WO2017141488A1 - Dehumidifier - Google Patents

Dehumidifier Download PDF

Info

Publication number
WO2017141488A1
WO2017141488A1 PCT/JP2016/080353 JP2016080353W WO2017141488A1 WO 2017141488 A1 WO2017141488 A1 WO 2017141488A1 JP 2016080353 W JP2016080353 W JP 2016080353W WO 2017141488 A1 WO2017141488 A1 WO 2017141488A1
Authority
WO
WIPO (PCT)
Prior art keywords
unit
visible light
dry air
dehumidifier
air
Prior art date
Application number
PCT/JP2016/080353
Other languages
French (fr)
Japanese (ja)
Inventor
好孝 明里
石川 俊夫
英雄 柴田
Original Assignee
三菱電機株式会社
三菱電機ホーム機器株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社, 三菱電機ホーム機器株式会社 filed Critical 三菱電機株式会社
Priority to CN201680069595.3A priority Critical patent/CN108603329B/en
Priority to JP2017567947A priority patent/JP6696515B2/en
Publication of WO2017141488A1 publication Critical patent/WO2017141488A1/en
Priority to HK18113846.9A priority patent/HK1254553A1/en

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06FLAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
    • D06F58/00Domestic laundry dryers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/26Drying gases or vapours
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/02Simple or compound lenses with non-spherical faces
    • G02B3/08Simple or compound lenses with non-spherical faces with discontinuous faces, e.g. Fresnel lens
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06FLAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
    • D06F2101/00User input for the control of domestic laundry washing machines, washer-dryers or laundry dryers
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06FLAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
    • D06F2103/00Parameters monitored or detected for the control of domestic laundry washing machines, washer-dryers or laundry dryers
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06FLAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
    • D06F2103/00Parameters monitored or detected for the control of domestic laundry washing machines, washer-dryers or laundry dryers
    • D06F2103/28Air properties
    • D06F2103/36Flow or velocity
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06FLAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
    • D06F2105/00Systems or parameters controlled or affected by the control systems of washing machines, washer-dryers or laundry dryers
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06FLAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
    • D06F2105/00Systems or parameters controlled or affected by the control systems of washing machines, washer-dryers or laundry dryers
    • D06F2105/58Indications or alarms to the control system or to the user
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06FLAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
    • D06F2105/00Systems or parameters controlled or affected by the control systems of washing machines, washer-dryers or laundry dryers
    • D06F2105/62Stopping or disabling machine operation
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06FLAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
    • D06F58/00Domestic laundry dryers
    • D06F58/32Control of operations performed in domestic laundry dryers 
    • D06F58/34Control of operations performed in domestic laundry dryers  characterised by the purpose or target of the control

Definitions

  • the present invention relates to a dehumidifier.
  • Patent Document 1 describes a clothes dryer having a luminous body as an example of a dehumidifier that blows dry air.
  • the light emitter emits light in the direction in which dry air is blown out.
  • the user can recognize the direction in which the dry air is blown out.
  • Patent Document 1 the user cannot arbitrarily change the direction in which the dry air is blown out. In the above-mentioned Patent Document 1, the user needs to move an object to which dry air is sent in accordance with the direction in which the dry air is blown from the clothes dryer.
  • An object of the present invention is to obtain a dehumidifier that makes it easier for the user to recognize the direction in which the dry air is blown out and can change the direction in which the dry air is blown out to any direction more easily. is there.
  • a dehumidifier includes a housing in which an air outlet is formed, a dehumidifying means provided in the housing for removing moisture in the air, and dry air from which water has been removed by the dehumidifying means.
  • Blowout means for blowing out air
  • wind direction determination means for determining the direction in which dry air is blown out from the blowout opening
  • operation means for transmitting an operation instruction
  • the airflow direction determination means is moved to Control means for changing the direction in which the dry air is blown out from
  • irradiation means for irradiating visible light in the direction in which the dry air is blown out from the outlet.
  • the dehumidifier When the dehumidifier according to the present invention receives an operation instruction from the operation means, the dehumidifier moves the wind direction determining means to change the direction in which the dry air is blown out from the blowout port, and the direction in which the dry air is blown out from the blowout port Irradiating means for irradiating visible light. For this reason, the dehumidifier which can make a user recognize the direction in which dry air is blown out more easily, and can change the direction in which dry air is blown out to arbitrary directions more easily is obtained.
  • FIG. 3 is a cross-sectional view illustrating a configuration of a wind direction changing unit according to the first embodiment. It is the figure which looked at the sensor part of Embodiment 1 from the front. 3 is a cross-sectional view showing a structure of a sensor unit according to Embodiment 1.
  • FIG. 2 is a diagram illustrating a control device according to Embodiment 1.
  • FIG. 2 is a figure which shows operation
  • FIG. 1 It is a figure which shows operation
  • FIG. It is a figure which shows operation
  • FIG. It is a figure which shows the modification of the dehumidifier of Embodiment 3.
  • FIG. 1 is a perspective view showing the appearance of the dehumidifier 100 of the first embodiment.
  • FIG. 2 is a longitudinal sectional view showing the structure of the dehumidifier 100 of the first embodiment.
  • the left-right direction on the paper surface in FIG. 2 is the front-rear direction of the dehumidifier 100.
  • the vertical direction on the paper surface in FIG. 2 is the vertical direction of the dehumidifier 100. That is, in FIG. 2, the front side of the paper surface is the left direction of the dehumidifier 100.
  • the depth direction of the paper surface is the right direction of the dehumidifier 100.
  • the dehumidifier 100 includes a housing 1.
  • the housing 1 is a part that becomes an outer shell of the dehumidifier 100.
  • the housing 1 is formed in, for example, a vertically long box shape that can stand by itself.
  • the dehumidifier 100 may be equipped with the wheel 2, for example.
  • the wheel 2 is provided at the bottom of the housing 1.
  • the dehumidifier 100 can be moved by the wheels 2.
  • a suction port 3 is formed in the housing 1.
  • the suction port 3 is an opening for taking air into the housing 1.
  • the suction port 3 is formed on the rear surface of the housing 1, for example.
  • a blower outlet 4 is formed in the housing 1.
  • the blower outlet 4 is an opening for blowing air from the inside of the housing 1 toward the outside.
  • the blower outlet 4 is formed in the upper part of the front surface of the housing
  • the shape of the blower outlet 4 is, for example, a rectangular shape extending in the left-right direction of the housing 1.
  • the air passage 5 is formed inside the housing 1.
  • the air passage 5 is a space from the suction port 3 to the blowout port 4.
  • the dehumidifier 100 is provided with the ventilation fan 6a and the fan motor 6 as an example of a blowing means.
  • the blower fan 6 a is a fan that generates an air flow from the suction port 3 toward the blowout port 4 in the air passage 5.
  • a fan motor 6 is connected to the blower fan 6a.
  • the fan motor 6 is a motor that rotates the blower fan 6a.
  • the blower fan 6a and the fan motor 6 are provided inside the housing 1, for example, as shown in FIG.
  • the blower fan 6 a is disposed in the air path 5.
  • air flows from the suction port 3 toward the blowout port 4 by the blower fan 6a. Air is blown out from the outlet 4 by the blower fan 6a.
  • the side with the suction port 3 is the upstream side
  • the side with the air outlet 4 is the downstream side. That is, in this embodiment, air flows in the air passage 5 from the upstream side toward the downstream side.
  • the dehumidifier 100 includes a dehumidifying unit 7 as an example of a dehumidifying means for removing moisture contained in the air.
  • the dehumidifying unit 7 is a device that condenses moisture in the air, for example.
  • the dehumidifying unit 7 discharges the condensed moisture.
  • the dehumidifying unit 7 drops the condensed moisture downward as liquid water.
  • the dehumidifying unit 7 removes moisture in the air, that is, dehumidifies the air.
  • the air dehumidified by the dehumidifying unit 7 becomes dry air.
  • the dehumidifying unit 7 is a device using a heat pump circuit, for example.
  • the dehumidifying unit 7 condenses moisture in the air by using an evaporator in a heat pump circuit, for example.
  • the dehumidifying unit 7 may be, for example, a desiccant device.
  • the desiccant apparatus has an adsorbent that adsorbs moisture in the air and a heat exchanger. The moisture adsorbed on the adsorbent is condensed by the heat exchanger.
  • the dehumidifying unit 7 is provided, for example, inside the housing 1.
  • the dehumidifying unit 7 is disposed in the air path 5.
  • the dehumidification part 7 is arrange
  • the suction port 3, the dehumidifying unit 7, the blower fan 6a, and the blower outlet 4 are arranged in order from the upstream side to the downstream side.
  • the dehumidifier 100 includes a water storage unit 8.
  • the water storage unit 8 is a part that stores the water discharged by the dehumidifying unit 7.
  • the water reservoir 8 is a container having an open top.
  • the water storage unit 8 is provided inside the housing 1 and below the dehumidifying unit 7.
  • the water storage part 8 is provided so that attachment or detachment is possible from the housing
  • the water storage unit 8 receives and stores the water dripped from the dehumidifying unit 7 from the upper opening.
  • the dehumidifier 100 may include a filter 9.
  • the filter 9 is provided inside the housing 1, for example.
  • the filter 9 is provided so as to cover the suction port 3 from the inside of the housing 1.
  • the filter 9 prevents dust and dust from entering the housing 1.
  • the dehumidifier 100 includes a wind direction changing unit 10.
  • FIG. 3 is a cross-sectional view illustrating a configuration of the wind direction changing unit 10 according to the first embodiment.
  • the vertical and horizontal directions on the paper surface of FIG. 3 correspond to the vertical and horizontal directions of the dehumidifier 100 of the present embodiment.
  • the wind direction changing unit 10 is a part that determines the direction in which air is blown out from the air outlet 4.
  • the direction in which air is blown out from the blower outlet 4 is hereinafter referred to as the blowout direction.
  • the blowing direction is changed by moving the wind direction changing unit 10.
  • the wind direction change part 10 is arrange
  • the wind direction changing unit 10 is an example of a wind direction determining unit.
  • the wind direction change part 10 has the up-down direction louver 11 as an example of a 1st change part, as shown, for example in FIG.1 and FIG.3.
  • the vertical louver 11 is formed, for example, in a shape that matches the shape of the air outlet 4.
  • the vertical louver 11 of the present embodiment is a rectangular frame-shaped portion extending in the left-right direction of the housing 1. As shown in FIG. 3 as an example, the vertical louver 11 has three plate-like portions extending in the horizontal direction.
  • the vertical louver 11 has, for example, a rectangular opening extending in the left-right direction.
  • the vertical louver 11 is formed to be rotatable about a horizontal axis.
  • the wind direction changing unit 10 has a first motor 12 for moving the vertical louver 11.
  • the first motor 12 is provided, for example, inside the housing 1.
  • the first motor 12 rotates the vertical louver 11 via, for example, a gear 12a, a gear 12b, and a gear 12c.
  • the orientation of the opening of the vertical louver 11 is changed in a plane perpendicular to the horizontal axis. Thereby, the blowing direction is changed to the vertical direction.
  • the wind direction change part 10 has the left-right direction louver 13 as an example of a 2nd change part, as shown, for example in FIG.1 and FIG.3.
  • the left-right direction louver 13 has a plate-like portion extending in the up-down direction.
  • the left-right direction louver 13 has six plate-like portions extending in the vertical direction.
  • the six plate-like parts extending in the vertical direction are arranged at regular intervals, for example.
  • the left-right direction louver 13 is formed to be rotatable about a vertical axis.
  • the left-right direction louver 13 is arrange
  • the up-down direction louver 11 and the left-right direction louver 13 are arranged, for example, so that the center positions in the left-right direction coincide with each other.
  • the wind direction changing unit 10 has a second motor 14 for moving the left-right direction louver 13.
  • the second motor 14 is provided, for example, inside the housing 1.
  • the wind direction changing unit 10 has a link 15.
  • the link 15 is connected to the rear part of the left-right direction louver 13, for example.
  • the link 15 is connected to the second motor 14. That is, the left-right louver 13 and the second motor 14 are connected via the link 15.
  • the second motor 14 is driven, the left-right louver 13 rotates via the link 15.
  • the blowing direction is changed to the left-right direction.
  • the left-right louver 13 is formed so as to be rotatable about a left-right axis.
  • the link 15 is connected to the vertical louver 11.
  • the link 15 moves together with the vertical louver 11 when the vertical louver 11 moves.
  • the left-right louver 13 moves together with the link 15. That is, the horizontal louver 13 moves together with the vertical louver 11 when the vertical louver 11 moves.
  • the horizontal louver 13 moves in the same direction as the vertical louver 11 moves.
  • the dehumidifier 100 includes a sensor unit 16.
  • the sensor part 16 is arrange
  • the sensor part 16 is arrange
  • FIG. 4 is a front view of the sensor unit 16 according to the first embodiment.
  • FIG. 5 is a cross-sectional view illustrating the structure of the sensor unit 16 according to the first embodiment.
  • the front direction of the paper surface of FIG. 4 is the front direction of the sensor unit 16.
  • the vertical direction on the paper surface of FIG. 4 is the vertical direction of the sensor unit 16.
  • the right direction on the paper surface is the front direction of the sensor unit 16, and the left direction on the paper surface is the back surface direction of the sensor unit 16.
  • the vertical direction on the paper surface of FIG. 5 is the vertical direction of the sensor unit 16.
  • the sensor unit 16 includes a sensor case 17 as shown in FIGS. 1, 3, 4, and 5, for example.
  • the sensor case 17 is a part serving as an outer frame of the sensor unit 16.
  • the shape of the sensor case 17 is a cylinder as an example.
  • the sensor case 17 is formed so as to be rotatable about a vertical axis and a horizontal axis.
  • the sensor case 17 is connected to the link 15 at, for example, the center position in the left-right direction of the vertical louver 11.
  • the sensor case 17 is connected to the left-right louver 13 via the link 15.
  • the sensor case 17 may be provided directly on the left-right louver 13 without using the link 15.
  • the sensor case 17 is provided so that the front direction faces the blowing direction.
  • the sensor case 17 moves together with the left-right direction louver 13 when the left-right direction louver 13 moves.
  • the sensor case 17 moves in the same direction as the direction in which the left-right louver 13 moves.
  • the front direction of the sensor case 17 is directed to the changed blowing direction even when the blowing direction is changed.
  • the sensor case 17 may have a sensor window 17a on the front side, for example.
  • the sensor window 17a is formed of a material having a high infrared transmittance.
  • a material having a high infrared transmittance is, for example, a silicon wafer.
  • the sensor window 17a is formed so that infrared rays radiated from a region where the air blown out from the blower outlet 4 hits are transmitted.
  • an area where the air blown out from the outlet 4 will be referred to as an outlet area.
  • the sensor unit 16 may include a surface temperature detection unit 18 as an example of a surface temperature detection unit.
  • the surface temperature detector 18 is a part that detects the surface temperature of the target region in a non-contact state.
  • the surface temperature detection unit 18 is formed so that the target area for detecting the surface temperature is coincident with or close to the blowing area.
  • the surface temperature detector 18 is provided inside the sensor case 17.
  • the surface temperature detector 18 is disposed on the back side of the sensor window 17a.
  • the surface temperature detection unit 18 includes, for example, an infrared absorption film and a thermistor. The infrared absorption film of the surface temperature detection unit 18 absorbs infrared rays that pass through the sensor window 17a.
  • the infrared absorbing film has a heat sensitive part.
  • the heat-sensitive portion of the infrared absorbing film is heated by absorbing infrared rays that have passed through the sensor window 17a.
  • the heat sensitive part of the infrared absorbing film becomes a hot junction.
  • the thermistor detects the temperature of a portion that is not a heat-sensitive portion of an infrared absorption film that is an example of a cold junction.
  • the surface temperature detection part 18 detects the surface temperature of the area
  • the blowing area is changed along with the blowing direction.
  • the surface temperature detector 18 provided inside the sensor case 17 moves together with the sensor case 17. That is, the surface temperature detection unit 18 moves together with the left-right direction louver 13.
  • the surface temperature detection unit 18 can detect the surface temperature of the changed blowing area even when the blowing area is changed, for example.
  • the sensor unit 16 includes an irradiation unit 19 as an example of an irradiation unit that emits visible light.
  • the irradiation unit 19 includes, for example, a light source 19a and a lens 19b.
  • the lens 19 b is provided on the front portion of the sensor case 17.
  • the lens 19b is disposed below the sensor window 17a, for example.
  • the light source 19a is provided inside the sensor case 17 on the back surface of the lens 19b, for example.
  • the light source 19a emits visible light.
  • the light source 19a is, for example, an LED.
  • the light source 19a may be a laser diode, for example.
  • a light source having a luminous intensity of 1000 mcd or more is used as the light source 19a.
  • the light source 19a emits, for example, green visible light.
  • the visible light emitted by the light source 19a may be other than green, for example, orange.
  • the lens 19b collects visible light emitted from the light source 19a.
  • the lens 19b is, for example, an acrylic resin biconvex lens.
  • the material of the lens 19b may be, for example, polycarbonate resin or glass.
  • the lens 19b may be a Fresnel lens.
  • the part of the sensor case 17 between the light source 19a and the lens 19b is formed of a member that transmits visible light irradiated by the light source 19a, for example.
  • a portion between the light source 19a and the lens 19b may be opened, for example.
  • the visible light irradiated by the light source 19a is irradiated to the lens 19b.
  • the lens 19b condenses the visible light irradiated by the light source 19a.
  • the visible light collected by the lens 19b is easily visually recognized, for example, indoors.
  • the light source 19 a and the lens 19 b are provided so that visible light collected by the lens 19 b is irradiated in the front direction of the sensor case 17. That is, the visible light condensed by the lens 19b is irradiated in the blowing direction.
  • Visible light collected by the lens 19b is irradiated to the outside of the housing 1.
  • an area irradiated with visible light condensed by the lens 19 b is referred to as an irradiation area 30.
  • the light source 19a and the lens 19b are provided so that the irradiation region 30 at a position 1 m away from the housing 1 is a circle having a diameter of 60 mm.
  • the size and shape of the irradiation region 30 are not limited to this example.
  • the light source 19a and the lens 19b are provided in the sensor case 17.
  • the light source 19a and the lens 19b move together with the sensor case 17. That is, the visible light collected by the lens 19b is irradiated in the changed blowing direction even when the blowing direction is changed, for example.
  • the dehumidifier 100 includes a control device 20 and an operation unit 21.
  • the control device 20 is provided inside the housing 1.
  • the operation unit 21 is provided on the rear surface side of the upper surface of the housing 1. The control device 20 and the operation unit 21 are connected.
  • the control device 20 is connected to each device provided in the dehumidifier 100.
  • the control device 20 controls each device provided in the dehumidifier 100.
  • the control device 20 is connected to, for example, the fan motor 6, the dehumidifying unit 7, the first motor 12, the second motor 14, and the irradiation unit 19.
  • the control device 20 controls, for example, the fan motor 6, the dehumidifying unit 7, the first motor 12, the second motor 14, and the irradiation unit 19.
  • control device 20 is connected to the surface temperature detection unit 18, for example.
  • the surface temperature detector 18 converts the detected surface temperature information into an electrical signal such as a voltage.
  • the surface temperature detection unit 18 outputs the converted electric signal to the control device 20.
  • the control device 20 operates based on, for example, an electrical signal from the surface temperature detection unit 18.
  • the operation unit 21 is a part for the user to operate the dehumidifier 100.
  • the operation unit 21 includes, for example, an operation button 21a, a mode selection button 21b, a setting button 21c, and an operation key 21d.
  • the operation button 21 a is for starting and stopping the operation of the dehumidifier 100.
  • the mode selection button 21b is for selecting the operation mode of the dehumidifier 100.
  • the mode selection button 21b transmits, for example, a signal corresponding to an operation from the user to the control device 20.
  • the setting button 21c is for setting the dehumidifier 100.
  • the setting button 21c transmits a signal to the control device 20 in accordance with, for example, an operation from the user.
  • the operation key 21d is an example of an operation unit that transmits an operation instruction.
  • the operation key 21 d is for moving the wind direction changing unit 10.
  • the operation key 21d is, for example, a cross key.
  • the operation key 21d transmits an operation instruction corresponding to the operation from the user to the control device 20.
  • the control device 20 operates based on the received operation instruction.
  • the operation key 21d may be other than the cross key.
  • FIG. 6 is a diagram illustrating the control device 20 according to the first embodiment.
  • FIG. 6A is a diagram illustrating an example of the configuration of the control device 20.
  • the control device 20 includes an operation control unit 20a, a storage unit 20b, a temperature determination unit 20c, and a setting unit 20d.
  • the operation control unit 20a is an example of a control unit that controls each device provided in the dehumidifier 100.
  • the operation control unit 20a controls the first motor 12 and the second motor 14 based on, for example, an operation instruction from the operation key 21d.
  • the storage unit 20b is an example of a storage unit.
  • a plurality of operation modes are set in advance.
  • the operation control unit 20a selects one operation mode from a plurality of operation modes set in the storage unit 20b based on, for example, a signal from the mode selection button 21b.
  • the operation control unit 20a controls the fan motor 6, the dehumidifying unit 7, the first motor 12, the second motor 14, and the irradiation unit 19 based on, for example, the selected operation mode.
  • the fixed concentration mode is stored as one of a plurality of operation modes in the storage unit 20b of the present embodiment.
  • the fixed concentration mode is an operation mode used when, for example, shoes or a small amount of clothes 31 are concentrated and dried by the dehumidifier 100.
  • the temperature determination unit 20 c is a part that determines the surface temperature based on the electrical signal output by the surface temperature detection unit 18. For example, information on the reference value of the surface temperature is stored in the storage unit 20b. The temperature determination unit 20c determines the surface temperature based on, for example, the electrical signal from the surface temperature detection unit 18 and the reference value information stored in the storage unit 20b.
  • the setting unit 20d is a part that sets a setting direction in the storage unit 20b in accordance with a signal from the setting button 21c. For example, when the setting button 21c is pressed when visible light is irradiated by the irradiation unit 19, a signal is transmitted to the setting unit 20d. When receiving the signal from the setting button 21c, the setting unit 20d sets the direction in which the visible light is irradiated by the irradiation unit 19 as the setting direction in the storage unit 20b.
  • the setting button 21c and the setting unit 20d are an example of a setting unit that sets a setting direction.
  • FIG. 6B is a hardware configuration diagram illustrating an example of the configuration of the control device 20.
  • the processing circuit may be dedicated hardware 200.
  • the processing circuit may include a processor 201 and a memory 202.
  • a part of the processing circuit is formed as dedicated hardware 200, and may further include a processor 201 and a memory 202.
  • FIG. 6B shows an example in which the processing circuit is partly formed as dedicated hardware 200 and includes a processor 201 and a memory 202.
  • the processing circuit includes, for example, a single circuit, a composite circuit, a programmed processor, a parallel programmed processor, an ASIC, an FPGA, or a combination thereof. .
  • the processing circuit includes at least one processor 201 and at least one memory 202
  • the functions of the operation control unit 20a, the storage unit 20b, the temperature determination unit 20c, and the setting unit 20d of the control device 20 are software, firmware, or software. This is realized by a combination of firmware and firmware.
  • the processor 201 reads out and executes the program stored in the memory 202, thereby realizing the function of each unit.
  • the processor 201 is also referred to as a CPU (Central Processing Unit), a central processing unit, a processing unit, an arithmetic unit, a microprocessor, a microcomputer, or a DSP.
  • the memory 202 corresponds to, for example, a nonvolatile or volatile semiconductor memory such as a RAM, a ROM, a flash memory, an EPROM, and an EEPROM, or a magnetic disk, a flexible disk, an optical disk, a compact disk, a mini disk, and a DVD.
  • the processing circuit can realize the functions of the operation control unit 20a, the storage unit 20b, the temperature determination unit 20c, and the setting unit 20d of the control device 20 by hardware, software, firmware, or a combination thereof. it can.
  • the configuration of the dehumidifier 100 is not limited to the configuration in which the operation is controlled by the single control device 20.
  • the configuration of the dehumidifier 100 may be a configuration in which operation is controlled by cooperation of a plurality of devices.
  • the dehumidifier 100 is used indoors, for example.
  • the dehumidifier 100 starts operation when, for example, the operation button 21a is pressed.
  • the operation button 21a pressed by the user transmits a signal to the operation control unit 20a.
  • the operation control unit 20a drives the fan motor 6 and the dehumidifying unit 7.
  • the blower fan 6a When the fan motor 6 is driven, the blower fan 6a rotates.
  • the blower fan 6a generates an air current.
  • the indoor air P is taken into the housing 1 from the suction port 3 by the air flow generated by the blower fan 6 a.
  • the room air P is dehumidified by the dehumidifying unit 7 to become dry air Q.
  • the dry air Q is blown into the room from the air outlet 4 by the air flow generated by the blower fan 6a.
  • the blowing direction of the dry air Q is determined by the wind direction changing unit 10. As described above, the dehumidifier 100 starts operation.
  • the user operates the mode selection button 21b after starting the operation of the dehumidifier 100 with the operation button 21a, for example.
  • the operation button 21a for example.
  • the operation control unit 20a selects the fixed concentration mode based on the signal from the mode selection button 21b.
  • the operation control unit 20a causes the light source 19a of the irradiation unit 19 to emit visible light. Visible light is condensed on the lens 19b. The visible light condensed on the lens 19b is irradiated in the blowing direction of the dry air Q.
  • FIG. 7 is a diagram illustrating the operation of the dehumidifier 100 according to the first embodiment.
  • the visible light irradiated in the blowing direction of the dry air Q illuminates the irradiation region 30.
  • the user operates the operation key 21d while looking at the irradiation area 30.
  • the operation key 21d transmits an operation instruction based on an operation from the user to the operation control unit 20a.
  • the operation control unit 20a controls the first motor 12 and the second motor 14 based on the received operation instruction. Thereby, the up-down direction louver 11 and the left-right direction louver 13 move.
  • the blowing direction is changed by moving the vertical louver 11 and the horizontal louver 13.
  • the sensor case 17 When the vertical louver 11 and the horizontal louver 13 move, the sensor case 17 also moves.
  • the irradiation unit 19 provided in the sensor case 17 also moves.
  • the irradiation unit 19 moves so as to irradiate light in the changed blowing direction.
  • the irradiation area 30 moves according to the change of the blowing direction.
  • the user operates the operation key 21d while observing the irradiation area 30, as shown in FIG. Thereby, the dry air Q concentrates on the clothes 31.
  • the user may press the setting button 21c, for example, while the clothes 31 are illuminated by visible light.
  • the setting button 21c pressed by the user transmits a signal to the setting unit 20d.
  • the setting unit 20d sets the direction in which the visible light is irradiated by the irradiation unit 19 as the setting direction in the storage unit 20b.
  • the operation control unit 20a controls the first motor 12 and the second motor 14 so that the blowing direction is fixed in the setting direction.
  • the dry air Q When the blowing direction is fixed in the setting direction, the dry air Q continues to be blown in the setting direction for a certain time.
  • the surface temperature detection unit 18 detects the surface temperature of the blowing region.
  • the surface temperature detector 18 converts the detected surface temperature information into an electrical signal.
  • the surface temperature detection unit 18 transmits the converted electrical signal to the temperature determination unit 20c.
  • the temperature determination unit 20c determines the surface temperature based on the received electrical signal and reference value information stored in advance in the storage unit 20b. When it is determined by the temperature determination unit 20c that the surface temperature of the blowout region exceeds the reference value, the operation control unit 20a stops the fan motor 6 and the dehumidifying unit 7. Thereby, the operation of the dehumidifier 100 is completed.
  • the light source 19a of the irradiation unit 19 emits visible light when the fixed concentration mode is selected.
  • the light source 19a may start irradiation with visible light simultaneously with the start of the operation of the dehumidifier 100.
  • the light source 19a may stop the irradiation of visible light at the same time when the setting button 21c is pressed or after a certain time has elapsed since the setting button 21c was pressed.
  • the user can easily recognize the blowing direction of the dry air Q by looking at the irradiation region 30. Further, the user can easily change the blowing direction of the dry air Q to an arbitrary direction by the operation key 21d. The user can change the blowing direction of the dry air Q in an easy-to-understand state by looking at the irradiation region 30. The user can concentrate and dry the clothes 31 previously dried without moving the clothes 31 to be dried according to the dehumidifier 100.
  • the user can concentrate the dry air Q in an arbitrary direction by operating the setting button 21c.
  • the dry air Q is reliably sent toward the clothes 31 without waste. If it is this example, the useless electricity bill by the ventilation to the thing which does not need to be dried will be reduced, for example. Further, the operation control unit 20 a stops the fan motor 6 based on the detection result of the surface temperature detection unit 18. Thereby, useless electricity bill is further reduced.
  • the dehumidifier 100 that can more easily recognize the blowing direction of the dry air Q and can easily change the blowing direction of the dry air Q to an arbitrary direction.
  • movement which dries the clothes 31 was shown as an example in the said Example, the object from which the dry air Q is blown off is not restricted to the clothes 31.
  • the dehumidifier 100 can also be used when drying indoor wet places such as bathroom walls and floors.
  • the wind direction changing unit 10 that is an example of the wind direction determining unit may not include the vertical direction louver 11 and the horizontal direction louver 13.
  • the structure of the wind direction changing unit 10 may be, for example, a nozzle-like structure that can move in the vertical and horizontal directions other than the above-described embodiment.
  • the irradiation part 19 does not need to be provided in the sensor case 17, for example.
  • the sensor case 17 may not be connected to the link 15.
  • the dehumidifier 100 may be configured such that the irradiation unit 19 and the wind direction changing unit 10 can operate independently.
  • the irradiation unit 19 may be moved by the control device 20 in accordance with the movement of the wind direction changing unit 10.
  • the operation key 21d of the operation unit 21 is provided on the housing 1.
  • the user can change the blowing direction of the dry air Q by an easy operation of operating the operation key 21d on the housing 1.
  • the dehumidifier 100 may be provided with the remote controller which has the operation key 21d instead of the operation part 21, for example.
  • the user can operate the dehumidifier 100 at a position away from the housing 1.
  • the dehumidifier 100 may be provided with both the operation part 21 and the remote controller, for example.
  • FIG. 8 is a diagram illustrating the operation of the dehumidifier 100 according to the second embodiment.
  • the lens 19b is a lens that splits visible light from the light source 19a into first visible light and second visible light.
  • the irradiation region 30 is divided into a first region 30a and a second region 30b.
  • the first region 30a is a region irradiated with the first visible light.
  • the second region 30b is a region irradiated with the second visible light.
  • the first visible light has a luminous intensity higher than that of the second visible light, for example. That is, the first region 30a has higher illuminance than the second region 30b.
  • the lens 19b in the present embodiment is an example of a dividing unit.
  • the first region 30a and the second region 30b are circular regions as shown in FIG. 8, for example.
  • the light source 19a and the lens 19b are formed and arranged so that the first region 30a is a circle having a diameter of 60 mm, for example.
  • the light source 19a and the lens 19b are formed and arranged so that the second region 30b is a circle having a diameter of 800 mm, for example.
  • the light source 19a and the lens 19b are formed and arranged so that the first region 30a is positioned inside the second region 30b.
  • the first region 30a is located at the center of the second region 30b, for example.
  • the first region 30a brighter than the second region 30b represents the blowing direction of the dry air Q. The user can easily recognize the blowing direction of the dry air Q by looking at the first region 30a.
  • the light source 19a and the lens 19b are formed and arranged so that the blowing area of the dry air Q and the second area 30b are coincident with or close to each other. That is, the dry air Q blown out from the blower outlet 4 hits the second region 30b.
  • the second area 30b represents a blowing area of the dry air Q. The user can recognize the blowing area of the dry air Q by looking at the second area 30b.
  • the user of the dehumidifier 100 can move the irradiation region 30 by operating the operation key 21d as in the first embodiment.
  • the user can move the first region 30a and the second region 30b while viewing the first region 30a and the second region 30b. That is, the user can change the blowing direction and the blowing area of the dry air Q while recognizing the blowing direction and the blowing area of the dry air Q.
  • the user operates the operation key 21d so that the clothes 31 are located inside the second region. Thereby, the clothes 31 are evenly dried.
  • the shape and size of the first region 30a and the second region 30b are not limited to this example.
  • the shape of the second region 30b may be a rectangle.
  • the dehumidifier 100 of the present embodiment may be operated in the fixed concentration mode shown in the first embodiment.
  • FIG. 9 is a diagram illustrating the operation of the dehumidifier 100 according to the third embodiment.
  • the irradiation unit 19 includes a plurality of light sources 19a.
  • the plurality of light sources 19a radiate, for example, different colors of visible light.
  • the irradiation unit 19 includes, for example, a light source 19a that emits blue visible light and a light source 19a that emits orange visible light. Note that the color of visible light emitted by the plurality of light sources 19a is not limited to the present embodiment.
  • the irradiation region 30 is divided into a first region 30a and a second region 30b as in the second embodiment.
  • the first region 30a is located inside the second region 30b.
  • the first region 30a is located at the center of the second region 30b, for example.
  • the first region 30a is irradiated with, for example, blue visible light from the light source 19a.
  • the second region 30b is irradiated with, for example, orange visible light from the light source 19a.
  • the first area 30a is, for example, a circular area as shown in FIG.
  • the second region 30b is a rectangular region as shown in FIG. 9, for example.
  • the light source 19a and the lens 19b are formed and arranged so that the first region 30a is a circle having a diameter of 60 mm, for example.
  • the light source 19a and the lens 19b are formed and arranged so that, for example, the second region 30b is a rectangle having a vertical width of 100 mm and a horizontal width of 800 mm.
  • the shapes and sizes of the first region 30a and the second region 30b are not limited to this example.
  • the shape of the second region 30b may be a circle.
  • the first region 30a represents the blowing direction of the dry air Q as in the second embodiment.
  • the second region 30b represents the blown region of the dry air Q, as in the second embodiment.
  • the first region 30a and the second region 30b are illuminated with different colors of visible light. If it is this Embodiment, a user can recognize, distinguishing the blowing direction and the blowing area
  • the dehumidifier 100 of this embodiment includes a plurality of light sources 19a.
  • the light source 19a that emits visible light may be selected by the user.
  • the user may select the light source 19 a that emits visible light by operating the operation unit 21.
  • the operation unit 21 when the user wants to recognize only the blowing direction of the dry air Q, the user may operate the operation unit 21 so that only the first region 30a is illuminated. In this example, it is possible to illuminate only one of the first region 30a representing the blowing direction of the dry air Q and the second region 30b representing the blowing region of the dry air Q.
  • FIG. 10 is a diagram showing a modification of the dehumidifier 100 according to the third embodiment.
  • the dehumidifier 100 may include a plurality of irradiation units 19 each having a light source 19a.
  • the plurality of irradiation units 19 irradiate visible light of different colors.
  • One of the plurality of irradiation units 19 is provided in the sensor case 17 in the same manner as in the first and second embodiments.
  • One of the plurality of irradiation units 19 is provided, for example, at the left end of the up-down direction louver 11 and the left-right direction louver 13 or near the left end.
  • One of the plurality of irradiation units 19 is provided, for example, at the right end of the up-down direction louver 11 and the left-right direction louver 13 or near the right end. Also in this modified example shown in FIG. 10, the same effect as the above-described embodiment can be obtained.
  • the dehumidifier according to the present invention is used for drying an arbitrary object.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Analytical Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Textile Engineering (AREA)
  • Drying Of Gases (AREA)
  • Accessory Of Washing/Drying Machine, Commercial Washing/Drying Machine, Other Washing/Drying Machine (AREA)
  • Control Of Washing Machine And Dryer (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

This dehumidifier 100 is provided with: a housing 1 in which a blow-out port 4 is formed; a dehumidification unit for removing moisture in air; a blower fan for causing dry air from which moisture has been removed by the dehumidification unit to be blown out from the blow-out port 4; an air flow direction changing unit 10 which determines the direction in which the dry air is blown out from the blow-out port 4; operation keys 21d for transmitting operation instructions; a control device which, when an operation instruction is received from the operation keys 21d, causes the air flow direction changing unit 10 to change the direction in which the dry air is blown out from the blow-out port 4; and an irradiation unit 19 which shines visible light in the direction in which the dry air is blown out from the blow-out port 4.

Description

除湿機Dehumidifier
 本発明は、除湿機に関するものである。 The present invention relates to a dehumidifier.
 特許文献1に、乾燥空気を吹き出す除湿機の一例として、発光体を有する衣類乾燥機が記載されている。特許文献1において発光体は、乾燥空気が吹き出される方向に向けて光を照射する。これにより使用者は、乾燥空気が吹き出される方向を認識することができる。 Patent Document 1 describes a clothes dryer having a luminous body as an example of a dehumidifier that blows dry air. In Patent Document 1, the light emitter emits light in the direction in which dry air is blown out. Thus, the user can recognize the direction in which the dry air is blown out.
日本特開2008-188188号公報Japanese Unexamined Patent Publication No. 2008-188188
 上記特許文献1において使用者は、乾燥空気が吹き出される方向を任意に変更させることができない。上記特許文献1において使用者は、乾燥空気が送られる対象物を、衣類乾燥機から乾燥空気が吹き出される方向に合わせて動かす必要がある。 In the above Patent Document 1, the user cannot arbitrarily change the direction in which the dry air is blown out. In the above-mentioned Patent Document 1, the user needs to move an object to which dry air is sent in accordance with the direction in which the dry air is blown from the clothes dryer.
 本発明は、上記のような課題を解決するためになされたものである。本発明の目的は、乾燥空気が吹き出される方向を使用者へより容易に認識させ、かつ乾燥空気が吹き出される方向を任意の方向へより容易に変更することができる除湿機を得ることである。 The present invention has been made to solve the above-described problems. An object of the present invention is to obtain a dehumidifier that makes it easier for the user to recognize the direction in which the dry air is blown out and can change the direction in which the dry air is blown out to any direction more easily. is there.
 本発明に係る除湿機は、吹出口が形成された筐体と、筐体の内部に設けられ、空気中の水分を除去する除湿手段と、除湿手段によって水分が除去された乾燥空気を吹出口から吹き出させる吹出手段と、吹出口から乾燥空気が吹き出される方向を決める風向決定手段と、操作指示を送信する操作手段と、操作手段から操作指示を受信すると、風向決定手段を動かし、吹出口から乾燥空気が吹き出される方向を変更させる制御手段と、吹出口から乾燥空気が吹き出される方向へ可視光を照射する照射手段と、を備える。 A dehumidifier according to the present invention includes a housing in which an air outlet is formed, a dehumidifying means provided in the housing for removing moisture in the air, and dry air from which water has been removed by the dehumidifying means. Blowout means for blowing out air, wind direction determination means for determining the direction in which dry air is blown out from the blowout opening, operation means for transmitting an operation instruction, and upon receiving an operation instruction from the operation means, the airflow direction determination means is moved to Control means for changing the direction in which the dry air is blown out from, and irradiation means for irradiating visible light in the direction in which the dry air is blown out from the outlet.
 本発明に係る除湿機は、操作手段から操作指示を受信すると、風向決定手段を動かし、吹出口から乾燥空気が吹き出される方向を変更させる制御手段と、吹出口から乾燥空気が吹き出される方向へ可視光を照射する照射手段と、を備える。このため、乾燥空気が吹き出される方向を使用者へより容易に認識させ、かつ乾燥空気が吹き出される方向を任意の方向へより容易に変更することができる除湿機が得られる。 When the dehumidifier according to the present invention receives an operation instruction from the operation means, the dehumidifier moves the wind direction determining means to change the direction in which the dry air is blown out from the blowout port, and the direction in which the dry air is blown out from the blowout port Irradiating means for irradiating visible light. For this reason, the dehumidifier which can make a user recognize the direction in which dry air is blown out more easily, and can change the direction in which dry air is blown out to arbitrary directions more easily is obtained.
実施の形態1の除湿機の外観を示す斜視図である。It is a perspective view which shows the external appearance of the dehumidifier of Embodiment 1. FIG. 実施の形態1の除湿機の構造を示す縦断面図である。It is a longitudinal cross-sectional view which shows the structure of the dehumidifier of Embodiment 1. FIG. 実施の形態1の風向変更部の構成を示す断面図である。FIG. 3 is a cross-sectional view illustrating a configuration of a wind direction changing unit according to the first embodiment. 実施の形態1のセンサ部を正面から見た図である。It is the figure which looked at the sensor part of Embodiment 1 from the front. 実施の形態1のセンサ部の構造を示す断面図である。3 is a cross-sectional view showing a structure of a sensor unit according to Embodiment 1. FIG. 実施の形態1の制御装置を示す図である。2 is a diagram illustrating a control device according to Embodiment 1. FIG. 実施の形態1の除湿機の動作を示す図である。It is a figure which shows operation | movement of the dehumidifier of Embodiment 1. FIG. 実施の形態2の除湿機の動作を示す図である。It is a figure which shows operation | movement of the dehumidifier of Embodiment 2. FIG. 実施の形態3の除湿機の動作を示す図である。It is a figure which shows operation | movement of the dehumidifier of Embodiment 3. FIG. 実施の形態3の除湿機の変形例を示す図である。It is a figure which shows the modification of the dehumidifier of Embodiment 3. FIG.
 以下、添付の図面を参照して、実施の形態について説明する。各図における同一部分または相当部分には、同一の符号を付して、重複する説明を簡略化または省略する。 Hereinafter, embodiments will be described with reference to the accompanying drawings. In the drawings, the same or corresponding parts are denoted by the same reference numerals, and overlapping descriptions are simplified or omitted.
実施の形態1.
 図1は、実施の形態1の除湿機100の外観を示す斜視図である。また図2は、実施の形態1の除湿機100の構造を示す縦断面図である。ここで、図2における紙面上の左右方向を、除湿機100の前後方向とする。また図2における紙面上の上下方向を、除湿機100の上下方向とする。すなわち図2において、紙面の手前方向が除湿機100の左方向になる。図2において、紙面の奥方向が除湿機100の右方向となる。
Embodiment 1 FIG.
FIG. 1 is a perspective view showing the appearance of the dehumidifier 100 of the first embodiment. FIG. 2 is a longitudinal sectional view showing the structure of the dehumidifier 100 of the first embodiment. Here, the left-right direction on the paper surface in FIG. 2 is the front-rear direction of the dehumidifier 100. Further, the vertical direction on the paper surface in FIG. 2 is the vertical direction of the dehumidifier 100. That is, in FIG. 2, the front side of the paper surface is the left direction of the dehumidifier 100. In FIG. 2, the depth direction of the paper surface is the right direction of the dehumidifier 100.
 除湿機100は、筐体1を備える。筐体1は、除湿機100の外殻となる部位である。筐体1は、例えば自立可能な縦長の箱状の形状に形成されている。また除湿機100は、例えば車輪2を備えてもよい。車輪2は、例えば図2に示すように、筐体1の底に設けられる。この車輪2によって、除湿機100は移動可能となる。 The dehumidifier 100 includes a housing 1. The housing 1 is a part that becomes an outer shell of the dehumidifier 100. The housing 1 is formed in, for example, a vertically long box shape that can stand by itself. Moreover, the dehumidifier 100 may be equipped with the wheel 2, for example. For example, as shown in FIG. 2, the wheel 2 is provided at the bottom of the housing 1. The dehumidifier 100 can be moved by the wheels 2.
 筐体1には、吸込口3が形成される。吸込口3は、筐体1の内部に空気を取り込むための開口である。吸込口3は、例えば筐体1の後面に形成される。また筐体1には、吹出口4が形成される。吹出口4は、筐体1の内部から外部に向かって空気を吹き出すための開口である。吹出口4は、例えば筐体1の前面の上部に形成される。吹出口4の形状は、例えば筐体1の左右方向に伸びる長方形状である。 A suction port 3 is formed in the housing 1. The suction port 3 is an opening for taking air into the housing 1. The suction port 3 is formed on the rear surface of the housing 1, for example. A blower outlet 4 is formed in the housing 1. The blower outlet 4 is an opening for blowing air from the inside of the housing 1 toward the outside. The blower outlet 4 is formed in the upper part of the front surface of the housing | casing 1, for example. The shape of the blower outlet 4 is, for example, a rectangular shape extending in the left-right direction of the housing 1.
 筐体1の内部には、風路5が形成される。風路5は、吸込口3から吹出口4へ至る空間である。また除湿機100は、吹出手段の一例として、送風ファン6a及びファンモータ6を備える。送風ファン6aは、風路5内に、吸込口3から吹出口4へと向かう気流を発生させるファンである。送風ファン6aには、ファンモータ6が接続される。ファンモータ6は、送風ファン6aを回転させるモータである。 An air passage 5 is formed inside the housing 1. The air passage 5 is a space from the suction port 3 to the blowout port 4. Moreover, the dehumidifier 100 is provided with the ventilation fan 6a and the fan motor 6 as an example of a blowing means. The blower fan 6 a is a fan that generates an air flow from the suction port 3 toward the blowout port 4 in the air passage 5. A fan motor 6 is connected to the blower fan 6a. The fan motor 6 is a motor that rotates the blower fan 6a.
 送風ファン6a及びファンモータ6は、例えば図2に示すように、筐体1の内部に設けられる。また送風ファン6aは、風路5内に配置される。本実施例の風路5内には、送風ファン6aによって、吸込口3から吹出口4へ向かって空気が流れる。送風ファン6aによって、吹出口4から空気が吹き出される。ここで風路5において、吸込口3がある側を上流側、吹出口4がある側を下流側とする。すなわち本実施例において空気は、風路5内を上流側から下流側へと向かって流れる。 The blower fan 6a and the fan motor 6 are provided inside the housing 1, for example, as shown in FIG. The blower fan 6 a is disposed in the air path 5. In the air passage 5 of the present embodiment, air flows from the suction port 3 toward the blowout port 4 by the blower fan 6a. Air is blown out from the outlet 4 by the blower fan 6a. Here, in the air passage 5, the side with the suction port 3 is the upstream side, and the side with the air outlet 4 is the downstream side. That is, in this embodiment, air flows in the air passage 5 from the upstream side toward the downstream side.
 除湿機100は、空気中に含まれる水分を除去する除湿手段の一例として、除湿部7を備える。除湿部7は、例えば空気中の水分を凝縮する装置である。除湿部7は、凝縮した水分を排出する。一例として除湿部7は、凝縮した水分を、液体の水として下方に滴下する。除湿部7によって、空気中の水分が除去、すなわち空気が除湿される。除湿部7によって除湿された空気は、乾燥した空気となる。 The dehumidifier 100 includes a dehumidifying unit 7 as an example of a dehumidifying means for removing moisture contained in the air. The dehumidifying unit 7 is a device that condenses moisture in the air, for example. The dehumidifying unit 7 discharges the condensed moisture. As an example, the dehumidifying unit 7 drops the condensed moisture downward as liquid water. The dehumidifying unit 7 removes moisture in the air, that is, dehumidifies the air. The air dehumidified by the dehumidifying unit 7 becomes dry air.
 除湿部7は、例えばヒートポンプ回路を利用した装置である。除湿部7は、例えばヒートポンプ回路中の蒸発器によって、空気中の水分を凝縮させる。また除湿部7は、例えばデシカント方式の装置であってもよい。デシカント方式の装置は、空気中の水分を吸着する吸着剤及び熱交換器を有する。吸着剤に吸着された水分は、熱交換器によって凝縮される。 The dehumidifying unit 7 is a device using a heat pump circuit, for example. The dehumidifying unit 7 condenses moisture in the air by using an evaporator in a heat pump circuit, for example. The dehumidifying unit 7 may be, for example, a desiccant device. The desiccant apparatus has an adsorbent that adsorbs moisture in the air and a heat exchanger. The moisture adsorbed on the adsorbent is condensed by the heat exchanger.
 除湿部7は、例えば筐体1の内部に設けられる。除湿部7は、風路5内に配置される。除湿部7は、一例として、吸込口3と送風ファン6aとの間に配置される。すなわち本実施例の除湿部7は、送風ファン6aの上流側に配置される。本実施例では、吸込口3、除湿部7、送風ファン6a及び吹出口4が、上流側から下流側へ順に配置される。 The dehumidifying unit 7 is provided, for example, inside the housing 1. The dehumidifying unit 7 is disposed in the air path 5. The dehumidification part 7 is arrange | positioned as an example between the suction inlet 3 and the ventilation fan 6a. That is, the dehumidification part 7 of a present Example is arrange | positioned in the upstream of the ventilation fan 6a. In the present embodiment, the suction port 3, the dehumidifying unit 7, the blower fan 6a, and the blower outlet 4 are arranged in order from the upstream side to the downstream side.
 除湿機100は、貯水部8を備える。貯水部8は、除湿部7によって排出された水を貯める部位である。貯水部8は、例えば図2に示すように、上部が開口した容器である。貯水部8は、筐体1の内部で、除湿部7の下方に設けられる。また貯水部8は、例えば筐体1から着脱可能に設けられる。貯水部8は、除湿部7から滴下された水を、上部の開口から受けて貯める。 The dehumidifier 100 includes a water storage unit 8. The water storage unit 8 is a part that stores the water discharged by the dehumidifying unit 7. For example, as shown in FIG. 2, the water reservoir 8 is a container having an open top. The water storage unit 8 is provided inside the housing 1 and below the dehumidifying unit 7. Moreover, the water storage part 8 is provided so that attachment or detachment is possible from the housing | casing 1, for example. The water storage unit 8 receives and stores the water dripped from the dehumidifying unit 7 from the upper opening.
 また除湿機100は、フィルター9を備えてもよい。フィルター9は、例えば筐体1の内部に設けられる。フィルター9は、吸込口3を筐体1の内部から覆うように設けられる。フィルター9は、筐体1の内部への塵及び埃の侵入を防止する。 Further, the dehumidifier 100 may include a filter 9. The filter 9 is provided inside the housing 1, for example. The filter 9 is provided so as to cover the suction port 3 from the inside of the housing 1. The filter 9 prevents dust and dust from entering the housing 1.
 除湿機100は、風向変更部10を備える。図3は、実施の形態1の風向変更部10の構成を示す断面図である。図3の紙面上の上下左右方向は、本実施の形態の除湿機100の上下左右方向に対応する。 The dehumidifier 100 includes a wind direction changing unit 10. FIG. 3 is a cross-sectional view illustrating a configuration of the wind direction changing unit 10 according to the first embodiment. The vertical and horizontal directions on the paper surface of FIG. 3 correspond to the vertical and horizontal directions of the dehumidifier 100 of the present embodiment.
 風向変更部10は、吹出口4から空気が吹き出される方向を決める部位である。吹出口4から空気が吹き出される方向を、以下では吹出方向と呼称する。風向変更部10が動くことにより、吹出方向は変更される。風向変更部10は、例えば吹出口4の近傍に配置される。風向変更部10は、風向決定手段の一例である。 The wind direction changing unit 10 is a part that determines the direction in which air is blown out from the air outlet 4. The direction in which air is blown out from the blower outlet 4 is hereinafter referred to as the blowout direction. The blowing direction is changed by moving the wind direction changing unit 10. The wind direction change part 10 is arrange | positioned in the vicinity of the blower outlet 4, for example. The wind direction changing unit 10 is an example of a wind direction determining unit.
 風向変更部10は、例えば図1及び図3に示すように、第1変更部の一例として上下方向ルーバー11を有する。上下方向ルーバー11は、例えば吹出口4の形状に合わせた形に形成される。本実施例の上下方向ルーバー11は、筐体1の左右方向に伸びる長方形状の枠状の部位である。上下方向ルーバー11は、一例として図3に示すように、左右方向に伸びる板状の部位を3枚有する。上下方向ルーバー11は、例えば左右方向に伸びる長方形状の開口を有する。上下方向ルーバー11は、左右方向の軸を中心にして回動可能に形成される。 The wind direction change part 10 has the up-down direction louver 11 as an example of a 1st change part, as shown, for example in FIG.1 and FIG.3. The vertical louver 11 is formed, for example, in a shape that matches the shape of the air outlet 4. The vertical louver 11 of the present embodiment is a rectangular frame-shaped portion extending in the left-right direction of the housing 1. As shown in FIG. 3 as an example, the vertical louver 11 has three plate-like portions extending in the horizontal direction. The vertical louver 11 has, for example, a rectangular opening extending in the left-right direction. The vertical louver 11 is formed to be rotatable about a horizontal axis.
 風向変更部10は、上下方向ルーバー11を動かすための第1モータ12を有する。第1モータ12は、例えば筐体1の内部に設けられる。第1モータ12は、例えば歯車12a、歯車12b及び歯車12cを介して、上下方向ルーバー11を回動させる。上下方向ルーバー11が回動すると、上下方向ルーバー11の開口の向きは、左右方向の軸に垂直な面内で変更される。これにより、吹出方向が上下方向に変更される。 The wind direction changing unit 10 has a first motor 12 for moving the vertical louver 11. The first motor 12 is provided, for example, inside the housing 1. The first motor 12 rotates the vertical louver 11 via, for example, a gear 12a, a gear 12b, and a gear 12c. When the vertical louver 11 rotates, the orientation of the opening of the vertical louver 11 is changed in a plane perpendicular to the horizontal axis. Thereby, the blowing direction is changed to the vertical direction.
 また風向変更部10は、例えば図1及び図3に示すように、第2変更部の一例として左右方向ルーバー13を有する。左右方向ルーバー13は、上下方向に伸びる板状の部位を有する。左右方向ルーバー13は、一例として上下方向に伸びる板状の部位を6枚有する。上下方向に伸びる6枚の板状の部位は、例えば等間隔に配置される。左右方向ルーバー13は、上下方向の軸を中心にして回動可能に形成される。左右方向ルーバー13は、例えば上下方向ルーバー11の内側に配置される。上下方向ルーバー11と左右方向ルーバー13とは、例えば左右方向の中央の位置が一致するように配置される。 Moreover, the wind direction change part 10 has the left-right direction louver 13 as an example of a 2nd change part, as shown, for example in FIG.1 and FIG.3. The left-right direction louver 13 has a plate-like portion extending in the up-down direction. As an example, the left-right direction louver 13 has six plate-like portions extending in the vertical direction. The six plate-like parts extending in the vertical direction are arranged at regular intervals, for example. The left-right direction louver 13 is formed to be rotatable about a vertical axis. The left-right direction louver 13 is arrange | positioned inside the up-down direction louver 11, for example. The up-down direction louver 11 and the left-right direction louver 13 are arranged, for example, so that the center positions in the left-right direction coincide with each other.
 風向変更部10は左右方向ルーバー13を動かすための第2モータ14を有する。第2モータ14は、例えば筐体1の内部に設けられる。また風向変更部10はリンク15を有する。リンク15は、例えば左右方向ルーバー13の後部に接続される。リンク15は、第2モータ14に接続される。すなわち左右方向ルーバー13と第2モータ14とは、リンク15を介して接続される。第2モータ14が駆動すると、リンク15を介して左右方向ルーバー13が回動する。左右方向ルーバー13が上下方向の軸を中心にして回動することにより、吹出方向が左右方向に変更される。 The wind direction changing unit 10 has a second motor 14 for moving the left-right direction louver 13. The second motor 14 is provided, for example, inside the housing 1. The wind direction changing unit 10 has a link 15. The link 15 is connected to the rear part of the left-right direction louver 13, for example. The link 15 is connected to the second motor 14. That is, the left-right louver 13 and the second motor 14 are connected via the link 15. When the second motor 14 is driven, the left-right louver 13 rotates via the link 15. As the left-right louver 13 rotates about the vertical axis, the blowing direction is changed to the left-right direction.
 また左右方向ルーバー13は、左右方向の軸を中心にして回動可能に形成される。リンク15は、上下方向ルーバー11に接続される。リンク15は、上下方向ルーバー11が動くと、上下方向ルーバー11と共に動く。リンク15が動くと、リンク15と共に左右方向ルーバー13が動く。すなわち左右方向ルーバー13は、上下方向ルーバー11が動くと、上下方向ルーバー11と共に動く。左右方向ルーバー13は、上下方向ルーバー11が動く方向と同じ方向へ動く。 The left-right louver 13 is formed so as to be rotatable about a left-right axis. The link 15 is connected to the vertical louver 11. The link 15 moves together with the vertical louver 11 when the vertical louver 11 moves. When the link 15 moves, the left-right louver 13 moves together with the link 15. That is, the horizontal louver 13 moves together with the vertical louver 11 when the vertical louver 11 moves. The horizontal louver 13 moves in the same direction as the vertical louver 11 moves.
 除湿機100は、センサ部16を備える。センサ部16は、例えば上下方向ルーバー11の内側に配置される。センサ部16は、例えば上下方向ルーバー11の左右方向の中央の位置に配置される。 The dehumidifier 100 includes a sensor unit 16. The sensor part 16 is arrange | positioned inside the up-down direction louver 11, for example. The sensor part 16 is arrange | positioned in the center position of the left-right direction of the up-down direction louver 11, for example.
 図4は、実施の形態1のセンサ部16を正面から見た図である。図5は、実施の形態1のセンサ部16の構造を示す断面図である。図4の紙面の手前方向を、センサ部16の正面方向とする。図4の紙面上の上下方向を、センサ部16の上下方向とする。図5において、紙面上の右方向はセンサ部16の正面方向、紙面上の左方向はセンサ部16の背面方向である。図5の紙面上の上下方向は、センサ部16の上下方向である。 FIG. 4 is a front view of the sensor unit 16 according to the first embodiment. FIG. 5 is a cross-sectional view illustrating the structure of the sensor unit 16 according to the first embodiment. The front direction of the paper surface of FIG. 4 is the front direction of the sensor unit 16. The vertical direction on the paper surface of FIG. 4 is the vertical direction of the sensor unit 16. In FIG. 5, the right direction on the paper surface is the front direction of the sensor unit 16, and the left direction on the paper surface is the back surface direction of the sensor unit 16. The vertical direction on the paper surface of FIG. 5 is the vertical direction of the sensor unit 16.
 センサ部16は、例えば図1、図3、図4及び図5に示すように、センサケース17を有する。センサケース17は、センサ部16の外枠となる部位である。センサケース17の形状は、一例として筒状である。センサケース17は、上下方向の軸及び左右方向の軸を中心にして回動可能に形成される。 The sensor unit 16 includes a sensor case 17 as shown in FIGS. 1, 3, 4, and 5, for example. The sensor case 17 is a part serving as an outer frame of the sensor unit 16. The shape of the sensor case 17 is a cylinder as an example. The sensor case 17 is formed so as to be rotatable about a vertical axis and a horizontal axis.
 センサケース17は、例えば上下方向ルーバー11の左右方向の中央の位置で、リンク15に接続される。センサケース17は、リンク15を介して、左右方向ルーバー13に接続される。なおセンサケース17は、例えばリンク15を介さずに左右方向ルーバー13に直接設けられてもよい。 The sensor case 17 is connected to the link 15 at, for example, the center position in the left-right direction of the vertical louver 11. The sensor case 17 is connected to the left-right louver 13 via the link 15. For example, the sensor case 17 may be provided directly on the left-right louver 13 without using the link 15.
 センサケース17は、正面方向が吹出方向に向くように設けられる。センサケース17は、左右方向ルーバー13が動くと、左右方向ルーバー13と共に動く。センサケース17は、左右方向ルーバー13が動く方向と同じ方向へ動く。センサケース17の正面方向は、吹出方向が変更された場合においても、変更された吹出方向へ向く。 The sensor case 17 is provided so that the front direction faces the blowing direction. The sensor case 17 moves together with the left-right direction louver 13 when the left-right direction louver 13 moves. The sensor case 17 moves in the same direction as the direction in which the left-right louver 13 moves. The front direction of the sensor case 17 is directed to the changed blowing direction even when the blowing direction is changed.
 センサケース17は、例えば正面側にセンサ窓17aを有してもよい。センサ窓17aは、赤外線の透過率が高い材料によって形成される。赤外線の透過率が高い材料は、例えばシリコンウエハである。センサ窓17aは、吹出口4から吹き出された空気が当たる領域から放射される赤外線が透過するように、形成される。吹出口4から吹き出された空気が当たる領域を、以下では吹出領域と呼称する。 The sensor case 17 may have a sensor window 17a on the front side, for example. The sensor window 17a is formed of a material having a high infrared transmittance. A material having a high infrared transmittance is, for example, a silicon wafer. The sensor window 17a is formed so that infrared rays radiated from a region where the air blown out from the blower outlet 4 hits are transmitted. Hereinafter, an area where the air blown out from the outlet 4 will be referred to as an outlet area.
 センサ部16は、表面温度検出手段の一例として、表面温度検出部18を有してもよい。表面温度検出部18は、対象領域の表面温度を、非接触の状態で検出する部位である。表面温度検出部18は、表面温度を検出する対象領域が吹出領域と一致あるいは近くなるように形成される。 The sensor unit 16 may include a surface temperature detection unit 18 as an example of a surface temperature detection unit. The surface temperature detector 18 is a part that detects the surface temperature of the target region in a non-contact state. The surface temperature detection unit 18 is formed so that the target area for detecting the surface temperature is coincident with or close to the blowing area.
 表面温度検出部18は、センサケース17の内部に設けられる。表面温度検出部18は、センサ窓17aの背面側に配置される。表面温度検出部18には、例えば熱起電力を利用したものが用いられる。表面温度検出部18は、例えば赤外線吸収膜及びサーミスタを有する。表面温度検出部18の赤外線吸収膜は、センサ窓17aを透過する赤外線を吸収する。 The surface temperature detector 18 is provided inside the sensor case 17. The surface temperature detector 18 is disposed on the back side of the sensor window 17a. As the surface temperature detection unit 18, for example, one using a thermoelectromotive force is used. The surface temperature detection unit 18 includes, for example, an infrared absorption film and a thermistor. The infrared absorption film of the surface temperature detection unit 18 absorbs infrared rays that pass through the sensor window 17a.
 赤外線吸収膜は、感熱部分を有する。赤外線吸収膜の感熱部分は、センサ窓17aを透過した赤外線を吸収することによって昇温する。赤外線吸収膜の感熱部分は、温接点となる。またサーミスタは、冷接点の一例である赤外線吸収膜の感熱部分ではない部位の温度を検出する。表面温度検出部18は、上記の温接点と冷接点との温度差から、赤外線吸収膜に吸収された赤外線を発した領域、すなわち吹出領域の表面温度を検出する。 The infrared absorbing film has a heat sensitive part. The heat-sensitive portion of the infrared absorbing film is heated by absorbing infrared rays that have passed through the sensor window 17a. The heat sensitive part of the infrared absorbing film becomes a hot junction. Further, the thermistor detects the temperature of a portion that is not a heat-sensitive portion of an infrared absorption film that is an example of a cold junction. The surface temperature detection part 18 detects the surface temperature of the area | region which emitted the infrared rays absorbed by the infrared rays absorption film, ie, the blowing area | region, from the temperature difference of said warm junction and cold junction.
 吹出領域は、吹出方向と共に変更される。センサケース17の内部に設けられた表面温度検出部18は、センサケース17と共に動く。すなわち表面温度検出部18は、左右方向ルーバー13と共に動く。表面温度検出部18は、例えば吹出領域が変更された場合においても、変更された吹出領域の表面温度を検出することができる。 The blowing area is changed along with the blowing direction. The surface temperature detector 18 provided inside the sensor case 17 moves together with the sensor case 17. That is, the surface temperature detection unit 18 moves together with the left-right direction louver 13. The surface temperature detection unit 18 can detect the surface temperature of the changed blowing area even when the blowing area is changed, for example.
 またセンサ部16は、可視光を照射する照射手段の一例として、照射部19を有する。照射部19は、例えば光源19a及びレンズ19bを有する。レンズ19bは、センサケース17の正面部分に設けられる。レンズ19bは、例えばセンサ窓17aよりも下方に配置される。光源19aは、例えばレンズ19bの背面で、センサケース17の内部に設けられる。 The sensor unit 16 includes an irradiation unit 19 as an example of an irradiation unit that emits visible light. The irradiation unit 19 includes, for example, a light source 19a and a lens 19b. The lens 19 b is provided on the front portion of the sensor case 17. The lens 19b is disposed below the sensor window 17a, for example. The light source 19a is provided inside the sensor case 17 on the back surface of the lens 19b, for example.
 光源19aは、可視光を照射するものである。光源19aは、例えばLEDである。なお光源19aは、例えばレーザーダイオードでもよい。光源19aには、例えば光度が1000mcd以上のものが用いられる。光源19aは、例えば緑色の可視光を照射する。なお光源19aによって照射される可視光は、緑色以外、例えば橙色等であってもよい。 The light source 19a emits visible light. The light source 19a is, for example, an LED. The light source 19a may be a laser diode, for example. For example, a light source having a luminous intensity of 1000 mcd or more is used as the light source 19a. The light source 19a emits, for example, green visible light. The visible light emitted by the light source 19a may be other than green, for example, orange.
 レンズ19bは、光源19aが照射した可視光を集光するものである。レンズ19bは、例えばアクリル樹脂の両凸レンズである。なおレンズ19bの材質は、例えばポリカーボネイト樹脂あるいはガラスでもよい。またレンズ19bは、フレネルレンズでもよい。 The lens 19b collects visible light emitted from the light source 19a. The lens 19b is, for example, an acrylic resin biconvex lens. The material of the lens 19b may be, for example, polycarbonate resin or glass. The lens 19b may be a Fresnel lens.
 センサケース17のうちの光源19aとレンズ19bとの間の部位は、例えば光源19aによって照射される可視光が透過する部材で形成される。またセンサケース17のうち、光源19aとレンズ19bとの間の部位は、例えば開口していてもよい。光源19aによって照射される可視光は、レンズ19bへ照射される。 The part of the sensor case 17 between the light source 19a and the lens 19b is formed of a member that transmits visible light irradiated by the light source 19a, for example. In the sensor case 17, a portion between the light source 19a and the lens 19b may be opened, for example. The visible light irradiated by the light source 19a is irradiated to the lens 19b.
 レンズ19bは、光源19aが照射した可視光を集光する。レンズ19bによって集光された可視光は、例えば室内で容易に視認される状態となる。光源19a及びレンズ19bは、レンズ19bによって集光された可視光がセンサケース17の正面方向に照射されるように設けられる。すなわち、レンズ19bによって集光された可視光は、吹出方向へ照射される。 The lens 19b condenses the visible light irradiated by the light source 19a. The visible light collected by the lens 19b is easily visually recognized, for example, indoors. The light source 19 a and the lens 19 b are provided so that visible light collected by the lens 19 b is irradiated in the front direction of the sensor case 17. That is, the visible light condensed by the lens 19b is irradiated in the blowing direction.
 レンズ19bによって集光された可視光は、筐体1の外部へ照射される。ここで、レンズ19bによって集光された可視光が照射される領域を、照射領域30とする。光源19a及びレンズ19bは、例えば筐体1から1m離れた位置での照射領域30が直径60mmの円となるように設けられる。なお照射領域30の大きさ及び形状は本例に限定されない。 Visible light collected by the lens 19b is irradiated to the outside of the housing 1. Here, an area irradiated with visible light condensed by the lens 19 b is referred to as an irradiation area 30. For example, the light source 19a and the lens 19b are provided so that the irradiation region 30 at a position 1 m away from the housing 1 is a circle having a diameter of 60 mm. The size and shape of the irradiation region 30 are not limited to this example.
 光源19a及びレンズ19bは、センサケース17に設けられる。光源19a及びレンズ19bは、センサケース17と共に動く。すなわち、レンズ19bによって集光された可視光は、例えば吹出方向が変更された場合においても、変更された吹出方向へ照射される。 The light source 19a and the lens 19b are provided in the sensor case 17. The light source 19a and the lens 19b move together with the sensor case 17. That is, the visible light collected by the lens 19b is irradiated in the changed blowing direction even when the blowing direction is changed, for example.
 また除湿機100は、制御装置20及び操作部21を備える。制御装置20は、例えば図2に示すように、筐体1の内部に設けられる。操作部21は、例えば図1及び図2に示すように、筐体1の上面の後面側に設けられる。制御装置20と操作部21とは接続される。 Further, the dehumidifier 100 includes a control device 20 and an operation unit 21. For example, as shown in FIG. 2, the control device 20 is provided inside the housing 1. For example, as illustrated in FIGS. 1 and 2, the operation unit 21 is provided on the rear surface side of the upper surface of the housing 1. The control device 20 and the operation unit 21 are connected.
 制御装置20は、除湿機100に備えられる各機器に接続される。制御装置20は、除湿機100に備えられる各機器を制御する。制御装置20は、例えばファンモータ6、除湿部7、第1モータ12、第2モータ14及び照射部19に接続される。制御装置20は、例えばファンモータ6、除湿部7、第1モータ12、第2モータ14及び照射部19を制御する。 The control device 20 is connected to each device provided in the dehumidifier 100. The control device 20 controls each device provided in the dehumidifier 100. The control device 20 is connected to, for example, the fan motor 6, the dehumidifying unit 7, the first motor 12, the second motor 14, and the irradiation unit 19. The control device 20 controls, for example, the fan motor 6, the dehumidifying unit 7, the first motor 12, the second motor 14, and the irradiation unit 19.
 また制御装置20は、例えば表面温度検出部18に接続される。表面温度検出部18は、検出した表面温度の情報を、電圧等の電気信号に変換する。表面温度検出部18は、変換した電気信号を、制御装置20へ出力する。制御装置20は、例えば表面温度検出部18からの電気信号に基づいて動作する。 Further, the control device 20 is connected to the surface temperature detection unit 18, for example. The surface temperature detector 18 converts the detected surface temperature information into an electrical signal such as a voltage. The surface temperature detection unit 18 outputs the converted electric signal to the control device 20. The control device 20 operates based on, for example, an electrical signal from the surface temperature detection unit 18.
 操作部21は、使用者が除湿機100を操作するための部位である。操作部21は、例えば運転ボタン21a、モード選択ボタン21b、設定ボタン21c及び操作キー21dを有する。運転ボタン21aは、除湿機100の運転を開始及び停止させるためのものである。 The operation unit 21 is a part for the user to operate the dehumidifier 100. The operation unit 21 includes, for example, an operation button 21a, a mode selection button 21b, a setting button 21c, and an operation key 21d. The operation button 21 a is for starting and stopping the operation of the dehumidifier 100.
 モード選択ボタン21bは、除湿機100の運転モードを選択するためのものである。モード選択ボタン21bは、例えば使用者からの操作に応じた信号を制御装置20へ送信する。また設定ボタン21cは、除湿機100の設定を行うためのものである。設定ボタン21cは、例えば使用者からの操作に応じて信号を制御装置20へ送信する。 The mode selection button 21b is for selecting the operation mode of the dehumidifier 100. The mode selection button 21b transmits, for example, a signal corresponding to an operation from the user to the control device 20. The setting button 21c is for setting the dehumidifier 100. The setting button 21c transmits a signal to the control device 20 in accordance with, for example, an operation from the user.
 操作キー21dは、操作指示を送信する操作手段の一例である。操作キー21dは、風向変更部10を動かすためのものである。操作キー21dは、例えば十字キーである。操作キー21dは、使用者からの操作に応じた操作指示を制御装置20へ送信する。制御装置20は、操作指示を受信すると、受信した操作指示に基づいて動作する。なお操作キー21dは、十字キー以外のものでもよい。 The operation key 21d is an example of an operation unit that transmits an operation instruction. The operation key 21 d is for moving the wind direction changing unit 10. The operation key 21d is, for example, a cross key. The operation key 21d transmits an operation instruction corresponding to the operation from the user to the control device 20. When receiving the operation instruction, the control device 20 operates based on the received operation instruction. The operation key 21d may be other than the cross key.
 図6は、実施の形態1の制御装置20を示す図である。図6(a)は、制御装置20の構成の一例を示す図である。一例として制御装置20は、動作制御部20a、記憶部20b、温度判定部20c及び設定部20dを有する。動作制御部20aは、除湿機100に備えられた各機器を制御する制御手段の一例である。動作制御部20aは、例えば操作キー21dからの操作指示に基づいて、第1モータ12及び第2モータ14を制御する。 FIG. 6 is a diagram illustrating the control device 20 according to the first embodiment. FIG. 6A is a diagram illustrating an example of the configuration of the control device 20. As an example, the control device 20 includes an operation control unit 20a, a storage unit 20b, a temperature determination unit 20c, and a setting unit 20d. The operation control unit 20a is an example of a control unit that controls each device provided in the dehumidifier 100. The operation control unit 20a controls the first motor 12 and the second motor 14 based on, for example, an operation instruction from the operation key 21d.
 記憶部20bは、記憶手段の一例である。記憶部20bには、例えば予め複数の運転モードが設定されている。動作制御部20aは、例えばモード選択ボタン21bからの信号に基づいて、記憶部20bに設定された複数の運転モードの中から1つの運転モードを選択する。動作制御部20aは、例えば選択した運転モードに基づいて、ファンモータ6、除湿部7、第1モータ12、第2モータ14及び照射部19を制御する。 The storage unit 20b is an example of a storage unit. In the storage unit 20b, for example, a plurality of operation modes are set in advance. The operation control unit 20a selects one operation mode from a plurality of operation modes set in the storage unit 20b based on, for example, a signal from the mode selection button 21b. The operation control unit 20a controls the fan motor 6, the dehumidifying unit 7, the first motor 12, the second motor 14, and the irradiation unit 19 based on, for example, the selected operation mode.
 本実施例の記憶部20bには、複数の運転モードのうちの1つとして固定集中モードが記憶されている。固定集中モードは、例えば除湿機100によって靴あるいは少量の衣服31等を集中して乾燥させる時に使用される運転モードである。 The fixed concentration mode is stored as one of a plurality of operation modes in the storage unit 20b of the present embodiment. The fixed concentration mode is an operation mode used when, for example, shoes or a small amount of clothes 31 are concentrated and dried by the dehumidifier 100.
 温度判定部20cは、表面温度検出部18によって出力された電気信号に基づいて、表面温度の判定を行う部位である。記憶部20bには、例えば表面温度の基準値の情報が記憶されている。温度判定部20cは、例えば表面温度検出部18からの電気信号と記憶部20bに記憶された基準値の情報とに基づいて、表面温度の判定を行う。 The temperature determination unit 20 c is a part that determines the surface temperature based on the electrical signal output by the surface temperature detection unit 18. For example, information on the reference value of the surface temperature is stored in the storage unit 20b. The temperature determination unit 20c determines the surface temperature based on, for example, the electrical signal from the surface temperature detection unit 18 and the reference value information stored in the storage unit 20b.
 設定部20dは、設定ボタン21cからの信号に応じて、記憶部20bに設定方向を設定する部位である。設定ボタン21cは、例えば照射部19によって可視光が照射されている時に押されると、設定部20dへ信号を送信する。設定部20dは、設定ボタン21cから信号を受信すると、照射部19によって可視光が照射されている方向を設定方向として記憶部20bに設定する。設定ボタン21c及び設定部20dは、設定方向を設定する設定手段の一例である。 The setting unit 20d is a part that sets a setting direction in the storage unit 20b in accordance with a signal from the setting button 21c. For example, when the setting button 21c is pressed when visible light is irradiated by the irradiation unit 19, a signal is transmitted to the setting unit 20d. When receiving the signal from the setting button 21c, the setting unit 20d sets the direction in which the visible light is irradiated by the irradiation unit 19 as the setting direction in the storage unit 20b. The setting button 21c and the setting unit 20d are an example of a setting unit that sets a setting direction.
 また図6(b)は、制御装置20の構成の一例を示すハードウェア構成図である。制御装置20の動作制御部20a、記憶部20b、温度判定部20c及び設定部20dの各機能は、例えば処理回路により実現される。処理回路は、専用ハードウェア200であってもよい。処理回路は、プロセッサ201及びメモリ202を備えていてもよい。処理回路は、一部が専用ハードウェア200として形成され、更にプロセッサ201及びメモリ202を備えていてもよい。図6(b)は、処理回路が、その一部が専用ハードウェア200として形成され、プロセッサ201及びメモリ202を備えている場合の例を示している。 FIG. 6B is a hardware configuration diagram illustrating an example of the configuration of the control device 20. Each function of the operation control unit 20a, the storage unit 20b, the temperature determination unit 20c, and the setting unit 20d of the control device 20 is realized by, for example, a processing circuit. The processing circuit may be dedicated hardware 200. The processing circuit may include a processor 201 and a memory 202. A part of the processing circuit is formed as dedicated hardware 200, and may further include a processor 201 and a memory 202. FIG. 6B shows an example in which the processing circuit is partly formed as dedicated hardware 200 and includes a processor 201 and a memory 202.
 一部が少なくとも1つの専用ハードウェア200である処理回路には、例えば、単一回路、複合回路、プログラム化したプロセッサ、並列プログラム化したプロセッサ、ASIC、FPGA、又はこれらを組み合わせたものが該当する。 The processing circuit, part of which is at least one dedicated hardware 200, includes, for example, a single circuit, a composite circuit, a programmed processor, a parallel programmed processor, an ASIC, an FPGA, or a combination thereof. .
 処理回路が少なくとも1つのプロセッサ201及び少なくとも1つのメモリ202を備える場合、制御装置20の動作制御部20a、記憶部20b、温度判定部20c及び設定部20dの各機能は、ソフトウェア、ファームウェア、又はソフトウェアとファームウェアとの組み合わせにより実現される。 When the processing circuit includes at least one processor 201 and at least one memory 202, the functions of the operation control unit 20a, the storage unit 20b, the temperature determination unit 20c, and the setting unit 20d of the control device 20 are software, firmware, or software. This is realized by a combination of firmware and firmware.
 ソフトウェア及びファームウェアはプログラムとして記述され、メモリ202に格納される。プロセッサ201は、メモリ202に記憶されたプログラムを読み出して実行することにより、各部の機能を実現する。プロセッサ201は、CPU(Central Processing Unit)、中央処理装置、処理装置、演算装置、マイクロプロセッサ、マイクロコンピュータあるいはDSPともいう。メモリ202には、例えば、RAM、ROM、フラッシュメモリー、EPROM及びEEPROM等の不揮発性又は揮発性の半導体メモリ、又は磁気ディスク、フレキシブルディスク、光ディスク、コンパクトディスク、ミニディスク及びDVD等が該当する。 Software and firmware are described as programs and stored in the memory 202. The processor 201 reads out and executes the program stored in the memory 202, thereby realizing the function of each unit. The processor 201 is also referred to as a CPU (Central Processing Unit), a central processing unit, a processing unit, an arithmetic unit, a microprocessor, a microcomputer, or a DSP. The memory 202 corresponds to, for example, a nonvolatile or volatile semiconductor memory such as a RAM, a ROM, a flash memory, an EPROM, and an EEPROM, or a magnetic disk, a flexible disk, an optical disk, a compact disk, a mini disk, and a DVD.
 このように、処理回路は、ハードウェア、ソフトウェア、ファームウェア、又はこれらの組み合わせによって、制御装置20の動作制御部20a、記憶部20b、温度判定部20c及び設定部20dの各機能を実現することができる。また除湿機100の構成は、単一の制御装置20により動作が制御される構成に限定されるものではない。除湿機100の構成は、複数の装置が連携することにより動作が制御される構成でも良い。 As described above, the processing circuit can realize the functions of the operation control unit 20a, the storage unit 20b, the temperature determination unit 20c, and the setting unit 20d of the control device 20 by hardware, software, firmware, or a combination thereof. it can. Further, the configuration of the dehumidifier 100 is not limited to the configuration in which the operation is controlled by the single control device 20. The configuration of the dehumidifier 100 may be a configuration in which operation is controlled by cooperation of a plurality of devices.
 次に、除湿機100の動作の例について説明する。除湿機100は、例えば室内で使用される。除湿機100は、例えば運転ボタン21aが押されることによって、運転を開始する。例えば使用者によって押された運転ボタン21aは、動作制御部20aへ信号を送信する。動作制御部20aは、運転ボタン21aから信号を受信すると、ファンモータ6及び除湿部7を駆動させる。 Next, an example of the operation of the dehumidifier 100 will be described. The dehumidifier 100 is used indoors, for example. The dehumidifier 100 starts operation when, for example, the operation button 21a is pressed. For example, the operation button 21a pressed by the user transmits a signal to the operation control unit 20a. When receiving a signal from the operation button 21a, the operation control unit 20a drives the fan motor 6 and the dehumidifying unit 7.
 ファンモータ6が駆動すると、送風ファン6aが回転する。送風ファン6aは、気流を発生させる。送風ファン6aが発生させた気流によって、例えば図2に示すように、室内空気Pが吸込口3から筐体1の内部へ取り込まれる。室内空気Pは、除湿部7によって除湿されて、乾燥空気Qとなる。乾燥空気Qは、送風ファン6aが発生させた気流によって、吹出口4から室内へ吹き出される。乾燥空気Qの吹出方向は、風向変更部10によって決まる。上記のようにして、除湿機100は運転を開始する。 When the fan motor 6 is driven, the blower fan 6a rotates. The blower fan 6a generates an air current. For example, as shown in FIG. 2, the indoor air P is taken into the housing 1 from the suction port 3 by the air flow generated by the blower fan 6 a. The room air P is dehumidified by the dehumidifying unit 7 to become dry air Q. The dry air Q is blown into the room from the air outlet 4 by the air flow generated by the blower fan 6a. The blowing direction of the dry air Q is determined by the wind direction changing unit 10. As described above, the dehumidifier 100 starts operation.
 使用者は、例えば運転ボタン21aによって除湿機100の運転を開始させた後、モード選択ボタン21bを操作する。以下では、除湿機100の動作の一例として、使用者によって固定集中モードが選択された場合の動作について説明する。 The user operates the mode selection button 21b after starting the operation of the dehumidifier 100 with the operation button 21a, for example. Hereinafter, as an example of the operation of the dehumidifier 100, an operation when the fixed concentration mode is selected by the user will be described.
 動作制御部20aは、モード選択ボタン21bからの信号に基づいて、固定集中モードを選択する。動作制御部20aは、固定集中モードを選択すると、照射部19の光源19aに可視光を照射させる。可視光は、レンズ19bに集光される。レンズ19bに集光された可視光は、乾燥空気Qの吹出方向へ照射される。 The operation control unit 20a selects the fixed concentration mode based on the signal from the mode selection button 21b. When the operation control unit 20a selects the fixed concentration mode, the operation control unit 20a causes the light source 19a of the irradiation unit 19 to emit visible light. Visible light is condensed on the lens 19b. The visible light condensed on the lens 19b is irradiated in the blowing direction of the dry air Q.
 図7は、実施の形態1の除湿機100の動作を示す図である。図7に示すように、乾燥空気Qの吹出方向へ照射された可視光は、照射領域30を照らす。使用者は、例えば照射領域30を見ながら操作キー21dを操作する。操作キー21dは、使用者からの操作に基づいた操作指示を動作制御部20aへ送信する。動作制御部20aは、受信した操作指示に基づいて、第1モータ12及び第2モータ14を制御する。これにより、上下方向ルーバー11及び左右方向ルーバー13が動く。上下方向ルーバー11及び左右方向ルーバー13が動くことにより、吹出方向が変更される。 FIG. 7 is a diagram illustrating the operation of the dehumidifier 100 according to the first embodiment. As shown in FIG. 7, the visible light irradiated in the blowing direction of the dry air Q illuminates the irradiation region 30. For example, the user operates the operation key 21d while looking at the irradiation area 30. The operation key 21d transmits an operation instruction based on an operation from the user to the operation control unit 20a. The operation control unit 20a controls the first motor 12 and the second motor 14 based on the received operation instruction. Thereby, the up-down direction louver 11 and the left-right direction louver 13 move. The blowing direction is changed by moving the vertical louver 11 and the horizontal louver 13.
 上下方向ルーバー11及び左右方向ルーバー13が動くと、センサケース17も共に動く。またセンサケース17に設けられた照射部19も動く。照射部19は、変更された吹出方向へ光を照射するように動く。照射領域30は、吹出方向の変更に合わせて動く。使用者は、照射領域30を見ながら、例えば図7に示すように、予め設置しておいた衣服31が照らされるように操作キー21dを操作する。これにより、衣服31に乾燥空気Qが集中する。 When the vertical louver 11 and the horizontal louver 13 move, the sensor case 17 also moves. The irradiation unit 19 provided in the sensor case 17 also moves. The irradiation unit 19 moves so as to irradiate light in the changed blowing direction. The irradiation area 30 moves according to the change of the blowing direction. The user operates the operation key 21d while observing the irradiation area 30, as shown in FIG. Thereby, the dry air Q concentrates on the clothes 31.
 ここで使用者は、衣服31が可視光によって照らされている状態で、例えば設定ボタン21cを押してもよい。使用者によって押された設定ボタン21cは、設定部20dへ信号を送信する。設定部20dは、設定ボタン21cから信号を受信すると、照射部19によって可視光が照射されている方向を設定方向として記憶部20bに設定する。設定方向が記憶部20bに設定されると、動作制御部20aは、吹出方向が設定方向へ固定されるように第1モータ12及び第2モータ14を制御する。 Here, the user may press the setting button 21c, for example, while the clothes 31 are illuminated by visible light. The setting button 21c pressed by the user transmits a signal to the setting unit 20d. When receiving the signal from the setting button 21c, the setting unit 20d sets the direction in which the visible light is irradiated by the irradiation unit 19 as the setting direction in the storage unit 20b. When the setting direction is set in the storage unit 20b, the operation control unit 20a controls the first motor 12 and the second motor 14 so that the blowing direction is fixed in the setting direction.
 吹出方向が設定方向へ固定されると、乾燥空気Qは、設定方向へ一定時間吹き出され続ける。乾燥空気Qが吹き出される際、表面温度検出部18は、吹出領域の表面温度を検出する。表面温度検出部18は、検出した表面温度の情報を電気信号に変換する。表面温度検出部18は、変換した電気信号を、温度判定部20cへ送信する。 When the blowing direction is fixed in the setting direction, the dry air Q continues to be blown in the setting direction for a certain time. When the dry air Q is blown out, the surface temperature detection unit 18 detects the surface temperature of the blowing region. The surface temperature detector 18 converts the detected surface temperature information into an electrical signal. The surface temperature detection unit 18 transmits the converted electrical signal to the temperature determination unit 20c.
 温度判定部20cは、受信した電気信号と記憶部20bに予め記憶された基準値の情報とに基づいて表面温度の判定を行う。吹出領域の表面温度が基準値を超えたと温度判定部20cによって判定されると、動作制御部20aは、ファンモータ6、除湿部7を停止させる。これにより、除湿機100の運転が終了する。 The temperature determination unit 20c determines the surface temperature based on the received electrical signal and reference value information stored in advance in the storage unit 20b. When it is determined by the temperature determination unit 20c that the surface temperature of the blowout region exceeds the reference value, the operation control unit 20a stops the fan motor 6 and the dehumidifying unit 7. Thereby, the operation of the dehumidifier 100 is completed.
 上記実施例において照射部19の光源19aは、固定集中モードが選択されると可視光を照射する。光源19aは、例えば除湿機100の運転が開始すると同時に可視光の照射を開始してもよい。また光源19aは、例えば設定ボタン21cが押されたと同時、あるいは設定ボタン21cが押されてから一定時間経過後に、可視光の照射を停止してもよい。 In the above embodiment, the light source 19a of the irradiation unit 19 emits visible light when the fixed concentration mode is selected. For example, the light source 19a may start irradiation with visible light simultaneously with the start of the operation of the dehumidifier 100. For example, the light source 19a may stop the irradiation of visible light at the same time when the setting button 21c is pressed or after a certain time has elapsed since the setting button 21c was pressed.
 上記実施例において使用者は、照射領域30を見ることによって、乾燥空気Qの吹出方向を容易に認識することができる。また使用者は、操作キー21dによって乾燥空気Qの吹出方向を任意の方向へ容易に変更することができる。使用者は、照射領域30を見ることによって、分かりやすい状態で乾燥空気Qの吹出方向を変更することができる。使用者は、除湿機100に合わせて乾かしたい衣服31を動かすことなく、予め干しておいた衣服31を集中して乾燥させることができる。 In the above embodiment, the user can easily recognize the blowing direction of the dry air Q by looking at the irradiation region 30. Further, the user can easily change the blowing direction of the dry air Q to an arbitrary direction by the operation key 21d. The user can change the blowing direction of the dry air Q in an easy-to-understand state by looking at the irradiation region 30. The user can concentrate and dry the clothes 31 previously dried without moving the clothes 31 to be dried according to the dehumidifier 100.
 上記実施例において使用者は、設定ボタン21cを操作することにより、任意の方向に乾燥空気Qを集中させることができる。乾燥空気Qは、衣服31へ向かって無駄なく確実に送られる。本例であれば、例えば乾燥させる必要のない物への送風による無駄な電気代が削減される。また動作制御部20aは、表面温度検出部18の検出結果に基づいてファンモータ6を停止させる。これにより、無駄な電気代がより削減される。 In the above embodiment, the user can concentrate the dry air Q in an arbitrary direction by operating the setting button 21c. The dry air Q is reliably sent toward the clothes 31 without waste. If it is this example, the useless electricity bill by the ventilation to the thing which does not need to be dried will be reduced, for example. Further, the operation control unit 20 a stops the fan motor 6 based on the detection result of the surface temperature detection unit 18. Thereby, useless electricity bill is further reduced.
 上記実施例によれば、乾燥空気Qの吹出方向をより容易に認識することができ、かつ乾燥空気Qの吹出方向を任意の方向へより容易に変更することができる除湿機100が得られる。なお上記実施例においては衣服31を乾燥させる動作を一例として示したが、乾燥空気Qが吹き出される対象は衣服31に限られない。例えば除湿機100は、浴室の壁及び床等の、屋内の濡れた場所を乾燥する際にも使用できる。 According to the above embodiment, it is possible to obtain the dehumidifier 100 that can more easily recognize the blowing direction of the dry air Q and can easily change the blowing direction of the dry air Q to an arbitrary direction. In addition, although the operation | movement which dries the clothes 31 was shown as an example in the said Example, the object from which the dry air Q is blown off is not restricted to the clothes 31. FIG. For example, the dehumidifier 100 can also be used when drying indoor wet places such as bathroom walls and floors.
 風向決定手段の一例である風向変更部10は、上下方向ルーバー11及び左右方向ルーバー13を有していなくてもよい。風向変更部10の構造は、上記実施例以外にも、例えば上下左右方向へ動くことができるノズル状の構造であってもよい。 The wind direction changing unit 10 that is an example of the wind direction determining unit may not include the vertical direction louver 11 and the horizontal direction louver 13. The structure of the wind direction changing unit 10 may be, for example, a nozzle-like structure that can move in the vertical and horizontal directions other than the above-described embodiment.
 また照射部19は、例えばセンサケース17に設けられていなくてもよい。あるいはセンサケース17は、リンク15に接続されていなくてもよい。例えば除湿機100は、照射部19と風向変更部10とが独立して動作可能な構成であってもよい。照射部19は、例えば風向変更部10の動きに合わせて、制御装置20によって動かされるものであってもよい。 Moreover, the irradiation part 19 does not need to be provided in the sensor case 17, for example. Alternatively, the sensor case 17 may not be connected to the link 15. For example, the dehumidifier 100 may be configured such that the irradiation unit 19 and the wind direction changing unit 10 can operate independently. For example, the irradiation unit 19 may be moved by the control device 20 in accordance with the movement of the wind direction changing unit 10.
 上記実施例において操作部21の操作キー21dは、筐体1に設けられる。使用者は、筐体1上の操作キー21dを操作するという容易な動作によって、乾燥空気Qの吹出方向を変更することができる。なお除湿機100は、例えば操作部21の代わりに、操作キー21dを有するリモートコントローラーを備えていてもよい。本例であれば使用者は、筐体1から離れた位置で、除湿機100を操作できる。また除湿機100は、例えば操作部21とリモートコントローラーとの両方を備えていてもよい。 In the above embodiment, the operation key 21d of the operation unit 21 is provided on the housing 1. The user can change the blowing direction of the dry air Q by an easy operation of operating the operation key 21d on the housing 1. In addition, the dehumidifier 100 may be provided with the remote controller which has the operation key 21d instead of the operation part 21, for example. In this example, the user can operate the dehumidifier 100 at a position away from the housing 1. Moreover, the dehumidifier 100 may be provided with both the operation part 21 and the remote controller, for example.
実施の形態2.
 次に、実施の形態2について説明する。実施の形態2の除湿機100の構成は、実施の形態1と同様に、図1から図6によって示される。実施の形態1と同様の構成及び動作については、説明を省略する。図8は、実施の形態2の除湿機100の動作を示す図である。
Embodiment 2. FIG.
Next, a second embodiment will be described. The configuration of the dehumidifier 100 according to the second embodiment is shown in FIGS. 1 to 6 as in the first embodiment. The description of the same configuration and operation as in Embodiment 1 is omitted. FIG. 8 is a diagram illustrating the operation of the dehumidifier 100 according to the second embodiment.
 本実施の形態においてレンズ19bは、光源19aからの可視光を第1の可視光と第2の可視光とに分割するレンズである。これにより、照射領域30は、第1領域30aと第2領域30bとに分割される。第1領域30aは、第1の可視光が照射される領域である。第2領域30bは、第2の可視光が照射される領域である。第1の可視光は、例えば第2の可視光よりも光度が高い。すなわち、第1領域30aは、第2領域30bよりも照度が高くなる。本実施の形態におけるレンズ19bは、分割手段の一例である。 In the present embodiment, the lens 19b is a lens that splits visible light from the light source 19a into first visible light and second visible light. Thereby, the irradiation region 30 is divided into a first region 30a and a second region 30b. The first region 30a is a region irradiated with the first visible light. The second region 30b is a region irradiated with the second visible light. The first visible light has a luminous intensity higher than that of the second visible light, for example. That is, the first region 30a has higher illuminance than the second region 30b. The lens 19b in the present embodiment is an example of a dividing unit.
 第1領域30a及び第2領域30bは、例えば図8に示すように円形の領域である。光源19a及びレンズ19bは、例えば第1領域30aが直径60mmの円となるように形成及び配置される。また光源19a及びレンズ19bは、例えば第2領域30bが直径800mmの円となるように形成及び配置される。 The first region 30a and the second region 30b are circular regions as shown in FIG. 8, for example. The light source 19a and the lens 19b are formed and arranged so that the first region 30a is a circle having a diameter of 60 mm, for example. The light source 19a and the lens 19b are formed and arranged so that the second region 30b is a circle having a diameter of 800 mm, for example.
 本実施の形態において光源19a及びレンズ19bは、第1領域30aが第2領域30bの内側に位置するように、形成及び配置されている。第1領域30aは、例えば第2領域30bの中央に位置する。第2領域30bよりも明るい第1領域30aは、乾燥空気Qの吹出方向を表している。使用者は、第1領域30aを見ることにより、乾燥空気Qの吹出方向を分かりやすく認識することができる。 In the present embodiment, the light source 19a and the lens 19b are formed and arranged so that the first region 30a is positioned inside the second region 30b. The first region 30a is located at the center of the second region 30b, for example. The first region 30a brighter than the second region 30b represents the blowing direction of the dry air Q. The user can easily recognize the blowing direction of the dry air Q by looking at the first region 30a.
 また光源19a及びレンズ19bは、乾燥空気Qの吹出領域と第2領域30bとが一致、または近くなるように、形成及び配置されている。すなわち第2領域30bには、吹出口4から吹き出された乾燥空気Qが当たる。第2領域30bは、乾燥空気Qの吹出領域を表している。使用者は、第2領域30bを見ることにより、乾燥空気Qの吹出領域を認識することができる。 Further, the light source 19a and the lens 19b are formed and arranged so that the blowing area of the dry air Q and the second area 30b are coincident with or close to each other. That is, the dry air Q blown out from the blower outlet 4 hits the second region 30b. The second area 30b represents a blowing area of the dry air Q. The user can recognize the blowing area of the dry air Q by looking at the second area 30b.
 本実施の形態の除湿機100の使用者は、操作キー21dを操作することによって、実施の形態1と同様に照射領域30を動かすことができる。使用者は、第1領域30aおよび第2領域30bを、視認しつつ動かすことができる。すなわち使用者は、乾燥空気Qの吹出方向及び吹出領域を認識した状態で、乾燥空気Qの吹出方向及び吹出領域を変更することができる。使用者は、例えば第2領域の内部に衣服31が位置するように、操作キー21dを操作する。これにより、衣服31がまんべんなく乾燥される。 The user of the dehumidifier 100 according to the present embodiment can move the irradiation region 30 by operating the operation key 21d as in the first embodiment. The user can move the first region 30a and the second region 30b while viewing the first region 30a and the second region 30b. That is, the user can change the blowing direction and the blowing area of the dry air Q while recognizing the blowing direction and the blowing area of the dry air Q. For example, the user operates the operation key 21d so that the clothes 31 are located inside the second region. Thereby, the clothes 31 are evenly dried.
 なお第1領域30a及び第2領域30bの形状及び大きさは本例に限られるものではない。例えば第2領域30bの形状は、長方形であってもよい。また本実施の形態の除湿機100は、実施の形態1に示す固定集中モードで運転してもよい。 The shape and size of the first region 30a and the second region 30b are not limited to this example. For example, the shape of the second region 30b may be a rectangle. The dehumidifier 100 of the present embodiment may be operated in the fixed concentration mode shown in the first embodiment.
実施の形態3.
 次に、実施の形態3について説明する。実施の形態3の除湿機100の構成は、実施の形態1及び実施の形態2と同様に、図1から図6によって示される。実施の形態1及び実施の形態2と同様の構成及び動作については、説明を省略する。図9は、実施の形態3の除湿機100の動作を示す図である。
Embodiment 3 FIG.
Next, Embodiment 3 will be described. The configuration of the dehumidifier 100 of the third embodiment is shown in FIGS. 1 to 6 as in the first and second embodiments. The description of the same configuration and operation as in the first and second embodiments is omitted. FIG. 9 is a diagram illustrating the operation of the dehumidifier 100 according to the third embodiment.
 本実施の形態において照射部19は、光源19aを複数有する。複数の光源19aは、例えばそれぞれ違う色の可視光を照射する。照射部19は、例えば青色の可視光を照射する光源19aと、橙色の可視光を照射する光源19aとを有する。なお複数の光源19aが照射する可視光の色は、本実施例に限られない。 In the present embodiment, the irradiation unit 19 includes a plurality of light sources 19a. The plurality of light sources 19a radiate, for example, different colors of visible light. The irradiation unit 19 includes, for example, a light source 19a that emits blue visible light and a light source 19a that emits orange visible light. Note that the color of visible light emitted by the plurality of light sources 19a is not limited to the present embodiment.
 本実施の形態において照射領域30は、実施の形態2と同様に、第1領域30aと第2領域30bとに分割される。第1領域30aは、第2領域30bの内側に位置する。第1領域30aは、例えば第2領域30bの中央に位置する。第1領域30aには、例えば青色の可視光が光源19aから照射される。第2領域30bには、例えば橙色の可視光が、光源19aから照射される。 In the present embodiment, the irradiation region 30 is divided into a first region 30a and a second region 30b as in the second embodiment. The first region 30a is located inside the second region 30b. The first region 30a is located at the center of the second region 30b, for example. The first region 30a is irradiated with, for example, blue visible light from the light source 19a. The second region 30b is irradiated with, for example, orange visible light from the light source 19a.
 第1領域30aは、例えば図9に示すように円形の領域である。第2領域30bは、例えば図9に示すように長方形の領域である。光源19a及びレンズ19bは、例えば第1領域30aが直径60mmの円となるように形成及び配置される。また光源19a及びレンズ19bは、例えば第2領域30bが上下幅100mmで左右幅800mmの長方形となるように形成及び配置される。なお第1領域30a及び第2領域30bの形状及び大きさは本例に限られるものではない。例えば第2領域30bの形状は、円であってもよい。 The first area 30a is, for example, a circular area as shown in FIG. The second region 30b is a rectangular region as shown in FIG. 9, for example. The light source 19a and the lens 19b are formed and arranged so that the first region 30a is a circle having a diameter of 60 mm, for example. The light source 19a and the lens 19b are formed and arranged so that, for example, the second region 30b is a rectangle having a vertical width of 100 mm and a horizontal width of 800 mm. The shapes and sizes of the first region 30a and the second region 30b are not limited to this example. For example, the shape of the second region 30b may be a circle.
 本実施の形態において第1領域30aは、実施の形態2と同様に、乾燥空気Qの吹出方向を表す。また第2領域30bは、実施の形態2と同様に、乾燥空気Qの吹出領域を表している。第1領域30aと第2領域30bとは、異なる色の可視光で照らされている。本実施の形態であれば使用者は、より確実に、乾燥空気Qの吹出方向と吹出領域とを区別しつつ認識することができる。 In the present embodiment, the first region 30a represents the blowing direction of the dry air Q as in the second embodiment. Further, the second region 30b represents the blown region of the dry air Q, as in the second embodiment. The first region 30a and the second region 30b are illuminated with different colors of visible light. If it is this Embodiment, a user can recognize, distinguishing the blowing direction and the blowing area | region of the dry air Q more reliably.
 本実施の形態の除湿機100は、複数の光源19aを備える。可視光を照射する光源19aが使用者によって選択されてもよい。例えば使用者は、操作部21を操作することによって、可視光を照射する光源19aを選択してもよい。例えば使用者は、乾燥空気Qの吹出方向のみを認識したい場合には、第1領域30aのみが照らされるように操作部21を操作してもよい。本例であれば、乾燥空気Qの吹出方向を表す第1領域30aと乾燥空気Qの吹出領域を表す第2領域30bとのうち、一方のみを照らすことが可能となる。 The dehumidifier 100 of this embodiment includes a plurality of light sources 19a. The light source 19a that emits visible light may be selected by the user. For example, the user may select the light source 19 a that emits visible light by operating the operation unit 21. For example, when the user wants to recognize only the blowing direction of the dry air Q, the user may operate the operation unit 21 so that only the first region 30a is illuminated. In this example, it is possible to illuminate only one of the first region 30a representing the blowing direction of the dry air Q and the second region 30b representing the blowing region of the dry air Q.
 また図10は、実施の形態3の除湿機100の変形例を示す図である。除湿機100は例えば光源19aを有する照射部19を、複数備えるものであってもよい。複数の照射部19は、それぞれ異なる色の可視光を照射する。複数の照射部19の1つは、実施の形態1及び実施の形態2と同様にセンサケース17に設けられる。 FIG. 10 is a diagram showing a modification of the dehumidifier 100 according to the third embodiment. For example, the dehumidifier 100 may include a plurality of irradiation units 19 each having a light source 19a. The plurality of irradiation units 19 irradiate visible light of different colors. One of the plurality of irradiation units 19 is provided in the sensor case 17 in the same manner as in the first and second embodiments.
 複数の照射部19の1つは、例えば上下方向ルーバー11及び左右方向ルーバー13の左端、あるいは左端の近くに設けられる。複数の照射部19の1つは、例えば上下方向ルーバー11及び左右方向ルーバー13の右端、あるいは右端の近くに設けられる。図10に示す本変形例においても、上記実施例と同様の効果が得られる。 One of the plurality of irradiation units 19 is provided, for example, at the left end of the up-down direction louver 11 and the left-right direction louver 13 or near the left end. One of the plurality of irradiation units 19 is provided, for example, at the right end of the up-down direction louver 11 and the left-right direction louver 13 or near the right end. Also in this modified example shown in FIG. 10, the same effect as the above-described embodiment can be obtained.
 本発明に係る除湿機は、任意の対象物を乾燥させるために利用される。 The dehumidifier according to the present invention is used for drying an arbitrary object.
 1 筐体、 2 車輪、 3 吸込口、 4 吹出口、 5 風路、 6 ファンモータ、 6a 送風ファン、 7 除湿部、 8 貯水部、 9 フィルター、 10 風向変更部、 11 上下方向ルーバー、 12 第1モータ、 12a 歯車、 12b 歯車、 12c 歯車、 13 左右方向ルーバー、 14 第2モータ、 15 リンク、 16 センサ部、 17 センサケース、 17a センサ窓、 18 表面温度検出部、 19 照射部、 19a 光源、 19b レンズ、 20 制御装置、 20a 動作制御部、 20b 記憶部、 20c 温度判定部、 20d 設定部、 21 操作部、 21a 運転ボタン、 21b モード選択ボタン、 21c 設定ボタン、 21d 操作キー、 30 照射領域、 30a 第1領域、 30b 第2領域、 31 衣服、 100 除湿機、 200 専用ハードウェア、 201 プロセッサ、 202 メモリ 1 housing, 2 wheels, 3 inlet, 4 outlet, 5 airway, 6 fan motor, 6a blower fan, 7 dehumidifying part, 8 water storage part, 9 filter, 10 wind direction changing part, 11 vertical louver, 12th 1 motor, 12a gear, 12b gear, 12c gear, 13 left and right louver, 14 second motor, 15 link, 16 sensor unit, 17 sensor case, 17a sensor window, 18 surface temperature detection unit, 19 irradiation unit, 19a light source, 19b lens, 20 control device, 20a operation control unit, 20b storage unit, 20c temperature determination unit, 20d setting unit, 21 operation unit, 21a operation button, 21b mode selection button, 21c setting button, 21d operation key, 30 irradiation region 30a first region, 30b second region, 31 garment, 100 dehumidifier, 200 dedicated hardware, 201 processor, 202 memory

Claims (6)

  1.  吹出口が形成された筐体と、
     前記筐体の内部に設けられ、空気中の水分を除去する除湿手段と、
     前記除湿手段によって水分が除去された乾燥空気を前記吹出口から吹き出させる吹出手段と、
     前記吹出口から乾燥空気が吹き出される方向を決める風向決定手段と、
     操作指示を送信する操作手段と、
     前記操作手段から操作指示を受信すると、前記風向決定手段を動かし、前記吹出口から乾燥空気が吹き出される方向を変更させる制御手段と、
     前記吹出口から乾燥空気が吹き出される方向へ可視光を照射する照射手段と、
     を備える除湿機。
    A housing in which an air outlet is formed;
    A dehumidifying means provided in the housing for removing moisture in the air;
    Blowing means for blowing dry air from which moisture has been removed by the dehumidifying means from the blowout port;
    A wind direction determining means for determining a direction in which the dry air is blown from the air outlet;
    An operation means for transmitting an operation instruction;
    When receiving an operation instruction from the operation means, the control means for moving the air direction determination means and changing the direction in which the dry air is blown out from the outlet;
    Irradiating means for irradiating visible light in a direction in which dry air is blown from the outlet;
    A dehumidifier.
  2.  前記照射手段は、前記風向決定手段に設けられ、前記風向決定手段が動くと前記風向決定手段と共に動く請求項1に記載の除湿機。 The dehumidifier according to claim 1, wherein the irradiation unit is provided in the wind direction determining unit, and moves with the wind direction determining unit when the wind direction determining unit moves.
  3.  前記風向決定手段は、
     動くことによって、前記吹出口から乾燥空気が吹き出される方向を上下方向に変更する第1変更部と、
     動くことによって、前記吹出口から乾燥空気が吹き出される方向を左右方向に変更する第2変更部と、
     を有し、
     前記第2変更部は、前記第1変更部が動くと前記第1変更部と共に前記第1変更部が動く方向と同じ方向へ動き、
     前記照射手段は、前記第2変更部が動くと前記第2変更部と共に前記第2変更部が動く方向と同じ方向へ動く請求項2に記載の除湿機。
    The wind direction determining means is
    A first changing unit that changes a direction in which the dry air is blown out from the blow-out port to a vertical direction by moving;
    A second changing unit that changes the direction in which the dry air is blown out from the outlet to the left and right by moving;
    Have
    The second changing unit moves in the same direction as the first changing unit moves together with the first changing unit when the first changing unit moves.
    3. The dehumidifier according to claim 2, wherein when the second changing unit moves, the irradiation unit moves in the same direction as the second changing unit moves together with the second changing unit.
  4.  前記照射手段は、
     可視光を照射する光源と、
     前記光源によって照射される可視光を、第1の可視光と第2の可視光とに分ける分割手段と、
     を有し、
     前記第1の可視光が照射される領域は、前記第2の可視光が照射される領域より照度が高く、かつ前記第2の可視光が照射される領域の内側に位置する請求項1から請求項3の何れか1項に記載の除湿機。
    The irradiation means includes
    A light source that emits visible light;
    Splitting means for dividing visible light irradiated by the light source into first visible light and second visible light;
    Have
    The region irradiated with the first visible light has higher illuminance than the region irradiated with the second visible light, and is located inside the region irradiated with the second visible light. The dehumidifier according to any one of claims 3 to 4.
  5.  前記照射手段は、
     第1の色の可視光を照射する光源と、
     前記第1の色と異なる第2の色の可視光を照射する光源と、
     を有し、
     前記第1の色の可視光が照射される領域は、前記第2の色の可視光が照射される領域の内側に位置する請求項1から請求項3の何れか1項に記載の除湿機。
    The irradiation means includes
    A light source that emits visible light of a first color;
    A light source that emits visible light of a second color different from the first color;
    Have
    The dehumidifier according to any one of claims 1 to 3, wherein the region irradiated with visible light of the first color is located inside the region irradiated with visible light of the second color. .
  6.  前記吹出口から吹き出された乾燥空気が当たる場所の表面温度を検出する表面温度検出手段を備え、
     前記制御手段は、前記表面温度検出手段によって検出された表面温度が基準値を超えると前記吹出手段を停止させる請求項1から請求項5の何れか1項に記載の除湿機。
    Surface temperature detection means for detecting the surface temperature of the place where the dry air blown out from the blowout outlet hits,
    The dehumidifier according to any one of claims 1 to 5, wherein the control unit stops the blowing unit when the surface temperature detected by the surface temperature detection unit exceeds a reference value.
PCT/JP2016/080353 2016-02-16 2016-10-13 Dehumidifier WO2017141488A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201680069595.3A CN108603329B (en) 2016-02-16 2016-10-13 Dehumidifier
JP2017567947A JP6696515B2 (en) 2016-02-16 2016-10-13 Dehumidifier
HK18113846.9A HK1254553A1 (en) 2016-02-16 2018-10-30 Dehumidifier

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2016027225 2016-02-16
JP2016-027226 2016-02-16
JP2016-027225 2016-02-16
JP2016027226 2016-02-16

Publications (1)

Publication Number Publication Date
WO2017141488A1 true WO2017141488A1 (en) 2017-08-24

Family

ID=59625781

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2016/080353 WO2017141488A1 (en) 2016-02-16 2016-10-13 Dehumidifier
PCT/JP2016/080352 WO2017141487A1 (en) 2016-02-16 2016-10-13 Dehumidifier

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/080352 WO2017141487A1 (en) 2016-02-16 2016-10-13 Dehumidifier

Country Status (5)

Country Link
JP (2) JP6696515B2 (en)
CN (2) CN108603329B (en)
HK (2) HK1254553A1 (en)
TW (2) TWI636222B (en)
WO (2) WO2017141488A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109621682A (en) * 2019-01-15 2019-04-16 肇庆市新大力设备制造安装有限公司 Exhaust treatment system

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018154808A1 (en) * 2017-02-22 2018-08-30 三菱電機株式会社 Dehumidifier
WO2020079849A1 (en) * 2018-10-19 2020-04-23 三菱電機株式会社 Bathroom dryer
JP7226347B2 (en) * 2020-01-10 2023-02-21 三菱電機株式会社 dehumidifier
CN116368332A (en) * 2020-11-17 2023-06-30 三菱电机株式会社 Dehumidifier

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008188188A (en) * 2007-02-05 2008-08-21 Matsushita Electric Ind Co Ltd Clothes dryer
JP2009131786A (en) * 2007-11-30 2009-06-18 Zojirushi Corp Dehumidifier
WO2009113284A1 (en) * 2008-03-13 2009-09-17 パナソニック株式会社 Method for controlling drying of clothes and dryer for clothes
JP2011106769A (en) * 2009-11-19 2011-06-02 Panasonic Corp Blowing device
WO2014196416A1 (en) * 2013-06-04 2014-12-11 三菱電機株式会社 Dehumidifier
JP2015158353A (en) * 2011-03-07 2015-09-03 三菱電機株式会社 air conditioner

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0674916B2 (en) * 1986-07-16 1994-09-21 松下電器産業株式会社 Air conditioner
JP2008206026A (en) * 2007-02-22 2008-09-04 Nec Corp Portable terminal
CN104160083B (en) * 2012-03-27 2016-06-22 三菱电机株式会社 Dehumidifier
JP2013219889A (en) * 2012-04-06 2013-10-24 Taiyo Yuden Co Ltd Laser pointer
CN103574847B (en) * 2012-07-19 2015-11-25 美的集团股份有限公司 The control system of air-conditioner air outlet rotational angle and control method thereof
JP6070136B2 (en) * 2012-12-07 2017-02-01 株式会社富士通ゼネラル Air conditioner remote control device
CN103277839B (en) * 2013-05-21 2016-04-06 广东美的制冷设备有限公司 The visual control method of indoor apparatus of air conditioner and air-supply region thereof
CN103256694B (en) * 2013-05-21 2015-11-25 广东美的制冷设备有限公司 Air-conditioner accessory, the visual control method of air-conditioner and air-supply region thereof
CN103256660B (en) * 2013-05-21 2015-06-10 美的集团股份有限公司 Indoor unit of air conditioner
JP2016121857A (en) * 2014-12-25 2016-07-07 シャープ株式会社 Air conditioner

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008188188A (en) * 2007-02-05 2008-08-21 Matsushita Electric Ind Co Ltd Clothes dryer
JP2009131786A (en) * 2007-11-30 2009-06-18 Zojirushi Corp Dehumidifier
WO2009113284A1 (en) * 2008-03-13 2009-09-17 パナソニック株式会社 Method for controlling drying of clothes and dryer for clothes
JP2011106769A (en) * 2009-11-19 2011-06-02 Panasonic Corp Blowing device
JP2015158353A (en) * 2011-03-07 2015-09-03 三菱電機株式会社 air conditioner
WO2014196416A1 (en) * 2013-06-04 2014-12-11 三菱電機株式会社 Dehumidifier

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109621682A (en) * 2019-01-15 2019-04-16 肇庆市新大力设备制造安装有限公司 Exhaust treatment system

Also Published As

Publication number Publication date
JPWO2017141488A1 (en) 2018-09-27
JPWO2017141487A1 (en) 2018-06-21
HK1254553A1 (en) 2019-07-19
WO2017141487A1 (en) 2017-08-24
TWI636222B (en) 2018-09-21
TW201736665A (en) 2017-10-16
JP6696515B2 (en) 2020-05-20
CN108603329A (en) 2018-09-28
TWI630303B (en) 2018-07-21
CN108603329B (en) 2020-09-22
CN108603327B (en) 2021-03-12
HK1254552A1 (en) 2019-07-19
TW201736782A (en) 2017-10-16
JP6696514B2 (en) 2020-05-20
CN108603327A (en) 2018-09-28

Similar Documents

Publication Publication Date Title
JP6696515B2 (en) Dehumidifier
JP6508418B2 (en) Dehumidifier
JP5984666B2 (en) Dehumidifier
WO2018008234A1 (en) Dehumidifier
KR20140092953A (en) Air conditioner
TW201303231A (en) Air conditioner
TW201920893A (en) Ventilation device
TWI661164B (en) dehumidifier
JP6816737B2 (en) Dehumidifier
TWI669427B (en) dehumidifier
JP2019007693A (en) Dehumidifier
JP2020069431A (en) Dehumidifier
JP7198113B2 (en) air conditioner
JP7226347B2 (en) dehumidifier
JP5610797B2 (en) Dehumidifier
JP2019032102A (en) Dehumidifier
JP7433074B2 (en) Cloud removal device
JP2018008201A (en) Dehumidifier
JP2008093506A (en) Dehumidifier

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16890625

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017567947

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16890625

Country of ref document: EP

Kind code of ref document: A1