WO2017141478A1 - Vane pump - Google Patents

Vane pump Download PDF

Info

Publication number
WO2017141478A1
WO2017141478A1 PCT/JP2016/077578 JP2016077578W WO2017141478A1 WO 2017141478 A1 WO2017141478 A1 WO 2017141478A1 JP 2016077578 W JP2016077578 W JP 2016077578W WO 2017141478 A1 WO2017141478 A1 WO 2017141478A1
Authority
WO
WIPO (PCT)
Prior art keywords
rotor
cam ring
pump chamber
pump
vane pump
Prior art date
Application number
PCT/JP2016/077578
Other languages
French (fr)
Japanese (ja)
Inventor
善也 中村
鈴木 一成
Original Assignee
Kyb株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyb株式会社 filed Critical Kyb株式会社
Priority to DE112016006428.4T priority Critical patent/DE112016006428T5/en
Priority to US16/069,070 priority patent/US20200392847A1/en
Priority to CN201680079918.7A priority patent/CN108496007A/en
Publication of WO2017141478A1 publication Critical patent/WO2017141478A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2/00Rotary-piston machines or pumps
    • F04C2/30Rotary-piston machines or pumps having the characteristics covered by two or more groups F04C2/02, F04C2/08, F04C2/22, F04C2/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
    • F04C2/34Rotary-piston machines or pumps having the characteristics covered by two or more groups F04C2/02, F04C2/08, F04C2/22, F04C2/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in groups F04C2/08 or F04C2/22 and relative reciprocation between the co-operating members
    • F04C2/344Rotary-piston machines or pumps having the characteristics covered by two or more groups F04C2/02, F04C2/08, F04C2/22, F04C2/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in groups F04C2/08 or F04C2/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the inner member
    • F04C2/3446Rotary-piston machines or pumps having the characteristics covered by two or more groups F04C2/02, F04C2/08, F04C2/22, F04C2/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in groups F04C2/08 or F04C2/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the inner member the inner and outer member being in contact along more than one line or surface
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01CROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
    • F01C21/00Component parts, details or accessories not provided for in groups F01C1/00 - F01C20/00
    • F01C21/08Rotary pistons
    • F01C21/0809Construction of vanes or vane holders
    • F01C21/0818Vane tracking; control therefor
    • F01C21/0827Vane tracking; control therefor by mechanical means
    • F01C21/0836Vane tracking; control therefor by mechanical means comprising guiding means, e.g. cams, rollers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2240/00Components
    • F04C2240/20Rotors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2250/00Geometry
    • F04C2250/20Geometry of the rotor

Definitions

  • the present invention relates to a vane pump.
  • JP 2006-125210A describes a vane pump in which a notch portion is formed on a side surface of a cam ring that comes into contact with a side plate and that faces a suction recess formed in the side plate.
  • a suction port is constituted by a suction recess and a notch.
  • the present invention aims to improve the suction efficiency of the working fluid in the vane pump.
  • a vane pump includes a rotor that is rotationally driven, a plurality of vanes that are provided in the rotor so as to be capable of reciprocating in the radial direction of the rotor, and tip portions of the plurality of vanes as the rotor rotates.
  • a cam ring having an inner peripheral cam surface that is in sliding contact, a first side member and a second side member that are disposed across the rotor and the cam ring, and a rotor, a cam ring, adjacent vanes, a first side member, and a second side member.
  • FIG. 1 is a cross-sectional view of a vane pump according to an embodiment of the present invention.
  • FIG. 2 is a front view of the rotor, the vane, and the cam ring according to the embodiment of the present invention, and shows the assembled state of the rotor, the vane, and the cam ring.
  • FIG. 3 is a perspective view of the rotor according to the embodiment of the present invention.
  • FIG. 4 is a side view of the rotor according to the embodiment of the present invention.
  • FIG. 5 is an enlarged cross-sectional view of the vicinity of the pump chamber according to the embodiment of the present invention.
  • FIG. 6 is a front view of the first side plate according to the embodiment of the present invention.
  • FIG. 7 is a side view of the cam ring, the first side plate, and the second side plate according to the embodiment of the present invention, and shows a state in which the first side plate and the second side plate are assembled to the cam ring.
  • FIG. 8 is a rear view of the cam ring according to the embodiment of the present invention.
  • FIG. 9 is a front view of the second side plate according to the embodiment of the present invention.
  • FIG. 10 is a diagram showing a modification of the embodiment of the present invention.
  • the vane pump 100 is used as a hydraulic pressure supply source of a hydraulic device 1 (for example, a power steering device or a transmission) mounted on a vehicle.
  • a hydraulic device 1 for example, a power steering device or a transmission
  • working oil used as the working fluid
  • other fluids such as working water may be used as the working fluid.
  • the vane pump 100 includes a drive shaft 10, a rotor 20 coupled to the drive shaft 10, a plurality of vanes 30 provided on the rotor 20, a cam ring 40 that houses the rotor 20 and the vanes 30, Is provided.
  • the drive shaft 10 is rotatably supported by the pump body 50 and the pump cover 60.
  • the rotor 20 rotates as the drive shaft 10 rotates.
  • the direction along the rotation center axis of the rotor 20 is also referred to as “axial direction”
  • the radial direction of the rotor 20 is also simply referred to as “radial direction”
  • the direction in which the rotor 20 rotates during normal operation of the vane pump 100 is simply “rotated”. Also referred to as “direction”.
  • the vane pump 100 further includes first and second side plates 70 and 80 as first and second side members disposed with the rotor 20 and the cam ring 40 sandwiched in the axial direction.
  • the first and second side plates 70 and 80 have side surfaces 70a and 80a that abut against the rotor 20 and the cam ring 40, respectively.
  • the pump chamber 41 is defined by the rotor 20, the cam ring 40, the adjacent vanes 30, the first side plate 70, and the second side plate 80.
  • FIG. 2 is a front view of the rotor 20, the vane 30 and the cam ring 40 as viewed from the assembled pump cover 60 side.
  • FIG. 3 is a perspective view of the rotor 20.
  • FIG. 4 is a side view of the rotor 20.
  • FIG. 5 is an enlarged cross-sectional view in the vicinity of the pump chamber 41.
  • the rotor 20 is formed with a plurality of radial slits 22 having openings 21 on the outer peripheral surface 20a at predetermined intervals.
  • the rotor 20 is formed between two annular recesses 23, 24 formed on the outer peripheral surface 20 a and the outer surface 20 a of the rotor 20 formed between the recesses 23, 24 in the radial direction. And an annular ridge 25 projecting from the top.
  • the concave portion 23 includes a side surface 23A on the end surface 20b side facing the first side plate 70 of the rotor 20, a side surface 23B on the raised portion 25 side, and a bottom surface 23C formed by a concave curved surface between the side surface 23A and the side surface 23B. And comprising.
  • the concave portion 23 is formed so as to be inclined so that the side surface 23A and the side surface 23B are closer to each other toward the bottom surface 23C.
  • the bottom surface 23C is formed by a concave curved surface that is continuous with the side surface 23A and the side surface 23B.
  • the concave portion 24 includes a side surface 24A on the end surface 20c side facing the second side plate 80 of the rotor 20, a side surface 24B on the raised portion 25 side, and a bottom surface 24C formed by a concave curved surface between the side surface 24A and the side surface 24B. And comprising.
  • the recess 24 is formed so as to be inclined so that the side surface 24A and the side surface 24B approach each other as it goes toward the bottom surface 24C.
  • the bottom surface 24C is formed by a concave curved surface that is continuous with the side surface 24A and the side surface 24B.
  • the side surface 23A of the recess 23 and the side surface 24A of the recess 24 are provided at positions facing notches 43 and 44 formed in the cam ring 40 described later.
  • the vane 30 is slidably inserted into each slit 22.
  • the tip 31 of the vane 30 faces the inner peripheral surface 40 a of the cam ring 40.
  • the base end portion 32 of the vane 30 is located in the slit 22, and the back pressure chamber 26 is formed by the slit 22 and the vane 30 on the base end portion 32 side of the vane 30.
  • the inner peripheral surface 40a of the cam ring 40 is formed in a substantially oval shape.
  • the inner peripheral surface 40a is also referred to as an “inner peripheral cam surface 40a”.
  • the vane 30 reciprocates in the radial direction with respect to the rotor 20 as the rotor 20 rotates. As the vane 30 reciprocates, the pump chamber 41 repeats expansion and contraction.
  • the vane 30 reciprocates twice while the rotor 20 makes one rotation, and the pump chamber 41 repeats expansion and contraction twice. That is, the vane pump 100 alternately has two expansion regions 42a and 42c in which the pump chamber 41 expands and two contraction regions 42b and 42d in which the pump chamber 41 contracts in the rotation direction.
  • the pump body 50 is formed with a housing recess 51 that houses the rotor 20, the cam ring 40, and the first side plate 70.
  • the first side plate 70 is disposed on the bottom surface 51 a of the housing recess 51.
  • An annular groove 52 is formed on the bottom surface 51 a of the housing recess 51.
  • the annular groove 52 and the first side plate 70 form a high-pressure chamber 53 into which hydraulic oil discharged from the pump chamber 41 flows.
  • the hydraulic oil discharged from the pump chamber 41 is supplied to the hydraulic device 1 through the high pressure chamber 53.
  • FIG. 6 is a front view of the first side plate 70 as seen from the cam ring 40 side. As shown in FIGS. 1 and 6, the first side plate 70 has a through hole 71 that penetrates the first side plate 70 at the center thereof. The drive shaft 10 is inserted through the through hole 71.
  • the first side plate 70 is provided with two discharge ports 72 that guide the hydraulic oil discharged from the pump chamber 41 to the high-pressure chamber 53.
  • the discharge port 72 is provided so as to be positioned in each of the contraction regions 42b and 42d.
  • the pump chamber 41 contracts while the pump chamber 41 (see FIG. 2) passes through the contraction regions 42b and 42d. As the pump chamber 41 contracts, the pressure of the hydraulic oil in the pump chamber 41 increases, and the hydraulic oil in the pump chamber 41 is discharged from the discharge port 72. That is, the hydraulic oil in the pump chamber 41 is discharged from the discharge port 72 while the pump chamber 41 passes through the contraction regions 42b and 42d. Thus, since the hydraulic oil is discharged in the contraction regions 42b and 42d, the contraction regions 42b and 42d are also called “discharge regions”.
  • the vane 30 is pushed most into the slit 22 when moving from the contraction region 42d to the expansion region 42a and when moving from the contraction region 42b to the expansion region 42c. At this time, the volume of the pump chamber 41 is minimized.
  • the minimum amount of hydraulic oil in the pump chamber 41 is not discharged from the pump chamber 41 while the pump chamber 41 passes through the contraction regions 42 d and 42 b and remains in the pump chamber 41.
  • the minimum volume of the pump chamber 41 does not function as a pump and is also called a dead volume.
  • the first side plate 70 is formed with two back pressure passages 73 (see FIGS. 1 and 6) for guiding the hydraulic oil from the high pressure chamber 53 to the back pressure chamber 26 (see FIGS. 1 and 2).
  • the back pressure passage 73 is formed in an arc shape centering on the through hole 71 so as to be positioned in the expansion regions 42 a and 42 c.
  • hydraulic oil is guided from the high pressure chamber 53 to the back pressure chamber 26 that passes through the expansion regions 42 a and 42 c, so that the vane 30 that passes through the expansion regions 42 a and 42 c is slit 22 by the pressure in the back pressure chamber 26. It protrudes from (refer FIG. 2), and is pressed by the internal peripheral surface 40a of the cam ring 40.
  • the vane 30 is pressed in the direction in which the vane 30 protrudes from the slit 22 not only by the centrifugal force generated by the rotation of the rotor 20 but also by the pressure in the back pressure chamber 26.
  • the inner diameter of the housing recess 51 of the pump body 50 is larger than the outer diameter of the cam ring 40.
  • a fluid chamber 54 extending from the outer periphery of the second side plate 80 to the outer periphery of the first side plate 70 is formed between the cam ring 40 and the pump body 50.
  • the opening of the housing recess 51 is sealed by the pump cover 60.
  • the pump cover 60 is fixed to the pump body 50 by bolts (not shown).
  • a second side plate 80 is disposed between the pump cover 60 and the cam ring 40.
  • a low pressure chamber 61 is formed in the pump cover 60.
  • the low pressure chamber 61 is connected to the tank 2 through a low pressure passage.
  • the vane pump 100 When the vane pump 100 is operated, the hydraulic oil in the tank 2 is supplied to the low pressure chamber 61 through the low pressure passage.
  • the low pressure chamber 61 communicates with the fluid chamber 54, and the hydraulic oil in the tank 2 is supplied to the fluid chamber 54 through the low pressure chamber 61.
  • the cam ring 40 and the second side plate 80 are provided with a side port 81 as a suction port that guides hydraulic oil in the low pressure chamber 61 to the pump chamber 41. Further, the cam ring 40 and the first side plate 70 are provided with a side port 74 as a suction port that guides hydraulic oil in the fluid chamber 54 to the pump chamber 41.
  • the side ports 74 and 81 are provided so as to be located in the extended regions 42a and 42c.
  • the pump chamber 41 expands while the pump chamber 41 passes through the expansion regions 42a and 42c (see FIG. 2). As the pump chamber 41 expands, the pressure in the pump chamber 41 decreases, and hydraulic oil is sucked into the pump chamber 41 from the side ports 74 and 81. That is, the hydraulic oil is sucked into the pump chamber 41 from the side ports 74 and 81 while the pump chamber 41 passes through the expansion regions 42a and 42c. Thus, since the hydraulic oil is sucked into the pump chamber 41 in the expansion regions 42a and 42c, the expansion regions 42a and 42c are also called “suction regions”.
  • FIG. 7 is a side view of the first side plate 70 and the second side plate 80 assembled to the cam ring 40 and viewed from the outside in the radial direction. As shown in FIGS. 6 and 7, two depressions 75 are formed on the side surface 70 a of the first side plate 70. The recess 75 opens to the outer peripheral surface 70 b of the first side plate 70.
  • FIG. 8 is a rear view of the cam ring 40 as viewed from the first side plate 70 side.
  • two notches 43 that communicate with the inner and outer peripheral surfaces of the cam ring 40 are provided on the end surface 40 b of the cam ring 40 that contacts the first side plate 70.
  • the notch 43 is located in the extended regions 42a and 42c, and is formed from the outer peripheral surface 40d of the cam ring 40 to the inner peripheral cam surface 40a.
  • the recess 75 of the first side plate 70 faces the notch 43 of the cam ring 40.
  • the hydraulic oil in the fluid chamber 54 (see FIG. 1) is guided to the pump chamber 41 through a port formed by the recess 75 and the notch 43. That is, in the present embodiment, the recess 75 of the first side plate 70 and the notch 43 of the cam ring 40 correspond to the side port 74.
  • FIG. 9 is a front view of the second side plate 80 as viewed from the pump cover 60 side. As shown in FIGS. 7 and 9, two recessed portions 82 are provided on the outer peripheral surface 80 b of the second side plate 80. The recess 82 is formed from the side surface 80a of the second side plate 80 to the side surface 80c of the second side plate 80 opposite to the side surface 80a.
  • two end portions 40c of the cam ring 40 that are in contact with the second side plate 80 are provided with two notches 44 that communicate with the inner and outer peripheral surfaces of the cam ring 40.
  • the notch 44 is formed from the outer peripheral surface 40d of the cam ring 40 to the inner peripheral cam surface 40a so as to be positioned in the extended regions 42a and 42c.
  • the recessed portion 82 of the second side plate 80 faces the notch 44 of the cam ring 40.
  • the hydraulic oil in the low pressure chamber 61 (see FIG. 1) is guided to the pump chamber 41 through a port formed by the recess 82 and the notch 44.
  • the recessed portion 82 of the second side plate 80 and the notch 44 of the cam ring 40 correspond to the side port 81.
  • the rotor 20 rotates as the drive shaft 10 rotates.
  • the vane 30 reciprocates with respect to the rotor 20, and the pump chamber 41 repeats expansion and contraction.
  • the hydraulic oil in the tank 2 is sucked into the pump chamber 41 passing through the expansion regions 42 a and 42 c through the low pressure chamber 61 and the side ports 74 and 81, or through the low pressure chamber 61, the fluid chamber 54 and the side port 74.
  • the hydraulic oil sucked through the side ports 74 and 81 is centered in the axial direction of the pump chamber 41 by the recesses 23 and 24 formed on the outer peripheral surface 20a of the rotor 20 as shown by arrows in FIG. Guided towards.
  • the flow of hydraulic oil is formed so as to be inclined even when the hydraulic oil is sucked from a direction substantially orthogonal to the outer peripheral surface 20 a of the rotor 20.
  • the flow direction is smoothly changed toward the center side in the axial direction of the pump chamber 41 by the side surfaces 23A and 24A. Further, the hydraulic oil is guided toward the axial center of the pump chamber 41 by the bottom surfaces 23C and 24C and the side surfaces 23B and 24B of the recesses 23 and 24.
  • the sucked hydraulic oil can be smoothly guided to the axial center side in the pump chamber 41. Thereby, since the pressure loss at the time of suck
  • the pump chamber 41 into which the hydraulic oil has been sucked in this way passes through the contraction regions 42b and 42d as the rotor 20 rotates. At this time, the hydraulic oil in the pump chamber 41 is discharged from the discharge port 72.
  • the recesses 23 and 24 are formed on the outer peripheral surface 20 a of the rotor 20, so that the dead volume of the pump chamber 41 is increased, but a raised portion 25 that protrudes radially from the outer peripheral surface 20 a of the rotor 20 is provided.
  • the dead volume is the volume of the pump chamber 41 during the transition from the contraction regions 42b and 42d to the expansion regions 42a and 42c (the pump chamber 41 is blocked while moving from the discharge port 72 to the side ports 74 and 81).
  • the dead volume in the vane pump 100 is increased accordingly.
  • the dead volume contains high-pressure hydraulic oil that is in communication with the discharge port 72.
  • the pump chamber 41 moves from the discharge port 72 to the side ports 74 and 81 and communicates with the side ports 74 and 81, the high-pressure hydraulic oil in the pump chamber 41 is transferred to the side ports 74 and 81 having a low pressure. Flows in. At this time, the larger the dead volume, the greater the flow rate of the hydraulic oil flowing into the side ports 74 and 81.
  • the protruding part 25 may not be provided.
  • the raised portion 25 is formed so as to be continuous with the side surfaces 23 ⁇ / b> B and 24 ⁇ / b> B of the recesses 23 and 24.
  • the modification shown in FIG. It may be formed so as to be spaced from the recesses 23 and 24.
  • the bottom surfaces 23C and 24C are formed by concave curved surfaces, but the bottom surfaces 23C and 24C may be flat as in the modification shown in FIG. Further, although not shown, a plane or a curved surface may be combined.
  • the vane pump 100 includes annular recesses 23 and 24 formed on the outer peripheral surface 20a of the rotor 20, and the recesses 23 and 24 are formed as the side surfaces 23A, 23B, 24A, and 24B move toward the bottom surfaces 23C and 24C. Are inclined to approach each other. Therefore, the hydraulic oil sucked from the side ports 74 and 81 is smoothly guided to the axial center side in the pump chamber 41 by the recesses 23 and 24. Thereby, the suction efficiency of a pump improves.
  • the side surfaces 23A and 24A of the two recesses 23 and 24 are formed at positions facing the notches 43 and 44, respectively. Further, the side surfaces 23A, 24A of the recesses 23, 24 are formed with an inclination so that the flow of hydraulic oil sucked from the notches 43, 44 can be controlled. As a result, the hydraulic oil sucked from the notches 43 and 44 flows from a direction substantially orthogonal to the outer peripheral surface 20a of the rotor 20, but is pumped by the inclined side surfaces 23A and 24A of the recesses 23 and 24. It is smoothly guided into the chamber 41 (toward the axial center of the pump chamber 41). Therefore, since the pressure loss at the time of sucking the hydraulic oil from the notches 43 and 44 is reduced, the suction efficiency of the vane pump 100 can be improved.
  • the vane pump 100 since the bottom surfaces of the recesses 23 and 24 are formed by concave curved surfaces, the hydraulic oil sucked from the side ports 74 and 81 can be guided into the pump chamber 41 more smoothly. Thereby, the suction efficiency of the vane pump 100 further improves.
  • the vane pump 100 can reduce the dead volume of the pump chamber 41 which is increased by providing the concave portions 23 and 24 by providing the raised portion 25.
  • the vane pump 100 includes a rotor 20 that is rotationally driven, a plurality of vanes 30 that are provided in the rotor 20 so as to be capable of reciprocating in the radial direction of the rotor 20, and tip portions 31 of the plurality of vanes 30 that slide with the rotation of the rotor 20.
  • a cam ring 40 having an inner circumferential cam surface 40a in contact therewith, a first side member (first side plate 70) and a second side member (second side plate 80) disposed across the rotor 20 and the cam ring 40, and the rotor 20 , Cam ring 40, adjacent vane 30, pump chamber 41 defined by first side member (first side plate 70) and second side member (second side plate 80), and suction for guiding the working fluid to pump chamber 41
  • Ports (side ports 74 and 81) and annular recesses 23 and 24 formed on the outer peripheral surface 20a of the rotor 20 Recesses 23 and 24, both side surfaces (side surfaces 23A and 23B, side surfaces 24A and 24B) are inclined towards each other brought toward its bottom 23C, 24C.
  • the suction ports (side ports 74 and 81) are in contact with the end surface 40b of the cam ring 40 in contact with the first side member (first side plate 70) and the second side member of the cam ring 40 (second side plate 80).
  • the notches 43 and 44 are formed on at least one of the end faces 40c and communicate with the inner and outer peripheral faces of the cam ring 40.
  • the side faces 23A and 24A of the recesses 23 and 24 on the end faces 20b and 20c side of the rotor 20 are notches 43 and 44. Is formed at a position opposite to.
  • the bottom surfaces 23C and 24C of the recesses 23 and 24 are formed by concave curved surfaces.
  • the bottom surfaces 23C and 24C of the recesses 23 and 24 are formed by concave curved surfaces, so that the hydraulic oil can be guided into the pump chamber 41 more smoothly. Thereby, the suction efficiency of the vane pump 100 further improves.
  • the rotor 20 includes two concave portions 23 and 24 and an annular raised portion 25 that is formed between the two concave portions 23 and 24 and protrudes in the radial direction from the outer peripheral surface 20a of the rotor 20.
  • the dead volume of the pump chamber 41 can be reduced by providing the raised portion 25 on the outer peripheral surface 20a of the rotor 20.
  • the recess is provided with the two recesses 23 and 24, but depending on how the hydraulic oil flows into the pump chamber 41, only one of the recesses may be provided.

Abstract

A vane pump (100) is provided with annular recessed sections (23, 24) formed in an outer peripheral surface (20a) of a rotor (20), and in the recessed sections (23, 24), both side surfaces (23A, 23B, 24A, 24B) are sloped to be closer to each other toward bottom surfaces (23C, 24C).

Description

ベーンポンプVane pump
 本発明は、ベーンポンプに関するものである。 The present invention relates to a vane pump.
 JP2006-125210Aには、サイドプレートと接触するカムリングの側面であって、サイドプレートに形成された吸い込み凹部に対向する部分に切り欠き部が形成されたベーンポンプが記載されている。JP2006-125210Aに記載のベーンポンプでは、吸込凹部と切り欠き部とによって吸込ポートが構成されている。 JP 2006-125210A describes a vane pump in which a notch portion is formed on a side surface of a cam ring that comes into contact with a side plate and that faces a suction recess formed in the side plate. In the vane pump described in JP2006-125210A, a suction port is constituted by a suction recess and a notch.
 JP2006-125210Aに記載のベーンポンプでは、ロータの回転に伴って、カムリングの外周とボディボアの内周との間に形成される通路から吸込ポートを通じてベーン間に区画されるポンプ室に作動油が吸い込まれる。しかしながら、JP2006-125210Aに記載のベーンポンプでは、吸い込みポートからポンプ室内に流れ込む作動油の流路が屈曲しているため、作動油を吸い込む際に圧力損失が生じやすい。このため、ベーンポンプの高回転時などには作動油の吸込不足が起こるおそれがある。 In the vane pump described in JP2006-125210A, hydraulic oil is sucked into a pump chamber partitioned between vanes through a suction port from a passage formed between the outer periphery of the cam ring and the inner periphery of the body bore as the rotor rotates. . However, in the vane pump described in JP2006-125210A, since the flow path of the working oil flowing into the pump chamber from the suction port is bent, pressure loss is likely to occur when the working oil is sucked. For this reason, there is a possibility that insufficient suction of hydraulic oil may occur when the vane pump rotates at high speed.
 本発明は、ベーンポンプにおいて作動流体の吸込効率の向上を目的とする。 The present invention aims to improve the suction efficiency of the working fluid in the vane pump.
 本発明のある態様によれば、ベーンポンプは、回転駆動されるロータと、ロータの径方向に往復動自在にロータに設けられる複数のベーンと、ロータの回転に伴って複数のベーンの先端部が摺接する内周カム面を有するカムリングと、ロータ及びカムリングを挟んで配置される第1サイド部材及び第2サイド部材と、ロータ、カムリング、隣り合うベーン、第1サイド部材及び第2サイド部材によって区画されるポンプ室と、ポンプ室に作動流体を導く吸込ポートと、ロータの外周面に形成される円環状の凹部と、を備え、凹部は、両側面が底面に向かうに連れて互いに近づくように傾斜している。 According to an aspect of the present invention, a vane pump includes a rotor that is rotationally driven, a plurality of vanes that are provided in the rotor so as to be capable of reciprocating in the radial direction of the rotor, and tip portions of the plurality of vanes as the rotor rotates. A cam ring having an inner peripheral cam surface that is in sliding contact, a first side member and a second side member that are disposed across the rotor and the cam ring, and a rotor, a cam ring, adjacent vanes, a first side member, and a second side member. The pump chamber, a suction port for guiding the working fluid to the pump chamber, and an annular recess formed on the outer peripheral surface of the rotor, the recesses approaching each other as both side surfaces go to the bottom surface Inclined.
図1は、本発明の実施形態に係るベーンポンプの断面図である。FIG. 1 is a cross-sectional view of a vane pump according to an embodiment of the present invention. 図2は、本発明の実施形態に係るロータ、ベーン及びカムリングの正面図であり、ロータ、ベーン及びカムリングを組み立てた状態を示す。FIG. 2 is a front view of the rotor, the vane, and the cam ring according to the embodiment of the present invention, and shows the assembled state of the rotor, the vane, and the cam ring. 図3は、本発明の実施形態に係るロータの斜視図である。FIG. 3 is a perspective view of the rotor according to the embodiment of the present invention. 図4は、本発明の実施形態に係るロータの側面図である。FIG. 4 is a side view of the rotor according to the embodiment of the present invention. 図5は、本発明の実施形態に係るポンプ室近傍の断面拡大図である。FIG. 5 is an enlarged cross-sectional view of the vicinity of the pump chamber according to the embodiment of the present invention. 図6は、本発明の実施形態に係る第1サイドプレートの正面図である。FIG. 6 is a front view of the first side plate according to the embodiment of the present invention. 図7は、本発明の実施形態に係るカムリング、第1サイドプレート及び第2サイドプレートの側面図であり、第1サイドプレート及び第2サイドプレートをカムリングに組み付けた状態を示す。FIG. 7 is a side view of the cam ring, the first side plate, and the second side plate according to the embodiment of the present invention, and shows a state in which the first side plate and the second side plate are assembled to the cam ring. 図8は、本発明の実施形態に係るカムリングの背面図である。FIG. 8 is a rear view of the cam ring according to the embodiment of the present invention. 図9は、本発明の実施形態に係る第2サイドプレートの正面図である。FIG. 9 is a front view of the second side plate according to the embodiment of the present invention. 図10は、本発明の実施形態に変形例を示す図である。FIG. 10 is a diagram showing a modification of the embodiment of the present invention.
 以下、図面を参照して、本発明の実施形態に係るベーンポンプ100について説明する。ベーンポンプ100は、車両に搭載される油圧機器1(例えば、パワーステアリング装置や変速機等)の油圧供給源として用いられる。ここでは、作動流体として作動油が用いられるベーンポンプ100について説明するが、作動水等の他の流体を作動流体として用いてもよい。 Hereinafter, a vane pump 100 according to an embodiment of the present invention will be described with reference to the drawings. The vane pump 100 is used as a hydraulic pressure supply source of a hydraulic device 1 (for example, a power steering device or a transmission) mounted on a vehicle. Here, although the vane pump 100 in which working oil is used as the working fluid will be described, other fluids such as working water may be used as the working fluid.
 図1に示すように、ベーンポンプ100は、駆動シャフト10と、駆動シャフト10に連結されるロータ20と、ロータ20に設けられる複数のベーン30と、ロータ20及びベーン30を収容するカムリング40と、を備える。 As shown in FIG. 1, the vane pump 100 includes a drive shaft 10, a rotor 20 coupled to the drive shaft 10, a plurality of vanes 30 provided on the rotor 20, a cam ring 40 that houses the rotor 20 and the vanes 30, Is provided.
 駆動シャフト10は、ポンプボディ50及びポンプカバー60に回転自在に支持される。駆動シャフト10にエンジンまたは電動モータ(図示省略)の動力が伝わると、駆動シャフト10の回転駆動に伴ってロータ20が回転する。 The drive shaft 10 is rotatably supported by the pump body 50 and the pump cover 60. When the power of the engine or the electric motor (not shown) is transmitted to the drive shaft 10, the rotor 20 rotates as the drive shaft 10 rotates.
 以下において、ロータ20の回転中心軸に沿う方向を「軸方向」とも称し、ロータ20の径方向を単に「径方向」とも称し、ベーンポンプ100の通常作動時にロータ20が回転する方向を単に「回転方向」とも称する。 In the following, the direction along the rotation center axis of the rotor 20 is also referred to as “axial direction”, the radial direction of the rotor 20 is also simply referred to as “radial direction”, and the direction in which the rotor 20 rotates during normal operation of the vane pump 100 is simply “rotated”. Also referred to as “direction”.
 また、ベーンポンプ100は、ロータ20及びカムリング40を軸方向に挟んで配置される第1及び第2サイド部材としての第1及び第2サイドプレート70,80をさらに備える。第1及び第2サイドプレート70,80は、それぞれ、ロータ20及びカムリング40に当接する側面70a,80aを有する。ロータ20、カムリング40、隣り合うベーン30、第1サイドプレート70及び第2サイドプレート80によって、ポンプ室41が区画される。 Further, the vane pump 100 further includes first and second side plates 70 and 80 as first and second side members disposed with the rotor 20 and the cam ring 40 sandwiched in the axial direction. The first and second side plates 70 and 80 have side surfaces 70a and 80a that abut against the rotor 20 and the cam ring 40, respectively. The pump chamber 41 is defined by the rotor 20, the cam ring 40, the adjacent vanes 30, the first side plate 70, and the second side plate 80.
 次に、ロータ20の形状について説明する。図2は、ロータ20、ベーン30及びカムリング40を組み立てポンプカバー60の側から見た正面図である。図3は、ロータ20の斜視図である。図4は、ロータ20の側面図である。図5は、ポンプ室41近傍の断面拡大図である。 Next, the shape of the rotor 20 will be described. FIG. 2 is a front view of the rotor 20, the vane 30 and the cam ring 40 as viewed from the assembled pump cover 60 side. FIG. 3 is a perspective view of the rotor 20. FIG. 4 is a side view of the rotor 20. FIG. 5 is an enlarged cross-sectional view in the vicinity of the pump chamber 41.
 図2から図4に示すように、ロータ20には、外周面20aに開口部21を有するスリット22が所定間隔をおいて放射状に複数形成される。 As shown in FIGS. 2 to 4, the rotor 20 is formed with a plurality of radial slits 22 having openings 21 on the outer peripheral surface 20a at predetermined intervals.
 図3から図5に示すように、ロータ20は、外周面20aに形成される2つの円環状の凹部23,24と、凹部23,24の間に形成されロータ20の外周面20aから径方向に突出する円環状の隆起部25と、を備える。 As shown in FIGS. 3 to 5, the rotor 20 is formed between two annular recesses 23, 24 formed on the outer peripheral surface 20 a and the outer surface 20 a of the rotor 20 formed between the recesses 23, 24 in the radial direction. And an annular ridge 25 projecting from the top.
 凹部23は、ロータ20の第1サイドプレート70に対向する端面20b側の側面23Aと、隆起部25側の側面23Bと、側面23Aと側面23Bとの間に凹状の曲面によって形成される底面23Cと、を備える。凹部23は、側面23Aと側面23Bが底面23Cに向かうにつれて互いに近づくように傾斜して形成される。底面23Cは、側面23A及び側面23Bに連続するような凹状の曲面によって形成される。 The concave portion 23 includes a side surface 23A on the end surface 20b side facing the first side plate 70 of the rotor 20, a side surface 23B on the raised portion 25 side, and a bottom surface 23C formed by a concave curved surface between the side surface 23A and the side surface 23B. And comprising. The concave portion 23 is formed so as to be inclined so that the side surface 23A and the side surface 23B are closer to each other toward the bottom surface 23C. The bottom surface 23C is formed by a concave curved surface that is continuous with the side surface 23A and the side surface 23B.
 凹部24は、ロータ20の第2サイドプレート80に対向する端面20c側の側面24Aと、隆起部25側の側面24Bと、側面24Aと側面24Bとの間に凹状の曲面によって形成される底面24Cと、を備える。凹部24は、側面24Aと側面24Bが底面24Cに向かうにつれて互いに近づくように傾斜して形成される。底面24Cは、側面24A及び側面24Bに連続するような凹状の曲面によって形成される。 The concave portion 24 includes a side surface 24A on the end surface 20c side facing the second side plate 80 of the rotor 20, a side surface 24B on the raised portion 25 side, and a bottom surface 24C formed by a concave curved surface between the side surface 24A and the side surface 24B. And comprising. The recess 24 is formed so as to be inclined so that the side surface 24A and the side surface 24B approach each other as it goes toward the bottom surface 24C. The bottom surface 24C is formed by a concave curved surface that is continuous with the side surface 24A and the side surface 24B.
 図5に示すように、凹部23の側面23Aと凹部24の側面24Aとは、後述するカムリング40に形成される切り欠き43,44に対向する位置に設けられる。 As shown in FIG. 5, the side surface 23A of the recess 23 and the side surface 24A of the recess 24 are provided at positions facing notches 43 and 44 formed in the cam ring 40 described later.
 再び図2を参照する。ベーン30は、各スリット22に摺動自在に挿入される。ベーン30の先端部31はカムリング40の内周面40aに対向する。ベーン30の基端部32はスリット22内に位置し、ベーン30の基端部32側には、スリット22とベーン30とによって背圧室26が形成される。 Refer to FIG. 2 again. The vane 30 is slidably inserted into each slit 22. The tip 31 of the vane 30 faces the inner peripheral surface 40 a of the cam ring 40. The base end portion 32 of the vane 30 is located in the slit 22, and the back pressure chamber 26 is formed by the slit 22 and the vane 30 on the base end portion 32 side of the vane 30.
 ロータ20が回転すると、ベーン30に遠心力が作用する。この遠心力によって、ベーン30はスリット22から突出する方向に押し出され、ベーン30の先端部31がカムリング40の内周面40aに押圧される。 When the rotor 20 rotates, centrifugal force acts on the vane 30. By this centrifugal force, the vane 30 is pushed out in a direction protruding from the slit 22, and the tip end portion 31 of the vane 30 is pressed against the inner peripheral surface 40 a of the cam ring 40.
 カムリング40の内周面40aは、略長円形状に形成される。以下において、内周面40aを、「内周カム面40a」とも称する。 The inner peripheral surface 40a of the cam ring 40 is formed in a substantially oval shape. Hereinafter, the inner peripheral surface 40a is also referred to as an “inner peripheral cam surface 40a”.
 カムリング40の内周カム面40aが略長円形状に形成されるので、ロータ20の回転に伴ってベーン30はロータ20に対して径方向に往復動する。ベーン30の往復動に伴って、ポンプ室41は拡張と収縮とを繰り返す。 Since the inner peripheral cam surface 40a of the cam ring 40 is formed in a substantially oval shape, the vane 30 reciprocates in the radial direction with respect to the rotor 20 as the rotor 20 rotates. As the vane 30 reciprocates, the pump chamber 41 repeats expansion and contraction.
 本実施形態では、ロータ20が1回転する間に、ベーン30は2往復しポンプ室41は拡張と収縮とを2回繰り返す。つまり、ベーンポンプ100は、ポンプ室41が拡張する2つの拡張領域42a,42cと、ポンプ室41が収縮する2つの収縮領域42b,42dと、を回転方向に交互に有する。 In this embodiment, the vane 30 reciprocates twice while the rotor 20 makes one rotation, and the pump chamber 41 repeats expansion and contraction twice. That is, the vane pump 100 alternately has two expansion regions 42a and 42c in which the pump chamber 41 expands and two contraction regions 42b and 42d in which the pump chamber 41 contracts in the rotation direction.
 再び図1を参照する。ポンプボディ50には、ロータ20、カムリング40及び第1サイドプレート70を収容する収容窪み部51が形成される。第1サイドプレート70は、収容窪み部51の底面51aに配置される。 Refer to FIG. 1 again. The pump body 50 is formed with a housing recess 51 that houses the rotor 20, the cam ring 40, and the first side plate 70. The first side plate 70 is disposed on the bottom surface 51 a of the housing recess 51.
 収容窪み部51の底面51aには、環状溝52が形成される。環状溝52と第1サイドプレート70とにより、ポンプ室41から吐出された作動油が流入する高圧室53が形成される。ポンプ室41から吐出された作動油は、高圧室53を通じて油圧機器1に供給される。 An annular groove 52 is formed on the bottom surface 51 a of the housing recess 51. The annular groove 52 and the first side plate 70 form a high-pressure chamber 53 into which hydraulic oil discharged from the pump chamber 41 flows. The hydraulic oil discharged from the pump chamber 41 is supplied to the hydraulic device 1 through the high pressure chamber 53.
 図6は、第1サイドプレート70をカムリング40の側から見た正面図である。図1及び図6に示すように、第1サイドプレート70は、その中心に第1サイドプレート70を貫通する貫通孔71が形成される。貫通孔71には駆動シャフト10が挿通される。 FIG. 6 is a front view of the first side plate 70 as seen from the cam ring 40 side. As shown in FIGS. 1 and 6, the first side plate 70 has a through hole 71 that penetrates the first side plate 70 at the center thereof. The drive shaft 10 is inserted through the through hole 71.
 第1サイドプレート70には、ポンプ室41から吐出される作動油を高圧室53に導く2つの吐出ポート72が設けられる。吐出ポート72は、各収縮領域42b,42dに位置するように設けられる。 The first side plate 70 is provided with two discharge ports 72 that guide the hydraulic oil discharged from the pump chamber 41 to the high-pressure chamber 53. The discharge port 72 is provided so as to be positioned in each of the contraction regions 42b and 42d.
 ポンプ室41(図2参照)が収縮領域42b,42dを通過する間、ポンプ室41は収縮する。ポンプ室41の収縮に伴ってポンプ室41内の作動油の圧力が上昇し、ポンプ室41内の作動油が吐出ポート72から吐出される。つまり、ポンプ室41内の作動油は、ポンプ室41が収縮領域42b,42dを通過する間に吐出ポート72から吐出される。このように、収縮領域42b,42dでは作動油が吐出されるので、収縮領域42b,42dは「吐出領域」とも呼ばれる。 The pump chamber 41 contracts while the pump chamber 41 (see FIG. 2) passes through the contraction regions 42b and 42d. As the pump chamber 41 contracts, the pressure of the hydraulic oil in the pump chamber 41 increases, and the hydraulic oil in the pump chamber 41 is discharged from the discharge port 72. That is, the hydraulic oil in the pump chamber 41 is discharged from the discharge port 72 while the pump chamber 41 passes through the contraction regions 42b and 42d. Thus, since the hydraulic oil is discharged in the contraction regions 42b and 42d, the contraction regions 42b and 42d are also called “discharge regions”.
 ベーン30は、収縮領域42dから拡張領域42aへ移動するとき、及び収縮領域42bから拡張領域42cへ移動するときにスリット22内に最も押し込まれ、このときにポンプ室41の容積が最小となる。ポンプ室41の最小容量分の作動油は、ポンプ室41が収縮領域42d,42bを通過する間にポンプ室41から吐出されず、ポンプ室41に残る。このように、ポンプ室41の最小容積はポンプとして機能せず、デッドボリュームとも呼ばれる。 The vane 30 is pushed most into the slit 22 when moving from the contraction region 42d to the expansion region 42a and when moving from the contraction region 42b to the expansion region 42c. At this time, the volume of the pump chamber 41 is minimized. The minimum amount of hydraulic oil in the pump chamber 41 is not discharged from the pump chamber 41 while the pump chamber 41 passes through the contraction regions 42 d and 42 b and remains in the pump chamber 41. Thus, the minimum volume of the pump chamber 41 does not function as a pump and is also called a dead volume.
 第1サイドプレート70には、高圧室53から背圧室26(図1及び図2参照)へ作動油を導く2つの背圧通路73(図1及び図6参照)が形成される。図6に示すように、背圧通路73は、貫通孔71を中心とする円弧形状に、拡張領域42a,42cに位置するように形成される。これにより、拡張領域42a,42cを通過する背圧室26には高圧室53から作動油が導かれるので、拡張領域42a,42cを通過するベーン30は、背圧室26内の圧力によりスリット22(図2参照)から突出し、カムリング40の内周面40aに押圧される。 The first side plate 70 is formed with two back pressure passages 73 (see FIGS. 1 and 6) for guiding the hydraulic oil from the high pressure chamber 53 to the back pressure chamber 26 (see FIGS. 1 and 2). As shown in FIG. 6, the back pressure passage 73 is formed in an arc shape centering on the through hole 71 so as to be positioned in the expansion regions 42 a and 42 c. As a result, hydraulic oil is guided from the high pressure chamber 53 to the back pressure chamber 26 that passes through the expansion regions 42 a and 42 c, so that the vane 30 that passes through the expansion regions 42 a and 42 c is slit 22 by the pressure in the back pressure chamber 26. It protrudes from (refer FIG. 2), and is pressed by the internal peripheral surface 40a of the cam ring 40. FIG.
 このように、本実施形態では、ベーン30は、ロータ20の回転によって生じる遠心力だけでなく、背圧室26内の圧力によっても、スリット22から突出する方向に押圧される。 As described above, in this embodiment, the vane 30 is pressed in the direction in which the vane 30 protrudes from the slit 22 not only by the centrifugal force generated by the rotation of the rotor 20 but also by the pressure in the back pressure chamber 26.
 再び図1を参照する。ポンプボディ50の収容窪み部51の内径はカムリング40の外径と比較して大きい。カムリング40とポンプボディ50との間には、第2サイドプレート80の外周から第1サイドプレート70の外周まで延在する流体室54が形成される。 Refer to FIG. 1 again. The inner diameter of the housing recess 51 of the pump body 50 is larger than the outer diameter of the cam ring 40. A fluid chamber 54 extending from the outer periphery of the second side plate 80 to the outer periphery of the first side plate 70 is formed between the cam ring 40 and the pump body 50.
 収容窪み部51の開口部はポンプカバー60により封止される。ポンプカバー60は、ボルト(図示省略)によってポンプボディ50に固定される。ポンプカバー60とカムリング40との間に第2サイドプレート80が配置される。 The opening of the housing recess 51 is sealed by the pump cover 60. The pump cover 60 is fixed to the pump body 50 by bolts (not shown). A second side plate 80 is disposed between the pump cover 60 and the cam ring 40.
 ポンプカバー60には低圧室61が形成される。低圧室61は、低圧通路を通じてタンク2に接続される。ベーンポンプ100の作動時には、タンク2内の作動油が低圧通路を通じて低圧室61に供給される。低圧室61は流体室54と連通しており、タンク2内の作動油は低圧室61を通じて流体室54に供給される。 A low pressure chamber 61 is formed in the pump cover 60. The low pressure chamber 61 is connected to the tank 2 through a low pressure passage. When the vane pump 100 is operated, the hydraulic oil in the tank 2 is supplied to the low pressure chamber 61 through the low pressure passage. The low pressure chamber 61 communicates with the fluid chamber 54, and the hydraulic oil in the tank 2 is supplied to the fluid chamber 54 through the low pressure chamber 61.
 カムリング40及び第2サイドプレート80には、低圧室61内の作動油をポンプ室41に導く吸込ポートとしてのサイドポート81が設けられる。また、カムリング40及び第1サイドプレート70には、流体室54内の作動油をポンプ室41に導く吸込ポートとしてのサイドポート74が設けられる。サイドポート74,81は、各拡張領域42a,42cに位置するように設けられる。 The cam ring 40 and the second side plate 80 are provided with a side port 81 as a suction port that guides hydraulic oil in the low pressure chamber 61 to the pump chamber 41. Further, the cam ring 40 and the first side plate 70 are provided with a side port 74 as a suction port that guides hydraulic oil in the fluid chamber 54 to the pump chamber 41. The side ports 74 and 81 are provided so as to be located in the extended regions 42a and 42c.
 ポンプ室41が拡張領域42a,42c(図2参照)を通過する間、ポンプ室41は拡張する。ポンプ室41の拡張に伴ってポンプ室41内の圧力が低下し、サイドポート74,81からポンプ室41内に作動油が吸い込まれる。つまり、作動油は、ポンプ室41が拡張領域42a,42cを通過する間にサイドポート74,81からポンプ室41内に吸い込まれる。このように、拡張領域42a,42cでは作動油がポンプ室41内に吸い込まれるので、拡張領域42a,42cは「吸込領域」とも呼ばれる。 The pump chamber 41 expands while the pump chamber 41 passes through the expansion regions 42a and 42c (see FIG. 2). As the pump chamber 41 expands, the pressure in the pump chamber 41 decreases, and hydraulic oil is sucked into the pump chamber 41 from the side ports 74 and 81. That is, the hydraulic oil is sucked into the pump chamber 41 from the side ports 74 and 81 while the pump chamber 41 passes through the expansion regions 42a and 42c. Thus, since the hydraulic oil is sucked into the pump chamber 41 in the expansion regions 42a and 42c, the expansion regions 42a and 42c are also called “suction regions”.
 図7は、第1サイドプレート70及び第2サイドプレート80をカムリング40に組み付け、径方向外側から見た側面図である。図6及び図7に示すように、第1サイドプレート70の側面70aには、2つの窪み部75が形成される。窪み部75は、第1サイドプレート70の外周面70bに開口する。 FIG. 7 is a side view of the first side plate 70 and the second side plate 80 assembled to the cam ring 40 and viewed from the outside in the radial direction. As shown in FIGS. 6 and 7, two depressions 75 are formed on the side surface 70 a of the first side plate 70. The recess 75 opens to the outer peripheral surface 70 b of the first side plate 70.
 図8は、カムリング40を第1サイドプレート70の側から見た背面図である。図7及び図8に示すように、カムリング40の第1サイドプレート70に接する端面40bにはカムリング40の内外周面を連通する2つの切り欠き43が設けられる。切り欠き43は、拡張領域42a,42cに位置し、カムリング40の外周面40dから内周カム面40aまで形成される。 FIG. 8 is a rear view of the cam ring 40 as viewed from the first side plate 70 side. As shown in FIGS. 7 and 8, two notches 43 that communicate with the inner and outer peripheral surfaces of the cam ring 40 are provided on the end surface 40 b of the cam ring 40 that contacts the first side plate 70. The notch 43 is located in the extended regions 42a and 42c, and is formed from the outer peripheral surface 40d of the cam ring 40 to the inner peripheral cam surface 40a.
 図7に示すように、第1サイドプレート70をカムリング40に組み付けた状態では、第1サイドプレート70の窪み部75がカムリング40の切り欠き43に臨む。流体室54(図1参照)内の作動油は、窪み部75と切り欠き43とによって形成されるポートを通じてポンプ室41に導かれる。つまり、本実施形態では、第1サイドプレート70の窪み部75とカムリング40の切り欠き43とがサイドポート74に相当する。 As shown in FIG. 7, in a state where the first side plate 70 is assembled to the cam ring 40, the recess 75 of the first side plate 70 faces the notch 43 of the cam ring 40. The hydraulic oil in the fluid chamber 54 (see FIG. 1) is guided to the pump chamber 41 through a port formed by the recess 75 and the notch 43. That is, in the present embodiment, the recess 75 of the first side plate 70 and the notch 43 of the cam ring 40 correspond to the side port 74.
 図9は、第2サイドプレート80をポンプカバー60の側から見た正面図である。図7及び図9に示すように、第2サイドプレート80の外周面80bには、2つの窪み部82が設けられる。窪み部82は、第2サイドプレート80の側面80aから、側面80aとは反対側の第2サイドプレート80の側面80cまで形成される。 FIG. 9 is a front view of the second side plate 80 as viewed from the pump cover 60 side. As shown in FIGS. 7 and 9, two recessed portions 82 are provided on the outer peripheral surface 80 b of the second side plate 80. The recess 82 is formed from the side surface 80a of the second side plate 80 to the side surface 80c of the second side plate 80 opposite to the side surface 80a.
 図2及び図7に示すように、カムリング40の第2サイドプレート80に接する端面40cにはカムリング40の内外周面を連通する2つの切り欠き44が設けられる。切り欠き44は、拡張領域42a,42cに位置するようにして、カムリング40の外周面40dから内周カム面40aまで形成される。 2 and 7, two end portions 40c of the cam ring 40 that are in contact with the second side plate 80 are provided with two notches 44 that communicate with the inner and outer peripheral surfaces of the cam ring 40. The notch 44 is formed from the outer peripheral surface 40d of the cam ring 40 to the inner peripheral cam surface 40a so as to be positioned in the extended regions 42a and 42c.
 図7に示すように、第2サイドプレート80をカムリング40に組み付けた状態では、第2サイドプレート80の窪み部82がカムリング40の切り欠き44に臨む。低圧室61(図1参照)内の作動油は、窪み部82と切り欠き44とによって形成されるポートを通じてポンプ室41に導かれる。このように、本実施形態では、第2サイドプレート80の窪み部82とカムリング40の切り欠き44とがサイドポート81に相当する。 As shown in FIG. 7, in a state where the second side plate 80 is assembled to the cam ring 40, the recessed portion 82 of the second side plate 80 faces the notch 44 of the cam ring 40. The hydraulic oil in the low pressure chamber 61 (see FIG. 1) is guided to the pump chamber 41 through a port formed by the recess 82 and the notch 44. Thus, in the present embodiment, the recessed portion 82 of the second side plate 80 and the notch 44 of the cam ring 40 correspond to the side port 81.
 次に、ベーンポンプ100の動作を説明する。 Next, the operation of the vane pump 100 will be described.
 駆動シャフト10にエンジン又は電動モータ(図示省略)の動力が伝わると、駆動シャフト10の回転駆動に伴ってロータ20が回転する。ロータ20の回転に伴ってベーン30はロータ20に対して往復動し、ポンプ室41が膨張と収縮とを繰り返す。 When the power of the engine or the electric motor (not shown) is transmitted to the drive shaft 10, the rotor 20 rotates as the drive shaft 10 rotates. As the rotor 20 rotates, the vane 30 reciprocates with respect to the rotor 20, and the pump chamber 41 repeats expansion and contraction.
 拡張領域42a,42cを通過するポンプ室41には、タンク2内の作動油が、低圧室61及びサイドポート74,81を通じて、又は低圧室61、流体室54及びサイドポート74を通じて吸い込まれる。このとき、サイドポート74,81を通じて吸い込まれた作動油は、図5に矢印で示すように、ロータ20の外周面20aに形成された凹部23、24によって、ポンプ室41の軸方向の中心側に向かって導かれる。具体的には、図5に示す矢印Aのように、作動油がロータ20の外周面20aに略直交するような方向から吸い込まれても、作動油の流れは、傾斜するように形成された側面23A,24Aによってポンプ室41の軸方向の中心側に向かってスムーズに流れの向きが変更される。さらに、作動油は、凹部23、24の底面23C,24C、及び側面23B,24Bによって、ポンプ室41の軸方向の中心側に向かって導かれる。このように、ベーンポンプ100では、ロータ20の外周面20aに凹部23,24を設けることによって、吸い込まれた作動油をポンプ室41内の軸方向の中心側にスムーズに導くことができる。これにより、作動油を吸い込む際の圧力損失が低減されるので、ベーンポンプ100の吸込効率が向上する。 The hydraulic oil in the tank 2 is sucked into the pump chamber 41 passing through the expansion regions 42 a and 42 c through the low pressure chamber 61 and the side ports 74 and 81, or through the low pressure chamber 61, the fluid chamber 54 and the side port 74. At this time, the hydraulic oil sucked through the side ports 74 and 81 is centered in the axial direction of the pump chamber 41 by the recesses 23 and 24 formed on the outer peripheral surface 20a of the rotor 20 as shown by arrows in FIG. Guided towards. Specifically, as indicated by an arrow A shown in FIG. 5, the flow of hydraulic oil is formed so as to be inclined even when the hydraulic oil is sucked from a direction substantially orthogonal to the outer peripheral surface 20 a of the rotor 20. The flow direction is smoothly changed toward the center side in the axial direction of the pump chamber 41 by the side surfaces 23A and 24A. Further, the hydraulic oil is guided toward the axial center of the pump chamber 41 by the bottom surfaces 23C and 24C and the side surfaces 23B and 24B of the recesses 23 and 24. As described above, in the vane pump 100, by providing the recesses 23 and 24 on the outer peripheral surface 20 a of the rotor 20, the sucked hydraulic oil can be smoothly guided to the axial center side in the pump chamber 41. Thereby, since the pressure loss at the time of suck | inhaling hydraulic fluid is reduced, the suction efficiency of the vane pump 100 improves.
 このようにして作動油が吸い込まれたポンプ室41は、ロータ20の回転に伴って収縮領域42b,42dを通過する。このとき、ポンプ室41内の作動油は吐出ポート72から吐出される。 The pump chamber 41 into which the hydraulic oil has been sucked in this way passes through the contraction regions 42b and 42d as the rotor 20 rotates. At this time, the hydraulic oil in the pump chamber 41 is discharged from the discharge port 72.
 ベーンポンプ100では、ロータ20の外周面20aに凹部23,24が形成されることにより、ポンプ室41のデッドボリュームが大きくなるが、ロータ20の外周面20aから径方向に突出する隆起部25を設けることにより、ポンプ室41のデッドボリュームが大きくなることを抑制している。ここで、デッドボリュームとは、収縮領域42b,42dから拡張領域42a,42cに遷移する間のポンプ室41の容積(吐出ポート72からサイドポート74,81へ移動する間のポンプ室41が閉塞されているときのポンプ室41の容積)のことをいう。デッドボリュームについて、以下に詳細に説明する。 In the vane pump 100, the recesses 23 and 24 are formed on the outer peripheral surface 20 a of the rotor 20, so that the dead volume of the pump chamber 41 is increased, but a raised portion 25 that protrudes radially from the outer peripheral surface 20 a of the rotor 20 is provided. As a result, an increase in the dead volume of the pump chamber 41 is suppressed. Here, the dead volume is the volume of the pump chamber 41 during the transition from the contraction regions 42b and 42d to the expansion regions 42a and 42c (the pump chamber 41 is blocked while moving from the discharge port 72 to the side ports 74 and 81). The volume of the pump chamber 41 when it is in operation. The dead volume will be described in detail below.
 ロータ20の外周面20aに凹部23,24が形成されると、その分ベーンポンプ100におけるデッドボリュームも大きくなる。このデッドボリュームには、吐出ポート72と連通していたときの高圧の作動油が閉じ込められている。このため、ポンプ室41が吐出ポート72からサイドポート74,81まで移動してサイドポート74,81と連通したときに、ポンプ室41内の高圧の作動油が低圧であるサイドポート74,81に流れ込む。このとき、デッドボリュームが大きければ大きいほど、サイドポート74,81に流れ込む作動油の流量が多くなる。このようにして、ポンプ室41から作動油がサイドポート74,81に流れ込んでしまうと、ポンプ室41への作動油の吸い込みが妨げられるため、ポンプの吸込効率が低下する。このため、ベーンポンプ100では、隆起部25を設けることにより、凹部23,24によって増加した容積分を相殺している。つまり、ロータ20の外周面20aに隆起部25を設けることによって、凹部23,24によって増加したポンプ室41のデッドボリュームを減らすことができる。 When the recesses 23 and 24 are formed on the outer peripheral surface 20a of the rotor 20, the dead volume in the vane pump 100 is increased accordingly. The dead volume contains high-pressure hydraulic oil that is in communication with the discharge port 72. For this reason, when the pump chamber 41 moves from the discharge port 72 to the side ports 74 and 81 and communicates with the side ports 74 and 81, the high-pressure hydraulic oil in the pump chamber 41 is transferred to the side ports 74 and 81 having a low pressure. Flows in. At this time, the larger the dead volume, the greater the flow rate of the hydraulic oil flowing into the side ports 74 and 81. In this way, if the hydraulic oil flows from the pump chamber 41 into the side ports 74 and 81, the suction of the hydraulic oil into the pump chamber 41 is hindered, so that the pump suction efficiency decreases. For this reason, in the vane pump 100, by providing the raised portion 25, the volume increased by the concave portions 23 and 24 is offset. That is, by providing the raised portion 25 on the outer peripheral surface 20 a of the rotor 20, the dead volume of the pump chamber 41 increased by the recesses 23 and 24 can be reduced.
 なお、ロータ20の外周面20aとカムリング40の内周面40aとの間に隆起部25を設けるだけの隙間が確保できない場合は、隆起部25を設けなくてもよい。また、図5に示す実施形態では、隆起部25は、凹部23,24の側面23B,24Bに連続するように形成されているが、図10に示す変形例のように、隆起部25は、凹部23,24と間隔をおくようにして形成されていてもよい。 In addition, when the clearance enough to provide the protruding part 25 between the outer peripheral surface 20a of the rotor 20 and the inner peripheral surface 40a of the cam ring 40 cannot be secured, the protruding part 25 may not be provided. In the embodiment shown in FIG. 5, the raised portion 25 is formed so as to be continuous with the side surfaces 23 </ b> B and 24 </ b> B of the recesses 23 and 24. However, as in the modification shown in FIG. It may be formed so as to be spaced from the recesses 23 and 24.
 また、図5に示す実施形態では、底面23C,24Cは、凹状の曲面によって形成されるが、図10に示す変形例のように、底面23C,24Cは、平面であってもよい。さらに図示はしないが、平面や曲面を組み合わせてもよい。 In the embodiment shown in FIG. 5, the bottom surfaces 23C and 24C are formed by concave curved surfaces, but the bottom surfaces 23C and 24C may be flat as in the modification shown in FIG. Further, although not shown, a plane or a curved surface may be combined.
 以上の実施形態によれば、以下の効果を奏する。 According to the above embodiment, the following effects are obtained.
 ベーンポンプ100は、ロータ20の外周面20aに形成される円環状の凹部23,24と、を備え、凹部23,24は、両側面23A,23B,24A,24Bが底面23C,24Cに向かうに連れて互いに近づくように傾斜している。したがって、サイドポート74,81から吸い込まれた作動油は、凹部23,24によってポンプ室41内の軸方向の中心側にスムーズに導かれる。これにより、ポンプの吸込効率が向上する。 The vane pump 100 includes annular recesses 23 and 24 formed on the outer peripheral surface 20a of the rotor 20, and the recesses 23 and 24 are formed as the side surfaces 23A, 23B, 24A, and 24B move toward the bottom surfaces 23C and 24C. Are inclined to approach each other. Therefore, the hydraulic oil sucked from the side ports 74 and 81 is smoothly guided to the axial center side in the pump chamber 41 by the recesses 23 and 24. Thereby, the suction efficiency of a pump improves.
 また、2つの凹部23,24の側面23A,24Aそれぞれは、切り欠き43,44に対向する位置に形成される。また、凹部23,24の側面23A,24Aは、切り欠き43,44から吸い込まれた作動油の流れを制御できるような傾斜をもって形成される。これにより、切り欠き43,44から吸い込まれた作動油は、ロータ20の外周面20aに対して略直交するような方向から流れ込んでくるが、凹部23,24の傾斜した側面23A,24Aによってポンプ室41内に(ポンプ室41の軸方向の中心側に向かって)スムーズに導かれる。したがって、切り欠き43,44から作動油を吸い込む際の圧力損失が低減されるので、ベーンポンプ100の吸込効率を向上させることができる。 Further, the side surfaces 23A and 24A of the two recesses 23 and 24 are formed at positions facing the notches 43 and 44, respectively. Further, the side surfaces 23A, 24A of the recesses 23, 24 are formed with an inclination so that the flow of hydraulic oil sucked from the notches 43, 44 can be controlled. As a result, the hydraulic oil sucked from the notches 43 and 44 flows from a direction substantially orthogonal to the outer peripheral surface 20a of the rotor 20, but is pumped by the inclined side surfaces 23A and 24A of the recesses 23 and 24. It is smoothly guided into the chamber 41 (toward the axial center of the pump chamber 41). Therefore, since the pressure loss at the time of sucking the hydraulic oil from the notches 43 and 44 is reduced, the suction efficiency of the vane pump 100 can be improved.
 さらに、ベーンポンプ100では、凹部23,24の底面は、凹状の曲面によって形成されるので、サイドポート74,81から吸い込まれた作動油をよりスムーズにポンプ室41内に導くことができる。これにより、ベーンポンプ100の吸込効率がより一層向上する。 Furthermore, in the vane pump 100, since the bottom surfaces of the recesses 23 and 24 are formed by concave curved surfaces, the hydraulic oil sucked from the side ports 74 and 81 can be guided into the pump chamber 41 more smoothly. Thereby, the suction efficiency of the vane pump 100 further improves.
 また、ベーンポンプ100は、隆起部25を備えることにより、凹部23,24を設けることによって増加したポンプ室41のデッドボリュームを減らすことができる。 Moreover, the vane pump 100 can reduce the dead volume of the pump chamber 41 which is increased by providing the concave portions 23 and 24 by providing the raised portion 25.
 以上のように構成された本発明の実施形態の構成、作用、及び効果をまとめて説明する。 The configuration, operation, and effect of the embodiment of the present invention configured as described above will be described together.
 ベーンポンプ100は、回転駆動されるロータ20と、ロータ20の径方向に往復動自在にロータ20に設けられる複数のベーン30と、ロータ20の回転に伴って複数のベーン30の先端部31が摺接する内周カム面40aを有するカムリング40と、ロータ20及びカムリング40を挟んで配置される第1サイド部材(第1サイドプレート70)及び第2サイド部材(第2サイドプレート80)と、ロータ20、カムリング40、隣り合うベーン30、第1サイド部材(第1サイドプレート70)及び第2サイド部材(第2サイドプレート80)によって区画されるポンプ室41と、ポンプ室41に作動流体を導く吸込ポート(サイドポート74,81)と、ロータ20の外周面20aに形成される円環状の凹部23,24と、を備え、凹部23,24は、両側面(側面23A及び23B,側面24A及び24B)が底面23C,24Cに向かうに連れて互いに近づくように傾斜している。 The vane pump 100 includes a rotor 20 that is rotationally driven, a plurality of vanes 30 that are provided in the rotor 20 so as to be capable of reciprocating in the radial direction of the rotor 20, and tip portions 31 of the plurality of vanes 30 that slide with the rotation of the rotor 20. A cam ring 40 having an inner circumferential cam surface 40a in contact therewith, a first side member (first side plate 70) and a second side member (second side plate 80) disposed across the rotor 20 and the cam ring 40, and the rotor 20 , Cam ring 40, adjacent vane 30, pump chamber 41 defined by first side member (first side plate 70) and second side member (second side plate 80), and suction for guiding the working fluid to pump chamber 41 Ports (side ports 74 and 81) and annular recesses 23 and 24 formed on the outer peripheral surface 20a of the rotor 20 Recesses 23 and 24, both side surfaces (side surfaces 23A and 23B, side surfaces 24A and 24B) are inclined towards each other brought toward its bottom 23C, 24C.
 この構成では、吸込ポート(サイドポート74,81)から吸い込まれた作動油がロータ20の外周面20aに対して略直交するような方向からポンプ室41内に流れ込んできても、ロータ20の外周面20aに形成された凹部23,24の両側面(側面23A及び23B,側面24A及び24B)が底面23C,24Cに向かうに連れて互いに近づくように傾斜しているので、吸い込まれた作動油は凹部23,24の両側面(側面23A及び23B,側面24A及び24B)によってポンプ室41の軸方向の中心側に向かってスムーズに導かれる。したがって、ベーンポンプ100の吸込効率が向上する。 In this configuration, even if the hydraulic oil sucked from the suction ports (side ports 74 and 81) flows into the pump chamber 41 from a direction substantially orthogonal to the outer peripheral surface 20 a of the rotor 20, Since both side surfaces (side surfaces 23A and 23B, side surfaces 24A and 24B) of the recesses 23 and 24 formed on the surface 20a are inclined so as to approach each other toward the bottom surfaces 23C and 24C, the sucked hydraulic oil is The both sides of the recesses 23 and 24 (side surfaces 23A and 23B, side surfaces 24A and 24B) are smoothly guided toward the axial center of the pump chamber 41. Therefore, the suction efficiency of the vane pump 100 is improved.
 ベーンポンプ100では、吸込ポート(サイドポート74,81)は、カムリング40の第1サイド部材(第1サイドプレート70)に接する端面40b及びカムリング40の第2サイド部材(第2サイドプレート80)に接する端面40cの少なくとも一方に形成されカムリング40の内外周面を連通する切り欠き43,44であり、凹部23,24のロータ20の端面20b,20c側の側面23A,24Aは、切り欠き43,44に対向する位置に形成される。 In the vane pump 100, the suction ports (side ports 74 and 81) are in contact with the end surface 40b of the cam ring 40 in contact with the first side member (first side plate 70) and the second side member of the cam ring 40 (second side plate 80). The notches 43 and 44 are formed on at least one of the end faces 40c and communicate with the inner and outer peripheral faces of the cam ring 40. The side faces 23A and 24A of the recesses 23 and 24 on the end faces 20b and 20c side of the rotor 20 are notches 43 and 44. Is formed at a position opposite to.
 この構成では、切り欠き43,44から吸い込まれた作動油は、凹部23,24のロータ20の端面20b,20c側の側面23A,24Aによってポンプ室41内にスムーズに導かれる。これにより、ベーンポンプ100の吸込効率が向上する。 In this configuration, the hydraulic oil sucked from the notches 43 and 44 is smoothly guided into the pump chamber 41 by the side surfaces 23A and 24A of the recesses 23 and 24 on the end surfaces 20b and 20c side of the rotor 20. Thereby, the suction efficiency of the vane pump 100 is improved.
 ベーンポンプ100は、凹部23,24の底面23C,24Cは、凹状の曲面によって形成される。 In the vane pump 100, the bottom surfaces 23C and 24C of the recesses 23 and 24 are formed by concave curved surfaces.
 この構成では、凹部23,24の底面23C,24Cが凹状の曲面によって形成されることにより、作動油をよりスムーズにポンプ室41内に導くことができる。これにより、ベーンポンプ100の吸込効率がより一層向上する。 In this configuration, the bottom surfaces 23C and 24C of the recesses 23 and 24 are formed by concave curved surfaces, so that the hydraulic oil can be guided into the pump chamber 41 more smoothly. Thereby, the suction efficiency of the vane pump 100 further improves.
 ベーンポンプ100では、ロータ20は、凹部23,24を2つ備えるとともに、2つの凹部23,24の間に形成されロータ20の外周面20aから径方向に突出する円環状の隆起部25を備える。 In the vane pump 100, the rotor 20 includes two concave portions 23 and 24 and an annular raised portion 25 that is formed between the two concave portions 23 and 24 and protrudes in the radial direction from the outer peripheral surface 20a of the rotor 20.
 この構成では、ロータ20の外周面20aに隆起部25を備えることにより、ポンプ室41のデッドボリュームを減らすことができる。 In this configuration, the dead volume of the pump chamber 41 can be reduced by providing the raised portion 25 on the outer peripheral surface 20a of the rotor 20.
 以上、本発明の実施形態について説明したが、上記実施形態は本発明の適用例の一部を示したに過ぎず、本発明の技術的範囲を上記実施形態の具体的構成に限定する趣旨ではない。 The embodiment of the present invention has been described above. However, the above embodiment only shows a part of application examples of the present invention, and the technical scope of the present invention is limited to the specific configuration of the above embodiment. Absent.
 上記実施形態では、凹部は、凹部23,24の二つを設けているが、ポンプ室41に吸い込まれる作動油の流れ方によっては、どちらか一方だけ設ける構成であってもよい。 In the above embodiment, the recess is provided with the two recesses 23 and 24, but depending on how the hydraulic oil flows into the pump chamber 41, only one of the recesses may be provided.
 本願は、2016年2月15日に日本国特許庁に出願された特願2016-025853号に基づく優先権を主張し、この出願の全ての内容は参照により本明細書に組み込まれる。 This application claims priority based on Japanese Patent Application No. 2016-025853 filed with the Japan Patent Office on February 15, 2016, the entire contents of which are incorporated herein by reference.

Claims (4)

  1.  回転駆動されるロータと、
     前記ロータの径方向に往復動自在に前記ロータに設けられる複数のベーンと、
     前記ロータの回転に伴って前記複数のベーンの先端部が摺接する内周カム面を有するカムリングと、
     前記ロータ及び前記カムリングを挟んで配置される第1サイド部材及び第2サイド部材と、
     前記ロータ、前記カムリング、隣り合う前記ベーン、前記第1サイド部材及び前記第2サイド部材によって区画されるポンプ室と、
     前記ポンプ室に作動流体を導く吸込ポートと、
     前記ロータの外周面に形成される円環状の凹部と、を備え、
     前記凹部は、両側面が底面に向かうに連れて互いに近づくように傾斜しているベーンポンプ。
    A rotor that is driven to rotate;
    A plurality of vanes provided in the rotor so as to be capable of reciprocating in the radial direction of the rotor;
    A cam ring having an inner circumferential cam surface with which the tip portions of the plurality of vanes slide in contact with the rotation of the rotor;
    A first side member and a second side member that are disposed across the rotor and the cam ring;
    A pump chamber defined by the rotor, the cam ring, the adjacent vanes, the first side member, and the second side member;
    A suction port for guiding the working fluid to the pump chamber;
    An annular recess formed on the outer peripheral surface of the rotor,
    The said recessed part is a vane pump which inclines so that both sides may approach mutually as it goes to a bottom face.
  2.  請求項1に記載のベーンポンプであって、
     前記吸込ポートは、前記カムリングの前記第1サイド部材に接する端面及び前記カムリングの前記第2サイド部材に接する端面の少なくとも一方に形成され前記カムリングの内外周面を連通する切り欠きであり、
     前記凹部の前記ロータの端面側の側面は、前記切り欠きに対向する位置に形成されるベーンポンプ。
    The vane pump according to claim 1,
    The suction port is a notch that is formed on at least one of an end surface of the cam ring that contacts the first side member and an end surface of the cam ring that contacts the second side member, and communicates with the inner and outer peripheral surfaces of the cam ring;
    The vane pump is formed such that a side surface of the recess on the end surface side of the rotor is opposed to the notch.
  3.  請求項1に記載のベーンポンプであって、
     前記凹部の底面は、凹状の曲面によって形成されるベーンポンプ。
    The vane pump according to claim 1,
    The bottom surface of the concave portion is a vane pump formed by a concave curved surface.
  4.  請求項1に記載のベーンポンプであって、
     前記ロータは、前記凹部を2つ備えるとともに、2つの前記凹部の間に形成され前記ロータの外周面から径方向に突出する円環状の隆起部を備えるベーンポンプ。
    The vane pump according to claim 1,
    The rotor is a vane pump including the two concave portions and an annular ridge formed between the two concave portions and projecting radially from the outer peripheral surface of the rotor.
PCT/JP2016/077578 2016-02-15 2016-09-16 Vane pump WO2017141478A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DE112016006428.4T DE112016006428T5 (en) 2016-02-15 2016-09-16 vane pump
US16/069,070 US20200392847A1 (en) 2016-02-15 2016-09-16 Vane pump
CN201680079918.7A CN108496007A (en) 2016-02-15 2016-09-16 Vane pump

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016025853A JP6670119B2 (en) 2016-02-15 2016-02-15 Vane pump
JP2016-025853 2016-02-15

Publications (1)

Publication Number Publication Date
WO2017141478A1 true WO2017141478A1 (en) 2017-08-24

Family

ID=59624977

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/077578 WO2017141478A1 (en) 2016-02-15 2016-09-16 Vane pump

Country Status (5)

Country Link
US (1) US20200392847A1 (en)
JP (1) JP6670119B2 (en)
CN (1) CN108496007A (en)
DE (1) DE112016006428T5 (en)
WO (1) WO2017141478A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7029369B2 (en) * 2018-09-11 2022-03-03 Kyb株式会社 Vane pump
DE112020001995T5 (en) * 2019-04-17 2021-12-30 Kyb Corporation Vane pump
DE102019121958A1 (en) * 2019-08-14 2021-02-18 Schwäbische Hüttenwerke Automotive GmbH Vane pump with pressure compensation connection

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0735784U (en) * 1993-12-10 1995-07-04 カヤバ工業株式会社 Vane pump
JP2004301034A (en) * 2003-03-31 2004-10-28 Nissan Diesel Motor Co Ltd Vane pump
JP2006125210A (en) * 2004-10-26 2006-05-18 Kayaba Ind Co Ltd Vane pump
WO2013146177A1 (en) * 2012-03-29 2013-10-03 ジヤトコ株式会社 Vane pump

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES488091A0 (en) * 1980-01-31 1980-11-01 Talleres Vall S A IMPROVEMENTS IN CONTINUOUS DRIVE MECHANISMS OF PASTA MATERIALS
CN1020785C (en) * 1990-06-25 1993-05-19 华中理工大学 Vane pump system
CA2633754C (en) 2006-01-05 2013-06-18 The Ohio State University Research Foundation Microrna-based methods and compositions for the diagnosis and treatment of solid cancers
KR20120090306A (en) * 2011-02-07 2012-08-17 한라공조주식회사 Scroll compressor
CN102840134B (en) * 2012-09-05 2015-09-02 浙江台州先顶液压有限公司 Vane control mechanism

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0735784U (en) * 1993-12-10 1995-07-04 カヤバ工業株式会社 Vane pump
JP2004301034A (en) * 2003-03-31 2004-10-28 Nissan Diesel Motor Co Ltd Vane pump
JP2006125210A (en) * 2004-10-26 2006-05-18 Kayaba Ind Co Ltd Vane pump
WO2013146177A1 (en) * 2012-03-29 2013-10-03 ジヤトコ株式会社 Vane pump

Also Published As

Publication number Publication date
US20200392847A1 (en) 2020-12-17
JP2017145699A (en) 2017-08-24
JP6670119B2 (en) 2020-03-18
DE112016006428T5 (en) 2018-10-31
CN108496007A (en) 2018-09-04

Similar Documents

Publication Publication Date Title
WO2015190397A1 (en) Piston pump and valve plate for piston pump
WO2017141478A1 (en) Vane pump
WO2017077773A1 (en) Vane pump
JP6770370B2 (en) Vane pump
US9482228B2 (en) Variable capacity vane pump with a rotor and a cam ring rotatable eccentrically relative to a center of the rotor
JP6122659B2 (en) Vane pump
WO2018043434A1 (en) Vane pump
WO2018043433A1 (en) Vane pump
JP2020041466A (en) Vane pump
JP5204739B2 (en) Vane pump
JP2018035777A (en) Vane pump
JP2011132868A (en) Vane pump
JP2009052525A (en) Vane pump
WO2023248695A1 (en) Vane pump
WO2017047363A1 (en) Vane pump
WO2017217223A1 (en) Vane pump
JP7421419B2 (en) vane pump
JP2004232465A (en) Vane pump and vane motor of bidirectional type
WO2019216173A1 (en) Vane pump
JP2020041465A (en) Vane pump
JP7029369B2 (en) Vane pump
JP2018035776A (en) Vane pump
KR100471323B1 (en) Improved structure of pumping means in oil pump
JP2019218939A (en) Vane pump
JP2009079553A (en) Vane pump

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16890615

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 112016006428

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16890615

Country of ref document: EP

Kind code of ref document: A1