WO2017141301A1 - Particle beam therapy apparatus and method for determining number of scans of particle beam therapy apparatus - Google Patents

Particle beam therapy apparatus and method for determining number of scans of particle beam therapy apparatus Download PDF

Info

Publication number
WO2017141301A1
WO2017141301A1 PCT/JP2016/054217 JP2016054217W WO2017141301A1 WO 2017141301 A1 WO2017141301 A1 WO 2017141301A1 JP 2016054217 W JP2016054217 W JP 2016054217W WO 2017141301 A1 WO2017141301 A1 WO 2017141301A1
Authority
WO
WIPO (PCT)
Prior art keywords
dose
particle beam
scans
count value
irradiation
Prior art date
Application number
PCT/JP2016/054217
Other languages
French (fr)
Japanese (ja)
Inventor
由希子 山田
信彦 伊奈
秀和 近藤
保人 岸井
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2016/054217 priority Critical patent/WO2017141301A1/en
Priority to JP2017567571A priority patent/JP6494808B2/en
Priority to CN201680080943.7A priority patent/CN108697904A/en
Priority to TW105123723A priority patent/TWI604869B/en
Publication of WO2017141301A1 publication Critical patent/WO2017141301A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy

Definitions

  • the present invention relates to a particle beam therapy apparatus for irradiating a particle beam to treat cancer and a method for determining the number of scans of the particle beam therapy apparatus.
  • a method for determining the number of scans of uniform scanning with broad irradiation includes a method of setting a predetermined value or optimizing according to irradiation conditions.
  • Patent Document 1 when 5 GyE is irradiated to the entire irradiation region, all irradiation spots are irradiated with one gate by the particle beam by the first acceleration, and a dose of 3 GyE is given to the irradiation target. It is disclosed to irradiate all irradiation spots again with a particle beam generated by acceleration of 2 to give a dose of 2 GyE to an irradiation target.
  • JP 2014-28310 A (paragraph 0031, FIG. 1)
  • the number of scans is greater in the method of optimization depending on the irradiation conditions, and the flatness of the irradiation field increases as the number of scans increases.
  • it is calculated as the maximum number of times that the spot dose becomes equal to or greater than the minimum dose, but it is necessary to determine from the beam intensity, the movement time between the spots, etc. There was a problem.
  • An object of the present invention is to provide a particle beam therapy system and a method for determining the number of scans of the particle beam therapy system.
  • the particle beam therapy system scans a particle beam with a scanning deflection magnet, measures a dose with a dose monitor, and irradiates the particle beam with an irradiation nozzle that imposes an interlock value on the beam intensity.
  • An irradiation control unit that scans and controls the scanning deflection electromagnet, a treatment planning unit that sets a dose and the number of irradiation spots, the dose, an actually measured dose value, and a count value measured by the dose monitor
  • the number of scans is determined on the basis of the measurement result of the dose calibration that is the ratio of the above, and the total spot count value of the predetermined dose derived from the number of irradiation spots and the interlock value, and the interlock control unit determines the interlock value. Scanning with a predetermined spot count value measured by the dose monitor according to the beam intensity imposed, and irradiating the determined number of scans. Is characterized in that a radiation control calculation unit that.
  • the method of determining the number of scans of the particle beam therapy system includes a dose calibration, a measurement result of dose calibration that is a ratio of an actually measured dose value and a count value measured by a dose monitor, and a predetermined number derived from the number of irradiation spots.
  • the number of scans is determined based on the total spot count value and the interlock value of the doses.
  • the number of scans can be easily determined in a short time by irradiating with the number of times determined by the beam intensity controlled by the interlock value. Can be irradiated.
  • FIG. 1 is a block diagram of the main configuration of the particle beam therapy system according to Embodiment 1 of the present invention
  • FIG. 2 is a bird's-eye view of the schematic configuration of the entire particle beam therapy system.
  • the particle beam therapy system according to Embodiment 1 includes a particle beam generator 10, a particle beam transport unit 20, two particle beam irradiation units 30A and 30B, and the like.
  • FIG. 2 shows a system that typically includes two particle beam irradiation units, there may be more particle beam irradiation units or one particle beam irradiation unit. In FIG. 1, only one particle beam irradiation unit is provided as the particle beam irradiation unit 30 for simplicity.
  • the particle beam transport unit 20 connects the particle beam generator 10 and the particle beam irradiation units 30A and 30B.
  • the particle beam transport unit 20 includes particle beam transport paths 21 and 22 that transport the particle beam generated by the particle beam generation unit 10 to the particle beam irradiation units 30A and 30B, respectively.
  • the particle beam transport unit 20 includes a deflecting electromagnet 50 for changing the direction of the particle beam, and is configured so that the particle beam passes through the vacuum duct.
  • the particle beam irradiation units 30A and 30B are configured to irradiate the target site of the patient with the particle beam PB.
  • the particle beam irradiation units 30A and 30B will be described as the particle beam irradiation unit 30.
  • the particle beam generator 10 includes an injector 11 and an accelerator 12.
  • the injector 11 generates and accelerates particles having a large mass such as a proton beam or a carbon beam.
  • the accelerator 12 accelerates the particles accelerated at the first stage by the injector 11 and emits the particle beam PB.
  • the accelerator 12 is controlled by a signal from the accelerator controller 13 provided in the irradiation controller 80.
  • the accelerator controller 13 supplies an energy control signal to the accelerator 12, sets acceleration energy, sets energy of the particle beam PB emitted from the accelerator 12, and controls time and intensity for emitting the particle beam PB. To do.
  • the particle beam irradiation unit 30 constitutes a treatment room.
  • the particle beam irradiation unit 30 includes an irradiation nozzle 40, a treatment table 32, and the like.
  • the treatment table 32 is used to hold the patient in a supine or sitting position.
  • the irradiation nozzle 40 irradiates the particle beam PB transported to the particle beam irradiation unit 30 toward the irradiation target of the patient on the treatment table 32.
  • FIG. 1 shows a specific configuration of the irradiation nozzle 40 of the particle beam irradiation unit 30 in the first embodiment.
  • the irradiation nozzle 40 shown in FIG. 1 scans the particle beam PB in the horizontal direction, that is, the scanning deflection electromagnets 41a and 41b (41a and 41b) that scan the X and Y planes orthogonal to the particle beam PB irradiation direction. (This may also be referred to as a deflection electromagnet 41.), a scanning deflection electromagnet drive power supply 45 for driving the scanning deflection electromagnet 41, a dose monitor 42 for monitoring the irradiation dose of the particle beam PB, and an energy width of the particle beam PB. It has a ridge filter 43 which is an energy width expanding device.
  • the scanning deflection electromagnet drive power supply 45 is controlled by a signal from the beam scanning controller 16 provided in the irradiation controller 80, and sets the excitation current of the scanning deflection electromagnet 41.
  • the scanning uses a method of scanning the beam irradiation by a method of repeatedly moving and stopping the beam while continuing the irradiation.
  • the dose monitor 42 measures the irradiated dose, and the count value of the measured dose is sent to the irradiation dose controller 14.
  • the irradiation dose controller 14 is provided with an interlock circuit 14a, and the beam intensity is determined in advance by the irradiation dose controller 14 while the particle beam PB moves at a predetermined scanning speed in the spot interval per spot. When the value is exceeded, the beam is cut off, and irradiation is performed with a constant beam intensity at a spot interval per spot.
  • the ridge filter 43 reduces the energy of the particle beam passing therethrough.
  • the thickness of the particle beam passing through the ridge filter 43 varies depending on the location, the particle beam after passing as a whole is the particle before passing through.
  • the energy width is wider than the energy width of the line. Therefore, when the particle beam after passing through the ridge filter 43 is irradiated into the body, for example, the position of the Bragg peak BP, that is, the range of the particle beam is expanded.
  • the irradiation control calculation unit 70 determines the number of scans and the irradiation dose of each irradiation spot based on the administration dose data and the dose calibration measurement result, and outputs the data to the irradiation dose controller 14 of the irradiation control unit 80. To do. Further, the irradiation control calculation unit 70 also determines the energy and spot size of the particle beam that the accelerator 12 should emit and outputs the data to the accelerator controller 13.
  • FIG. 3 shows an image diagram of the irradiation area when the irradiation target is actually irradiated with the particle beam.
  • each circle indicates each irradiation spot, and scanning is performed in the direction of arrow A from the start spot 101 to the end spot 103 (1st Scan).
  • the second irradiation returns to the direction opposite to the scanning direction of the first irradiation, and scans from the start spot 201 to the end spot 203 in the direction of arrow B (2nd). Scan).
  • the scanning is repeated N times (Nth Scan, N is an integer) as many times as necessary to complete all irradiations.
  • FIG. 4 is a flowchart showing the operation of the particle beam therapy system according to the method for determining the number of scans in the first embodiment.
  • the number of scans is determined by the irradiation control calculation unit 70 (step S403).
  • the number of scans N is determined by equation (4).
  • the value of the number of scans N is rounded down to the first decimal place on the safe side. (Equation 4)
  • Number of scans N [Scan] total spot count value [SPC ⁇ Scan] ⁇ allowed minimum spot count value of one spot [SPC] (4)
  • the vibration is caused by the coils used for the scanning deflection electromagnets 41a and 41b.
  • the position monitor delay speed is the time until the beam is accumulated because the beam irradiation position cannot be calculated unless a certain amount of beam is accumulated in the position monitor in order to calculate the irradiation position of the beam by a position monitor (not shown). Therefore, the settling time and the position monitor delay time are times necessary for the beam scanning position control.
  • the irradiation control calculation unit 70 calculates a spot count value that is evenly distributed per scan from the obtained number of scans N and the total spot count value, and obtains it by the beam intensity to which the interlock value is imposed.
  • the particle beam PB is irradiated with the obtained spot count value (step S404).
  • the beam is repeatedly moved and stopped while continuing the irradiation from the start spot 101 to the end spot 103 (see FIG. 3). Note that the spot count value is rounded off to the first decimal place on the safe side so as not to be interlocked.
  • the scanning is repeated N times as many times as necessary (step S405).
  • the second spot 202 at the same position is irradiated with the same spot count, and this scanning is repeated to form the Nth spot N02.
  • this scanning is repeated to form the Nth spot N02.
  • the interlock circuit 14a is provided, and the number of scans is determined based on the interlock value of the beam intensity, so that complicated calculation and measurement are not required to determine the number of scans.
  • the number of scans can be determined by time, and appropriate irradiation can be performed.
  • the irradiation control unit 80 includes the interlock circuit 14a that imposes an interlock value on the beam intensity.
  • the number of scans is determined based on the dose calibration measurement result, which is the ratio of the actually measured dose value and the count value measured by the dose monitor 42, and the total spot count value and interlock value of a predetermined dose derived from the number of irradiation spots.
  • the irradiation controller 80 scans with the predetermined spot count value measured by the dose monitor 42 with the beam intensity controlled by the interlock value and irradiates the determined number of scans.
  • the number of scans can be easily determined in a short time without the need for complicated calculations and measurements, and appropriate irradiation can be performed. .
  • Embodiment 2 the case of irradiating the particle beam PB with the spot count value in which the total spot count value is equally distributed by the number of irradiations N is shown, but in the second embodiment, the case of adjusting the spot count value is shown.
  • FIG. 5 is a diagram showing an irradiation pattern of the particle beam therapy system according to Embodiment 1 and Embodiment 2 of the present invention.
  • 5A shows the irradiation pattern of the first embodiment
  • FIG. 5B shows the irradiation pattern of the second embodiment.
  • the planned dose per spot that is, the total spot count value is 1502 [SPC ⁇ Scan]
  • the number of scans is 3 by the irradiation control calculation unit 70.
  • the spot count value of each scan in which the total spot count value 1502 [SPC ⁇ Scan] is evenly distributed with the number of scans of 3 is rounded down to the first decimal place as the safe side and becomes 500 [SPC].
  • the total dose per spot is 1500 [SPC ⁇ Scan], which deviates from the ideal value.
  • the total spot count value that is, the total dose per spot is the same as the planned dose per spot in the final (third) scan.
  • the adjustment is performed by the irradiation control calculation unit 70. That is, the irradiation control calculation unit 70 causes the irradiation control unit 80 to irradiate with 500 [SPC], which is a spot count value that is uniformly distributed in the first and second scans, and totals in the last (third) scan. It adjusts so that it may irradiate with 502 [SPC] so that it may become the spot count value 1502 [SPC * Scan], and it makes the irradiation control part 80 irradiate.
  • SPC spot count value that is uniformly distributed in the first and second scans, and totals in the last (third) scan.
  • 502 [SPC] so that it may become the spot count value 1502 [SPC * Scan]
  • FIG. 6 is a flowchart showing the operation of the particle beam therapy system according to the method of determining the number of scans in the second embodiment. Steps 601 to 604 are the same as steps 401 to 404 in the first embodiment, and a description thereof will be omitted.
  • the scan is repeated N-1 times as many times as necessary (step S605). For example, in the first spot 102, the same spot count is irradiated to the second spot 202 at the same position, and this scan is repeated for the (N-1) th time. The same spot count is irradiated up to spot (N-1) 02.
  • the irradiation control calculation unit 70 adjusts the spot count value of the final round (Nth) obtained by Equation (6), and the irradiation control unit 80 sets the interlock value.
  • the particle beam PB is irradiated with the given constant beam intensity (step S606).
  • Spot count value [SPC] for the last round total spot count value [SPC ⁇ Scan] ⁇ (N ⁇ 1) spot count value [SPC] ⁇ (N ⁇ 1) to the (N-1) th round (6)
  • the particle beam PB is irradiated with a constant beam intensity, so that the number of scans can be easily determined in a short time. Accuracy can be improved.
  • the spot count value is adjusted in the final scan, but the present invention is not limited to this.
  • the same effect can be obtained by adjusting the spot count value regardless of whether it is the first scan or the middle scan. Further, there may be a plurality of times for adjustment.
  • the irradiation control calculation unit 70 adjusts the spot count value for any one of the scanning times to obtain the total spot count value. Since irradiation is performed, not only can the number of scans be determined in a short time, but also the accuracy of dose irradiation can be improved.

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Pathology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Radiation-Therapy Devices (AREA)

Abstract

The purpose of the present invention is to determine the number of scans in a particle beam therapy apparatus easily and in a short time without requiring preparations such as complex measurements for determining the number of scans. An irradiation control unit (80) includes an interlock circuit (14a) that imposes an interlock value on beam intensity. An irradiation control calculation unit (70) determines the number of scans on the basis of the interlock value and the total spot count rate of a predetermined dose derived from an administration dose, a measurement result of dose calibration, and the number of irradiation spots, and scans with the beam intensity on which the interlock value is imposed by the irradiation control unit (80) at a predetermined spot count rate measured by a dose monitor (42), thereby irradiating the determined number of scans.

Description

粒子線治療装置および粒子線治療装置の走査回数決定方法Particle beam therapy apparatus and method for determining the number of scans of particle beam therapy apparatus
 この発明は、粒子線を照射して癌の治療を行う粒子線治療装置および粒子線治療装置の走査回数決定方法に関するものである。 The present invention relates to a particle beam therapy apparatus for irradiating a particle beam to treat cancer and a method for determining the number of scans of the particle beam therapy apparatus.
 従来、粒子線治療装置において、ブロード照射でのユニフォームスキャニングの走査回数決定方法には、予め決まった値にするか、照射条件によって最適化する方法がある。例えば、特許文献1には、全照射領域に5GyEを照射する場合に、1回目の加速による粒子線により1ゲートですべての照射スポット照射して照射目標に対して3GyEの線量を与え、2回目の加速による粒子線により再び全ての照射スポットを照射して照射目標に対して2GyEの線量を与えることについて開示されている。 Conventionally, in a particle beam therapy system, a method for determining the number of scans of uniform scanning with broad irradiation includes a method of setting a predetermined value or optimizing according to irradiation conditions. For example, in Patent Document 1, when 5 GyE is irradiated to the entire irradiation region, all irradiation spots are irradiated with one gate by the particle beam by the first acceleration, and a dose of 3 GyE is given to the irradiation target. It is disclosed to irradiate all irradiation spots again with a particle beam generated by acceleration of 2 to give a dose of 2 GyE to an irradiation target.
特開2014-28310号公報(段落0031、図1)JP 2014-28310 A (paragraph 0031, FIG. 1)
 一般に、照射条件によって最適化する方法の方が走査回数が多くなり、走査回数は多い方が照射野の平坦性が増す。しかしながら、走査回数を最適化するためにはスポット線量が最小線量以上になる最大回数として求めるが、ビーム強度やスポット間移動時間等から決定する必要があり、ビーム強度の測定や複雑な計算を要するという問題があった。 In general, the number of scans is greater in the method of optimization depending on the irradiation conditions, and the flatness of the irradiation field increases as the number of scans increases. However, in order to optimize the number of scans, it is calculated as the maximum number of times that the spot dose becomes equal to or greater than the minimum dose, but it is necessary to determine from the beam intensity, the movement time between the spots, etc. There was a problem.
 この発明は、上記のような課題を解決するためになされたものであり、走査回数を決定するために複雑な計算や測定等の準備を必要とせず、簡便に短時間で走査回数を決定することができる粒子線治療装置および粒子線治療装置の走査回数決定方法を提供することを目的としている。 The present invention has been made to solve the above-described problems, and does not require complicated calculations, measurements, or the like to determine the number of scans, and easily determines the number of scans in a short time. An object of the present invention is to provide a particle beam therapy system and a method for determining the number of scans of the particle beam therapy system.
 この発明の粒子線治療装置は、粒子線を走査用偏向電磁石により走査し、線量を線量モニタにより測定して、前記粒子線を照射する照射ノズルと、ビーム強度にインターロック値を課するインターロック回路を有し、前記走査用偏向電磁石を走査制御する照射制御部と、投与線量と照射スポット数を設定する治療計画部と、前記投与線量、実測した線量値と前記線量モニタにより測定したカウント値の比である線量校正の測定結果、および前記照射スポット数から導かれた所定の前記線量の合計スポットカウント値と前記インターロック値に基づき走査回数を決定し、前記照射制御部に前記インターロック値を課された前記ビーム強度により前記線量モニタで測定される所定のスポットカウント値で走査し、決定された前記走査回数照射させる照射制御計算部とを備えたことを特徴とするものである。 The particle beam therapy system according to the present invention scans a particle beam with a scanning deflection magnet, measures a dose with a dose monitor, and irradiates the particle beam with an irradiation nozzle that imposes an interlock value on the beam intensity. An irradiation control unit that scans and controls the scanning deflection electromagnet, a treatment planning unit that sets a dose and the number of irradiation spots, the dose, an actually measured dose value, and a count value measured by the dose monitor The number of scans is determined on the basis of the measurement result of the dose calibration that is the ratio of the above, and the total spot count value of the predetermined dose derived from the number of irradiation spots and the interlock value, and the interlock control unit determines the interlock value. Scanning with a predetermined spot count value measured by the dose monitor according to the beam intensity imposed, and irradiating the determined number of scans. Is characterized in that a radiation control calculation unit that.
 また、この発明の粒子線治療装置の走査回数決定方法は、投与線量、実測した線量値と線量モニタにより測定したカウント値の比である線量校正の測定結果、および照射スポット数から導かれた所定の線量の合計スポットカウント値とインターロック値に基づき走査回数を決定することを特徴とするものである。 In addition, the method of determining the number of scans of the particle beam therapy system according to the present invention includes a dose calibration, a measurement result of dose calibration that is a ratio of an actually measured dose value and a count value measured by a dose monitor, and a predetermined number derived from the number of irradiation spots. The number of scans is determined based on the total spot count value and the interlock value of the doses.
 この発明によれば、インターロック値に基づき走査回数を決定することにより、インターロック値で制御されたビーム強度により決定した回数で照射することで、簡便に短時間で走査回数を決定でき、適切な照射をすることができる。 According to this invention, by determining the number of scans based on the interlock value, the number of scans can be easily determined in a short time by irradiating with the number of times determined by the beam intensity controlled by the interlock value. Can be irradiated.
この発明の実施の形態1における粒子線治療装置の概略構成を示すブロック図である。It is a block diagram which shows schematic structure of the particle beam therapy apparatus in Embodiment 1 of this invention. この発明の実施の形態1における粒子線治療装置全体の概略構成を示す鳥瞰図である。It is a bird's-eye view which shows schematic structure of the whole particle beam therapy apparatus in Embodiment 1 of this invention. この発明の実施の形態1における粒子線治療装置の動作を説明する図である。It is a figure explaining operation | movement of the particle beam therapy apparatus in Embodiment 1 of this invention. この発明の実施の形態1における粒子線治療装置の粒子線照射時のフローチャート図である。It is a flowchart figure at the time of particle beam irradiation of the particle beam therapy apparatus in Embodiment 1 of this invention. この発明の実施の形態2における粒子線治療装置の動作を説明する図である。It is a figure explaining operation | movement of the particle beam therapy apparatus in Embodiment 2 of this invention. この発明の実施の形態2における粒子線治療装置の粒子線照射時のフローチャート図である。It is a flowchart figure at the time of particle beam irradiation of the particle beam therapy apparatus in Embodiment 2 of this invention.
実施の形態1.
 図1は、この発明の実施の形態1による粒子線治療装置の主要な構成のブロック図であり、図2は粒子線治療装置全体の概略構成の鳥瞰図である。実施の形態1による粒子線治療装置は、図1および図2に示すように、粒子線発生部10と、粒子線輸送部20と、2つの粒子線照射部30A、30Bなどを備えている。図2では、代表的に粒子線照射部が2つ備えられているシステムを示したが、粒子線照射部はさらに多くあっても良く、また1つであっても良い。図1では簡単のため粒子線照射部30として粒子線照射部を一つのみとしている。放射線安全管理などの運用上の都合から粒子線発生部10と、粒子線照射部30A、30Bとは、遮蔽された部屋に設置される。粒子線輸送部20は、粒子線発生部10と、各粒子線照射部30A、30Bとを連結する。粒子線輸送部20は、粒子線発生部10で発生した粒子線を粒子線照射部30A、30Bのそれぞれに輸送する粒子線輸送路21、22を有する。粒子線輸送部20は、粒子線の方向を変えるための偏向電磁石50を備え、真空ダクト内を粒子線が通過するように構成される。粒子線照射部30A、30Bは、粒子線PBを患者の目標部位へ照射するように構成される。以後、粒子線照射部30A、30Bは、粒子線照射部30として説明する。
Embodiment 1 FIG.
FIG. 1 is a block diagram of the main configuration of the particle beam therapy system according to Embodiment 1 of the present invention, and FIG. 2 is a bird's-eye view of the schematic configuration of the entire particle beam therapy system. As shown in FIGS. 1 and 2, the particle beam therapy system according to Embodiment 1 includes a particle beam generator 10, a particle beam transport unit 20, two particle beam irradiation units 30A and 30B, and the like. Although FIG. 2 shows a system that typically includes two particle beam irradiation units, there may be more particle beam irradiation units or one particle beam irradiation unit. In FIG. 1, only one particle beam irradiation unit is provided as the particle beam irradiation unit 30 for simplicity. For operational reasons such as radiation safety management, the particle beam generator 10 and the particle beam irradiation units 30A and 30B are installed in a shielded room. The particle beam transport unit 20 connects the particle beam generator 10 and the particle beam irradiation units 30A and 30B. The particle beam transport unit 20 includes particle beam transport paths 21 and 22 that transport the particle beam generated by the particle beam generation unit 10 to the particle beam irradiation units 30A and 30B, respectively. The particle beam transport unit 20 includes a deflecting electromagnet 50 for changing the direction of the particle beam, and is configured so that the particle beam passes through the vacuum duct. The particle beam irradiation units 30A and 30B are configured to irradiate the target site of the patient with the particle beam PB. Hereinafter, the particle beam irradiation units 30A and 30B will be described as the particle beam irradiation unit 30.
 粒子線発生部10は、入射器11と加速器12を有する。入射器11は、陽子線または炭素線などの質量の大きな粒子を発生・初段加速する。加速器12は、入射器11で初段加速された粒子を加速し、粒子線PBを出射する。この加速器12は、照射制御部80に備えられた加速器制御器13からの信号により制御される。この加速器制御器13は、加速器12にエネルギー制御信号を供給し、加速エネルギーを設定して加速器12から出射される粒子線PBのエネルギーを設定したり、粒子線PBを出射させる時間、強度を制御したりする。 The particle beam generator 10 includes an injector 11 and an accelerator 12. The injector 11 generates and accelerates particles having a large mass such as a proton beam or a carbon beam. The accelerator 12 accelerates the particles accelerated at the first stage by the injector 11 and emits the particle beam PB. The accelerator 12 is controlled by a signal from the accelerator controller 13 provided in the irradiation controller 80. The accelerator controller 13 supplies an energy control signal to the accelerator 12, sets acceleration energy, sets energy of the particle beam PB emitted from the accelerator 12, and controls time and intensity for emitting the particle beam PB. To do.
 粒子線照射部30は、治療室を構成する。粒子線照射部30は、照射ノズル40、治療台32などを有する。治療台32は患者を仰臥位または座位の状態に保持するのに使用される。照射ノズル40は、粒子線照射部30に輸送された粒子線PBを治療台32上の患者の照射目標に向けて照射する。 The particle beam irradiation unit 30 constitutes a treatment room. The particle beam irradiation unit 30 includes an irradiation nozzle 40, a treatment table 32, and the like. The treatment table 32 is used to hold the patient in a supine or sitting position. The irradiation nozzle 40 irradiates the particle beam PB transported to the particle beam irradiation unit 30 toward the irradiation target of the patient on the treatment table 32.
 図1には、実施の形態1における粒子線照射部30の照射ノズル40の具体的構成を示している。図1に示す照射ノズル40は、粒子線PBを横方向、すなわち粒子線PBの照射方向と直交するX、Y面で走査する走査用偏向電磁石41a、41b(41a、41bを合わせて、走査用偏向電磁石41と称することもある。)、この走査用偏向電磁石41を駆動する走査用偏向電磁石駆動電源45、粒子線PBの照射線量をモニタする線量モニタ42、粒子線PBのエネルギー幅を拡大するエネルギー幅拡大機器であるリッジフィルタ43を有する。 FIG. 1 shows a specific configuration of the irradiation nozzle 40 of the particle beam irradiation unit 30 in the first embodiment. The irradiation nozzle 40 shown in FIG. 1 scans the particle beam PB in the horizontal direction, that is, the scanning deflection electromagnets 41a and 41b (41a and 41b) that scan the X and Y planes orthogonal to the particle beam PB irradiation direction. (This may also be referred to as a deflection electromagnet 41.), a scanning deflection electromagnet drive power supply 45 for driving the scanning deflection electromagnet 41, a dose monitor 42 for monitoring the irradiation dose of the particle beam PB, and an energy width of the particle beam PB. It has a ridge filter 43 which is an energy width expanding device.
 走査用偏向電磁石駆動電源45は、照射制御部80に備えられたビーム走査制御器16からの信号により制御され、走査用偏向電磁石41の励磁電流を設定する。走査は、照射を継続しながらビームの移動と停止を繰り返す方法でビーム照射を走査する方法を用いる。照射中、線量モニタ42では、照射される線量が測定され、測定された線量のカウント値は照射線量制御器14に送られる。照射線量制御器14にはインターロック回路14aが備えられ、粒子線PBが1スポット当たりのスポット間隔を所定の走査速度で移動する間、照射線量制御器14によりビーム強度が予め決められたインターロック値を上回るとビームを遮断するようになっており、1スポット当たりのスポット間隔に一定のビーム強度で照射される。 The scanning deflection electromagnet drive power supply 45 is controlled by a signal from the beam scanning controller 16 provided in the irradiation controller 80, and sets the excitation current of the scanning deflection electromagnet 41. The scanning uses a method of scanning the beam irradiation by a method of repeatedly moving and stopping the beam while continuing the irradiation. During irradiation, the dose monitor 42 measures the irradiated dose, and the count value of the measured dose is sent to the irradiation dose controller 14. The irradiation dose controller 14 is provided with an interlock circuit 14a, and the beam intensity is determined in advance by the irradiation dose controller 14 while the particle beam PB moves at a predetermined scanning speed in the spot interval per spot. When the value is exceeded, the beam is cut off, and irradiation is performed with a constant beam intensity at a spot interval per spot.
 リッジフィルタ43はそこを通過する粒子線のエネルギーを低下させるが、場所によって、粒子線が通過する厚みが異なるように設けられているため、全体として通過後の粒子線は、通過する前の粒子線のエネルギー幅よりも広いエネルギー幅を有する。よって、リッジフィルタ43を通過した後の粒子線を例えば体内に照射するとそのブラッグピークBPの位置、すなわち粒子線の飛程が拡大される。 The ridge filter 43 reduces the energy of the particle beam passing therethrough. However, since the thickness of the particle beam passing through the ridge filter 43 varies depending on the location, the particle beam after passing as a whole is the particle before passing through. The energy width is wider than the energy width of the line. Therefore, when the particle beam after passing through the ridge filter 43 is irradiated into the body, for example, the position of the Bragg peak BP, that is, the range of the particle beam is expanded.
 治療計画部60において、患者毎の照射線量分布が決定された投与線量のデータが保存されている。照射制御計算部70では、その投与線量のデータおよび線量校正の測定結果に基づいて、各照射スポットの走査回数と照射線量が決定され、そのデータを照射制御部80の照射線量制御器14に出力する。また、照射制御計算部70では、加速器12が出射すべき粒子線のエネルギーやスポットサイズも決定し、加速器制御器13にそのデータを出力する。 In the treatment planning unit 60, data on doses for which the irradiation dose distribution for each patient is determined is stored. The irradiation control calculation unit 70 determines the number of scans and the irradiation dose of each irradiation spot based on the administration dose data and the dose calibration measurement result, and outputs the data to the irradiation dose controller 14 of the irradiation control unit 80. To do. Further, the irradiation control calculation unit 70 also determines the energy and spot size of the particle beam that the accelerator 12 should emit and outputs the data to the accelerator controller 13.
 図3は、実際に粒子線を照射目標に照射したときの照射領域のイメージ図を示す。1回目の照射は、図3(1)に示すように、○は各照射スポットを示し、開始スポット101から終了スポット103まで、矢印Aの方向に走査する(1st Scan)。また、2回目の照射は、図3(2)に示すように、1回目の照射の走査方向と逆の方向に戻り、開始スポット201から終了スポット203まで、矢印Bの方向に走査する(2nd Scan)。同様にして、走査を必要走査回数のN回(Nth Scan、Nは整数)繰り返して、全ての照射を完了する。 FIG. 3 shows an image diagram of the irradiation area when the irradiation target is actually irradiated with the particle beam. In the first irradiation, as shown in FIG. 3A, each circle indicates each irradiation spot, and scanning is performed in the direction of arrow A from the start spot 101 to the end spot 103 (1st Scan). Further, as shown in FIG. 3B, the second irradiation returns to the direction opposite to the scanning direction of the first irradiation, and scans from the start spot 201 to the end spot 203 in the direction of arrow B (2nd). Scan). Similarly, the scanning is repeated N times (Nth Scan, N is an integer) as many times as necessary to complete all irradiations.
 次に、この発明の実施の形態1による粒子線治療装置の動作および走査回数決定方法について図4を用いて説明する。図4は、実施の形態1における走査回数決定方法による粒子線治療装置の動作を示すフロー図である。まず、治療計画部60において、患者毎の照射線量分布が決定された投与線量のデータが設定される(ステップS401)。 Next, the operation of the particle beam therapy system and the method for determining the number of scans according to Embodiment 1 of the present invention will be described with reference to FIG. FIG. 4 is a flowchart showing the operation of the particle beam therapy system according to the method for determining the number of scans in the first embodiment. First, in the treatment planning unit 60, dose data for which the irradiation dose distribution for each patient is determined is set (step S401).
 続いて、設定された投与線量のデータに基づいて水ファントムを用いた線量校正の測定を行う(ステップS402)。ここでは、測定された水ファントムでの線量値と、対応する線量モニタ42での線量のカウント値の比である線量校正の測定結果から、式(1)により線量の合計カウント値を導出する。
 (数1)
  線量の合計カウント値[TOC・Scan]=投与線量[Gy]÷校正測定結果 [Gy/(TOC・Scan)]・・・(1)
 なお、TOC(Total Count)は、全スポット線量の積算、を意味する。
Subsequently, dose calibration is measured using a water phantom based on the set dose data (step S402). Here, the total count value of the dose is derived from the measurement result of the dose calibration which is the ratio of the measured dose value in the water phantom and the dose count value in the corresponding dose monitor 42 by Equation (1).
(Equation 1)
Total dose value [TOC · Scan] = dose dose [Gy] ÷ calibration measurement result [Gy / (TOC · Scan)] (1)
Note that TOC (Total Count) means total spot dose integration.
 そして、各照射スポットの線量の合計スポットカウント値は、式(2)により導出される。なお、照射スポット数は治療計画部60で設定されている。
 (数2)
  線量の合計スポットカウント値[SPC・Scan]=線量の合計カウント値×通常スポットのウェイト・・・(2)
 ここで、通常スポットとは、エッジスポットでないことを意味し、通常スポットのウェイトとは、線量の合計カウント値に対する1スポットのカウント値の割合を意味する。
And the total spot count value of the dose of each irradiation spot is derived | led-out by Formula (2). Note that the number of irradiation spots is set by the treatment planning unit 60.
(Equation 2)
Dose total spot count value [SPC · Scan] = Dose total count value × normal spot weight (2)
Here, the normal spot means not an edge spot, and the normal spot weight means the ratio of the count value of one spot to the total count value of doses.
 よって、上記の式(2)は、式(1)より、式(3)と書き換えることができる。
 (数3)
  線量の合計スポットカウント値[SPC・Scan]=(投与線量[Gy]÷校正測定結果 [Gy/(TOC・Scan)])×通常スポットのウェイト・・(3)
Therefore, the above equation (2) can be rewritten as the equation (3) from the equation (1).
(Equation 3)
Total spot count value of dose [SPC · Scan] = (dose [Gy] ÷ calibration measurement result [Gy / (TOC · Scan)]) × normal spot weight (3)
 次いで、得られた線量の合計スポットカウント値を各照射スポットにおけるN回照射の合計スポットカウント値として、照射制御計算部70により、走査回数を決定する(ステップS403)。走査回数Nは式(4)で求められる。なお、走査回数Nの値は、安全側として小数第1位を切り捨てとする。
 (数4)
  走査回数N[Scan]=合計スポットカウント値[SPC・Scan]÷1スポットの許容最小スポットカウント値[SPC]・・・(4)
Next, using the total spot count value of the obtained dose as the total spot count value of N irradiations at each irradiation spot, the number of scans is determined by the irradiation control calculation unit 70 (step S403). The number of scans N is determined by equation (4). The value of the number of scans N is rounded down to the first decimal place on the safe side.
(Equation 4)
Number of scans N [Scan] = total spot count value [SPC · Scan] ÷ allowed minimum spot count value of one spot [SPC] (4)
 実施の形態1では、照射を継続しながらビームの移動と停止を繰り返す方法でビーム照射を走査する方法を用いており、1スポット当たりの許容最小スポットカウント値は、式(5)のように表される。
 (数5)
  1スポットの許容最小スポットカウント値(SPC)=線量モニタの最大カウントレート[MHz]×10×((スポット間隔[mm]÷最大走査速度[mm/msec])×10-3+(静定時間「μsec」+位置モニタ遅延速度[μsec])×10-6)・・・(5)
 ここで、静定時間とは、スポットが移動して次のスポットに切り替わるときに生じる振動が収まるまでの時間である。振動は走査用偏向電磁石41a、41bに使用するコイルに起因するものである。また、位置モニタ遅延速度とは、図示しない位置モニタによりビームの照射位置を計算するには位置モニタ内にある程度ビームが溜まらないと計算できないため、溜まるまでの時間である。したがって、静定時間と位置モニタ遅延時間は、ビームの走査位置制御に必要な時間である。
In the first embodiment, a method of scanning the beam irradiation by repeating the movement and stop of the beam while continuing the irradiation is used, and the allowable minimum spot count value per spot is expressed as shown in Expression (5). Is done.
(Equation 5)
Permissible minimum spot count value (SPC) of one spot = maximum count rate of dose monitor [MHz] × 10 6 × ((spot interval [mm] ÷ maximum scanning speed [mm / msec]) × 10 −3 + (static) Time “μsec” + position monitor delay speed [μsec]) × 10 −6 ) (5)
Here, the settling time is the time until the vibration generated when the spot moves and switches to the next spot is settled. The vibration is caused by the coils used for the scanning deflection electromagnets 41a and 41b. Further, the position monitor delay speed is the time until the beam is accumulated because the beam irradiation position cannot be calculated unless a certain amount of beam is accumulated in the position monitor in order to calculate the irradiation position of the beam by a position monitor (not shown). Therefore, the settling time and the position monitor delay time are times necessary for the beam scanning position control.
 よって、上記の式(4)は、式(5)より、式(6)と書き換えることができる。
 (数6)
  走査回数N[Scan]=合計スポットカウント値[SPC・Scan]÷(線量モニタの最大カウントレート[MHz]×10×((スポット間隔[mm]÷最大走査速度[mm/msec])×10-3+(ビームの走査位置制御に必要な時間[μsec]×10-6)))・・・(6)
Therefore, the above equation (4) can be rewritten as the equation (6) from the equation (5).
(Equation 6)
Number of scans N [Scan] = total spot count value [SPC · Scan] ÷ (maximum count rate of dose monitor [MHz] × 10 6 × ((spot interval [mm] ÷ maximum scanning speed [mm / msec]) × 10 −3 + (Time required for controlling the scanning position of the beam [μsec] × 10 −6 ))) (6)
 さらに、実施の形態1では、線量モニタ42の最大カウントレートは、インターロック値であるから、式(6)は、式(7)と書き換えられる。
 (数7)
  走査回数N[Scan]=合計スポットカウント値[SPC・Scan]÷(インターロック値[MHz]×10×((スポット間隔[mm]÷最大走査速度[mm/msec])×10-3+(ビームの走査位置制御に必要な時間[μsec]×10-6)))・・・(7)
Furthermore, in Embodiment 1, since the maximum count rate of the dose monitor 42 is an interlock value, Expression (6) can be rewritten as Expression (7).
(Equation 7)
Number of scans N [Scan] = total spot count value [SPC · Scan] ÷ (interlock value [MHz] × 10 6 × ((spot interval [mm] ÷ maximum scanning speed [mm / msec]) × 10 −3 + (Time required for beam scanning position control [μsec] × 10 −6 )))) (7)
 続いて、照射制御計算部70により、得られた走査回数Nと合計スポットカウント値から、1回の走査当たりに均等配分したスポットカウント値を算出し、インターロック値を課せられたビーム強度により得られたスポットカウント値で、粒子線PBを照射する(ステップS404)。1回目の照射では、開始スポット101から終了スポット103まで照射を継続しながらビームの移動と停止を繰り返し走査する(図3参照)。なお、スポットカウント値は、インターロックにかからないように安全側として、小数1位を切り捨てとする。 Subsequently, the irradiation control calculation unit 70 calculates a spot count value that is evenly distributed per scan from the obtained number of scans N and the total spot count value, and obtains it by the beam intensity to which the interlock value is imposed. The particle beam PB is irradiated with the obtained spot count value (step S404). In the first irradiation, the beam is repeatedly moved and stopped while continuing the irradiation from the start spot 101 to the end spot 103 (see FIG. 3). Note that the spot count value is rounded off to the first decimal place on the safe side so as not to be interlocked.
 走査を必要走査回数のN回繰り返して(ステップS405)、例えば1回目のスポット102では、同じ位置の2回目のスポット202に同じスポットカウントを照射し、この走査を繰り返してN回目のスポットN02を照射することにより、1スポットに合計スポットカウントが照射され、全ての照射を完了する。 The scanning is repeated N times as many times as necessary (step S405). For example, in the first spot 102, the second spot 202 at the same position is irradiated with the same spot count, and this scanning is repeated to form the Nth spot N02. By irradiating, one spot is irradiated with the total spot count, and all irradiation is completed.
 このように、インターロック回路14aを備え、ビーム強度のインターロック値に基づき走査回数を決定することで、走査回数を決定するために複雑な計算や測定等の準備を必要とせず、簡便に短時間で走査回数を決定でき、適切な照射をすることができる。 As described above, the interlock circuit 14a is provided, and the number of scans is determined based on the interlock value of the beam intensity, so that complicated calculation and measurement are not required to determine the number of scans. The number of scans can be determined by time, and appropriate irradiation can be performed.
 以上のように、この発明の実施の形態1における粒子線治療装置では、ビーム強度にインターロック値を課するインターロック回路14aを照射制御部80に備え、照射制御計算部70により、投与線量、実測した線量値と線量モニタ42により測定したカウント値の比である線量校正の測定結果、および照射スポット数から導かれた所定の線量の合計スポットカウント値とインターロック値に基づき走査回数を決定し、照射制御部80にインターロック値で制御されたビーム強度により線量モニタ42で測定される所定のスポットカウント値で走査し、決定された走査回数照射させるようにしたので、走査回数を決定するために複雑な計算や測定等の準備を必要とせず、簡便に短時間で走査回数を決定でき、適切な照射をすることができる。 As described above, in the particle beam therapy system according to Embodiment 1 of the present invention, the irradiation control unit 80 includes the interlock circuit 14a that imposes an interlock value on the beam intensity. The number of scans is determined based on the dose calibration measurement result, which is the ratio of the actually measured dose value and the count value measured by the dose monitor 42, and the total spot count value and interlock value of a predetermined dose derived from the number of irradiation spots. In order to determine the number of scans, the irradiation controller 80 scans with the predetermined spot count value measured by the dose monitor 42 with the beam intensity controlled by the interlock value and irradiates the determined number of scans. The number of scans can be easily determined in a short time without the need for complicated calculations and measurements, and appropriate irradiation can be performed. .
実施の形態2.
 実施の形態1では、合計スポットカウント値を照射回数Nで均等配分したスポットカウント値で粒子線PBを照射する場合について示したが、実施の形態2では、スポットカウント値を調整する場合について示す。
Embodiment 2. FIG.
In the first embodiment, the case of irradiating the particle beam PB with the spot count value in which the total spot count value is equally distributed by the number of irradiations N is shown, but in the second embodiment, the case of adjusting the spot count value is shown.
 図5は、この発明の実施の形態1および実施の形態2による粒子線治療装置の照射のパターンを示す図である。図5(a)は実施の形態1の照射パターンを示し、図5(b)は実施の形態2の照射パターンを示す。図5(a)に示すように、実施の形態1では、例えば、1スポット当たりの計画投与線量、つまり合計スポットカウント値が1502[SPC・Scan]で、走査回数が照射制御計算部70により3回と決定された場合、合計スポットカウント値1502[SPC・Scan]を走査回数3で均等配分した各走査のスポットカウント値は、安全側として小数第1位を切り捨て、500[SPC]となる。これにより、1スポット当たりの合計投与線量は1500[SPC・Scan]となり、理想値とずれが生じる。 FIG. 5 is a diagram showing an irradiation pattern of the particle beam therapy system according to Embodiment 1 and Embodiment 2 of the present invention. 5A shows the irradiation pattern of the first embodiment, and FIG. 5B shows the irradiation pattern of the second embodiment. As shown in FIG. 5A, in the first embodiment, for example, the planned dose per spot, that is, the total spot count value is 1502 [SPC · Scan], and the number of scans is 3 by the irradiation control calculation unit 70. When the number of times is determined, the spot count value of each scan in which the total spot count value 1502 [SPC · Scan] is evenly distributed with the number of scans of 3 is rounded down to the first decimal place as the safe side and becomes 500 [SPC]. As a result, the total dose per spot is 1500 [SPC · Scan], which deviates from the ideal value.
 実施の形態2では、図5(b)に示すように、最終回目(3回目)の走査において合計スポットカウント値、つまり1スポット当たりの合計投与線量が1スポット当たりの計画投与線量と同じになるように、照射制御計算部70により調整する。つまり、照射制御計算部70は、1回目と2回目の走査においては均等配分したスポットカウント値である500[SPC]で照射制御部80に照射させ、最終回目(3回目)の走査においては合計スポットカウント値1502[SPC・Scan]になるように、502[SPC]で照射するように調整し、照射制御部80に照射させる。その他の構成については、実施の形態1の粒子線治療装置と同様であり、その説明を省略する。 In the second embodiment, as shown in FIG. 5B, the total spot count value, that is, the total dose per spot is the same as the planned dose per spot in the final (third) scan. As described above, the adjustment is performed by the irradiation control calculation unit 70. That is, the irradiation control calculation unit 70 causes the irradiation control unit 80 to irradiate with 500 [SPC], which is a spot count value that is uniformly distributed in the first and second scans, and totals in the last (third) scan. It adjusts so that it may irradiate with 502 [SPC] so that it may become the spot count value 1502 [SPC * Scan], and it makes the irradiation control part 80 irradiate. About another structure, it is the same as that of the particle beam therapy apparatus of Embodiment 1, The description is abbreviate | omitted.
 次に、この発明の実施の形態2による粒子線治療装置の動作および走査回数決定方法について図6を用いて説明する。図6は、実施の形態2における走査回数決定方法による粒子線治療装置の動作を示すフロー図である。ステップ601からステップ604については、実施の形態1のステップ401からステップ404と同様であり、その説明を省略する。 Next, the operation of the particle beam therapy system and the method for determining the number of scans according to Embodiment 2 of the present invention will be described with reference to FIG. FIG. 6 is a flowchart showing the operation of the particle beam therapy system according to the method of determining the number of scans in the second embodiment. Steps 601 to 604 are the same as steps 401 to 404 in the first embodiment, and a description thereof will be omitted.
 走査を必要走査回数のN-1回繰り返して(ステップS605)、例えば1回目のスポット102では、同じ位置の2回目のスポット202に同じスポットカウントを照射し、この走査を繰り返してN-1回目のスポット(N-1)02まで、同じスポットカウントを照射する。 The scan is repeated N-1 times as many times as necessary (step S605). For example, in the first spot 102, the same spot count is irradiated to the second spot 202 at the same position, and this scan is repeated for the (N-1) th time. The same spot count is irradiated up to spot (N-1) 02.
 最終回目(N回目)の走査では、照射制御計算部70で、式(6)で得られた最終回目(N回目)のスポットカウント値に調整し、照射制御部80により、インターロック値を課された一定のビーム強度で粒子線PBを照射する(ステップS606)。
 (数6)
  最終回目のスポットカウント値[SPC]=合計スポットカウント値[SPC・Scan]-(N-1)回目までのスポットカウント値[SPC]×(N-1)・・・(6)
In the final scan (Nth scan), the irradiation control calculation unit 70 adjusts the spot count value of the final round (Nth) obtained by Equation (6), and the irradiation control unit 80 sets the interlock value. The particle beam PB is irradiated with the given constant beam intensity (step S606).
(Equation 6)
Spot count value [SPC] for the last round = total spot count value [SPC · Scan] − (N−1) spot count value [SPC] × (N−1) to the (N-1) th round (6)
 このように、最終回目の走査でスポットカウント値を調整することにより、一定のビーム強度で粒子線PBを照射することで、簡便に短時間で走査回数を決定することができるだけでなく、線量照射の精度を向上させることができる。 In this way, by adjusting the spot count value in the final scan, the particle beam PB is irradiated with a constant beam intensity, so that the number of scans can be easily determined in a short time. Accuracy can be improved.
 なお、本実施の形態2では、最終回目の走査でスポットカウント値を調整するようにしたが、これに限るものではない。最初の回の走査であっても、途中の回の走査であっても、スポットカウント値を調整することで、同様の効果を得ることができる。また、調整のための回が複数あっても良い。 In the second embodiment, the spot count value is adjusted in the final scan, but the present invention is not limited to this. The same effect can be obtained by adjusting the spot count value regardless of whether it is the first scan or the middle scan. Further, there may be a plurality of times for adjustment.
 以上のように、この発明の実施の形態2における粒子線治療装置では、照射制御計算部70により、走査回数のうちのいずれか一の回数目のスポットカウント値を調整して合計スポットカウント値を照射するようにしたので、簡便に短時間で走査回数を決定することができるだけでなく、線量照射の精度を向上させることができる。 As described above, in the particle beam therapy system according to Embodiment 2 of the present invention, the irradiation control calculation unit 70 adjusts the spot count value for any one of the scanning times to obtain the total spot count value. Since irradiation is performed, not only can the number of scans be determined in a short time, but also the accuracy of dose irradiation can be improved.
 なお、本発明は、その発明の範囲内において、各実施の形態を自由に組み合わせたり、各実施の形態を適宜、変形、省略することが可能である。 It should be noted that the present invention can be freely combined with each other within the scope of the invention, and each embodiment can be appropriately modified or omitted.
 14a インターロック回路、40 照射ノズル、41、41a、41b 走査用偏向電磁石、42 線量モニタ、60 治療計画部、70 照射制御計算部、80 照射制御部、PB 粒子線。 14a interlock circuit, 40 irradiation nozzles, 41, 41a, 41b scanning deflection magnet, 42 dose monitor, 60 treatment planning unit, 70 irradiation control calculation unit, 80 irradiation control unit, PB particle beam.

Claims (6)

  1.  粒子線を走査用偏向電磁石により走査し、線量を線量モニタにより測定して、前記粒子線を照射する照射ノズルと、
     ビーム強度にインターロック値を課するインターロック回路を有し、前記走査用偏向電磁石を走査制御する照射制御部と、
     投与線量と照射スポット数を設定する治療計画部と、
     前記投与線量、実測した線量値と前記線量モニタにより測定したカウント値の比である線量校正の測定結果、および前記照射スポット数から導かれた所定の前記線量の合計スポットカウント値と前記インターロック値に基づき走査回数を決定し、前記照射制御部に前記インターロック値を課された前記ビーム強度により前記線量モニタで測定される所定のスポットカウント値で走査し、決定された前記走査回数照射させる照射制御計算部と
     を備えたことを特徴とする粒子線治療装置。
    An irradiation nozzle that scans a particle beam with a scanning deflection magnet, measures a dose with a dose monitor, and irradiates the particle beam;
    An irradiation control unit that has an interlock circuit that imposes an interlock value on the beam intensity, and that controls the scanning deflection electromagnet;
    A treatment planning unit for setting a dose and the number of irradiation spots;
    Measurement result of dose calibration, which is a ratio of the measured dose value and the count value measured by the dose monitor, and the total spot count value of the predetermined dose derived from the number of irradiation spots and the interlock value The number of scans is determined based on the irradiation, and scanning is performed with a predetermined spot count value measured by the dose monitor based on the beam intensity on which the interlock value is imposed on the irradiation controller, and the determined number of scans is irradiated. A particle beam therapy system comprising: a control calculation unit.
  2.  前記線量の合計スポットカウント値は、下記の式(A)で表されることを特徴とする請求項1に記載の粒子線治療装置。
      前記線量の合計スポットカウント値=(前記投与線量÷前記線量校正の測定結果)×(線量の合計カウント値に対する1スポットのカウント値の割合)・・・(A)
    2. The particle beam therapy system according to claim 1, wherein the total spot count value of the dose is represented by the following formula (A).
    The total spot count value of the dose = (the administration dose ÷ the measurement result of the dose calibration) × (the ratio of the count value of one spot to the total count value of the dose) (A)
  3.  前記走査回数は、下記の式(B)で表されることを特徴とする請求項1または請求項2に記載の粒子線治療装置。
      前記走査回数=前記合計スポットカウント値÷(前記インターロック値×((スポット間隔÷最大走査速度)+(ビームの走査位置制御に必要な時間)))・・・(B)
    The particle beam therapy apparatus according to claim 1, wherein the number of scans is represented by the following formula (B).
    Number of scans = total spot count value / (interlock value × ((spot interval / maximum scanning speed) + (time required for beam scanning position control))) (B)
  4.  前記スポットカウント値は、前記線量の合計スポットカウント値を前記走査回数で除して、小数1位を切り捨てた値であることを特徴とする請求項1から請求項3のいずれか1項に記載の粒子線治療装置。 4. The spot count value is a value obtained by dividing the total spot count value of the dose by the number of scans and rounding down the first decimal place. 5. Particle beam therapy equipment.
  5.  前記スポットカウント値は、前記線量の合計スポットカウント値を前記走査回数で除して、小数1位を切り捨てた値であって、前記走査回数のうちのいずれかの回数目のスポットカウント値を調整して全走査回数で前記合計スポットカウント値を照射することを特徴とする請求項1から請求項3のいずれか1項に記載の粒子線治療装置。 The spot count value is a value obtained by dividing the total spot count value of the dose by the number of scans, rounded down to the first decimal place, and adjusts the spot count value at any one of the scan times 4. The particle beam therapy system according to claim 1, wherein the total spot count value is irradiated for all scanning times. 5.
  6.  投与線量、前記投与線量に基づき実測した線量値と線量モニタにより測定したカウント値の比である線量校正の測定結果、および照射スポット数から導かれた所定の線量の合計スポットカウント値とインターロック値に基づき走査回数を決定することを特徴とする粒子線治療装置の走査回数決定方法。 Dosage dose, measurement result of dose calibration, which is the ratio of the dose value measured based on the administration dose and the count value measured by the dose monitor, and the total spot count value and interlock value of a predetermined dose derived from the number of irradiation spots A method for determining the number of scans of a particle beam therapy system, wherein the number of scans is determined based on the method.
PCT/JP2016/054217 2016-02-15 2016-02-15 Particle beam therapy apparatus and method for determining number of scans of particle beam therapy apparatus WO2017141301A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/JP2016/054217 WO2017141301A1 (en) 2016-02-15 2016-02-15 Particle beam therapy apparatus and method for determining number of scans of particle beam therapy apparatus
JP2017567571A JP6494808B2 (en) 2016-02-15 2016-02-15 Particle beam therapy system
CN201680080943.7A CN108697904A (en) 2016-02-15 2016-02-15 The scanning times determining method of particle-beam therapeutic apparatus and particle-beam therapeutic apparatus
TW105123723A TWI604869B (en) 2016-02-15 2016-07-27 Method for determining number of scans of particle beam therapy device and particle beam treatment device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/054217 WO2017141301A1 (en) 2016-02-15 2016-02-15 Particle beam therapy apparatus and method for determining number of scans of particle beam therapy apparatus

Publications (1)

Publication Number Publication Date
WO2017141301A1 true WO2017141301A1 (en) 2017-08-24

Family

ID=59625715

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/054217 WO2017141301A1 (en) 2016-02-15 2016-02-15 Particle beam therapy apparatus and method for determining number of scans of particle beam therapy apparatus

Country Status (4)

Country Link
JP (1) JP6494808B2 (en)
CN (1) CN108697904A (en)
TW (1) TWI604869B (en)
WO (1) WO2017141301A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021040902A (en) * 2019-09-10 2021-03-18 株式会社日立製作所 Particle beam therapy apparatus, method for controlling particle beam therapy apparatus and computer program

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100117002A1 (en) * 2008-10-17 2010-05-13 Ad Verwaltungs-Gmbh & Co. Kg Irradiation System and Irradiation Method
US20110297850A1 (en) * 2010-06-07 2011-12-08 Ion Beam Applications Device and method for particle beam delivery
WO2012117538A1 (en) * 2011-03-02 2012-09-07 三菱電機株式会社 Particle beam irradiation system and control method for particle beam irradiation system

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009033297A1 (en) * 2009-07-15 2011-01-20 Gsi Helmholtzzentrum Für Schwerionenforschung Gmbh Irradiation or irradiation planning for a rescanning method with a particle beam
EP3093045A4 (en) * 2014-01-10 2017-11-01 Mitsubishi Electric Corporation Particle beam irradiation apparatus
US20160030769A1 (en) * 2014-08-01 2016-02-04 Phenix Medical Llc Method and device for fast raster beam scanning in intensity-modulated ion beam therapy

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100117002A1 (en) * 2008-10-17 2010-05-13 Ad Verwaltungs-Gmbh & Co. Kg Irradiation System and Irradiation Method
US20110297850A1 (en) * 2010-06-07 2011-12-08 Ion Beam Applications Device and method for particle beam delivery
WO2012117538A1 (en) * 2011-03-02 2012-09-07 三菱電機株式会社 Particle beam irradiation system and control method for particle beam irradiation system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021040902A (en) * 2019-09-10 2021-03-18 株式会社日立製作所 Particle beam therapy apparatus, method for controlling particle beam therapy apparatus and computer program
WO2021049065A1 (en) * 2019-09-10 2021-03-18 株式会社日立製作所 Particle beam therapy apparatus, method for controlling particle beam therapy apparatus, and computer program
JP7352417B2 (en) 2019-09-10 2023-09-28 株式会社日立製作所 Particle beam therapy equipment and computer program

Also Published As

Publication number Publication date
TWI604869B (en) 2017-11-11
CN108697904A (en) 2018-10-23
JPWO2017141301A1 (en) 2018-03-29
JP6494808B2 (en) 2019-04-03
TW201728353A (en) 2017-08-16

Similar Documents

Publication Publication Date Title
JP5496414B2 (en) Particle beam therapy system
JP5395912B2 (en) Particle beam irradiation system
JP6220713B2 (en) Charged particle beam irradiation system
US8598537B2 (en) Particle beam irradiation system and particle beam therapy system
JP4673450B1 (en) Particle beam irradiation apparatus and particle beam therapy apparatus
US9937361B2 (en) Particle beam irradiation apparatus
JP5155127B2 (en) Charged particle beam irradiation system and irradiation nozzle device
WO2017081826A1 (en) Particle beam therapy system
JP6494808B2 (en) Particle beam therapy system
JP5350307B2 (en) Particle beam therapy system
JP2010075584A (en) Particle beam irradiation system, and method of controlling the same
JP5320185B2 (en) Particle beam irradiation controller
JP6286168B2 (en) Charged particle beam irradiation system and irradiation planning system
JP6266092B2 (en) Particle beam therapy system
JP2014028310A (en) Particle beam irradiation system
JP6839987B2 (en) Treatment planning device and particle beam therapy system
JP6358948B2 (en) Particle beam irradiation apparatus and control method of particle beam irradiation apparatus
JP6484683B2 (en) Charged particle beam irradiation system
JP5511699B2 (en) Particle beam irradiation apparatus and particle beam therapy apparatus
WO2020012688A1 (en) Radiation treatment system and method for verifying treatment plan data
JP2019055005A (en) Particle beam treatment system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16890444

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017567571

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16890444

Country of ref document: EP

Kind code of ref document: A1