WO2017141516A1 - Laminate, polarizing plate and image display device - Google Patents

Laminate, polarizing plate and image display device Download PDF

Info

Publication number
WO2017141516A1
WO2017141516A1 PCT/JP2016/084963 JP2016084963W WO2017141516A1 WO 2017141516 A1 WO2017141516 A1 WO 2017141516A1 JP 2016084963 W JP2016084963 W JP 2016084963W WO 2017141516 A1 WO2017141516 A1 WO 2017141516A1
Authority
WO
WIPO (PCT)
Prior art keywords
repeating unit
group
polymer
adhesive polymer
layer
Prior art date
Application number
PCT/JP2016/084963
Other languages
French (fr)
Japanese (ja)
Inventor
佑起 中沢
寛 野副
遊 内藤
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to JP2017567958A priority Critical patent/JP6734877B2/en
Publication of WO2017141516A1 publication Critical patent/WO2017141516A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B23/00Layered products comprising a layer of cellulosic plastic substances, i.e. substances obtained by chemical modification of cellulose, e.g. cellulose ethers, cellulose esters, viscose
    • B32B23/04Layered products comprising a layer of cellulosic plastic substances, i.e. substances obtained by chemical modification of cellulose, e.g. cellulose ethers, cellulose esters, viscose comprising such cellulosic plastic substance as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B23/08Layered products comprising a layer of cellulosic plastic substances, i.e. substances obtained by chemical modification of cellulose, e.g. cellulose ethers, cellulose esters, viscose comprising such cellulosic plastic substance as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/043Improving the adhesiveness of the coatings per se, e.g. forming primers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/046Forming abrasion-resistant coatings; Forming surface-hardening coatings
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors

Definitions

  • the present invention relates to a laminate, a polarizing plate using the laminate, and an image display device.
  • Image display devices represented by an electroluminescence display (ELD) or a liquid crystal display device (LCD) are increasingly required to be thin.
  • ELD electroluminescence display
  • LCD liquid crystal display device
  • the usage environment of image display devices has been diversified, including outdoor applications, and image display devices have the ability to stably maintain good image quality even in harsh environments (high durability). Is now required.
  • the decrease in image quality in the image display apparatus is partly caused by moisture entering the polarizing plate and degrading the polarizer.
  • the polarizer is protected by laminating a protective film (optical film) on the surface, but the protective film is also required to be thin.
  • the protective film is thinned, moisture is more likely to come into contact with the polarizer, and the image quality is likely to deteriorate.
  • such a decrease in image quality becomes more apparent when used in harsh environments such as outdoor applications.
  • the protective film a cellulose resin or an acrylic resin is widely used from the viewpoint of versatility or processability. Due to the necessity of further improving the durability, the optical film is being modified (for example, Patent Documents 1 to 5).
  • the inventors of the present invention including the films described in the above-mentioned patent documents, when the film is highly thinned to the above-described required level, It has become clear that it is difficult to sufficiently prevent the penetration of moisture and to sufficiently suppress the deterioration of the polarizer. By the way, it is considered that the deterioration of the polarizer can be suppressed by providing a hydrophobic resin layer on the protective film for protecting the polarizer.
  • the present inventors laminated a hydrophobic resin layer on a layer containing a cellulose ester it was found that the adhesion at the lamination interface was poor and the layers separated from each other.
  • the present invention uses a laminate that has high adhesion between layers and is excellent in surface hydrophobicity, and can effectively suppress deterioration of the polarizer when used as a protective film for a polarizer. It is an object to provide a polarizing plate and an image display device using the polarizing plate.
  • the inventors of the present invention have a contact angle when a polymer having a specific primary structure composed of at least one repeating unit having a solubility parameter within a specific range is formed into a layer.
  • a layered product of a layer containing the polymer and a layer containing the cellulose ester is used as a protective film for the polarizer.
  • the adhesive polymer has a graft structure, a branch structure or a star structure composed of one type of repeating unit, or a block structure, a graft structure, a branch structure or a star structure composed of two or more kinds of repeating units, and the above repeating
  • the unit includes a repeating unit [a] having a solubility parameter ⁇ t calculated by the Hoy method of 13.5 or more and less than 20.0, Laminated body.
  • ⁇ 2> The laminate according to ⁇ 1>, wherein the adhesive polymer has a block structure, a graft structure, a branch structure, or a star structure composed of two or more kinds of repeating units.
  • ⁇ 3> The laminate according to ⁇ 1> or ⁇ 2>, wherein the adhesive polymer has 2 to 250 ends per molecule.
  • ⁇ 4> The laminate according to any one of ⁇ 1> to ⁇ 3>, wherein the adhesive polymer has a block structure or a graft structure.
  • ⁇ 5> Any one of ⁇ 1> to ⁇ 4>, wherein the two or more types of repeating units include the repeating unit [b] having a solubility parameter ⁇ t calculated by the Hoy method of 20.0 or more and 26.0 or less The laminated body as described in any one.
  • R 1 represents a hydrogen atom or an alkyl group.
  • R 2 and R 3 each independently represents a hydrogen atom, an alkyl group, an aryl group or an alkoxycarbonyl group.
  • L is a single bond, an alkylene group, an arylene group, a divalent linking group selected from —C ( ⁇ O) —, —O— and —N (R 4 ) —, or two or more of these linking groups.
  • the bivalent coupling group which combines is shown.
  • R 4 represents a hydrogen atom or an alkyl group.
  • R 5 represents a hydrogen atom or an alkyl group.
  • R 6 and R 7 each independently represents a hydrogen atom, an alkyl group, an aryl group or an alkoxycarbonyl group.
  • R 8 represents an alkyl group having 1 to 20 carbon atoms or a cycloalkyl group having 3 to 20 carbon atoms.
  • R 9 , R 10 and R 11 each independently represent a hydrogen atom, a halogen atom, an alkyl group or an aryl group.
  • R 12 , R 13 , R 14 , R 15 and R 16 are each independently a hydrogen atom, halogen atom, hydroxyl group, alkyl group, alkenyl group, aryl group, alkoxy group, acyl group, acyloxy group or alkoxycarbonyl group.
  • the laminated body as described in ⁇ 7> whose ⁇ 8> repeating unit [a] is a repeating unit represented by the said General formula 2.
  • ⁇ 9> The laminate according to any one of ⁇ 1> to ⁇ 8>, wherein the cellulose ester is cellulose acylate.
  • a polarizing plate comprising the laminate according to any one of the above items ⁇ 1> to ⁇ 9> and a polarizer.
  • An image display device having the polarizing plate according to ⁇ 10>.
  • the laminate of the present invention has high adhesion to a layer containing a cellulose ester and exhibits excellent hydrophobicity on the surface.
  • a polarizer By superimposing the laminate of the present invention on a polarizer, deterioration of the polarizer can be effectively suppressed even under high temperature and high humidity conditions.
  • the polarizing plate and image display apparatus of this invention can suppress deterioration of a polarizer effectively using the laminated body which has said outstanding effect, and show high durability.
  • the degree of suppressing the deterioration of the polarizer is also referred to as “polarizer durability” or “polarizing plate durability”.
  • FIG. 1 is a cross-sectional view showing an embodiment of the laminate of the present invention.
  • FIG. 2 is a schematic diagram showing an outline of an embodiment of a liquid crystal display device including a polarizing plate incorporating the polarizing plate protective film of the present invention.
  • FIG. 3A is a diagram showing an example of a block structure possessed by the adhesive polymer of the present invention.
  • FIG. 3B is a diagram showing an example of a block structure possessed by the adhesive polymer of the present invention.
  • FIG. 3C is a diagram showing an example of a block structure possessed by the adhesive polymer of the present invention.
  • FIG. 3D is a diagram showing an example of a block structure possessed by the adhesive polymer of the present invention.
  • FIG. 3A is a diagram showing an example of a block structure possessed by the adhesive polymer of the present invention.
  • FIG. 3B is a diagram showing an example of a block structure possessed by the adhesive polymer of the present invention.
  • FIG. 3C is
  • FIG. 3E is a diagram showing an example of a block structure possessed by the adhesive polymer of the present invention.
  • FIG. 4A is a diagram showing an example of a graft structure possessed by the adhesive polymer of the present invention.
  • FIG. 4B is a diagram showing an example of a graft structure possessed by the adhesive polymer of the present invention.
  • FIG. 4C is a diagram showing an example of the graft structure of the adhesive polymer of the present invention.
  • FIG. 4D is a diagram showing an example of a graft structure possessed by the adhesive polymer of the present invention.
  • FIG. 4E is a diagram showing an example of a graft structure possessed by the adhesive polymer of the present invention.
  • FIG. 4A is a diagram showing an example of a graft structure possessed by the adhesive polymer of the present invention.
  • FIG. 4B is a diagram showing an example of a graft structure possessed by the adhesive polymer of the present invention.
  • FIG. 4F is a diagram illustrating an example of a graft structure included in the adhesive polymer of the present invention.
  • FIG. 4G is a diagram showing an example of a graft structure possessed by the adhesive polymer of the present invention.
  • FIG. 5 is a diagram illustrating a method for synthesizing an adhesive polymer having a graft structure.
  • FIG. 6A is a diagram illustrating an example of a star structure included in the adhesive polymer of the present invention.
  • FIG. 6B is a diagram illustrating an example of a star structure included in the adhesive polymer of the present invention.
  • FIG. 6C is a diagram illustrating an example of a star structure included in the adhesive polymer of the present invention.
  • FIG. 6A is a diagram illustrating an example of a star structure included in the adhesive polymer of the present invention.
  • FIG. 6B is a diagram illustrating an example of a star structure included in the adhesive polymer of the present invention.
  • FIG. 6C is a diagram
  • FIG. 6D is a diagram illustrating an example of a star structure included in the adhesive polymer of the present invention.
  • FIG. 7A is a diagram illustrating an example of a branch structure included in the adhesive polymer of the present invention.
  • FIG. 7B is a diagram showing an example of a branch structure included in the adhesive polymer of the present invention.
  • FIG. 7C is a diagram illustrating an example of a branch structure included in the adhesive polymer of the present invention.
  • FIG. 7D is a diagram illustrating an example of a branch structure included in the adhesive polymer of the present invention.
  • FIG. 7E is a diagram illustrating an example of a branch structure included in the adhesive polymer of the present invention.
  • FIG. 7F is a diagram illustrating an example of a branch structure included in the adhesive polymer of the present invention.
  • substituents or linking groups or the like when there are a plurality of substituents or linking groups or the like (hereinafter referred to as substituents or the like) indicated by specific symbols, or when a plurality of substituents or the like are specified simultaneously or alternatively, It means that a substituent etc. may mutually be same or different. The same applies to the definition of the number of substituents and the like. Further, when a plurality of substituents and the like are close (especially adjacent), they may be connected to each other or condensed to form a ring.
  • the display of a compound uses in the meaning containing its salt and its ion other than a compound itself.
  • the salt of the compound include an acid addition salt of the compound formed with the compound and an inorganic acid or an organic acid, or a base addition salt of the compound formed with the compound and an inorganic base or an organic base.
  • the ion of the compound include an ion generated by dissolving a salt of the above-described compound in water or a solvent.
  • a substituent that does not specify substitution or non-substitution means that the group may have an arbitrary substituent as long as the desired effect is not impaired. is there. This is synonymous with a compound or repeating unit in which substitution or non-substitution is not specified.
  • substituent when simply referred to as “substituent”, a group selected from the following substituent group T is mentioned unless otherwise specified.
  • substituent group T when only a substituent having a specific range is described (for example, when only “alkyl group” is described), a corresponding group of the following substituent group T (in the above case, an alkyl group) Preferred ranges and specific examples in apply.
  • this number of carbons means the total number of carbon atoms in the group. That is, when this group has a further substituent, it means the total number of carbon atoms including this substituent.
  • the certain group when a certain group can form an acyclic skeleton and a cyclic skeleton, unless otherwise specified, the certain group includes a group having an acyclic skeleton and a group having a cyclic skeleton.
  • an alkyl group includes a straight chain alkyl group, a branched alkyl group, and a cyclic (cyclo) alkyl group.
  • the lower limit of the number of carbon atoms in the group of the cyclic skeleton is preferably 3 or more, and more preferably 5 or more, regardless of the lower limit of the number of carbon atoms specifically described in the certain group.
  • (meth) acrylic acid is used to include both methacrylic acid and acrylic acid.
  • (meth) acrylamide the term “acrylic acid” is used in a broader sense than usual. That is, “acrylic acid” is used to include all compounds having the structure of R A —C ( ⁇ CR B 2 ) COOH (R A and R B each independently represent a hydrogen atom or a substituent, provided that , When R A is methyl, means methacrylic acid)). The same applies to “acrylamide”.
  • Substituent group T An alkyl group (preferably having 1 to 20 carbon atoms, more preferably 1 to 12 carbon atoms, particularly preferably 1 to 8 carbon atoms such as a methyl group, an ethyl group, an isopropyl group, a tert-butyl group, an n-octyl group, An n-decyl group, an n-hexadecyl group, etc.
  • the number of carbon atoms is preferably 3 to 20, more preferably 3 to 12, particularly preferably 3 to 8.
  • a phenyl group preferably having 0 to 20, more preferably 0 to 10, particularly preferably 0 to 6 carbon atoms, such as an amino group
  • an amino group preferably having 0 to 20, more preferably 0 to 10, particularly preferably 0 to 6 carbon atoms, such as an amino group
  • alkoxy group preferably having 1 to 20 carbon atoms, more preferably 1 to 12 carbon atoms, particularly preferably 1 to 8 carbon atoms.
  • a methoxy group, an ethoxy group, a butoxy group, etc. an aryloxy group (preferably having 6 to 20 carbon atoms, more preferably 6 to 16, particularly preferably 6 to 12, and examples thereof include a phenyloxy group and a 2-naphthyloxy group), an acyl group (preferably having 1 to 20 carbon atoms, more preferably 1 to 16 carbon atoms).
  • a phenyloxycarbonyl group an acyloxy group (preferably having 2 to 20, more preferably 2 to 16, particularly preferably 2 to 10, and examples thereof include an acetoxy group and a benzoyloxy group.
  • An acylamino group (preferably having 2 to 20 carbon atoms, more preferably 2 to 16 and particularly preferably 2 to 10 such as acetylamino group and benzoylamino group), alkoxycarbonylamino group ( Preferably it has 2 to 20 carbon atoms, more preferably 2 to 16 carbon atoms, particularly preferably 2 to 12 carbon atoms, such as a methoxycarbonylamino group, and an aryloxycarbonylamino group (preferably 7 to 7 carbon atoms).
  • Examples thereof include a phenyloxycarbonylamino group), a sulfonylamino group (preferably having 1 to 20 carbon atoms, more preferably 1 to 16 carbon atoms). And particularly preferably 1 to 12, for example, methanesulfonylamino group, benzenesulfonate Amino groups, etc.), sulfamoyl groups (preferably having 0 to 20 carbon atoms, more preferably 0 to 16 carbon atoms, particularly preferably 0 to 12 carbon atoms such as sulfamoyl group, methylsulfamoyl group, dimethylsulfayl group).
  • a carbamoyl group (preferably having 1 to 20 carbon atoms, more preferably 1 to 16 carbon atoms, particularly preferably 1 to 12 carbon atoms such as a carbamoyl group and a methylcarbamoyl group).
  • alkylthio group preferably having 1 to 20, more preferably 1 to 16, particularly preferably 1 to 12 carbon atoms, such as methylthio group and ethylthio group
  • Arylthio group preferably having 6 to 20 carbon atoms, More preferably, it is 6 to 16, particularly preferably 6 to 12, and examples thereof include a phenylthio group.
  • a sulfonyl group preferably having 1 to 20 carbon atoms, more preferably 1 to 16, and particularly preferably 1 to 1).
  • a mesyl group and a tosyl group such as a mesyl group and a tosyl group
  • a sulfinyl group preferably having 1 to 20 carbon atoms, more preferably 1 to 16 and particularly preferably 1 to 12, such as a methanesulfinyl group, Benzenesulfinyl group, etc.
  • urethane group preferably having 1 to 20 carbon atoms, more preferably 1 to 16, particularly preferably 1 to 12, such as ureido group, methylureido group, phenyl group) Ureido groups, etc.
  • phosphoric acid amide groups preferably having 1-20 carbon atoms, more preferably 1-16, 1 to 12 is preferable, and examples thereof include diethyl phosphoric acid amide and phenyl phosphoric acid amide.
  • Hydroxy group mercapto group, halogen atom (eg fluorine atom, chlorine atom, bromine atom, iodine atom), cyano group, sulfo group, carboxy group, nitro group, hydroxamic acid group, sulfino group, hydrazino group, imino group, Heterocyclic group (preferably having 1 to 30 carbon atoms, more preferably 1 to 12 carbon atoms, and examples of the hetero atom include a nitrogen atom, an oxygen atom and a sulfur atom.
  • a condensed ring is preferable, and specific examples include imidazolyl, pyridyl, quinolyl, furyl, piperidyl, morpholino, benzoxazolyl, benzimidazolyl, benzthiazolyl, and the like.
  • a silyl group (preferably having 3 to 40 carbon atoms, more preferably 3 to 30 carbon atoms, particularly preferably 3 to 24 carbon atoms). , For example, a trimethylsilyl group, etc. triphenylsilyl group).
  • These substituents may further have a substituent. Moreover, when there are two or more substituents, they may be the same or different. Further, adjacent substituents may be connected to each other to form a ring.
  • a laminated body 10 As shown in FIG. 1, a laminated body 10 as a preferred example of the present invention is laminated adjacent to at least one surface of a layer (also referred to as a cellulose ester layer) 11 containing a cellulose ester and a cellulose ester layer 11. And a layer (also referred to as an adhesive polymer layer) 12 containing an adhesive polymer.
  • a layer also referred to as an adhesive polymer layer
  • “adjacent lamination” means that both layers are directly laminated without an adhesive layer (adhesive layer) or the like for adhering or adhering both layers between the cellulose ester layer and the adhesive polymer layer. (Superimposed).
  • the laminated body of this invention may have a three-layer laminated structure in which an adhesive polymer layer is laminated adjacent to both surfaces of the cellulose ester layer. Further, two or more adhesive polymer layers having different composition ratios may be provided on the cellulose ester layer as the adhesive polymer layer. Furthermore, you may have the various functional layers specialized in the specific function on the surface of the adhesive polymer layer. Examples of such a functional layer include a hard coat layer, an antireflection layer, a light scattering layer, an antifouling layer, and an antistatic layer.
  • the “adhesive polymer layer” means a layer containing an adhesive polymer described later in an amount of 50% by mass or more.
  • the content of the adhesive polymer in the adhesive polymer layer is preferably 60% by mass or more, more preferably 70% by mass or more, still more preferably 80% by mass or more, and particularly preferably 85% by mass or more.
  • the higher the content of the adhesive polymer the higher the adhesiveness with the cellulose ester layer, which is preferable. Therefore, the content of the adhesive polymer in the adhesive polymer layer may be 100% by mass, and is usually 99% by mass or less.
  • the balance can contain various additives described later.
  • Two or more adhesive polymers may be used in combination. That is, adhesive polymers having different composition ratios and / or molecular weights may be used in combination. In this case, the total amount of the adhesive polymer is within the above range.
  • the term “adhesive polymer” simply means a polymer that can be in close contact with the cellulose ester layer, and is merely used to facilitate understanding of the present invention. Such “adhesive polymer” includes all polymers defined in the present invention regardless of the degree of adhesion. That is, in judging the gist and technical scope of the present invention, the term “adhesiveness” is not considered as an invention specific matter for interpreting the present invention in a limited manner.
  • the adhesive polymer constituting the adhesive polymer layer has a primary structure described later.
  • This primary structure is a graft structure, a branch structure or a star structure when the repeating unit forming the adhesive polymer is one kind, and a block structure, a graft structure or a branch structure when the repeating unit is two or more kinds. It is also a star structure.
  • the adhesive polymer may have one kind of the primary structure or two or more kinds.
  • the “main chain direction” means a bonding direction of repeating units forming the partial structure in each partial structure forming the adhesive polymer.
  • “consisting of repeating units” includes, in addition to an embodiment consisting of only specific repeating units, an embodiment consisting of specific repeating units and one or more other repeating units.
  • Another repeating unit is not particularly limited, and examples thereof include a repeating unit derived from a compound having a polymerizable group for introducing a graft chain, or a repeating unit composed of two or more constituents described later. It is done.
  • the block structure refers to a structure in which the main chain direction of partial structures composed of a single type of repeating unit is a single linear direction in the polymer chain.
  • the block structure consists of two or more types of repeating units.
  • the partial structure composed of a single type of repeating unit is composed of a partial structure formed by combining repeating units having the same constituent components, and a constituent component. At least one of which includes a partial structure comprising different repeating units.
  • the partial structure when the partial structure is composed of a repeating unit containing an amide bond described later, the partial structure is a portion composed of a single type of repeating unit obtained by co-condensation polymerization of one kind of carboxylic acid compound and one kind of amine compound.
  • the partial structure includes a partial structure composed of a repeating unit (for example, exemplified repeating unit B-65 described later) obtained by co-condensation polymerization using at least one of a carboxylic acid compound and an amine compound. This also applies to the partial structure composed of a single type of polyester repeating unit.
  • the block structure possessed by the adhesive polymer of the present invention is not particularly limited as long as it is described above, and examples thereof include the structures shown in FIGS. 3A to 3E (sometimes referred to as FIG. 3 together).
  • a to D represent different repeating units (the same applies to FIGS. 4 to 7).
  • the block structure shown in FIG. 3A is a block structure (AB type) in which a partial structure composed of a repeating unit A and a partial structure composed of a repeating unit B are combined in a single linear direction within the polymer chain. .
  • 3B is a block structure in which a partial structure consisting of a repeating unit B is bonded to both ends of a partial structure consisting of a repeating unit A in a single linear direction within a polymer chain (BAB type) ).
  • the block structure shown in FIG. 3C has a partial structure composed of a repeating unit B, a partial structure composed of a repeating unit A, and a partial structure composed of a repeating unit C as a third component in this order in the polymer chain. It is a block structure coupled in one linear direction.
  • the block structure shown in FIG. 3D is the same as the block structure shown in FIG.
  • FIG. 3E is a block structure in which a partial structure composed of a repeating unit A and a partial structure composed of a repeating unit B are alternately repeated (coupled) twice in a single linear direction in a polymer chain. It is.
  • the polymer having a block structure can be obtained by an ordinary polymerization method of a block copolymer.
  • a living radical polymerization method, a living cation polymerization method, or a living anion polymerization method can be used.
  • living radical polymerization method living cationic polymerization method, or living anion polymerization method
  • living radical polymerization guidebook Aldrich
  • Takeshi Endo Mitsuo Sawamoto et al., "Synthesis of Polymers (above)-Radical Polymerization / Cationic Polymerization / Anionic Polymerization", Kodansha, 2010, p60, p105-108, p249- See 259 and p381-386.
  • the polymer having the block structure shown in FIG. 3B is, for example, as shown below, using an atom transfer radical polymerization (ATRP) method in a living radical polymerization method, with each terminal structure (repeating unit B) as a starting point. It can also be synthesized by extending the repeating unit by reacting the monomer as a unit in order.
  • R represents a terminal group and has the same meaning as the terminal group of the terminal structure described later.
  • the polymer having the block structure shown in FIG. 3B is synthesized by using, for example, a bromo compound as a chain transfer agent and extending a repeating unit on both sides of the chain transfer agent as a central point as shown below. Can do.
  • the residue of the chain transfer agent is interposed between the two partial structures composed of the repeating unit A as described below.
  • the graft structure means a structure that satisfies both of the following conditions (G-1) to (G-3).
  • G-1 Another polymer PB G1 (also referred to as a branch polymer) consisting of one or more types of repeating units with respect to the polymer PA G1 (also referred to as a trunk polymer) consisting of one or more types of repeating units Is a structure in which one or more are bonded.
  • G-2 In the polymer chain, the main chain direction of the polymer PB G1 is different from the main chain direction of the polymer PA G1 .
  • G-3 to the polymer PB G1, polymer PB G2 having a main chain direction different from the main chain direction of the polymer PB G1 is not bound.
  • the polymer PA G1 and the polymer PB G1 may be the same or different, and when a plurality of the polymers PB G1 are present, they may be the same or different.
  • the bonding mode (structure) of the repeating units forming the polymer PA G1 and the polymer PB G1 is not particularly limited as long as they are bonded in a single linear direction in each polymer. Good.
  • bonded with polymer PA G1 should just be one or more, and is suitably determined according to the characteristic etc. of adhesive polymer. For example, it can be 1 or more, and can be 200 or less. Preferably it is 100 or less, more preferably 50 or less.
  • the graft structure of the adhesive polymer of the present invention is not particularly limited as long as it is described above, and examples thereof include the structures shown in FIGS. 4A to 4G (sometimes referred to as FIG. 4 in combination).
  • the graft structure shown in FIG. 4A is a graft structure in which three polymers PB G1 (branch polymer) composed of repeating units A are bonded to polymer PA G1 (trunk polymer) composed of repeating units A.
  • the graft structure shown in FIG. 4B is a graft structure in which six polymers PB G1 (branched polymer) composed of repeating units A are bonded to polymer PA G1 (trunk polymer) composed of repeating units A.
  • the graft structure shown in FIG. 4C is a graft structure in which three polymer PB G1 (branch polymer) composed of repeating unit B is bonded to polymer PA G1 (trunk polymer) composed of repeating unit A.
  • the graft structure shown in FIGS. 4D to 4G is a graft structure having a repeating unit C as the third component, the repeating unit C and the repeating unit D as the fourth component. That is, the graft structure shown in FIG. 4D is a graft in which three polymers PB G1 (branched polymer) consisting of repeating units B are bonded to a polymer PA G1 (trunk polymer) having a random structure consisting of repeating units A and C. Structure.
  • PB G1 branched polymer
  • PA G1 tunnel polymer
  • 4E has two polymers PB G1-B consisting of repeating units B and one polymer PB G1-C consisting of repeating units C to polymer PA G1 (trunk polymer) consisting of repeating units A.
  • This is a combined graft structure.
  • three polymers PB G1-BC having a block structure (including alternating copolymer structure) consisting of repeating units B and C are bonded to polymer PA G1 (trunk polymer) consisting of repeating unit A.
  • PA G1 tunnel polymer
  • 4G is a polymer PB having a block structure (including an alternating copolymer structure) consisting of repeating units C and D with respect to a polymer PA G1-AB (trunk polymer) having a random structure consisting of repeating units A and B. It is a graft structure in which three G1-CDs are bonded.
  • the polymer having a graft structure can be obtained by a usual polymerization method of a graft copolymer.
  • a macromonomer (YBBBBBB) having a polymerizable functional group (Y) at the terminal is homopolymerized, or the same monomer (B) as this macromonomer or a different monomer (A )
  • the reactive group of the terminal functional polymer (ZBBBBBB) to other polymer chains using the grafting through method (the synthesis method 1 shown in FIG. 5))
  • the grafting to method (synthesis method 2 shown in FIG.
  • the macromonomer used in the grafting through method is not particularly limited as long as it is usually used in the synthesis of graft polymers.
  • the macromonomer a commercially available product may be used, or an appropriately synthesized monomer may be used.
  • a method for synthesizing a macromonomer for example, a method described in JP-A-5-295015, a polymer of a chain transfer agent such as 3-mercapto-1-propanol and a monomer, an isocyanate group, and a polymerizable group
  • a method of reacting a compound having a compound in the presence of a tin catalyst there may be mentioned a method of reacting a compound having a compound in the presence of a tin catalyst.
  • a method for synthesizing a macromonomer reference can be made to Yuya Yamashita, “Chemistry and Industry of Macromonomer”, IP Publishing Department, 1989.
  • the star structure means a structure that satisfies both of the following conditions (S-1) to (S-3).
  • S-1 It has one nucleus in the polymer.
  • S-2) Three or more polymers PA S1 composed of one type or two or more types of repeating units are bonded to the nucleus.
  • S-3 The polymer PA S1, having a backbone direction different from the main chain direction of the polymer PA S1, and one or polymer PB S1 composed of two or more kinds of repeating units is not bound .
  • the number of the polymer PA S1 bonded to the nucleus may be three or more, and is determined appropriately according to the characteristics of the adhesive polymer.
  • the number of the polymer PA S1 is usually the same as the number of end portions described later.
  • a plurality of the polymers PA S1 may be the same or different.
  • the “nucleus” means a multi-branched structure (group) to which the polymer PA S1 can be bonded, and becomes a central point where a large number (for example, 2 to 12) of polymers are grown.
  • the bonding mode (structure) of the repeating units forming the polymer PA S1 is not particularly limited, and may be a block structure or a random structure.
  • the star structure possessed by the adhesive polymer of the present invention is not particularly limited as long as it is as described above, and examples thereof include the structures shown in FIGS. 6A to 6D (also referred to as FIG.
  • the star structure shown in FIG. 6A is a structure in which four polymers PA S1 composed of the repeating unit A are bonded to the nucleus.
  • the star structure shown in FIG. 6B is a structure in which four polymers PA S1 having repeating units A and B in a random structure are bonded to the nucleus.
  • 6C has a structure in which a polymer PA S1 having a partial structure consisting of a repeating unit A and a partial structure consisting of a repeating unit B in a block structure is bonded to the nucleus via the repeating unit A. It is.
  • the star structure shown in FIG. 6D is a structure in which eight polymers PA S1 composed of the repeating unit A are bonded to the nucleus.
  • a polymer having a star structure can be obtained by an ordinary polymerization method of a star copolymer.
  • examples thereof include a method using a polyfunctional initiator, a method using a polyfunctional terminator, and a method using a linking reaction with a divinyl compound, and a method using a polyfunctional initiator is preferred.
  • a polyfunctional initiator for the above-mentioned polymerization method, reference can be made to Takeshi Endo, Mitsuo Sawamoto et al., “Synthesis of Polymers (above) —Radical Polymerization / Cationic Polymerization / Anionic Polymerization”, Kodansha, 2010, p110-113.
  • anionic polymerization can also be used for the synthesis of a polymer having a star structure.
  • nucleus forming the star structure a commonly used compound can be used without any particular limitation.
  • a core compound an organic compound (for example, polysubstituted aromatic ring, sugar, calixarene or dendrimer), an inorganic compound (for example, cyclic siloxane or phosphorus amide), or a polydentate metal complex having a metal at the center, etc.
  • examples of the nucleus described above include the following compounds.
  • the branch structure means a structure that satisfies both of the following conditions (B-1) to (B-3).
  • B-1 The polymer has one or more nuclei.
  • B-2) Two or more polymers PA B1 composed of one type or two or more types of repeating units are bonded to the nucleus.
  • B-3) The polymer PA B1, has a main chain direction different from the main chain direction of the polymer PA B1, and one or polymer PB B1 consisting of two or more kinds of the repeating units (generation) of ( (Via the nucleus).
  • the condition (B-3) can be satisfied a plurality of times.
  • the number of times satisfying the condition (B-3) may be two or more, and is determined as appropriate according to the characteristics of the adhesive polymer. For example, it can be 2 to 7 times.
  • the polymer PA B1 and the polymer PB B1 may be the same or different.
  • bonding mode (structure) of the repeating unit which forms the said polymer PA B1 and the said polymer PB B1 is not specifically limited, A random structure, a block structure, a graft structure, or a star structure may be sufficient.
  • the branch structure includes, for example, a tree-like multi-branch structure in which a polymer that grows from the nucleus branches one after another according to the terminal direction, and a structure that combines a block structure, a graft structure, and / or a star structure, etc. ,included.
  • the repeating unit can be changed for each branch.
  • the number of nuclei in the polymer may be one or more, and is appropriately determined according to the characteristics of the adhesive polymer. For example, it can be 1 or more, and can be 150 or less.
  • the number of the polymer PA B1 bonded to the nucleus may be two or more, and is appropriately determined according to the characteristics of the adhesive polymer. For example, it can be 2 or more, and can be 20 or less.
  • the number of the polymer PB B1 bonded to the polymer PA B1 is appropriately determined according to the properties of the adhesive polymer, and can be, for example, 1 or more, and can be 150 or less. .
  • the number of the polymer PB B1 bonded to one polymer PA B1 (core) is preferably 2 or more.
  • the branch structure possessed by the adhesive polymer of the present invention is not particularly limited as long as it is as described above, and examples thereof include the structures shown in FIGS. 7A to 7E (sometimes referred to as FIG. 7 together).
  • the branch structure shown in FIGS. 7A and 7B has a polymer PB B1 further bonded to the polymer PA B1 bonded to the nucleus. That is, it is a dendritic multi-branched structure in which repeating units A are branched one after another from the nucleus in the terminal direction.
  • the branch structure shown in FIG. 7C is the same structure as the tree-like multi-branch structure shown in FIG. 7B, except that the repeating unit B is branched from the end of the branched chain.
  • the branch structure shown in FIG. 7D is the same structure as the tree-like multi-branch structure shown in FIG. 7B, except that the repeating unit A and the repeating unit B are branched and randomly arranged.
  • the branch structure shown in FIG. 7E has a repeating unit B (second generation) in a branched shape from the end of the branched chain, and further has a repeating unit C (third generation) in a branched shape as a third component from the middle thereof. Except this, it is the same structure as the tree-like multi-branch structure shown in FIG. 7B.
  • the branch structure shown in FIG. 7F is a structure in which two star structures in which five polymer PA S1 composed of the repeating unit A are bonded to the nucleus are bonded to each other by one polymer PA S1 of each star structure.
  • a polymer having a branch structure can be obtained by an ordinary polymerization method.
  • the divergent method or the convergent method can be mentioned, and the convergent method is preferable.
  • the polymerization method described above Macromolecules, 2005, 38 (21), p8701-8711, Macromolecules, 2006, 39 (22), p4361-4365, or Takeshi Endo, Mitsuo Sawamoto et al., “Synthesis of Polymers ( Top)-Radical polymerization / Cation polymerization / Anion polymerization ”, Kodansha, 2010, p402-414.
  • the nucleus capable of forming the branch structure is a polymer or macromonomer having at least one structure selected from the group consisting of a block structure, a graft structure and a star structure in addition to the nucleus described in the above star structure.
  • a polymer or macromonomer having at least one structure selected from the group consisting of a block structure, a graft structure and a star structure in addition to the nucleus described in the above star structure.
  • each primary structure described above can be identified as follows. That is, the graft structure, star structure, and branch structure can be confirmed as the shape of the particle by measuring the mean square turning radius ⁇ S ⁇ 2> from the static light scattering measurement. The presence or absence of the block structure can be confirmed by nuclear magnetic resonance (NMR) measurement.
  • NMR nuclear magnetic resonance
  • the adhesive polymer preferably has a block structure, a graft structure, a branch structure or a star structure composed of two or more kinds of repeating units in terms of contact angle and adhesion, and two or more kinds of repeating units. It preferably has a block structure or a graft structure.
  • the repeating unit forming the adhesive polymer is not particularly limited as long as it is one type or two or more types.
  • the repeating units are preferably 2 to 10 kinds, more preferably 2 to 5 kinds, and further preferably 2 or 3 kinds. .
  • the repeating unit will be described later.
  • the adhesive polymer preferably has 2 to 250 ends, more preferably 2 to 100 ends, more preferably 2 to 80 ends, per molecule. It is particularly preferred to have ⁇ 50 ends.
  • the end portion of the adhesion polymer means the maximum number of terminals that can be taken in the adhesion polymer having a certain molecular weight.
  • the number of end portions of the adhesive polymer can be determined by the following calculation method.
  • the number of ends can be determined using the number average molecular weight (Mn).
  • Mn number average molecular weight
  • (Number of ends) (Number average molecular weight of copolymer) / (Number average molecular weight of macromonomer) + (Number of ends of trunk)
  • the number average molecular weights of the copolymer and the macromonomer can be measured by the method described in Examples described later.
  • the number of ends is determined by the nucleus.
  • (Number of ends) (Maximum number of branches of the compound used for the nucleus) It becomes.
  • the number of ends per molecule of the adhesive polymer is based on the results of elemental analysis or X-ray photoelectron spectroscopy (ESCA) analysis and nuclear magnetic resonance (NMR) measurement. It is also possible to identify and calculate an element that is a repeating unit and / or a polymerization initiation point.
  • the element serving as the polymerization starting point include S atom, halogen atom (Cl, Br), Si atom, N atom, O atom and the like.
  • the functional group contained in the repeating unit include —SO 2 — and —SO—.
  • the repeating unit that forms the adhesive polymer will be described.
  • the repeating unit includes at least a repeating unit [a] having a solubility parameter ⁇ t calculated by the Hoy method of 13.5 or more and less than 20.0.
  • the adhesive polymer is formed of only the repeating unit [a].
  • the adhesive polymer is formed of two or more repeating units including at least one repeating unit [a].
  • the solubility parameter ⁇ t is literature "Properties of Polymers 3 rd, ELSEVIER , (1990)" The ⁇ t obtained for Amorphous Polymers according to the 214-220 pages, "2) Method of Hoy (1985,1989)” column of Meaning and calculated according to the description in the above column of the above document.
  • the unit of the solubility parameter ⁇ t is “(cal / cm 3 ) 1/2 ”.
  • the repeating unit is derived from a single compound, it is calculated according to the above description.
  • the solubility parameter ⁇ t is calculated as follows. That is, in the repeating unit, the mass ratio W of the constituent units after polymerization forming the repeating unit is calculated. Next, the solubility parameter ⁇ tr in each structural unit is calculated according to the above description. For each structural unit, the product of the solubility parameter ⁇ tr and the mass ratio W is calculated, and the sum of these is taken as the solubility parameter ⁇ t of the repeating unit.
  • the repeating unit [a] is not particularly limited as long as the solubility parameter ⁇ t is satisfied.
  • the repeating unit [a] for example, those derived from styrene compounds, those derived from (meth) acrylic acid ester compounds, those derived from (meth) acrylic acid compounds, olefin compounds (in the present specification, when simply referred to as olefin compounds) Means a non-cyclic olefin compound.), A vinylidene compound, or a cyclic olefin compound.
  • the styrene repeating unit (a) is not particularly limited as long as it is a repeating unit forming a styrene polymer.
  • the styrenic polymer include [0011] to [0020] in JP-A No. 2004-123965, [0014] to [0016] in JP-A No. 2013-75969, and [0011] in JP-A No. 7-3094. ] Etc. can be referred to.
  • styrene compound leading to the repeating unit [a] include, for example, styrene, 2-methylstyrene, 3-methylstyrene, 4-methylstyrene, 2-chlorostyrene, 3-chlorostyrene, 4-chlorostyrene, 4-chloromethylstyrene, 2,6-dimethylstyrene, 2,6-dichlorostyrene, 2,6-difluorostyrene, pentafluorostyrene, 4-ethylstyrene, 4-butylstyrene, 4-tert-butylstyrene, 4- Methoxystyrene, 4-trifluoromethylstyrene, 4-acetoxystyrene, 4-phenylstyrene, 1-vinylnaphthalene, 2-vinylnaphthalene, vinylanthracene, ⁇ -methylstyrene, ⁇ -methylstyrene
  • repeating unit [a] is a repeating unit derived from a (meth) acrylic acid ester compound ((meth) acrylic acid ester repeating unit (a)), as the structure of such a repeating unit, for example, JP-A-2004-323770 Reference may be made to paragraphs [0021] to [0023] of the publication, paragraphs [0024] to [0059] of JP 2014-185196 A, and the like.
  • the said repeating unit [a] is a repeating unit derived from a (meth) acrylic acid ester compound, it may be a repeating unit derived from a (meth) acrylic acid alkyl ester compound or a (meth) acrylic acid cycloalkyl ester compound. More preferred.
  • the alkyl group of this (meth) acrylic acid alkyl ester compound may be linear or branched.
  • the alkyl group constituting the (meth) acrylic acid alkyl ester compound preferably has 1 to 30 carbon atoms, more preferably 1 to 20 carbon atoms, still more preferably 1 to 18 carbon atoms, and particularly preferably 1 to 16 carbon atoms.
  • the number of carbon atoms of the cycloalkyl group of the (meth) acrylic acid cycloalkyl ester compound is preferably 3 to 30, more preferably 4 to 20, still more preferably 5 to 18, and particularly preferably 6 to 16.
  • (meth) acrylic acid ester compound and (meth) acrylic acid cycloalkyl ester compound that lead the repeating unit [a] include, for example, propyl acrylate, iso-propyl acrylate, n-butyl acrylate, acrylic Iso-butyl acid, sec-butyl acrylate, tert-butyl acrylate, hexyl acrylate, cyclohexyl acrylate, 2-ethylhexyl acrylate, dodecyl acrylate, methyl methacrylate, ethyl methacrylate, propyl methacrylate, iso methacrylate Mention may be made of -propyl, n-butyl methacrylate, hexyl methacrylate, cyclohexyl methacrylate, 2-ethylhexyl methacrylate or dodecyl methacrylate.
  • the repeating unit [a] is derived from a (meth) acrylic acid compound ((meth) acrylic acid repeating unit (a))
  • the (meth) acrylic acid repeating unit (a) is (meth) acrylic.
  • the (meth) acrylic acid repeating unit (a) is (meth) acrylic.
  • the (meth) acrylic acid compound leading to the repeating unit [a] include acrylic acid and its metal salt, or methacrylic acid and its metal salt.
  • repeating unit [a] is derived from an olefin compound (olefin repeating unit (a)), see, for example, paragraph [0015] of JP-A No. 2000-159817 as the structure of the repeating unit. Can do.
  • Specific examples of the olefin compound leading to the repeating unit [a] include, for example, ethylene, propylene, isoprene, butadiene, isobutene, and vinyl chloride.
  • the olefin compound can be interpreted as a vinylidene compound, when the structure is composed of only a carbon atom and a hydrogen atom, it is classified as an olefin compound instead of a vinylidene compound.
  • repeating unit [a] is derived from a vinylidene compound (vinylidene repeating unit (a))
  • examples of the structure of the repeating unit include paragraphs [0032] to [0041] of JP-A-2015-44967 or Reference can be made to paragraphs [0008] to [0009] of JP-A-8-67793.
  • Specific examples of the vinylidene compound for deriving the repeating unit [a] include, for example, vinylidene chloride, vinylidene fluoride, tetrafluoroethylene, trifluoroethylene chloride, or perfluoroalkoxytrifluoroethylene.
  • repeating unit [a] is derived from a cyclic olefin compound (cyclic olefin repeating unit (a))
  • specific examples of the cyclic olefin compound leading to the repeating unit [a] include, for example, cyclohexene, norbornene, tetra Mention may be made of cyclododecene and compounds derived therefrom.
  • the adhesive polymer preferably has a repeating unit derived from a styrene compound or a (meth) acrylate compound as the repeating unit [a], and more preferably has a repeating unit derived from a (meth) acrylate compound. preferable.
  • the adhesive polymer preferably has a repeating unit represented by the following general formula 2 or 3 as the repeating unit [a], and particularly preferably has a repeating unit represented by the following general formula 2.
  • R 5 represents a hydrogen atom or an alkyl group.
  • the alkyl group may be linear, branched or cyclic.
  • the alkyl group preferably has 1 to 10 carbon atoms, more preferably 1 to 5 carbon atoms, and still more preferably 1 to 3 carbon atoms.
  • the alkyl group is more preferably methyl or ethyl, and still more preferably methyl.
  • R 5 is preferably a hydrogen atom or methyl.
  • R 6 and R 7 each independently represents a hydrogen atom, an alkyl group, an aryl group or an alkoxycarbonyl group.
  • R 6 or R 7 is an alkyl group
  • the alkyl group has the same meaning as the alkyl group described above for R 5 , and preferred ones are also the same.
  • R 6 or R 7 is an aryl group
  • the aryl group preferably has 6 to 20 carbon atoms, more preferably 6 to 15 carbon atoms, particularly preferably 6 to 12 carbon atoms, and particularly preferably phenyl.
  • R 6 or R 7 is an alkoxycarbonyl group
  • the alkoxycarbonyl group preferably has 2 to 10 carbon atoms, and more preferably 2 to 5 carbon atoms.
  • the alkoxycarbonyl group is more preferably methoxycarbonyl, ethoxycarbonyl or propoxycarbonyl.
  • R 5 is a hydrogen atom or an alkyl group
  • R 6 and R 7 are both hydrogen atoms.
  • R 8 represents a hydrogen atom, an alkyl group having 1 to 20 carbon atoms or a cycloalkyl group having 3 to 20 carbon atoms, preferably an alkyl group having 1 to 20 carbon atoms or a cycloalkyl group having 3 to 20 carbon atoms. However, when R 5 is methyl, R 8 can take a hydrogen atom.
  • the alkyl group having 1 to 20 carbon atoms may be linear or branched.
  • the alkyl group preferably has 1 to 15 carbon atoms, more preferably 1 to 12, more preferably 1 to 10, still more preferably 1 to 8, and particularly preferably 1 to 6.
  • the alkyl group having 1 to 20 carbon atoms has a substituent, a halogen atom is preferable, and a fluorine atom is more preferable.
  • the cycloalkyl group having 3 to 20 carbon atoms preferably has 4 to 15 carbon atoms, and more preferably 5 to 12 carbon atoms.
  • the cycloalkyl group having 3 to 20 carbon atoms is preferably in a form in which the substituents of the cycloalkyl group are connected to each other to form a condensed ring (for example, an adamantane ring or an isobornyl ring).
  • the cycloalkyl group having 3 to 20 carbon atoms has a substituent, it is preferably an alkyl group (which may be linear or branched), and preferably an alkyl group having 1 to 4 carbon atoms. Is preferable, and methyl, ethyl or tert-butyl is more preferable.
  • R 9 , R 10 and R 11 each independently represent a hydrogen atom, a halogen atom, an alkyl group or an aryl group.
  • examples of the halogen atom include a fluorine atom, a chlorine atom, a bromine atom or an iodine atom, and a fluorine atom is preferred.
  • R 9 , R 10 or R 11 is an alkyl group, the alkyl group has the same meaning as the alkyl group of R 5 , and preferred ones are also the same.
  • R 9 , R 10 or R 11 is an aryl group
  • the aryl group has the same meaning as the aryl group for R 6 , and preferred ones are also the same.
  • R 9 , R 10 and R 11 are each preferably a hydrogen atom, a halogen atom or an alkyl group, more preferably a hydrogen atom or a halogen atom, and even more preferably a hydrogen atom.
  • R 10 and R 11 are preferably both hydrogen atoms.
  • R 12 , R 13 , R 14 , R 15 and R 16 each represent a hydrogen atom, a halogen atom, a hydroxyl group, an alkyl group, an alkenyl group, an aryl group, an alkoxy group, an acyl group, an acyloxy group or an alkoxycarbonyl group.
  • R 12 , R 13 , R 14 , R 15 and R 16 are each preferably a hydrogen atom, a halogen atom, an alkyl group, an alkenyl group, a hydroxyl group, an acyloxy group or an alkoxy group, more preferably a hydrogen atom, a halogen atom or an alkyl group.
  • a hydrogen atom is more preferable.
  • R 12 , R 13 , R 14 , R 15 or R 16 is a halogen atom
  • examples of the halogen atom include a fluorine atom, a chlorine atom, a bromine atom or an iodine atom, and a fluorine atom is preferred.
  • R 12 , R 13 , R 14 , R 15 or R 16 is an alkyl group
  • the alkyl group may be linear, branched or cyclic.
  • the alkyl group preferably has 1 to 10 carbon atoms, more preferably 1 to 5 carbon atoms, and still more preferably 1 to 3 carbon atoms.
  • the alkyl group is preferably methyl, ethyl or butyl, more preferably methyl.
  • R 12 , R 13 , R 14 , R 15 or R 16 is an alkenyl group
  • the alkenyl group may be linear, branched or cyclic.
  • the alkenyl group preferably has 2 to 10 carbon atoms, more preferably 2 to 5 carbon atoms, still more preferably 2 or 3.
  • the alkenyl group is more preferably ethenyl or propenyl, and even more preferably ethenyl.
  • R 12 , R 13 , R 14 , R 15 or R 16 is an aryl group
  • the aryl group preferably has 6 to 20 carbon atoms, more preferably 6 to 15 carbon atoms, particularly preferably 6 to 12 carbon atoms, Phenyl is preferred.
  • the alkoxy group may be linear, branched or cyclic.
  • the alkoxy group preferably has 1 to 10 carbon atoms, more preferably 1 to 5 carbon atoms, and still more preferably 1 to 3 carbon atoms.
  • the alkoxy group is more preferably methoxy or ethoxy.
  • R 12 , R 13 , R 14 , R 15 or R 16 is an acyl group, an acyloxy group, or an alkoxycarbonyl group, the acyl group, the acyloxy group, or the alkoxycarbonyl group is a corresponding group in the substituent group T. It is synonymous with group, and a preferable thing is also the same.
  • R 12 , R 13 , R 14 , R 15 and R 16 may be bonded to each other to form a ring.
  • two adjacent ethenyl groups may be bonded to each other to form a benzene ring (a naphthalene ring as a whole) including the carbon atom to which they are bonded.
  • R 12 , R 13 , R 14 , R 15 and R 16 may each further have a substituent selected from the substituent group T described above.
  • the alkyl group which has a substituent is mentioned, Specifically, a trifluoromethyl group is mentioned.
  • A-1 to A-9, A-17 to A-21 and A-24 to A-35 are (meth) acrylate repeating units (a), and A-22 and A-23 Is a (meth) acrylic acid repeating unit (a), A-10 to A-15 are styrene repeating units (a), and A-16 and A-44 to A-48 are vinylidene repeating units (a).
  • A-36 to A-43 are olefin repeating units (a), and A-49 to A-63 are cyclic olefin repeating units (a).
  • the adhesive polymer preferably contains, in addition to the above repeating unit [a], a repeating unit [b] whose solubility parameter ⁇ t calculated by the Hoy method is 20.0 or more and 26.0 or less. As a result, it is possible to obtain a laminate that achieves higher levels of interlayer adhesion and improved contact angle.
  • the repeating unit [b] is not particularly limited as long as the solubility parameter ⁇ t is satisfied.
  • the repeating unit [b] for example, those derived from (meth) acrylic acid ester compounds, those derived from (meth) acrylic acid compounds, those derived from (meth) acrylamide compounds, those derived from vinyl acetate compounds, vinyl ketone compounds
  • the repeating unit satisfying the above [b] is derived from a (meth) acrylic ester compound ((meth) acrylic ester repeating unit (b)), as the (meth) acrylic ester repeating unit (b), As long as the repeating unit forms a (meth) acrylic acid ester polymer, it is not particularly limited.
  • the (meth) acrylic acid ester repeating unit (b) is preferably derived from a (meth) acrylic acid (cyclo) alkyl ester compound.
  • (meth) acrylic acid ester compound leading to the repeating unit [b] include, for example, 2-hydroxyethyl acrylate, 2-acetoacetoxyethyl acrylate, 2-isocyanatoethyl acrylate, methacrylic acid 2 -Hydroxyethyl, 2-dimethylaminoethyl methacrylate, 2-diethylaminoethyl methacrylate or 2-isocyanatoethyl methacrylate.
  • the repeating unit [b] is derived from a (meth) acrylic acid compound ((meth) acrylic acid repeating unit (b))
  • the (meth) acrylic acid repeating unit (b) is (meth) acrylic.
  • the (meth) acrylic acid repeating unit (b) is (meth) acrylic.
  • the (meth) acrylic acid compound leading to the repeating unit [b] include acrylic acid and its metal salt, or methacrylic acid and its metal salt.
  • the repeating unit [b] is derived from a (meth) acrylamide compound ((meth) acrylamide repeating unit (b))
  • the (meth) acrylamide repeating unit (b) is a (meth) acrylamide polymer.
  • the preferred structure of such a repeating unit is as shown in the structural formulas exemplified later.
  • the vinyl acetate repeating unit (b) is particularly a repeating unit that forms a vinyl acetate polymer. It is not limited.
  • the structure of the vinyl acetate repeating unit (b) reference can be made, for example, to paragraphs [0007] to [0008] of JP-A-2002-338609.
  • Specific examples of the vinyl acetate compound that leads to the repeating unit [b] include vinyl acetate, vinyl propionate, vinyl pivalate, and isopropenyl acetate.
  • “vinyl acetate compound” is used to include a compound in which a hydrogen atom of vinyl acetate is substituted.
  • the vinyl ketone repeating unit (b) is not particularly limited as long as it is a repeating unit forming a vinyl ketone polymer.
  • the structure of such a repeating unit for example, paragraphs [0010] to [0017] of JP-A-2007-230940 or paragraphs [0009] to [0011] of JP-A-7-291886 can be referred to.
  • Specific examples of the vinyl ketone compound that leads to the repeating unit [b] include methyl vinyl ketone and ethyl vinyl ketone.
  • the maleic anhydride repeating unit (b) is a repeating unit that forms a maleic anhydride polymer. If it is, it will not specifically limit.
  • As the structure of such a repeating unit for example, paragraphs [0027] to [0029] in JP-A-2006-1111710, paragraphs [0013] to [0015] in JP-A-2008-156400, and the like can be referred to. .
  • maleic anhydride compound is used to include a compound derived from maleic anhydride.
  • the styrene repeating unit (b) is not particularly limited as long as it is a repeating unit that forms a styrene polymer.
  • the preferred structure of such a repeating unit is as shown in the structural formulas exemplified later.
  • repeating unit [b] may be a repeating unit derived from a compound having an ethylenically unsaturated bond (carbon-carbon double bond) other than the repeating unit derived from each compound described above.
  • the repeating unit [b] includes a repeating unit composed of two or more components.
  • Such repeating units include polyamide repeating units and polyester repeating units.
  • the polyamide repeating unit is not particularly limited as long as it has an amide bond, and usually includes a unit constituting a polyamide obtained by co-condensation polymerization of a polyvalent carboxylic acid compound and a polyvalent amine compound.
  • the carboxylic acid compound and the amine compound are not particularly limited as long as they are compounds that form various polyamides.
  • the valences (carboxy group number and amino group number) of the carboxylic acid compound and the amine compound are not particularly limited, but are preferably divalent.
  • carboxylic acid compounds include aliphatic carboxylic acid compounds and aromatic carboxylic acid compounds, and aromatic carboxylic acid compounds are preferred.
  • Aromatic carboxylic acid compounds include terephthalic acid, isophthalic acid, 4,4′-dicarboxydiphenyl ether, 2,6-naphthalenedicarboxylic acid, 1,4-naphthalenedicarboxylic acid, benzophenone-4,4′-dicarboxylic acid, 5 -Tert-butylisophthalic acid, 2,5-dimethylterephthalic acid, 4,6-dimethylisophthalic acid, 4,4'-stilbene dicarboxylic acid, 4,4'-biphenyldicarboxylic acid or 2,2-bis (4-carboxy) Phenyl) hexafluoropropane and the like.
  • Examples of the aliphatic carboxylic acid compounds include 1,4-cyclohexanedicarboxylic acid, 1,3-cyclohexanedicarboxylic acid, decahydro-1,4-naphthalenedicarboxylic acid, decahydro-2,6-naphthalenedicarboxylic acid, sebacic acid, azelaic acid, Examples include suberic acid and pimelic acid.
  • Examples of the amine compound include aliphatic amine compounds and aromatic amine compounds, and aromatic amine compounds are preferable.
  • Examples of the aliphatic amine compound include 1,4-cyclohexanediamine, 1,3-cyclohexanediamine, and the like, in addition to the amine compound that leads to the exemplary repeating unit described later.
  • aromatic amine compound 1,4-phenylenediamine, 1,3-phenylenediamine, 1,5-diaminonaphthalene, 2-chloro-1,4 other than the amine compound that leads to the exemplified repeating unit described later.
  • -Phenylenediamine, 4-chloro-1,3-phenylenediamine, 2,6-diaminotoluene, 2,4-diaminotoluene, 2,5-dichloro-1,4-phenylenediamine or 2,5-diaminotoluene Can be mentioned.
  • the combination of the carboxylic acid compound and the amine compound is not particularly limited, and examples thereof include combinations shown in the exemplified repeating unit described later.
  • the obtained polyamide repeating unit is at least two types.
  • exemplified repeating unit B-65 described later using two kinds of carboxylic acids can be mentioned.
  • the polyamide repeating unit can be obtained in the same manner as in the polyamide synthesis method.
  • the polyester repeating unit is not particularly limited as long as it has an ester bond, and usually includes a unit constituting a polyester obtained by co-condensation polymerization of a polyvalent carboxylic acid and a polyvalent alcohol.
  • the carboxylic acid and alcohol are not particularly limited as long as they are compounds that form various polyesters.
  • the valences (carboxy group number and hydroxyl group number) of the carboxylic acid and alcohol are not particularly limited, but are preferably divalent.
  • the carboxylic acid include aliphatic carboxylic acids and aromatic carboxylic acids, and specific examples include carboxylic acids in the polyamide repeating unit.
  • the alcohol include aliphatic alcohols and aromatic alcohols.
  • Examples of the aliphatic alcohol include 1,4-cyclohexanediol, 1,3-cyclohexanediol, 4,4′-bicyclohexanol, and the like, in addition to the alcohols shown in the exemplary repeating units described later.
  • aromatic alcohols including those having a hydroxyl group bonded to an aliphatic group
  • resorcinol 2,7-dihydroxynaphthalene, 2,6-dihydroxynaphthalene, other than the alcohols shown in the exemplified repeating units described later
  • 1,4-dihydroxynaphthalene 1,5-dihydroxynaphthalene
  • 4,4′-dihydroxydiphenyl ether 2-methylresorcinol
  • chlorohydroquinone 1,3-bis (4-hydroxyphenoxy) benzene
  • 4-chlororesorcinol examples thereof include methylhydroquinone, 2,3-dimethylhydroquinone, 2,2-bis (4-hydroxyphenyl) propane, and 4,4′-ethylidenebisphenol.
  • the combination of the carboxylic acid and the alcohol is not particularly limited, and examples thereof include combinations shown in the exemplified repeating unit described later.
  • the polyester repeating unit can be obtained in the same manner as in the polyester synthesis method.
  • the partial structure or polymer which consists of a polyester repeating unit may have another repeating unit similarly to the said polyamide repeating unit.
  • the adhesive polymer preferably has a repeating unit represented by the following general formula 1 as the repeating unit [b].
  • R 1 represents a hydrogen atom or an alkyl group, and preferably a hydrogen atom or methyl.
  • R 1 is an alkyl group
  • the alkyl group has the same meaning as R 5 in General Formula 2 above.
  • R 2 and R 3 each independently represents a hydrogen atom, an alkyl group, an aryl group or an alkoxycarbonyl group.
  • R 2 and R 3 are each preferably a hydrogen atom.
  • R 2 or R 3 is an alkyl group, an aryl group, and an alkoxycarbonyl group
  • the alkyl group, the aryl group, and the alkoxycarbonyl group are respectively an alkyl group, an aryl group, and R 6 and R 7 in General Formula 2 above. It is synonymous with an alkoxycarbonyl group, and a preferable thing is also the same.
  • L is a single bond, a divalent linking group selected from an alkylene group, an arylene group, —C ( ⁇ O) —, —O— and —N (R 4 ) —, or a linking group thereof.
  • a divalent linking group formed by combining two or more types is shown.
  • R 4 represents a hydrogen atom or an alkyl group, and has the same meaning as R 5 described above, and preferred ones are also the same.
  • L is an alkylene group, the alkylene group is preferably linear.
  • the alkylene group preferably has 1 to 5 carbon atoms, more preferably 1 to 4, more preferably 1 to 3, and particularly preferably 2.
  • the arylene group preferably has 6 to 20 carbon atoms, more preferably 6 to 15 carbon atoms, particularly preferably 6 to 12 carbon atoms, and particularly preferably phenylene.
  • the alkylene group and the arylene group each may have a substituent. Examples of the substituent include the groups in the substituent group T described above.
  • the number of the linking groups to be combined is not particularly limited, but is preferably 2 to 9, and more preferably 2 or 3.
  • the combination of the linking groups is not particularly limited, and for example, a combination of —C ( ⁇ O) — and —O— or a combination including —C ( ⁇ O) — and —O— is preferable.
  • the combination including —C ( ⁇ O) — and —O— includes a combination of —C ( ⁇ O) —, —O— and an alkylene group, or —C ( ⁇ O) —, —O— and an arylene group.
  • a combination of —C ( ⁇ O) —, —O— and an alkylene group is more preferred.
  • it is more preferable that —C ( ⁇ O) — is included in the linking group, and —C ( ⁇ O) — is bonded to the main chain (the carbon atom to which R 1 is bonded).
  • the adhesive polymer further preferably has a repeating unit represented by the following general formula 1-2 as the repeating unit [b].
  • R 1A represents a hydrogen atom or an alkyl group.
  • R 1A has the same meaning as R 1 in formula 1 above, and preferred ones are also the same.
  • L is a single bond, or a divalent linking group selected from an alkylene group, an arylene group, —C ( ⁇ O) —, —O— and —N (R 4A ) —, or a group of these linking groups.
  • a divalent linking group formed by combining two or more types is shown.
  • R 4A represents a hydrogen atom or an alkyl group, and has the same meaning as R 4 described above, and preferred ones are also the same.
  • L in the general formula 1-2 has the same meaning as L in the general formula 1, and preferred ones are also the same.
  • the acetoacetoxy group in each repeating unit may be substituted with a substituent.
  • the adhesive polymer includes, as the repeating unit [b], a repeating unit derived from an acrylate compound (in the compounds represented by the general formulas 1 and 1-2, L is the preferred combination) or a polyamide repeating unit. It is preferable to have a repeating unit derived from an acrylate compound (in the compounds represented by the general formulas 1 and 1-2, L is a preferable combination).
  • B-1 to B-9, B-14, B-18, B-20 to B-33, B-76, B-77 and B-80 are derived from (meth) acrylic acid ester compounds.
  • B-10 is a repeating unit derived from a (meth) acrylic acid compound, and B-11 to B-13, B-34 to B-37, B-78 and B-79 are (meth) acrylamides.
  • B-15 to A-17 are repeating units derived from a vinyl acetate compound, B-19 is a vinyl ketone compound, and B-38 to B-46 are repeating units derived from a maleic anhydride compound.
  • B-47 to B-65 are polyamide repeating units
  • B-66 to B-75 are polyester repeating units
  • B-81 is a repeating unit derived from a styrene compound.
  • the repeating unit is appropriately selected according to each primary structure and the like, and preferably has at least one repeating unit [a] and at least one repeating unit [b].
  • this block structure may be a block structure having two partial structures consisting of repeating units [a], but a partial structure consisting of repeating units [a] and a repeating unit A block structure having a partial structure consisting of [b] is preferred.
  • the graft chain may have either one or both of the repeating unit [a] and the repeating unit [b].
  • the graft chain has a repeating unit [a].
  • a graft structure in which a polymer P B G1 (branched polymer) containing a repeating unit [a] is bonded to a polymer PA G1 (trunk polymer) containing a repeating unit [b] is preferable.
  • the polymer containing a repeating unit may be a polymer composed of only a specific repeating unit, or a polymer containing a specific repeating unit and another repeating unit (also referred to as other repeating unit). Also good.
  • the content of each repeating unit is not particularly limited.
  • the molar amount of the repeating unit [a] in the total molar amount of the monomer components constituting the adhesive polymer should be 5 mol% or more. Is preferably 10 mol% or more, more preferably 20 mol% or more, further preferably 30 mol% or more, particularly preferably 40 mol% or more, and 50 mol%. % Or more is most preferable.
  • the molar amount of the repeating unit [a] in the total molar amount of the monomer components constituting the adhesive polymer is preferably 95 mol% or less, and more preferably 90 mol% or less.
  • the molar amount of the repeating unit [a] in the total molar amount of the monomer component constituting the adhesive polymer is preferably 100 mol% or less, and is included in the adhesive polymer. It is also preferred that all of the above repeating units are the above repeating unit [a].
  • the moles of the repeating unit [b] in the total molar amount of the monomer components constituting the adhesive polymer is preferably 5 mol% or more, and more preferably 10 mol% or more.
  • the molar amount of the repeating unit [b] in the total molar amount of the monomer component constituting the adhesive polymer is preferably 95 mol% or less, more preferably 90 mol% or less, still more preferably 80 mol% or less, 15 mol% or less is particularly preferable, and 10 mol% or less is most preferable.
  • the molar amount of the repeating unit represented by the general formula 2 or 3 in the total molar amount of the repeating unit [a] is preferably 50 mol% or more, and 70 mol% or more. More preferably, it is more preferably 80 mol% or more, and particularly preferably 90 mol% or more. Further, the adhesive polymer preferably has a molar amount of the repeating unit represented by the general formula 2 or 3 in the total molar amount of the repeating unit [a] of 100 mol% or less. It is also preferred that all of the repeating units [a] contained in the polymer are repeating units represented by the above general formula 2 or 3.
  • the molar amount of the repeating unit represented by the general formula 1 in the total molar amount of the repeating unit [b] is preferably 50 mol% or more, and 70 mol% or more. Is more preferably 80 mol% or more, and particularly preferably 90 mol% or more. Further, in the adhesive polymer, the molar amount of the repeating unit represented by the general formula 1 in the total molar amount of the repeating unit [b] is preferably 100 mol% or less. It is also preferred that all of the above repeating units [b] contained in are repeating units represented by the above general formula 1.
  • the molar amount of the repeating unit represented by the general formula 1-2 in the total molar amount of the repeating unit [b] is preferably 50 mol% or more, and 70 mol% or more. More preferably, it is more preferably 80 mol% or more, and particularly preferably 90 mol% or more. Further, in the adhesive polymer, the molar amount of the repeating unit represented by the general formula 1-2 in the total molar amount of the repeating unit [b] is preferably 100% by mole or less. It is also preferred that all of the repeating units [b] contained in the polymer are repeating units represented by the general formula 1-2.
  • the adhesive polymer may have other repeating units in addition to the repeating unit [a] and the repeating unit [b]. This other repeating unit may be present in any of the chains forming the polymer.
  • the content of the repeating unit [a] and the content of the repeating unit [b] are preferably 50% by mass or more in total, and 70% by mass. % Or more, more preferably 80% by weight or more, and particularly preferably 90% by weight or more.
  • the molar amount of the repeating unit [a] and the repeating unit [b] is preferably 100 mol% or less in total, and from the repeating unit [a] and the repeating unit [b]. It is also preferable that it is the form which becomes.
  • the layer containing the above-mentioned repeating unit [a] and containing the above-mentioned adhesive polymer having the primary structure is excellent in adhesion to the cellulose ester layer and hydrophobicity is not clear, but the present inventor Estimated as follows. However, the following reasons do not limit the present invention.
  • the solubility parameter ⁇ t of the repeating unit [a] is not close to the solubility parameter ⁇ t of the cellulose ester. Therefore, the polymer having the repeating unit [a] usually has low affinity with the cellulose ester and does not exhibit sufficient adhesion.
  • the adhesive polymer of the present invention has the primary structure described above. Therefore, it is considered that the adhesive polymer of the present invention can partially enter the cellulose ester layer. That is, the adhesive polymer of the present invention can serve as an anchor layer for the cellulose ester layer while maintaining hydrophobicity.
  • the adhesive polymer of the present invention has the primary structure described above.
  • the number of ends of the polymer chain is large, and the interaction with the cellulose ester becomes large. Accordingly, it is considered that the layer containing the adhesive polymer of the present invention exhibits excellent hydrophobicity (large contact angle) and further exhibits strong adhesiveness with the cellulose ester layer.
  • the repeating unit [a] and the repeating unit [b] are made the same polymer by controlling the structure of the block structure. It can be introduced with some separation.
  • the structure that maintains the hydrophobicity derived from the repeating unit [a] and the structure that partially enters the cellulose ester layer derived from the repeating unit [b] are arranged in a balanced manner in the same polymer.
  • partial structures that contribute to hydrophobicity and adhesion are present in various places in the same polymer, it is considered that excellent hydrophobicity and adhesion with the cellulose ester layer are expressed.
  • the adhesive polymer of the present invention has the repeating unit [b] in addition to the repeating unit [a], strong adhesion to the cellulose ester layer is expressed.
  • the repeating unit [b] has a solubility parameter ⁇ t close to that of the cellulose ester, and has a high affinity for the cellulose ester.
  • the repeating unit [b] when the repeating unit [b] is formed in the form of a layer adjacent to the cellulose ester layer due to the structure described above, the repeating unit [b] tends to be unevenly distributed near the surface on the cellulose ester layer side (the repeating unit [b] is near the surface).
  • Adhesive polymer is arranged to be located in Or, as described above, it partially enters the cellulose ester layer. Accordingly, it is considered that the adhesive polymer of the present invention having the repeating unit [b] effectively exhibits the interaction with the cellulose ester layer.
  • the adhesive polymer of the present invention exhibits the function of the repeating unit [b] without damaging the function of the repeating unit [a], even if it has the repeating unit [b]. Adhesion and contact angle can be achieved at a higher level. The reason for this is not clear, but is considered to be due to having the primary structure described above. In particular, when the above repeating unit [a] and the above repeating unit [b] are balanced in the above-mentioned preferred composition ratio (molar ratio), the properties of each repeating unit can be made compatible at a higher level. it can.
  • the lower limit of the weight average molecular weight of the adhesive polymer used in the present invention is preferably 5,000 or more, more preferably 10,000 or more, and 15,000 or more from the viewpoint of the film surface shape. More preferably it is.
  • the upper limit of the weight average molecular weight of the adhesive polymer used in the present invention is preferably 1,000,000 or less, more preferably 800,000 or less, from the viewpoint of film forming properties, and 500 It is more preferable that it is 1,000 or less, it is especially preferable that it is 200,000 or less, and it is most preferable that it is 100,000 or less.
  • the molecular weight can be measured by the method described in Examples described later.
  • the terminal structure of the adhesive polymer is not particularly limited, but is not uniquely determined by the presence or absence of other repeating units, the type of substrate used during synthesis, or the type of quenching agent (reaction terminator) used during synthesis.
  • Examples of the terminal group forming the terminal structure include a hydrogen atom, a halogen atom, a hydroxy group, an ethylenically unsaturated group, an alkyl group, an acyl group, an aromatic heterocyclic group, or an aromatic hydrocarbon group.
  • the film thickness of the adhesive polymer layer is not particularly limited, preferably 1 to 25 ⁇ m, more preferably 1 to 20 ⁇ m, and particularly preferably 1 to 15 ⁇ m.
  • the cellulose ester layer which comprises the laminated body of this invention is a layer which contains 50 mass% or more of cellulose esters in a layer. 60 mass% or more is preferable, as for content of the cellulose ester in a cellulose-ester layer, 70 mass% or more is more preferable, 80 mass% or more is further more preferable, and 85 mass% or more is especially preferable.
  • the upper limit of the content of the cellulose ester in the cellulose ester layer is usually 96% by mass or less, preferably 95% by mass or less, and more preferably 92% by mass or less. In this case, the remainder excluding the cellulose ester includes, for example, additives described later.
  • the cellulose ester used as a raw material in the production of the cellulose ester layer of the present invention will be described.
  • the cellulose ester can be used without particular limitation as long as it is a cellulose ester used for the production of a cellulose ester film.
  • the ⁇ -1,4-bonded glucose unit constituting cellulose has free hydroxy groups at the 2nd, 3rd and 6th positions.
  • the cellulose ester is a polymer (polymer) obtained by esterifying a part of these hydroxy groups with an esterifying agent or the like. Examples of cellulose include cotton linter or wood pulp (hardwood pulp, softwood pulp) and the like.
  • Any cellulose obtained from any raw material cellulose can be used, and in some cases, it may be mixed and used.
  • the raw material cellulose is, for example, Marusawa, Uda, “Plastic Materials Course (17) Fibrous Resin”, Nikkan Kogyo Shimbun (published in 1970), or Japan Institute of Invention and Technology Publication No. 2001-1745 (page 7).
  • a cellulose ester the well-known cellulose ester used for manufacture of a cellulose-ester film can be used without a restriction
  • the acyl substitution degree indicates the degree of acylation of the hydroxy group of cellulose located at the 2-position, 3-position and 6-position, and is 2 for all glucose units.
  • substitution degree indicates the degree of acylation of the hydroxy group of cellulose located at the 2-position, 3-position and 6-position, and is 2 for all glucose units.
  • the total acyl substitution degree is 1 when all of any one of the 6-position and 2-position is acylated in each glucose unit in all hydroxy groups of all glucose. That is, the degree of substitution indicates the degree of acylation, assuming that 3 is when all the hydroxy groups in the glucose molecule are all acylated.
  • the degree of substitution of cellulose acylate is described in Tezuka et al., Carbohydrate. Res. , 273, 83-91 (1995), or according to the method prescribed in ASTM-D817-96.
  • the total acyl substitution degree of the cellulose acylate used in the present invention is preferably 1.50 or more and 3.00 or less, more preferably 2.00 to 2.97, from the viewpoint of moisture permeability, and 2.30 or more. More preferably, it is less than 2.97, and particularly preferably 2.30 to 2.95.
  • the acyl group of the cellulose acylate used in the present invention is not particularly limited, and may have one acyl group or may have two or more acyl groups.
  • the cellulose acylate that can be used in the present invention preferably has an acyl group having 2 or more carbon atoms as a substituent.
  • the acyl group having 2 or more carbon atoms is not particularly limited, and may be an aliphatic acyl group or an aromatic acyl group.
  • acyl group having 2 or more carbon atoms include acetyl, propionyl, butanoyl, heptanoyl, hexanoyl, octanoyl, decanoyl, dodecanoyl, tridecanoyl, tetradecanoyl, hexadecanoyl, octadecanoyl, isobutanoyl, tert-butanoyl, cyclohexane
  • Examples include carbonyl, oleoyl, benzoyl, naphthylcarbonyl, cinnamoyl and the like.
  • acetyl, propionyl, butanoyl, dodecanoyl, octadecanoyl, tert-butanoyl, oleoyl, benzoyl, naphthylcarbonyl, and cinnamoyl are preferable, and acetyl, propionyl, and butanoyl are more preferable.
  • Cellulose acetate using only an acetyl group as the acyl group of cellulose acylate can be suitably used in the present invention.
  • the total acyl substitution degree of this cellulose acetate is 2.00 or more from the viewpoint of moisture permeability and optical properties. It is preferably 3.00 or less, more preferably 2.20 to 3.00, further preferably 2.30 to 3.00, and further preferably 2.30 to 2.97. A range of 2.30 to 2.95 is particularly preferable.
  • a mixed fatty acid ester having two or more kinds of acyl groups can also be preferably used as the cellulose acylate in the present invention.
  • the acyl group of the mixed fatty acid ester preferably includes an acetyl group and an acyl group having 3 to 4 carbon atoms.
  • the degree of acetyl substitution is preferably less than 2.5 and more preferably less than 1.9.
  • the degree of substitution of the acyl group having 3 to 4 carbon atoms is preferably 0.1 to 1.5, and preferably 0.2 to 1.2.
  • two types of cellulose esters or cellulose acylates having one or both of an ester group and a degree of substitution can be used in combination.
  • the degree of polymerization of the cellulose ester or cellulose acylate used in the present invention is preferably 250 to 800, more preferably 300 to 600.
  • the number average molecular weight of the cellulose ester or cellulose acylate used in the present invention is preferably 40000 to 230,000, more preferably 60000 to 230,000, and most preferably 75,000 to 200000.
  • the degree of polymerization can be determined by dividing the number average molecular weight measured in terms of polystyrene by Gel Permeation Chromatography (GPC) by the molecular weight of the glucopyranose unit of cellulose ester or cellulose acylate.
  • GPC Gel Permeation Chromatography
  • the cellulose ester used in the present invention can be synthesized by a conventional method.
  • cellulose acylate can be synthesized using an acid anhydride or acid chloride as an acylating agent.
  • an organic acid for example, acetic acid
  • methylene chloride is used as a reaction solvent.
  • a protic catalyst such as sulfuric acid can be used as the catalyst.
  • the acylating agent is an acid chloride
  • a basic compound can be used as a catalyst.
  • cellulose acylate In general industrial production of cellulose acylate, an organic acid (acetic acid, propionic acid, butyric acid, etc.) corresponding to the desired acyl group or an acid anhydride (acetic anhydride, propionic anhydride, butyric anhydride, etc.) of cellulose is used. Is used to esterify the hydroxy group. For example, cotton linter or cellulose derived from cellulose pulp is used as a raw material, and this is activated with an organic acid such as acetic acid, and then esterified with an organic acid having a desired structure in the presence of a sulfuric acid catalyst. Cellulose acylate can be obtained.
  • an organic acid acetic acid, propionic acid, butyric acid, etc.
  • an acid anhydride acetic anhydride, propionic anhydride, butyric anhydride, etc.
  • cellulose is generally esterified using an excess amount of the organic acid anhydride relative to the amount of hydroxy groups present in the cellulose.
  • Cellulose acylate can also be synthesized, for example, by the method described in JP-A-10-45804.
  • the cellulose ester layer of the present invention other resins (for example, (meth) acrylic resin etc.) can be used in combination with the cellulose ester within a range not impairing the effects of the present invention.
  • the content of the other resin in the cellulose ester layer is preferably 40% by mass or less, more preferably 30% by mass or less, still more preferably 20% by mass or less, and particularly preferably 15% by mass or less in the cellulose ester layer. 10 mass% or less is the most preferable.
  • the formation of the cellulose ester layer is not particularly limited.
  • the cellulose ester layer is preferably formed by a melt casting method or a solution casting method (solvent casting method). More preferably, it is formed by the method. Examples of polymer film production using the solvent cast method are described in US Pat. Nos. 2,336,310, 2,367,603, 2,492,078, and 2,492,977. 2,492,978, 2,607,704, 2,739,069 and 2,739,070, British Patent Nos. 640731 and 736892. Nos.
  • the cellulose ester layer may be subjected to a stretching treatment.
  • a stretching treatment refers to, for example, JP-A-62-115035, JP-A-4-152125, 4-284221, 4-298310, and 11-48271. can do.
  • the solution casting method includes a method of uniformly extruding the prepared dope from a pressure die onto a metal support, and a doctor that adjusts the film thickness with a blade of the dope once cast on a metal support.
  • a method using a blade and a method using a reverse roll coater which adjusts with a reverse rotating roll and a method using a pressure die is preferred.
  • the pressure die includes a coat hanger type and a T die type, and any of them can be preferably used.
  • it can be carried out by various known methods for casting a cellulose ester solution, and each condition is set in consideration of differences in the boiling point of the solvent used. can do.
  • the cellulose ester layer may be a single layer or multiple layers, and in the case of multiple layers, it is preferable to use a lamination casting method such as a co-casting method, a sequential casting method or a coating method, It is particularly preferable to use the simultaneous co-casting (also referred to as simultaneous multi-layer co-casting) method from the viewpoint of stable production and production cost reduction.
  • a cellulose ester solution also referred to as a dope
  • this solution is cast on a support.
  • the casting dope for each layer (which may be three layers or more) is provided on a casting support (band or drum) from separate slits or the like.
  • the dope is extruded using a casting die that can be extruded at the same time, and the layers are cast simultaneously.
  • It is a casting method in which after casting, the film is peeled off from the support after an appropriate time and dried to form a film.
  • a co-casting die for example, a total of three layers: a surface layer two layers formed from a surface layer dope on a casting support, and a core layer composed of a core layer dope sandwiched between these surface layers. It can be extruded and cast simultaneously on a support.
  • a casting dope for the first layer is first extruded from a casting die on a casting support, cast, and dried or dried without being dried.
  • the dope for casting for two layers is extruded from a casting die, and if necessary, the dope is sequentially cast and laminated to the third layer or more, and peeled off from the support after an appropriate time. And dried to form a cellulose ester layer.
  • the coating method generally, a core layer is formed into a film by a solution casting method, and a coating solution that is a target cellulose ester solution is applied to the surface layer, followed by drying to form a cellulose ester having a laminated structure. Form a layer.
  • the cellulose ester layer is preferably stretched after casting and drying.
  • the stretching direction of the cellulose ester layer may be either a film transport direction (MD (Machine Direction) direction) or a direction (TD (Transverse Direction) direction) orthogonal to the transport direction. Considering the subsequent polarizing plate processing process, the TD direction is preferable.
  • the stretching process may be performed a plurality of times in two or more stages.
  • the film can be stretched by conveying the film while holding the film with a tenter and gradually widening the width of the tenter. Further, after the polymer film is dried, it can be stretched using a stretching machine (preferably uniaxial stretching using a long stretching machine). In the case of stretching in the MD direction, for example, it can be performed by adjusting the speed of the film transport roller to make the winding speed faster than the film peeling speed.
  • the transmission axis of the polarizer and the cellulose ester An embodiment in which the slow axes in the plane of the layer are arranged in parallel is preferable. Since the transmission axis of the roll film polarizer produced continuously is generally parallel to the width direction of the roll film, the protection comprising the roll film polarizer and the roll film cellulose ester layer is used. In order to continuously bond the films, the in-plane slow axis of the roll film-like protective film needs to be parallel to the width direction of the cellulose ester layer. Therefore, it is preferable to stretch more in the TD direction. The stretching process may be performed in the middle of the film forming process, or the original fabric that has been formed and wound may be stretched.
  • the stretching in the TD direction is preferably 5 to 100%, more preferably 5 to 80%, and particularly preferably 5 to 40%. In the case of unstretched, the stretching is 0%.
  • the said cellulose-ester layer may contain the additive in the range which does not impair the effect of this invention.
  • the additive include known plasticizers, organic acids, dyes, polymers, retardation adjusting agents, ultraviolet absorbers, antioxidants, and matting agents. Regarding these, the description of paragraph numbers [0062] to [0097] of JP2012-155287A can be referred to, and the contents thereof are incorporated in the present specification.
  • the additive include a peeling accelerator, an organic acid, and a polyvalent carboxylic acid derivative. Regarding these, the description in paragraphs [0212] to [0219] of International Publication No. 2015/005398 can be referred to, and the contents thereof are incorporated in the present specification.
  • examples of the additive include a radical scavenger, a deterioration inhibitor, and a barbituric acid compound, which will be described later.
  • the content of the additive (when the cellulose ester layer contains two or more additives), the total content thereof is preferably 50 parts by mass or less with respect to 100 parts by mass of the cellulose ester, The amount is more preferably 30 parts by mass or less, and further preferably 5 to 30 parts by mass.
  • Plasticizer One preferred additive is a plasticizer.
  • a plasticizer By adding a plasticizer to the cellulose ester layer, the hydrophobicity of the cellulose ester layer can be increased. This point is preferable from the viewpoint of reducing the water content of the cellulose ester layer. It is preferable to use such a plasticizer because when the laminate having a cellulose ester layer is used as a polarizing plate protective film, display unevenness of the image display device due to humidity can be hardly generated. .
  • polyhydric alcohol ester plasticizer of a polyhydric alcohol
  • polycondensation ester compound hereinafter also referred to as “carbohydrate derivative plasticizer”.
  • the molecular weight of the plasticizer is preferably 3000 or less, more preferably 1500 or less, and still more preferably 1000 or less, from the viewpoint of obtaining the above-described effect by adding it satisfactorily.
  • the molecular weight of the plasticizer is, for example, 300 or more, preferably 350 or more, from the viewpoint of low volatility. In the case of multimeric plasticizers, the molecular weight is the number average molecular weight.
  • the content of the plasticizer is 1 to 20 parts by mass with respect to 100 parts by mass of the resin (cellulose ester) of the layer to which the plasticizer is added from the viewpoint of achieving both the effect of adding the plasticizer and suppressing the precipitation of the plasticizer. It is preferably 2 to 15 parts by mass, more preferably 5 to 15 parts by mass. Two or more plasticizers may be used in combination. Also when using 2 or more types together, the specific example and preferable range of content are the same as the above.
  • One preferable additive may include an antioxidant.
  • an antioxidant reference can be made to the description of paragraphs [0143] to [0165] of International Publication No. 2015/005398, the contents of which are incorporated herein.
  • radical scavenger One preferred additive may include a radical scavenger.
  • the description in paragraphs [0166] to [0199] of International Publication No. 2015/005398 can be referred to, and the contents thereof are incorporated in the present specification.
  • a deterioration preventing agent As one of preferable additives, a deterioration preventing agent can be mentioned. As for the deterioration preventing agent, the description in paragraphs [0205] to [0206] of International Publication No. 2015/005398 can be referred to, and the contents thereof are incorporated in the present specification.
  • the cellulose ester layer may also contain a compound having a barbituric acid structure (barbituric acid compound).
  • a barbituric acid compound is a compound which can express various functions in a cellulose-ester layer by adding this compound.
  • the barbituric acid compound is effective for improving the hardness of the cellulose ester layer.
  • the barbituric acid compound is also effective in improving the durability of a polarizing plate having a cellulose ester layer containing this compound against light, heat or humidity.
  • the barbituric acid compound that can be used in the cellulose ester layer for example, the description in paragraphs [0029] to [0060] of International Publication No. 2015/005398 can be referred to, and the contents thereof are incorporated in the present specification. .
  • the cellulose ester layer can be improved in adhesion to a polarizer material such as polyvinyl alcohol by alkali saponification treatment.
  • a polarizer material such as polyvinyl alcohol
  • the methods described in paragraph No. [0211] and paragraph No. [0212] of JP-A No. 2007-86748 can be used.
  • the alkali saponification treatment for the cellulose ester layer is preferably performed in a cycle in which the film surface is immersed in an alkali solution, neutralized with an acidic solution, washed with water and dried.
  • the alkaline solution include potassium hydroxide solution and sodium hydroxide solution.
  • the concentration of hydroxide ions is preferably in the range of 0.1 to 5.0 mol / L, and more preferably in the range of 0.5 to 4.0 mol / L.
  • the alkaline solution temperature is preferably in the range of room temperature to 90 ° C, and more preferably in the range of 40 to 70 ° C.
  • the film thickness of the cellulose ester layer is preferably 1 to 80 ⁇ m, more preferably 1 to 60 ⁇ m, still more preferably 3 to 60 ⁇ m.
  • the thickness of the core layer is preferably 3 to 70 ⁇ m, more preferably 5 to 60 ⁇ m.
  • the thickness of skin layer A and skin layer B is preferably 0.5 to 20 ⁇ m, more preferably 0.5 to 10 ⁇ m, and still more preferably 0.5 to 3 ⁇ m.
  • the core layer is a layer located inside in the laminated structure, and in the case of a three-layer structure, the core layer is an intermediate layer, and the skin layers A and B are layers located outside in the laminated structure or three-layer structure.
  • the manufacturing method of the laminated body of this invention is demonstrated.
  • the laminated body of this invention is not specifically limited, A well-known method is employable.
  • an adhesive polymer layer can be formed by various known coating methods to produce a laminate.
  • a micro gravure coating system can be used preferably.
  • the coating solution is not particularly limited as long as the adhesive polymer is dissolved in an appropriate solvent at an appropriate concentration. There is no particular limitation.
  • melt film forming method it is preferable to use a manufacturing method such as a T-die method, and it is particularly preferable to use a simultaneous coextrusion method.
  • solution casting method a lamination casting method such as the above co-casting method, sequential casting method or coating method is preferably used, and a simultaneous co-casting method (also referred to as simultaneous multi-layer co-casting) method is particularly used. Is particularly preferable from the viewpoints of stable production and production cost reduction.
  • the laminate of the present invention preferably has the following physical properties or characteristics.
  • Contact angle In the laminate of the present invention, the contact angle of the surface of the adhesive polymer layer, measured by the following method, is preferably 64 ° or more, more preferably 65 ° or more, and particularly preferably 70 ° or more. preferable. In the laminate exhibiting such a contact angle, the surface of the adhesive polymer layer exhibits high hydrophobicity, and water adhesion to the surface of the adhesive polymer layer can be prevented. Therefore, the moisture permeability in the adhesive polymer layer is reduced, and deterioration of the polarizer can be effectively suppressed by superimposing the laminate of the present invention on the polarizer.
  • the contact angle on the surface of the adhesive polymer layer can be measured by the method described in the Example column.
  • the haze measured by the following method is preferably 1% or less, more preferably 0.7% or less, and particularly preferably 0.5% or less.
  • a laminate exhibiting such haze is excellent in transparency and suitable as a film member for a liquid crystal display device.
  • the lower limit of haze is 0.001% or more, for example, it is not specifically limited.
  • the haze is measured according to JIS K7136 (2000) using a haze meter (HGM-2DP, Suga Test Instruments) in an environment of 25 ° C. and a relative humidity of 60% using a laminate 40 mm ⁇ 80 mm.
  • the film thickness of the laminate of the present invention can be appropriately determined according to the application, but can be set to, for example, 5 to 100 ⁇ m. When the thickness is 5 ⁇ m or more, the handling property when producing a web-like film is improved, which is preferable. Moreover, by setting it as 100 micrometers or less, it becomes easy to respond to a humidity change and it becomes easy to maintain an optical characteristic.
  • the film thickness of the laminate is more preferably 8 to 80 ⁇ m, still more preferably 10 to 70 ⁇ m.
  • the laminate is preferably thinned. In this case, the thickness of the laminate is preferably 8 to 80 ⁇ m, for example, and 10 to 70 ⁇ m. Is more preferable.
  • Moisture permeability of the laminate of the present invention is preferably less than 1600g / m 2 / day, more preferably less than 1000g / m 2 / day, more preferably less than 500g / m 2 / day Particularly preferably, it is less than 250 g / m 2 / day.
  • the moisture content of the laminate is 25 ° C., regardless of the film thickness, so as not to impair the adhesion with a hydrophilic thermoplastic resin such as polyvinyl alcohol when used as a protective film for a polarizing plate.
  • the water content at a relative humidity of 80% is preferably 0 to 4% by mass.
  • the water content is more preferably 0 to 2.5% by mass, and still more preferably 0 to 1.5% by mass. If the equilibrium moisture content is 4% by mass or less, the dependency of retardation on humidity change does not become too large, and the liquid crystal display device displays black at a normal temperature in a high humidity environment and in a high temperature and high humidity environment.
  • the moisture content can be measured by a Karl Fischer method using a film sample 7 mm ⁇ 35 mm using a moisture measuring device and sample drying apparatuses “CA-03” and “VA-05” (both manufactured by Mitsubishi Chemical Corporation). .
  • the moisture content can be calculated by dividing the moisture content (g) by the sample mass (g).
  • the polarizing plate of the present invention includes a polarizer and at least one laminate of the present invention as a protective film for the polarizer.
  • a polarizing plate in which both surfaces of a polarizer are sandwiched between polarizing plate protective films to protect both surfaces is widely used.
  • polarizer for example, a film obtained by immersing and stretching a polyvinyl alcohol film in an iodine solution can be used.
  • a polarizer obtained by immersing and stretching a polyvinyl alcohol film in an iodine solution for example, the saponification surface of the cellulose ester layer in the laminate is bonded to at least one surface of the polarizer using an adhesive. Can do.
  • the laminate of the present invention can be used as a polarizing plate protective film.
  • the preparation method of the polarizing plate of this invention is not specifically limited, It can produce according to a general method.
  • the laminate of the present invention is treated with an alkali and bonded to both surfaces of a polarizer produced by immersing and stretching a polyvinyl alcohol film in an iodine solution using a completely saponified polyvinyl alcohol aqueous solution.
  • alkali treatment easy adhesion processing as described in JP-A-6-94915 or JP-A-6-118232 may be applied. Other surface treatments can also be performed.
  • the laminate surface of the laminate with the polarizer may be on the adhesive polymer layer side or on the cellulose ester layer side. But you can. From the viewpoint of further enhancing the effect of the present invention, it is preferable to directly bond the adhesive polymer layer side to the polarizer.
  • the lamination of the laminate of the present invention is preferably bonded to the polarizer so that the transmission axis of the polarizer and the slow axis of the laminate of the present invention are parallel, orthogonal or 45 °.
  • the slow axis can be measured by various known methods, for example, using a birefringence meter (KOBRADH, manufactured by Oji Scientific Instruments).
  • parallel, orthogonal, or 45 ° includes a range of errors allowed in the technical field to which the present invention belongs.
  • the parallel of the transmission axis of the polarizer and the slow axis of the laminate of the present invention means that the direction of the main refractive index nx of the laminate of the present invention and the direction of the transmission axis of the polarizer intersect at an angle of ⁇ 10 °.
  • This angle is preferably within a range of ⁇ 5 °, more preferably within a range of ⁇ 3 °, further preferably within a range of ⁇ 1 °, and most preferably within a range of ⁇ 0.5 °.
  • the orthogonality of the transmission axis of the polarizer and the slow axis of the laminate of the present invention means that the direction of the main refractive index nx of the laminate of the present invention and the direction of the transmission axis of the polarizer are 90 ° ⁇ 10 °. It means that they intersect at an angle within the range of.
  • This angle is preferably in the range of 90 ° ⁇ 5 °, more preferably in the range of 90 ° ⁇ 3 °, even more preferably in the range of 90 ° ⁇ 1 °, most preferably 90 ° ⁇ 0.1 °. Within range. If it is the above ranges, the fall of the polarization degree performance under polarizing plate cross Nicol will be suppressed, and light omission is reduced and it is preferable.
  • an adhesive agent used for bonding a polarizing plate protective film and a polarizer for example, the aqueous solution of polyvinyl alcohol or polyvinyl acetal (for example, polyvinyl butyral), vinyl polymer (for example, polybutyl) Acrylate) latex, UV curable adhesive, and the like.
  • Particularly preferred adhesives are aqueous solutions of fully saponified polyvinyl alcohol or UV curable adhesives.
  • the polarizing plate is composed of a polarizer and protective films protecting both surfaces thereof, and at least one of the protective films is preferably a laminate of the present invention.
  • a protective film other than the laminate of the present invention a known film can be used without any particular limitation.
  • the polarizing plate of the present invention includes the laminate of the present invention as a polarizing plate protective film. Therefore, deterioration of the polarizer is effectively prevented, and high polarizer durability is exhibited.
  • this polarizing plate is constituted by laminating a separate film on the surface.
  • the separate film is used for the purpose of protecting the polarizing plate at the time of shipping the polarizing plate and at the time of product inspection.
  • the separate film is used for the purpose of covering the adhesive layer to be bonded to the liquid crystal plate, and is used on the surface side of the polarizing plate to be bonded to the liquid crystal plate.
  • the degree of polarization is preferably 95.0% or more, more preferably 98% or more, and most preferably 99.5% or more.
  • the degree of polarization of the polarizing plate can be measured using an automatic polarizing film measuring device VAP-7070 manufactured by JASCO Corporation. More specifically, it can be measured by the method described in the Example column.
  • the polarizing plate of the present invention is excellent in durability under wet heat aging conditions. For this reason, the amount of change in the degree of polarization before and after the polarizing plate durability test described later is small.
  • the polarizing plate of the present invention measures orthogonal transmittance and parallel transmittance using an automatic polarizing film measuring device VAP-7070 manufactured by JASCO Corporation, and calculates the degree of polarization according to the formula described below.
  • the amount of change in polarization degree when stored for 500 hours in an environment of 85% humidity is preferably less than 3%.
  • the polarizing plate of the present invention is preferably used for an image display device.
  • Examples of such an image display device include a liquid crystal display device and an organic electroluminescence display device.
  • the polarizing plate of this invention is used suitably for a liquid crystal display device.
  • the liquid crystal display device which is one embodiment as the image display device of the present invention includes a liquid crystal cell and the polarizing plate of the present invention disposed in at least one of the liquid crystal cells.
  • a liquid crystal display device as an embodiment of the image display device of the present invention includes a liquid crystal cell in which liquid crystal is supported between two electrode substrates, two polarizing plates disposed on both sides thereof, and Accordingly, at least one optical compensation film is provided between the liquid crystal cell and the polarizing plate.
  • a preferred embodiment of the liquid crystal display device will be described.
  • FIG. 2 is a schematic view showing an embodiment of the liquid crystal display device.
  • the liquid crystal display device 20 includes a liquid crystal layer 24 and a first (upper liquid crystal cell) electrode substrate 23 and a second (lower liquid crystal cell) electrode substrate 25 arranged on both surface sides (referred to as upper and lower sides in FIG. 2).
  • a first (upper) polarizing plate 21 and a second (lower) polarizing plate 26 disposed on both sides of the liquid crystal cell.
  • a color filter may be disposed between the liquid crystal cell and each polarizing plate.
  • the liquid crystal display device 20 When the liquid crystal display device 20 is used as a transmission type, a cold cathode or hot cathode fluorescent tube, or a backlight having a light emitting diode, field emission element, or electroluminescent element as a light source is disposed on the back surface.
  • the substrate of the liquid crystal cell generally has a thickness of 50 ⁇ m to 2 mm.
  • the first polarizing plate 21 and the second polarizing plate 26 usually have a configuration in which a polarizer is sandwiched between two polarizing plate protective films.
  • it is preferable that at least one polarizing plate is the polarizing plate of the present invention.
  • the laminated body of this invention after arrange
  • the liquid crystal display device 20 of the present invention is preferably laminated in the order of the laminate of the present invention as a polarizing plate protective film, a polarizer, and a general transparent protective film from the outside of the device (the side far from the liquid crystal cell).
  • the liquid crystal layer 24 of the liquid crystal cell is usually formed by sealing liquid crystal in a space formed by sandwiching a spacer between two substrates.
  • the transparent electrode layer is formed on the substrate as a transparent film containing a conductive substance. Thereby, it becomes an electrode substrate provided with the substrate and the transparent electrode layer.
  • the liquid crystal cell may further be provided with a gas barrier layer, a hard coat layer, or an undercoat layer (undercoat layer) (used for adhesion of the transparent electrode layer). These layers are usually provided on the substrate.
  • the laminate of the present invention can also be preferably used as an optical compensation film for liquid crystal display devices.
  • the liquid crystal display device has a liquid crystal cell in which liquid crystal is supported between two electrode substrates, two polarizers disposed on both sides thereof, and at least between the liquid crystal cell and the polarizer described above. It is more preferable that the laminate of the present invention is arranged as an optical compensation film.
  • the laminate of the present invention can be used for liquid crystal cells in various display modes.
  • TN Transmission Nematic
  • IPS In-Plane Switching
  • FLC Fluoroelectric Liquid Crystal
  • AFLC Anti-Ferroly Liquid Liquid Crystal
  • OCB Optically QuantNW
  • Various display modes such as ECB (Electrically Controlled Birefringence) or HAN (Hybrid Aligned Nematic) have been proposed.
  • a display mode in which the above display mode is oriented and divided has been proposed.
  • the cellulose ester of the present invention can be suitably used for a liquid crystal display device in any display mode. Further, it can be suitably used for any liquid crystal display device of a transmissive type, a reflective type, and a transflective type.
  • the number of repeating units is a value calculated from the molecular weight of the repeating unit and the number average molecular weight of the polymer.
  • methyl ethyl ketone was charged into a 300 mL three-necked flask equipped with a thermometer, a stirring blade and a reflux ring, and stirred at 80 ° C. in a nitrogen stream.
  • the monomer composition P1 was dropped into the methyl ethyl ketone at a rate of 0.31 mL / min.
  • a chemical pump was used for dripping.
  • the reaction solution after completion of the dropwise addition was further reacted at 80 ° C. for 2 hours, 0.02 g of dimethyl-2,2′-azobisisobutyrate was further added, and the resulting mixture was further stirred for 3 hours.
  • the reaction solution was allowed to cool to room temperature (30 ° C.), diluted with 70 g of methyl ethyl ketone, and reprecipitated with a mixed solution of methanol 1.4 L and water 0.4 L to obtain a white precipitate.
  • the resulting white precipitate was filtered off and dried at 50 ° C. overnight to obtain 22.5 g of the target P-1.
  • the obtained polymer P-1 is shown below.
  • the number (40) attached to the repeating unit represented by R represents the number of repeating units in the polymer PA S1 .
  • This polymer P-1 had a structure shown in FIG. 6A, specifically, a star structure in which four polymers PA S1 having a repeating unit A-1 were bonded to the nucleus.
  • the obtained polymer P-2 is shown below.
  • the numbers (50 and 70) attached to the repeating units represented by R represent the number of repeating units.
  • the polymer P-2 has the structure shown in FIG.
  • the polymer had a branch structure in which two polymers PB B1 were bonded through the diphenylethylene-derived nucleus.
  • This polymer P-3 has a structure shown in FIG. 3A composed of two types of repeating units [a], specifically, a partial structure composed of the repeating unit A-2 and a partial structure composed of the repeating unit A-1. It was a block structure (AB type) bonded in a single linear direction within the polymer chain.
  • This polymer P-4 has the structure shown in FIG. 6B, specifically, a star structure in which four polymers PA S1 having a repeating unit A-1 and a repeating unit B-1 in a random structure are bonded to the nucleus. Had.
  • methyl methacrylate preA-1 and 7.7 g of methyl ethyl ketone were weighed and mixed to prepare a monomer composition P5-2.
  • 13.1 g of methyl ethyl ketone was charged into a 300 mL three-necked flask equipped with a thermometer, a stirring blade and a reflux ring, and stirred at 80 ° C. in a nitrogen stream.
  • the monomer composition P5-1 was dropped simultaneously at a rate of 0.32 mL / min and the monomer composition P5-2 was individually dropped at a rate of 0.13 mL / min.
  • a chemical pump was used for dripping.
  • the reaction solution after completion of the addition was further reacted at 80 ° C. for 3 hours. After completion of the reaction, the reaction solution was allowed to cool to room temperature, diluted with 70 g of methyl ethyl ketone, and mixed with 1.2 L of methanol and 0.5 L of water. Reprecipitation gave a white precipitate. The obtained white precipitate was filtered off and dried at 50 ° C. overnight to obtain 25.8 g of the target P-5.
  • the obtained polymer P-5 is shown below.
  • the number attached to each repeating unit in the trunk polymer represents a molar ratio
  • the number attached to the repeating unit in the branch polymer (graft chain) represents the number of repeating units (degree of polymerization).
  • This polymer P-5 has a structure shown in FIG. 4A, specifically, a graft structure in which a branch polymer PB G1 containing a repeating unit A-1 is bonded to a trunk polymer PA G1 containing a repeating unit A-1.
  • a branch polymer PB G1 containing a repeating unit A-1 is bonded to a trunk polymer PA G1 containing a repeating unit A-1.
  • This polymer P-6 has the structure shown in FIG. 4C, specifically, a graft structure in which the branch polymer PB G1 composed of the repeating unit A-1 is bonded to the trunk polymer PA G1 including the repeating unit B-6. Was.
  • acetoacetoxyethyl methacrylate preB-1 and 4.6 g of methyl ethyl ketone were weighed and mixed to prepare a monomer composition P7-2.
  • 10.6 g of methyl ethyl ketone was charged into a 200 mL three-necked flask equipped with a thermometer, a stirring blade and a reflux ring, and stirred at 80 ° C. in a nitrogen stream.
  • the monomer composition P7-1 was dropped simultaneously at a rate of 0.32 mL / min
  • the monomer composition P7-2 was simultaneously dropped at a rate of 0.07 mL / min.
  • This polymer P-8 has a structure shown in FIG. 3A, specifically, a partial structure consisting of the repeating unit B-1 and a partial structure consisting of the repeating unit A-1 in a single linear direction within the polymer chain. It was a combined block structure (AB type).
  • the reaction solution was allowed to cool to room temperature, diluted with 70 g of methyl ethyl ketone, and mixed with 1.2 L of methanol and 0.5 L of water. Reprecipitation gave a white precipitate. The resulting white precipitate was filtered off and dried at 50 ° C. overnight to obtain 23.3 g of the intended P-9.
  • the obtained polymer P-9 is shown below.
  • Synthesis of Polymer P-10> the procedure was similar to that of Synthesis Example 9, except that the amounts used of the macromonomer AA-6 and acetoacetoxyethyl methacrylate preB-1 were changed to the molar ratios (composition ratios) shown in Table 1, respectively. Thus, polymer P-10 was synthesized.
  • the reaction solution was allowed to cool to room temperature, diluted with 170 g of methyl ethyl ketone, and reprecipitated with a mixed solution of 2.5 L of methanol and 1.3 L of water to obtain a white precipitate.
  • the obtained white precipitate was filtered off and dried at 50 ° C. overnight to obtain 46.2 g of the desired diol compound DA-11.
  • the weight average molecular weight of the diol compound DA-11 thus obtained was 7,000.
  • polymer P-11 was synthesized as follows. In a 500 mL three-necked flask equipped with a thermometer, a stirring blade and a reflux ring, 115 g of N-methylpyrrolidone, 11.0 g of the diol compound DA-11 synthesized above, 2,2′-bis (trifluoromethyl) 3.9 g of benzidine preB-55-1 and 0.2 g of triethylamine were charged and stirred at 40 ° C. in a nitrogen stream to completely dissolve. After returning the internal temperature to room temperature, 2.80 g of isophthalic acid chloride preB-55-2 was added in portions (10 times) and stirred at room temperature for 4 hours.
  • This polymer P-11 has a structure shown in FIG. 4C, specifically, a graft structure in which a branch polymer PB G1 containing a repeating unit A-1 is bonded to a trunk polymer PA G1 containing a repeating unit B-55. Was.
  • ⁇ Synthesis Example 12 Synthesis of Polymer P-12> In a 500 mL three-necked flask equipped with a thermometer, a stirring blade and a reflux ring, 115 g of N-methylpyrrolidone, 11.0 g of the diol compound DA-11 synthesized in Synthesis Example 11 above, 1,1-bis (4- Aminophenyl) cyclohexane preB-53-1 (3.25 g) and triethylamine (0.2 g) were charged, and the mixture was stirred at 40 ° C. under a nitrogen stream to completely dissolve it.
  • the reaction solution was allowed to cool to room temperature, diluted with 170 g of 1-methoxy-2-propanol, and reprecipitated with a mixed solution of 2.5 L of methanol and 1.3 L of water to obtain a white precipitate.
  • the obtained white precipitate was filtered off and dried at 50 ° C. overnight to obtain 42.1 g of the target amine compound AM-13.
  • the amine compound AM-13 thus obtained had a weight average molecular weight of 6,000.
  • polymer P-13 was synthesized as follows. In a 500 mL three-necked flask equipped with a thermometer, stirring blades and reflux ring, 115 g of N-methylpyrrolidone, 11.0 g of amine compound AM-13 synthesized above, 2,2′-bis (trifluoromethyl) 3.9 g of benzidine preB-55-1 and 0.2 g of triethylamine were charged and stirred at 40 ° C. in a nitrogen stream to completely dissolve. After returning the internal temperature to room temperature, 2.66 g of isophthalic acid chloride preB-55-2 was added in portions (10 times) and stirred at room temperature for 4 hours.
  • This polymer P-13 has a structure shown in FIG. 3B, specifically, a partial structure consisting of the repeating unit A-1 is single in the polymer chain at both ends of the partial structure consisting of the repeating unit B-55. It had a block structure (BAB type) bonded in a linear direction.
  • the reaction solution was allowed to cool to room temperature, diluted with 170 g of 1-methoxy-2-propanol, and reprecipitated with a mixed solution of 3 L of methanol and 1.5 L of water to obtain a white precipitate.
  • the resulting white precipitate was filtered off and dried at 50 ° C. overnight to obtain 80.3 g of the target amine compound AM-16.
  • the amine compound AM-16 thus obtained had a weight average molecular weight of 7,000.
  • polymer P-16 was synthesized as follows. In a 300 mL three-necked flask equipped with a thermometer, a stirring blade and a reflux ring, 88 g of N-methylpyrrolidone, 10.0 g of the amine compound AM-16 synthesized above, 1,1-bis (4-aminophenyl) 1.76 g of cyclohexane preB-53-1 and 0.2 g of triethylamine were charged, and the mixture was stirred at 40 ° C. under a nitrogen stream to completely dissolve it. After returning the internal temperature to room temperature, 1.49 g of isophthalic acid chloride preB-53-2 was added in portions (10 times) and stirred at room temperature for 4 hours.
  • This polymer P-16 has a structure shown in FIG. 3B, specifically, a partial structure consisting of the repeating unit A-2 is single in the polymer chain at both ends of the partial structure consisting of the repeating unit B-53. It had a block structure (BAB type) bonded in a linear direction.
  • Comparative Synthesis Example 1 Synthesis of Comparative Polymer HP-1> In a 300 mL Erlenmeyer flask, weigh 133.5 g of methyl methacrylate preA-1, 0.1 g of dimethyl-2,2′-azobisisobutyrate and 75.0 g of methyl ethyl ketone, and mix and dissolve them. Monomer composition HP1 was prepared. Next, 75.0 g of methyl ethyl ketone was charged into a 1 L three-necked flask equipped with a thermometer, a stirring blade and a reflux ring, and stirred at 85 ° C. under a nitrogen stream.
  • the monomer composition HP1 was dropped into this methyl ethyl ketone at a rate of 1.1 mL / min. A chemical pump was used for dripping. The reaction solution after completion of the dropwise addition was further reacted at 85 ° C. for 6 hours. After completion of the reaction, the reaction solution was allowed to cool to room temperature, diluted with 500 mL of methyl ethyl ketone, and reprecipitated with 5 L of methanol to obtain a white precipitate. The resulting white precipitate was filtered off, redispersed and washed with 2 L of methanol three times, and dried at 60 ° C. overnight to obtain 91.0 g of polymer HP-1. This polymer HP-1 was a homopolymer composed of the repeating unit A-1.
  • Comparative Synthesis Example 2 Synthesis of Comparative Polymer HP-2>
  • the procedure was the same as Comparative Synthesis Example 1, except that 274.6 g of acetoacetoxyethyl methacrylate preB-1 was used instead of 133.5 g of methyl methacrylate preA-1.
  • Polymer HP-2 was synthesized. This polymer HP-2 was a homopolymer consisting of repeating unit B-1.
  • the solubility parameter ⁇ t calculated by the Hoy method of the repeating units constituting the polymers obtained in the above synthesis examples and comparative synthesis examples is shown in Table 1 below.
  • the primary structures of the polymers obtained in the above synthesis examples and comparative synthesis examples, and the molar amount (mol%) of each repeating unit in each polymer are also shown in Table 1 below.
  • the primary structure of the polymer was confirmed by the method described above.
  • the mol% of the repeating unit in the polymer is the integral in the chart obtained by measuring 1 H-NMR of each polymer using a nuclear magnetic resonance (NMR) spectrum measuring apparatus (manufactured by BRUKER, 300 MHz). It was calculated (identified) from the value.
  • NMR nuclear magnetic resonance
  • Table 1 shows the results obtained by the above method.
  • the number average molecular weights of the synthesized polymers, macromonomers AA-6 and AS-6, and diol compound DA-11, amine compounds AM-13 and AM-16 were measured under the following weight average molecular weight measurement conditions. It was measured.
  • Table 1 below shows the weight average molecular weights of the polymers obtained in the above synthesis examples and comparative synthesis examples.
  • GPC gel permeation chromatography
  • UV absorber manufactured by Tinuvin 326 Ciba Japan
  • Methylene chloride first solvent
  • Methanol second solvent
  • 1-butanol third solvent 11 parts by weight
  • the prepared dope A was uniformly cast from a casting die onto a stainless steel endless band (casting support) having a width of 2000 mm.
  • the amount of residual solvent in the dope A reaches 40% by mass, it is peeled off as a polymer film from the casting support, and is conveyed without being actively stretched by a tenter and dried at 130 ° C. in a drying zone. went.
  • the thickness of the obtained cellulose ester layer was 55 ⁇ m.
  • the contact angle was measured and evaluated according to JIS R 3257 (1999). However, the image used for the measurement is the image taken 30 seconds after dropping water on the adhesion polymer coating surface, and the angle formed by the dropped water droplet and the adhesion polymer surface is this image. Calculated based on In this test, the contact angle is a pass level of 64 ° or more, more preferably 65 ° or more, and still more preferably 70 ° or more.
  • Adhesion test of laminate As a method for evaluating the adhesion between the adhesive polymer layer and the cellulose acetate layer, a cross-cut test (cross-cut method) according to JIS K 5400 was applied. The specific procedure is shown below. In each of the produced laminates, 11 cuts were made at intervals of 1 mm on the surface on the adhesive polymer layer side using a cutter knife and a cutter guide to produce 100 grids. A cellophane tape (registered trademark) was strongly pressed onto the grid, and the end of the tape was peeled off at an angle of 45 ° with respect to the surface. The cellophane tape (registered trademark) was applied and peeled off five times in succession.
  • a new cellophane tape (registered trademark) was used each time. Thereafter, the state of the grids (the state of peeling of the grids constituting the grids) was observed, and the number of grids (residual number) that was in close contact with the cellulose acetate layer without peeling was counted. In this test, the adhesiveness is an acceptable level when the remaining number is 70 or more, preferably 95 or more, and particularly preferably 100.
  • the laminate HS-1 having a layer containing the homopolymer HS-1 composed only of the above repeating unit [a] has all the lattices peeled off, and the adhesion between the layers is extremely inferior. there were.
  • the laminate HS-2 having a layer containing the homopolymer HS-2 consisting only of the above repeating unit [b] had a poor contact angle.
  • ⁇ Preparation of active energy ray-curable adhesive composition Each component was mixed by the composition shown below, and it stirred at 50 degreeC for 1 hour, and obtained the active energy ray hardening-type adhesive composition.
  • ⁇ Composition of active energy ray-curable adhesive composition ⁇ Radical polymer: Aronix M-220 manufactured by Toagosei Co., Ltd. 20.0 parts by mass N-hydroxylacrylamide 40.0 parts by mass Kojin Acroylmorpholine 40.0 parts by mass Radical polymerization initiator: KAYACURE DETX-S manufactured by Nippon Kayaku Co., Ltd. 0.5 parts by mass Radical polymerization initiator: IRGACURE907 manufactured by BASF 1.5 parts by mass ⁇
  • Corona treatment was applied to the adhesive polymer layer side of each laminate produced above.
  • the active energy ray-curable adhesive composition prepared above is applied to an MCD coater (manufactured by Fuji Machine Co., Ltd., cell shape: honeycomb, number of gravure roll wires: 1000 / INCH, rotation speed 140% / vs. Line speed) was applied to a thickness of 0.5 ⁇ m.
  • an MCD coater manufactured by Fuji Machine Co., Ltd., cell shape: honeycomb, number of gravure roll wires: 1000 / INCH, rotation speed 140% / vs. Line speed
  • a cycloolefin film having a thickness of 40 ⁇ m (Arton G7810 manufactured by JSR) was prepared, and the surface thereof was subjected to corona treatment.
  • the active energy ray-curable adhesive composition was applied to the corona-treated surface so as to have a thickness of 0.5 ⁇ m in the same manner as described above. Subsequently, the surface of each laminate applied with the active energy ray-curable adhesive composition and the surface of the cycloolefin-based film applied with the active energy ray-curable adhesive composition of the polarizer produced above were used.
  • a polarizing plate precursor was prepared by bonding to both sides. Under the present circumstances, it arrange
  • active energy rays As active energy rays, ultraviolet rays (gallium filled metal halide lamp), irradiation device: Fusion UV Systems, Inc.
  • the illuminance of ultraviolet rays was measured using a Sola-Check system manufactured by Solatell.
  • the comparative polarizing plate HPL-1 could not be produced because the cellulose ester layer and the polymer layer were peeled off during the production of the polarizing plate.
  • “Durability” column of Table 3 “-” is shown.
  • ⁇ Evaluation of polarizer durability of polarizing plate> For the durability of the polarizing plate, the degree of polarization was measured in the following manner in a form in which the polarizing plate was attached to glass via an adhesive. Two samples (about 5 cm ⁇ 5 cm) in which a polarizing plate was pasted on a glass plate so that the side of the laminate was on the air interface side (side away from the glass plate) were prepared. About these samples, the glass plate side was set toward the light source, and the degree of polarization was measured. Each of the two samples was measured and the arithmetic average value was taken as the polarization degree of the polarizing plate. The degree of polarization was calculated by the following formula.
  • Polarization degree (%) [(parallel transmittance ⁇ orthogonal transmittance) / (orthogonal transmittance + parallel transmittance)] 1/2 ⁇ 100
  • the degree of polarization was measured in the range of 380 to 780 nm using an automatic polarizing film measuring device VAP-7070 manufactured by JASCO Corporation, and the measured value at a wavelength of 410 nm at which the degree of deterioration is more noticeable than other wavelengths was adopted. Thereafter, it was stored for 500 hours in a high temperature and high humidity environment at a temperature of 85 ° C. and a relative humidity of 85%. Subsequently, the polarization degree was measured about two samples like the above, the measured value of two samples was arithmetically averaged, and it was set as the polarization degree of the polarizing plate after a preservation
  • the polarizing plate durability was evaluated based on the following evaluation criteria.
  • evaluations A to C are acceptable levels among the following four grades. Evaluations A and B are preferable, and evaluation A is particularly preferable.
  • the amount of change in polarization degree is calculated by the following equation.
  • Polarization degree change (%) [Polarization degree before storage (%) ⁇ Polarization degree after storage (%)]

Abstract

A laminate which comprises a layer containing a cellulose ester and a layer containing an adhesive polymer, and wherein: the layer containing an adhesive polymer is adjacent to at least one surface of the layer containing a cellulose ester; the adhesive polymer has a graft structure, a branched structure or a star structure that is composed of one kind of repeating unit or a block structure, a graft structure, a branched structure or a star structure that is composed of two or more kinds of repeating units; and the repeating units include a repeating unit (a) that has a solubility parameter δt as calculated by a Hoy method of 13.5 or more but less than 20.0. A polarizing plate which uses this laminate; and an image display device.

Description

積層体、偏光板及び画像表示装置Laminated body, polarizing plate, and image display device
 本発明は、積層体、この積層体を用いた偏光板、及び画像表示装置に関する。 The present invention relates to a laminate, a polarizing plate using the laminate, and an image display device.
 エレクトロルミネッセンスディスプレイ(ELD)又は液晶表示装置(LCD)に代表される画像表示装置には、その薄型化への要求が益々高まっている。また、屋外用途をはじめとして画像表示装置の使用環境は多様化しており、画像表示装置には従来に比べて過酷な環境下でも良好な画像品質を安定して維持できる性能(高度な耐久性)が求められるようになっている。
 画像表示装置における画像品質の低下は、水分が偏光板内部へと進入し、偏光子を劣化させることが一因とされる。偏光子はその表面に保護フィルム(光学フィルム)が積層されて保護されているが、保護フィルムにも薄膜化が求められている。保護フィルムを薄膜化すると水分が偏光子とより接触しやすくなり、画像品質が低下しやすくなる。また、かかる画像品質の低下は、屋外用途等の過酷環境下での使用においてより顕在化する。
Image display devices represented by an electroluminescence display (ELD) or a liquid crystal display device (LCD) are increasingly required to be thin. In addition, the usage environment of image display devices has been diversified, including outdoor applications, and image display devices have the ability to stably maintain good image quality even in harsh environments (high durability). Is now required.
The decrease in image quality in the image display apparatus is partly caused by moisture entering the polarizing plate and degrading the polarizer. The polarizer is protected by laminating a protective film (optical film) on the surface, but the protective film is also required to be thin. When the protective film is thinned, moisture is more likely to come into contact with the polarizer, and the image quality is likely to deteriorate. In addition, such a decrease in image quality becomes more apparent when used in harsh environments such as outdoor applications.
 上記保護フィルムとしては、汎用性又は加工性の観点から、セルロース系樹脂又はアクリル系樹脂が広く用いられている。耐久性をより高める必要性から、光学フィルムの改質が進められている(例えば特許文献1~5)。 As the protective film, a cellulose resin or an acrylic resin is widely used from the viewpoint of versatility or processability. Due to the necessity of further improving the durability, the optical film is being modified (for example, Patent Documents 1 to 5).
国際公開第2009/047924号公報International Publication No. 2009/047924 特開2012-172062号公報JP 2012-172062 A 特開2006-83225号公報JP 2006-83225 A 特開2013-101281号公報JP 2013-101281 A 特開平9-197128号公報JP-A-9-197128
 本発明者らは、偏光子の劣化を抑える観点で検討を重ねた結果、上記各特許文献に記載のフィルムをはじめ従来の保護フィルムでは、上述した要求水準まで高度に薄膜化した際には、水分の侵入を十分に防ぐことができず、偏光子の劣化を十分に抑えることが困難であることが明らかとなってきた。
 ところで、偏光子の劣化は、偏光子を保護する保護フィルムに疎水性の樹脂層を設けることにより、抑えることが可能になると考えられる。しかし、本発明者らがセルロースエステルを含有する層に対して疎水性の樹脂層を積層したところ、積層界面での密着性に乏しく、互いに剥離してしまうことが分かった。
As a result of repeated investigations from the viewpoint of suppressing the deterioration of the polarizer, the inventors of the present invention, including the films described in the above-mentioned patent documents, when the film is highly thinned to the above-described required level, It has become clear that it is difficult to sufficiently prevent the penetration of moisture and to sufficiently suppress the deterioration of the polarizer.
By the way, it is considered that the deterioration of the polarizer can be suppressed by providing a hydrophobic resin layer on the protective film for protecting the polarizer. However, when the present inventors laminated a hydrophobic resin layer on a layer containing a cellulose ester, it was found that the adhesion at the lamination interface was poor and the layers separated from each other.
 本発明は、層間の密着性が高く、しかも表面の疎水性に優れ、偏光子の保護フィルムとして用いた際に偏光子の劣化を効果的に抑えることができる積層体、この積層体を用いた偏光板、並びにこの偏光板を用いた画像表示装置を提供することを課題とする。 The present invention uses a laminate that has high adhesion between layers and is excellent in surface hydrophobicity, and can effectively suppress deterioration of the polarizer when used as a protective film for a polarizer. It is an object to provide a polarizing plate and an image display device using the polarizing plate.
 本発明者らは、上記課題に鑑み鋭意検討を重ねた結果、溶解度パラメータが特定範囲内にある繰り返し単位の少なくとも1種からなる特定の一次構造を有するポリマーが、層状に形成したときに接触角が大きくなり、しかも、セルロースエステルを含有する層に対して高い密着性を発現すること、また、このポリマーを含有する層とセルロースエステルを含有する層との積層体を偏光子の保護フィルムとして用いることにより、偏光子の劣化を効果的に抑えることができることを見出した。本発明はこれらの知見に基づき、更に検討を重ね、完成されるに至ったものである。 As a result of intensive investigations in view of the above problems, the inventors of the present invention have a contact angle when a polymer having a specific primary structure composed of at least one repeating unit having a solubility parameter within a specific range is formed into a layer. In addition, a layered product of a layer containing the polymer and a layer containing the cellulose ester is used as a protective film for the polarizer. Thus, it has been found that the deterioration of the polarizer can be effectively suppressed. The present invention has been further studied and completed based on these findings.
 本発明の上記課題は下記の手段により解決された。
<1>セルロースエステルを含有する層と、密着性ポリマーを含有する層とを有する積層体であって、
 密着性ポリマーを含有する層が、セルロースエステルを含有する層の少なくとも一方の面に隣接し、
 密着性ポリマーが、1種の繰り返し単位からなる、グラフト構造、ブランチ構造若しくはスター構造、又は2種以上の繰り返し単位からなる、ブロック構造、グラフト構造、ブランチ構造若しくはスター構造を有し、上記の繰り返し単位がHoy法により算出される溶解度パラメータδtが13.5以上20.0未満である繰り返し単位〔a〕を含む、
積層体。
The above-described problems of the present invention have been solved by the following means.
<1> A laminate having a layer containing a cellulose ester and a layer containing an adhesive polymer,
The layer containing the adhesive polymer is adjacent to at least one side of the layer containing the cellulose ester;
The adhesive polymer has a graft structure, a branch structure or a star structure composed of one type of repeating unit, or a block structure, a graft structure, a branch structure or a star structure composed of two or more kinds of repeating units, and the above repeating The unit includes a repeating unit [a] having a solubility parameter δt calculated by the Hoy method of 13.5 or more and less than 20.0,
Laminated body.
<2>密着性ポリマーが、2種以上の繰り返し単位からなる、ブロック構造、グラフト構造、ブランチ構造若しくはスター構造を有する<1>に記載の積層体。
<3>密着性ポリマーが、1分子当たり2~250個の端部を有する<1>又は<2>に記載の積層体。
<4>密着性ポリマーが、ブロック構造又はグラフト構造を有する<1>~<3>のいずれか1つに記載の積層体。
<5>上記の、2種以上の繰り返し単位が、Hoy法により算出される溶解度パラメータδtが20.0以上26.0以下である繰り返し単位〔b〕を含む<1>~<4>のいずれか1つに記載の積層体。
<2> The laminate according to <1>, wherein the adhesive polymer has a block structure, a graft structure, a branch structure, or a star structure composed of two or more kinds of repeating units.
<3> The laminate according to <1> or <2>, wherein the adhesive polymer has 2 to 250 ends per molecule.
<4> The laminate according to any one of <1> to <3>, wherein the adhesive polymer has a block structure or a graft structure.
<5> Any one of <1> to <4>, wherein the two or more types of repeating units include the repeating unit [b] having a solubility parameter δt calculated by the Hoy method of 20.0 or more and 26.0 or less The laminated body as described in any one.
<6>繰り返し単位〔b〕が、下記一般式1で表される繰り返し単位である<5>に記載の積層体。
Figure JPOXMLDOC01-appb-C000004
 一般式1中、Rは水素原子又はアルキル基を表す。
 R及びRは、各々独立に、水素原子、アルキル基、アリール基又はアルコキシカルボニル基を表す。
 Lは、単結合、又は、アルキレン基、アリーレン基、-C(=O)-、-O-及び-N(R)-から選ばれる2価の連結基若しくはこれらの連結基の2種以上を組み合わせてなる2価の連結基を示す。Rは水素原子又はアルキル基を表す。
<6> The laminate according to <5>, wherein the repeating unit [b] is a repeating unit represented by the following general formula 1.
Figure JPOXMLDOC01-appb-C000004
In General Formula 1, R 1 represents a hydrogen atom or an alkyl group.
R 2 and R 3 each independently represents a hydrogen atom, an alkyl group, an aryl group or an alkoxycarbonyl group.
L is a single bond, an alkylene group, an arylene group, a divalent linking group selected from —C (═O) —, —O— and —N (R 4 ) —, or two or more of these linking groups. The bivalent coupling group which combines is shown. R 4 represents a hydrogen atom or an alkyl group.
<7>繰り返し単位〔a〕が、下記一般式2又は3で表される繰り返し単位である<1>~<6>のいずれか1つに記載の積層体。
Figure JPOXMLDOC01-appb-C000005
 一般式2中、Rは水素原子又はアルキル基を表す。
 R及びRは、各々独立に、水素原子、アルキル基、アリール基又はアルコキシカルボニル基を表す。
 Rは炭素数1~20のアルキル基又は炭素数3~20のシクロアルキル基を表す。
Figure JPOXMLDOC01-appb-C000006
 一般式3中、R、R10及びR11は、各々独立に、水素原子、ハロゲン原子、アルキル基又はアリール基を表す。
 R12、R13、R14、R15及びR16は、各々独立に、水素原子、ハロゲン原子、水酸基、アルキル基、アルケニル基、アリール基、アルコキシ基、アシル基、アシルオキシ基又はアルコキシカルボニル基を表す。
<7> The laminate according to any one of <1> to <6>, wherein the repeating unit [a] is a repeating unit represented by the following general formula 2 or 3.
Figure JPOXMLDOC01-appb-C000005
In General Formula 2, R 5 represents a hydrogen atom or an alkyl group.
R 6 and R 7 each independently represents a hydrogen atom, an alkyl group, an aryl group or an alkoxycarbonyl group.
R 8 represents an alkyl group having 1 to 20 carbon atoms or a cycloalkyl group having 3 to 20 carbon atoms.
Figure JPOXMLDOC01-appb-C000006
In General Formula 3, R 9 , R 10 and R 11 each independently represent a hydrogen atom, a halogen atom, an alkyl group or an aryl group.
R 12 , R 13 , R 14 , R 15 and R 16 are each independently a hydrogen atom, halogen atom, hydroxyl group, alkyl group, alkenyl group, aryl group, alkoxy group, acyl group, acyloxy group or alkoxycarbonyl group. To express.
<8>繰り返し単位〔a〕が、上記一般式2で表される繰り返し単位である<7>に記載の積層体。
<9>セルロースエステルが、セルロースアシレートである<1>~<8>のいずれか1つに記載の積層体。
<10>上記<1>~<9>のいずれか1つに記載の積層体と、偏光子とを有する偏光板。
<11>上記<10>に記載の偏光板を有する画像表示装置。
The laminated body as described in <7> whose <8> repeating unit [a] is a repeating unit represented by the said General formula 2.
<9> The laminate according to any one of <1> to <8>, wherein the cellulose ester is cellulose acylate.
<10> A polarizing plate comprising the laminate according to any one of the above items <1> to <9> and a polarizer.
<11> An image display device having the polarizing plate according to <10>.
 本発明の積層体は、セルロースエステルを含有する層との密着性が高く、しかも表面が優れた疎水性を示す。本発明の積層体は、偏光子と重ね合わされることにより、高温高湿条件下においても、偏光子の劣化を効果的に抑えることができる。
 また、本発明の偏光板及び画像表示装置は、上記の優れた効果を奏する積層体を利用して、偏光子の劣化を効果的に抑制でき、高い耐久性を示す。
 本明細書において、偏光子の劣化を抑制する程度を「偏光子耐久性」又は「偏光板耐久性」ともいう。
 本発明の上記及び他の特徴及び利点は、適宜添付の図面を参照して、下記の記載からより明らかになるであろう。
The laminate of the present invention has high adhesion to a layer containing a cellulose ester and exhibits excellent hydrophobicity on the surface. By superimposing the laminate of the present invention on a polarizer, deterioration of the polarizer can be effectively suppressed even under high temperature and high humidity conditions.
Moreover, the polarizing plate and image display apparatus of this invention can suppress deterioration of a polarizer effectively using the laminated body which has said outstanding effect, and show high durability.
In the present specification, the degree of suppressing the deterioration of the polarizer is also referred to as “polarizer durability” or “polarizing plate durability”.
The above and other features and advantages of the present invention will become more apparent from the following description, with reference where appropriate to the accompanying drawings.
図1は、本発明の積層体の一実施形態を示す断面図である。FIG. 1 is a cross-sectional view showing an embodiment of the laminate of the present invention. 図2は、本発明の偏光板保護フィルムを組み込んだ偏光板を備えた液晶表示装置の一実施形態について、その概略を示す模式図である。FIG. 2 is a schematic diagram showing an outline of an embodiment of a liquid crystal display device including a polarizing plate incorporating the polarizing plate protective film of the present invention. 図3Aは、本発明の密着性ポリマーが有するブロック構造の一例を示す図である。FIG. 3A is a diagram showing an example of a block structure possessed by the adhesive polymer of the present invention. 図3Bは、本発明の密着性ポリマーが有するブロック構造の一例を示す図である。FIG. 3B is a diagram showing an example of a block structure possessed by the adhesive polymer of the present invention. 図3Cは、本発明の密着性ポリマーが有するブロック構造の一例を示す図である。FIG. 3C is a diagram showing an example of a block structure possessed by the adhesive polymer of the present invention. 図3Dは、本発明の密着性ポリマーが有するブロック構造の一例を示す図である。FIG. 3D is a diagram showing an example of a block structure possessed by the adhesive polymer of the present invention. 図3Eは、本発明の密着性ポリマーが有するブロック構造の一例を示す図である。FIG. 3E is a diagram showing an example of a block structure possessed by the adhesive polymer of the present invention. 図4Aは、本発明の密着性ポリマーが有するグラフト構造の一例を示す図である。FIG. 4A is a diagram showing an example of a graft structure possessed by the adhesive polymer of the present invention. 図4Bは、本発明の密着性ポリマーが有するグラフト構造の一例を示す図である。FIG. 4B is a diagram showing an example of a graft structure possessed by the adhesive polymer of the present invention. 図4Cは、本発明の密着性ポリマーが有するグラフト構造の一例を示す図である。FIG. 4C is a diagram showing an example of the graft structure of the adhesive polymer of the present invention. 図4Dは、本発明の密着性ポリマーが有するグラフト構造の一例を示す図である。FIG. 4D is a diagram showing an example of a graft structure possessed by the adhesive polymer of the present invention. 図4Eは、本発明の密着性ポリマーが有するグラフト構造の一例を示す図である。FIG. 4E is a diagram showing an example of a graft structure possessed by the adhesive polymer of the present invention. 図4Fは、本発明の密着性ポリマーが有するグラフト構造の一例を示す図である。FIG. 4F is a diagram illustrating an example of a graft structure included in the adhesive polymer of the present invention. 図4Gは、本発明の密着性ポリマーが有するグラフト構造の一例を示す図である。FIG. 4G is a diagram showing an example of a graft structure possessed by the adhesive polymer of the present invention. 図5は、グラフト構造を有する密着性ポリマーを合成する方法を説明する図である。FIG. 5 is a diagram illustrating a method for synthesizing an adhesive polymer having a graft structure. 図6Aは、本発明の密着性ポリマーが有するスター構造の一例を示す図である。FIG. 6A is a diagram illustrating an example of a star structure included in the adhesive polymer of the present invention. 図6Bは、本発明の密着性ポリマーが有するスター構造の一例を示す図である。FIG. 6B is a diagram illustrating an example of a star structure included in the adhesive polymer of the present invention. 図6Cは、本発明の密着性ポリマーが有するスター構造の一例を示す図である。FIG. 6C is a diagram illustrating an example of a star structure included in the adhesive polymer of the present invention. 図6Dは、本発明の密着性ポリマーが有するスター構造の一例を示す図である。FIG. 6D is a diagram illustrating an example of a star structure included in the adhesive polymer of the present invention. 図7Aは、本発明の密着性ポリマーが有するブランチ構造の一例を示す図である。FIG. 7A is a diagram illustrating an example of a branch structure included in the adhesive polymer of the present invention. 図7Bは、本発明の密着性ポリマーが有するブランチ構造の一例を示す図である。FIG. 7B is a diagram showing an example of a branch structure included in the adhesive polymer of the present invention. 図7Cは、本発明の密着性ポリマーが有するブランチ構造の一例を示す図である。FIG. 7C is a diagram illustrating an example of a branch structure included in the adhesive polymer of the present invention. 図7Dは、本発明の密着性ポリマーが有するブランチ構造の一例を示す図である。FIG. 7D is a diagram illustrating an example of a branch structure included in the adhesive polymer of the present invention. 図7Eは、本発明の密着性ポリマーが有するブランチ構造の一例を示す図である。FIG. 7E is a diagram illustrating an example of a branch structure included in the adhesive polymer of the present invention. 図7Fは、本発明の密着性ポリマーが有するブランチ構造の一例を示す図である。FIG. 7F is a diagram illustrating an example of a branch structure included in the adhesive polymer of the present invention.
 本明細書において「~」で表される数値範囲は、その前後に記載される数値を下限値及び上限値として含む意味である。 In the present specification, the numerical range represented by “to” means that the numerical values described before and after it are included as the lower limit value and the upper limit value.
 本明細書において、特定の符号で表示された置換基又は連結基等(以下、置換基等という)が複数あるとき、あるいは複数の置換基等を同時若しくは択一的に規定するときには、それぞれの置換基等は互いに同一でも異なっていてもよいことを意味する。このことは、置換基等の数の規定についても同様である。また、複数の置換基等が近接(特に隣接)するときにはそれらが互いに連結したり縮環したりして環を形成していてもよい意味である。 In this specification, when there are a plurality of substituents or linking groups or the like (hereinafter referred to as substituents or the like) indicated by specific symbols, or when a plurality of substituents or the like are specified simultaneously or alternatively, It means that a substituent etc. may mutually be same or different. The same applies to the definition of the number of substituents and the like. Further, when a plurality of substituents and the like are close (especially adjacent), they may be connected to each other or condensed to form a ring.
 本明細書において化合物の表示については、化合物そのものの他、その塩、そのイオンを含む意味に用いる。また、目的の効果を損なわない範囲で、構造の一部を変化させたものを含む意味である。なお、化合物の塩としては、例えば、化合物と無機酸若しくは有機酸とで形成された、化合物の酸付加塩、又は、化合物と無機塩基若しくは有機塩基とで形成された、化合物の塩基付加塩等が挙げられる。また、化合物のイオンとしては、例えば、上述の化合物の塩が水又は溶媒等に溶解して生成するイオンが挙げられる。
 本明細書において置換、無置換を明記していない置換基(連結基についても同様)については、所望の効果を損なわない範囲で、その基に任意の置換基を有していてもよい意味である。これは置換、無置換を明記していない化合物又は繰り返し単位についても同義である。
 また本明細書において、単に「置換基」という場合、特段の断りがない限り、下記置換基群Tから選択される基が挙げられる。また、特定の範囲を有する置換基が記載されているだけの場合(例えば「アルキル基」と記載されているだけの場合)、下記置換基群Tの対応する基(上記の場合はアルキル基)における好ましい範囲及び具体例が適用される。
 本明細書において、ある基の炭素数を規定する場合、この炭素数は、基全体の炭素数を意味する。つまり、この基が更に置換基を有する形態である場合、この置換基を含めた全体の炭素数を意味する。
 本明細書において、ある基が非環状骨格及び環状骨格を形成可能な場合、特段の断りがない限り、ある基は、非環状骨格の基と環状骨格の基を含む。例えば、アルキル基は、特段の断りがない限り、直鎖アルキル基、分岐アルキル基及び環状(シクロ)アルキル基を含む。ある基が環状骨格を形成する場合、環状骨格の基における炭素原子数の下限は、ある基において具体的に記載した炭素原子数の下限にかかわらず、3以上が好ましく、5以上が更に好ましい。
In this specification, about the display of a compound, it uses in the meaning containing its salt and its ion other than a compound itself. In addition, it means that a part of the structure is changed as long as the target effect is not impaired. Examples of the salt of the compound include an acid addition salt of the compound formed with the compound and an inorganic acid or an organic acid, or a base addition salt of the compound formed with the compound and an inorganic base or an organic base. Is mentioned. In addition, examples of the ion of the compound include an ion generated by dissolving a salt of the above-described compound in water or a solvent.
In the present specification, a substituent that does not specify substitution or non-substitution (the same applies to a linking group) means that the group may have an arbitrary substituent as long as the desired effect is not impaired. is there. This is synonymous with a compound or repeating unit in which substitution or non-substitution is not specified.
Further, in the present specification, when simply referred to as “substituent”, a group selected from the following substituent group T is mentioned unless otherwise specified. In addition, when only a substituent having a specific range is described (for example, when only “alkyl group” is described), a corresponding group of the following substituent group T (in the above case, an alkyl group) Preferred ranges and specific examples in apply.
In the present specification, when the number of carbon atoms of a certain group is defined, this number of carbons means the total number of carbon atoms in the group. That is, when this group has a further substituent, it means the total number of carbon atoms including this substituent.
In this specification, when a certain group can form an acyclic skeleton and a cyclic skeleton, unless otherwise specified, the certain group includes a group having an acyclic skeleton and a group having a cyclic skeleton. For example, unless otherwise specified, an alkyl group includes a straight chain alkyl group, a branched alkyl group, and a cyclic (cyclo) alkyl group. When a certain group forms a cyclic skeleton, the lower limit of the number of carbon atoms in the group of the cyclic skeleton is preferably 3 or more, and more preferably 5 or more, regardless of the lower limit of the number of carbon atoms specifically described in the certain group.
 本明細書において、「(メタ)アクリル酸」との用語は、メタクリル酸及びアクリル酸の両方を包含する意味に用いる。このことは「(メタ)アクリルアミド」についても同様である。また、本明細書において、「アクリル酸」との用語は通常よりも広義の意味で用いている。すなわち、「アクリル酸」は、R-C(=CR )COOHの構造を有する化合物すべてを包含する意味に用いる(R及びRは各々独立に水素原子又は置換基を示す。ただし、Rがメチルである場合、メタクリル酸を意味する))。このことは、「アクリルアミド」についても同様である。 In this specification, the term “(meth) acrylic acid” is used to include both methacrylic acid and acrylic acid. The same applies to “(meth) acrylamide”. In this specification, the term “acrylic acid” is used in a broader sense than usual. That is, “acrylic acid” is used to include all compounds having the structure of R A —C (═CR B 2 ) COOH (R A and R B each independently represent a hydrogen atom or a substituent, provided that , When R A is methyl, means methacrylic acid)). The same applies to “acrylamide”.
置換基群T:
 アルキル基(好ましくは炭素原子数1~20、より好ましくは1~12、特に好ましくは1~8のものであり、例えばメチル基、エチル基、イソプロピル基、tert-ブチル基、n-オクチル基、n-デシル基、n-ヘキサデシル基などが挙げられる。シクロアルキル基の場合、炭素原子数は、好ましくは3~20、より好ましくは3~12、特に好ましくは3~8のものである。例えば、シクロプロピル基、シクロペンチル基、シクロヘキシル基などが挙げられる。)、アルケニル基(好ましくは炭素原子数2~20、より好ましくは2~12、特に好ましくは2~8であり、例えばビニル基、アリル基、2-ブテニル基、3-ペンテニル基などが挙げられる。)、アルキニル基(好ましくは炭素原子数2~20、より好ましくは2~12、特に好ましくは2~8であり、例えばプロパルギル基、3-ペンチニル基などが挙げられる。)、アリール基(好ましくは炭素原子数6~30、より好ましくは6~20、特に好ましくは6~12であり、例えばフェニル基、ビフェニル基、ナフチル基などが挙げられる。)、アミノ基(好ましくは炭素原子数0~20、より好ましくは0~10、特に好ましくは0~6であり、例えばアミノ基、メチルアミノ基、ジメチルアミノ基、ジエチルアミノ基、ジベンジルアミノ基などが挙げられる。)、アルコキシ基(好ましくは炭素原子数1~20、より好ましくは1~12、特に好ましくは1~8であり、例えばメトキシ基、エトキシ基、ブトキシ基などが挙げられる。)、アリールオキシ基(好ましくは炭素原子数6~20、より好ましくは6~16、特に好ましくは6~12であり、例えばフェニルオキシ基、2-ナフチルオキシ基などが挙げられる。)、アシル基(好ましくは炭素原子数1~20、より好ましくは1~16、特に好ましくは1~12であり、例えばアセチル基、ベンゾイル基、ホルミル基、ピバロイル基などが挙げられる。)、アルコキシカルボニル基(好ましくは炭素原子数2~20、より好ましくは2~16、特に好ましくは2~12であり、例えばメトキシカルボニル基、エトキシカルボニル基などが挙げられる。)、アリールオキシカルボニル基(好ましくは炭素原子数7~20、より好ましくは7~16、特に好ましくは7~10であり、例えばフェニルオキシカルボニル基などが挙げられる。)、アシルオキシ基(好ましくは炭素原子数2~20、より好ましくは2~16、特に好ましくは2~10であり、例えばアセトキシ基、ベンゾイルオキシ基などが挙げられる。)、アシルアミノ基(好ましくは炭素原子数2~20、より好ましくは2~16、特に好ましくは2~10であり、例えばアセチルアミノ基、ベンゾイルアミノ基などが挙げられる。)、アルコキシカルボニルアミノ基(好ましくは炭素原子数2~20、より好ましくは2~16、特に好ましくは2~12であり、例えばメトキシカルボニルアミノ基などが挙げられる。)、アリールオキシカルボニルアミノ基(好ましくは炭素原子数7~20、より好ましくは7~16、特に好ましくは7~12であり、例えばフェニルオキシカルボニルアミノ基などが挙げられる。)、スルホニルアミノ基(好ましくは炭素原子数1~20、より好ましくは1~16、特に好ましくは1~12であり、例えばメタンスルホニルアミノ基、ベンゼンスルホニルアミノ基などが挙げられる。)、スルファモイル基(好ましくは炭素原子数0~20、より好ましくは0~16、特に好ましくは0~12であり、例えばスルファモイル基、メチルスルファモイル基、ジメチルスルファモイル基、フェニルスルファモイル基などが挙げられる。)、カルバモイル基(好ましくは炭素原子数1~20、より好ましくは1~16、特に好ましくは1~12であり、例えばカルバモイル基、メチルカルバモイル基、ジエチルカルバモイル基、フェニルカルバモイル基などが挙げられる。)、アルキルチオ基(好ましくは炭素原子数1~20、より好ましくは1~16、特に好ましくは1~12であり、例えばメチルチオ基、エチルチオ基などが挙げられる。)、アリールチオ基(好ましくは炭素原子数6~20、より好ましくは6~16、特に好ましくは6~12であり、例えばフェニルチオ基などが挙げられる。)、スルホニル基(好ましくは炭素原子数1~20、より好ましくは1~16、特に好ましくは1~12であり、例えばメシル基、トシル基などが挙げられる。)、スルフィニル基(好ましくは炭素原子数1~20、より好ましくは1~16、特に好ましくは1~12であり、例えばメタンスルフィニル基、ベンゼンスルフィニル基などが挙げられる。)、ウレタン基、ウレイド基(好ましくは炭素原子数1~20、より好ましくは1~16、特に好ましくは1~12であり、例えばウレイド基、メチルウレイド基、フェニルウレイド基などが挙げられる。)、リン酸アミド基(好ましくは炭素原子数1~20、より好ましくは1~16、特に好ましくは1~12であり、例えばジエチルリン酸アミド、フェニルリン酸アミドなどが挙げられる。)、ヒドロキシ基、メルカプト基、ハロゲン原子(例えばフッ素原子、塩素原子、臭素原子、ヨウ素原子)、シアノ基、スルホ基、カルボキシ基、ニトロ基、ヒドロキサム酸基、スルフィノ基、ヒドラジノ基、イミノ基、ヘテロ環基(好ましくは炭素原子数1~30、より好ましくは1~12であり、ヘテロ原子としては、例えば窒素原子、酸素原子、硫黄原子が挙げられ、5員環若しくは6員環又はこれらの縮合環が好ましい。具体的には、例えば、イミダゾリル基、ピリジル基、キノリル基、フリル基、ピペリジル基、モルホリノ基、ベンゾオキサゾリル基、ベンズイミダゾリル基、ベンズチアゾリル基などが挙げられる。)、及び、シリル基(好ましくは、炭素原子数3~40、より好ましくは3~30、特に好ましくは3~24であり、例えば、トリメチルシリル基、トリフェニルシリル基などが挙げられる)。
 これらの置換基は更に置換基を有してもよい。また、置換基が2つ以上ある場合は、同じでも異なってもよい。また、隣接する置換基は互いに連結して環を形成してもよい。
Substituent group T:
An alkyl group (preferably having 1 to 20 carbon atoms, more preferably 1 to 12 carbon atoms, particularly preferably 1 to 8 carbon atoms such as a methyl group, an ethyl group, an isopropyl group, a tert-butyl group, an n-octyl group, An n-decyl group, an n-hexadecyl group, etc. In the case of a cycloalkyl group, the number of carbon atoms is preferably 3 to 20, more preferably 3 to 12, particularly preferably 3 to 8. For example, , A cyclopropyl group, a cyclopentyl group, a cyclohexyl group, etc.), an alkenyl group (preferably having 2 to 20 carbon atoms, more preferably 2 to 12 carbon atoms, particularly preferably 2 to 8 carbon atoms such as vinyl Groups, 2-butenyl groups, 3-pentenyl groups, etc.), alkynyl groups (preferably having 2 to 20 carbon atoms, more preferably 2 to 1 carbon atoms). And particularly preferably 2 to 8, for example, propargyl group, 3-pentynyl group, etc.), aryl group (preferably having 6 to 30 carbon atoms, more preferably 6 to 20 carbon atoms, particularly preferably 6 to 12 carbon atoms). For example, a phenyl group, a biphenyl group, a naphthyl group, etc.), an amino group (preferably having 0 to 20, more preferably 0 to 10, particularly preferably 0 to 6 carbon atoms, such as an amino group) , Methylamino group, dimethylamino group, diethylamino group, dibenzylamino group, etc.), alkoxy group (preferably having 1 to 20 carbon atoms, more preferably 1 to 12 carbon atoms, particularly preferably 1 to 8 carbon atoms). For example, a methoxy group, an ethoxy group, a butoxy group, etc.), an aryloxy group (preferably having 6 to 20 carbon atoms, more preferably 6 to 16, particularly preferably 6 to 12, and examples thereof include a phenyloxy group and a 2-naphthyloxy group), an acyl group (preferably having 1 to 20 carbon atoms, more preferably 1 to 16 carbon atoms). Particularly preferably 1 to 12, for example, acetyl group, benzoyl group, formyl group, pivaloyl group, etc.), alkoxycarbonyl group (preferably having 2 to 20 carbon atoms, more preferably 2 to 16 carbon atoms, especially Preferably, it is 2 to 12, for example, methoxycarbonyl group, ethoxycarbonyl group, etc.), aryloxycarbonyl group (preferably having 7 to 20, more preferably 7 to 16, particularly preferably 7 to 10 carbon atoms). Such as a phenyloxycarbonyl group), an acyloxy group (preferably having 2 to 20, more preferably 2 to 16, particularly preferably 2 to 10, and examples thereof include an acetoxy group and a benzoyloxy group. ), An acylamino group (preferably having 2 to 20 carbon atoms, more preferably 2 to 16 and particularly preferably 2 to 10 such as acetylamino group and benzoylamino group), alkoxycarbonylamino group ( Preferably it has 2 to 20 carbon atoms, more preferably 2 to 16 carbon atoms, particularly preferably 2 to 12 carbon atoms, such as a methoxycarbonylamino group, and an aryloxycarbonylamino group (preferably 7 to 7 carbon atoms). 20, more preferably 7 to 16, particularly preferably 7 to 12, and examples thereof include a phenyloxycarbonylamino group), a sulfonylamino group (preferably having 1 to 20 carbon atoms, more preferably 1 to 16 carbon atoms). And particularly preferably 1 to 12, for example, methanesulfonylamino group, benzenesulfonate Amino groups, etc.), sulfamoyl groups (preferably having 0 to 20 carbon atoms, more preferably 0 to 16 carbon atoms, particularly preferably 0 to 12 carbon atoms such as sulfamoyl group, methylsulfamoyl group, dimethylsulfayl group). And a carbamoyl group (preferably having 1 to 20 carbon atoms, more preferably 1 to 16 carbon atoms, particularly preferably 1 to 12 carbon atoms such as a carbamoyl group and a methylcarbamoyl group). , Diethylcarbamoyl group, phenylcarbamoyl group, etc.), alkylthio group (preferably having 1 to 20, more preferably 1 to 16, particularly preferably 1 to 12 carbon atoms, such as methylthio group and ethylthio group) Arylthio group (preferably having 6 to 20 carbon atoms, More preferably, it is 6 to 16, particularly preferably 6 to 12, and examples thereof include a phenylthio group.), A sulfonyl group (preferably having 1 to 20 carbon atoms, more preferably 1 to 16, and particularly preferably 1 to 1). 12 such as a mesyl group and a tosyl group), a sulfinyl group (preferably having 1 to 20 carbon atoms, more preferably 1 to 16 and particularly preferably 1 to 12, such as a methanesulfinyl group, Benzenesulfinyl group, etc.), urethane group, ureido group (preferably having 1 to 20 carbon atoms, more preferably 1 to 16, particularly preferably 1 to 12, such as ureido group, methylureido group, phenyl group) Ureido groups, etc.), phosphoric acid amide groups (preferably having 1-20 carbon atoms, more preferably 1-16, 1 to 12 is preferable, and examples thereof include diethyl phosphoric acid amide and phenyl phosphoric acid amide. ), Hydroxy group, mercapto group, halogen atom (eg fluorine atom, chlorine atom, bromine atom, iodine atom), cyano group, sulfo group, carboxy group, nitro group, hydroxamic acid group, sulfino group, hydrazino group, imino group, Heterocyclic group (preferably having 1 to 30 carbon atoms, more preferably 1 to 12 carbon atoms, and examples of the hetero atom include a nitrogen atom, an oxygen atom and a sulfur atom. A condensed ring is preferable, and specific examples include imidazolyl, pyridyl, quinolyl, furyl, piperidyl, morpholino, benzoxazolyl, benzimidazolyl, benzthiazolyl, and the like. A silyl group (preferably having 3 to 40 carbon atoms, more preferably 3 to 30 carbon atoms, particularly preferably 3 to 24 carbon atoms). , For example, a trimethylsilyl group, etc. triphenylsilyl group).
These substituents may further have a substituent. Moreover, when there are two or more substituents, they may be the same or different. Further, adjacent substituents may be connected to each other to form a ring.
 本発明の好ましい実施形態について以下に説明する。 A preferred embodiment of the present invention will be described below.
[積層体]
 図1に示されるように、本発明の好ましい一例としての積層体10は、セルロースエステルを含有する層(セルロースエステル層ともいう)11と、セルロースエステル層11の少なくとも一方の表面に隣接して積層された、密着性ポリマーを含有する層(密着性ポリマー層ともいう)12とを有する。
 本発明において、隣接して積層とは、セルロースエステル層と密着性ポリマー層との間に両層を密着又は接着させる密着性層(接着剤層)等を介することなく、両層が直接積層される(重ね合わされる)ことを意味する。
[Laminate]
As shown in FIG. 1, a laminated body 10 as a preferred example of the present invention is laminated adjacent to at least one surface of a layer (also referred to as a cellulose ester layer) 11 containing a cellulose ester and a cellulose ester layer 11. And a layer (also referred to as an adhesive polymer layer) 12 containing an adhesive polymer.
In the present invention, “adjacent lamination” means that both layers are directly laminated without an adhesive layer (adhesive layer) or the like for adhering or adhering both layers between the cellulose ester layer and the adhesive polymer layer. (Superimposed).
 本発明の積層体は、上記積層構造を有していれば、その他の構成は特に限定されない。
 例えば、セルロースエステル層の両表面に隣接して密着性ポリマー層が積層された3層積層構造を有していてもよい。また、密着性ポリマー層として組成比が異なる2層以上の密着性ポリマー層をセルロースエステル層上に設けてもよい。更に、密着性ポリマー層の表面に特定の機能に特化した各種機能層を有していてもよい。このような機能層としては、例えば、ハードコート層、反射防止層、光散乱層、防汚層又は帯電防止層等が挙げられる。
If the laminated body of this invention has the said laminated structure, another structure will not be specifically limited.
For example, it may have a three-layer laminated structure in which an adhesive polymer layer is laminated adjacent to both surfaces of the cellulose ester layer. Further, two or more adhesive polymer layers having different composition ratios may be provided on the cellulose ester layer as the adhesive polymer layer. Furthermore, you may have the various functional layers specialized in the specific function on the surface of the adhesive polymer layer. Examples of such a functional layer include a hard coat layer, an antireflection layer, a light scattering layer, an antifouling layer, and an antistatic layer.
<密着性ポリマーを含有する層>
 本発明の積層体を構成する密着性ポリマー層について説明する。
 本発明において、「密着性ポリマー層」とは、後述する密着性ポリマーを層中に50質量%以上含有する層を意味する。密着性ポリマー層中の密着性ポリマーの含有量は60質量%以上が好ましく、70質量%以上がより好ましく、80質量%以上が更に好ましく、85質量%以上が特に好ましい。密着性ポリマーの含有量が多いほど、セルロースエステル層との密着性をより高めることができ好ましい。そのため、密着性ポリマー層中の密着性ポリマーの含有量は100質量%でもよく、通常は99質量%以下である。上記密着性ポリマー層中の密着性ポリマーの含有量が100質量%でない場合、残部は、後述する各種の添加剤を含むことができる。
 密着性ポリマーは2種以上を併用してもよい。すなわち、組成比及び/又は分子量が異なる密着性ポリマー同士を併用してもよい。この場合、密着性ポリマーの合計量が上記範囲内となる。
 なお、本明細書において、「密着性ポリマー」との用語は、単にセルロースエステル層と密着しうるポリマーという意味合いで、本発明の理解を容易にするために用いているに過ぎない。かかる「密着性ポリマー」には、その密着性の度合いにかかわらず、本発明で規定するポリマーのすべてが包含される。すなわち本発明の要旨ないし技術的範囲の判断に際し、「密着性」との用語が、本発明を限定的に解釈する発明特定事項として考慮されるものではない。
<Layer containing adhesive polymer>
The adhesion polymer layer which comprises the laminated body of this invention is demonstrated.
In the present invention, the “adhesive polymer layer” means a layer containing an adhesive polymer described later in an amount of 50% by mass or more. The content of the adhesive polymer in the adhesive polymer layer is preferably 60% by mass or more, more preferably 70% by mass or more, still more preferably 80% by mass or more, and particularly preferably 85% by mass or more. The higher the content of the adhesive polymer, the higher the adhesiveness with the cellulose ester layer, which is preferable. Therefore, the content of the adhesive polymer in the adhesive polymer layer may be 100% by mass, and is usually 99% by mass or less. When the content of the adhesive polymer in the adhesive polymer layer is not 100% by mass, the balance can contain various additives described later.
Two or more adhesive polymers may be used in combination. That is, adhesive polymers having different composition ratios and / or molecular weights may be used in combination. In this case, the total amount of the adhesive polymer is within the above range.
In the present specification, the term “adhesive polymer” simply means a polymer that can be in close contact with the cellulose ester layer, and is merely used to facilitate understanding of the present invention. Such “adhesive polymer” includes all polymers defined in the present invention regardless of the degree of adhesion. That is, in judging the gist and technical scope of the present invention, the term “adhesiveness” is not considered as an invention specific matter for interpreting the present invention in a limited manner.
- 密着性ポリマー -
 密着性ポリマー層を構成する密着性ポリマーは、後述する一次構造を有している。
 この一次構造は、密着性ポリマーを形成する繰り返し単位が1種である場合、グラフト構造、ブランチ構造又スター構造であり、上記繰り返し単位が2種以上である場合、ブロック構造、グラフト構造、ブランチ構造又スター構造である。
 密着性ポリマーは、上記一次構造を1種有していても、2種以上を有していてもよい。
-Adhesive polymer-
The adhesive polymer constituting the adhesive polymer layer has a primary structure described later.
This primary structure is a graft structure, a branch structure or a star structure when the repeating unit forming the adhesive polymer is one kind, and a block structure, a graft structure or a branch structure when the repeating unit is two or more kinds. It is also a star structure.
The adhesive polymer may have one kind of the primary structure or two or more kinds.
 まず、密着性ポリマーが有する一次構造について、模式図を参照して説明するが、本発明はこれらの一次構造に限定されない。
 以下の説明においては、理解のため、1~4種の繰り返し単位A~Dからなるポリマー(共重合体)を例に挙げるが、本発明においては、後述するように、繰り返し単位は1~4種に限定されない。また、図中における繰り返し単位A、B、C及びDはそれぞれ別の構造(繰り返し単位)で置き換えることができる。
First, although the primary structure which an adhesive polymer has is demonstrated with reference to a schematic diagram, this invention is not limited to these primary structures.
In the following description, for the sake of understanding, a polymer (copolymer) composed of 1 to 4 types of repeating units A to D will be described as an example. It is not limited to species. Further, the repeating units A, B, C, and D in the figure can be replaced with different structures (repeating units).
 本発明において、「主鎖方向」とは、密着性ポリマーを形成する各部分構造において、この部分構造を形成する繰り返し単位の結合方向を意味する。
 また、本発明において、「繰り返し単位からなる」とは、特定の繰り返し単位のみからなる態様に加えて、特定の繰り返し単位と、これとは別の1種以上の繰り返し単位からなる態様を包含する。別の繰り返し単位としては、特に限定されないが、例えば、グラフト鎖を導入するための、重合性基を有する化合物由来の繰り返し単位、又は、後述する、2種以上の構成成分からなる繰り返し単位が挙げられる。
In the present invention, the “main chain direction” means a bonding direction of repeating units forming the partial structure in each partial structure forming the adhesive polymer.
In the present invention, “consisting of repeating units” includes, in addition to an embodiment consisting of only specific repeating units, an embodiment consisting of specific repeating units and one or more other repeating units. . Another repeating unit is not particularly limited, and examples thereof include a repeating unit derived from a compound having a polymerizable group for introducing a graft chain, or a repeating unit composed of two or more constituents described later. It is done.
 (ブロック構造)
 本発明において、ブロック構造とは、単一種の繰り返し単位からなる部分構造同士の主鎖方向が、ポリマー鎖内において単一の直線方向である構造をいう。ブロック構造は、2種以上の繰り返し単位からなる。
 本発明において、1つの繰り返し単位が2種以上の構成成分からなる場合、単一種の繰り返し単位からなる部分構造は、各構成成分が同一である繰り返し単位が結合してなる部分構造と、構成成分の少なくとも一つが異なる繰り返し単位を含んでなる部分構造を含む。例えば、部分構造が後述するアミド結合を含む繰り返し単位からなる場合、部分構造は、1種のカルボン酸化合物と1種のアミン化合物とを共縮重合して得られる単一種の繰り返し単位からなる部分構造に加えて、カルボン酸化合物及びアミン化合物の少なくとも一方を2種以上用いて共縮重合して得られる繰り返し単位(例えば、後述する例示繰り返し単位B-65)からなる部分構造を含む。この点は、単一種のポリエステル繰り返し単位からなる部分構造についても同様である。
(Block structure)
In the present invention, the block structure refers to a structure in which the main chain direction of partial structures composed of a single type of repeating unit is a single linear direction in the polymer chain. The block structure consists of two or more types of repeating units.
In the present invention, when one repeating unit is composed of two or more kinds of constituent components, the partial structure composed of a single type of repeating unit is composed of a partial structure formed by combining repeating units having the same constituent components, and a constituent component. At least one of which includes a partial structure comprising different repeating units. For example, when the partial structure is composed of a repeating unit containing an amide bond described later, the partial structure is a portion composed of a single type of repeating unit obtained by co-condensation polymerization of one kind of carboxylic acid compound and one kind of amine compound. In addition to the structure, it includes a partial structure composed of a repeating unit (for example, exemplified repeating unit B-65 described later) obtained by co-condensation polymerization using at least one of a carboxylic acid compound and an amine compound. This also applies to the partial structure composed of a single type of polyester repeating unit.
 本発明の密着性ポリマーが有するブロック構造は、上記したものであれば特に限定されず、例えば、図3A~図3E(合わせて図3ということがある。)に示す構造が挙げられる。図3において、A~Dは互いに異なる繰り返し単位を表す(図4~7において同じ)。
 図3Aに示すブロック構造は、繰り返し単位Aからなる部分構造と、繰り返し単位Bからなる部分構造とが、ポリマー鎖内において単一の直線方向に、結合したブロック構造(A-B型)である。図3Bに示すブロック構造は、繰り返し単位Aからなる部分構造の両端部に対し、繰り返し単位Bからなる部分構造がポリマー鎖内において単一の直線方向に結合したブロック構造(B-A-B型)である。図3Cに示すブロック構造は、繰り返し単位Bからなる部分構造と、繰り返し単位Aからなる部分構造と、更に第3成分として繰り返し単位Cからなる部分構造とが、この順で、ポリマー鎖内において単一の直線方向に結合したブロック構造である。図3Dに示すブロック構造は、図3Cに示すブロック構造において、繰り返し単位Cからなる部分構造に、更に第4成分として繰り返し単位Dからなる部分構造がポリマー鎖内において単一の直線方向に結合したブロック構造である。図3Eに示すブロック構造は、繰り返し単位Aからなる部分構造と、繰り返し単位Bからなる部分構造とが、ポリマー鎖内において単一の直線方向に交互に2回繰り返された(結合した)ブロック構造である。
The block structure possessed by the adhesive polymer of the present invention is not particularly limited as long as it is described above, and examples thereof include the structures shown in FIGS. 3A to 3E (sometimes referred to as FIG. 3 together). In FIG. 3, A to D represent different repeating units (the same applies to FIGS. 4 to 7).
The block structure shown in FIG. 3A is a block structure (AB type) in which a partial structure composed of a repeating unit A and a partial structure composed of a repeating unit B are combined in a single linear direction within the polymer chain. . The block structure shown in FIG. 3B is a block structure in which a partial structure consisting of a repeating unit B is bonded to both ends of a partial structure consisting of a repeating unit A in a single linear direction within a polymer chain (BAB type) ). The block structure shown in FIG. 3C has a partial structure composed of a repeating unit B, a partial structure composed of a repeating unit A, and a partial structure composed of a repeating unit C as a third component in this order in the polymer chain. It is a block structure coupled in one linear direction. The block structure shown in FIG. 3D is the same as the block structure shown in FIG. 3C, in which the partial structure consisting of the repeating unit C and the partial structure consisting of the repeating unit D as the fourth component are combined in a single linear direction within the polymer chain. Block structure. The block structure shown in FIG. 3E is a block structure in which a partial structure composed of a repeating unit A and a partial structure composed of a repeating unit B are alternately repeated (coupled) twice in a single linear direction in a polymer chain. It is.
 ブロック構造を有するポリマーは、ブロック共重合体の通常の重合方法により、得ることができる。例えば、リビングラジカル重合法、リビングカチオン重合、又は、リビングアニオン重合法が挙げられる。リビングラジカル重合法、リビングカチオン重合、又は、リビングアニオン重合法の例として、「精密ラジカル重合ガイドブック(Aldrich)」(URL:http://www.sigmaaldrich.com/japan/materialscience/polymer-science/crp-guide.html)、又は、遠藤剛編、澤本光男他著、「高分子の合成(上)-ラジカル重合・カチオン重合・アニオン重合」、講談社、2010年、p60、p105-108、p249-259及びp381-386を参照できる。 The polymer having a block structure can be obtained by an ordinary polymerization method of a block copolymer. For example, a living radical polymerization method, a living cation polymerization method, or a living anion polymerization method can be used. As an example of living radical polymerization method, living cationic polymerization method, or living anion polymerization method, please refer to “Precise radical polymerization guidebook (Aldrich)” (URL: http://www.sigmaaldrich.com/japan/materialscience/polymer-science/ crp-guide.html) or Takeshi Endo, Mitsuo Sawamoto et al., "Synthesis of Polymers (above)-Radical Polymerization / Cationic Polymerization / Anionic Polymerization", Kodansha, 2010, p60, p105-108, p249- See 259 and p381-386.
 図3Bに示すブロック構造を持つポリマーは、例えば、以下に示すように、リビングラジカル重合法における原子移動ラジカル重合(ATRP)法を用いて、末端構造(繰り返し単位B)を開始点として、各繰り返し単位となるモノマーを順に反応させることにより繰り返し単位を伸長させて、合成することもできる。
Figure JPOXMLDOC01-appb-C000007
 Rは、末端基を示し、後述する末端構造の末端基と同義である。
The polymer having the block structure shown in FIG. 3B is, for example, as shown below, using an atom transfer radical polymerization (ATRP) method in a living radical polymerization method, with each terminal structure (repeating unit B) as a starting point. It can also be synthesized by extending the repeating unit by reacting the monomer as a unit in order.
Figure JPOXMLDOC01-appb-C000007
R represents a terminal group and has the same meaning as the terminal group of the terminal structure described later.
 また、図3Bに示すブロック構造を持つポリマーは、例えば、以下に示すように、ブロモ化合物等を連鎖移動剤として用いて、連鎖移動剤を中心点として、その両側に繰り返し単位を伸長して合成することできる。なお、この場合、下記のように、繰り返し単位Aからなる2つの部分構造間に連鎖移動剤の残基が介在する。
Figure JPOXMLDOC01-appb-C000008
In addition, the polymer having the block structure shown in FIG. 3B is synthesized by using, for example, a bromo compound as a chain transfer agent and extending a repeating unit on both sides of the chain transfer agent as a central point as shown below. Can do. In this case, the residue of the chain transfer agent is interposed between the two partial structures composed of the repeating unit A as described below.
Figure JPOXMLDOC01-appb-C000008
 (グラフト構造)
 本発明において、グラフト構造とは、下記の条件(G-1)~(G-3)をともに満たすものを意味する。
(G-1)1種類又は2種類以上の繰り返し単位からなるポリマーPAG1(幹ポリマーともいう)に対し、1種類又は2種類以上の繰り返し単位からなる別のポリマーPBG1(枝ポリマーともいう)が1つ以上結合した構造である。
(G-2)ポリマー鎖内において、上記ポリマーPBG1の主鎖方向と、上記ポリマーPAG1の主鎖方向とは異なる。
(G-3)上記ポリマーPBG1に対し、上記ポリマーPBG1の主鎖方向と異なる主鎖方向を有するポリマーPBG2が結合していない。
(Graft structure)
In the present invention, the graft structure means a structure that satisfies both of the following conditions (G-1) to (G-3).
(G-1) Another polymer PB G1 (also referred to as a branch polymer) consisting of one or more types of repeating units with respect to the polymer PA G1 (also referred to as a trunk polymer) consisting of one or more types of repeating units Is a structure in which one or more are bonded.
(G-2) In the polymer chain, the main chain direction of the polymer PB G1 is different from the main chain direction of the polymer PA G1 .
(G-3) to the polymer PB G1, polymer PB G2 having a main chain direction different from the main chain direction of the polymer PB G1 is not bound.
 上記グラフト構造において、上記ポリマーPAG1及び上記ポリマーPBG1は、同一であっても異なっていてもよく、上記ポリマーPBG1が複数存在する場合も、それぞれ同一であっても異なっていてもよい。また、上記ポリマーPAG1及び上記ポリマーPBG1を形成する繰り返し単位の結合様式(構造)は、各ポリマーにおいて単一の直線方向に結合したものであれば特に限定されず、ブロック構造でもランダム構造でもよい。
 更に、ポリマーPAG1に結合するポリマーPBG1の数は、1つ以上であればよく、密着性ポリマーの特性等に応じて適宜に決定される。例えば、1個以上とすることができ、200個以下とすることができる。好ましくは100個以下であり、より好ましくは50個以下である。
In the graft structure, the polymer PA G1 and the polymer PB G1 may be the same or different, and when a plurality of the polymers PB G1 are present, they may be the same or different. The bonding mode (structure) of the repeating units forming the polymer PA G1 and the polymer PB G1 is not particularly limited as long as they are bonded in a single linear direction in each polymer. Good.
Furthermore, the number of polymer PB G1 couple | bonded with polymer PA G1 should just be one or more, and is suitably determined according to the characteristic etc. of adhesive polymer. For example, it can be 1 or more, and can be 200 or less. Preferably it is 100 or less, more preferably 50 or less.
 本発明の密着性ポリマーが有するグラフト構造は、上記したものであれば特に限定されず、例えば、図4A~図4G(合わせて図4ということがある。)に示す構造が挙げられる。
 図4Aに示すグラフト構造は、繰り返し単位AからなるポリマーPAG1(幹ポリマー)に対し、繰り返し単位AからなるポリマーPBG1(枝ポリマー)が3本結合したグラフト構造である。図4Bに示すグラフト構造は、繰り返し単位AからなるポリマーPAG1(幹ポリマー)に対し、繰り返し単位AからなるポリマーPBG1(枝ポリマー)が6本結合したグラフト構造である。図4Cに示すグラフト構造は、繰り返し単位AからなるポリマーPAG1(幹ポリマー)に対し、繰り返し単位BからなるポリマーPBG1(枝ポリマー)が3本結合したグラフト構造である。
The graft structure of the adhesive polymer of the present invention is not particularly limited as long as it is described above, and examples thereof include the structures shown in FIGS. 4A to 4G (sometimes referred to as FIG. 4 in combination).
The graft structure shown in FIG. 4A is a graft structure in which three polymers PB G1 (branch polymer) composed of repeating units A are bonded to polymer PA G1 (trunk polymer) composed of repeating units A. The graft structure shown in FIG. 4B is a graft structure in which six polymers PB G1 (branched polymer) composed of repeating units A are bonded to polymer PA G1 (trunk polymer) composed of repeating units A. The graft structure shown in FIG. 4C is a graft structure in which three polymer PB G1 (branch polymer) composed of repeating unit B is bonded to polymer PA G1 (trunk polymer) composed of repeating unit A.
 図4D~図4Gに示すグラフト構造は、更に、第3成分として繰り返し単位C、上記繰り返し単位Cと第4成分として繰り返し単位Dを有するグラフト構造である。
 すなわち、図4Dに示すグラフト構造は、繰り返し単位A及び繰り返し単位Cからなるランダム構造のポリマーPAG1(幹ポリマー)に対し、繰り返し単位BからなるポリマーPBG1(枝ポリマー)が3本結合したグラフト構造である。図4Eに示すグラフト構造は、繰り返し単位AからなるポリマーPAG1(幹ポリマー)に対し、繰り返し単位BからなるポリマーPBG1-Bが2本と、繰り返し単位CからなるポリマーPBG1―Cが1本結合したグラフト構造である。図4Fに示すグラフト構造は、繰り返し単位AからなるポリマーPAG1(幹ポリマー)に対し、繰り返し単位B及びCからなるブロック構造(交互共重合構造を含む)のポリマーPBG1-BCが3本結合したグラフト構造である。図4Gに示すグラフト構造は、繰り返し単位A及びBからなるランダム構造のポリマーPAG1―AB(幹ポリマー)に対し、繰り返し単位C及びDからなるブロック構造(交互共重合構造を含む)のポリマーPBG1-CDが3本結合したグラフト構造である。
The graft structure shown in FIGS. 4D to 4G is a graft structure having a repeating unit C as the third component, the repeating unit C and the repeating unit D as the fourth component.
That is, the graft structure shown in FIG. 4D is a graft in which three polymers PB G1 (branched polymer) consisting of repeating units B are bonded to a polymer PA G1 (trunk polymer) having a random structure consisting of repeating units A and C. Structure. The graft structure shown in FIG. 4E has two polymers PB G1-B consisting of repeating units B and one polymer PB G1-C consisting of repeating units C to polymer PA G1 (trunk polymer) consisting of repeating units A. This is a combined graft structure. In the graft structure shown in FIG. 4F, three polymers PB G1-BC having a block structure (including alternating copolymer structure) consisting of repeating units B and C are bonded to polymer PA G1 (trunk polymer) consisting of repeating unit A. The graft structure. The graft structure shown in FIG. 4G is a polymer PB having a block structure (including an alternating copolymer structure) consisting of repeating units C and D with respect to a polymer PA G1-AB (trunk polymer) having a random structure consisting of repeating units A and B. It is a graft structure in which three G1-CDs are bonded.
 グラフト構造を有するポリマーは、グラフト共重合体の通常の重合方法により、得ることができる。例えば、末端に重合性官能基(Y)を有するマクロモノマー(Y-B-B-B-B-B)を単独重合、若しくは、このマクロモノマーと同一のモノマー(B)若しくは異種のモノマー(A)と共重合するgrafting through法(図5に示す合成法1))、末端官能性ポリマー(Z-B-B-B-B-B)の反応性基を利用して、他のポリマー鎖に結合させるgrafting to法(図5に示す合成法2))、又は、重合開始点(X)を側鎖に持つポリマーとモノマー(B)を反応させて、繰り返し単位Bを有するポリマー鎖を生やすgrafting from法(図5に示す合成法3))が挙げられる。これらの詳細は、例として、遠藤剛編、澤本光男他著、「高分子の合成(上)-ラジカル重合・カチオン重合・アニオン重合」、講談社、2010年、p60、p108-110及びp387-393を参照できる。
 図5において、X及びYは重合反応性基を表し、W及びZは反応性基を表す。ここで、Zが表す反応性基とは、反応性基Wに対して重合とは異なる反応によってポリマーの部分構造を形成する基となるものを意味する。
The polymer having a graft structure can be obtained by a usual polymerization method of a graft copolymer. For example, a macromonomer (YBBBBBB) having a polymerizable functional group (Y) at the terminal is homopolymerized, or the same monomer (B) as this macromonomer or a different monomer (A ) And the reactive group of the terminal functional polymer (ZBBBBBB) to other polymer chains using the grafting through method (the synthesis method 1 shown in FIG. 5)) The grafting to method (synthesis method 2 shown in FIG. 5)) or the polymer having a polymerization initiation point (X) in the side chain and the monomer (B) are reacted to produce a polymer chain having a repeating unit B from method (synthesis method 3 shown in FIG. 5)). For details, see, for example, Takeshi Endo, Mitsuo Sawamoto et al., “Synthesis of Polymers (above) —Radical Polymerization / Cationic Polymerization / Anionic Polymerization”, Kodansha, 2010, p60, p108-110 and p387-393. Can be referred to.
In FIG. 5, X and Y represent polymerization reactive groups, and W and Z represent reactive groups. Here, the reactive group represented by Z means a group that forms a partial structure of the polymer by a reaction different from polymerization with respect to the reactive group W.
 grafting through法に用いられるマクロモノマーとしては、グラフトポリマーの合成に通常用いられるものであれば特に限定されない。マクロモノマーは、市販品を用いてもよいし、適宜に合成したものを用いてもよい。マクロモノマーの合成方法としては、例えば、特開平5-295015号公報に記載の方法、又は、3-メルカプト-1-プロパノール等の連鎖移動剤とモノマーとの重合物と、イソシアネート基と重合性基を持つ化合物とを、例えばスズ触媒存在下で、反応させる方法等が挙げられる。また、マクロモノマーの合成法として、山下雄也著、「マクロモノマーの化学と工業」、アイピーシー出版部、1989年を、参照することができる。 The macromonomer used in the grafting through method is not particularly limited as long as it is usually used in the synthesis of graft polymers. As the macromonomer, a commercially available product may be used, or an appropriately synthesized monomer may be used. As a method for synthesizing a macromonomer, for example, a method described in JP-A-5-295015, a polymer of a chain transfer agent such as 3-mercapto-1-propanol and a monomer, an isocyanate group, and a polymerizable group For example, there may be mentioned a method of reacting a compound having a compound in the presence of a tin catalyst. Further, as a method for synthesizing a macromonomer, reference can be made to Yuya Yamashita, “Chemistry and Industry of Macromonomer”, IP Publishing Department, 1989.
 (スター構造)
  本発明において、スター構造(星型構造)とは、下記の条件(S-1)~(S-3)をともに満たすものを意味する。
(S-1)ポリマー中に核を1つ有する。
(S-2)上記核に対し、1種類又は2種類以上の繰り返し単位からなるポリマーPAS1が3つ以上結合している。
(S-3)上記ポリマーPAS1に対し、上記ポリマーPAS1の主鎖方向と異なる主鎖方向を有し、かつ、1種類又は2種類以上の繰り返し単位からなるポリマーPBS1が結合していない。
(Star structure)
In the present invention, the star structure (star structure) means a structure that satisfies both of the following conditions (S-1) to (S-3).
(S-1) It has one nucleus in the polymer.
(S-2) Three or more polymers PA S1 composed of one type or two or more types of repeating units are bonded to the nucleus.
To (S-3) The polymer PA S1, having a backbone direction different from the main chain direction of the polymer PA S1, and one or polymer PB S1 composed of two or more kinds of repeating units is not bound .
 上記スター構造において、核に結合するポリマーPAS1の数は、3つ以上であればよく、密着性ポリマーの特性等に応じて適宜に決定される。ポリマーPAS1の数は、通常、後述する端部の数と同じである。複数存在するポリマーPAS1は、それぞれ同一であっても異なっていてもよい。
 また、「核」とは、上記ポリマーPAS1が結合可能な多分岐構造(基)を意味し、多数(例えば2~12本)のポリマーが生える中心点となる。
 上記スター構造において、ポリマーPAS1を形成する繰り返し単位の結合様式(構造)は、特に限定されず、ブロック構造でもランダム構造でもよい。
In the star structure, the number of the polymer PA S1 bonded to the nucleus may be three or more, and is determined appropriately according to the characteristics of the adhesive polymer. The number of the polymer PA S1 is usually the same as the number of end portions described later. A plurality of the polymers PA S1 may be the same or different.
The “nucleus” means a multi-branched structure (group) to which the polymer PA S1 can be bonded, and becomes a central point where a large number (for example, 2 to 12) of polymers are grown.
In the star structure, the bonding mode (structure) of the repeating units forming the polymer PA S1 is not particularly limited, and may be a block structure or a random structure.
 本発明の密着性ポリマーが有するスター構造は、上記したものであれば特に限定されず、例えば、図6A~図6D(合わせて図6ということがある。)に示す構造が挙げられる。
 図6Aに示すスター構造は、繰り返し単位AからなるポリマーPAS1が核に対して4本結合した構造である。図6Bに示すスター構造は、繰り返し単位A及びBをランダム構造で有するポリマーPAS1が核に対して4本結合した構造である。図6Cに示すスター構造は、繰り返し単位Aからなる部分構造及び繰り返し単位Bからなる部分構造をブロック構造で有するポリマーPAS1が、その繰り返し単位Aを介して、核に対して4本結合した構造である。図6Dに示すスター構造は、繰り返し単位AからなるポリマーPAS1が核に対して8本結合した構造である。
The star structure possessed by the adhesive polymer of the present invention is not particularly limited as long as it is as described above, and examples thereof include the structures shown in FIGS. 6A to 6D (also referred to as FIG.
The star structure shown in FIG. 6A is a structure in which four polymers PA S1 composed of the repeating unit A are bonded to the nucleus. The star structure shown in FIG. 6B is a structure in which four polymers PA S1 having repeating units A and B in a random structure are bonded to the nucleus. The star structure shown in FIG. 6C has a structure in which a polymer PA S1 having a partial structure consisting of a repeating unit A and a partial structure consisting of a repeating unit B in a block structure is bonded to the nucleus via the repeating unit A. It is. The star structure shown in FIG. 6D is a structure in which eight polymers PA S1 composed of the repeating unit A are bonded to the nucleus.
 スター構造を有するポリマーは、スター共重合体の通常の重合方法により、得ることができる。例えば、多官能性開始剤を用いる方法、多官能性停止剤を用いる方法、ジビニル化合物によるリンキング反応を用いる方法が挙げられ、多官能性開始剤を用いる方法が好ましい。
 上述した重合方法については、遠藤剛編、澤本光男他著、「高分子の合成(上)-ラジカル重合・カチオン重合・アニオン重合」、講談社、2010年、p110-113を参照することができる。
 更に、スター構造を有するポリマーの合成には、アニオン重合も用いることができ、遠藤剛編、澤本光男他著、「高分子の合成(上)-ラジカル重合・カチオン重合・アニオン重合」、講談社、2010年、p395-402を参照することができる。
A polymer having a star structure can be obtained by an ordinary polymerization method of a star copolymer. Examples thereof include a method using a polyfunctional initiator, a method using a polyfunctional terminator, and a method using a linking reaction with a divinyl compound, and a method using a polyfunctional initiator is preferred.
For the above-mentioned polymerization method, reference can be made to Takeshi Endo, Mitsuo Sawamoto et al., “Synthesis of Polymers (above) —Radical Polymerization / Cationic Polymerization / Anionic Polymerization”, Kodansha, 2010, p110-113.
Furthermore, anionic polymerization can also be used for the synthesis of a polymer having a star structure. Takeshi Endo, Mitsuo Sawamoto et al., “Synthesis of Polymers (above) —Radical Polymerization / Cationic Polymerization / Anionic Polymerization”, Kodansha, See 2010, p395-402.
 スター構造を形成する核としては、通常用いられる化合物を特に限定されることなく、使用できる。例えば、核となる化合物として、有機化合物(例えば、多置換芳香族環、糖、カリックスアレン若しくはデンドリマー)、無機化合物(例えば、環状シロキサン若しくはリンアミド)、又は、中心に金属を有する多座金属錯体などが挙げられる。
 上述した核としては、以下に記載の化合物が例として挙げられる。また、遠藤剛編、澤本光男他著、「高分子の合成(上)-ラジカル重合・カチオン重合・アニオン重合」、講談社、2010年、p110-113を参照することができる。
As the nucleus forming the star structure, a commonly used compound can be used without any particular limitation. For example, as a core compound, an organic compound (for example, polysubstituted aromatic ring, sugar, calixarene or dendrimer), an inorganic compound (for example, cyclic siloxane or phosphorus amide), or a polydentate metal complex having a metal at the center, etc. Is mentioned.
Examples of the nucleus described above include the following compounds. Reference can also be made to Takeshi Endo, Mitsuo Sawamoto et al., “Synthesis of Polymers (above) —Radical Polymerization / Cationic Polymerization / Anionic Polymerization”, Kodansha, 2010, p110-113.
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
 (ブランチ構造)
 本発明において、ブランチ構造とは、下記の条件(B-1)~(B-3)をともに満たすものを意味する。
(B-1)ポリマー中に核を1つ以上有する。
(B-2)上記核に対し、1種類又は2種類以上の繰り返し単位からなるポリマーPAB1が2つ以上結合している。
(B-3)上記ポリマーPAB1に対し、上記ポリマーPAB1の主鎖方向と異なる主鎖方向を有し、かつ、1種類又は2種類以上の繰り返し単位(世代)からなるポリマーPBB1が(核を介して)結合している。
 上記条件(B-3)は、複数回満たすことができる。すなわち、上記のように結合したポリマーPBB1に対して、更に別のポリマーPBB1が(B-3)に規定の方向に結合する(各世代が繰り返してポリマー化する)ことができる(樹木状多分岐構造)。この場合、条件(B-3)を満たす複数回は、2回以上であればよく、密着性ポリマーの特性等に応じて適宜に決定される。例えば、2~7回とすることができる。
(Branch structure)
In the present invention, the branch structure means a structure that satisfies both of the following conditions (B-1) to (B-3).
(B-1) The polymer has one or more nuclei.
(B-2) Two or more polymers PA B1 composed of one type or two or more types of repeating units are bonded to the nucleus.
To (B-3) The polymer PA B1, has a main chain direction different from the main chain direction of the polymer PA B1, and one or polymer PB B1 consisting of two or more kinds of the repeating units (generation) of ( (Via the nucleus).
The condition (B-3) can be satisfied a plurality of times. That is, with respect to the polymer PB B1 bonded as described above, another polymer PB B1 can be bonded in the prescribed direction to (B-3) (each generation can be repeatedly polymerized). Multi-branched structure). In this case, the number of times satisfying the condition (B-3) may be two or more, and is determined as appropriate according to the characteristics of the adhesive polymer. For example, it can be 2 to 7 times.
 上記ブランチ構造において、上記ポリマーPAB1及び上記ポリマーPBB1は、同一であっても異なっていてもよい。また、上記ポリマーPAB1及び上記ポリマーPBB1を形成する繰り返し単位の結合様式(構造)は、特に限定されず、ランダム構造、ブロック構造、グラフト構造又はスター構造でもよい。すなわち、ブランチ構造には、例えば、核から生えるポリマーが、末端方向に従って、次々と分岐していく樹木状多分岐構造、更には、ブロック構造、グラフト構造及び/又はスター構造を組み合わせた構造等も、含まれる。ブランチ構造においては、分岐ごとに繰り返し単位を変更することもできる。
 更に、ポリマー中に有する核の数は、1つ以上であればよく、密着性ポリマーの特性等に応じて適宜に決定される。例えば、1個以上とすることができ、150個以下とすることができる。また、核に結合するポリマーPAB1の数は、2つ以上であればよく、密着性ポリマーの特性等に応じて適宜に決定される。例えば、2個以上とすることができ、20個以下とすることができる。更に、ポリマーPAB1に対して結合するポリマーPBB1の数は、密着性ポリマーの特性等に応じて適宜に決定され、例えば、1個以上とすることができ、150個以下とすることができる。特に、1個のポリマーPAB1(核)に結合するポリマーPBB1の数は2個以上が好ましい。
In the branch structure, the polymer PA B1 and the polymer PB B1 may be the same or different. Moreover, the coupling | bonding mode (structure) of the repeating unit which forms the said polymer PA B1 and the said polymer PB B1 is not specifically limited, A random structure, a block structure, a graft structure, or a star structure may be sufficient. That is, the branch structure includes, for example, a tree-like multi-branch structure in which a polymer that grows from the nucleus branches one after another according to the terminal direction, and a structure that combines a block structure, a graft structure, and / or a star structure, etc. ,included. In the branch structure, the repeating unit can be changed for each branch.
Furthermore, the number of nuclei in the polymer may be one or more, and is appropriately determined according to the characteristics of the adhesive polymer. For example, it can be 1 or more, and can be 150 or less. In addition, the number of the polymer PA B1 bonded to the nucleus may be two or more, and is appropriately determined according to the characteristics of the adhesive polymer. For example, it can be 2 or more, and can be 20 or less. Furthermore, the number of the polymer PB B1 bonded to the polymer PA B1 is appropriately determined according to the properties of the adhesive polymer, and can be, for example, 1 or more, and can be 150 or less. . In particular, the number of the polymer PB B1 bonded to one polymer PA B1 (core) is preferably 2 or more.
 本発明の密着性ポリマーが有するブランチ構造は、上記したものであれば特に限定されず、例えば、図7A~図7E(合わせて図7ということがある。)に示す構造が挙げられる。
 図7A及び図7Bに示すブランチ構造は、核に対して結合したポリマーPAB1に対し、更に結合したポリマーPBB1を有する。すなわち、核から末端方向に従って繰り返し単位Aが次々と分岐した、樹木状多分岐構造である。図7Cに示すブランチ構造は、分岐鎖の端部から繰り返し単位Bを分岐状に有すること以外は図7Bに示す樹木状多分岐構造と同じ構造である。図7Dに示すブランチ構造は、繰り返し単位A及び繰り返し単位Bを分岐状にランダムな配列で有すること以外は図7Bに示す樹木状多分岐構造と同じ構造である。図7Eに示すブランチ構造は、分岐鎖の端部から繰り返し単位B(第2世代)を分岐状に有し、更にその途中から第3成分として繰り返し単位C(第3世代)を分岐状に有すること以外は図7Bに示す樹木状多分岐構造と同じ構造である。図7Fに示すブランチ構造は、繰り返し単位AからなるポリマーPAS1が核に対して5本結合したスター構造2つが、各スター構造の1つのポリマーPAS1同士で結合された構造である。
The branch structure possessed by the adhesive polymer of the present invention is not particularly limited as long as it is as described above, and examples thereof include the structures shown in FIGS. 7A to 7E (sometimes referred to as FIG. 7 together).
The branch structure shown in FIGS. 7A and 7B has a polymer PB B1 further bonded to the polymer PA B1 bonded to the nucleus. That is, it is a dendritic multi-branched structure in which repeating units A are branched one after another from the nucleus in the terminal direction. The branch structure shown in FIG. 7C is the same structure as the tree-like multi-branch structure shown in FIG. 7B, except that the repeating unit B is branched from the end of the branched chain. The branch structure shown in FIG. 7D is the same structure as the tree-like multi-branch structure shown in FIG. 7B, except that the repeating unit A and the repeating unit B are branched and randomly arranged. The branch structure shown in FIG. 7E has a repeating unit B (second generation) in a branched shape from the end of the branched chain, and further has a repeating unit C (third generation) in a branched shape as a third component from the middle thereof. Except this, it is the same structure as the tree-like multi-branch structure shown in FIG. 7B. The branch structure shown in FIG. 7F is a structure in which two star structures in which five polymer PA S1 composed of the repeating unit A are bonded to the nucleus are bonded to each other by one polymer PA S1 of each star structure.
 ブランチ構造を有するポリマーは、通常の重合方法により、得ることができる。例えば、divergent法又はconvergent法が挙げられ、convergent法が好ましい。上述した重合方法としては、Macromolecules,2005,38(21),p8701-8711、Macromolecules,2006,39(22),p4361-4365、又は、遠藤剛編、澤本光男他著、「高分子の合成(上)-ラジカル重合・カチオン重合・アニオン重合」、講談社、2010年、p402-414を参照することができる。 A polymer having a branch structure can be obtained by an ordinary polymerization method. For example, the divergent method or the convergent method can be mentioned, and the convergent method is preferable. As the polymerization method described above, Macromolecules, 2005, 38 (21), p8701-8711, Macromolecules, 2006, 39 (22), p4361-4365, or Takeshi Endo, Mitsuo Sawamoto et al., “Synthesis of Polymers ( Top)-Radical polymerization / Cation polymerization / Anion polymerization ”, Kodansha, 2010, p402-414.
 ブランチ構造を形成しうる核としては、上述のスター構造にて記載した核の他、ブロック構造、グラフト構造及びスター構造からなる群から選択される少なくとも1つ以上の構造を有するポリマー又はマクロモノマーであってもよい。
 上述した核としては、Macromolecules,2005,38(21),p8701-8711、Macromolecules,2006,39(22),p4361-4365、又は、遠藤剛編、澤本光男他著、「高分子の合成(上)-ラジカル重合・カチオン重合・アニオン重合」、講談社、2010年、p402-414を参照することができる。
The nucleus capable of forming the branch structure is a polymer or macromonomer having at least one structure selected from the group consisting of a block structure, a graft structure and a star structure in addition to the nucleus described in the above star structure. There may be.
Macromolecules, 2005, 38 (21), p8701-8711, Macromolecules, 2006, 39 (22), p4361-4365, or Endo Takeshi, Sawamoto Mitsuo et al., “Synthesis of Polymers (above) ) -Radical polymerization / Cation polymerization / Anion polymerization ”, Kodansha, 2010, p402-414.
 上記一次構造及び重合方法については、更に、遠藤剛編、澤本光男他著、「高分子の合成(上)-ラジカル重合・カチオン重合・アニオン重合」、講談社、2010年を参照できる。 Referring to the above primary structure and polymerization method, further reference can be made to Takeshi Endo, Mitsuo Sawamoto et al., “Synthesis of Polymers (above) —Radical Polymerization / Cationic Polymerization / Anionic Polymerization”, Kodansha, 2010.
 本発明において、上述した各一次構造は、それぞれ、次のようにして、同定することができる。すなわち、グラフト構造、スター構造及びブランチ構造は、静的光散乱測定から、平均2乗回転半径<S^2>を測定し、粒子の形状として、確認することができる。また、ブロック構造の有無は、核磁気共鳴(NMR)測定により、確認できる。
 上記一次構造の同定については、「若手研究者のための有機・高分子測定ラボガイド」、講談社、2006年が参照できる。
In the present invention, each primary structure described above can be identified as follows. That is, the graft structure, star structure, and branch structure can be confirmed as the shape of the particle by measuring the mean square turning radius <S ^ 2> from the static light scattering measurement. The presence or absence of the block structure can be confirmed by nuclear magnetic resonance (NMR) measurement.
For the identification of the primary structure, refer to “Organic / Polymer Measurement Lab Guide for Young Researchers”, Kodansha, 2006.
 本発明において、密着性ポリマーは、接触角及び密着性の点で、2種以上の繰り返し単位からなる、ブロック構造、グラフト構造、ブランチ構造若しくはスター構造を有することが好ましく、2種以上の繰り返し単位からなる、ブロック構造又はグラフト構造を有することが好ましい。
 密着性ポリマーを形成する繰り返し単位は、1種又は2種以上であれば特に限定されない。2種以上の繰り返し単位からなる、ブロック構造、グラフト構造、ブランチ構造若しくはスター構造の場合、繰り返し単位は、2~10種が好ましく、2~5種がより好ましく、2種又は3種が更に好ましい。繰り返し単位については後述する。
In the present invention, the adhesive polymer preferably has a block structure, a graft structure, a branch structure or a star structure composed of two or more kinds of repeating units in terms of contact angle and adhesion, and two or more kinds of repeating units. It preferably has a block structure or a graft structure.
The repeating unit forming the adhesive polymer is not particularly limited as long as it is one type or two or more types. In the case of a block structure, graft structure, branch structure or star structure composed of two or more kinds of repeating units, the repeating units are preferably 2 to 10 kinds, more preferably 2 to 5 kinds, and further preferably 2 or 3 kinds. . The repeating unit will be described later.
 密着性ポリマーは、1分子当たり2~250個の端部を有することが好ましく、2~100個の端部を有することがより好ましく、2~80個の端部を有することが更に好ましく、2~50個の端部を有することが特に好ましい。本発明においては、密着ポリマーの端部とは、ある分子量の密着性ポリマーにおいて採りうる末端の最大数を意味する。 The adhesive polymer preferably has 2 to 250 ends, more preferably 2 to 100 ends, more preferably 2 to 80 ends, per molecule. It is particularly preferred to have ~ 50 ends. In the present invention, the end portion of the adhesion polymer means the maximum number of terminals that can be taken in the adhesion polymer having a certain molecular weight.
 密着性ポリマーの端部の数は、下記算出方法により、求めることができる。
 密着性ポリマーがグラフト構造を有する場合、数平均分子量(Mn)を用いて、端部の数を求めることができる。
 例えば、モノマーAと、マクロモノマーAA-1(Mn=5,000)の共重合によってグラフト構造を有するコポリマー(Mn=100,000)を合成した場合は、
(端部の個数)=(コポリマーの数平均分子量)/(マクロモノマーの数平均分子量)+(幹の末端の個数)
より、
(端部の個数)=100,000/5,000+2
       =22(個)
として、算出することができる。
 ここで、コポリマー及びマクロモノマーの数平均分子量は、後述する実施例で記載する方法等で測定することができる。
The number of end portions of the adhesive polymer can be determined by the following calculation method.
When the adhesive polymer has a graft structure, the number of ends can be determined using the number average molecular weight (Mn).
For example, when a copolymer having a graft structure (Mn = 100,000) is synthesized by copolymerization of monomer A and macromonomer AA-1 (Mn = 5,000),
(Number of ends) = (Number average molecular weight of copolymer) / (Number average molecular weight of macromonomer) + (Number of ends of trunk)
Than,
(Number of ends) = 100,000 / 5,000 + 2
= 22 (pieces)
Can be calculated as follows.
Here, the number average molecular weights of the copolymer and the macromonomer can be measured by the method described in Examples described later.
 密着性ポリマーがスター構造又はブランチ構造を有する場合は、核によって端部の個数が決まる。
スター構造の場合は、
(端部の個数)=(核に用いた化合物の最大分岐数)
となる。
 また、ブランチ構造の場合は、核の分岐数に各分岐点において用いた核の最大分岐数を掛け合わせることにより算出される。すなわち、
(端部の個数)=核の最大分岐数×(分岐点1に用いた核の最大分岐数)×(分岐点2に用いた核の最大分岐数)×…×(分岐点nに用いた核の最大分岐数)
として算出することができる。ここで、nは分岐点の数(世代数-1と同義)を表す。
 ブロック構造の場合、端部の個数は2である。
When the adhesive polymer has a star structure or a branch structure, the number of ends is determined by the nucleus.
For a star structure,
(Number of ends) = (Maximum number of branches of the compound used for the nucleus)
It becomes.
In the case of a branch structure, the calculation is performed by multiplying the number of branches of the nucleus by the maximum number of branches of the nucleus used at each branch point. That is,
(Number of ends) = maximum number of branches of nucleus × (maximum number of branches of nucleus used for branch point 1) × (maximum number of branches of nucleus used for branch point 2) × ... × (used for branch point n Maximum number of nuclei branches)
Can be calculated as Here, n represents the number of branch points (synonymous with generation number-1).
In the case of the block structure, the number of end portions is two.
 また、密着性ポリマーの、1分子当たりの端部の数は、元素分析又はX線光電子分光法(ESCA;Electron Spectroscopy for Chemical Analysis)の解析結果及び核磁気共鳴(NMR;Nuclear Magnetic Resonance)測定より、繰り返し単位及び/又は重合開始点となる元素を同定して、算出することもできる。重合開始点となる元素としては、例えば、S原子、ハロゲン原子(Cl、Br)、Si原子、N原子、O原子等が挙げられる。また、繰り返し単位中に含まれる官能基としては、例えば、-SO-、-SO-等が挙げられる。 Moreover, the number of ends per molecule of the adhesive polymer is based on the results of elemental analysis or X-ray photoelectron spectroscopy (ESCA) analysis and nuclear magnetic resonance (NMR) measurement. It is also possible to identify and calculate an element that is a repeating unit and / or a polymerization initiation point. Examples of the element serving as the polymerization starting point include S atom, halogen atom (Cl, Br), Si atom, N atom, O atom and the like. Examples of the functional group contained in the repeating unit include —SO 2 — and —SO—.
 密着性ポリマーを形成する繰り返し単位について、説明する。
 繰り返し単位は、少なくとも、Hoy法により算出される溶解度パラメータδtが13.5以上20.0未満である繰り返し単位〔a〕を含む。
 密着性ポリマーを形成する繰り返し単位が1種である場合、密着性ポリマーは繰り返し単位〔a〕のみで形成される。密着性ポリマーを形成する繰り返し単位が2種以上である場合、密着性ポリマーは、少なくとも1種の繰り返し単位〔a〕を含む2種以上の繰り返し単位で形成される。
The repeating unit that forms the adhesive polymer will be described.
The repeating unit includes at least a repeating unit [a] having a solubility parameter δt calculated by the Hoy method of 13.5 or more and less than 20.0.
When the repeating unit forming the adhesive polymer is one kind, the adhesive polymer is formed of only the repeating unit [a]. When there are two or more repeating units forming the adhesive polymer, the adhesive polymer is formed of two or more repeating units including at least one repeating unit [a].
 上記溶解度パラメータδtは、文献“Properties of Polymers 3rd,ELSEVIER,(1990)”の第214~220頁、「2) Method of Hoy (1985,1989)」欄に記載のAmorphous Polymersについて求められるδtを意味し、上記文献の上記の欄の記載に従い算出される。本発明において溶解度パラメータδtの単位は「(cal/cm1/2」である。
 ここで、繰り返し単位が、単一化合物に由来する場合、上記記載に従って算出する。
 一方、繰り返し単位が、後述する、2種以上の構成成分からなる繰り返し単位である場合、例えば、後述するアミド結合を含む繰り返し単位である場合、次のようにして、溶解度パラメータδtを算出する。すなわち、繰り返し単位において、この繰り返し単位を形成する各重合後の構成単位の質量割合Wを算出する。次に、各構成単位における溶解度パラメータδtrをそれぞれ上記記載に従って算出する。各構成単位について、溶解度パラメータδtrと質量割合Wとの積を算出し、これらを合計した値を、繰り返し単位の溶解度パラメータδtとする。
The solubility parameter δt is literature "Properties of Polymers 3 rd, ELSEVIER , (1990)" The δt obtained for Amorphous Polymers according to the 214-220 pages, "2) Method of Hoy (1985,1989)" column of Meaning and calculated according to the description in the above column of the above document. In the present invention, the unit of the solubility parameter δt is “(cal / cm 3 ) 1/2 ”.
Here, when the repeating unit is derived from a single compound, it is calculated according to the above description.
On the other hand, when the repeating unit is a repeating unit composed of two or more kinds of constituents described later, for example, a repeating unit containing an amide bond described later, the solubility parameter δt is calculated as follows. That is, in the repeating unit, the mass ratio W of the constituent units after polymerization forming the repeating unit is calculated. Next, the solubility parameter δtr in each structural unit is calculated according to the above description. For each structural unit, the product of the solubility parameter δtr and the mass ratio W is calculated, and the sum of these is taken as the solubility parameter δt of the repeating unit.
 上記繰り返し単位〔a〕としては、上記溶解度パラメータδtを満たす限り特に限定されない。繰り返し単位〔a〕として、例えば、スチレン化合物由来のもの、(メタ)アクリル酸エステル化合物由来のもの、(メタ)アクリル酸化合物由来のもの、オレフィン化合物(本明細書において、単にオレフィン化合物というときは非環状オレフィン化合物を意味する。)由来のもの、ビニリデン化合物のもの又は環状オレフィン化合物由来のもの等が挙げられる。 The repeating unit [a] is not particularly limited as long as the solubility parameter δt is satisfied. As the repeating unit [a], for example, those derived from styrene compounds, those derived from (meth) acrylic acid ester compounds, those derived from (meth) acrylic acid compounds, olefin compounds (in the present specification, when simply referred to as olefin compounds) Means a non-cyclic olefin compound.), A vinylidene compound, or a cyclic olefin compound.
 上記繰り返し単位〔a〕がスチレン化合物由来のもの(スチレン繰り返し単位(a))である場合、かかるスチレン繰り返し単位(a)としては、スチレン系重合体を形成する繰り返し単位であれば特に限定されない。スチレン系重合体として、例えば、特開2004-123965号公報の[0011]~[0020]、特開2013-75969号公報の[0014]~[0016]又は特開平7-3094号公報の[0011]等を参照することができる。
 上記繰り返し単位〔a〕を導くスチレン化合物の具体例としては、例えば、スチレン、2-メチルスチレン、3-メチルスチレン、4-メチルスチレン、2-クロロスチレン、3-クロロスチレン、4-クロロスチレン、4-クロロメチルスチレン、2,6-ジメチルスチレン、2,6-ジクロロスチレン、2,6-ジフルオロスチレン、ペンタフルオロスチレン、4-エチルスチレン、4-ブチルスチレン、4-tert-ブチルスチレン、4-メトキシスチレン、4-トリフルオロメチルスチレン、4-アセトキシスチレン、4-フェニルスチレン、1-ビニルナフタレン、2-ビニルナフタレン、ビニルアントラセン、α―メチルスチレン、β―メチルスチレン、2-メチル-1-フェニルプロペン、スチルベン、ジビニルベンゼン、ジイソプロペニルベンゼン、4-イソプロペニルトルエン、シンナモニトリル又は1,1-ジフェニルエチレンなどが挙げられる。
When the repeating unit [a] is derived from a styrene compound (styrene repeating unit (a)), the styrene repeating unit (a) is not particularly limited as long as it is a repeating unit forming a styrene polymer. Examples of the styrenic polymer include [0011] to [0020] in JP-A No. 2004-123965, [0014] to [0016] in JP-A No. 2013-75969, and [0011] in JP-A No. 7-3094. ] Etc. can be referred to.
Specific examples of the styrene compound leading to the repeating unit [a] include, for example, styrene, 2-methylstyrene, 3-methylstyrene, 4-methylstyrene, 2-chlorostyrene, 3-chlorostyrene, 4-chlorostyrene, 4-chloromethylstyrene, 2,6-dimethylstyrene, 2,6-dichlorostyrene, 2,6-difluorostyrene, pentafluorostyrene, 4-ethylstyrene, 4-butylstyrene, 4-tert-butylstyrene, 4- Methoxystyrene, 4-trifluoromethylstyrene, 4-acetoxystyrene, 4-phenylstyrene, 1-vinylnaphthalene, 2-vinylnaphthalene, vinylanthracene, α-methylstyrene, β-methylstyrene, 2-methyl-1-phenyl Propene, stilbene, divinylbenzene, di Examples include isopropenylbenzene, 4-isopropenyltoluene, cinnamonitrile and 1,1-diphenylethylene.
 上記繰り返し単位〔a〕が(メタ)アクリル酸エステル化合物由来の繰り返し単位((メタ)アクリル酸エステル繰り返し単位(a))である場合、かかる繰り返し単位の構造として、例えば、特開2004-323770号公報の段落[0021]~[0023]、特開2014-185196号公報の段落[0024]~[0059]等を参照することができる。
 また、上記繰り返し単位〔a〕が(メタ)アクリル酸エステル化合物由来の繰り返し単位である場合、(メタ)アクリル酸アルキルエステル化合物又は(メタ)アクリル酸シクロアルキルエステル化合物由来の繰り返し単位であることがより好ましい。この(メタ)アクリル酸アルキルエステル化合物のアルキル基は直鎖でも分枝でもよい。(メタ)アクリル酸アルキルエステル化合物を構成するアルキル基の炭素数は1~30が好ましく、1~20がより好ましく、1~18が更に好ましく、1~16が特に好ましい。(メタ)アクリル酸シクロアルキルエステル化合物のシクロアルキル基の炭素数は3~30が好ましく、4~20がより好ましく、5~18が更に好ましく、6~16が特に好ましい。
 上記繰り返し単位〔a〕を導く上記(メタ)アクリル酸エステル化合物及び(メタ)アクリル酸シクロアルキルエステル化合物の具体例として、例えば、アクリル酸プロピル、アクリル酸iso-プロピル、アクリル酸n-ブチル、アクリル酸iso-ブチル、アクリル酸sec-ブチル、アクリル酸tert-ブチル、アクリル酸ヘキシル、アクリル酸シクロヘキシル、アクリル酸2-エチルヘキシル、アクリル酸ドデシル、メタクリル酸メチル、メタクリル酸エチル、メタクリル酸プロピル、メタクリル酸iso-プロピル、メタクリル酸n-ブチル、メタクリル酸ヘキシル、メタクリル酸シクロヘキシル、メタクリル酸2-エチルヘキシル又はメタクリル酸ドデシルを挙げることができる。
When the repeating unit [a] is a repeating unit derived from a (meth) acrylic acid ester compound ((meth) acrylic acid ester repeating unit (a)), as the structure of such a repeating unit, for example, JP-A-2004-323770 Reference may be made to paragraphs [0021] to [0023] of the publication, paragraphs [0024] to [0059] of JP 2014-185196 A, and the like.
Moreover, when the said repeating unit [a] is a repeating unit derived from a (meth) acrylic acid ester compound, it may be a repeating unit derived from a (meth) acrylic acid alkyl ester compound or a (meth) acrylic acid cycloalkyl ester compound. More preferred. The alkyl group of this (meth) acrylic acid alkyl ester compound may be linear or branched. The alkyl group constituting the (meth) acrylic acid alkyl ester compound preferably has 1 to 30 carbon atoms, more preferably 1 to 20 carbon atoms, still more preferably 1 to 18 carbon atoms, and particularly preferably 1 to 16 carbon atoms. The number of carbon atoms of the cycloalkyl group of the (meth) acrylic acid cycloalkyl ester compound is preferably 3 to 30, more preferably 4 to 20, still more preferably 5 to 18, and particularly preferably 6 to 16.
Specific examples of the (meth) acrylic acid ester compound and (meth) acrylic acid cycloalkyl ester compound that lead the repeating unit [a] include, for example, propyl acrylate, iso-propyl acrylate, n-butyl acrylate, acrylic Iso-butyl acid, sec-butyl acrylate, tert-butyl acrylate, hexyl acrylate, cyclohexyl acrylate, 2-ethylhexyl acrylate, dodecyl acrylate, methyl methacrylate, ethyl methacrylate, propyl methacrylate, iso methacrylate Mention may be made of -propyl, n-butyl methacrylate, hexyl methacrylate, cyclohexyl methacrylate, 2-ethylhexyl methacrylate or dodecyl methacrylate.
 上記繰り返し単位〔a〕が(メタ)アクリル酸化合物由来のもの((メタ)アクリル酸繰り返し単位(a))である場合、かかる(メタ)アクリル酸繰り返し単位(a)としては、(メタ)アクリル酸重合体を形成する繰り返し単位であれば特に限定されない。かかる繰り返し単位の構造として、例えば、特開2002-212221号公報の段落[0020]~[0027]等を参照することができる。
 上記繰り返し単位〔a〕を導く(メタ)アクリル酸化合物の具体例としては、例えば、アクリル酸及びその金属塩、又は、メタクリル酸及びその金属塩を挙げることができる。
When the repeating unit [a] is derived from a (meth) acrylic acid compound ((meth) acrylic acid repeating unit (a)), the (meth) acrylic acid repeating unit (a) is (meth) acrylic. There is no particular limitation as long as it is a repeating unit forming an acid polymer. As the structure of such a repeating unit, for example, paragraphs [0020] to [0027] of JP-A No. 2002-212221 can be referred to.
Specific examples of the (meth) acrylic acid compound leading to the repeating unit [a] include acrylic acid and its metal salt, or methacrylic acid and its metal salt.
 上記繰り返し単位〔a〕がオレフィン化合物由来のもの(オレフィン繰り返し単位(a))である場合、かかる繰り返し単位の構造として、例えば、特開2000-159817号公報の段落[0015]等を参照することができる。
 上記繰り返し単位〔a〕を導く上記オレフィン化合物の具体例として、例えば、エチレン、プロピレン、イソプレン、ブタジエン、イソブテン又は塩化ビニルを挙げることができる。
 本発明において、オレフィン化合物がビニリデン化合物と解釈できるものであっても、その構造が炭素原子と水素原子のみからなる場合には、ビニリデン化合物ではなくオレフィン化合物に分類する。
When the repeating unit [a] is derived from an olefin compound (olefin repeating unit (a)), see, for example, paragraph [0015] of JP-A No. 2000-159817 as the structure of the repeating unit. Can do.
Specific examples of the olefin compound leading to the repeating unit [a] include, for example, ethylene, propylene, isoprene, butadiene, isobutene, and vinyl chloride.
In the present invention, even if the olefin compound can be interpreted as a vinylidene compound, when the structure is composed of only a carbon atom and a hydrogen atom, it is classified as an olefin compound instead of a vinylidene compound.
 上記繰り返し単位〔a〕がビニリデン化合物由来のもの(ビニリデン繰り返し単位(a))である場合、かかる繰り返し単位の構造として、例えば、特開2015-44967号公報の段落[0032]~[0041]又は特開平8-67793号公報の段落[0008]~[0009]等を参照することができる。
 上記繰り返し単位〔a〕を導く上記ビニリデン化合物の具体例として、例えば、塩化ビニリデン、フッ化ビニリデン、テトラフルオロエチレン、塩化トリフルオロエチレン、又は、パーフルオロアルコキシトリフルオロエチレンを挙げることができる。
When the repeating unit [a] is derived from a vinylidene compound (vinylidene repeating unit (a)), examples of the structure of the repeating unit include paragraphs [0032] to [0041] of JP-A-2015-44967 or Reference can be made to paragraphs [0008] to [0009] of JP-A-8-67793.
Specific examples of the vinylidene compound for deriving the repeating unit [a] include, for example, vinylidene chloride, vinylidene fluoride, tetrafluoroethylene, trifluoroethylene chloride, or perfluoroalkoxytrifluoroethylene.
 上記繰り返し単位〔a〕が環状オレフィン化合物由来のもの(環状オレフィン繰り返し単位(a))である場合、上記繰り返し単位〔a〕を導く上記環状オレフィン化合物の具体例として、例えば、シクロヘキセン、ノルボルネン、テトラシクロドデセン、及びそれらから導かれる化合物を挙げることができる。 When the repeating unit [a] is derived from a cyclic olefin compound (cyclic olefin repeating unit (a)), specific examples of the cyclic olefin compound leading to the repeating unit [a] include, for example, cyclohexene, norbornene, tetra Mention may be made of cyclododecene and compounds derived therefrom.
 上記密着性ポリマーは、上記繰り返し単位〔a〕として、スチレン化合物又は(メタ)アクリル酸エステル化合物由来の繰り返し単位を有することが好ましく、(メタ)アクリル酸エステル化合物由来の繰り返し単位を有することがより好ましい。
 上記密着性ポリマーは、上記繰り返し単位〔a〕として、下記一般式2又は3で表される繰り返し単位を有することが更に好ましく、下記一般式2で表される繰り返し単位を有することが特に好ましい。
The adhesive polymer preferably has a repeating unit derived from a styrene compound or a (meth) acrylate compound as the repeating unit [a], and more preferably has a repeating unit derived from a (meth) acrylate compound. preferable.
The adhesive polymer preferably has a repeating unit represented by the following general formula 2 or 3 as the repeating unit [a], and particularly preferably has a repeating unit represented by the following general formula 2.
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
 一般式2中、Rは水素原子又はアルキル基を表す。
 Rがアルキル基である場合、アルキル基は、直鎖でも分枝でも環状でもよい。アルキル基が直鎖又は分枝であるとき、アルキル基の炭素数は、1~10が好ましく、1~5がより好ましく、1~3が更に好ましい。アルキル基は、より好ましくはメチル又はエチルであり、更に好ましくはメチルである。
 Rは水素原子又はメチルが好ましい。
In General Formula 2, R 5 represents a hydrogen atom or an alkyl group.
When R 5 is an alkyl group, the alkyl group may be linear, branched or cyclic. When the alkyl group is linear or branched, the alkyl group preferably has 1 to 10 carbon atoms, more preferably 1 to 5 carbon atoms, and still more preferably 1 to 3 carbon atoms. The alkyl group is more preferably methyl or ethyl, and still more preferably methyl.
R 5 is preferably a hydrogen atom or methyl.
 R及びRは、各々独立に、水素原子、アルキル基、アリール基又はアルコキシカルボニル基を表す。
 R又はRがアルキル基である場合、アルキル基は、Rの上記アルキル基と同義であり、好ましいものも同じである。
 R又はRがアリール基である場合、アリール基は、その炭素数が6~20が好ましく、6~15が更に好ましく、6~12が特に好ましく、とりわけフェニルが好ましい。
 R又はRがアルコキシカルボニル基である場合、アルコキシカルボニル基は、その炭素数が2~10が好ましく、2~5が更に好ましい。アルコキシカルボニル基は、より好ましくはメトキシカルボニル、エトキシカルボニル又はプロポキシカルボニルである。
R 6 and R 7 each independently represents a hydrogen atom, an alkyl group, an aryl group or an alkoxycarbonyl group.
When R 6 or R 7 is an alkyl group, the alkyl group has the same meaning as the alkyl group described above for R 5 , and preferred ones are also the same.
When R 6 or R 7 is an aryl group, the aryl group preferably has 6 to 20 carbon atoms, more preferably 6 to 15 carbon atoms, particularly preferably 6 to 12 carbon atoms, and particularly preferably phenyl.
When R 6 or R 7 is an alkoxycarbonyl group, the alkoxycarbonyl group preferably has 2 to 10 carbon atoms, and more preferably 2 to 5 carbon atoms. The alkoxycarbonyl group is more preferably methoxycarbonyl, ethoxycarbonyl or propoxycarbonyl.
 一般式2で表される繰り返し単位において、Rは水素原子又はアルキル基であり、R及びRはいずれも水素原子であることが好ましい。 In the repeating unit represented by the general formula 2, it is preferable that R 5 is a hydrogen atom or an alkyl group, and that R 6 and R 7 are both hydrogen atoms.
 Rは、水素原子、炭素数1~20のアルキル基又は炭素数3~20のシクロアルキル基を表し、炭素数1~20のアルキル基又は炭素数3~20のシクロアルキル基が好ましい。ただし、Rがメチルである場合にRは水素原子をとりうる。
 炭素数1~20のアルキル基は、直鎖でも分枝でもよい。このアルキル基の炭素数は、1~15が好ましく、1~12がより好ましく、1~10がより一層好ましく、1~8が更に好ましく、1~6が特に好ましい。また、炭素数1~20のアルキル基が置換基を有する場合、ハロゲン原子が好ましく、フッ素原子であることがより好ましい。
 炭素数3~20のシクロアルキル基は、その炭素数が4~15がより好ましく、5~12が更に好ましい。炭素数3~20のシクロアルキル基は、このシクロアルキル基が有している置換基同士が互いに連結し、縮環を形成した形態(例えば、アダマンタン環、イソボルニル環)であることも好ましい。また、炭素数3~20のシクロアルキル基が置換基を有する場合、アルキル基(直鎖でも分岐を有していてもよい)であることが好ましく、炭素数1~4のアルキル基であることが好ましく、メチル、エチル又はtert-ブチルであることがより好ましい。
R 8 represents a hydrogen atom, an alkyl group having 1 to 20 carbon atoms or a cycloalkyl group having 3 to 20 carbon atoms, preferably an alkyl group having 1 to 20 carbon atoms or a cycloalkyl group having 3 to 20 carbon atoms. However, when R 5 is methyl, R 8 can take a hydrogen atom.
The alkyl group having 1 to 20 carbon atoms may be linear or branched. The alkyl group preferably has 1 to 15 carbon atoms, more preferably 1 to 12, more preferably 1 to 10, still more preferably 1 to 8, and particularly preferably 1 to 6. Further, when the alkyl group having 1 to 20 carbon atoms has a substituent, a halogen atom is preferable, and a fluorine atom is more preferable.
The cycloalkyl group having 3 to 20 carbon atoms preferably has 4 to 15 carbon atoms, and more preferably 5 to 12 carbon atoms. The cycloalkyl group having 3 to 20 carbon atoms is preferably in a form in which the substituents of the cycloalkyl group are connected to each other to form a condensed ring (for example, an adamantane ring or an isobornyl ring). Further, when the cycloalkyl group having 3 to 20 carbon atoms has a substituent, it is preferably an alkyl group (which may be linear or branched), and preferably an alkyl group having 1 to 4 carbon atoms. Is preferable, and methyl, ethyl or tert-butyl is more preferable.
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
 一般式3中、R、R10及びR11は、各々独立に、水素原子、ハロゲン原子、アルキル基又はアリール基を表す。
 R、R10又はR11がハロゲン原子である場合、ハロゲン原子としては、フッ素原子、塩素原子、臭素原子又はヨウ素原子が挙げられ、フッ素原子が好ましい。
 R、R10又はR11がアルキル基である場合、アルキル基は、Rのアルキル基と同義であり、好ましいものも同じである。
 R、R10又はR11がアリール基である場合、アリール基は、Rのアリール基と同義であり、好ましいものも同じである。
 R、R10及びR11は、それぞれ、水素原子、ハロゲン原子又はアルキル基が好ましく、水素原子又はハロゲン原子がより好ましく、水素原子が更に好ましい。特に、R10及びR11は、いずれも、水素原子であることが好ましい。
In General Formula 3, R 9 , R 10 and R 11 each independently represent a hydrogen atom, a halogen atom, an alkyl group or an aryl group.
When R 9 , R 10 or R 11 is a halogen atom, examples of the halogen atom include a fluorine atom, a chlorine atom, a bromine atom or an iodine atom, and a fluorine atom is preferred.
When R 9 , R 10 or R 11 is an alkyl group, the alkyl group has the same meaning as the alkyl group of R 5 , and preferred ones are also the same.
When R 9 , R 10 or R 11 is an aryl group, the aryl group has the same meaning as the aryl group for R 6 , and preferred ones are also the same.
R 9 , R 10 and R 11 are each preferably a hydrogen atom, a halogen atom or an alkyl group, more preferably a hydrogen atom or a halogen atom, and even more preferably a hydrogen atom. In particular, R 10 and R 11 are preferably both hydrogen atoms.
 R12、R13、R14、R15及びR16は、それぞれ、水素原子、ハロゲン原子、水酸基、アルキル基、アルケニル基、アリール基、アルコキシ基、アシル基、アシルオキシ基又はアルコキシカルボニル基を表す。R12、R13、R14、R15及びR16は、それぞれ、水素原子、ハロゲン原子、アルキル基、アルケニル基、水酸基、アシルオキシ基又はアルコキシ基が好ましく、水素原子、ハロゲン原子又はアルキル基がより好ましく、水素原子が更に好ましい。 R 12 , R 13 , R 14 , R 15 and R 16 each represent a hydrogen atom, a halogen atom, a hydroxyl group, an alkyl group, an alkenyl group, an aryl group, an alkoxy group, an acyl group, an acyloxy group or an alkoxycarbonyl group. R 12 , R 13 , R 14 , R 15 and R 16 are each preferably a hydrogen atom, a halogen atom, an alkyl group, an alkenyl group, a hydroxyl group, an acyloxy group or an alkoxy group, more preferably a hydrogen atom, a halogen atom or an alkyl group. Preferably, a hydrogen atom is more preferable.
 R12、R13、R14、R15又はR16がハロゲン原子である場合、ハロゲン原子としては、フッ素原子、塩素原子、臭素原子又はヨウ素原子が挙げられ、フッ素原子が好ましい。
 R12、R13、R14、R15又はR16がアルキル基である場合、アルキル基は、直鎖でも分枝でも環状でもよい。アルキル基が直鎖又は分枝である場合、アルキル基の炭素数は、1~10が好ましく、1~5がより好ましく、1~3が更に好ましい。アルキル基は、好ましくはメチル、エチル又はブチルであり、より好ましくはメチルである。
 R12、R13、R14、R15又はR16がアルケニル基である場合、アルケニル基は、直鎖でも分岐でも環状でもよい。このアルケニル基の炭素数は、2~10が好ましく、2~5がより好ましく、2又は3が更に好ましい。アルケニル基は、より好ましくはエテニル又はプロペニルであり、更に好ましくはエテニルである。
 R12、R13、R14、R15又はR16がアリール基である場合、アリール基は、その炭素数が6~20が好ましく、6~15が更に好ましく、6~12が特に好ましく、とりわけフェニルが好ましい。
When R 12 , R 13 , R 14 , R 15 or R 16 is a halogen atom, examples of the halogen atom include a fluorine atom, a chlorine atom, a bromine atom or an iodine atom, and a fluorine atom is preferred.
When R 12 , R 13 , R 14 , R 15 or R 16 is an alkyl group, the alkyl group may be linear, branched or cyclic. When the alkyl group is linear or branched, the alkyl group preferably has 1 to 10 carbon atoms, more preferably 1 to 5 carbon atoms, and still more preferably 1 to 3 carbon atoms. The alkyl group is preferably methyl, ethyl or butyl, more preferably methyl.
When R 12 , R 13 , R 14 , R 15 or R 16 is an alkenyl group, the alkenyl group may be linear, branched or cyclic. The alkenyl group preferably has 2 to 10 carbon atoms, more preferably 2 to 5 carbon atoms, still more preferably 2 or 3. The alkenyl group is more preferably ethenyl or propenyl, and even more preferably ethenyl.
When R 12 , R 13 , R 14 , R 15 or R 16 is an aryl group, the aryl group preferably has 6 to 20 carbon atoms, more preferably 6 to 15 carbon atoms, particularly preferably 6 to 12 carbon atoms, Phenyl is preferred.
 R12、R13、R14、R15又はR16がアルコキシ基である場合、アルコキシ基は、直鎖でも分枝でも環状でもよい。アルコキシ基が直鎖又は分枝であるとき、アルコキシ基の炭素数は、1~10が好ましく、1~5がより好ましく、1~3が更に好ましい。アルコキシ基は、より好ましくはメトキシ又はエトキシである。
 R12、R13、R14、R15又はR16がアシル基、アシルオキシ基又はアルコキシカルボニル基である場合、アシル基、アシルオキシ基又はアルコキシカルボニル基は、それぞれ、上記置換基群Tにおける対応する各基と同義であり、好ましいものも同じである。
When R 12 , R 13 , R 14 , R 15 or R 16 is an alkoxy group, the alkoxy group may be linear, branched or cyclic. When the alkoxy group is linear or branched, the alkoxy group preferably has 1 to 10 carbon atoms, more preferably 1 to 5 carbon atoms, and still more preferably 1 to 3 carbon atoms. The alkoxy group is more preferably methoxy or ethoxy.
When R 12 , R 13 , R 14 , R 15 or R 16 is an acyl group, an acyloxy group, or an alkoxycarbonyl group, the acyl group, the acyloxy group, or the alkoxycarbonyl group is a corresponding group in the substituent group T. It is synonymous with group, and a preferable thing is also the same.
 R12、R13、R14、R15及びR16のうち隣接する2つが互いに結合して環を形成してもよい。例えば、隣接する2つのエテニル基が互いに結合して、これらが結合する炭素原子を含むベンゼン環(全体としてナフタレン環)を形成してもよい。
 R12、R13、R14、R15及びR16は、それぞれ、上述の置換基群Tから選択される置換基を更に有していてもよい。例えば、置換基を有するアルキル基が挙げられ、具体的にはトリフルオロメチル基が挙げられる。
Two adjacent R 12 , R 13 , R 14 , R 15 and R 16 may be bonded to each other to form a ring. For example, two adjacent ethenyl groups may be bonded to each other to form a benzene ring (a naphthalene ring as a whole) including the carbon atom to which they are bonded.
R 12 , R 13 , R 14 , R 15 and R 16 may each further have a substituent selected from the substituent group T described above. For example, the alkyl group which has a substituent is mentioned, Specifically, a trifluoromethyl group is mentioned.
 上記繰り返し単位〔a〕の好ましい例を以下に構造式として示すが、本発明はこれらの具体例に限定されるものではない。
 下記具体例において、A-1~A-9、A-17~A-21及びA-24~A-35は(メタ)アクリル酸エステル繰り返し単位(a)であり、A-22及びA-23は(メタ)アクリル酸繰り返し単位(a)であり、A-10~A-15はスチレン繰り返し単位(a)であり、A-16、A-44~A-48はビニリデン繰り返し単位(a)であり、A-36~A-43はオレフィン繰り返し単位(a)であり、A-49~A-63は環状オレフィン繰り返し単位(a)である。
Preferred examples of the repeating unit [a] are shown below as structural formulas, but the present invention is not limited to these specific examples.
In the following specific examples, A-1 to A-9, A-17 to A-21 and A-24 to A-35 are (meth) acrylate repeating units (a), and A-22 and A-23 Is a (meth) acrylic acid repeating unit (a), A-10 to A-15 are styrene repeating units (a), and A-16 and A-44 to A-48 are vinylidene repeating units (a). A-36 to A-43 are olefin repeating units (a), and A-49 to A-63 are cyclic olefin repeating units (a).
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000013
 密着性ポリマーは、上記繰り返し単位〔a〕の他に、Hoy法により算出される溶解度パラメータδtが20.0以上26.0以下である繰り返し単位〔b〕を含むことが好ましい。これにより、層間密着性と接触角の向上とをより高いレベルで両立した積層体を得ることができる。 The adhesive polymer preferably contains, in addition to the above repeating unit [a], a repeating unit [b] whose solubility parameter δt calculated by the Hoy method is 20.0 or more and 26.0 or less. As a result, it is possible to obtain a laminate that achieves higher levels of interlayer adhesion and improved contact angle.
 上記繰り返し単位〔b〕としては、上記溶解度パラメータδtを満たす限り特に限定されない。繰り返し単位〔b〕として、例えば、(メタ)アクリル酸エステル化合物由来のもの、(メタ)アクリル酸化合物由来のもの、(メタ)アクリルアミド化合物由来のもの、酢酸ビニル化合物由来のもの、ビニルケトン化合物由来のもの、無水マレイン酸化合物由来のもの、スチレン化合物由来のもの、若しくは、これらの繰り返し単位以外でエチレン性不飽和結合を有する化合物由来のもの、又は、アミド結合を含む繰り返し単位(ポリアミド繰り返し単位)若しくはエステル結合を含む繰り返し単位(ポリエステル繰り返し単位)等が挙げられる。 The repeating unit [b] is not particularly limited as long as the solubility parameter δt is satisfied. As the repeating unit [b], for example, those derived from (meth) acrylic acid ester compounds, those derived from (meth) acrylic acid compounds, those derived from (meth) acrylamide compounds, those derived from vinyl acetate compounds, vinyl ketone compounds One derived from a maleic anhydride compound, one derived from a styrene compound, one derived from a compound having an ethylenically unsaturated bond other than these repeating units, or a repeating unit containing an amide bond (polyamide repeating unit) or Examples thereof include a repeating unit containing an ester bond (polyester repeating unit).
 上記〔b〕を満たす繰り返し単位が(メタ)アクリル酸エステル化合物由来のもの((メタ)アクリル酸エステル繰り返し単位(b))である場合、かかる(メタ)アクリル酸エステル繰り返し単位(b)としては、(メタ)アクリル酸エステル重合体を形成する繰り返し単位であれば特に限定されない。かかる繰り返し単位の構造として、例えば、特開2004-323770号公報の段落[0021]~[0023]又は特開2014-185196号公報の[0024]~[0059]等を参照することができる。
 (メタ)アクリル酸エステル繰り返し単位(b)としては、(メタ)アクリル酸(シクロ)アルキルエステル化合物由来のものが好ましい。
 上記繰り返し単位〔b〕を導く上記(メタ)アクリル酸エステル化合物の具体例としては、例えば、アクリル酸2-ヒドロキシエチル、アクリル酸2-アセトアセトキシエチル、アクリル酸2-イソシアナトエチル、メタクリル酸2-ヒドロキシエチル、メタクリル酸2-ジメチルアミノエチル、メタクリル酸2-ジエチルアミノエチル又はメタクリル酸2-イソシアナトエチルが挙げられる。
When the repeating unit satisfying the above [b] is derived from a (meth) acrylic ester compound ((meth) acrylic ester repeating unit (b)), as the (meth) acrylic ester repeating unit (b), As long as the repeating unit forms a (meth) acrylic acid ester polymer, it is not particularly limited. As the structure of such a repeating unit, for example, paragraphs [0021] to [0023] in JP-A No. 2004-323770 or [0024] to [0059] in JP-A No. 2014-185196 can be referred to.
The (meth) acrylic acid ester repeating unit (b) is preferably derived from a (meth) acrylic acid (cyclo) alkyl ester compound.
Specific examples of the (meth) acrylic acid ester compound leading to the repeating unit [b] include, for example, 2-hydroxyethyl acrylate, 2-acetoacetoxyethyl acrylate, 2-isocyanatoethyl acrylate, methacrylic acid 2 -Hydroxyethyl, 2-dimethylaminoethyl methacrylate, 2-diethylaminoethyl methacrylate or 2-isocyanatoethyl methacrylate.
 上記繰り返し単位〔b〕が(メタ)アクリル酸化合物由来のもの((メタ)アクリル酸繰り返し単位(b))である場合、かかる(メタ)アクリル酸繰り返し単位(b)としては、(メタ)アクリル酸重合体を形成する繰り返し単位であれば特に限定されない。かかる繰り返し単位の構造として、例えば、特開2002-212221号公報の段落[0020]~[0027]等を参照することができる。
 上記繰り返し単位〔b〕を導く(メタ)アクリル酸化合物の具体例としては、例えば、アクリル酸及びその金属塩、又は、メタクリル酸及びその金属塩を挙げることができる。
When the repeating unit [b] is derived from a (meth) acrylic acid compound ((meth) acrylic acid repeating unit (b)), the (meth) acrylic acid repeating unit (b) is (meth) acrylic. There is no particular limitation as long as it is a repeating unit forming an acid polymer. As the structure of such a repeating unit, for example, paragraphs [0020] to [0027] of JP-A No. 2002-212221 can be referred to.
Specific examples of the (meth) acrylic acid compound leading to the repeating unit [b] include acrylic acid and its metal salt, or methacrylic acid and its metal salt.
 上記繰り返し単位〔b〕が(メタ)アクリルアミド化合物由来のもの((メタ)アクリルアミド繰り返し単位(b))である場合、かかる(メタ)アクリルアミド繰り返し単位(b)としては、(メタ)アクリルアミド重合体を形成する繰り返し単位であれば特に限定されない。かかる繰り返し単位の好ましい構造は、後に例示する構造式中に示される通りである。 When the repeating unit [b] is derived from a (meth) acrylamide compound ((meth) acrylamide repeating unit (b)), the (meth) acrylamide repeating unit (b) is a (meth) acrylamide polymer. There is no particular limitation as long as it is a repeating unit to be formed. The preferred structure of such a repeating unit is as shown in the structural formulas exemplified later.
 上記繰り返し単位〔b〕が酢酸ビニル化合物由来のもの(酢酸ビニル繰り返し単位(b))である場合、かかる酢酸ビニル繰り返し単位(b)としては、酢酸ビニル重合体を形成する繰り返し単位であれば特に限定されない。かかる酢酸ビニル繰り返し単位(b)の構造として、例えば、特開2002-338609号公報の段落[0007]~[0008]等を参照することができる。
 上記繰り返し単位〔b〕を導く酢酸ビニル化合物の具体例としては、例えば、酢酸ビニル、プロピオン酸ビニル、ピバリン酸ビニル又はイソプロペニルアセテート等を挙げることができる。このように、本発明において「酢酸ビニル化合物」は、酢酸ビニルが有する水素原子が置換された形態の化合物を包含する意味に用いる。
When the repeating unit [b] is derived from a vinyl acetate compound (vinyl acetate repeating unit (b)), the vinyl acetate repeating unit (b) is particularly a repeating unit that forms a vinyl acetate polymer. It is not limited. As the structure of the vinyl acetate repeating unit (b), reference can be made, for example, to paragraphs [0007] to [0008] of JP-A-2002-338609.
Specific examples of the vinyl acetate compound that leads to the repeating unit [b] include vinyl acetate, vinyl propionate, vinyl pivalate, and isopropenyl acetate. Thus, in the present invention, “vinyl acetate compound” is used to include a compound in which a hydrogen atom of vinyl acetate is substituted.
 上記繰り返し単位〔b〕がビニルケトン化合物由来のもの(ビニルケトン繰り返し単位(b))である場合、かかるビニルケトン繰り返し単位(b)としては、ビニルケトン重合体を形成する繰り返し単位であれば特に限定されない。かかる繰り返し単位の構造として、例えば、特開2007-230940号公報の段落[0010]~[0017]又は特開平7-291886号公報の段落[0009]~[0011]等を参照することができる。
 上記繰り返し単位〔b〕を導くビニルケトン化合物の具体例としては、例えば、メチルビニルケトン又はエチルビニルケトン等を挙げることができる。
When the repeating unit [b] is derived from a vinyl ketone compound (vinyl ketone repeating unit (b)), the vinyl ketone repeating unit (b) is not particularly limited as long as it is a repeating unit forming a vinyl ketone polymer. As the structure of such a repeating unit, for example, paragraphs [0010] to [0017] of JP-A-2007-230940 or paragraphs [0009] to [0011] of JP-A-7-291886 can be referred to.
Specific examples of the vinyl ketone compound that leads to the repeating unit [b] include methyl vinyl ketone and ethyl vinyl ketone.
 上記繰り返し単位〔b〕が無水マレイン酸化合物由来のもの(無水マレイン酸繰り返し単位(b))である場合、かかる無水マレイン酸繰り返し単位(b)としては、無水マレイン酸重合体を形成する繰り返し単位であれば特に限定されない。かかる繰り返し単位の構造として、例えば、特開2006-111710号公報の段落[0027]~[0029]、又は特開2008-156400号公報の段落[0013]~[0015]等を参照することができる。
 上記繰り返し単位〔b〕を導く無水マレイン酸化合物の具体例としては、例えば、無水マレイン酸、N-メチルマレイミド、N-シクロヘキシルマレイミド、N-フェニルマレイミド又はマレイン酸等を挙げることができる。このように、本発明において「無水マレイン酸化合物」は、無水マレイン酸から導かれる化合物を包含する意味に用いる。
When the repeating unit [b] is derived from a maleic anhydride compound (maleic anhydride repeating unit (b)), the maleic anhydride repeating unit (b) is a repeating unit that forms a maleic anhydride polymer. If it is, it will not specifically limit. As the structure of such a repeating unit, for example, paragraphs [0027] to [0029] in JP-A-2006-1111710, paragraphs [0013] to [0015] in JP-A-2008-156400, and the like can be referred to. .
Specific examples of the maleic anhydride compound from which the repeating unit [b] is derived include maleic anhydride, N-methylmaleimide, N-cyclohexylmaleimide, N-phenylmaleimide and maleic acid. Thus, in the present invention, “maleic anhydride compound” is used to include a compound derived from maleic anhydride.
 上記繰り返し単位〔b〕がスチレン化合物由来のもの(スチレン繰り返し単位(b))である場合、かかるスチレン繰り返し単位(b)としては、スチレン重合体を形成する繰り返し単位であれば特に限定されない。かかる繰り返し単位の好ましい構造は、後に例示する構造式中に示される通りである。 When the repeating unit [b] is derived from a styrene compound (styrene repeating unit (b)), the styrene repeating unit (b) is not particularly limited as long as it is a repeating unit that forms a styrene polymer. The preferred structure of such a repeating unit is as shown in the structural formulas exemplified later.
 また、上記繰り返し単位〔b〕は、上述した各化合物由来の繰り返し単位以外であって、エチレン性不飽和結合(炭素-炭素二重結合)を有する化合物由来の繰り返し単位であってもよい。 Further, the repeating unit [b] may be a repeating unit derived from a compound having an ethylenically unsaturated bond (carbon-carbon double bond) other than the repeating unit derived from each compound described above.
 本発明において、繰り返し単位〔b〕として、2種以上の構成成分からなる繰り返し単位も含む。このような繰り返し単位として、ポリアミド繰り返し単位及びポリエステル繰り返し単位が挙げられる。
 ポリアミド繰り返し単位としては、アミド結合を有する限り特に限定されず、通常、多価のカルボン酸化合物と多価のアミン化合物との共縮重合により得られるポリアミドを構成する単位が挙げられる。上記カルボン酸化合物及びアミン化合物は、各種ポリアミドを形成する化合物であれば特に限定されない。例えば、カルボン酸化合物及びアミン化合物の価数(カルボキシ基数及びアミノ基数)は、いずれも、特に限定されないが、2価であることが好ましい。
 カルボン酸化合物としては、脂肪族カルボン酸化合物、芳香族カルボン酸化合物等が挙げられ、芳香族カルボン酸化合物が好ましい。芳香族カルボン酸化合物としては、テレフタル酸、イソフタル酸、4,4’-ジカルボキシジフェニルエーテル、2,6-ナフタレンジカルボン酸、1,4-ナフタレンジカルボン酸、ベンゾフェノン-4,4’-ジカルボン酸、5-tert-ブチルイソフタル酸、2,5-ジメチルテレフタル酸、4,6-ジメチルイソフタル酸、4,4’-スチルベンジカルボン酸、4,4’-ビフェニルジカルボン酸又は2,2-ビス(4-カルボキシフェニル)ヘキサフルオロプロパン等が挙げられる。脂肪族カルボン酸化合物としては、1,4-シクロヘキサンジカルボン酸、1,3-シクロヘキサンジカルボン酸、デカヒドロ-1,4-ナフタレンジカルボン酸、デカヒドロ-2,6-ナフタレンジカルボン酸、セバシン酸、アゼライン酸、スベリン酸又はピメリン酸等が挙げられる。
 アミン化合物としては、脂肪族アミン化合物、芳香族アミン化合物等が挙げられ、芳香族アミン化合物が好ましい。脂肪族アミン化合物としては、後述する例示繰り返し単位を導くアミン化合物以外にも、1,4-シクロヘキサンジアミン、1,3-シクロヘキサンジアミン等が挙げられる。また、芳香族アミン化合物としては、後述する例示繰り返し単位を導くアミン化合物以外にも、1,4-フェニレンジアミン、1,3-フェニレンジアミン、1,5-ジアミノナフタレン、2-クロロ-1,4-フェニレンジアミン、4-クロロ-1,3-フェニレンジアミン、2,6-ジアミノトルエン、2、4-ジアミノトルエン、2,5-ジクロロ-1,4-フェニレンジアミン又は2,5-ジアミノトルエン等が挙げられる。
 ポリアミド繰り返し単位において、カルボン酸化合物とアミン化合物との組み合わせは、特に限定されず、例えば、後述する例示繰り返し単位に示す組み合わせが挙げられる。
 ここで、カルボン酸化合物及びアミン化合物の少なくとも一方を2種用いる場合、得られるポリアミド繰り返し単位は少なくとも2種となる。例えば、カルボン酸を2種用いてなる後記の例示繰り返し単位B-65が挙げられる。
 ポリアミド繰り返し単位は、ポリアミド合成法と同様にして、得ることができる。
In the present invention, the repeating unit [b] includes a repeating unit composed of two or more components. Such repeating units include polyamide repeating units and polyester repeating units.
The polyamide repeating unit is not particularly limited as long as it has an amide bond, and usually includes a unit constituting a polyamide obtained by co-condensation polymerization of a polyvalent carboxylic acid compound and a polyvalent amine compound. The carboxylic acid compound and the amine compound are not particularly limited as long as they are compounds that form various polyamides. For example, the valences (carboxy group number and amino group number) of the carboxylic acid compound and the amine compound are not particularly limited, but are preferably divalent.
Examples of carboxylic acid compounds include aliphatic carboxylic acid compounds and aromatic carboxylic acid compounds, and aromatic carboxylic acid compounds are preferred. Aromatic carboxylic acid compounds include terephthalic acid, isophthalic acid, 4,4′-dicarboxydiphenyl ether, 2,6-naphthalenedicarboxylic acid, 1,4-naphthalenedicarboxylic acid, benzophenone-4,4′-dicarboxylic acid, 5 -Tert-butylisophthalic acid, 2,5-dimethylterephthalic acid, 4,6-dimethylisophthalic acid, 4,4'-stilbene dicarboxylic acid, 4,4'-biphenyldicarboxylic acid or 2,2-bis (4-carboxy) Phenyl) hexafluoropropane and the like. Examples of the aliphatic carboxylic acid compounds include 1,4-cyclohexanedicarboxylic acid, 1,3-cyclohexanedicarboxylic acid, decahydro-1,4-naphthalenedicarboxylic acid, decahydro-2,6-naphthalenedicarboxylic acid, sebacic acid, azelaic acid, Examples include suberic acid and pimelic acid.
Examples of the amine compound include aliphatic amine compounds and aromatic amine compounds, and aromatic amine compounds are preferable. Examples of the aliphatic amine compound include 1,4-cyclohexanediamine, 1,3-cyclohexanediamine, and the like, in addition to the amine compound that leads to the exemplary repeating unit described later. As the aromatic amine compound, 1,4-phenylenediamine, 1,3-phenylenediamine, 1,5-diaminonaphthalene, 2-chloro-1,4 other than the amine compound that leads to the exemplified repeating unit described later. -Phenylenediamine, 4-chloro-1,3-phenylenediamine, 2,6-diaminotoluene, 2,4-diaminotoluene, 2,5-dichloro-1,4-phenylenediamine or 2,5-diaminotoluene Can be mentioned.
In the polyamide repeating unit, the combination of the carboxylic acid compound and the amine compound is not particularly limited, and examples thereof include combinations shown in the exemplified repeating unit described later.
Here, when two types of at least one of a carboxylic acid compound and an amine compound are used, the obtained polyamide repeating unit is at least two types. For example, exemplified repeating unit B-65 described later using two kinds of carboxylic acids can be mentioned.
The polyamide repeating unit can be obtained in the same manner as in the polyamide synthesis method.
 ポリエステル繰り返し単位としては、エステル結合を有する限り特に限定されず、通常、多価のカルボン酸と多価のアルコールとの共縮重合により得られるポリエステルを構成する単位が挙げられる。上記カルボン酸及びアルコールは、各種ポリエステルを形成する化合物であれば特に限定されない。例えば、カルボン酸及びアルコールの価数(カルボキシ基数及び水酸基数)は、いずれも、特に限定されないが、2価であることが好ましい。
 カルボン酸としては、脂肪族カルボン酸、芳香族カルボン酸等が挙げられ、具体的には、上記ポリアミド繰り返し単位におけるカルボン酸が挙げられる。
 アルコールとしては、脂肪族アルコール、芳香族アルコール等が挙げられる。脂肪族アルコールとしては、後述する例示繰り返し単位に示すアルコール以外にも、1,4-シクロヘキサンジオール、1,3-シクロヘキサンジオール、4,4’-ビシクロヘキサノール等が挙げられる。また、芳香族アルコール(脂肪族基に結合する水酸基を有するものを含む)としては、後述する例示繰り返し単位に示すアルコール以外にも、レソルシノール、2,7-ジヒドロキシナフタレン、2,6-ジヒドロキシナフタレン、1,4-ジヒドロキシナフタレン、1,5-ジヒドロキシナフタレン、4,4’-ジヒドロキシジフェニルエーテル、2-メチルレソルシノール、クロロヒドロキノン、1,3-ビス(4-ヒドロキシフェノキシ)ベンゼン、4-クロロレソルシノール、メチルヒドロキノン、2,3-ジメチルヒドロキノン、2,2-ビス(4-ヒドロキシフェニル)プロパン又は4,4’-エチリデンビスフェノール等が挙げられる。
 ポリエステル繰り返し単位において、カルボン酸とアルコールとの組み合わせは、特に限定されず、例えば、後述する例示繰り返し単位に示す組み合わせが挙げられる。
 ポリエステル繰り返し単位は、ポリエステル合成法と同様にして、得ることができる。
 本発明において、ポリエステル繰り返し単位からなる部分構造又はポリマーは、上記ポリアミド繰り返し単位と同様に、別の繰り返し単位を有していてもよい。
The polyester repeating unit is not particularly limited as long as it has an ester bond, and usually includes a unit constituting a polyester obtained by co-condensation polymerization of a polyvalent carboxylic acid and a polyvalent alcohol. The carboxylic acid and alcohol are not particularly limited as long as they are compounds that form various polyesters. For example, the valences (carboxy group number and hydroxyl group number) of the carboxylic acid and alcohol are not particularly limited, but are preferably divalent.
Examples of the carboxylic acid include aliphatic carboxylic acids and aromatic carboxylic acids, and specific examples include carboxylic acids in the polyamide repeating unit.
Examples of the alcohol include aliphatic alcohols and aromatic alcohols. Examples of the aliphatic alcohol include 1,4-cyclohexanediol, 1,3-cyclohexanediol, 4,4′-bicyclohexanol, and the like, in addition to the alcohols shown in the exemplary repeating units described later. As aromatic alcohols (including those having a hydroxyl group bonded to an aliphatic group), resorcinol, 2,7-dihydroxynaphthalene, 2,6-dihydroxynaphthalene, other than the alcohols shown in the exemplified repeating units described later, 1,4-dihydroxynaphthalene, 1,5-dihydroxynaphthalene, 4,4′-dihydroxydiphenyl ether, 2-methylresorcinol, chlorohydroquinone, 1,3-bis (4-hydroxyphenoxy) benzene, 4-chlororesorcinol, Examples thereof include methylhydroquinone, 2,3-dimethylhydroquinone, 2,2-bis (4-hydroxyphenyl) propane, and 4,4′-ethylidenebisphenol.
In the polyester repeating unit, the combination of the carboxylic acid and the alcohol is not particularly limited, and examples thereof include combinations shown in the exemplified repeating unit described later.
The polyester repeating unit can be obtained in the same manner as in the polyester synthesis method.
In this invention, the partial structure or polymer which consists of a polyester repeating unit may have another repeating unit similarly to the said polyamide repeating unit.
 上記密着性ポリマーは、上記繰り返し単位〔b〕として、下記一般式1で表される繰り返し単位を有することが好ましい。 The adhesive polymer preferably has a repeating unit represented by the following general formula 1 as the repeating unit [b].
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000014
 一般式1中、Rは、水素原子又はアルキル基を表し、水素原子又はメチルが好ましい。Rがアルキル基である場合、アルキル基は、それぞれ、上記一般式2におけるRと同義である。
 R及びRは、各々独立に、水素原子、アルキル基、アリール基又はアルコキシカルボニル基を表す。R及びRは、それぞれ、水素原子が好ましい。
 R又はRがアルキル基、アリール基及びアルコキシカルボニル基である場合、アルキル基、アリール基及びアルコキシカルボニル基は、それぞれ、上記一般式2におけるR及びRの、アルキル基、アリール基及びアルコキシカルボニル基と同義であり、好ましいものも同じである。
In General Formula 1, R 1 represents a hydrogen atom or an alkyl group, and preferably a hydrogen atom or methyl. When R 1 is an alkyl group, the alkyl group has the same meaning as R 5 in General Formula 2 above.
R 2 and R 3 each independently represents a hydrogen atom, an alkyl group, an aryl group or an alkoxycarbonyl group. R 2 and R 3 are each preferably a hydrogen atom.
When R 2 or R 3 is an alkyl group, an aryl group, and an alkoxycarbonyl group, the alkyl group, the aryl group, and the alkoxycarbonyl group are respectively an alkyl group, an aryl group, and R 6 and R 7 in General Formula 2 above. It is synonymous with an alkoxycarbonyl group, and a preferable thing is also the same.
 Lは、単結合であるか、又は、アルキレン基、アリーレン基、-C(=O)-、-O-及び-N(R)-から選ばれる2価の連結基若しくはこれらの連結基の2種以上を組み合わせてなる2価の連結基を示す。Rは、水素原子又はアルキル基を表し、上記Rと同義であり、好ましいものも同じである。
 Lがアルキレン基である場合、アルキレン基は、直鎖であることが好ましい。また、このアルキレン基の炭素数は1~5が好ましく、1~4がより好ましく、1~3が更に好ましく、2が特に好ましい。Lがアリーレン基である場合、アリーレン基は、その炭素数が6~20が好ましく、6~15が更に好ましく、6~12が特に好ましく、とりわけフェニレンが好ましい。上記アルキレン基及びアリーレン基は、それぞれ、置換基を有していてもよい、この置換基としては上述の置換基群Tの各基が挙げられる。
 連結基の2種以上を組み合わせてなる2価の連結基において、組み合わされる上記連結基の数は、特に限定されないが、例えば、2~9個が好ましく、2個又は3個がより好ましい。また、連結基の組み合わせも、特に限定されず、例えば、-C(=O)-及び-O-の組み合わせ、又は、-C(=O)-及び-O-を含む組み合わせが好ましい。-C(=O)-及び-O-を含む組み合わせとしては、-C(=O)-、-O-及びアルキレン基の組み合わせ、又は、-C(=O)-、-O-及びアリーレン基の組み合わせが好ましく、-C(=O)-、-O-及びアルキレン基の組み合わせがより好ましい。特に-C(=O)-を連結基に含み、-C(=O)-が主鎖(Rが結合する炭素原子)に結合することが更に好ましい。
L is a single bond, a divalent linking group selected from an alkylene group, an arylene group, —C (═O) —, —O— and —N (R 4 ) —, or a linking group thereof. A divalent linking group formed by combining two or more types is shown. R 4 represents a hydrogen atom or an alkyl group, and has the same meaning as R 5 described above, and preferred ones are also the same.
When L is an alkylene group, the alkylene group is preferably linear. The alkylene group preferably has 1 to 5 carbon atoms, more preferably 1 to 4, more preferably 1 to 3, and particularly preferably 2. When L is an arylene group, the arylene group preferably has 6 to 20 carbon atoms, more preferably 6 to 15 carbon atoms, particularly preferably 6 to 12 carbon atoms, and particularly preferably phenylene. The alkylene group and the arylene group each may have a substituent. Examples of the substituent include the groups in the substituent group T described above.
In the divalent linking group formed by combining two or more linking groups, the number of the linking groups to be combined is not particularly limited, but is preferably 2 to 9, and more preferably 2 or 3. The combination of the linking groups is not particularly limited, and for example, a combination of —C (═O) — and —O— or a combination including —C (═O) — and —O— is preferable. The combination including —C (═O) — and —O— includes a combination of —C (═O) —, —O— and an alkylene group, or —C (═O) —, —O— and an arylene group. A combination of —C (═O) —, —O— and an alkylene group is more preferred. In particular, it is more preferable that —C (═O) — is included in the linking group, and —C (═O) — is bonded to the main chain (the carbon atom to which R 1 is bonded).
 上記密着性ポリマーは、上記繰り返し単位〔b〕として、下記一般式1-2で表される繰り返し単位を有することが更に好ましい。 The adhesive polymer further preferably has a repeating unit represented by the following general formula 1-2 as the repeating unit [b].
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000015
 一般式1-2中、R1Aは水素原子又はアルキル基を表す。R1Aは、上記一般式1のRと同義であり、好ましいものも同じである。
 Lは、単結合であるか、又は、アルキレン基、アリーレン基、-C(=O)-、-O-及び-N(R4A)-から選ばれる2価の連結基若しくはこれらの連結基の2種以上を組み合わせてなる2価の連結基を示す。R4Aは、水素原子又はアルキル基を表し、上記Rと同義であり、好ましいものも同じである。
 一般式1-2のLは、上記一般式1のLと同義であり、好ましいものも同じである。
 一般式1及び一般式1-2で表される繰り返し単位は、それぞれ、各繰り返し単位におけるアセトアセトキシ基が置換基で置換されていてもよい。
In general formula 1-2, R 1A represents a hydrogen atom or an alkyl group. R 1A has the same meaning as R 1 in formula 1 above, and preferred ones are also the same.
L is a single bond, or a divalent linking group selected from an alkylene group, an arylene group, —C (═O) —, —O— and —N (R 4A ) —, or a group of these linking groups. A divalent linking group formed by combining two or more types is shown. R 4A represents a hydrogen atom or an alkyl group, and has the same meaning as R 4 described above, and preferred ones are also the same.
L in the general formula 1-2 has the same meaning as L in the general formula 1, and preferred ones are also the same.
In the repeating units represented by formula 1 and formula 1-2, the acetoacetoxy group in each repeating unit may be substituted with a substituent.
 上記密着性ポリマーは、上記繰り返し単位〔b〕として、アクリル酸エステル化合物由来の繰り返し単位(一般式1及び1-2で表される化合物において、Lが上記好ましい組み合わせのもの)又はポリアミド繰り返し単位を有することが好ましく、アクリル酸エステル化合物由来の繰り返し単位(一般式1及び1-2で表される化合物において、Lが上記好ましい組み合わせのもの)を有することが更に好ましい。 The adhesive polymer includes, as the repeating unit [b], a repeating unit derived from an acrylate compound (in the compounds represented by the general formulas 1 and 1-2, L is the preferred combination) or a polyamide repeating unit. It is preferable to have a repeating unit derived from an acrylate compound (in the compounds represented by the general formulas 1 and 1-2, L is a preferable combination).
 上記繰り返し単位〔b〕の好ましい例を以下に構造式として示すが、本発明はこれらの例に限定されるものではない。
 下記具体例において、B-1~B-9、B-14、B-18、B-20~B-33、B-76、B-77及びB-80は(メタ)アクリル酸エステル化合物由来の繰り返し単位であり、B-10は(メタ)アクリル酸化合物由来の繰り返し単位であり、B-11~B-13、B-34~B-37、B-78及びB-79は(メタ)アクリルアミド化合物由来の繰り返し単位であり、B-15~A-17は酢酸ビニル化合物由来の繰り返し単位であり、B-19はビニルケトン化合物であり、B-38~B-46は無水マレイン酸化合物由来の繰り返し単位であり、B-47~B-65はポリアミド繰り返し単位であり、B-66~B-75はポリエステル繰り返し単位であり、B-81はスチレン化合物由来の繰り返し単位である。
Preferred examples of the repeating unit [b] are shown below as structural formulas, but the present invention is not limited to these examples.
In the following specific examples, B-1 to B-9, B-14, B-18, B-20 to B-33, B-76, B-77 and B-80 are derived from (meth) acrylic acid ester compounds. B-10 is a repeating unit derived from a (meth) acrylic acid compound, and B-11 to B-13, B-34 to B-37, B-78 and B-79 are (meth) acrylamides. B-15 to A-17 are repeating units derived from a vinyl acetate compound, B-19 is a vinyl ketone compound, and B-38 to B-46 are repeating units derived from a maleic anhydride compound. B-47 to B-65 are polyamide repeating units, B-66 to B-75 are polyester repeating units, and B-81 is a repeating unit derived from a styrene compound.
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000018
 密着性ポリマーは、各一次構造等に応じて繰り返し単位が適宜に選択され、好ましくは、繰り返し単位〔a〕の少なくとも1種と繰り返し単位〔b〕の少なくとも1種とを有する。
 密着性ポリマーがブロック構造を有する場合、このブロック構造は、繰り返し単位〔a〕からなる部分構造を2つ有するブロック構造であってもよいが、繰り返し単位〔a〕からなる部分構造と、繰り返し単位〔b〕からなる部分構造とを有するブロック構造が好ましい。
 密着性ポリマーがグラフト構造を有する場合、グラフト鎖は、繰り返し単位〔a〕及び繰り返し単位〔b〕のいずれか、又は両方を有していてもよい。好ましくは、グラフト鎖が繰り返し単位〔a〕を有する。すなわち、繰り返し単位〔b〕を含むポリマーPAG1(幹ポリマー)に対して、繰り返し単位〔a〕を含むポリマーPBG1(枝ポリマー)が結合しているグラフト構造が好ましい。ここで、繰り返し単位を含むポリマーとは、特定の繰り返し単位のみからなるポリマーであってもよく、特定の繰り返し単位とこれ以外の繰り返し単位(他の繰り返し単位ともいう)とを含むポリマーであってもよい。
In the adhesive polymer, the repeating unit is appropriately selected according to each primary structure and the like, and preferably has at least one repeating unit [a] and at least one repeating unit [b].
When the adhesive polymer has a block structure, this block structure may be a block structure having two partial structures consisting of repeating units [a], but a partial structure consisting of repeating units [a] and a repeating unit A block structure having a partial structure consisting of [b] is preferred.
When the adhesive polymer has a graft structure, the graft chain may have either one or both of the repeating unit [a] and the repeating unit [b]. Preferably, the graft chain has a repeating unit [a]. That is, a graft structure in which a polymer P B G1 (branched polymer) containing a repeating unit [a] is bonded to a polymer PA G1 (trunk polymer) containing a repeating unit [b] is preferable. Here, the polymer containing a repeating unit may be a polymer composed of only a specific repeating unit, or a polymer containing a specific repeating unit and another repeating unit (also referred to as other repeating unit). Also good.
 上記密着性ポリマーにおいて、各繰り返し単位の含有量については特に制限されない。 In the above adhesive polymer, the content of each repeating unit is not particularly limited.
 接触角と密着性を両立した積層体を得る観点からは、上記密着性ポリマーを構成するモノマー成分の総モル量中に占める上記繰り返し単位〔a〕のモル量を、5モル%以上とすることが好ましく、10モル%以上とすることがより好ましく、20モル%以上とすることがより一層好ましく、30モル%以上とすることが更に好ましく、40モル%以上とすることが特に好ましく、50モル%以上とすることが最も好ましい。上記密着性ポリマーを構成するモノマー成分の総モル量中に占める上記繰り返し単位〔a〕のモル量は、95モル%以下が好ましく、90モル%以下が更に好ましい。また、上記密着性ポリマーにおいて、密着性ポリマーを構成するモノマー成分の総モル量中に占める上記繰り返し単位〔a〕のモル量は100モル%以下であることが好ましく、上記密着性ポリマー中に含まれる上記繰り返し単位のすべてが上記繰り返し単位〔a〕であることも好ましい。 From the viewpoint of obtaining a laminate having both contact angle and adhesiveness, the molar amount of the repeating unit [a] in the total molar amount of the monomer components constituting the adhesive polymer should be 5 mol% or more. Is preferably 10 mol% or more, more preferably 20 mol% or more, further preferably 30 mol% or more, particularly preferably 40 mol% or more, and 50 mol%. % Or more is most preferable. The molar amount of the repeating unit [a] in the total molar amount of the monomer components constituting the adhesive polymer is preferably 95 mol% or less, and more preferably 90 mol% or less. In the above adhesive polymer, the molar amount of the repeating unit [a] in the total molar amount of the monomer component constituting the adhesive polymer is preferably 100 mol% or less, and is included in the adhesive polymer. It is also preferred that all of the above repeating units are the above repeating unit [a].
 また、より高い水準での、接触角の維持と密着性を両立した積層体を得る観点からは、上記密着性ポリマーを構成するモノマー成分の総モル量中に占める上記繰り返し単位〔b〕のモル量を、5モル%以上とすることが好ましく、10モル%以上とすることがより好ましい。上記密着性ポリマーを構成するモノマー成分の総モル量中に占める上記繰り返し単位〔b〕のモル量は、95モル%以下が好ましく、90モル%以下がより好ましく、80モル%以下が更に好ましく、15モル%以下が特に好ましく、10モル%以下が最も好ましい。 Further, from the viewpoint of obtaining a laminate having both higher contact angle maintenance and adhesion, the moles of the repeating unit [b] in the total molar amount of the monomer components constituting the adhesive polymer. The amount is preferably 5 mol% or more, and more preferably 10 mol% or more. The molar amount of the repeating unit [b] in the total molar amount of the monomer component constituting the adhesive polymer is preferably 95 mol% or less, more preferably 90 mol% or less, still more preferably 80 mol% or less, 15 mol% or less is particularly preferable, and 10 mol% or less is most preferable.
 上記密着性ポリマーが上記繰り返し単位〔a〕及び上記繰り返し単位〔b〕を有する場合、密着性ポリマー中、上記繰り返し単位〔a〕の含有量と、上記繰り返し単位〔b〕の含有量は、モル比で、[繰り返し単位〔a〕]/[繰り返し単位〔b〕]=95/5~10/90を満たすことが好ましく、[繰り返し単位〔a〕]/[繰り返し単位〔b〕]=95/5~30/70を満たすことがより好ましく、[繰り返し単位〔a〕]/[繰り返し単位〔b〕]=92/8~50/50を満たすことが更に好ましく、[繰り返し単位〔a〕]/[繰り返し単位〔b〕]=90/10~60/40を満たすことが更に好ましく、[繰り返し単位〔a〕]/[繰り返し単位〔b〕]=90/10~75/25を満たすことが特に好ましい。 When the adhesive polymer has the repeating unit [a] and the repeating unit [b], the content of the repeating unit [a] and the content of the repeating unit [b] in the adhesive polymer are as follows: [Repeating unit [a]] / [Repeating unit [b]] = 95/5 to 10/90 is preferably satisfied, and [Repeating unit [a]] / [Repeating unit [b]] = 95 / It is more preferable to satisfy 5 to 30/70, and it is more preferable to satisfy [Repeating unit [a]] / [Repeating unit [b]] = 92/8 to 50/50, and [Repeating unit [a]] / It is more preferable to satisfy [Repeating unit [b]] = 90/10 to 60/40, and it is particularly preferable to satisfy [Repeating unit [a]] / [Repeating unit [b]] = 90/10 to 75/25. preferable.
 上記密着性ポリマーは、上記繰り返し単位〔a〕の総モル量中に占める上記一般式2又は3で表される繰り返し単位のモル量が50モル%以上であることが好ましく、70モル%以上であることがより好ましく、80モル%以上であることが更に好ましく、90モル%以上であることが特に好ましい。また、上記密着性ポリマーは、上記繰り返し単位〔a〕の総モル量中に占める上記一般式2又は3で表される繰り返し単位のモル量が100モル%以下であることが好ましく、上記密着性ポリマー中に含まれる上記繰り返し単位〔a〕のすべてが上記一般式2又は3で表される繰り返し単位であることも好ましい。 In the adhesive polymer, the molar amount of the repeating unit represented by the general formula 2 or 3 in the total molar amount of the repeating unit [a] is preferably 50 mol% or more, and 70 mol% or more. More preferably, it is more preferably 80 mol% or more, and particularly preferably 90 mol% or more. Further, the adhesive polymer preferably has a molar amount of the repeating unit represented by the general formula 2 or 3 in the total molar amount of the repeating unit [a] of 100 mol% or less. It is also preferred that all of the repeating units [a] contained in the polymer are repeating units represented by the above general formula 2 or 3.
 上記密着性ポリマーは、上記繰り返し単位〔b〕の総モル量中に占める上記一般式1で表される繰り返し単位のモル量が50モル%以上であることが好ましく、70モル%以上であることがより好ましく、80モル%以上であることが更に好ましく、90モル%以上であることが特に好ましい。また、上記密着性ポリマーは、上記繰り返し単位〔b〕の総モル量中に占める上記一般式1で表される繰り返し単位のモル量が100モル%以下であることが好ましく、上記密着性ポリマー中に含まれる上記繰り返し単位〔b〕のすべてが上記一般式1で表される繰り返し単位であることも好ましい。 In the adhesive polymer, the molar amount of the repeating unit represented by the general formula 1 in the total molar amount of the repeating unit [b] is preferably 50 mol% or more, and 70 mol% or more. Is more preferably 80 mol% or more, and particularly preferably 90 mol% or more. Further, in the adhesive polymer, the molar amount of the repeating unit represented by the general formula 1 in the total molar amount of the repeating unit [b] is preferably 100 mol% or less. It is also preferred that all of the above repeating units [b] contained in are repeating units represented by the above general formula 1.
 上記密着性ポリマーは、上記繰り返し単位〔b〕の総モル量中に占める上記一般式1-2で表される繰り返し単位のモル量が50モル%以上であることが好ましく、70モル%以上であることがより好ましく、80モル%以上であることが更に好ましく、90モル%以上であることが特に好ましい。また、上記密着性ポリマーは、上記繰り返し単位〔b〕の総モル量中に占める上記一般式1-2で表される繰り返し単位のモル量が100モル%以下であることが好ましく、上記密着性ポリマー中に含まれる上記繰り返し単位〔b〕のすべてが上記一般式1-2で表される繰り返し単位であることも好ましい。 In the adhesive polymer, the molar amount of the repeating unit represented by the general formula 1-2 in the total molar amount of the repeating unit [b] is preferably 50 mol% or more, and 70 mol% or more. More preferably, it is more preferably 80 mol% or more, and particularly preferably 90 mol% or more. Further, in the adhesive polymer, the molar amount of the repeating unit represented by the general formula 1-2 in the total molar amount of the repeating unit [b] is preferably 100% by mole or less. It is also preferred that all of the repeating units [b] contained in the polymer are repeating units represented by the general formula 1-2.
 上記密着性ポリマーは、上記繰り返し単位〔a〕及び上記繰り返し単位〔b〕の他に、他の繰り返し単位を有していてもよい。この他の繰り返し単位は、ポリマーを形成する鎖のいずれに有していてもよい。上記密着性ポリマーを構成するモノマー成分の総モル量中、上記繰り返し単位〔a〕の含有量と上記繰り返し単位〔b〕の含有量は、合計で50質量%以上であることが好ましく、70質量%以上であることがより好ましく、80質量%以上であることが更に好ましく、90質量%以上であることが特に好ましい。上記密着性ポリマーは、上記繰り返し単位〔a〕及び上記繰り返し単位〔b〕のモル量が合計で100モル%以下であることが好ましく、上記繰り返し単位〔a〕と上記繰り返し単位〔b〕とからなる形態であることも好ましい。 The adhesive polymer may have other repeating units in addition to the repeating unit [a] and the repeating unit [b]. This other repeating unit may be present in any of the chains forming the polymer. In the total molar amount of the monomer components constituting the adhesive polymer, the content of the repeating unit [a] and the content of the repeating unit [b] are preferably 50% by mass or more in total, and 70% by mass. % Or more, more preferably 80% by weight or more, and particularly preferably 90% by weight or more. In the adhesive polymer, the molar amount of the repeating unit [a] and the repeating unit [b] is preferably 100 mol% or less in total, and from the repeating unit [a] and the repeating unit [b]. It is also preferable that it is the form which becomes.
 上記繰り返し単位〔a〕を有し、上述の一次構造を持つ密着性ポリマーを含有する層が、セルロースエステル層との密着性と、疎水性とに優れる理由は、定かではないが、本発明者らは次のように推定している。ただし、下記の理由は本発明を何ら限定するものではない。
 繰り返し単位〔a〕の溶解度パラメータδtは、セルロースエステルの溶解度パラメータδtとは近似していない。したがって、繰り返し単位〔a〕を有するポリマーは、通常、セルロースエステルとの親和性が小さく、十分な密着性を発現しない。しかし、本発明の密着性ポリマーは、上述の一次構造を有している。そのため、本発明の密着性ポリマーは、セルロースエステル層内部に部分的に入り込むことができると考えられる。すなわち、本発明の密着性ポリマーは、疎水性を維持しつつ、セルロースエステル層に対するアンカー層のような役割を果たすことが可能となる。
The reason why the layer containing the above-mentioned repeating unit [a] and containing the above-mentioned adhesive polymer having the primary structure is excellent in adhesion to the cellulose ester layer and hydrophobicity is not clear, but the present inventor Estimated as follows. However, the following reasons do not limit the present invention.
The solubility parameter δt of the repeating unit [a] is not close to the solubility parameter δt of the cellulose ester. Therefore, the polymer having the repeating unit [a] usually has low affinity with the cellulose ester and does not exhibit sufficient adhesion. However, the adhesive polymer of the present invention has the primary structure described above. Therefore, it is considered that the adhesive polymer of the present invention can partially enter the cellulose ester layer. That is, the adhesive polymer of the present invention can serve as an anchor layer for the cellulose ester layer while maintaining hydrophobicity.
 しかも、本発明の密着性ポリマーは、上記一次構造を有する。特にグラフト構造、ブランチ構造又はスター構造を有する場合、ポリマー鎖の端部数が多く、セルロースエステルとの相互作用が大きくなる。これらにより、本発明の密着性ポリマーを含有する層は、優れた疎水性(大きな接触角)を示し、更にセルロースエステル層との強い密着性を発現すると、考えられる。一方、繰り返し単位〔a〕と、他の繰り返し単位として例えば繰り返し単位〔b〕とを有するブロック構造である場合、ブロック構造の構造制御により、繰り返し単位〔a〕及び繰り返し単位〔b〕を同一ポリマー中にある程度離間させて導入することができる。すなわち、繰り返し単位〔a〕に由来する疎水性を維持する構造と、繰り返し単位〔b〕に由来するセルロースエステル層内部に部分的に入り込む構造とがそれぞれ同一ポリマー中にバランスよく配置される。このように、疎水性と密着性それぞれに寄与する部分構造が同一ポリマー中の所々に存在するため、優れた疎水性と、セルロースエステル層との密着性とを発現すると考えられる。 Moreover, the adhesive polymer of the present invention has the primary structure described above. In particular, when it has a graft structure, a branch structure or a star structure, the number of ends of the polymer chain is large, and the interaction with the cellulose ester becomes large. Accordingly, it is considered that the layer containing the adhesive polymer of the present invention exhibits excellent hydrophobicity (large contact angle) and further exhibits strong adhesiveness with the cellulose ester layer. On the other hand, in the case of a block structure having a repeating unit [a] and, for example, a repeating unit [b] as another repeating unit, the repeating unit [a] and the repeating unit [b] are made the same polymer by controlling the structure of the block structure. It can be introduced with some separation. That is, the structure that maintains the hydrophobicity derived from the repeating unit [a] and the structure that partially enters the cellulose ester layer derived from the repeating unit [b] are arranged in a balanced manner in the same polymer. Thus, since partial structures that contribute to hydrophobicity and adhesion are present in various places in the same polymer, it is considered that excellent hydrophobicity and adhesion with the cellulose ester layer are expressed.
 特に、本発明の密着性ポリマーが、上記繰り返し単位〔a〕に加えて上記繰り返し単位〔b〕を有すると、セルロースエステル層との強固な密着性を発現する。繰り返し単位〔b〕は、溶解度パラメータδtがセルロースエステルのそれに近似しており、セルロースエステルに対する親和性が大きい。加えて、上述の構造により、繰り返し単位〔b〕は、セルロースエステル層に隣接して層状に形成したときに、セルロースエステル層側の表面近傍に偏在しやすくなる(繰り返し単位〔b〕が表面近傍に位置するように密着性ポリマーが配置される)。又は、上記のように、セルロースエステル層内部に部分的に入り込む。これらにより、繰り返し単位〔b〕を有する本発明の密着性ポリマーは、セルロースエステル層との相互作用を効果的に発揮すると、考えられる。 In particular, when the adhesive polymer of the present invention has the repeating unit [b] in addition to the repeating unit [a], strong adhesion to the cellulose ester layer is expressed. The repeating unit [b] has a solubility parameter δt close to that of the cellulose ester, and has a high affinity for the cellulose ester. In addition, when the repeating unit [b] is formed in the form of a layer adjacent to the cellulose ester layer due to the structure described above, the repeating unit [b] tends to be unevenly distributed near the surface on the cellulose ester layer side (the repeating unit [b] is near the surface). Adhesive polymer is arranged to be located in Or, as described above, it partially enters the cellulose ester layer. Accordingly, it is considered that the adhesive polymer of the present invention having the repeating unit [b] effectively exhibits the interaction with the cellulose ester layer.
 しかも、本発明の密着性ポリマーは、繰り返し単位〔b〕を有していても、上記繰り返し単位〔a〕の作用機能を損なうことなく、上記繰り返し単位〔b〕の作用機能を発揮し、層間密着性と接触角とをより高いレベルで両立することができる。その理由は、定かではないが、上述の一次構造を有していることによるものと、考えられる。特に、上記繰り返し単位〔a〕と上記繰り返し単位〔b〕を上述の好適な組成比(モル比)でバランス良く有していると、各々の繰り返し単位の特性をより高い水準で両立させることができる。 Moreover, the adhesive polymer of the present invention exhibits the function of the repeating unit [b] without damaging the function of the repeating unit [a], even if it has the repeating unit [b]. Adhesion and contact angle can be achieved at a higher level. The reason for this is not clear, but is considered to be due to having the primary structure described above. In particular, when the above repeating unit [a] and the above repeating unit [b] are balanced in the above-mentioned preferred composition ratio (molar ratio), the properties of each repeating unit can be made compatible at a higher level. it can.
 本発明に用いる上記密着性ポリマーの重量平均分子量の下限値は、フィルム面状の観点から、5,000以上であることが好ましく、10,000以上であることがより好ましく、15,000以上であることが更に好ましい。一方、本発明に用いる上記密着性ポリマーの重量平均分子量の上限値は、製膜性の観点から、1,000,000以下であることが好ましく、800,000以下であることがより好ましく、500,000以下であることが更に好ましく、200,000以下であることが特に好ましく、100,000以下であることが最も好ましい。
 分子量の測定は、後述する実施例で記載する方法等で測定することができる。
The lower limit of the weight average molecular weight of the adhesive polymer used in the present invention is preferably 5,000 or more, more preferably 10,000 or more, and 15,000 or more from the viewpoint of the film surface shape. More preferably it is. On the other hand, the upper limit of the weight average molecular weight of the adhesive polymer used in the present invention is preferably 1,000,000 or less, more preferably 800,000 or less, from the viewpoint of film forming properties, and 500 It is more preferable that it is 1,000 or less, it is especially preferable that it is 200,000 or less, and it is most preferable that it is 100,000 or less.
The molecular weight can be measured by the method described in Examples described later.
 上記密着性ポリマーの末端構造は、特に限定されないが、他の繰り返し単位の有無、合成時に使用した基質の種類、又は、合成時のクエンチ剤(反応停止剤)の種類により、一義的に決定されない。末端構造を形成する末端基としては、例えば、水素原子、ハロゲン原子、ヒドロキシ基、エチレン性不飽和基、アルキル基、アシル基、芳香族複素環基又は芳香族炭化水素基が挙げられる。 The terminal structure of the adhesive polymer is not particularly limited, but is not uniquely determined by the presence or absence of other repeating units, the type of substrate used during synthesis, or the type of quenching agent (reaction terminator) used during synthesis. . Examples of the terminal group forming the terminal structure include a hydrogen atom, a halogen atom, a hydroxy group, an ethylenically unsaturated group, an alkyl group, an acyl group, an aromatic heterocyclic group, or an aromatic hydrocarbon group.
 上記密着性ポリマー層の膜厚に特に制限はなく、1~25μmが好ましく、1~20μmがより好ましく、1~15μmが特に好ましい。 The film thickness of the adhesive polymer layer is not particularly limited, preferably 1 to 25 μm, more preferably 1 to 20 μm, and particularly preferably 1 to 15 μm.
[セルロースエステル層]
 本発明の積層体を構成するセルロースエステル層は、層中にセルロースエステルを50質量%以上含有する層である。セルロースエステル層中のセルロースエステルの含有量は60質量%以上が好ましく、70質量%以上がより好ましく、80質量%以上が更に好ましく、85質量%以上が特に好ましい。セルロースエステル層中のセルロースエステルの含有量の上限は、通常は96質量%以下であり、95質量%以下が好ましく、92質量%以下が更に好ましい。この場合、セルロースエステルを除く残部には、例えば後述する添加剤等が含まれる。
[Cellulose ester layer]
The cellulose ester layer which comprises the laminated body of this invention is a layer which contains 50 mass% or more of cellulose esters in a layer. 60 mass% or more is preferable, as for content of the cellulose ester in a cellulose-ester layer, 70 mass% or more is more preferable, 80 mass% or more is further more preferable, and 85 mass% or more is especially preferable. The upper limit of the content of the cellulose ester in the cellulose ester layer is usually 96% by mass or less, preferably 95% by mass or less, and more preferably 92% by mass or less. In this case, the remainder excluding the cellulose ester includes, for example, additives described later.
<セルロースエステル>
 本発明のセルロースエステル層の製造において、原料として用いるセルロースエステルについて説明する。
 セルロースエステルは、セルロースエステルフィルムの製造に用いられるセルロースエステルであれば特に制限されることなく用いることができる。
 セルロースを構成する、β-1,4結合しているグルコース単位は、2位、3位及び6位に遊離のヒドロキシ基を有している。セルロースエステルは、これらのヒドロキシ基の一部をエステル化剤等によりエステル化した重合体(ポリマー)である。
 セルロースとしては、綿花リンタ又は木材パルプ(広葉樹パルプ,針葉樹パルプ)等があり、いずれの原料セルロースから得られるセルロースでも使用でき、場合により混合して使用してもよい。原料セルロースは、例えば、丸澤、宇田著,「プラスチック材料講座(17)繊維素系樹脂」,日刊工業新聞社(1970年発行)又は発明協会公開技報公技番号2001-1745号(7頁~8頁)に記載のセルロースを用いることができる。
 セルロースエステルとしては、セルロースエステルフィルムの製造に用いられる公知のセルロースエステルを何ら制限なく用いることができる。なかでもセルロースアシレートを用いることが好ましい。
<Cellulose ester>
The cellulose ester used as a raw material in the production of the cellulose ester layer of the present invention will be described.
The cellulose ester can be used without particular limitation as long as it is a cellulose ester used for the production of a cellulose ester film.
The β-1,4-bonded glucose unit constituting cellulose has free hydroxy groups at the 2nd, 3rd and 6th positions. The cellulose ester is a polymer (polymer) obtained by esterifying a part of these hydroxy groups with an esterifying agent or the like.
Examples of cellulose include cotton linter or wood pulp (hardwood pulp, softwood pulp) and the like. Any cellulose obtained from any raw material cellulose can be used, and in some cases, it may be mixed and used. The raw material cellulose is, for example, Marusawa, Uda, “Plastic Materials Course (17) Fibrous Resin”, Nikkan Kogyo Shimbun (published in 1970), or Japan Institute of Invention and Technology Publication No. 2001-1745 (page 7). To page 8) can be used.
As a cellulose ester, the well-known cellulose ester used for manufacture of a cellulose-ester film can be used without a restriction | limiting at all. Of these, cellulose acylate is preferably used.
 (セルロースアシレート)
 本発明に用いるセルロースアシレートは、セルロースアシレートフィルムの製造に用いられる公知のセルロースアシレートを何ら制限なく用いることができる。
 アシル置換度(以下、単に「置換度」ということがある)は、2位、3位及び6位に位置するセルロースのヒドロキシ基のアシル化の度合いを示すものであり、すべてのグルコース単位の2位、3位及び6位のヒドロキシ基がいずれもアシル化された場合、総アシル置換度は3である。例えば、すべてのグルコース単位で、6位のみがすべてアシル化された場合、総アシル置換度は1である。同様に、全グルコースの全ヒドロキシ基において、各々のグルコース単位で、6位及び2位のいずれか一方のすべてがアシル化された場合も、総アシル置換度は1である。
 すなわち置換度は、グルコース分子中の全ヒドロキシ基がすべてアシル化された場合を3として、アシル化の度合いを示すものである。
 セルロースアシレートの置換度は、手塚他,Carbohydrate.Res.,273,83-91(1995)に記載の方法、又は、ASTM-D817-96に規定の方法に準じて測定することができる。
(Cellulose acylate)
As the cellulose acylate used in the present invention, a known cellulose acylate used for producing a cellulose acylate film can be used without any limitation.
The acyl substitution degree (hereinafter, sometimes simply referred to as “substitution degree”) indicates the degree of acylation of the hydroxy group of cellulose located at the 2-position, 3-position and 6-position, and is 2 for all glucose units. When the hydroxy groups at the 3rd, 6th and 6th positions are all acylated, the total degree of acyl substitution is 3. For example, if all glucose units are all acylated at position 6, the total degree of acyl substitution is 1. Similarly, the total acyl substitution degree is 1 when all of any one of the 6-position and 2-position is acylated in each glucose unit in all hydroxy groups of all glucose.
That is, the degree of substitution indicates the degree of acylation, assuming that 3 is when all the hydroxy groups in the glucose molecule are all acylated.
The degree of substitution of cellulose acylate is described in Tezuka et al., Carbohydrate. Res. , 273, 83-91 (1995), or according to the method prescribed in ASTM-D817-96.
 本発明に用いるセルロースアシレートの総アシル置換度は透湿度の観点から1.50以上3.00以下であることが好ましく、2.00~2.97であることがより好ましく、2.30以上2.97未満であることが更に好ましく、2.30~2.95であることが特に好ましい。 The total acyl substitution degree of the cellulose acylate used in the present invention is preferably 1.50 or more and 3.00 or less, more preferably 2.00 to 2.97, from the viewpoint of moisture permeability, and 2.30 or more. More preferably, it is less than 2.97, and particularly preferably 2.30 to 2.95.
 本発明に用いるセルロースアシレートのアシル基に、特に制限はなく、1種のアシル基を有する形態でもよいし、2種以上のアシル基を有する形態でもよい。本発明に用いうるセルロースアシレートは、炭素原子数2以上のアシル基を置換基として有することが好ましい。炭素原子数2以上のアシル基に特に制限はなく、脂肪族のアシル基でもよいし、芳香族のアシル基でもよい。炭素原子数2以上のアシル基の具体例として、アセチル、プロピオニル、ブタノイル、ヘプタノイル、ヘキサノイル、オクタノイル、デカノイル、ドデカノイル、トリデカノイル、テトラデカノイル、ヘキサデカノイル、オクタデカノイル、イソブタノイル、tert-ブタノイル、シクロヘキサンカルボニル、オレオイル、ベンゾイル、ナフチルカルボニル、シンナモイル等が挙げられる。これらの中でも、アセチル、プロピオニル、ブタノイル、ドデカノイル、オクタデカノイル、tert-ブタノイル、オレオイル、ベンゾイル、ナフチルカルボニル、シンナモイルが好ましく、更に好ましくはアセチル、プロピオニル、ブタノイルである。 The acyl group of the cellulose acylate used in the present invention is not particularly limited, and may have one acyl group or may have two or more acyl groups. The cellulose acylate that can be used in the present invention preferably has an acyl group having 2 or more carbon atoms as a substituent. The acyl group having 2 or more carbon atoms is not particularly limited, and may be an aliphatic acyl group or an aromatic acyl group. Specific examples of the acyl group having 2 or more carbon atoms include acetyl, propionyl, butanoyl, heptanoyl, hexanoyl, octanoyl, decanoyl, dodecanoyl, tridecanoyl, tetradecanoyl, hexadecanoyl, octadecanoyl, isobutanoyl, tert-butanoyl, cyclohexane Examples include carbonyl, oleoyl, benzoyl, naphthylcarbonyl, cinnamoyl and the like. Among these, acetyl, propionyl, butanoyl, dodecanoyl, octadecanoyl, tert-butanoyl, oleoyl, benzoyl, naphthylcarbonyl, and cinnamoyl are preferable, and acetyl, propionyl, and butanoyl are more preferable.
 セルロースアシレートのアシル基としてアセチル基のみを用いたセルロースアセテートは、本発明に好適に用いることができ、このセルロースアセテートの総アシル置換度は、透湿度及び光学特性の観点から、2.00以上3.00以下であることが好ましく、2.20~3.00であることがより好ましく、2.30~3.00であることが更に好ましく、2.30~2.97であることが更に好ましく、2.30~2.95であることが特に好ましい。 Cellulose acetate using only an acetyl group as the acyl group of cellulose acylate can be suitably used in the present invention. The total acyl substitution degree of this cellulose acetate is 2.00 or more from the viewpoint of moisture permeability and optical properties. It is preferably 3.00 or less, more preferably 2.20 to 3.00, further preferably 2.30 to 3.00, and further preferably 2.30 to 2.97. A range of 2.30 to 2.95 is particularly preferable.
 2種類以上のアシル基を有する混合脂肪酸エステルも本発明におけるセルロースアシレートとして好ましく用いることができる。なかでも混合脂肪酸エステルのアシル基には、アセチル基と炭素数が3~4のアシル基が含まれることが好ましい。また、混合脂肪酸エステルがアシル基としてアセチル基を含む場合、そのアセチル置換度は2.5未満が好ましく、1.9未満が更に好ましい。一方、炭素数が3~4のアシル基を含む場合の炭素数が3~4のアシル基の置換度は0.1~1.5であることが好ましく、0.2~1.2であることがより好ましく、0.5~1.1であることが特に好ましい。
 また、特開2008-20896号公報の段落[0023]~[0038]に記載の、脂肪酸アシル基と置換若しくは無置換の芳香族アシル基とを有する混合酸エステルも好ましく用いることができる。
A mixed fatty acid ester having two or more kinds of acyl groups can also be preferably used as the cellulose acylate in the present invention. Among them, the acyl group of the mixed fatty acid ester preferably includes an acetyl group and an acyl group having 3 to 4 carbon atoms. When the mixed fatty acid ester contains an acetyl group as an acyl group, the degree of acetyl substitution is preferably less than 2.5 and more preferably less than 1.9. On the other hand, when an acyl group having 3 to 4 carbon atoms is contained, the degree of substitution of the acyl group having 3 to 4 carbon atoms is preferably 0.1 to 1.5, and preferably 0.2 to 1.2. Is more preferable, and 0.5 to 1.1 is particularly preferable.
In addition, mixed acid esters having fatty acid acyl groups and substituted or unsubstituted aromatic acyl groups described in paragraphs [0023] to [0038] of JP-A-2008-20896 can also be preferably used.
 本発明においては、エステル基及び置換度の一方又は両方が異なる、2種のセルロースエステルないしセルロースアシレートを併用することもできる。この場合、後述する共流延法等により、異なるセルロースエステルからなる積層構造として形成してもよい。 In the present invention, two types of cellulose esters or cellulose acylates having one or both of an ester group and a degree of substitution can be used in combination. In this case, you may form as a laminated structure which consists of a different cellulose ester by the co-casting method etc. which are mentioned later.
 本発明に用いるセルロースエステルないしセルロースアシレートは、その重合度が250~800が好ましく、300~600が更に好ましい。また、本発明に用いるセルロースエステルないしセルロースアシレートは、その数平均分子量が40000~230000が好ましく、60000~230000が更に好ましく、75000~200000が最も好ましい。
 重合度は、ゲル浸透クロマトグラフィー(Gel Permeation Chromatography;GPC)によりポリスチレン換算で測定される数平均分子量をセルロースエステルないしセルロースアシレートのグルコピラノース単位の分子量で除することで求めることができる。
The degree of polymerization of the cellulose ester or cellulose acylate used in the present invention is preferably 250 to 800, more preferably 300 to 600. The number average molecular weight of the cellulose ester or cellulose acylate used in the present invention is preferably 40000 to 230,000, more preferably 60000 to 230,000, and most preferably 75,000 to 200000.
The degree of polymerization can be determined by dividing the number average molecular weight measured in terms of polystyrene by Gel Permeation Chromatography (GPC) by the molecular weight of the glucopyranose unit of cellulose ester or cellulose acylate.
 本発明に用いるセルロースエステルは常法により合成することができる。例えばセルロースアシレートであれば、アシル化剤として酸無水物又は酸塩化物を用いて合成できる。上記アシル化剤が酸無水物である場合は、反応溶媒として有機酸(例えば、酢酸)又は塩化メチレンが使用される。また、触媒として、硫酸のようなプロトン性触媒を用いることができる。アシル化剤が酸塩化物である場合は、触媒として塩基性化合物を用いることができる。セルロースアシレートの一般的な工業的生産では、セルロースを目的のアシル基に対応する有機酸(酢酸、プロピオン酸、酪酸等)又はそれらの酸無水物(無水酢酸、無水プロピオン酸、無水酪酸等)を用いて、そのヒドロキシ基がエステル化される。
 例えば、綿花リンタ又は木材パルプ由来のセルロースを原料とし、これを酢酸等の有機酸で活性化処理した後、硫酸触媒の存在下で、所望の構造の有機酸を用いてエステル化することにより、セルロースアシレートを得ることができる。また、アシル化剤として有機酸無水物を用いる場合には、一般にセルロース中に存在するヒドロキシ基の量に対して有機酸無水物を過剰量で使用してセルロースをエステル化する。
 また、セルロースアシレートは、例えば、特開平10-45804号公報に記載された方法により合成することもできる。
The cellulose ester used in the present invention can be synthesized by a conventional method. For example, cellulose acylate can be synthesized using an acid anhydride or acid chloride as an acylating agent. When the acylating agent is an acid anhydride, an organic acid (for example, acetic acid) or methylene chloride is used as a reaction solvent. Further, a protic catalyst such as sulfuric acid can be used as the catalyst. When the acylating agent is an acid chloride, a basic compound can be used as a catalyst. In general industrial production of cellulose acylate, an organic acid (acetic acid, propionic acid, butyric acid, etc.) corresponding to the desired acyl group or an acid anhydride (acetic anhydride, propionic anhydride, butyric anhydride, etc.) of cellulose is used. Is used to esterify the hydroxy group.
For example, cotton linter or cellulose derived from cellulose pulp is used as a raw material, and this is activated with an organic acid such as acetic acid, and then esterified with an organic acid having a desired structure in the presence of a sulfuric acid catalyst. Cellulose acylate can be obtained. When an organic acid anhydride is used as the acylating agent, cellulose is generally esterified using an excess amount of the organic acid anhydride relative to the amount of hydroxy groups present in the cellulose.
Cellulose acylate can also be synthesized, for example, by the method described in JP-A-10-45804.
 また、本発明のセルロースエステル層中には、本発明の効果を損なわない範囲でセルロースエステルに加えて他の樹脂(例えば(メタ)アクリル樹脂等)を併用して用いることもできる。セルロースエステル層中の上記他の樹脂の含有量は、セルロースエステル層中、40質量%以下が好ましく、30質量%以下がより好ましく、20質量%以下が更に好ましく、15質量%以下が特に好ましく、10質量%以下が最も好ましい。 Further, in the cellulose ester layer of the present invention, other resins (for example, (meth) acrylic resin etc.) can be used in combination with the cellulose ester within a range not impairing the effects of the present invention. The content of the other resin in the cellulose ester layer is preferably 40% by mass or less, more preferably 30% by mass or less, still more preferably 20% by mass or less, and particularly preferably 15% by mass or less in the cellulose ester layer. 10 mass% or less is the most preferable.
<セルロースエステル層の形成>
 続いて上記セルロースエステル層の形成について説明する。
 上記セルロースエステル層の形成は、特に限定されるものではなく、例えば溶融製膜法又は溶液製膜法(ソルベントキャスト法)により形成することが好ましく、添加剤の揮散又は分解を考慮すると溶液製膜法により形成することがより好ましい。ソルベントキャスト法を利用したポリマーフィルムの製造例については、米国特許第2,336,310号、同第2,367,603号、同第2,492,078号、同第2,492,977号、同第2,492,978号、同第2,607,704号、同第2,739,069号及び同第2,739,070号の各明細書、英国特許第640731号及び同第736892号の各明細書、並びに特公昭45-4554号、同49-5614号、特開昭60-176834号、同60-203430号及び同62-115035号等の各公報を参考にすることができる。また、上記セルロースエステル層は、延伸処理が施されていてもよい。延伸処理の方法及び条件については、例えば、特開昭62-115035号、特開平4-152125号、同4-284211号、同4-298310号、同11-48271号等の各公報を参考にすることができる。
<Formation of cellulose ester layer>
Next, the formation of the cellulose ester layer will be described.
The formation of the cellulose ester layer is not particularly limited. For example, the cellulose ester layer is preferably formed by a melt casting method or a solution casting method (solvent casting method). More preferably, it is formed by the method. Examples of polymer film production using the solvent cast method are described in US Pat. Nos. 2,336,310, 2,367,603, 2,492,078, and 2,492,977. 2,492,978, 2,607,704, 2,739,069 and 2,739,070, British Patent Nos. 640731 and 736892. Nos. 45-4554, 49-5614, JP-A-60-176834, JP-A-60-203430, and JP-A-62-115035 can be referred to. . The cellulose ester layer may be subjected to a stretching treatment. For the stretching method and conditions, refer to, for example, JP-A-62-115035, JP-A-4-152125, 4-284221, 4-298310, and 11-48271. can do.
(流延)
 溶液の流延方法としては、調製されたドープを加圧ダイから金属支持体上に均一に押出す方法、一旦金属等の支持体上に流延されたドープをブレードで膜厚を調節するドクターブレードによる方法、逆回転するロールで調節するリバースロールコーターによる方法等があり、加圧ダイによる方法が好ましい。加圧ダイにはコートハンガータイプやTダイタイプ等があるが、いずれも好ましく用いることができる。また、ここで挙げた方法以外にも、従来知られているセルロースエステル溶液を流延製膜する種々の方法で実施することができ、用いる溶媒の沸点等の違いを考慮して各条件を設定することができる。
(Casting)
The solution casting method includes a method of uniformly extruding the prepared dope from a pressure die onto a metal support, and a doctor that adjusts the film thickness with a blade of the dope once cast on a metal support. There are a method using a blade and a method using a reverse roll coater which adjusts with a reverse rotating roll, and a method using a pressure die is preferred. The pressure die includes a coat hanger type and a T die type, and any of them can be preferably used. In addition to the methods listed here, it can be carried out by various known methods for casting a cellulose ester solution, and each condition is set in consideration of differences in the boiling point of the solvent used. can do.
 セルロースエステル層は単層であっても複層であってもよく、複層とする場合には、共流延法、逐次流延法又は塗布法などの積層流延法を用いることが好ましく、特に同時共流延(同時多層共流延ともいう。)法を用いることが、安定製造及び生産コスト低減の観点から特に好ましい。
 共流延法及び逐次流延法によりセルロースエステル層を製造する場合には、まず、各層用のセルロースエステル溶液(ドープともいう)を調製し、この溶液を支持体上に流延する。
 共流延法(重層同時流延)では、まず、流延用支持体(バンド又はドラム)の上に、各層(3層あるいはそれ以上でもよい)各々の流延用ドープを別々のスリット等から同時に押出すことができる流延用ダイを用いてドープを押出して、各層同時に流延する。流延後、適当な時間をおいて支持体から剥ぎ取って、乾燥しフィルムを成形する流延法である。共流延ダイを用いることにより、例えば、流延用支持体の上に表層用ドープから形成された表層2層と、これら表層に挟まれたコア層用ドープからなるコア層の計3層を、支持体上に同時に押出して流延することができる。
The cellulose ester layer may be a single layer or multiple layers, and in the case of multiple layers, it is preferable to use a lamination casting method such as a co-casting method, a sequential casting method or a coating method, It is particularly preferable to use the simultaneous co-casting (also referred to as simultaneous multi-layer co-casting) method from the viewpoint of stable production and production cost reduction.
When producing a cellulose ester layer by the co-casting method and the sequential casting method, first, a cellulose ester solution (also referred to as a dope) for each layer is prepared, and this solution is cast on a support.
In the co-casting method (multi-layer simultaneous casting), first, the casting dope for each layer (which may be three layers or more) is provided on a casting support (band or drum) from separate slits or the like. The dope is extruded using a casting die that can be extruded at the same time, and the layers are cast simultaneously. It is a casting method in which after casting, the film is peeled off from the support after an appropriate time and dried to form a film. By using a co-casting die, for example, a total of three layers: a surface layer two layers formed from a surface layer dope on a casting support, and a core layer composed of a core layer dope sandwiched between these surface layers. It can be extruded and cast simultaneously on a support.
 逐次流延法では、流延用支持体の上に、まず、第1層用の流延用ドープを流延用ダイから押出して、流延し、乾燥あるいは乾燥することなく、その上に第2層用の流延用ドープを流延用ダイから押出して流延する要領で、必要なら第3層以上まで逐次ドープを流延・積層して、適当な時間をおいて支持体から剥ぎ取って乾燥し、セルロースエステル層を形成する。
 また塗布法では、一般的には、コア層を溶液製膜法によりフィルム状に形成し、その表層に、目的のセルロースエステル溶液である塗布液を塗布し、乾燥して、積層構造のセルロースエステル層を形成する。
In the sequential casting method, a casting dope for the first layer is first extruded from a casting die on a casting support, cast, and dried or dried without being dried. The dope for casting for two layers is extruded from a casting die, and if necessary, the dope is sequentially cast and laminated to the third layer or more, and peeled off from the support after an appropriate time. And dried to form a cellulose ester layer.
In the coating method, generally, a core layer is formed into a film by a solution casting method, and a coating solution that is a target cellulose ester solution is applied to the surface layer, followed by drying to form a cellulose ester having a laminated structure. Form a layer.
(延伸)
 上記セルロースエステル層は、上記の流延、乾燥後、延伸処理されていることも好ましい。セルロースエステル層の延伸方向はフィルム搬送方向(MD(Machine Direction)方向)と搬送方向に直交する方向(TD(Transverse Direction)方向)のいずれでもよい。後に続く偏光板加工プロセスを考慮すると、TD方向であることが好ましい。延伸処理は2段階以上に分けて複数回行ってもよい。
(Stretching)
The cellulose ester layer is preferably stretched after casting and drying. The stretching direction of the cellulose ester layer may be either a film transport direction (MD (Machine Direction) direction) or a direction (TD (Transverse Direction) direction) orthogonal to the transport direction. Considering the subsequent polarizing plate processing process, the TD direction is preferable. The stretching process may be performed a plurality of times in two or more stages.
 TD方向に延伸する方法は、例えば、特開昭62-115035号、特開平4-152125号、同4-284211号、同4-298310号、同11-48271号などの各公報に記載されている。TD方向の延伸の場合、フィルムの巾をテンターで保持しながら搬送して、テンターの巾を徐々に広げることによって延伸することができる。またポリマーフィルムの乾燥後に、延伸機を用いて延伸すること(好ましくはロング延伸機を用いる一軸延伸)もできる。
 MD方向の延伸の場合、例えば、フィルムの搬送ローラの速度を調節して、フィルムの剥ぎ取り速度よりも巻き取り速度を速くすることで行うことができる。
Methods for stretching in the TD direction are described in, for example, JP-A-62-115035, JP-A-4-152125, JP-A-2842211, JP-A-298310, and JP-A-11-48271. Yes. In the case of stretching in the TD direction, the film can be stretched by conveying the film while holding the film with a tenter and gradually widening the width of the tenter. Further, after the polymer film is dried, it can be stretched using a stretching machine (preferably uniaxial stretching using a long stretching machine).
In the case of stretching in the MD direction, for example, it can be performed by adjusting the speed of the film transport roller to make the winding speed faster than the film peeling speed.
 本発明の積層体を偏光子の保護膜(偏光板保護フィルムとも呼ぶ)として使用する場合には、偏光板を斜めから見たときの光漏れを抑制するため、偏光子の透過軸とセルロースエステル層の面内の遅相軸を平行に配置する態様が好ましい。連続的に製造されるロールフィルム状の偏光子の透過軸は、一般的に、ロールフィルムの幅方向に平行であるので、上記ロールフィルム状の偏光子とロールフィルム状のセルロースエステル層からなる保護膜を連続的に貼り合せるためには、ロールフィルム状の保護膜の面内遅相軸は、セルロースエステル層の幅方向に平行であることが必要となる。したがって、TD方向により多く延伸することが好ましい。また延伸処理は、製膜工程の途中で行ってもよいし、製膜して巻き取った原反を延伸処理してもよい。 When the laminate of the present invention is used as a protective film for a polarizer (also referred to as a polarizing plate protective film), in order to suppress light leakage when the polarizing plate is viewed obliquely, the transmission axis of the polarizer and the cellulose ester An embodiment in which the slow axes in the plane of the layer are arranged in parallel is preferable. Since the transmission axis of the roll film polarizer produced continuously is generally parallel to the width direction of the roll film, the protection comprising the roll film polarizer and the roll film cellulose ester layer is used. In order to continuously bond the films, the in-plane slow axis of the roll film-like protective film needs to be parallel to the width direction of the cellulose ester layer. Therefore, it is preferable to stretch more in the TD direction. The stretching process may be performed in the middle of the film forming process, or the original fabric that has been formed and wound may be stretched.
 TD方向の延伸は5~100%が好ましく、より好ましくは5~80%、特に好ましくは5~40%とする。なお、未延伸の場合、延伸は0%となる。延伸処理は製膜工程の途中で行ってもよいし、製膜して巻き取った原反を延伸処理してもよい。前者の場合には残留溶剤量を含んだ状態で延伸を行ってもよく、残留溶剤量=(残存揮発分質量/加熱処理後フィルム質量)×100%が0.05~50%の状態で延伸することが好ましい。残留溶剤量が0.05~5%の状態で5~80%延伸することがより好ましい。 The stretching in the TD direction is preferably 5 to 100%, more preferably 5 to 80%, and particularly preferably 5 to 40%. In the case of unstretched, the stretching is 0%. The stretching process may be performed in the middle of the film forming process, or the original fabric that has been formed and wound may be stretched. In the former case, stretching may be performed in a state including the residual solvent amount, and the residual solvent amount = (residual volatile matter mass / film mass after heat treatment) × 100% is stretched in a state of 0.05 to 50%. It is preferable to do. It is more preferable to stretch 5 to 80% in a state where the residual solvent amount is 0.05 to 5%.
<添加剤>
 上記セルロースエステル層は、本発明の効果を損なわない範囲で、添加剤を含んでいてもよい。添加剤としては、公知の可塑剤、有機酸、色素、ポリマー、レターデーション調整剤、紫外線吸収剤、酸化防止剤又はマット剤などが例示される。これらについては、特開2012-155287号公報の段落番号[0062]~[0097]の記載を参酌でき、これらの内容は本願明細書に組み込まれる。また、添加剤としては、剥離促進剤、有機酸、多価カルボン酸誘導体を挙げることもできる。これらについては、国際公報第2015/005398号公報の段落[0212]~[0219]の記載を参酌でき、これらの内容は本願明細書に組み込まれる。更に、添加剤として、後述する、ラジカル捕捉剤、劣化防止剤又はバルビツール酸化合物なども挙げることができる。
 添加剤の含有量(上記セルロースエステル層が二種以上の添加剤を含有する場合には、それらの合計含有量)は、セルロースエステル100質量部に対して50質量部以下であることが好ましく、30質量部以下であることがより好ましく、5~30質量部であることが更に好ましい。
<Additives>
The said cellulose-ester layer may contain the additive in the range which does not impair the effect of this invention. Examples of the additive include known plasticizers, organic acids, dyes, polymers, retardation adjusting agents, ultraviolet absorbers, antioxidants, and matting agents. Regarding these, the description of paragraph numbers [0062] to [0097] of JP2012-155287A can be referred to, and the contents thereof are incorporated in the present specification. Examples of the additive include a peeling accelerator, an organic acid, and a polyvalent carboxylic acid derivative. Regarding these, the description in paragraphs [0212] to [0219] of International Publication No. 2015/005398 can be referred to, and the contents thereof are incorporated in the present specification. Furthermore, examples of the additive include a radical scavenger, a deterioration inhibitor, and a barbituric acid compound, which will be described later.
The content of the additive (when the cellulose ester layer contains two or more additives), the total content thereof is preferably 50 parts by mass or less with respect to 100 parts by mass of the cellulose ester, The amount is more preferably 30 parts by mass or less, and further preferably 5 to 30 parts by mass.
(可塑剤)
 好ましい添加剤の1つとしては、可塑剤を挙げることができる。可塑剤をセルロースエステル層に添加することにより、セルロースエステル層の疎水性を高めることができる。この点は、セルロースエステル層の含水率を低下させる観点から好ましい。このような可塑剤を使用することは、セルロースエステル層を有する積層体を、偏光板保護フィルムとして用いた場合、湿度に起因する画像表示装置の表示ムラを発生しにくくすることができるため、好ましい。
(Plasticizer)
One preferred additive is a plasticizer. By adding a plasticizer to the cellulose ester layer, the hydrophobicity of the cellulose ester layer can be increased. This point is preferable from the viewpoint of reducing the water content of the cellulose ester layer. It is preferable to use such a plasticizer because when the laminate having a cellulose ester layer is used as a polarizing plate protective film, display unevenness of the image display device due to humidity can be hardly generated. .
 可塑剤としては、特に限定されないが、多価アルコールの多価エステル化合物(以下、「多価アルコールエステル可塑剤」とも記載する。)、重縮合エステル化合物(以下、「重縮合エステル可塑剤」とも記載する。)、又は、炭水化物化合物(以下、「炭水化物誘導体可塑剤」とも記載する。)を挙げることができる。多価アルコールエステル可塑剤については、国際公開第2015/005398号公報の段落[0081]~[0098]、重縮合エステル可塑剤については、同公報の段落[0099]~[0122]、炭水化物誘導体可塑剤については、同公報の段落[0123]~[0140]を参照でき、これらの内容は本願明細書に組み込まれる。
 可塑剤の分子量は、添加することによる上記効果を良好に得る観点からは、3000以下であることが好ましく、1500以下であることがより好ましく、1000以下であることが更に好ましい。また、可塑剤の分子量は、低揮散性の観点からは、例えば300以上であり、好ましくは350以上である。なお、多量体の可塑剤については、分子量とは、数平均分子量をいうものとする。
Although it does not specifically limit as a plasticizer, The polyvalent ester compound (henceforth "polyhydric alcohol ester plasticizer") of a polyhydric alcohol, and a polycondensation ester compound (henceforth "polycondensation ester plasticizer") Or a carbohydrate compound (hereinafter also referred to as “carbohydrate derivative plasticizer”). Regarding polyhydric alcohol ester plasticizers, paragraphs [0081] to [0098] of International Publication No. 2015/005398, and for polycondensed ester plasticizers, paragraphs [0099] to [0122] of the same publication, Regarding the agent, paragraphs [0123] to [0140] of the same publication can be referred to, and the contents thereof are incorporated in the present specification.
The molecular weight of the plasticizer is preferably 3000 or less, more preferably 1500 or less, and still more preferably 1000 or less, from the viewpoint of obtaining the above-described effect by adding it satisfactorily. The molecular weight of the plasticizer is, for example, 300 or more, preferably 350 or more, from the viewpoint of low volatility. In the case of multimeric plasticizers, the molecular weight is the number average molecular weight.
 可塑剤の含有量は、可塑剤の添加効果と可塑剤の析出抑制とを両立する観点から、可塑剤を添加する層の樹脂(セルロースエステル)100質量部に対して、1~20質量部とすることが好ましく、2~15質量部とすることがより好ましく、5~15質量部とすることが更に好ましい。
 可塑剤は、2種類以上を併用してもよい。2種類以上を併用する場合も、含有量の具体例及び好ましい範囲は上記と同一である。
The content of the plasticizer is 1 to 20 parts by mass with respect to 100 parts by mass of the resin (cellulose ester) of the layer to which the plasticizer is added from the viewpoint of achieving both the effect of adding the plasticizer and suppressing the precipitation of the plasticizer. It is preferably 2 to 15 parts by mass, more preferably 5 to 15 parts by mass.
Two or more plasticizers may be used in combination. Also when using 2 or more types together, the specific example and preferable range of content are the same as the above.
(酸化防止剤)
 好ましい添加剤の1つとしては、酸化防止剤を挙げることもできる。酸化防止剤については、国際公開第2015/005398号公報の段落[0143]~[0165]の記載を参酌でき、これらの内容は本願明細書に組み込まれる。
(Antioxidant)
One preferable additive may include an antioxidant. Regarding the antioxidant, reference can be made to the description of paragraphs [0143] to [0165] of International Publication No. 2015/005398, the contents of which are incorporated herein.
(ラジカル捕捉剤)
 好ましい添加剤の1つとしては、ラジカル補捉剤を挙げることもできる。ラジカル補捉剤については、国際公開第2015/005398号公報の段落[0166]~[0199]の記載を参酌でき、これらの内容は本願明細書に組み込まれる。
(Radical scavenger)
One preferred additive may include a radical scavenger. Regarding the radical scavenger, the description in paragraphs [0166] to [0199] of International Publication No. 2015/005398 can be referred to, and the contents thereof are incorporated in the present specification.
(劣化防止剤)
 好ましい添加剤の1つとしては、劣化防止剤を挙げることもできる。劣化防止剤については、国際公開第2015/005398号公報の段落[0205]~[0206]の記載を参酌でき、これらの内容は本願明細書に組み込まれる。
(Deterioration inhibitor)
As one of preferable additives, a deterioration preventing agent can be mentioned. As for the deterioration preventing agent, the description in paragraphs [0205] to [0206] of International Publication No. 2015/005398 can be referred to, and the contents thereof are incorporated in the present specification.
(バルビツール酸化合物)
 上記セルロースエステル層は、バルビツール酸構造を有する化合物(バルビツール酸化合物)を含有することもできる。バルビツール酸化合物は、この化合物を添加することにより、セルロースエステル層に各種機能を発現させることができる化合物である。例えば、バルビツール酸化合物は、セルロースエステル層の硬度向上に有効である。また、バルビツール酸化合物は、この化合物を含むセルロースエステル層を備えた偏光板の、光、熱又は湿度等に対する耐久性の改良にも有効である。上記セルロースエステル層に使用可能なバルビツール酸化合物については、例えば、国際公開第2015/005398号公報の段落[0029]~[0060]の記載を参酌でき、これらの内容は本願明細書に組み込まれる。
(Barbituric acid compound)
The cellulose ester layer may also contain a compound having a barbituric acid structure (barbituric acid compound). A barbituric acid compound is a compound which can express various functions in a cellulose-ester layer by adding this compound. For example, the barbituric acid compound is effective for improving the hardness of the cellulose ester layer. The barbituric acid compound is also effective in improving the durability of a polarizing plate having a cellulose ester layer containing this compound against light, heat or humidity. As for the barbituric acid compound that can be used in the cellulose ester layer, for example, the description in paragraphs [0029] to [0060] of International Publication No. 2015/005398 can be referred to, and the contents thereof are incorporated in the present specification. .
<鹸化処理>
 上記セルロースエステル層は、アルカリ鹸化処理することにより、ポリビニルアルコールのような偏光子の材料との密着性を高めることができる。
 鹸化の方法については、特開2007-86748号公報の段落番号[0211]及び段落番号[0212]に記載されている方法を用いることができる。
<Saponification treatment>
The cellulose ester layer can be improved in adhesion to a polarizer material such as polyvinyl alcohol by alkali saponification treatment.
Regarding the saponification method, the methods described in paragraph No. [0211] and paragraph No. [0212] of JP-A No. 2007-86748 can be used.
 例えば、セルロースエステル層に対するアルカリ鹸化処理は、フィルム表面をアルカリ溶液に浸漬した後、酸性溶液で中和し、水洗して乾燥するサイクルで行われることが好ましい。アルカリ溶液としては、水酸化カリウム溶液、水酸化ナトリウム溶液が挙げられる。水酸化物イオンの濃度は0.1~5.0モル/Lの範囲が好ましく、0.5~4.0モル/Lの範囲が更に好ましい。アルカリ溶液温度は、室温~90℃の範囲が好ましく、40~70℃の範囲が更に好ましい。 For example, the alkali saponification treatment for the cellulose ester layer is preferably performed in a cycle in which the film surface is immersed in an alkali solution, neutralized with an acidic solution, washed with water and dried. Examples of the alkaline solution include potassium hydroxide solution and sodium hydroxide solution. The concentration of hydroxide ions is preferably in the range of 0.1 to 5.0 mol / L, and more preferably in the range of 0.5 to 4.0 mol / L. The alkaline solution temperature is preferably in the range of room temperature to 90 ° C, and more preferably in the range of 40 to 70 ° C.
 アルカリ鹸化処理の代わりに、特開平6-94915号公報又は特開平6-118232号公報に記載されているような易接着加工を施してもよい。 Instead of alkali saponification treatment, easy adhesion processing as described in JP-A-6-94915 or JP-A-6-118232 may be performed.
 上記セルロースエステル層の膜厚は、1~80μmが好ましく、1~60μmがより好ましく、3~60μmが更に好ましい。
 セルロースエステル層が3層以上の積層構造を有する場合、コア層の膜厚は3~70μmが好ましく、5~60μmがより好ましい。3層構造である場合のスキン層A及びスキン層Bの膜厚は、ともに、0.5~20μmが好ましく、0.5~10μmがより好ましく、0.5~3μmが更に好ましい。なお、コア層は、積層構造において内部に位置する層、3層構造である場合は中間に位置する層をいい、スキン層A、Bは積層構造ないし3層構造において、外側に位置する層をいう。
The film thickness of the cellulose ester layer is preferably 1 to 80 μm, more preferably 1 to 60 μm, still more preferably 3 to 60 μm.
When the cellulose ester layer has a laminated structure of three or more layers, the thickness of the core layer is preferably 3 to 70 μm, more preferably 5 to 60 μm. In the case of a three-layer structure, the thickness of skin layer A and skin layer B is preferably 0.5 to 20 μm, more preferably 0.5 to 10 μm, and still more preferably 0.5 to 3 μm. The core layer is a layer located inside in the laminated structure, and in the case of a three-layer structure, the core layer is an intermediate layer, and the skin layers A and B are layers located outside in the laminated structure or three-layer structure. Say.
[積層体の製造方法]
 本発明の積層体の製造方法について説明する。
 本発明の積層体は、特に限定されるものではなく、公知の方法を採用することができる。溶融製膜法又は溶液製膜法の他、上述した方法でセルロースエステル層を作製した後、各種公知の塗布方法により密着性ポリマー層を形成し、積層体を製造することもできる。このような塗布方法としては特に制限はないが、マイクログラビア塗工方式を好ましく用いることができる。なお、いずれの塗布方法を用いた場合であっても、密着性ポリマーを適宜の溶媒に適宜の濃度で溶解したものであれば、塗布液は特に限定されず、塗工条件及び成膜条件も特に限定されない。
 なお、量産適性の観点から、溶融製膜法又は溶液製膜法により製造することができる。溶融製膜法としては、T-ダイ法などの製造法を用いることが好ましく、特に同時共押し出し法を用いることが好ましい。溶液製膜法としては、上記共流延法、逐次流延法又は塗布法などの積層流延法を用いることが好ましく、特に同時共流延(同時多層共流延ともいう。)法を用いることが、安定製造及び生産コスト低減の観点から特に好ましい。
[Manufacturing method of laminate]
The manufacturing method of the laminated body of this invention is demonstrated.
The laminated body of this invention is not specifically limited, A well-known method is employable. In addition to the melt film forming method or the solution film forming method, after the cellulose ester layer is produced by the above-described method, an adhesive polymer layer can be formed by various known coating methods to produce a laminate. Although there is no restriction | limiting in particular as such a coating method, A micro gravure coating system can be used preferably. Note that, regardless of which application method is used, the coating solution is not particularly limited as long as the adhesive polymer is dissolved in an appropriate solvent at an appropriate concentration. There is no particular limitation.
In addition, from the viewpoint of suitability for mass production, it can be produced by a melt casting method or a solution casting method. As the melt film forming method, it is preferable to use a manufacturing method such as a T-die method, and it is particularly preferable to use a simultaneous coextrusion method. As the solution casting method, a lamination casting method such as the above co-casting method, sequential casting method or coating method is preferably used, and a simultaneous co-casting method (also referred to as simultaneous multi-layer co-casting) method is particularly used. Is particularly preferable from the viewpoints of stable production and production cost reduction.
<積層体の物性ないし特性>
 本発明の積層体は、下記の物性ないし特性を有することが好ましい。
(接触角)
 本発明の積層体は、下記方法により測定される、密着性ポリマー層表面の接触角が64°以上であることが好ましく、65°以上であることがより好ましく、70°以上であることが特に好ましい。このような接触角を示す積層体は、密着性ポリマー層の表面が高い疎水性を示し、密着性ポリマー層表面に対する水の付着を防止することができる。そのため、密着性ポリマー層中の透湿度が小さくなり、本発明の積層体を偏光子と重ね合わせることにより、偏光子の劣化を効果的に抑えることができる。
 密着性ポリマー層表面の接触角は、実施例欄に記載の方法により、測定できる。
<Physical properties or characteristics of the laminate>
The laminate of the present invention preferably has the following physical properties or characteristics.
(Contact angle)
In the laminate of the present invention, the contact angle of the surface of the adhesive polymer layer, measured by the following method, is preferably 64 ° or more, more preferably 65 ° or more, and particularly preferably 70 ° or more. preferable. In the laminate exhibiting such a contact angle, the surface of the adhesive polymer layer exhibits high hydrophobicity, and water adhesion to the surface of the adhesive polymer layer can be prevented. Therefore, the moisture permeability in the adhesive polymer layer is reduced, and deterioration of the polarizer can be effectively suppressed by superimposing the laminate of the present invention on the polarizer.
The contact angle on the surface of the adhesive polymer layer can be measured by the method described in the Example column.
(ヘイズ)
 本発明の積層体は、下記方法により測定されるヘイズが1%以下であることが好ましく、0.7%以下であることがより好ましく、0.5%以下であることが特に好ましい。このようなヘイズを示す積層体は、透明性に優れ、液晶表示装置のフィルム部材として好適である。ヘイズの下限値は、例えば0.001%以上であるが、特に限定されない。
 ヘイズは、積層体40mm×80mmを用いて、25℃、相対湿度60%の環境下で、ヘイズメーター(HGM-2DP、スガ試験機)を用いて、JIS K7136(2000)に従って測定する。
(Haze)
In the laminate of the present invention, the haze measured by the following method is preferably 1% or less, more preferably 0.7% or less, and particularly preferably 0.5% or less. A laminate exhibiting such haze is excellent in transparency and suitable as a film member for a liquid crystal display device. Although the lower limit of haze is 0.001% or more, for example, it is not specifically limited.
The haze is measured according to JIS K7136 (2000) using a haze meter (HGM-2DP, Suga Test Instruments) in an environment of 25 ° C. and a relative humidity of 60% using a laminate 40 mm × 80 mm.
(膜厚)
 本発明の積層体の膜厚は、用途に応じ適宜定めることができるが、例えば、5~100μmとすることができる。5μm以上とすることにより、ウェブ状のフィルムを作製する際のハンドリング性が向上し好ましい。また、100μm以下とすることにより、湿度変化に対応しやすく、光学特性を維持しやすくなる。積層体の膜厚は、8~80μmがより好ましく、10~70μmが更に好ましい。
 上述の画像表示装置の薄型化への要求に応えるためには、積層体は薄膜化されていることが好ましく、この場合の積層体の膜厚は、例えば、8~80μmが好ましく、10~70μmがより好ましい。
(Film thickness)
The film thickness of the laminate of the present invention can be appropriately determined according to the application, but can be set to, for example, 5 to 100 μm. When the thickness is 5 μm or more, the handling property when producing a web-like film is improved, which is preferable. Moreover, by setting it as 100 micrometers or less, it becomes easy to respond to a humidity change and it becomes easy to maintain an optical characteristic. The film thickness of the laminate is more preferably 8 to 80 μm, still more preferably 10 to 70 μm.
In order to meet the above-described demand for thinning of the image display device, the laminate is preferably thinned. In this case, the thickness of the laminate is preferably 8 to 80 μm, for example, and 10 to 70 μm. Is more preferable.
(透湿度)
 上記積層体の透湿度は、JIS Z 0208の記載を基に、40℃、相対湿度90%の条件において測定される。
 本発明の積層体の透湿度は、1600g/m/day未満であることが好ましく、1000g/m/day未満であることがより好ましく、500g/m/day未満であることが更に好ましく、250g/m/day未満であることが特に好ましい。積層体の透湿度を上記範囲に制御することで、本発明の積層体を搭載した液晶表示装置の常温、高湿及び高温高湿環境経時後の、液晶セルの反りや、黒表示時の表示ムラを抑制できる。
(Moisture permeability)
The moisture permeability of the laminate is measured under the conditions of 40 ° C. and relative humidity of 90% based on the description of JIS Z 0208.
Moisture permeability of the laminate of the present invention is preferably less than 1600g / m 2 / day, more preferably less than 1000g / m 2 / day, more preferably less than 500g / m 2 / day Particularly preferably, it is less than 250 g / m 2 / day. By controlling the moisture permeability of the laminated body within the above range, the liquid crystal display device mounted with the laminated body of the present invention is warped or displayed during black display after normal temperature, high humidity and high temperature and high humidity environments. Unevenness can be suppressed.
(含水率)
 上記積層体の含水率(平衡含水率)は、偏光板の保護フィルムとして用いる際、ポリビニルアルコールなどの親水性熱可塑性樹脂との接着性を損なわないために、膜厚に関わらず、25℃、相対湿度80%における含水率が、0~4質量%であることが好ましい。含水率は、0~2.5質量%であることがより好ましく、0~1.5質量%であることが更に好ましい。平衡含水率が4質量%以下であれば、レターデーションの湿度変化による依存性が大きくなり過ぎず、液晶表示装置の常温高湿環境及び高温高湿環境下での経時後の黒表示時の表示ムラを抑止の点からも好ましい。
 含水率の測定法は、フィルム試料7mm×35mmを水分測定器、試料乾燥装置「CA-03」及び「VA-05」(ともに三菱化学社製)を用いてカールフィッシャー法で測定することができる。含水率は水分量(g)を試料質量(g)で除して算出できる。
(Moisture content)
The moisture content of the laminate (equilibrium moisture content) is 25 ° C., regardless of the film thickness, so as not to impair the adhesion with a hydrophilic thermoplastic resin such as polyvinyl alcohol when used as a protective film for a polarizing plate. The water content at a relative humidity of 80% is preferably 0 to 4% by mass. The water content is more preferably 0 to 2.5% by mass, and still more preferably 0 to 1.5% by mass. If the equilibrium moisture content is 4% by mass or less, the dependency of retardation on humidity change does not become too large, and the liquid crystal display device displays black at a normal temperature in a high humidity environment and in a high temperature and high humidity environment. It is also preferable from the viewpoint of suppressing unevenness.
The moisture content can be measured by a Karl Fischer method using a film sample 7 mm × 35 mm using a moisture measuring device and sample drying apparatuses “CA-03” and “VA-05” (both manufactured by Mitsubishi Chemical Corporation). . The moisture content can be calculated by dividing the moisture content (g) by the sample mass (g).
[偏光板]
 本発明の偏光板は、偏光子と、この偏光子の保護フィルムとして本発明の積層体を少なくとも1枚含む。一般的には、偏光子の両面を偏光板保護フィルムで挟み両面を保護した偏光板が広く用いられている。
[Polarizer]
The polarizing plate of the present invention includes a polarizer and at least one laminate of the present invention as a protective film for the polarizer. In general, a polarizing plate in which both surfaces of a polarizer are sandwiched between polarizing plate protective films to protect both surfaces is widely used.
 偏光子としては、例えば、ポリビニルアルコールフィルムをヨウ素溶液中に浸漬して延伸したもの等を用いることができる。ポリビニルアルコールフィルムをヨウ素溶液中に浸漬して延伸した偏光子を用いる場合、例えば、接着剤を用いて偏光子の少なくとも一方の面に、上記積層体におけるセルロースエステル層の鹸化処理面を貼り合わせることができる。 As the polarizer, for example, a film obtained by immersing and stretching a polyvinyl alcohol film in an iodine solution can be used. When using a polarizer obtained by immersing and stretching a polyvinyl alcohol film in an iodine solution, for example, the saponification surface of the cellulose ester layer in the laminate is bonded to at least one surface of the polarizer using an adhesive. Can do.
 本発明の積層体は、偏光板保護フィルムとして用いることができる。偏光板保護フィルムとして用いる場合、本発明の偏光板の作製方法は特に限定されず、一般的な方法に準じて作製することができる。例えば、本発明の積層体をアルカリ処理し、ポリビニルアルコールフィルムを沃素溶液中に浸漬延伸して作製した偏光子の両面に完全ケン化ポリビニルアルコール水溶液を用いて貼り合わせる方法がある。アルカリ処理の代わりに特開平6-94915号公報又は特開平6-118232号公報に記載されているような易接着加工を施してもよい。またその他の表面処理を行うこともできる。その他の表面処理としては、例えば、コロナ放電、グロー放電、紫外線(UV)照射、火炎処理等の方法が挙げられる。
 積層体がセルロースエステル層の片面に密着性ポリマー層が設けられた形態である場合、上記積層体の偏光子との貼合面は、密着性ポリマー層の側でもよいし、セルロースエステル層の側でもよい。本発明の効果をより高める観点から、密着性ポリマー層の側を偏光子と直接貼合することが好ましい。
The laminate of the present invention can be used as a polarizing plate protective film. When using as a polarizing plate protective film, the preparation method of the polarizing plate of this invention is not specifically limited, It can produce according to a general method. For example, there is a method in which the laminate of the present invention is treated with an alkali and bonded to both surfaces of a polarizer produced by immersing and stretching a polyvinyl alcohol film in an iodine solution using a completely saponified polyvinyl alcohol aqueous solution. Instead of alkali treatment, easy adhesion processing as described in JP-A-6-94915 or JP-A-6-118232 may be applied. Other surface treatments can also be performed. Examples of other surface treatments include methods such as corona discharge, glow discharge, ultraviolet (UV) irradiation, and flame treatment.
When the laminate is in a form in which an adhesive polymer layer is provided on one side of the cellulose ester layer, the laminate surface of the laminate with the polarizer may be on the adhesive polymer layer side or on the cellulose ester layer side. But you can. From the viewpoint of further enhancing the effect of the present invention, it is preferable to directly bond the adhesive polymer layer side to the polarizer.
 本発明の積層体の偏光子への貼り合せは、偏光子の透過軸と本発明の積層体の遅相軸が平行、直交又は45°となるように貼り合せることが好ましい。遅相軸の測定は、公知の種々の方法で測定することができ、例えば、複屈折計(KOBRADH、王子計測機器(株)製)を用いて行うことができる。
 ここで、平行、直交又は45°については、本発明が属する技術分野において許容される誤差の範囲を含む。例えば、それぞれ平行、直交及び45°に関する厳密な角度から±10°の範囲内であることを意味し、厳密な角度との誤差は、±5°の範囲内が好ましく、±3°の範囲内がより好ましい。
 偏光子の透過軸と本発明の積層体の遅相軸についての平行とは、本発明の積層体の主屈折率nxの方向と偏光子の透過軸の方向とが±10°の角度で交わっていることを意味する。この角度は、±5°の範囲内が好ましく、より好ましくは±3°の範囲内、更に好ましくは±1°の範囲内、最も好ましくは±0.5°の範囲内である。
 また、偏光子の透過軸と本発明の積層体の遅相軸についての直交とは、本発明の積層体の主屈折率nxの方向と偏光子の透過軸の方向とが90°±10°の範囲内の角度で交わっていることを意味する。この角度は、好ましくは90°±5°の範囲内、より好ましくは90°±3°の範囲内、更に好ましくは90°±1°の範囲内、最も好ましくは90°±0.1°の範囲内である。上述のような範囲であれば、偏光板クロスニコル下における偏光度性能の低下が抑制され、光抜けが低減され好ましい。
The lamination of the laminate of the present invention is preferably bonded to the polarizer so that the transmission axis of the polarizer and the slow axis of the laminate of the present invention are parallel, orthogonal or 45 °. The slow axis can be measured by various known methods, for example, using a birefringence meter (KOBRADH, manufactured by Oji Scientific Instruments).
Here, parallel, orthogonal, or 45 ° includes a range of errors allowed in the technical field to which the present invention belongs. For example, it means that it is within the range of ± 10 ° from the strict angle with respect to parallel, orthogonal and 45 °, respectively, and the error from the strict angle is preferably within the range of ± 5 °, and within the range of ± 3 ° Is more preferable.
The parallel of the transmission axis of the polarizer and the slow axis of the laminate of the present invention means that the direction of the main refractive index nx of the laminate of the present invention and the direction of the transmission axis of the polarizer intersect at an angle of ± 10 °. Means that This angle is preferably within a range of ± 5 °, more preferably within a range of ± 3 °, further preferably within a range of ± 1 °, and most preferably within a range of ± 0.5 °.
Further, the orthogonality of the transmission axis of the polarizer and the slow axis of the laminate of the present invention means that the direction of the main refractive index nx of the laminate of the present invention and the direction of the transmission axis of the polarizer are 90 ° ± 10 °. It means that they intersect at an angle within the range of. This angle is preferably in the range of 90 ° ± 5 °, more preferably in the range of 90 ° ± 3 °, even more preferably in the range of 90 ° ± 1 °, most preferably 90 ° ± 0.1 °. Within range. If it is the above ranges, the fall of the polarization degree performance under polarizing plate cross Nicol will be suppressed, and light omission is reduced and it is preferable.
 偏光板保護フィルムと偏光子とを貼り合わせるのに使用される接着剤としては、特に限定されないが、例えば、ポリビニルアルコール又はポリビニルアセタール(例えば、ポリビニルブチラール)の水溶液、ビニル系ポリマー(例えば、ポリブチルアクリレート)のラテックス、紫外線硬化型の接着剤等が挙げられる。特に好ましい接着剤は、完全鹸化ポリビニルアルコールの水溶液又は紫外線硬化型の接着剤である。 Although it does not specifically limit as an adhesive agent used for bonding a polarizing plate protective film and a polarizer, For example, the aqueous solution of polyvinyl alcohol or polyvinyl acetal (for example, polyvinyl butyral), vinyl polymer (for example, polybutyl) Acrylate) latex, UV curable adhesive, and the like. Particularly preferred adhesives are aqueous solutions of fully saponified polyvinyl alcohol or UV curable adhesives.
 偏光板は偏光子及びその両面を保護する保護フィルムで構成されており、保護フィルムの少なくとも1枚を本発明の積層体とすることが好ましい。本発明の積層体以外の保護フィルムとしては、公知のものを特に限定されることなく用いることができる。本発明の偏光板は、偏光板保護フィルムとして本発明の積層体を備えている。したがって、偏光子の劣化が効果的に防止され、高い偏光子耐久性を示す。更にこの偏光板は表面にセパレートフィルムを貼合して構成されることも好ましい。セパレートフィルムは偏光板出荷時、製品検査時等において偏光板を保護する目的で用いられる。セパレートフィルムは液晶板へ貼合する接着層をカバーする目的で用いられ、偏光板を液晶板へ貼合する面側に用いられる。 The polarizing plate is composed of a polarizer and protective films protecting both surfaces thereof, and at least one of the protective films is preferably a laminate of the present invention. As a protective film other than the laminate of the present invention, a known film can be used without any particular limitation. The polarizing plate of the present invention includes the laminate of the present invention as a polarizing plate protective film. Therefore, deterioration of the polarizer is effectively prevented, and high polarizer durability is exhibited. Furthermore, it is also preferable that this polarizing plate is constituted by laminating a separate film on the surface. The separate film is used for the purpose of protecting the polarizing plate at the time of shipping the polarizing plate and at the time of product inspection. The separate film is used for the purpose of covering the adhesive layer to be bonded to the liquid crystal plate, and is used on the surface side of the polarizing plate to be bonded to the liquid crystal plate.
[偏光板の光学特性]
<偏光度>
 本発明の偏光板は、偏光度が95.0%以上であることが好ましく、98%以上であることがより好ましく、最も好ましくは99.5%以上である。
[Optical properties of polarizing plate]
<Degree of polarization>
In the polarizing plate of the present invention, the degree of polarization is preferably 95.0% or more, more preferably 98% or more, and most preferably 99.5% or more.
 本発明において、偏光板の偏光度は、日本分光社製の自動偏光フィルム測定装置VAP-7070を用いて測定することができる。より詳細には、実施例欄に記載の方法により、測定できる。 In the present invention, the degree of polarization of the polarizing plate can be measured using an automatic polarizing film measuring device VAP-7070 manufactured by JASCO Corporation. More specifically, it can be measured by the method described in the Example column.
<偏光度変化量>
 本発明の偏光板は、湿熱経時条件下における耐久性に優れる。このため、後述する偏光板耐久性試験前後での偏光度の変化量は小さい。
 本発明の偏光板は、日本分光社製の自動偏光フィルム測定装置VAP-7070を用いて直交透過率及び平行透過率を測定し、後述する式により偏光度を算出し、特に、85℃、相対湿度85%の環境下で500時間保存した場合の偏光度変化量が3%未満であるのが好ましい。
<Change in polarization degree>
The polarizing plate of the present invention is excellent in durability under wet heat aging conditions. For this reason, the amount of change in the degree of polarization before and after the polarizing plate durability test described later is small.
The polarizing plate of the present invention measures orthogonal transmittance and parallel transmittance using an automatic polarizing film measuring device VAP-7070 manufactured by JASCO Corporation, and calculates the degree of polarization according to the formula described below. The amount of change in polarization degree when stored for 500 hours in an environment of 85% humidity is preferably less than 3%.
<その他の特性>
 本発明の偏光板のその他の好ましい光学特性等については、特開2007-086748号公報の段落番号[0238]~[0255]に記載されており、これらの特性を満たすことが好ましい。
<Other characteristics>
Other preferable optical characteristics of the polarizing plate of the present invention are described in paragraphs [0238] to [0255] of JP-A-2007-086748, and it is preferable to satisfy these characteristics.
[画像表示装置]
 本発明の偏光板は画像表示装置用途として好ましく用いられる。かかる画像表示装置として、液晶表示装置又は有機エレクトロルミネッセンス表示装置が挙げられる。有機エレクトロルミネッセンス表示装置に用いる場合、例えば反射防止用途に用いられる。なかでも本発明の偏光板は液晶表示装置に好適に用いられる。
<液晶表示装置>
 本発明の画像表示装置としての一実施形態である液晶表示装置は、液晶セルと、この液晶セルの少なくとも一方に配置された本発明の偏光板とを含む。
[Image display device]
The polarizing plate of the present invention is preferably used for an image display device. Examples of such an image display device include a liquid crystal display device and an organic electroluminescence display device. When used for an organic electroluminescence display device, for example, it is used for antireflection applications. Especially, the polarizing plate of this invention is used suitably for a liquid crystal display device.
<Liquid crystal display device>
The liquid crystal display device which is one embodiment as the image display device of the present invention includes a liquid crystal cell and the polarizing plate of the present invention disposed in at least one of the liquid crystal cells.
 本発明の画像表示装置としての一実施形態である液晶表示装置は、二枚の電極基板の間に液晶を担持してなる液晶セルと、その両側に配置された二枚の偏光板と、必要に応じて上述の液晶セルと偏光板との間に少なくとも一枚の光学補償フィルムとを、有している。
 上記液晶表示装置の好ましい実施形態について説明する。
A liquid crystal display device as an embodiment of the image display device of the present invention includes a liquid crystal cell in which liquid crystal is supported between two electrode substrates, two polarizing plates disposed on both sides thereof, and Accordingly, at least one optical compensation film is provided between the liquid crystal cell and the polarizing plate.
A preferred embodiment of the liquid crystal display device will be described.
 図2は、上記液晶表示装置の一実施形態を示す概略図である。図2において、液晶表示装置20は、液晶層24とこの両表面側(図2において上下という)に配置された第1(液晶セル上)電極基板23及び第2(液晶セル下)電極基板25とを有する液晶セル、液晶セルの両側に配置された第1(上側)偏光板21及び第2(下側)偏光板26を有する。液晶セルと各偏光板との間にカラーフィルターを配置してもよい。液晶表示装置20を透過型として使用する場合は、冷陰極あるいは熱陰極蛍光管、あるいは発光ダイオード、フィールドエミッション素子、エレクトロルミネッセント素子を光源とするバックライトを背面に配置する。液晶セルの基板は、一般に50μm~2mmの厚さを有する。
 第1偏光板21及び第2偏光板26は、図示しないが、通常は、それぞれ2枚の偏光板保護フィルムで偏光子を挟むように積層した構成を有している。本発明の液晶表示装置20は、少なくとも一方の偏光板が本発明の偏光板であることが好ましい。また、2枚の偏光板のうち、第1偏光板21(視認側偏光板)の偏光板保護フィルムとして本発明の積層体を配置した上で、更に第2偏光板26(バックライト側偏光板)の偏光板保護フィルムとして本発明の積層体を配置することも好ましい。これにより、2枚の偏光板に含まれる偏光子の伸縮を抑止し、パネルの反りを防止するができる。本発明の液晶表示装置20は、装置の外側(液晶セルから遠い側)から、偏光板保護フィルムとしての本発明の積層体、偏光子、一般の透明保護フィルムの順序で積層することも好ましい。
FIG. 2 is a schematic view showing an embodiment of the liquid crystal display device. In FIG. 2, the liquid crystal display device 20 includes a liquid crystal layer 24 and a first (upper liquid crystal cell) electrode substrate 23 and a second (lower liquid crystal cell) electrode substrate 25 arranged on both surface sides (referred to as upper and lower sides in FIG. 2). A first (upper) polarizing plate 21 and a second (lower) polarizing plate 26 disposed on both sides of the liquid crystal cell. A color filter may be disposed between the liquid crystal cell and each polarizing plate. When the liquid crystal display device 20 is used as a transmission type, a cold cathode or hot cathode fluorescent tube, or a backlight having a light emitting diode, field emission element, or electroluminescent element as a light source is disposed on the back surface. The substrate of the liquid crystal cell generally has a thickness of 50 μm to 2 mm.
Although not shown, the first polarizing plate 21 and the second polarizing plate 26 usually have a configuration in which a polarizer is sandwiched between two polarizing plate protective films. In the liquid crystal display device 20 of the present invention, it is preferable that at least one polarizing plate is the polarizing plate of the present invention. Moreover, after arrange | positioning the laminated body of this invention as a polarizing plate protective film of the 1st polarizing plate 21 (viewing side polarizing plate) among two polarizing plates, it is further the 2nd polarizing plate 26 (backlight side polarizing plate). It is also preferable to arrange the laminate of the present invention as a polarizing plate protective film. Thereby, expansion / contraction of the polarizer contained in two polarizing plates can be suppressed, and the curvature of a panel can be prevented. The liquid crystal display device 20 of the present invention is preferably laminated in the order of the laminate of the present invention as a polarizing plate protective film, a polarizer, and a general transparent protective film from the outside of the device (the side far from the liquid crystal cell).
 液晶セルの液晶層24は、通常、二枚の基板の間にスペーサーを挟み込んで形成した空間に液晶が封入されて、形成されている。透明電極層は、導電性物質を含む透明な膜として基板上に形成される。これにより、基板と透明電極層とを備えた電極基板となる。液晶セルには、更にガスバリアー層、ハードコート層又は(透明電極層の接着に用いる)アンダーコート層(下塗り層)を設けてもよい。これらの層は、通常、基板上に設けられる。 The liquid crystal layer 24 of the liquid crystal cell is usually formed by sealing liquid crystal in a space formed by sandwiching a spacer between two substrates. The transparent electrode layer is formed on the substrate as a transparent film containing a conductive substance. Thereby, it becomes an electrode substrate provided with the substrate and the transparent electrode layer. The liquid crystal cell may further be provided with a gas barrier layer, a hard coat layer, or an undercoat layer (undercoat layer) (used for adhesion of the transparent electrode layer). These layers are usually provided on the substrate.
 本発明の積層体は、液晶表示装置の光学補償フィルムとしても好ましく用いることもできる。この場合、液晶表示装置が、二枚の電極基板の間に液晶を担持してなる液晶セル、その両側に配置された二枚の偏光子、及び上述の液晶セルと偏光子との間に少なくとも一枚の本発明の積層体を光学補償フィルムとして配置した構成であることが更に好ましい。 The laminate of the present invention can also be preferably used as an optical compensation film for liquid crystal display devices. In this case, the liquid crystal display device has a liquid crystal cell in which liquid crystal is supported between two electrode substrates, two polarizers disposed on both sides thereof, and at least between the liquid crystal cell and the polarizer described above. It is more preferable that the laminate of the present invention is arranged as an optical compensation film.
(液晶表示装置の種類)
 本発明の積層体は、様々な表示モードの液晶セルに用いることができる。TN(Twisted Nematic)、IPS(In-Plane Switching)、FLC(Ferroelectric Liquid Crystal)、AFLC(Anti-ferroelectric Liquid Crystal)、OCB(Optically Compensatory Bend)、STN(Super Twisted Nematic)、VA(Vertically Aligned)、ECB(Electrically Controlled Birefringence)、又は、HAN(Hybrid Aligned Nematic)のような様々な表示モードが提案されている。また、上記表示モードを配向分割した表示モードも提案されている。本発明のセルロースエステルは、いずれの表示モードの液晶表示装置にも好適に用いることができる。また、透過型、反射型、半透過型のいずれの液晶表示装置にも好適に用いることができる。
(Types of liquid crystal display devices)
The laminate of the present invention can be used for liquid crystal cells in various display modes. TN (Twisted Nematic), IPS (In-Plane Switching), FLC (Ferroelectric Liquid Crystal), AFLC (Anti-Ferroly Liquid Liquid Crystal), OCB (Optically QuantNW). Various display modes such as ECB (Electrically Controlled Birefringence) or HAN (Hybrid Aligned Nematic) have been proposed. In addition, a display mode in which the above display mode is oriented and divided has been proposed. The cellulose ester of the present invention can be suitably used for a liquid crystal display device in any display mode. Further, it can be suitably used for any liquid crystal display device of a transmissive type, a reflective type, and a transflective type.
 本発明を実施例に基づき更に詳細に説明するが、本発明は下記実施例に限定されない。
 下記実施例において、繰り返し単位の数は、繰り返し単位の分子量及びポリマーの数平均分子量から算出した値を記載した。
The present invention will be described in more detail based on examples, but the present invention is not limited to the following examples.
In the following examples, the number of repeating units is a value calculated from the molecular weight of the repeating unit and the number average molecular weight of the polymer.
[合成例]
<合成例1:ポリマーP-1の合成>
 100mL三角フラスコにメタクリル酸メチル(繰り返し単位A-1を導く化合物preA-1。以下、繰り返し単位X-Yを導く化合物をpreX-Yということがある。)25.0g、重合開始剤としてジメチル-2,2’-アゾビスイソブチレートを0.16g、核となる化合物としてテトラキス(3-メルカプトプロピオン酸)ペンタエリトリトールI-4を0.86g、及び、メチルエチルケトンを15.0g量りとり、これらを混合溶解させてモノマー組成物P1を調製した。
 次いで、温度計、攪拌羽根及び還流環を備えた300mLの三つ口フラスコに、メチルエチルケトン10.0gを仕込み、窒素気流下、80℃で攪拌した。このメチルエチルケトン中に、上記モノマー組成物P1を、0.31mL/minの速度で滴下した。滴下にはケミカルポンプを使用した。滴下終了後の反応溶液を、更に80℃で2時間反応させ、次いで、ジメチル-2,2’-アゾビスイソブチレート0.02gを更に添加し、得られた混合物を更に3時間攪拌した。反応終了後、反応溶液を室温(30℃)まで放冷し、メチルエチルケトン70gで希釈し、メタノール1.4L及び水0.4Lの混合溶液にて再沈殿させて白色沈殿を得た。得られた白色沈殿をろ別した後、50℃で終夜乾燥することで、目的のP-1を22.5g得た。
 得られたポリマーP-1を以下に示す。下記構造において、Rで示す繰り返し単位に付した数字(40)はポリマーPAS1中の繰り返し単位の数を表す。
 このポリマーP-1は、図6Aに示す構造、具体的には、繰り返し単位A-1を有するポリマーPAS1が核に対して4本結合したスター構造を有していた。
[Synthesis example]
<Synthesis Example 1: Synthesis of Polymer P-1>
In a 100 mL Erlenmeyer flask, 25.0 g of methyl methacrylate (compound preA-1 leading to repeating unit A-1; hereinafter, a compound leading to repeating unit XY may be referred to as preXY), dimethyl- Weigh out 0.16 g of 2,2′-azobisisobutyrate, 0.86 g of tetrakis (3-mercaptopropionic acid) pentaerythritol I-4 as a core compound, and 15.0 g of methyl ethyl ketone. The monomer composition P1 was prepared by mixing and dissolving.
Next, 10.0 g of methyl ethyl ketone was charged into a 300 mL three-necked flask equipped with a thermometer, a stirring blade and a reflux ring, and stirred at 80 ° C. in a nitrogen stream. The monomer composition P1 was dropped into the methyl ethyl ketone at a rate of 0.31 mL / min. A chemical pump was used for dripping. The reaction solution after completion of the dropwise addition was further reacted at 80 ° C. for 2 hours, 0.02 g of dimethyl-2,2′-azobisisobutyrate was further added, and the resulting mixture was further stirred for 3 hours. After completion of the reaction, the reaction solution was allowed to cool to room temperature (30 ° C.), diluted with 70 g of methyl ethyl ketone, and reprecipitated with a mixed solution of methanol 1.4 L and water 0.4 L to obtain a white precipitate. The resulting white precipitate was filtered off and dried at 50 ° C. overnight to obtain 22.5 g of the target P-1.
The obtained polymer P-1 is shown below. In the following structure, the number (40) attached to the repeating unit represented by R represents the number of repeating units in the polymer PA S1 .
This polymer P-1 had a structure shown in FIG. 6A, specifically, a star structure in which four polymers PA S1 having a repeating unit A-1 were bonded to the nucleus.
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000019
<合成例2:ポリマーP-2の合成>
 Macromolecules,2006,39(22),4361.を参考に、ポリマーP-2を合成した。
 温度計、攪拌羽根及び還流環を備えた500mLの三つ口フラスコを十分に乾燥させ、ベンゼン150mLを加え、-78℃で攪拌してn-BuLi(n-ブチルリチウム、0.16Mのヘキサン溶液)を12.5mL添加した。メタクリル酸メチルpreA-1を10.1g加え、1時間攪拌した。温度計、攪拌羽根及び還流環を備えた500mLの三つ口フラスコで、4-(ジクロロメチルシリル)ジフェニルエチレンを196mgと上記反応液を混合した。ここへ、s-BuLi(s-ブチルリチウム、0.53Mのヘキサン溶液)を1.26mL添加し、更にメタクリル酸メチルpreA-1を4.66g加え、1時間攪拌した後、トリクロロメチルシラン33.2mgを加え攪拌した。反応終了後、少量のメタノールを加え、反応溶液を室温まで放冷し、メチルエチルケトン30gで希釈し、メタノール500mLで再沈殿させて白色沈殿を得た。得られた白色沈殿をろ別した後、50℃で終夜乾燥することで目的のブランチ重合体ポリマーP-2を10.7g得た。
 得られたポリマーP-2を以下に示す。下記構造において、Rで示す繰り返し単位等に付した数字(50及び70)は繰り返し単位の数を表す。
 このポリマーP-2は、図7Aに示す構造、具体的には、下記ポリマーP-2の右上のSi原子が核となってポリマーPAB1が3つ結合し、更に、このポリマーPAB1に対して上記ジフェニルエチレン由来の核を介してポリマーPBB1が2つ結合したブランチ構造を有していた。
<Synthesis Example 2: Synthesis of Polymer P-2>
Polymer P-2 was synthesized with reference to Macromolecules, 2006, 39 (22), 4361.
A 500 mL three-necked flask equipped with a thermometer, a stirring blade and a reflux ring is thoroughly dried, and 150 mL of benzene is added and stirred at −78 ° C. to stir at n-BuLi (n-butyllithium, 0.16 M hexane solution) 12.5 mL was added. 10.1 g of methyl methacrylate preA-1 was added and stirred for 1 hour. In a 500 mL three-necked flask equipped with a thermometer, a stirring blade and a reflux ring, 196 mg of 4- (dichloromethylsilyl) diphenylethylene and the above reaction mixture were mixed. To this, 1.26 mL of s-BuLi (s-butyllithium, 0.53M hexane solution) was added, and 4.66 g of methyl methacrylate preA-1 was further added. After stirring for 1 hour, trichloromethylsilane 33. 2 mg was added and stirred. After completion of the reaction, a small amount of methanol was added, the reaction solution was allowed to cool to room temperature, diluted with 30 g of methyl ethyl ketone, and reprecipitated with 500 mL of methanol to obtain a white precipitate. The obtained white precipitate was filtered off and dried at 50 ° C. overnight to obtain 10.7 g of the target branch polymer polymer P-2.
The obtained polymer P-2 is shown below. In the following structure, the numbers (50 and 70) attached to the repeating units represented by R represent the number of repeating units.
The polymer P-2 has the structure shown in FIG. 7A, specifically, three polymers PA B1 are bonded with the Si atom at the upper right of the following polymer P-2 as a nucleus, and further to the polymer PA B1. Thus, the polymer had a branch structure in which two polymers PB B1 were bonded through the diphenylethylene-derived nucleus.
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000020
<合成例3:ポリマーP-3の合成>
 10mLバイアル瓶に、臭化銅(I)を0.22mg、N,N,N’,N’’,N’’-ペンタメチルジエチレントリアミンを0.17mg、及び、トルエンを1mL加え、均一な触媒溶液を得た。温度計、攪拌羽根及び還流環を備えた200mLの三つ口フラスコに、メタクリル酸メチルpreA-1を20.0g、ジメチル-2,2’-アゾビスイソブチレートを0.17g、及び、2-ブロモイソ酪酸エチルを6.7mg量りとり、触媒溶液を加えて、窒素気流下、70℃で20時間攪拌した。
 次いで、得られた上記反応溶液に、3.73gのメタクリル酸シクロヘキシルpreA-2とトルエン2mLの混合溶液を窒素置換した後に添加し、70℃で攪拌した。反応終了後、反応溶液を室温まで放冷し、メチルエチルケトン70gで希釈し、メタノール1.2L及び水0.5Lの混合溶液にて再沈殿させて白色沈殿を得た。得られた白色沈殿をろ別した後、50℃で終夜乾燥することで目的のP-3を21.3g得た。
 得られたポリマーP-3を以下に示す。このポリマーP-3は、2種の繰り返し単位〔a〕からなる図3Aに示す構造、具体的には、繰り返し単位A-2からなる部分構造と、繰り返し単位A-1からなる部分構造とがポリマー鎖内において単一の直線方向に結合したブロック構造(A-B型)であった。
<Synthesis Example 3: Synthesis of Polymer P-3>
To a 10 mL vial, add 0.22 mg of copper (I) bromide, 0.17 mg of N, N, N ′, N ″, N ″ -pentamethyldiethylenetriamine, and 1 mL of toluene to obtain a homogeneous catalyst solution Got. In a 200 mL three-necked flask equipped with a thermometer, a stirring blade and a reflux ring, 20.0 g of methyl methacrylate preA-1, 0.17 g of dimethyl-2,2′-azobisisobutyrate, and 2 -6.7 mg of ethyl bromoisobutyrate was weighed, the catalyst solution was added, and the mixture was stirred at 70 ° C for 20 hours under a nitrogen stream.
Next, a mixed solution of 3.73 g of cyclohexyl methacrylate preA-2 and toluene 2 mL was added to the reaction solution obtained above after purging with nitrogen, and the mixture was stirred at 70 ° C. After completion of the reaction, the reaction solution was allowed to cool to room temperature, diluted with 70 g of methyl ethyl ketone, and reprecipitated with a mixed solution of 1.2 L of methanol and 0.5 L of water to obtain a white precipitate. The resulting white precipitate was filtered off and dried at 50 ° C. overnight to obtain 21.3 g of the target P-3.
The obtained polymer P-3 is shown below. This polymer P-3 has a structure shown in FIG. 3A composed of two types of repeating units [a], specifically, a partial structure composed of the repeating unit A-2 and a partial structure composed of the repeating unit A-1. It was a block structure (AB type) bonded in a single linear direction within the polymer chain.
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000021
<合成例4:ポリマーP-4の合成>
 100mL三角フラスコに、メタクリル酸メチルpreA-1を22.53g、メタクリル酸アセトアセトキシエチルpreB-1を5.36g、重合開始剤としてジメチル-2,2’-アゾビスイソブチレートを0.069g、核となる化合物としてテトラキス(3-メルカプトプロピオン酸)ペンタエリトリトールを0.367g、及び、メチルエチルケトンを16.73g量りとり、これらを混合溶解させてモノマー組成物P4を調製した。
 次いで、温度計、攪拌羽根及び還流環を備えた300mLの三つ口フラスコに、メチルエチルケトン11.15gを仕込み、窒素気流下、80℃で攪拌した。このメチルエチルケトン中に、上記モノマー組成物P4を、0.31mL/minの速度で滴下した。滴下にはケミカルポンプを使用した。滴下終了後の反応溶液を、更に80℃で2時間反応させ、次いで、ジメチル-2,2’-アゾビスイソブチレート0.02gを更に添加し、得られた混合物を更に3時間攪拌した。反応終了後、反応溶液を室温(30℃)まで放冷し、メチルエチルケトン70gで希釈し、メタノール1.4L及び水0.4Lの混合溶液にて再沈殿させて白色沈殿を得た。得られた白色沈殿をろ別した後、50℃で終夜乾燥することで、目的のP-4を25.5g得た。
 得られたポリマーP-4を以下に示す。このポリマーP-4は、図6Bに示す構造、具体的には、繰り返し単位A-1と繰り返し単位B-1とをランダム構造で有するポリマーPAS1が核に対して4本結合したスター構造を有していた。
<Synthesis Example 4: Synthesis of Polymer P-4>
In a 100 mL Erlenmeyer flask, 22.53 g of methyl methacrylate preA-1, 5.36 g of acetoacetoxyethyl methacrylate preB-1, 0.069 g of dimethyl-2,2′-azobisisobutyrate as a polymerization initiator, As a core compound, 0.367 g of tetrakis (3-mercaptopropionic acid) pentaerythritol and 16.73 g of methyl ethyl ketone were weighed and mixed to prepare a monomer composition P4.
Next, 11.15 g of methyl ethyl ketone was charged into a 300 mL three-necked flask equipped with a thermometer, a stirring blade and a reflux ring, and stirred at 80 ° C. in a nitrogen stream. The monomer composition P4 was dropped into the methyl ethyl ketone at a rate of 0.31 mL / min. A chemical pump was used for dripping. The reaction solution after completion of the dropwise addition was further reacted at 80 ° C. for 2 hours, 0.02 g of dimethyl-2,2′-azobisisobutyrate was further added, and the resulting mixture was further stirred for 3 hours. After completion of the reaction, the reaction solution was allowed to cool to room temperature (30 ° C.), diluted with 70 g of methyl ethyl ketone, and reprecipitated with a mixed solution of methanol 1.4 L and water 0.4 L to obtain a white precipitate. The obtained white precipitate was filtered off and dried at 50 ° C. overnight to obtain 25.5 g of the target P-4.
The obtained polymer P-4 is shown below. This polymer P-4 has the structure shown in FIG. 6B, specifically, a star structure in which four polymers PA S1 having a repeating unit A-1 and a repeating unit B-1 in a random structure are bonded to the nucleus. Had.
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000022
<合成例5:ポリマーP-5の合成>
 100mL三角フラスコに、メタクリル酸メチルpreA-1のマクロモノマーAA-6(東亞合成社製、数平均分子量6,000、平均重合度約60)を20.5g、ジメチル-2,2’-アゾビスイソブチレートを0.41g、及び、メチルエチルケトンを23.0g量りとり、これらを混合溶解させてモノマー組成物P5-1を調製した。
 これとは別に、メチルメタクリレートpreA-1を8.7g、及び、メチルエチルケトンを7.7g量りとり、これらを混合溶解させてモノマー組成物P5-2を調製した。
 次いで、温度計、攪拌羽根及び還流環を備えた300mLの三つ口フラスコに、メチルエチルケトン13.1gを仕込み、窒素気流下、80℃で攪拌した。このメチルエチルケトン中に、上記モノマー組成物P5-1を0.32mL/minの速度で、また上記モノマー組成物P5-2を0.13mL/minの速度で、個別に同時滴下した。滴下にはケミカルポンプを使用した。滴下終了後の反応溶液を、更に80℃で3時間反応させ、反応終了後、反応溶液を室温まで放冷し、メチルエチルケトン70gで希釈し、メタノール1.2L及び水0.5Lの混合溶液にて再沈殿させて白色沈殿を得た。得られた白色沈殿をろ別した後、50℃で終夜乾燥することで目的のP-5を25.8g得た。
 得られたポリマーP-5を以下に示す。下記構造において、幹ポリマー中の各繰り返し単位に付した数字はモル比を表し、枝ポリマー(グラフト鎖)中の繰り返し単位に付した数字は繰り返し単位の数(重合度)を表す。この点は、後述するポリマーP-6~P-9についても同様である。
 このポリマーP-5は、図4Aに示す構造、具体的には、繰り返し単位A-1を含む幹ポリマーPAG1に対し、繰り返し単位A-1を含む枝ポリマーPBG1が結合したグラフト構造を有していた。
<Synthesis Example 5: Synthesis of Polymer P-5>
In a 100 mL Erlenmeyer flask, 20.5 g of methyl methacrylate preA-1 macromonomer AA-6 (manufactured by Toagosei Co., Ltd., number average molecular weight 6,000, average degree of polymerization about 60), dimethyl-2,2′-azobis A monomer composition P5-1 was prepared by measuring 0.41 g of isobutyrate and 23.0 g of methyl ethyl ketone and mixing and dissolving them.
Separately from this, 8.7 g of methyl methacrylate preA-1 and 7.7 g of methyl ethyl ketone were weighed and mixed to prepare a monomer composition P5-2.
Next, 13.1 g of methyl ethyl ketone was charged into a 300 mL three-necked flask equipped with a thermometer, a stirring blade and a reflux ring, and stirred at 80 ° C. in a nitrogen stream. Into this methyl ethyl ketone, the monomer composition P5-1 was dropped simultaneously at a rate of 0.32 mL / min and the monomer composition P5-2 was individually dropped at a rate of 0.13 mL / min. A chemical pump was used for dripping. The reaction solution after completion of the addition was further reacted at 80 ° C. for 3 hours. After completion of the reaction, the reaction solution was allowed to cool to room temperature, diluted with 70 g of methyl ethyl ketone, and mixed with 1.2 L of methanol and 0.5 L of water. Reprecipitation gave a white precipitate. The obtained white precipitate was filtered off and dried at 50 ° C. overnight to obtain 25.8 g of the target P-5.
The obtained polymer P-5 is shown below. In the following structure, the number attached to each repeating unit in the trunk polymer represents a molar ratio, and the number attached to the repeating unit in the branch polymer (graft chain) represents the number of repeating units (degree of polymerization). This also applies to the polymers P-6 to P-9 described later.
This polymer P-5 has a structure shown in FIG. 4A, specifically, a graft structure in which a branch polymer PB G1 containing a repeating unit A-1 is bonded to a trunk polymer PA G1 containing a repeating unit A-1. Was.
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000023
<合成例6:ポリマーP-6の合成>
 100mL三角フラスコに、メタクリル酸メチルpreA-1のマクロモノマーAA-6を19.5g、ジメチル-2,2’-アゾビスイソブチレートを0.12g、及び、メチルエチルケトンを20.0g量りとり、これらを混合溶解させてモノマー組成物P6-1を調製した。
 これとは別に、アクリル酸エステル化合物preB-6を8.7g、及び、メチルエチルケトンを7.7g量りとり、これらを混合溶解させてモノマー組成物P6-2を調製した。
 次いで、温度計、攪拌羽根及び還流環を備えた300mLの三つ口フラスコに、メチルエチルケトン11.2gを仕込み、窒素気流下、80℃で攪拌した。このメチルエチルケトン中に、上記モノマー組成物P6-1を0.32mL/minの速度で、また上記モノマー組成物P6-2を0.13mL/minの速度で、個別に同時滴下した。滴下にはケミカルポンプを使用した。滴下終了後の反応溶液を、更に80℃で3時間反応させ、反応終了後、反応溶液を室温まで放冷し、メチルエチルケトン70gで希釈し、メタノール1.2L及び水0.5Lの混合溶液にて再沈殿させて白色沈殿を得た。得られた白色沈殿をろ別した後、50℃で終夜乾燥することで目的のP-6を25.8g得た。
 得られたポリマーP-6を以下に示す。このポリマーP-6は、図4Cに示す構造、具体的には、繰り返し単位B-6を含む幹ポリマーPAG1に対し、繰り返し単位A-1からなる枝ポリマーPBG1が結合したグラフト構造を有していた。
<Synthesis Example 6: Synthesis of Polymer P-6>
In a 100 mL Erlenmeyer flask, weigh 19.5 g of methyl monomer AA-6 of methyl methacrylate preA-1, 0.12 g of dimethyl-2,2′-azobisisobutyrate, and 20.0 g of methyl ethyl ketone. Were mixed and dissolved to prepare a monomer composition P6-1.
Separately from this, 8.7 g of acrylic ester compound preB-6 and 7.7 g of methyl ethyl ketone were weighed and mixed to prepare monomer composition P6-2.
Next, 11.2 g of methyl ethyl ketone was charged into a 300 mL three-necked flask equipped with a thermometer, a stirring blade and a reflux ring, and stirred at 80 ° C. in a nitrogen stream. Into this methyl ethyl ketone, the monomer composition P6-1 was dropped simultaneously at a rate of 0.32 mL / min, and the monomer composition P6-2 was simultaneously dropped at a rate of 0.13 mL / min. A chemical pump was used for dripping. The reaction solution after completion of the addition was further reacted at 80 ° C. for 3 hours. After completion of the reaction, the reaction solution was allowed to cool to room temperature, diluted with 70 g of methyl ethyl ketone, and mixed with 1.2 L of methanol and 0.5 L of water. Reprecipitation gave a white precipitate. The resulting white precipitate was filtered off and dried at 50 ° C. overnight to obtain 25.8 g of the intended P-6.
The obtained polymer P-6 is shown below. This polymer P-6 has the structure shown in FIG. 4C, specifically, a graft structure in which the branch polymer PB G1 composed of the repeating unit A-1 is bonded to the trunk polymer PA G1 including the repeating unit B-6. Was.
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000024
<合成例7:ポリマーP-7の合成>
 100mL三角フラスコに、スチレンpreA-10のマクロモノマーAS-6(東亞合成社製、数平均分子量6,000、平均重合度約60)を18.8g、ジメチル-2,2’-アゾビスイソブチレートを0.17g、及び、メチルエチルケトンを20.0g量りとり、これらを混合溶解させてモノマー組成物P7-1を調製した。
 これとは別に、メタクリル酸アセトアセトキシエチルpreB-1を4.69g、及び、メチルエチルケトンを4.6g量りとり、これらを混合溶解させてモノマー組成物P7-2を調製した。
 次いで、温度計、攪拌羽根及び還流環を備えた200mLの三つ口フラスコに、メチルエチルケトン10.6gを仕込み、窒素気流下、80℃で攪拌した。このメチルエチルケトン中に、上記モノマー組成物P7-1を0.32mL/minの速度で、また上記モノマー組成物P7-2を0.07mL/minの速度で、個別に同時滴下した。滴下にはケミカルポンプを使用した。滴下終了後の反応溶液を、更に80℃で3時間反応させ、反応終了後、反応溶液を室温まで放冷し、メチルエチルケトン70gで希釈し、メタノール1.2L及び水0.5Lの混合溶液にて再沈殿させて白色沈殿を得た。得られた白色沈殿をろ別した後、50℃で終夜乾燥することで目的のP-7を20.8g得た。
 得られたポリマーP-7を以下に示す。このポリマーP-7は、図4Cに示す構造、具体的には、繰り返し単位B-1を含む幹ポリマーPAG1に対し、繰り返し単位A-10からなる枝ポリマーPBG1が結合したグラフト構造を有していた。
<Synthesis Example 7: Synthesis of Polymer P-7>
In a 100 mL Erlenmeyer flask, 18.8 g of styrene preA-10 macromonomer AS-6 (manufactured by Toagosei Co., Ltd., number average molecular weight 6,000, average degree of polymerization about 60), dimethyl-2,2′-azobisisobutyrate A monomer composition P7-1 was prepared by measuring 0.17 g of the rate and 20.0 g of methyl ethyl ketone, and mixing and dissolving them.
Separately, 4.69 g of acetoacetoxyethyl methacrylate preB-1 and 4.6 g of methyl ethyl ketone were weighed and mixed to prepare a monomer composition P7-2.
Next, 10.6 g of methyl ethyl ketone was charged into a 200 mL three-necked flask equipped with a thermometer, a stirring blade and a reflux ring, and stirred at 80 ° C. in a nitrogen stream. Into this methyl ethyl ketone, the monomer composition P7-1 was dropped simultaneously at a rate of 0.32 mL / min, and the monomer composition P7-2 was simultaneously dropped at a rate of 0.07 mL / min. A chemical pump was used for dripping. The reaction solution after completion of the addition was further reacted at 80 ° C. for 3 hours. After completion of the reaction, the reaction solution was allowed to cool to room temperature, diluted with 70 g of methyl ethyl ketone, and mixed with 1.2 L of methanol and 0.5 L of water. Reprecipitation gave a white precipitate. The resulting white precipitate was filtered off and dried at 50 ° C. overnight to obtain 20.8 g of the intended P-7.
The obtained polymer P-7 is shown below. This polymer P-7 has the structure shown in FIG. 4C, specifically, a graft structure in which the branch polymer PB G1 composed of the repeating unit A-10 is bonded to the trunk polymer PA G1 including the repeating unit B-1. Was.
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000025
<合成例8:ポリマーP-8の合成>
 10mLバイアル瓶に、臭化銅(I)を0.22mg、N,N,N’,N’’,N’’-ペンタメチルジエチレントリアミンを0.17mg、及び、トルエンを1mL加え、均一な触媒溶液を得た。温度計、攪拌羽根及び還流環を備えた200mLの三つ口フラスコに、メタクリル酸メチルpreA-1を20.0g、ジメチル-2,2’-アゾビスイソブチレートを0.17g、及び、2-ブロモイソ酪酸エチルを6.7mg量りとり、触媒溶液を加えて、窒素気流下、70℃で20時間攪拌した。
 次いで、得られた上記反応溶液に、5.0gのメタクリル酸アセトアセトキシエチルpreB-1とトルエン2mLの混合溶液を窒素置換した後に添加し、70℃で攪拌した。反応終了後、反応溶液を室温まで放冷し、メチルエチルケトン70gで希釈し、メタノール1.2L及び水0.5Lの混合溶液にて再沈殿させて白色沈殿を得た。得られた白色沈殿をろ別した後、50℃で終夜乾燥することで目的のP-8を22.3g得た。
 得られたポリマーP-8を以下に示す。このポリマーP-8は、図3Aに示す構造、具体的には、繰り返し単位B-1からなる部分構造と、繰り返し単位A-1からなる部分構造とがポリマー鎖内において単一の直線方向に結合したブロック構造(A-B型)であった。
<Synthesis Example 8: Synthesis of polymer P-8>
To a 10 mL vial, add 0.22 mg of copper (I) bromide, 0.17 mg of N, N, N ′, N ″, N ″ -pentamethyldiethylenetriamine, and 1 mL of toluene to obtain a homogeneous catalyst solution Got. In a 200 mL three-necked flask equipped with a thermometer, a stirring blade and a reflux ring, 20.0 g of methyl methacrylate preA-1, 0.17 g of dimethyl-2,2′-azobisisobutyrate, and 2 -6.7 mg of ethyl bromoisobutyrate was weighed, the catalyst solution was added, and the mixture was stirred at 70 ° C for 20 hours under a nitrogen stream.
Next, 5.0 g of a mixed solution of acetoacetoxyethyl methacrylate preB-1 and 2 mL of toluene was added to the obtained reaction solution after nitrogen substitution, and the mixture was stirred at 70 ° C. After completion of the reaction, the reaction solution was allowed to cool to room temperature, diluted with 70 g of methyl ethyl ketone, and reprecipitated with a mixed solution of 1.2 L of methanol and 0.5 L of water to obtain a white precipitate. The resulting white precipitate was filtered off and dried at 50 ° C. overnight to obtain 22.3 g of the target P-8.
The obtained polymer P-8 is shown below. This polymer P-8 has a structure shown in FIG. 3A, specifically, a partial structure consisting of the repeating unit B-1 and a partial structure consisting of the repeating unit A-1 in a single linear direction within the polymer chain. It was a combined block structure (AB type).
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000026
<合成例9:ポリマーP-9の合成>
 100mL三角フラスコに、メタクリル酸メチルpreA-1のマクロモノマーAA-6を23.4g、ジメチル-2,2’-アゾビスイソブチレートを0.21g、及び、メチルエチルケトンを25.4g量りとり、これらを混合溶解させてモノマー組成物P9-1を調製した。
 これとは別に、メタクリル酸アセトアセトキシエチルpreB-1を5.59g、及び、メチルエチルケトンを5.0g量りとり、これらを混合溶解させてモノマー組成物P9-2を調製した。
 次いで、温度計、攪拌羽根及び還流環を備えた200mLの三つ口フラスコに、メチルエチルケトン13.1gを仕込み、窒素気流下、80℃で攪拌した。このメチルエチルケトン中に、上記モノマー組成物P9-1を0.32mL/minの速度で、また上記モノマー組成物P9-2を、0.07mL/minの速度で個別に同時滴下した。滴下にはケミカルポンプを使用した。滴下終了後の反応溶液を、更に80℃で3時間反応させ、反応終了後、反応溶液を室温まで放冷し、メチルエチルケトン70gで希釈し、メタノール1.2L及び水0.5Lの混合溶液にて再沈殿させて白色沈殿を得た。得られた白色沈殿をろ別した後、50℃で終夜乾燥することで目的のP-9を23.3g得た。
 得られたポリマーP-9を以下に示す。このポリマーP-9は、図4Cに示す構造、具体的には、繰り返し単位B-1を含む幹ポリマーPAG1に対し、繰り返し単位A-1を含む枝ポリマーPBG1が結合したグラフト構造を有していた。
<Synthesis Example 9: Synthesis of Polymer P-9>
In a 100 mL Erlenmeyer flask, weigh 23.4 g of methyl methacrylate preA-1 macromonomer AA-6, 0.21 g of dimethyl-2,2′-azobisisobutyrate, and 25.4 g of methyl ethyl ketone. Were mixed and dissolved to prepare a monomer composition P9-1.
Separately, 5.59 g of acetoacetoxyethyl methacrylate preB-1 and 5.0 g of methyl ethyl ketone were weighed and mixed to prepare a monomer composition P9-2.
Next, 13.1 g of methyl ethyl ketone was charged into a 200 mL three-necked flask equipped with a thermometer, a stirring blade and a reflux ring, and stirred at 80 ° C. under a nitrogen stream. Into this methyl ethyl ketone, the monomer composition P9-1 was dropped simultaneously at a rate of 0.32 mL / min, and the monomer composition P9-2 was dropped simultaneously at a rate of 0.07 mL / min. A chemical pump was used for dripping. The reaction solution after completion of the addition was further reacted at 80 ° C. for 3 hours. After completion of the reaction, the reaction solution was allowed to cool to room temperature, diluted with 70 g of methyl ethyl ketone, and mixed with 1.2 L of methanol and 0.5 L of water. Reprecipitation gave a white precipitate. The resulting white precipitate was filtered off and dried at 50 ° C. overnight to obtain 23.3 g of the intended P-9.
The obtained polymer P-9 is shown below. The polymer P-9, the structure shown in FIG. 4C, specifically, with respect to the trunk polymer PA G1 comprising repeating units B-1, have a graft structure branch polymer PB G1 is bound comprising repeating units A-1 Was.
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000027
<合成例10:ポリマーP-10の合成>
 合成例9において、マクロモノマーAA-6及びメタクリル酸アセトアセトキシエチルpreB-1の使用量をそれぞれ表1の示すモル比(組成比)となる量に変更したこと以外は、合成例9と同様にして、ポリマーP-10を合成した。
<Synthesis Example 10: Synthesis of Polymer P-10>
In Synthesis Example 9, the procedure was similar to that of Synthesis Example 9, except that the amounts used of the macromonomer AA-6 and acetoacetoxyethyl methacrylate preB-1 were changed to the molar ratios (composition ratios) shown in Table 1, respectively. Thus, polymer P-10 was synthesized.
<合成例11:ポリマーP-11の合成>
 まず、以下のようにして、下記ジオール化合物DA-11を合成した。
 100mL三角フラスコにメタクリル酸メチルpreA-1を50.1g、ジメチル-2,2’-アゾビスイソブチレートを0.230g、3-メルカプト-1,2-プロパンジオールを1.08g、及び、メチルエチルケトンを30.0g量りとり、これらを混合溶解させてモノマー組成物P11を調製した。
 次いで、温度計、攪拌羽根及び還流環を備えた500mLの三つ口フラスコに、メチルエチルケトン20.0gを仕込み、窒素気流下、70℃で攪拌した。このメチルエチルケトン中に、上記モノマー組成物P11を、0.62mL/minの速度で滴下した。滴下にはケミカルポンプを使用した。滴下終了後の反応溶液を、更に80℃で2時間反応させ、次いで、ジメチル-2,2’-アゾビスイソブチレート0.02gを更に添加し、得られた混合物を更に3時間攪拌した。反応終了後、反応溶液を室温まで放冷し、メチルエチルケトン170gで希釈し、メタノール2.5L及び水1.3Lの混合溶液にて再沈殿させて白色沈殿を得た。得られた白色沈殿をろ別した後、50℃で終夜乾燥することで、目的のジオール化合物DA-11を46.2g得た。このようして得られたジオール化合物DA-11の重量平均分子量は7,000であった。
<Synthesis Example 11: Synthesis of Polymer P-11>
First, the following diol compound DA-11 was synthesized as follows.
In a 100 mL Erlenmeyer flask, 50.1 g of methyl methacrylate preA-1, 0.230 g of dimethyl-2,2′-azobisisobutyrate, 1.08 g of 3-mercapto-1,2-propanediol, and methyl ethyl ketone 30.0 g was weighed, and these were mixed and dissolved to prepare monomer composition P11.
Next, 20.0 g of methyl ethyl ketone was charged into a 500 mL three-necked flask equipped with a thermometer, a stirring blade and a reflux ring, and stirred at 70 ° C. in a nitrogen stream. The monomer composition P11 was dropped into this methyl ethyl ketone at a rate of 0.62 mL / min. A chemical pump was used for dripping. The reaction solution after completion of the dropwise addition was further reacted at 80 ° C. for 2 hours, 0.02 g of dimethyl-2,2′-azobisisobutyrate was further added, and the resulting mixture was further stirred for 3 hours. After completion of the reaction, the reaction solution was allowed to cool to room temperature, diluted with 170 g of methyl ethyl ketone, and reprecipitated with a mixed solution of 2.5 L of methanol and 1.3 L of water to obtain a white precipitate. The obtained white precipitate was filtered off and dried at 50 ° C. overnight to obtain 46.2 g of the desired diol compound DA-11. The weight average molecular weight of the diol compound DA-11 thus obtained was 7,000.
Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-C000028
 次いで、以下のようにして、ポリマーP-11を合成した。
 温度計、攪拌羽根及び還流環を備えた500mLの三つ口フラスコに、N-メチルピロリドン115g、上記で合成したジオール化合物DA-11を11.0g、2,2’-ビス(トリフルオロメチル)ベンジジンpreB-55-1を3.9g、及び、トリエチルアミンを0.2g仕込み、窒素気流下、40℃で攪拌し、完溶させた。内温を室温に戻した後、2.80gのイソフタル酸クロリドpreB-55-2を分割添加(10回)し、室温で4時間撹拌した。反応終了後、内温を40℃に加熱し、そこへアセチル酸クロリドを35μL添加して60℃で1時間撹拌した。反応溶液を室温まで放冷し、メタノール2.2L及び水0.6Lの混合溶液にて再沈殿させて白色沈殿を得た。得られた白色沈殿をろ別した後、190℃で乾燥することで目的のP-11を10.2g得た。
 得られたポリマーP-11を以下に示す。このポリマーP-11は、図4Cに示す構造、具体的には、繰り返し単位B-55を含む幹ポリマーPAG1に対し、繰り返し単位A-1を含む枝ポリマーPBG1が結合したグラフト構造を有していた。
Next, polymer P-11 was synthesized as follows.
In a 500 mL three-necked flask equipped with a thermometer, a stirring blade and a reflux ring, 115 g of N-methylpyrrolidone, 11.0 g of the diol compound DA-11 synthesized above, 2,2′-bis (trifluoromethyl) 3.9 g of benzidine preB-55-1 and 0.2 g of triethylamine were charged and stirred at 40 ° C. in a nitrogen stream to completely dissolve. After returning the internal temperature to room temperature, 2.80 g of isophthalic acid chloride preB-55-2 was added in portions (10 times) and stirred at room temperature for 4 hours. After completion of the reaction, the internal temperature was heated to 40 ° C., 35 μL of acetyl chloride was added thereto, and the mixture was stirred at 60 ° C. for 1 hour. The reaction solution was allowed to cool to room temperature and reprecipitated with a mixed solution of 2.2 L of methanol and 0.6 L of water to obtain a white precipitate. The obtained white precipitate was filtered off and dried at 190 ° C. to obtain 10.2 g of the target P-11.
The obtained polymer P-11 is shown below. This polymer P-11 has a structure shown in FIG. 4C, specifically, a graft structure in which a branch polymer PB G1 containing a repeating unit A-1 is bonded to a trunk polymer PA G1 containing a repeating unit B-55. Was.
Figure JPOXMLDOC01-appb-C000029
Figure JPOXMLDOC01-appb-C000029
<合成例12:ポリマーP-12の合成>
 温度計、攪拌羽根及び還流環を備えた500mLの三つ口フラスコに、N-メチルピロリドン115g、上記合成例11で合成したジオール化合物DA-11を11.0g、1,1-ビス(4-アミノフェニル)シクロヘキサンpreB-53-1を3.25g、及び、トリエチルアミンを0.2g仕込み、窒素気流下、40℃で攪拌し、完溶させた。内温を室温に戻した後、2.80gのイソフタル酸クロリドpreB-53-2を分割添加(10回)し、室温で4時間撹拌した。反応終了後、内温を40℃とし、アセチル酸クロリドを35μL添加して60℃で1時間撹拌した。反応溶液を室温まで放冷し、そこへメタノール2.2L及び水0.6Lの混合溶液にて再沈殿させて白色沈殿を得た。得られた白色沈殿をろ別した後、190℃で乾燥することで目的のP-12を10.5g得た。
 得られたポリマーP-12を以下に示す。このポリマーP-12は、図4Cに示す構造、具体的には、繰り返し単位B-53を含む幹ポリマーPAG1に対し、繰り返し単位A-1を含む枝ポリマーPBG1が結合したグラフト構造を有していた。
<Synthesis Example 12: Synthesis of Polymer P-12>
In a 500 mL three-necked flask equipped with a thermometer, a stirring blade and a reflux ring, 115 g of N-methylpyrrolidone, 11.0 g of the diol compound DA-11 synthesized in Synthesis Example 11 above, 1,1-bis (4- Aminophenyl) cyclohexane preB-53-1 (3.25 g) and triethylamine (0.2 g) were charged, and the mixture was stirred at 40 ° C. under a nitrogen stream to completely dissolve it. After returning the internal temperature to room temperature, 2.80 g of isophthalic acid chloride preB-53-2 was added in portions (10 times) and stirred at room temperature for 4 hours. After completion of the reaction, the internal temperature was adjusted to 40 ° C., 35 μL of acetyl chloride was added, and the mixture was stirred at 60 ° C. for 1 hour. The reaction solution was allowed to cool to room temperature, and then reprecipitated with a mixed solution of 2.2 L of methanol and 0.6 L of water to obtain a white precipitate. The obtained white precipitate was filtered off and dried at 190 ° C. to obtain 10.5 g of the intended P-12.
The obtained polymer P-12 is shown below. This polymer P-12 has a structure shown in FIG. 4C, specifically, a graft structure in which a branch polymer PB G1 containing a repeating unit A-1 is bonded to a trunk polymer PA G1 containing a repeating unit B-53. Was.
Figure JPOXMLDOC01-appb-C000030
Figure JPOXMLDOC01-appb-C000030
<合成例13:ポリマーP-13の合成>
 まず、以下のようにして、下記アミン化合物AM-13を合成した。
 100mL三角フラスコにメタクリル酸メチルpreA-1を50.1g、ジメチル-2,2’-アゾビスイソブチレートを0.230g、2-アミノエタンチオールを0.772g、及び、1-メトキシ-2-プロパノールを30.0g量りとり、これらを混合溶解させてモノマー組成物P13を調製した。
 次いで、温度計、攪拌羽根及び還流環を備えた500mLの三つ口フラスコに、1-メトキシ-2-プロパノール20.0gを仕込み、窒素気流下、70℃で攪拌した。この1-メトキシ-2-プロパノール中に、上記モノマー組成物P13を、0.62mL/minの速度で滴下した。滴下にはケミカルポンプを使用した。滴下終了後の反応溶液を、更に80℃で2時間反応させ、次いでジメチル-2,2’-アゾビスイソブチレート0.02gを更に添加し、得られた混合物を更に3時間攪拌した。反応終了後、反応溶液を室温まで放冷し、1-メトキシ-2-プロパノール170gで希釈し、メタノール2.5L及び水1.3Lの混合溶液にて再沈殿させて白色沈殿を得た。得られた白色沈殿をろ別した後、50℃で終夜乾燥することで目的のアミン化合物AM-13を42.1g得た。このようして得られたアミン化合物AM-13の重量平均分子量は6,000であった。
<Synthesis Example 13: Synthesis of Polymer P-13>
First, the following amine compound AM-13 was synthesized as follows.
In a 100 mL Erlenmeyer flask, 50.1 g of methyl methacrylate preA-1, 0.230 g of dimethyl-2,2′-azobisisobutyrate, 0.772 g of 2-aminoethanethiol, and 1-methoxy-2- 30.0 g of propanol was weighed, and these were mixed and dissolved to prepare a monomer composition P13.
Next, 20.0 g of 1-methoxy-2-propanol was charged into a 500 mL three-necked flask equipped with a thermometer, a stirring blade and a reflux ring, and stirred at 70 ° C. in a nitrogen stream. The monomer composition P13 was dropped into 1-methoxy-2-propanol at a rate of 0.62 mL / min. A chemical pump was used for dripping. The reaction solution after completion of the dropwise addition was further reacted at 80 ° C. for 2 hours, then 0.02 g of dimethyl-2,2′-azobisisobutyrate was further added, and the resulting mixture was further stirred for 3 hours. After completion of the reaction, the reaction solution was allowed to cool to room temperature, diluted with 170 g of 1-methoxy-2-propanol, and reprecipitated with a mixed solution of 2.5 L of methanol and 1.3 L of water to obtain a white precipitate. The obtained white precipitate was filtered off and dried at 50 ° C. overnight to obtain 42.1 g of the target amine compound AM-13. The amine compound AM-13 thus obtained had a weight average molecular weight of 6,000.
Figure JPOXMLDOC01-appb-C000031
Figure JPOXMLDOC01-appb-C000031
 次いで、以下のようにして、ポリマーP-13を合成した。
 温度計、攪拌羽根及び還流環を備えた500mLの三つ口フラスコに、N-メチルピロリドン115g、上記で合成したアミン化合物AM-13を11.0g、2,2’-ビス(トリフルオロメチル)ベンジジンpreB-55-1を3.9g、及び、トリエチルアミンを0.2g仕込み、窒素気流下、40℃で攪拌し、完溶させた。内温を室温に戻した後、2.66gのイソフタル酸クロリドpreB-55-2を分割添加(10回)し、室温で4時間撹拌した。反応終了後、内温を40℃に加熱し、そこへアセチル酸クロリドを35μL添加して60℃で1時間撹拌した。反応溶液を室温まで放冷し、メタノール2.2L及び水0.6Lの混合溶液にて再沈殿させて白色沈殿を得た。得られた白色沈殿をろ別した後、190℃で乾燥することで目的のP-13を10.8g得た。
 得られたポリマーP-13を以下に示す。このポリマーP-13は、図3Bに示す構造、具体的には、繰り返し単位B-55からなる部分構造の両端部に対し、繰り返し単位A-1からなる部分構造がポリマー鎖内において単一の直線方向に結合したブロック構造(B-A-B型)を有していた。
Next, polymer P-13 was synthesized as follows.
In a 500 mL three-necked flask equipped with a thermometer, stirring blades and reflux ring, 115 g of N-methylpyrrolidone, 11.0 g of amine compound AM-13 synthesized above, 2,2′-bis (trifluoromethyl) 3.9 g of benzidine preB-55-1 and 0.2 g of triethylamine were charged and stirred at 40 ° C. in a nitrogen stream to completely dissolve. After returning the internal temperature to room temperature, 2.66 g of isophthalic acid chloride preB-55-2 was added in portions (10 times) and stirred at room temperature for 4 hours. After completion of the reaction, the internal temperature was heated to 40 ° C., 35 μL of acetyl chloride was added thereto, and the mixture was stirred at 60 ° C. for 1 hour. The reaction solution was allowed to cool to room temperature and reprecipitated with a mixed solution of 2.2 L of methanol and 0.6 L of water to obtain a white precipitate. The resulting white precipitate was filtered off and dried at 190 ° C. to obtain 10.8 g of the intended P-13.
The obtained polymer P-13 is shown below. This polymer P-13 has a structure shown in FIG. 3B, specifically, a partial structure consisting of the repeating unit A-1 is single in the polymer chain at both ends of the partial structure consisting of the repeating unit B-55. It had a block structure (BAB type) bonded in a linear direction.
Figure JPOXMLDOC01-appb-C000032
Figure JPOXMLDOC01-appb-C000032
<合成例14:ポリマーP-14の合成>
 温度計、攪拌羽根及び還流環を備えた500mLの三つ口フラスコに、N-メチルピロリドン115g、上記合成例13で合成したアミン化合物AM-13を11.0g、4,4’-メチレンビス(2-メチルシクロヘキシルアミン)preB-51-1を2.91g、及び、トリエチルアミンを1.42g仕込み、窒素気流下、40℃で攪拌し、完溶させた。内温を室温に戻した後、2.66gのイソフタル酸クロリドpreB-51-2を分割添加(10回)し、室温で4時間撹拌した。反応終了後、内温を40℃に加熱し、そこへアセチル酸クロリドを35μL添加して60℃で1時間撹拌した。反応溶液を室温まで放冷し、メタノール2.2L及び水0.6Lの混合溶液にて再沈殿させて白色沈殿を得た。得られた白色沈殿をろ別した後、190℃で乾燥することで目的のP-14を10.0g得た。
 得られたポリマーP-14を以下に示す。このポリマーP-14は、図3Bに示す構造、具体的には、繰り返し単位B-51からなる部分構造の両端部に対し、繰り返し単位A-1からなる部分構造がポリマー鎖内において単一の直線方向に結合したブロック構造(B-A-B型)を有していた。
<Synthesis Example 14: Synthesis of Polymer P-14>
In a 500 mL three-necked flask equipped with a thermometer, a stirring blade and a reflux ring, 115 g of N-methylpyrrolidone, 11.0 g of the amine compound AM-13 synthesized in Synthesis Example 13 above, 4,4′-methylenebis (2 -Methylcyclohexylamine) PreB-51-1 (2.91 g) and triethylamine (1.42 g) were charged, and the mixture was stirred at 40 ° C. in a nitrogen stream to be completely dissolved. After returning the internal temperature to room temperature, 2.66 g of isophthalic acid chloride preB-51-2 was added in portions (10 times) and stirred at room temperature for 4 hours. After completion of the reaction, the internal temperature was heated to 40 ° C., 35 μL of acetyl chloride was added thereto, and the mixture was stirred at 60 ° C. for 1 hour. The reaction solution was allowed to cool to room temperature and reprecipitated with a mixed solution of 2.2 L of methanol and 0.6 L of water to obtain a white precipitate. The obtained white precipitate was filtered off and dried at 190 ° C. to obtain 10.0 g of the intended P-14.
The obtained polymer P-14 is shown below. This polymer P-14 has the structure shown in FIG. 3B, specifically, the partial structure consisting of the repeating unit A-1 is single in the polymer chain at both ends of the partial structure consisting of the repeating unit B-51. It had a block structure (BAB type) bonded in a linear direction.
Figure JPOXMLDOC01-appb-C000033
Figure JPOXMLDOC01-appb-C000033
<合成例15:ポリマーP-15の合成>
 温度計、攪拌羽根及び還流環を備えた500mLの三つ口フラスコに、N-メチルピロリドン115g、上記合成例13で合成したアミン化合物AM-13を11.0g、1,1-ビス(4-アミノフェニル)シクロヘキサンpreB-53-1を3.25g、及び、トリエチルアミンを0.2g仕込み、窒素気流下、40℃で攪拌し、完溶させた。内温を室温に戻した後、2.66gのイソフタル酸クロリドpreB-53-2を分割添加(10回)し、室温で4時間撹拌した。反応終了後、内温を40℃に加熱し、そこへアセチル酸クロリドを35μL添加して60℃で1時間撹拌した。反応溶液を室温まで放冷し、メタノール2.2L及び水0.6Lの混合溶液にて再沈殿させて白色沈殿を得た。得られた白色沈殿をろ別した後、190℃で乾燥することで目的のP-15を9.9g得た。
 得られたポリマーP-15を以下に示す。このポリマーP-15は、図3Bに示す構造、具体的には、繰り返し単位B-53からなる部分構造の両端部に対し、繰り返し単位A-1からなる部分構造がポリマー鎖内において単一の直線方向に結合したブロック構造(B-A-B型)を有していた。
<Synthesis Example 15: Synthesis of Polymer P-15>
In a 500 mL three-necked flask equipped with a thermometer, a stirring blade and a reflux ring, 115 g of N-methylpyrrolidone, 11.0 g of amine compound AM-13 synthesized in Synthesis Example 13 above, 1,1-bis (4- Aminophenyl) cyclohexane preB-53-1 (3.25 g) and triethylamine (0.2 g) were charged, and the mixture was stirred at 40 ° C. under a nitrogen stream to completely dissolve it. After returning the internal temperature to room temperature, 2.66 g of isophthalic acid chloride preB-53-2 was added in portions (10 times) and stirred at room temperature for 4 hours. After completion of the reaction, the internal temperature was heated to 40 ° C., 35 μL of acetyl chloride was added thereto, and the mixture was stirred at 60 ° C. for 1 hour. The reaction solution was allowed to cool to room temperature and reprecipitated with a mixed solution of 2.2 L of methanol and 0.6 L of water to obtain a white precipitate. The resulting white precipitate was filtered off and dried at 190 ° C. to obtain 9.9 g of the target P-15.
The obtained polymer P-15 is shown below. This polymer P-15 has the structure shown in FIG. 3B, specifically, the partial structure consisting of the repeating unit A-1 is single in the polymer chain at both ends of the partial structure consisting of the repeating unit B-53. It had a block structure (BAB type) bonded in a linear direction.
Figure JPOXMLDOC01-appb-C000034
Figure JPOXMLDOC01-appb-C000034
<合成例16:ポリマーP-16の合成>
 まず、以下のようにして、下記アミン化合物AM-16を合成した。
 100mL三角フラスコにメタクリル酸シクロヘキシルpreA-2を84.1g、ジメチル-2,2’-アゾビスイソブチレートを0.230g、2-アミノエタンチオールを0.772g、及び、1-メトキシ-2-プロパノールを30.0g量りとり、これらを混合溶解させてモノマー組成物P16を調製した。
 次いで、温度計、攪拌羽根及び還流環を備えた500mLの三つ口フラスコに、1-メトキシ-2-プロパノール20.0gを仕込み、窒素気流下、70℃で攪拌した。この1-メトキシ-2-プロパノール中に、上記モノマー組成物P16を、0.62mL/minの速度で滴下した。滴下にはケミカルポンプを使用した。滴下終了後の反応溶液を更に80℃で2時間反応させ、次いで、ジメチル-2,2’-アゾビスイソブチレート0.02gを更に添加し、得られた混合物を更に3時間攪拌した。反応終了後、反応溶液を室温まで放冷し、1-メトキシ-2-プロパノール170gで希釈し、メタノール3L及び水1.5Lの混合溶液にて再沈殿させて白色沈殿を得た。得られた白色沈殿をろ別した後、50℃で終夜乾燥することで、目的のアミン化合物AM-16を80.3gを得た。このようして得られたアミン化合物AM-16の重量平均分子量は7,000であった。
<Synthesis Example 16: Synthesis of Polymer P-16>
First, the following amine compound AM-16 was synthesized as follows.
In a 100 mL Erlenmeyer flask, 84.1 g of cyclohexyl methacrylate preA-2, 0.230 g of dimethyl-2,2′-azobisisobutyrate, 0.772 g of 2-aminoethanethiol, and 1-methoxy-2- 30.0 g of propanol was weighed, and these were mixed and dissolved to prepare a monomer composition P16.
Next, 20.0 g of 1-methoxy-2-propanol was charged into a 500 mL three-necked flask equipped with a thermometer, a stirring blade and a reflux ring, and stirred at 70 ° C. in a nitrogen stream. The monomer composition P16 was dropped into 1-methoxy-2-propanol at a rate of 0.62 mL / min. A chemical pump was used for dripping. After completion of the dropwise addition, the reaction solution was further reacted at 80 ° C. for 2 hours, then 0.02 g of dimethyl-2,2′-azobisisobutyrate was further added, and the resulting mixture was further stirred for 3 hours. After completion of the reaction, the reaction solution was allowed to cool to room temperature, diluted with 170 g of 1-methoxy-2-propanol, and reprecipitated with a mixed solution of 3 L of methanol and 1.5 L of water to obtain a white precipitate. The resulting white precipitate was filtered off and dried at 50 ° C. overnight to obtain 80.3 g of the target amine compound AM-16. The amine compound AM-16 thus obtained had a weight average molecular weight of 7,000.
Figure JPOXMLDOC01-appb-C000035
Figure JPOXMLDOC01-appb-C000035
 次いで、以下のようにして、ポリマーP-16を合成した。
 温度計、攪拌羽根及び還流環を備えた300mLの三つ口フラスコに、N-メチルピロリドン88g、上記で合成したアミン化合物AM-16を10.0g、1,1-ビス(4-アミノフェニル)シクロヘキサンpreB-53-1を1.76g、及び、トリエチルアミンを0.2g仕込み、窒素気流下、40℃で攪拌し、完溶させた。内温を室温に戻した後、1.49gのイソフタル酸クロリドpreB-53-2を分割添加(10回)し、室温で4時間撹拌した。反応終了後、内温を40℃に加熱し、そこへアセチル酸クロリドを35μL添加して60℃で1時間撹拌した。反応溶液を室温まで放冷し、メタノール1.1L及び水0.3Lの混合溶液にて再沈殿させて白色沈殿を得た。得られた白色沈殿をろ別した後、190℃で乾燥することで目的のP-16を7.8g得た。
 得られたポリマーP-16を以下に示す。このポリマーP-16は、図3Bに示す構造、具体的には、繰り返し単位B-53からなる部分構造の両端部に対し、繰り返し単位A-2からなる部分構造がポリマー鎖内において単一の直線方向に結合したブロック構造(B-A-B型)を有していた。
Next, polymer P-16 was synthesized as follows.
In a 300 mL three-necked flask equipped with a thermometer, a stirring blade and a reflux ring, 88 g of N-methylpyrrolidone, 10.0 g of the amine compound AM-16 synthesized above, 1,1-bis (4-aminophenyl) 1.76 g of cyclohexane preB-53-1 and 0.2 g of triethylamine were charged, and the mixture was stirred at 40 ° C. under a nitrogen stream to completely dissolve it. After returning the internal temperature to room temperature, 1.49 g of isophthalic acid chloride preB-53-2 was added in portions (10 times) and stirred at room temperature for 4 hours. After completion of the reaction, the internal temperature was heated to 40 ° C., 35 μL of acetyl chloride was added thereto, and the mixture was stirred at 60 ° C. for 1 hour. The reaction solution was allowed to cool to room temperature and reprecipitated with a mixed solution of 1.1 L of methanol and 0.3 L of water to obtain a white precipitate. The resulting white precipitate was filtered off and dried at 190 ° C. to obtain 7.8 g of the intended P-16.
The obtained polymer P-16 is shown below. This polymer P-16 has a structure shown in FIG. 3B, specifically, a partial structure consisting of the repeating unit A-2 is single in the polymer chain at both ends of the partial structure consisting of the repeating unit B-53. It had a block structure (BAB type) bonded in a linear direction.
Figure JPOXMLDOC01-appb-C000036
Figure JPOXMLDOC01-appb-C000036
<比較合成例1:比較ポリマーHP-1の合成>
 300mL三角フラスコにメタクリル酸メチルpreA-1を133.5g、及び、ジメチル-2,2’-アゾビスイソブチレートを0.1g、及び、メチルエチルケトンを75.0g量りとり、これらを混合溶解させてモノマー組成物HP1を調製した。
 次いで、温度計、攪拌羽根及び還流環を備えた1Lの三つ口フラスコに、メチルエチルケトン75.0gを仕込み、窒素気流下、85℃で攪拌した。このメチルエチルケトン中に、上記モノマー組成物HP1を1.1mL/minの速度で滴下した。滴下にはケミカルポンプを使用した。滴下終了後の反応溶液を、更に85℃で6時間反応させ、反応終了後、反応溶液を室温まで放冷し、メチルエチルケトン500mLで希釈し、メタノール5Lで再沈殿させて白色沈殿を得た。得られた白色沈殿をろ別した後、メタノール2Lで再分散洗浄を3回繰り返し、60℃で終夜乾燥することでポリマーHP-1を91.0g得た。
 このポリマーHP-1は、繰り返し単位A-1からなるホモポリマーであった。
<Comparative Synthesis Example 1: Synthesis of Comparative Polymer HP-1>
In a 300 mL Erlenmeyer flask, weigh 133.5 g of methyl methacrylate preA-1, 0.1 g of dimethyl-2,2′-azobisisobutyrate and 75.0 g of methyl ethyl ketone, and mix and dissolve them. Monomer composition HP1 was prepared.
Next, 75.0 g of methyl ethyl ketone was charged into a 1 L three-necked flask equipped with a thermometer, a stirring blade and a reflux ring, and stirred at 85 ° C. under a nitrogen stream. The monomer composition HP1 was dropped into this methyl ethyl ketone at a rate of 1.1 mL / min. A chemical pump was used for dripping. The reaction solution after completion of the dropwise addition was further reacted at 85 ° C. for 6 hours. After completion of the reaction, the reaction solution was allowed to cool to room temperature, diluted with 500 mL of methyl ethyl ketone, and reprecipitated with 5 L of methanol to obtain a white precipitate. The resulting white precipitate was filtered off, redispersed and washed with 2 L of methanol three times, and dried at 60 ° C. overnight to obtain 91.0 g of polymer HP-1.
This polymer HP-1 was a homopolymer composed of the repeating unit A-1.
<比較合成例2:比較ポリマーHP-2の合成>
 比較合成例1において、133.5gのメタクリル酸メチルpreA-1に代えて、274.6gのメタクリル酸アセトアセトキシエチルpreB-1を用いたこと変更したこと以外は、比較合成例1と同様にして、ポリマーHP-2を合成した。
 このポリマーHP-2は、繰り返し単位B-1からなるホモポリマーであった。
<Comparative Synthesis Example 2: Synthesis of Comparative Polymer HP-2>
In Comparative Synthesis Example 1, the procedure was the same as Comparative Synthesis Example 1, except that 274.6 g of acetoacetoxyethyl methacrylate preB-1 was used instead of 133.5 g of methyl methacrylate preA-1. Polymer HP-2 was synthesized.
This polymer HP-2 was a homopolymer consisting of repeating unit B-1.
 上記各合成例及び比較合成例で得られたポリマーを構成する繰り返し単位の、Hoy法により算出した溶解度パラメータδtを下記表1に示す。
 また、上記各合成例及び比較合成例で得られたポリマーの一次構造、及び、各ポリマー中の各繰り返し単位のモル量(モル%)についても、下記表1に示す。ここで、ポリマーの一次構造は上述の方法で確認した。また、ポリマー中の繰り返し単位のモル%は、核磁気共鳴(NMR)スペクトル測定装置(BRUKER社製、300MHz)を用いて、各ポリマーのH-NMRを測定して得られたチャートにおいて、積分値から、算出(同定)した。
 更に、得られた各ポリマーの、1分子当たりの端部の数を、ポリマーがグラフト構造を有する場合は数平均分子量を用いる上記方法、ポリマーがスター構造又はブランチ構造を有する場合は核の数によって求める上記方法で求め、その結果を表1に示した。このとき、合成した各ポリマー、マクロモノマーAA-6及びAS-6、並びに、ジオール化合物DA-11、アミン化合物AM-13及びAM-16の数平均分子量は、下記重量平均分子量の測定条件で、測定した。
 更にまた、下記表1には上記各合成例及び比較合成例で得られたポリマーの重量平均分子量に示した。ポリマーの重量平均分子量は、ゲル浸透クロマトグラフィー(Gel Permeation Chromatography;GPC)によりポリスチレン換算で測定される重量平均分子量を採用した。具体的な測定条件を以下に示す。
 GPC装置:東ソー社製GPC装置(HLC-8320GPC、Ecosec)
 カラム:TSK gel SuperHZM-H、TSK gel SuperHZ4000、TSK gel SuperHZ2000併用(東ソー製、4.6mmID(内径)×15.0cm)
 溶離液:テトラヒドロフラン(THF)
 測定温度:40℃
 キャリア流量:1.0mL/min
 試料濃度:0.1質量%
 検出器:RI(屈折率)検出器
The solubility parameter δt calculated by the Hoy method of the repeating units constituting the polymers obtained in the above synthesis examples and comparative synthesis examples is shown in Table 1 below.
The primary structures of the polymers obtained in the above synthesis examples and comparative synthesis examples, and the molar amount (mol%) of each repeating unit in each polymer are also shown in Table 1 below. Here, the primary structure of the polymer was confirmed by the method described above. In addition, the mol% of the repeating unit in the polymer is the integral in the chart obtained by measuring 1 H-NMR of each polymer using a nuclear magnetic resonance (NMR) spectrum measuring apparatus (manufactured by BRUKER, 300 MHz). It was calculated (identified) from the value.
Furthermore, depending on the number of ends per molecule of each polymer obtained, the above method using the number average molecular weight when the polymer has a graft structure, and the number of nuclei when the polymer has a star structure or a branch structure. Table 1 shows the results obtained by the above method. At this time, the number average molecular weights of the synthesized polymers, macromonomers AA-6 and AS-6, and diol compound DA-11, amine compounds AM-13 and AM-16 were measured under the following weight average molecular weight measurement conditions. It was measured.
Furthermore, Table 1 below shows the weight average molecular weights of the polymers obtained in the above synthesis examples and comparative synthesis examples. As the weight average molecular weight of the polymer, a weight average molecular weight measured in terms of polystyrene by gel permeation chromatography (GPC) was adopted. Specific measurement conditions are shown below.
GPC equipment: GPC equipment manufactured by Tosoh Corporation (HLC-8320GPC, Ecosec)
Column: TSK gel SuperHZM-H, TSK gel SuperHZ4000, TSK gel SuperHZ2000 combined use (manufactured by Tosoh, 4.6 mm ID (inner diameter) x 15.0 cm)
Eluent: Tetrahydrofuran (THF)
Measurement temperature: 40 ° C
Carrier flow rate: 1.0 mL / min
Sample concentration: 0.1% by mass
Detector: RI (refractive index) detector
Figure JPOXMLDOC01-appb-T000037
Figure JPOXMLDOC01-appb-T000037
[製造例1:積層体S-1~S-16並びにHS-1及びHS-2の作製]
<セルロースエステル層の作製>
 下記の組成物をミキシングタンクに投入し、加熱しながら攪拌して、各成分を溶解し、固形分濃度22質量%のセルロースアセテート溶液(ドープA)を調製した。
 
――――――――――――――――――――――――――――――――――
セルロースアセテート溶液(ドープA)の組成
――――――――――――――――――――――――――――――――――
 アセチル置換度2.86のセルロースアセテート     100質量部
 トリフェニルホスフェート(可塑剤)          7.8質量部
 ビフェニルジフェニルホスフェート(可塑剤)      3.9質量部
 紫外線吸収剤(チヌビン328 チバ・ジャパン社製)  0.9質量部
 紫外線吸収剤(チヌビン326 チバ・ジャパン社製)  0.2質量部
 メチレンクロライド(第1溶媒)            336質量部
 メタノール(第2溶媒)                 29質量部
 1-ブタノール(第3溶媒)               11質量部
――――――――――――――――――――――――――――――――――
 
[Production Example 1: Production of laminates S-1 to S-16 and HS-1 and HS-2]
<Production of cellulose ester layer>
The following composition was put into a mixing tank, stirred while heating to dissolve each component, and a cellulose acetate solution (dope A) having a solid content concentration of 22% by mass was prepared.

――――――――――――――――――――――――――――――――――
Composition of cellulose acetate solution (Dope A) ――――――――――――――――――――――――――――――――――
Cellulose acetate with an acetyl substitution degree of 2.86 100 parts by weight Triphenyl phosphate (plasticizer) 7.8 parts by weight Biphenyl diphenyl phosphate (plasticizer) 3.9 parts by weight Ultraviolet absorber (manufactured by Tinuvin 328 Ciba Japan) 0. 9 parts by weight UV absorber (manufactured by Tinuvin 326 Ciba Japan) 0.2 parts by weight Methylene chloride (first solvent) 336 parts by weight Methanol (second solvent) 29 parts by weight 1-butanol (third solvent) 11 parts by weight ――――――――――――――――――――――――――――――――――
 バンド流延装置を用い、上記調製したドープAを2000mm幅でステンレス製のエンドレスバンド(流延支持体)に流延ダイから均一に流延した。ドープA中の残留溶媒量が40質量%になった時点で流延支持体から高分子膜として剥離し、テンターにて積極的に延伸をせずに搬送し、乾燥ゾーンで130℃で乾燥を行った。得られたセルロースエステル層(セルロースエステルフィルム)の厚さは55μmであった。 Using a band casting apparatus, the prepared dope A was uniformly cast from a casting die onto a stainless steel endless band (casting support) having a width of 2000 mm. When the amount of residual solvent in the dope A reaches 40% by mass, it is peeled off as a polymer film from the casting support, and is conveyed without being actively stretched by a tenter and dried at 130 ° C. in a drying zone. went. The thickness of the obtained cellulose ester layer (cellulose ester film) was 55 μm.
<積層体S-1の作製>
 上記ポリマーP-1を固形分15質量%となるようにメチルエチルケトンと混合した後、攪拌機をつけたガラス製セパラブルフラスコに仕込み、室温にて5時間攪拌後、孔径5μmのポリプロピレン製デプスフィルターでろ過し、密着性ポリマー層形成用組成物(塗布液)を得た。次に、上記で作製したセルロースエステル層上に、上記密着性ポリマー層形成用組成物を、グラビアコーターを用いて塗布した。次いで、塗布した密着性ポリマー層形成用組成物を、25℃で1分間乾燥し、更に120℃で約5分間乾燥して、厚さ60μmの積層体S-1(密着性ポリマー層の厚さは5μmとなる。)を得た。
<Preparation of laminate S-1>
The polymer P-1 was mixed with methyl ethyl ketone so as to have a solid content of 15% by mass, charged into a glass separable flask equipped with a stirrer, stirred at room temperature for 5 hours, and filtered through a polypropylene depth filter having a pore size of 5 μm. Thus, an adhesive polymer layer forming composition (coating solution) was obtained. Next, the adhesive polymer layer forming composition was applied onto the cellulose ester layer prepared above using a gravure coater. Next, the applied composition for forming an adhesive polymer layer was dried at 25 ° C. for 1 minute, and further dried at 120 ° C. for about 5 minutes to obtain a laminate S-1 having a thickness of 60 μm (the thickness of the adhesive polymer layer). Was 5 μm).
<積層体S-2~S-16並びに比較積層体HS-1及びHS-2の作製>
 上記積層体S-1の作製において、密着性ポリマー層形成用組成物に用いるポリマーP-1を下記表2に示す通りに変更した以外は、上記積層体S-1の作製と同様にして、積層体S-2~S-16並びに比較積層体HS-1及びHS-2を作製した。
 得られた積層体の厚さは、いずれも、60μmであった。
<Production of Laminates S-2 to S-16 and Comparative Laminates HS-1 and HS-2>
In the production of the laminate S-1, except that the polymer P-1 used in the composition for forming an adhesive polymer layer was changed as shown in Table 2 below, Laminated bodies S-2 to S-16 and comparative laminated bodies HS-1 and HS-2 were produced.
The thicknesses of the obtained laminates were all 60 μm.
<積層体の評価>
 作製した各積層体について、密着ポリマー層表面の接触角、及び、密着性を下記方法により評価した。その結果を表2に示す。
<Evaluation of laminate>
About each produced laminated body, the contact angle of the contact | adherence polymer layer surface and adhesiveness were evaluated by the following method. The results are shown in Table 2.
 (密着ポリマー層表面の接触角測定)
 接触角はJIS R 3257(1999)に準じて測定し、評価した。ただし、測定に用いた画像は、密着ポリマーの塗布面に対して、水を滴下してから30秒後に撮影したものを採用し、落とした水滴と密着ポリマー表面とで形成された角度をこの画像を元に算出した。
 本試験において、接触角は、64°以上が合格レベルであり、65°以上がより好ましく、70°以上が更に好ましい。
(Measurement of contact angle on the surface of the adhesive polymer layer)
The contact angle was measured and evaluated according to JIS R 3257 (1999). However, the image used for the measurement is the image taken 30 seconds after dropping water on the adhesion polymer coating surface, and the angle formed by the dropped water droplet and the adhesion polymer surface is this image. Calculated based on
In this test, the contact angle is a pass level of 64 ° or more, more preferably 65 ° or more, and still more preferably 70 ° or more.
 (積層体の密着性試験)
 密着性ポリマー層とセルロースアセテート層との密着性の評価方法は、JIS K 5400に準処した碁盤目試験(クロスカット法)を適用した。具体的な手順を以下に示す。
 作製した各積層体において、密着性ポリマー層側の表面に、カッターナイフ及びカッターガイドを用いて、1mm間隔で11本の切り込みを入れ、100個の碁盤目を作製した。この碁盤目上にセロハンテープ(登録商標)を強く圧着させた後、テープの端を表面に対して45°の角度で一気に剥がした。このセロハンテープ(登録商標)の貼付及び剥離操作を5回連続して行った。セロハンテープ(登録商標)は毎回新しいものを用いた。
 その後、碁盤目の状態(碁盤目を構成する格子の剥がれの状態)を観察し、剥離せずに、セルロースアセテート層に密着していた、格子の目の数(残存数)を計数した。
 本試験において、密着性は、上記残存数が70個以上であることが合格レベルであり、95個以上であることが好ましく、100個であることが特に好ましい。
(Adhesion test of laminate)
As a method for evaluating the adhesion between the adhesive polymer layer and the cellulose acetate layer, a cross-cut test (cross-cut method) according to JIS K 5400 was applied. The specific procedure is shown below.
In each of the produced laminates, 11 cuts were made at intervals of 1 mm on the surface on the adhesive polymer layer side using a cutter knife and a cutter guide to produce 100 grids. A cellophane tape (registered trademark) was strongly pressed onto the grid, and the end of the tape was peeled off at an angle of 45 ° with respect to the surface. The cellophane tape (registered trademark) was applied and peeled off five times in succession. A new cellophane tape (registered trademark) was used each time.
Thereafter, the state of the grids (the state of peeling of the grids constituting the grids) was observed, and the number of grids (residual number) that was in close contact with the cellulose acetate layer without peeling was counted.
In this test, the adhesiveness is an acceptable level when the remaining number is 70 or more, preferably 95 or more, and particularly preferably 100.
Figure JPOXMLDOC01-appb-T000038
Figure JPOXMLDOC01-appb-T000038
 表2の結果から、上記繰り返し単位〔a〕を含み、上述の一次構造を有する密着性ポリマーを含有する層を備えた積層体S-1~S-16は、いずれも、密着性ポリマーを含有する層の接触角が高く、積層体として層間の密着性に優れていたことが示された。
 特に、上述の一次構造を有する密着性ポリマーが上記繰り返し単位〔a〕と上記繰り返し単位〔b〕とを有する積層体S-4、S-6~S-16は、いずれも、接触角を維持しつつも、強固な密着性を示した。
 これに対して、上記繰り返し単位〔a〕のみからなるホモポリマーHS-1を含有する層を備えた積層体HS-1は、すべての格子の目が剥がれ、層間の密着性に著しく劣るものであった。一方、上記繰り返し単位〔b〕のみからなるホモポリマーHS-2を含有する層を備えた積層体HS-2は接触角が劣るものであった。
From the results shown in Table 2, all of the laminates S-1 to S-16 including the above-mentioned repeating unit [a] and including the above-described adhesive polymer having the primary structure contain the adhesive polymer. It was shown that the contact angle of the layer to be used was high and the laminate had excellent adhesion between layers.
In particular, each of the laminates S-4 and S-6 to S-16 in which the adhesive polymer having the primary structure described above has the repeating unit [a] and the repeating unit [b] maintains the contact angle. However, it showed strong adhesion.
On the other hand, the laminate HS-1 having a layer containing the homopolymer HS-1 composed only of the above repeating unit [a] has all the lattices peeled off, and the adhesion between the layers is extremely inferior. there were. On the other hand, the laminate HS-2 having a layer containing the homopolymer HS-2 consisting only of the above repeating unit [b] had a poor contact angle.
[製造例2:偏光板PL-1~PL-15、並びに、比較偏光板HPL-1及びHPL-2の作製]
 下記のようにして、偏光板PL-1~PL-15、並びに、比較偏光板HPL-1及びHPL-2を作製した。
[Production Example 2: Production of polarizing plates PL-1 to PL-15 and comparative polarizing plates HPL-1 and HPL-2]
As described below, polarizing plates PL-1 to PL-15 and comparative polarizing plates HPL-1 and HPL-2 were produced.
<偏光子の作製>
 特開2001-141926号公報の実施例1に従い、延伸したポリビニルアルコールフィルムにヨウ素を吸着させて膜厚27μmの偏光子を作製した。
<Production of polarizer>
According to Example 1 of Japanese Patent Laid-Open No. 2001-141926, iodine was adsorbed to a stretched polyvinyl alcohol film to prepare a polarizer having a thickness of 27 μm.
<活性エネルギー線硬化型接着剤組成物の調製>
 各成分を下記に示す組成で混合し、50℃で1時間撹拌して、活性エネルギー線硬化型接着剤組成物を得た。
 
――――――――――――――――――――――――――――――――――
活性エネルギー線硬化型接着剤組成物の組成
――――――――――――――――――――――――――――――――――
 ラジカル重合成化合物:東亞合成社製アロニックスM-220
                           20.0質量部
 興人社製N-ヒドロキシルアクリルアミド       40.0質量部
 興人社製アクロイルモルホリン            40.0質量部
 ラジカル重合開始剤:日本化薬社製KAYACURE DETX-S
                            0.5質量部
 ラジカル重合開始剤:BASF社製IRGACURE907
                            1.5質量部
――――――――――――――――――――――――――――――――――
<Preparation of active energy ray-curable adhesive composition>
Each component was mixed by the composition shown below, and it stirred at 50 degreeC for 1 hour, and obtained the active energy ray hardening-type adhesive composition.

――――――――――――――――――――――――――――――――――
Composition of active energy ray-curable adhesive composition ――――――――――――――――――――――――――――――――――
Radical polymer: Aronix M-220 manufactured by Toagosei Co., Ltd.
20.0 parts by mass N-hydroxylacrylamide 40.0 parts by mass Kojin Acroylmorpholine 40.0 parts by mass Radical polymerization initiator: KAYACURE DETX-S manufactured by Nippon Kayaku Co., Ltd.
0.5 parts by mass Radical polymerization initiator: IRGACURE907 manufactured by BASF
1.5 parts by mass ――――――――――――――――――――――――――――――――――
<偏光板の作製>
 上記で作製した各積層体の密着性ポリマー層側にコロナ処理を施した。コロナ処理を施した積層体の表面に、上記で調製した活性エネルギー線硬化型接着剤組成物をMCDコーター(富士機械社製、セル形状:ハニカム、グラビアロール線数:1000本/INCH、回転速度140%/対ライン速)を用いて、厚み0.5μmになるように塗布した。
 また、別途、厚み40μmのシクロオレフィン系フィルム(JSR社製アートンG7810)を用意し、その表面に、コロナ処理を施した。このコロナ処理を施した表面に上記と同様にして活性エネルギー線硬化型接着剤組成物を厚み0.5μmとなるように塗布した。
 続いて、各積層体の活性エネルギー線硬化型接着剤組成物を塗布した面と、シクロオレフィン系フィルムの活性エネルギー線硬化型接着剤組成物を塗布した面とを、上記で作製した偏光子の両面にそれぞれ貼り合わせて偏光板前駆体を作製した。この際、作製した偏光子のロールの長手方向と、各積層体におけるセルロースエステル層のロールの長手方向とが平行になるように配置した。また、偏光子のロールの長手方向と上記シクロオレフィン系フィルムの長手方向とが、平行になるように配置した。
<Preparation of polarizing plate>
Corona treatment was applied to the adhesive polymer layer side of each laminate produced above. On the surface of the laminate subjected to the corona treatment, the active energy ray-curable adhesive composition prepared above is applied to an MCD coater (manufactured by Fuji Machine Co., Ltd., cell shape: honeycomb, number of gravure roll wires: 1000 / INCH, rotation speed 140% / vs. Line speed) was applied to a thickness of 0.5 μm.
Separately, a cycloolefin film having a thickness of 40 μm (Arton G7810 manufactured by JSR) was prepared, and the surface thereof was subjected to corona treatment. The active energy ray-curable adhesive composition was applied to the corona-treated surface so as to have a thickness of 0.5 μm in the same manner as described above.
Subsequently, the surface of each laminate applied with the active energy ray-curable adhesive composition and the surface of the cycloolefin-based film applied with the active energy ray-curable adhesive composition of the polarizer produced above were used. A polarizing plate precursor was prepared by bonding to both sides. Under the present circumstances, it arrange | positioned so that the longitudinal direction of the roll of the produced polarizer and the longitudinal direction of the roll of the cellulose-ester layer in each laminated body might become parallel. Moreover, it arrange | positioned so that the longitudinal direction of the roll of a polarizer and the longitudinal direction of the said cycloolefin type film might become parallel.
 その後、この偏光板前駆体の両面から、IRヒーターを用いて50℃に加温した。次いで、下記に示す活性エネルギー線を、偏光板前駆体の両面に照射して、上記活性エネルギー線硬化型接着剤組成物を硬化させた。その後、70℃で3分間熱風乾燥して、各偏光板を得た。
 (活性エネルギー線)
 活性エネルギー線として、紫外線(ガリウム封入メタルハライドランプ)、照射装置:Fusion UV Systems,Inc社製Light HAMMER10、バルブ:Vバルブ、ピーク照度:1600mW/cm、積算照射量1000/mJ/cm(波長380~440nm)を使用した。なお、紫外線の照度は、Solatell社製Sola-Checkシステムを使用して測定した。
Then, it heated at 50 degreeC using IR heater from both surfaces of this polarizing plate precursor. Subsequently, the active energy ray shown below was irradiated to both surfaces of the polarizing plate precursor, and the said active energy ray hardening-type adhesive composition was hardened. Then, it heated-air-dried at 70 degreeC for 3 minute (s), and each polarizing plate was obtained.
(Active energy rays)
As active energy rays, ultraviolet rays (gallium filled metal halide lamp), irradiation device: Fusion UV Systems, Inc. Light HAMMER10, bulb: V bulb, peak illuminance: 1600 mW / cm 2 , integrated irradiation amount 1000 / mJ / cm 2 (wavelength) 380-440 nm) was used. The illuminance of ultraviolet rays was measured using a Sola-Check system manufactured by Solatell.
 比較偏光板HPL-1は、偏光板作製時に、セルロースエステル層とポリマー層とが剥がれてしまい、作製できなかった。表3の「耐久性」欄において「-」で示した。 The comparative polarizing plate HPL-1 could not be produced because the cellulose ester layer and the polymer layer were peeled off during the production of the polarizing plate. In the “Durability” column of Table 3, “-” is shown.
<偏光板の偏光子耐久性の評価>
 偏光板の耐久性は、偏光板をガラスに粘着剤を介して貼り付けた形態で次のようにして偏光度をそれぞれ測定した。
 ガラス板の上に偏光板を、積層体の側が空気界面側になるように(ガラス板から離れた側になるように)貼り付けたサンプル(約5cm×5cm)を2つ作製した。これらのサンプルについて、ガラス板側を光源に向けてセットして偏光度を測定した。2つのサンプルをそれぞれ測定し、算術平均した値を偏光板の偏光度とした。
 なお、偏光度は、以下の式により算出した。
<Evaluation of polarizer durability of polarizing plate>
For the durability of the polarizing plate, the degree of polarization was measured in the following manner in a form in which the polarizing plate was attached to glass via an adhesive.
Two samples (about 5 cm × 5 cm) in which a polarizing plate was pasted on a glass plate so that the side of the laminate was on the air interface side (side away from the glass plate) were prepared. About these samples, the glass plate side was set toward the light source, and the degree of polarization was measured. Each of the two samples was measured and the arithmetic average value was taken as the polarization degree of the polarizing plate.
The degree of polarization was calculated by the following formula.
偏光度(%)=[(平行透過率-直交透過率)/(直交透過率+平行透過率)]1/2×100 Polarization degree (%) = [(parallel transmittance−orthogonal transmittance) / (orthogonal transmittance + parallel transmittance)] 1/2 × 100
 偏光度は、日本分光社製の自動偏光フィルム測定装置VAP-7070を用いて380~780nmの範囲で測定し、劣化の度合いが他の波長より顕著に出る波長410nmにおける測定値を採用した。
 その後、温度85℃、相対湿度85%の高温高湿環境下で500時間保存した。次いで、上記と同様にして2つのサンプルについて偏光度を測定し、2つのサンプルの測定値を算術平均し、保存後の偏光板の偏光度とした。
 保存前後の偏光度の変化量に基づき、偏光板耐久性を下記評価基準に基づき評価した。本試験において、下記4段階評価の内、評価A~Cが合格レベルである。評価A及びBが好ましく、評価Aが特に好ましい。
 ここで、偏光度変化量は下記式で算出される。
The degree of polarization was measured in the range of 380 to 780 nm using an automatic polarizing film measuring device VAP-7070 manufactured by JASCO Corporation, and the measured value at a wavelength of 410 nm at which the degree of deterioration is more noticeable than other wavelengths was adopted.
Thereafter, it was stored for 500 hours in a high temperature and high humidity environment at a temperature of 85 ° C. and a relative humidity of 85%. Subsequently, the polarization degree was measured about two samples like the above, the measured value of two samples was arithmetically averaged, and it was set as the polarization degree of the polarizing plate after a preservation | save.
Based on the amount of change in the degree of polarization before and after storage, the polarizing plate durability was evaluated based on the following evaluation criteria. In this test, evaluations A to C are acceptable levels among the following four grades. Evaluations A and B are preferable, and evaluation A is particularly preferable.
Here, the amount of change in polarization degree is calculated by the following equation.
 偏光度変化量(%)=[上記保存前の偏光度(%)-上記保存後の偏光度(%)] Polarization degree change (%) = [Polarization degree before storage (%) − Polarization degree after storage (%)]
 A:偏光度変化量が0.05%未満
 B:偏光度変化量が0.05%以上2.0%未満
 C:偏光度変化量が2.0%以上3.0%未満
 D:偏光度変化量が3.0%以上
A: Polarization degree change amount is less than 0.05% B: Polarization degree change amount is 0.05% or more and less than 2.0% C: Polarization degree change amount is 2.0% or more and less than 3.0% D: Polarization degree More than 3.0% change
Figure JPOXMLDOC01-appb-T000039
Figure JPOXMLDOC01-appb-T000039
 表3の結果から、本発明の積層体を備えた偏光板HPL-1~15は、いずれも、偏光度変化量が小さく、優れた偏光子耐久性を示した。すなわち、本発明の積層体を偏光子の保護フィルムとして用いた偏光板を画像表示装置に組み込むことにより、高温高湿条件下においても画像品質の劣化を効果的に抑制できることが分かる。
 これに対して、比較積層体HS-1を保護フィルムとして用いた比較偏光板HPL-1は、保護フィルムの層間密着性が不良でセルロースエステル層とポリマー層とが剥がれてしまい、耐久性の評価を実施可能な偏光板を作製することができなかった。また、比較積層体HS-2を保護フィルムとして用いた比較偏光板HPL-2は、偏光子耐久性に大きく劣る結果となった。
From the results shown in Table 3, all of the polarizing plates HPL-1 to 15 provided with the laminate of the present invention showed a small change in the degree of polarization and excellent polarizer durability. That is, it can be seen that by incorporating a polarizing plate using the laminate of the present invention as a protective film for a polarizer into an image display device, deterioration of image quality can be effectively suppressed even under high temperature and high humidity conditions.
In contrast, the comparative polarizing plate HPL-1 using the comparative laminate HS-1 as a protective film has a poor interlayer adhesion of the protective film, and the cellulose ester layer and the polymer layer are peeled off. It was not possible to produce a polarizing plate capable of performing the above. Further, the comparative polarizing plate HPL-2 using the comparative laminate HS-2 as a protective film resulted in a greatly inferior polarizer durability.
 本発明をその実施態様とともに説明したが、我々は特に指定しない限り我々の発明を説明のどの細部においても限定しようとするものではなく、添付の請求の範囲に示した発明の精神と範囲に反することなく幅広く解釈されるべきであると考える。 While this invention has been described in conjunction with its embodiments, we do not intend to limit our invention in any detail of the description unless otherwise specified and are contrary to the spirit and scope of the invention as set forth in the appended claims. I think it should be interpreted widely.
 本願は、2016年2月19日に日本国で特許出願された特願2016-030028、及び、2016年7月29日に日本国で特許出願された特願2016-149498に基づく優先権を主張するものであり、これらはいずれもここに参照してその内容を本明細書の記載の一部として取り込む。 This application claims priority based on Japanese Patent Application No. 2016-030028 filed in Japan on February 19, 2016 and Japanese Patent Application No. 2016-149498 filed on July 29, 2016 in Japan. All of which are hereby incorporated herein by reference as if fully set forth herein.
10 積層体(積層板)
 11 セルロースエステル層
 12 密着性ポリマー層
20 液晶表示装置
 21 第1(上側)偏光板
 22 第1偏光板吸収軸の方向
 23 第1(液晶セル上)電極基板
 24 液晶層
 25 第2(液晶セル下)電極基板
 26 第2(下側)偏光板
 27 第2偏光板吸収軸の方向
10 Laminate (laminate)
DESCRIPTION OF SYMBOLS 11 Cellulose ester layer 12 Adhesive polymer layer 20 Liquid crystal display device 21 1st (upper side) polarizing plate 22 Direction of 1st polarizing plate absorption axis 23 1st (on liquid crystal cell) electrode substrate 24 Liquid crystal layer 25 2nd (under liquid crystal cell) ) Electrode substrate 26 Second (lower) polarizing plate 27 Second polarizing plate absorption axis direction

Claims (11)

  1.  セルロースエステルを含有する層と、密着性ポリマーを含有する層とを有する積層体であって、
     前記密着性ポリマーを含有する層が、前記セルロースエステルを含有する層の少なくとも一方の面に隣接し、
     前記密着性ポリマーが、1種の繰り返し単位からなる、グラフト構造、ブランチ構造若しくはスター構造、又は2種以上の繰り返し単位からなる、ブロック構造、グラフト構造、ブランチ構造若しくはスター構造を有し、前記繰り返し単位がHoy法により算出される溶解度パラメータδtが13.5以上20.0未満である繰り返し単位〔a〕を含む、
    積層体。
    A laminate having a layer containing a cellulose ester and a layer containing an adhesive polymer,
    The layer containing the adhesive polymer is adjacent to at least one surface of the layer containing the cellulose ester;
    The adhesive polymer has a graft structure, a branch structure or a star structure composed of one type of repeating unit, or a block structure, a graft structure, a branch structure or a star structure composed of two or more types of repeating units, The unit includes a repeating unit [a] having a solubility parameter δt calculated by the Hoy method of 13.5 or more and less than 20.0,
    Laminated body.
  2.  前記密着性ポリマーが、2種以上の繰り返し単位からなる、ブロック構造、グラフト構造、ブランチ構造若しくはスター構造を有する請求項1に記載の積層体。 The laminate according to claim 1, wherein the adhesive polymer has a block structure, a graft structure, a branch structure, or a star structure composed of two or more kinds of repeating units.
  3.  前記密着性ポリマーが、1分子当たり2~250個の端部を有する請求項1又は2に記載の積層体。 The laminate according to claim 1 or 2, wherein the adhesive polymer has 2 to 250 ends per molecule.
  4.  前記密着性ポリマーが、前記ブロック構造又は前記グラフト構造を有する請求項1~3のいずれか1項に記載の積層体。 The laminate according to any one of claims 1 to 3, wherein the adhesive polymer has the block structure or the graft structure.
  5.  前記2種以上の繰り返し単位が、Hoy法により算出される溶解度パラメータδtが20.0以上26.0以下である繰り返し単位〔b〕を含む請求項1~4のいずれか1項に記載の積層体。 The laminate according to any one of claims 1 to 4, wherein the two or more kinds of repeating units include a repeating unit [b] having a solubility parameter δt calculated by the Hoy method of 20.0 or more and 26.0 or less. body.
  6.  前記繰り返し単位〔b〕が、下記一般式1で表される繰り返し単位である請求項5に記載の積層体。
    Figure JPOXMLDOC01-appb-C000001
     一般式1中、Rは水素原子又はアルキル基を表す。
     R及びRは、各々独立に、水素原子、アルキル基、アリール基又はアルコキシカルボニル基を表す。
     Lは、単結合、又は、アルキレン基、アリーレン基、-C(=O)-、-O-及び-N(R)-から選ばれる2価の連結基若しくはこれらの連結基の2種以上を組み合わせてなる2価の連結基を示す。Rは水素原子又はアルキル基を表す。
    The laminate according to claim 5, wherein the repeating unit [b] is a repeating unit represented by the following general formula 1.
    Figure JPOXMLDOC01-appb-C000001
    In General Formula 1, R 1 represents a hydrogen atom or an alkyl group.
    R 2 and R 3 each independently represents a hydrogen atom, an alkyl group, an aryl group or an alkoxycarbonyl group.
    L is a single bond, an alkylene group, an arylene group, a divalent linking group selected from —C (═O) —, —O— and —N (R 4 ) —, or two or more of these linking groups. The bivalent coupling group which combines is shown. R 4 represents a hydrogen atom or an alkyl group.
  7.  前記繰り返し単位〔a〕が、下記一般式2又は3で表される繰り返し単位である請求項1~6のいずれか1項に記載の積層体。
    Figure JPOXMLDOC01-appb-C000002
     一般式2中、Rは水素原子又はアルキル基を表す。
     R及びRは、各々独立に、水素原子、アルキル基、アリール基又はアルコキシカルボニル基を表す。
     Rは炭素数1~20のアルキル基又は炭素数3~20のシクロアルキル基を表す。
    Figure JPOXMLDOC01-appb-C000003
     一般式3中、R、R10及びR11は、各々独立に、水素原子、ハロゲン原子、アルキル基又はアリール基を表す。
     R12、R13、R14、R15及びR16は、各々独立に、水素原子、ハロゲン原子、水酸基、アルキル基、アルケニル基、アリール基、アルコキシ基、アシル基、アシルオキシ基又はアルコキシカルボニル基を表す。
    The laminate according to any one of claims 1 to 6, wherein the repeating unit [a] is a repeating unit represented by the following general formula 2 or 3.
    Figure JPOXMLDOC01-appb-C000002
    In General Formula 2, R 5 represents a hydrogen atom or an alkyl group.
    R 6 and R 7 each independently represents a hydrogen atom, an alkyl group, an aryl group or an alkoxycarbonyl group.
    R 8 represents an alkyl group having 1 to 20 carbon atoms or a cycloalkyl group having 3 to 20 carbon atoms.
    Figure JPOXMLDOC01-appb-C000003
    In General Formula 3, R 9 , R 10 and R 11 each independently represent a hydrogen atom, a halogen atom, an alkyl group or an aryl group.
    R 12 , R 13 , R 14 , R 15 and R 16 are each independently a hydrogen atom, halogen atom, hydroxyl group, alkyl group, alkenyl group, aryl group, alkoxy group, acyl group, acyloxy group or alkoxycarbonyl group. To express.
  8.  前記繰り返し単位〔a〕が、前記一般式2で表される繰り返し単位である請求項7に記載の積層体。 The laminate according to claim 7, wherein the repeating unit [a] is a repeating unit represented by the general formula 2.
  9.  前記セルロースエステルが、セルロースアシレートである請求項1~8のいずれか1項に記載の積層体。 The laminate according to any one of claims 1 to 8, wherein the cellulose ester is cellulose acylate.
  10.  請求項1~9のいずれか1項に記載の積層体と、偏光子とを有する偏光板。 A polarizing plate comprising the laminate according to any one of claims 1 to 9 and a polarizer.
  11.  請求項10に記載の偏光板を有する画像表示装置。 An image display device having the polarizing plate according to claim 10.
PCT/JP2016/084963 2016-02-19 2016-11-25 Laminate, polarizing plate and image display device WO2017141516A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017567958A JP6734877B2 (en) 2016-02-19 2016-11-25 Laminated body, polarizing plate and image display device

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2016030028 2016-02-19
JP2016-030028 2016-02-19
JP2016-149498 2016-07-29
JP2016149498 2016-07-29

Publications (1)

Publication Number Publication Date
WO2017141516A1 true WO2017141516A1 (en) 2017-08-24

Family

ID=59624891

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/084963 WO2017141516A1 (en) 2016-02-19 2016-11-25 Laminate, polarizing plate and image display device

Country Status (2)

Country Link
JP (1) JP6734877B2 (en)
WO (1) WO2017141516A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004354962A (en) * 2003-05-02 2004-12-16 Fuji Photo Film Co Ltd Optical compensation sheet, polarizing plate and liquid crystal display using the same
JP2005309362A (en) * 2004-03-23 2005-11-04 Fuji Photo Film Co Ltd Optical compensate sheet, its manufacturing method, polarizing plate, and liquid crystal display device
JP2009134238A (en) * 2007-11-06 2009-06-18 Konica Minolta Opto Inc Hard coat film, anti-reflection film, polarizing plate and display device
JP2011136503A (en) * 2009-12-28 2011-07-14 Fujifilm Corp Optical film, antireflection film, polarizing plate and image display device
JP2013539076A (en) * 2010-09-24 2013-10-17 アクロン ポリマー システムズ,インク. Optical compensation film based on fluoropolymer
JP2015517585A (en) * 2012-05-01 2015-06-22 アクロン ポリマー システムズ,インコーポレイテッド Optical film cast from styrenic fluoropolymer solution

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004354962A (en) * 2003-05-02 2004-12-16 Fuji Photo Film Co Ltd Optical compensation sheet, polarizing plate and liquid crystal display using the same
JP2005309362A (en) * 2004-03-23 2005-11-04 Fuji Photo Film Co Ltd Optical compensate sheet, its manufacturing method, polarizing plate, and liquid crystal display device
JP2009134238A (en) * 2007-11-06 2009-06-18 Konica Minolta Opto Inc Hard coat film, anti-reflection film, polarizing plate and display device
JP2011136503A (en) * 2009-12-28 2011-07-14 Fujifilm Corp Optical film, antireflection film, polarizing plate and image display device
JP2013539076A (en) * 2010-09-24 2013-10-17 アクロン ポリマー システムズ,インク. Optical compensation film based on fluoropolymer
JP2015517585A (en) * 2012-05-01 2015-06-22 アクロン ポリマー システムズ,インコーポレイテッド Optical film cast from styrenic fluoropolymer solution

Also Published As

Publication number Publication date
JPWO2017141516A1 (en) 2018-11-29
JP6734877B2 (en) 2020-08-05

Similar Documents

Publication Publication Date Title
US8067094B2 (en) Films including thermoplastic silicone block copolymers
JP6327289B2 (en) Polarizing plate protective film, production method thereof, polarizing plate and image display device
WO2017057255A1 (en) Polarizing plate protective film, method for manufacturing same, polarizing plate, and image display device
KR20160070810A (en) Polarizing plate and liquid crystal display device using same
KR20170033297A (en) Laminate film
JP6654203B2 (en) Polarizing plate protective film, method for producing the same, polarizing plate and liquid crystal display device
KR20140140511A (en) Low moisture permeable film, optical film, polarizing plate, liquid crystal display device, and production method of low moisture permeable film
WO2018047719A1 (en) Releasable multilayer film and method for producing polarizing plate
CN110799864A (en) Optical film
JP2017149001A (en) Laminate, polarizing plate and image display device
CN105122098A (en) Polarizing plate
JP6738231B2 (en) Polarizing plate protective film, polarizing plate and image display device
JP6574063B2 (en) Laminated body, optical film, polarizing plate protective film, polarizing plate and image display device
JP6081244B2 (en) Polarizing plate and liquid crystal display device
JP2017065241A (en) Laminate, polarizing plate, and image display device
WO2017141516A1 (en) Laminate, polarizing plate and image display device
JP6587588B2 (en) Laminated body, optical film, polarizing plate protective film, polarizing plate and image display device
WO2017057256A1 (en) Laminate, polarizing plate, and image display device
JP2017065242A (en) Laminate, polarizing plate, and image display device
JP6713529B2 (en) Laminated body, polarizing plate and image display device
JP6607964B2 (en) Polarizing plate, image display device and polarizing plate protective film
JP6535016B2 (en) Polarizing plate provided with polyethylene terephthalate film as protective film and manufacturing method thereof {POLARIZING PLATE WITH POLYETHYLENE TEREPHTHALATE FILM AS PROTECTION FILM, AND METHOD FOR MANUFACTURING SAME}
JP6595004B2 (en) Laminated body, retardation film, polarizing plate, and image display device
WO2017057254A1 (en) Laminate, polarizing plate, and image display device
WO2017115786A1 (en) Laminate, and polarizing plate and image display device using this laminate

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16890653

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2017567958

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16890653

Country of ref document: EP

Kind code of ref document: A1