor 34 to maintain the rotational speed of the engine 33 at the first set speed N1 (750 min -1 ) when the steering handle 15 is in the neutral position. Further, the control device 35 changes the CPP 31 to the pitch 0. Hereinafter, the state controlled in this manner is referred to as a standby mode. In the standby mode, since the engine 33 is rotating at the first set speed N1, the generator 37 generates power of the first frequency F1 (50 Hz) that can be used as inboard power. Further, since the pitch of the CPP 31 is 0, the electric propulsion device 10 does not apply propulsion to the ship.
 前記待機モードにあるときに、操縦ハンドル15が中立位置から前進へ操作されると、制御装置35は、船舶を前進させるように、エンジン33の回転速度の制御およびCPP31のピッチの制御を開始する。 When in the standby mode, when the steering handle 15 is operated from the neutral position to forward, the control device 35 starts controlling the rotational speed of the engine 33 and controlling the pitch of the CPP 31 so as to advance the ship. .
 ステップS11では、制御装置35は、現在の制御モードが前記第1制御モードであるかどうかを判定する。かかる判定は、操縦ハンドル15から出力される前記速度指令信号としての前記電気信号に基づいて行われる。例えば、前記速度指令信号が前記第1電気信号であるかどうかによって判定される。ステップS11で前記第1制御モードであると判定されると、処理はステップS12に進む。 In step S11, the control device 35 determines whether the current control mode is the first control mode. Such determination is performed based on the electric signal as the speed command signal output from the steering handle 15. For example, it is determined whether the speed command signal is the first electrical signal. If it is determined in step S11 that the control mode is the first control mode, the process proceeds to step S12.
 ステップS12では、制御装置35のガバナ制御部35Aは、エンジン33の回転速度を予め定められた750min-1(第1設定速度N1)に維持するように、速度センサー24による検知信号に基づいてフィードバック制御(定速度制御)を行う。このとき、発電機37は、一定の回転速度750miに対応する一定の周波数50Hz(第1周波数F1)の交流電力を発電し、この交流電力を受けて、電動機39は1000min-1で回転し、これにより、CPP31は、133min-1の回転速度で回転する。 In step S12, the governor control unit 35A of the control device 35 performs feedback based on a detection signal from the speed sensor 24 so as to maintain the rotational speed of the engine 33 at a predetermined 750 min -1 (first set speed N1). Perform control (constant speed control). At this time, the generator 37 generates AC power of a constant frequency 50 Hz (first frequency F1) corresponding to the constant rotation speed 750 mi, and receives the AC power, and the motor 39 rotates at 1000 min −1 , As a result, the CPP 31 rotates at a rotational speed of 133 min -1 .
 そして、次のステップS13では、制御装置35のCPP制御部35Bは、操縦ハンドル15の位置に応じた前記目標ピッチとなるようにCPP31のピッチを0からαaまでの範囲内で可変制御する。 Then, in the next step S13, the CPP control unit 35B of the control device 35 variably controls the pitch of the CPP 31 within the range from 0 to αa so as to achieve the target pitch according to the position of the steering handle 15.
 ステップS11において、前記第1制御モードではないと判定されると、処理はステップS14に進む。ステップS14では、制御装置35は、現在の制御モードが前記第2制御モードであるかどうかを判定する。かかる判定は、操縦ハンドル15から出力される前記速度指令信号としての前記電気信号に基づいて行われる。例えば、前記速度指令信号が前記第2電気信号であるかどうかによって判定される。ステップS15で前記第2制御モードであると判定されると、処理はステップS15に進む。 If it is determined in step S11 that the first control mode is not set, the process proceeds to step S14. In step S14, the control device 35 determines whether the current control mode is the second control mode. Such determination is performed based on the electric signal as the speed command signal output from the steering handle 15. For example, it is determined whether the speed command signal is the second electrical signal. If it is determined in step S15 that the control mode is the second control mode, the process proceeds to step S15.
 ステップS15では、制御装置35のCPP制御部35Bは、CPP31のピッチが前記基準ピッチαaを維持するようにピッチ変節機構31Bを制御する。 In step S15, the CPP control unit 35B of the control device 35 controls the pitch indirection mechanism 31B such that the pitch of the CPP 31 maintains the reference pitch αa.
 そして、次のステップS16では、制御装置35のガバナ制御部35Aは、操縦ハンドル15の位置に応じた前記目標回転数となるように電子ガバナ34を制御して、エンジン33の回転速度を750~900min-1の範囲内で制御する。これにより、発電機37は、エンジン33の回転速度に応じた周波数の交流電力を発電し、その交流電力が電動機39に供給される。これにより、前記基準ピッチαaを維持したままの状態で、CPP31の回転速度が130min-1~156min-1の範囲内で制御される。 Then, in the next step S16, the governor control unit 35A of the control device 35 controls the electronic governor 34 so as to achieve the target rotational speed according to the position of the steering handle 15, and the rotational speed of the engine 33 Control within the range of 900 min -1 . Thus, the generator 37 generates AC power of a frequency corresponding to the rotational speed of the engine 33, and the AC power is supplied to the motor 39. Thus, in a state maintaining the reference pitch .alpha.a, rotational speed of CPP31 is controlled within a range of 130min -1 ~ 156min -1.
 ステップS14において、前記第2制御モードではないと判定されると、処理はステップS17に進む。ステップS17では、制御装置35は、現在の制御モードが前記第3制御モードであると判定して、制御装置35のガバナ制御部35Aは、エンジン33の回転速度を予め定められた900min-1(第2設定速度N2)まで増速し、900min-1を維持するよう速度センサー24による検知信号に基づいてフィードバック制御(定速度制御)を行う。このとき、発電機37は、一定の回転速度900miに対応する一定の周波数60Hz(第2周波数F2)の交流電力を発電し、この交流電力を受けて、電動機39は1200min-1で回転し、これにより、CPP31は、156min-1の回転速度で回転する。 If it is determined in step S14 that the second control mode is not in effect, the process proceeds to step S17. In step S17, the control device 35 determines that the current control mode is the third control mode, and the governor control unit 35A of the control device 35 sets the rotational speed of the engine 33 to 900 min -1 (predetermined). The speed is increased to the second set speed N2), and feedback control (constant speed control) is performed based on the detection signal from the speed sensor 24 so as to maintain 900 min −1 . At this time, the generator 37 generates AC power of a constant frequency 60 Hz (second frequency F2) corresponding to the constant rotation speed 900 mi, and receives the AC power, and the motor 39 rotates at 1200 min −1 , Thus, the CPP 31 rotates at a rotational speed of 156 min -1 .
 そして、次のステップS18では、制御装置35のCPP制御部35Bは、操縦ハンドル15の位置に応じた前記目標ピッチとなるようにCPP31のピッチをαaからαmaxの範囲内で可変制御する。 Then, in the next step S18, the CPP control unit 35B of the control device 35 variably controls the pitch of the CPP 31 within the range from αa to αmax so as to achieve the target pitch according to the position of the steering handle 15.
 なお、ステップS13,S16,S18の後に、操縦ハンドル15が中立位置に戻されると、一連の推進力制御処理が終了し、中立位置に戻されない場合は、ステップS11以降の処理が繰り返される(S19)。 When the steering handle 15 is returned to the neutral position after steps S13, S16, and S18, a series of thrust control processing ends, and when the control handle 15 is not returned to the neutral position, the processing from step S11 is repeated (S19) ).
 このように、本実施形態の電気推進装置10では、前記第1制御モードにおいてガバナ制御部35Aがエンジン33の回転速度を前記第1設定速度N1(750min-1)に維持し、CPP制御部35BがCPP31のピッチを前記目標ピッチとなるように可変制御するため、低速制御領域である前記第1制御モードにおいて、船舶の航行時におけるエネルギー損失を抑制し、効率を向上させることができる。 Thus, in the electric propulsion device 10 of the present embodiment, the governor control unit 35A maintains the rotational speed of the engine 33 at the first set speed N1 (750 min -1 ) in the first control mode, and the CPP control unit 35B. Since the pitch of CPP 31 is variably controlled to be the target pitch, energy loss during navigation of the ship can be suppressed and efficiency can be improved in the first control mode, which is a low speed control area.
 また、中速制御領域である前記第2制御モードでは、CPP制御部35Bが前記基準ピッチαaを維持し、ガバナ制御部35Aが前記舶用特性曲線L1に沿うように前記機関速度範囲内でエンジン33の回転速度を前記目標回転数となるように可変制御する。このため、前記第2制御モードでは、CPP31のピッチを前記基準ピッチαaに維持しつつ、エンジン33の回転速度を前記機関速度範囲で制御することにより、エネルギー損失の低い効率の良い推進力制御を実現することが可能である。 In the second control mode, which is the medium speed control region, the CPP control unit 35B maintains the reference pitch αa, and the governor control unit 35A follows the marine characteristic curve L1 within the engine speed range. Is variably controlled to achieve the target rotational speed. For this reason, in the second control mode, by controlling the rotational speed of the engine 33 in the engine speed range while maintaining the pitch of the CPP 31 at the reference pitch αa, efficient propulsion control with low energy loss is realized. It is possible to realize.
 また、前記高速領域である前記第3制御モードでは、ガバナ制御部35Aがエンジン33の回転速度を前記第2設定速度N2(900min-1)に維持し、CPP制御部35BがCPP31のピッチを前記目標ピッチとなるように可変制御する。このように、前記第1制御モード、前記第2制御モード、及び前記第3制御モードの全制御モードにおいて、発電機37は50Hz~60Hzの範囲を外れる電力を発電しない。そのため、発電機37が発電する電力を船内で用いられる負荷機器58に直接に供給することができる。つまり、電気推進装置10において、周波数変換を行うインバータなどを設けることなく、負荷機器58に発電した電力を供給することが可能である。 Further, in the third control mode, which is the high speed region, the governor control unit 35A maintains the rotational speed of the engine 33 at the second set speed N2 (900 min -1 ), and the CPP control unit 35B performs the CPP 31 pitch Variable control is performed to achieve the target pitch. As described above, the generator 37 does not generate power outside the range of 50 Hz to 60 Hz in all control modes of the first control mode, the second control mode, and the third control mode. Therefore, the power generated by the generator 37 can be directly supplied to the load device 58 used on board. That is, in the electric propulsion device 10, the generated power can be supplied to the load device 58 without providing an inverter or the like that performs frequency conversion.
 また、電気推進装置10では、減速機41の減速比を従来構成に比べて小さくすることができ、減速機41を小型化することができる。その結果、減速ギヤのギヤロスが軽減し、減速機41における減速効率が向上し、ひいては、電気推進装置10の効率が向上する。 Further, in the electric propulsion device 10, the reduction ratio of the reduction gear 41 can be reduced as compared with the conventional configuration, and the reduction gear 41 can be miniaturized. As a result, the gear loss of the reduction gear is reduced, the reduction efficiency of the reduction gear 41 is improved, and the efficiency of the electric propulsion device 10 is improved.
 なお、上述の実施形態では、一台のエンジン33、一台の発電機37、一台の電動機39、及び一つのCPP31によって構成された電気推進装置10を例示したが、本発明はこの構成に限定されない。本発明は、複数のエンジン33及び発電機37による発電機関によって発電された交流電力を用いて電動機39を回転駆動させる構成の船舶用電気推進装置にも適用可能である。 In the above embodiment, the electric propulsion device 10 configured by one engine 33, one generator 37, one motor 39, and one CPP 31 is illustrated, but the present invention is not limited to this configuration. It is not limited. The present invention can also be applied to a marine electric propulsion apparatus configured to rotationally drive the motor 39 using alternating current power generated by a plurality of engines 33 and generators 37 by a power generation engine.
 また、上述の実施形態では、エンジン33を750min-1~900min-1の範囲で回転させる構成、CPP31を130min-1~156min-1の範囲内で回転させる構成、について例示したが、エンジン33およびCPP31それぞれの回転速度の制御範囲は単なる一例であり、任意の範囲に設定することが可能である。例えば、エンジン33の回転速度の制御範囲として、600min-1~750min-1の範囲や、1000min-1~1200min-1の範囲を適用してもよい。 In the above embodiments, configurations for rotating the engine 33 in the range of 750min -1 ~ 900min -1, configured to rotate the CPP31 in the range of 130min -1 ~ 156min -1, has been illustrated, the engine 33 and The control range of the rotational speed of each CPP 31 is merely an example, and can be set to an arbitrary range. For example, as the control range of the rotational speed of the engine 33, and the range of 600min -1 ~ 750min -1, may be applied to a range of 1000min -1 ~ 1200min -1.

Claims (5)

  1.  電動力を可変ピッチプロペラに供給して船舶を推進させる船舶用電気推進装置であって、
     内燃機関の出力軸に発電機が接続されてなる発電機関と、
     前記発電機関が発電する交流電力によって回転駆動して前記可変ピッチプロペラに前記電動力を供給する電動機と、
     船舶の操縦装置から入力される速度指令信号に基づいて、前記速度指令信号に対応する目標値となるように、前記可変ピッチプロペラのピッチ及び前記内燃機関の回転速度を制御する制御装置と、を備え、
     前記制御装置は、
     予め定められた第1周波数から第2周波数までの周波数帯域の交流電力を発電するように前記内燃機関の回転速度を予め定められた第1設定速度から第2設定速度までの速度範囲内で制御する回転速度制御部と、
     前記可変ピッチプロペラのピッチを制御するピッチ制御部と、を有し、
     前記速度指令信号が予め定められた基準範囲外の場合に、前記回転速度制御部は、前記内燃機関の回転速度を前記第1設定速度又は前記第2設定速度のいずれかに維持し、前記ピッチ制御部は、前記可変ピッチプロペラを前記目標値に応じたピッチに制御し、
     前記速度指令信号が前記基準範囲内の場合に、前記ピッチ制御部は、前記可変ピッチプロペラのピッチを前記速度範囲に対応して予め定められた基準ピッチに維持し、前記回転速度制御部は、前記内燃機関の機関出力及び前記可変ピッチプロペラのプロペラ回転数により決定される舶用特性曲線に沿うように前記内燃機関を前記目標値に応じた回転速度に制御する船舶用電気推進装置。
    An electric propulsion device for ships, which supplies electric power to a variable pitch propeller to promote the ship,
    A power generation engine having a generator connected to an output shaft of the internal combustion engine;
    An electric motor that is rotationally driven by AC power generated by the power generation engine to supply the electric power to the variable pitch propeller;
    A control device for controlling the pitch of the variable pitch propeller and the rotational speed of the internal combustion engine so as to obtain a target value corresponding to the speed command signal based on a speed command signal input from a ship steering system; Equipped
    The controller is
    The rotational speed of the internal combustion engine is controlled within a speed range from a predetermined first set speed to a second set speed so as to generate AC power in a frequency band from a first predetermined frequency to a second frequency. Rotation speed control unit,
    And a pitch control unit that controls the pitch of the variable pitch propeller.
    When the speed command signal is out of a predetermined reference range, the rotational speed control unit maintains the rotational speed of the internal combustion engine at either the first set speed or the second set speed, and the pitch The control unit controls the variable pitch propeller to a pitch according to the target value,
    When the speed command signal is within the reference range, the pitch control unit maintains the pitch of the variable pitch propeller at a predetermined reference pitch corresponding to the speed range, and the rotational speed control unit is configured to: The marine vessel electric propulsion device controls the internal combustion engine to have a rotational speed according to the target value along a marine characteristic curve determined by an engine output of the internal combustion engine and a propeller rotational speed of the variable pitch propeller.
  2.  前記周波数帯域は、商用電源として供給される電源周波数の許容範囲である請求項1に記載の船舶用電気推進装置。 The marine vessel electric propulsion device according to claim 1, wherein the frequency band is an allowable range of a power supply frequency supplied as a commercial power supply.
  3.  前記第1周波数は50Hzであり、前記第2周波数は60Hzである請求項2に記載の船舶用電気推進装置。 The electric propulsion system for a vessel according to claim 2, wherein the first frequency is 50 Hz and the second frequency is 60 Hz.
  4.  前記舶用特性曲線は、前記船舶の等船速曲線の最小点を結ぶ曲線に近似している請求項1に記載の船舶用電気推進装置。 The marine vessel electric propulsion device according to claim 1, wherein the marine characteristic curve approximates a curve connecting minimum points of iso-velocity curves of the marine vessel.
  5.  内燃機関の出力軸に発電機が接続されてなる発電機関と、前記発電機関が発電する交流電力によって回転駆動して可変ピッチプロペラに電動力を供給する電動機と、を備え、前記電動力を前記可変ピッチプロペラに供給して船舶を推進させる船舶用電気推進装置に適用され、船舶の操縦装置から入力される速度指令信号に基づいて、前記速度指令信号に対応する目標値となるように、前記可変ピッチプロペラのピッチ及び前記内燃機関の回転速度を制御する推進力制御装置であって、
     予め定められた第1周波数から第2周波数までの周波数帯域の交流電力を発電するように前記内燃機関の回転速度を予め定められた第1設定速度から第2設定速度までの速度範囲内で制御する回転速度制御部と、
     前記可変ピッチプロペラのピッチを制御するピッチ制御部と、を有し、
     前記速度指令信号が予め定められた基準範囲外の場合に、前記回転速度制御部は、前記内燃機関の回転速度を前記第1設定速度又は前記第2設定速度のいずれかに維持し、前記ピッチ制御部は、前記可変ピッチプロペラを前記目標値に応じたピッチに制御し、
     前記速度指令信号が前記基準範囲内の場合に、前記ピッチ制御部は、前記可変ピッチプロペラのピッチを前記速度範囲に対応して予め定められた基準ピッチに維持し、前記回転速度制御部は、前記内燃機関の機関出力及び前記可変ピッチプロペラのプロペラ回転数により決定される舶用特性曲線に沿うように前記内燃機関を前記目標値に応じた回転速度に制御する推進力制御装置。
    A generator engine having a generator connected to an output shaft of the internal combustion engine; and an electric motor rotationally driven by the AC power generated by the generator engine to supply an electric power to the variable pitch propeller; The present invention is applied to a marine electric propulsion device for propelling a ship by supplying it to a variable pitch propeller, and based on a speed command signal input from a ship steering device, the target value corresponding to the speed command signal is obtained. A propulsion control device for controlling a pitch of a variable pitch propeller and a rotational speed of the internal combustion engine,
    The rotational speed of the internal combustion engine is controlled within a speed range from a predetermined first set speed to a second set speed so as to generate AC power in a frequency band from a first predetermined frequency to a second frequency. Rotation speed control unit,
    And a pitch control unit that controls the pitch of the variable pitch propeller.
    When the speed command signal is out of a predetermined reference range, the rotational speed control unit maintains the rotational speed of the internal combustion engine at either the first set speed or the second set speed, and the pitch The control unit controls the variable pitch propeller to a pitch according to the target value,
    When the speed command signal is within the reference range, the pitch control unit maintains the pitch of the variable pitch propeller at a predetermined reference pitch corresponding to the speed range, and the rotational speed control unit is configured to: A propulsion control device controls the internal combustion engine to a rotational speed according to the target value so as to follow a marine characteristic curve determined by an engine output of the internal combustion engine and a propeller rotational speed of the variable pitch propeller.
PCT/JP2017/003687 2016-02-16 2017-02-02 Electric propulsion device for ship, and propulsion force control device used in electric propulsion device for ship WO2017141711A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201780011513.4A CN108698680B (en) 2016-02-16 2017-02-02 Ship electricity consumption propulsion device and feeding force control device for ship electricity consumption propulsion device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-027445 2016-02-16
JP2016027445A JP6284558B2 (en) 2016-02-16 2016-02-16 Electric propulsion device for ship, propulsion force control device used for electric propulsion device for ship

Publications (1)

Publication Number Publication Date
WO2017141711A1 true WO2017141711A1 (en) 2017-08-24

Family

ID=59625753

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/003687 WO2017141711A1 (en) 2016-02-16 2017-02-02 Electric propulsion device for ship, and propulsion force control device used in electric propulsion device for ship

Country Status (3)

Country Link
JP (1) JP6284558B2 (en)
CN (1) CN108698680B (en)
WO (1) WO2017141711A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110758701A (en) * 2019-10-25 2020-02-07 广州船舶及海洋工程设计研究院(中国船舶工业集团公司第六0五研究院) Multipurpose ship joint control device
CN115180105A (en) * 2022-07-05 2022-10-14 武汉船用电力推进装置研究所(中国船舶重工集团公司第七一二研究所) Pitch control system and method for distance-adjusting type lateral thruster

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7176891B2 (en) * 2018-08-23 2022-11-22 三菱造船株式会社 vessel
CN109334934B (en) * 2018-10-29 2019-08-23 中国船舶科学研究中心(中国船舶重工集团公司第七0二研究所) A kind of energy-efficient adjustable oar system of ship z-type propulsion control method
JP7177691B2 (en) * 2018-12-26 2022-11-24 ナブテスコ株式会社 Controllable pitch propeller control system, control method for controllable pitch propeller
CN109591992B (en) * 2018-12-28 2021-03-26 广东逸动科技有限公司 Marine electric propeller control system, electric propeller and electric ship
CN111559486B (en) * 2020-05-25 2022-05-06 智慧航海(青岛)科技有限公司 Ship full-rotation main thrust control method and system
CN114291242B (en) * 2021-12-10 2023-03-14 深圳市苇渡智能科技有限公司 Propeller control method, propeller, and computer-readable storage medium
CN114394221A (en) * 2022-02-17 2022-04-26 杭州傲帆游艇有限公司 Two-side guide pipe type CPP electric sailing boat water flow power generation system

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007131081A (en) * 2005-11-09 2007-05-31 Nishishiba Electric Co Ltd Electric propulsion device of vessel
JP2012076560A (en) * 2010-09-30 2012-04-19 Mitsubishi Heavy Ind Ltd Propulsion control device and propulsion control method of variable-pitch propeller ship
JP2015227109A (en) * 2014-05-30 2015-12-17 川崎重工業株式会社 Movable body hybrid propulsion system and control method of same

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5830309B2 (en) * 2011-09-01 2015-12-09 日本郵船株式会社 Ship propulsion device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007131081A (en) * 2005-11-09 2007-05-31 Nishishiba Electric Co Ltd Electric propulsion device of vessel
JP2012076560A (en) * 2010-09-30 2012-04-19 Mitsubishi Heavy Ind Ltd Propulsion control device and propulsion control method of variable-pitch propeller ship
JP2015227109A (en) * 2014-05-30 2015-12-17 川崎重工業株式会社 Movable body hybrid propulsion system and control method of same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110758701A (en) * 2019-10-25 2020-02-07 广州船舶及海洋工程设计研究院(中国船舶工业集团公司第六0五研究院) Multipurpose ship joint control device
CN115180105A (en) * 2022-07-05 2022-10-14 武汉船用电力推进装置研究所(中国船舶重工集团公司第七一二研究所) Pitch control system and method for distance-adjusting type lateral thruster

Also Published As

Publication number Publication date
CN108698680B (en) 2019-05-10
CN108698680A (en) 2018-10-23
JP2017154510A (en) 2017-09-07
JP6284558B2 (en) 2018-02-28

Similar Documents

Publication Publication Date Title
WO2017141711A1 (en) Electric propulsion device for ship, and propulsion force control device used in electric propulsion device for ship
US9650120B2 (en) Electric drive shaft and vehicle comprising such an electric drive shaft
JP3990155B2 (en) Ship propulsion drive system
JP4623897B2 (en) Ship propulsion drive system
JP5620586B2 (en) Ships with Magnus rotor, especially cargo ships
KR20140132404A (en) Drive cascade system for a watercraft
JP6021752B2 (en) Ship operation method and ship operation device
JP5164043B2 (en) Marine hybrid propulsion system
CN107207085B (en) Ship propulsion system, ship, and ship propulsion method
JP2007284018A (en) Hybrid propulsion system for vessel
JP5496561B2 (en) Marine propulsion device
US9446833B2 (en) System and a method for control of the RPM of at least one main engine of a vessel
ES2562191T3 (en) Electric propulsion system for a water vehicle and operating procedure for such a propulsion system
JP5951587B2 (en) Control apparatus, ship equipped with the same, and integrated control method
JP5540134B1 (en) Electric propulsion device for ships
US10730599B2 (en) Marine vessel power system and method
JP6298967B2 (en) Frequency converter for electric propulsion ship and electric propulsion ship
JPH07315293A (en) Electric propulsion controller for ship
JPH08216993A (en) Side thruster control device for ship
Shimamoto et al. Tandem Hybrid CRP (Contra-Rotating Propeller) System
EP2620359B1 (en) System and method for starting an electric motor of a propulsion unit
JP2015077821A (en) Electric propulsion ship
Bondarenko et al. Novel Concept of Inverter-less Electric Drive for Ship Propulsion System

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17752974

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17752974

Country of ref document: EP

Kind code of ref document: A1