WO2017138396A1 - Stepless transmission - Google Patents

Stepless transmission Download PDF

Info

Publication number
WO2017138396A1
WO2017138396A1 PCT/JP2017/003265 JP2017003265W WO2017138396A1 WO 2017138396 A1 WO2017138396 A1 WO 2017138396A1 JP 2017003265 W JP2017003265 W JP 2017003265W WO 2017138396 A1 WO2017138396 A1 WO 2017138396A1
Authority
WO
WIPO (PCT)
Prior art keywords
motor
torque
pulley
gear
output torque
Prior art date
Application number
PCT/JP2017/003265
Other languages
French (fr)
Japanese (ja)
Inventor
孝則 萩原
哲史 勝又
Original Assignee
ジヤトコ株式会社
日産自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ジヤトコ株式会社, 日産自動車株式会社 filed Critical ジヤトコ株式会社
Priority to JP2017566589A priority Critical patent/JP6549259B2/en
Publication of WO2017138396A1 publication Critical patent/WO2017138396A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H9/00Gearings for conveying rotary motion with variable gear ratio, or for reversing rotary motion, by endless flexible members
    • F16H9/02Gearings for conveying rotary motion with variable gear ratio, or for reversing rotary motion, by endless flexible members without members having orbital motion
    • F16H9/04Gearings for conveying rotary motion with variable gear ratio, or for reversing rotary motion, by endless flexible members without members having orbital motion using belts, V-belts, or ropes
    • F16H9/12Gearings for conveying rotary motion with variable gear ratio, or for reversing rotary motion, by endless flexible members without members having orbital motion using belts, V-belts, or ropes engaging a pulley built-up out of relatively axially-adjustable parts in which the belt engages the opposite flanges of the pulley directly without interposed belt-supporting members
    • F16H9/16Gearings for conveying rotary motion with variable gear ratio, or for reversing rotary motion, by endless flexible members without members having orbital motion using belts, V-belts, or ropes engaging a pulley built-up out of relatively axially-adjustable parts in which the belt engages the opposite flanges of the pulley directly without interposed belt-supporting members using two pulleys, both built-up out of adjustable conical parts
    • F16H9/18Gearings for conveying rotary motion with variable gear ratio, or for reversing rotary motion, by endless flexible members without members having orbital motion using belts, V-belts, or ropes engaging a pulley built-up out of relatively axially-adjustable parts in which the belt engages the opposite flanges of the pulley directly without interposed belt-supporting members using two pulleys, both built-up out of adjustable conical parts only one flange of each pulley being adjustable

Definitions

  • the present invention relates to a continuously variable transmission.
  • a belt-type continuously variable transmission for a vehicle has a variator in which a belt is wound around a pair of pulleys (a primary pulley and a secondary pulley). The gear ratio is realized.
  • a V groove around which the belt is wound is formed between the sheave surface of the fixed pulley and the sheave surface of the movable pulley provided so as to be movable in the rotation axis direction at the shaft portion of the fixed pulley.
  • Patent Document 1 discloses a continuously variable transmission configured to convert a rotational driving force of a motor into a thrust in the direction of the rotation axis by a linear motion mechanism and to displace the movable pulley in the direction of the rotation axis.
  • Patent Document 1 employs a motor having a high holding torque in a non-excited state, and maintains the gear ratio by the high locking force of this motor.
  • Patent Document 1 since the belt is merely locked to the pulley, and the belt is not actively clamped by the pulley, the belt slips when a high torque is input to the pulley. May occur. Therefore, it is required to generate a clamping force for clamping the belt.
  • the present invention A first motor; A second motor; A variator having a first pulley, a second pulley, and a belt wound around the first pulley and the second pulley; With The continuously variable transmission is configured to shift the variator based on the torque of the first motor, while fixing the speed ratio of the variator based on the torque of the second motor.
  • the second motor by having the second motor, it is possible to generate a clamping force when fixing the gear ratio of the variator.
  • FIG. 1 is a schematic configuration diagram of a belt-type continuously variable transmission according to an embodiment. It is a figure explaining a screw feed mechanism. It is a figure explaining the control aspect of a motor. It is a figure explaining transmission of torque. It is a figure explaining transmission of torque.
  • FIG. 1 is a schematic configuration diagram of a belt-type continuously variable transmission 1 according to an embodiment.
  • FIG. 1 for convenience of explanation, only half of the primary pulley 3 and the secondary pulley 4 that are inside the rotation axes X1 and X2 are shown.
  • a continuously variable transmission 1 for a vehicle includes a primary pulley 3, a secondary pulley 4, and a belt 5 wound around the primary pulley 3 and the secondary pulley 4. 2 has.
  • the ratio (speed ratio) between the input rotational speed of the input shaft 21 and the output rotational speed of the output shaft 22 of the variator 2 is changed by changing the winding radius of the belt 5 in the primary pulley 3 and the secondary pulley 4. It is designed to change steplessly.
  • the primary pulley 3 includes a fixed pulley 31 and a movable pulley 32 provided by extrapolating a cylindrical shaft portion 321 to the shaft portion 311 of the fixed pulley 31.
  • the primary pulley 3 is movable with the fixed pulley 31.
  • the pulley 32 is connected so as to be relatively movable along the axial direction of the rotation axis X1 in a state where relative rotation about the rotation axis X1 is restricted.
  • the opposing surfaces of the sheave portions 312 and 322 extending in the radial direction from the shaft portions 311 and 321 are sheave surfaces 312a and 322a inclined at a predetermined angle with respect to the rotation axis X1.
  • a V-groove 33 around which the belt 5 is wound is formed between the sheave surfaces 312a and 322a.
  • the secondary pulley 4 includes a fixed pulley 41 and a movable pulley 42 that is provided by extrapolating a cylindrical shaft portion 421 to the shaft portion 411 of the fixed pulley 41.
  • the secondary pulley 4 is movable with the fixed pulley 41.
  • the pulley 42 is connected so as to be relatively movable along the axial direction of the rotation axis X2 in a state where relative rotation about the rotation axis X2 is restricted.
  • the opposing surfaces of the sheave portions 412 and 422 extending in the radial direction from the shaft portions 411 and 421 are sheave surfaces 412a and 422a inclined at a predetermined angle with respect to the rotation axis X2.
  • a V-groove 43 around which the belt 5 is wound is formed between the sheave surfaces 412a and 422a.
  • screw feeding mechanisms 35, 45 are provided on the opposite side of the sheave portions 322 a, 422 from the sheave surfaces 322 a, 422 a. , 43 is configured to generate a thrust force that presses the movable pulleys 32, 42 in the direction of narrowing the groove width.
  • FIG. 2A and 2B are diagrams for explaining the screw feeding mechanisms 35 and 45.
  • FIG. 2A is a diagram schematically showing a main part of the screw feeding mechanism 35, and FIG. It is the figure which showed the part typically.
  • the screw feed mechanisms 35 and 45 include inner members 36 and 46 that are extrapolated to the shaft portions 311 and 411 of the fixed pulleys 31 and 41, and cylindrical portions 361 of the inner members 36 and 46, And outer members 37 and 47 extrapolated to 461.
  • the inner members 36 and 46 are integrally formed from disk portions 362 and 462 that are orthogonal to the rotation axes X1 and X2, respectively, and cylindrical portions 361 and 461 that surround the outer periphery of the disk portions 362 and 462 over the entire circumference. Has been.
  • the inner peripheral portions 362a and 462a of the disk portions 362 and 462 are one of the bearings B1 and B1 that rotatably support the shaft portions 311 and 411 of the primary pulley 3 and the secondary pulley 4, and the rotation axis X1, X2 is positioned in the axial direction, and the inner members 36 and 46 are provided so as to be rotatable relative to the fixed pulleys 31 and 41 in a state where movement in a direction away from the fixed pulleys 31 and 41 is restricted. Yes.
  • the cylindrical portions 361 and 461 extend on the outer diameter side of the shaft portions 321 and 421 of the movable pulleys 32 and 42 toward the sheave portions 322 and 422 along the rotation axes X1 and X2, respectively.
  • 461 are provided with concave grooves 361a, 461a extending spirally along the circumferential direction around the rotation axes X1, X2.
  • the cylindrical pressing portions 371 and 471 of the outer members 37 and 47 are located on the outer diameter side of the cylindrical portions 361 and 461.
  • the outer members 37 and 47 include the pressing portions 371 and 471, the cylindrical portions 372 and 472 having a larger outer diameter than the pressing portions 371 and 471, the outer periphery of the pressing portions 371 and 471, and the inner periphery of the cylindrical portions 372 and 472.
  • Disk-shaped connecting portions 373 and 473 that connect the two.
  • the pressing portions 371 and 471 have lengths along the axial direction of the rotation axes X1 and X2 that are longer than the cylindrical portions 361 and 461 located on the inner diameter side, and are on one end side in the rotation axis X1 and X2 directions.
  • the contact portions 371b and 471b are in contact with the sheave portions 322 and 422 of the movable pulleys 32 and 42 via the thrust bearing SB.
  • the pressing portions 371 and 471 are supported by the shaft portions 321 and 421 of the movable pulleys 32 and 42 through the bearings B2 and B2 in the regions closer to the contact portions 371b and 471b than the connection portions 373 and 473, respectively.
  • the outer members 37 and 47 having the pressing portions 371 and 471 are provided to be rotatable relative to the movable pulleys 32 and 42.
  • concave grooves 371 a and 471 a extending in a spiral shape along the circumferential direction around the rotation axes X ⁇ b> 1 and X ⁇ b> 2 are provided on the inner periphery of the region facing the cylindrical parts 361 and 461.
  • the balls Ba engaged with the concave grooves 371 a and 471 a of the pressing portions 371 and 471 are also engaged with the concave grooves 361 a and 461 a of the inner members 36 and 46.
  • the inner members 36 and 46 having the concave grooves 361a and 461a, the outer members 37 and 47 having the concave grooves 371a and 471a, and the concave grooves 361a and 461a and the concave grooves 371a and 471a are straddled.
  • a plurality of engaged balls Ba constitute screw feed mechanisms 35 and 45 (ball screw feed mechanism). Therefore, when rotation is input to the outer members 37 and 47, the outer members 37 and 47 are rotated about the rotation axes X1 and X2 by the screw feed mechanisms 35 and 45, and the axial directions of the rotation axes X1 and X2 are rotated. It is displaced to.
  • the cylindrical portions 372 and 472 located on the outer diameter side of the pressing portions 371 and 471 are gears 62 and 64 on the planetary gear mechanism 6 side described later with tooth portions provided on the outer periphery of the cylindrical portions 372 and 472 (see FIG. 1). ).
  • rotational torque is input to the cylindrical portions 372 and 472 from the planetary gear mechanism 6 side and the outer members 37 and 47 rotate about the rotation axes X1 and X2, the outer members 37 and 47 are moved relative to the inner members 36 and 46, respectively. It is displaced in the direction of the rotation axis X1, X2.
  • the output torque (rotational torque) input from the planetary gear mechanism 6 side causes the screw feed mechanism 35 to press the movable pulley 32 with the pressing portion 371.
  • the screw feed mechanism 45 When converted into the displacement of the outer member 37 in the direction of narrowing the groove width of the V-groove 33, the screw feed mechanism 45 causes the pressing portion 471 to move away from the movable pulley 42 (the groove width of the V-groove 43).
  • the width of the outer member 47 is changed to a direction in which the widening of the outer member 47 is allowed.
  • the output torque (rotational torque) input from the planetary gear mechanism 6 side causes the screw feed mechanism 35 to move the pressing portion 371 away from the movable pulley 32 (V groove).
  • the screw feed mechanism 45 In the case of being converted into the displacement of the outer member 37 in the direction in which the widening of the groove width of 33 is permitted, in the screw feed mechanism 45, the direction in which the movable pulley 42 is pressed by the pressing portion 471 (the groove width of the V groove 43). It is converted into the displacement of the outer member 47 in the direction of narrowing.
  • the planetary gear mechanism 6 uses at least one of the output torque (rotational driving force) of the transmission motor 7 and the output torque (rotational driving force) of the clamping motor 8 as a screw feed mechanism 35.
  • the sun gear S, the ring gear R that surrounds the outer periphery of the sun gear S, the pinion gear P that meshes with the sun gear S and the ring gear R, and the pinion gear P are supported.
  • a single pinion type planetary gear mechanism composed of a pinion carrier PC is adopted.
  • the motor pinion 72 of the speed change motor 7 meshes with the tooth portion 61 provided on the outer periphery of the ring gear R.
  • the speed change motor 7 and the ring gear R are connected to each other so as to transmit rotation through a motor pinion 72 fixed to the output shaft 71 of the speed change motor 7 and a tooth portion 61 meshed with the motor pinion 72. .
  • a sun gear S to which the output shaft 81 of the clamping motor 8 is connected is arranged coaxially with the ring gear R.
  • the sun gear S capable of transmitting rotation between the clamping motor 8 and the ring gear R capable of transmitting rotation between the speed-changing motor 7 are provided so as to be relatively rotatable on a common rotation axis X.
  • a pinion gear P that meshes with an inner tooth (not shown) of the ring gear R and an outer tooth (not shown) of the sun gear S is provided.
  • a plurality of pinion gears P are provided at predetermined intervals in the circumferential direction around the rotation axis X.
  • Each of the pinion gears P is supported by a pinion carrier PC provided so as to be rotatable around the rotation axis X.
  • pinion carrier PC In the pinion carrier PC, each of the pinion gears P is rotated around a rotation axis Xc parallel to the rotation axis X. It is rotatably supported.
  • a rotation transmission shaft 63 extending toward the variator 2 along the rotation axis X is connected to the pinion carrier PC, and a gear 64 is connected to the other end of the rotation transmission shaft 63.
  • the gear 64 meshes with the outer member 47 of the screw feed mechanism 45 described above.
  • annular gear 62 is connected to the ring gear R so as to be integrally rotatable.
  • the gear 62 meshes with the outer member 37 of the screw feed mechanism 35 described above.
  • the output torque of the planetary gear mechanism 6 is also input to the screw feed mechanism 35. .
  • the planetary gear mechanism 6 uses a torque for changing a gear ratio in the variator 2 based on an output torque (rotational driving force) of the transmission motor 7 and an output torque (rotational driving force) of the clamping motor 8, It is provided to adjust the torque for fixing the ratio.
  • the output torque (rotational torque) of the motor output via the planetary gear mechanism 6 is converted into the outer member 37, by the screw feed mechanisms 35, 45. 47 is converted into a thrust force that displaces the rotary shafts X1 and X2 in the direction, and one of the outer member 37 and the outer member 47 presses the movable pulleys 32 and 42, and the movable pulleys 32 and 42 are rotated. Displace in the X1 and X2 directions.
  • the amount of rotation input to the screw feed mechanisms 35 and 45 increases, the amount of displacement of the movable pulleys 32 and 42 increases.
  • the output torque (rotational torque) of the motor adjusted by the planetary gear mechanism 6 is adjusted by the screw feed mechanisms 35 and 45.
  • the outer member 37, 47 is converted into a holding force that holds the outer member 37, 47 at a predetermined position in the direction of the rotation axis X1, X2 (regulation force that restricts the rotation of the outer member 37, 47), and the rotation axis X1 of the outer member 37 and the outer member 47 , Displacement in the X2 direction is restricted.
  • adjustment of the output torque output from the planetary gear mechanism 6 is performed by the control device 9 that controls the drive of the motors (shifting motor 7 and clamping motor 8).
  • control modes of the motors (shifting motor 7 and clamping motor 8) by the control device 9 (A) a mode for changing the gear ratio of the variator 2 (normal transmission mode), and (B) a gear ratio of the variator 2 Are prepared (speed change ratio fixed mode), and (C) an aspect (speed change assist mode) for quickly changing the speed change ratio of the variator 2 is prepared.
  • FIG. 3 is a diagram for explaining the control mode of the motor (shifting motor 7 and clamping motor 8) by the control device 9, and the relationship between the motor (shifting motor 7 and clamping motor 8) and the control mode.
  • FIG. 4 is a diagram for explaining a torque transmission path in a mode in which the output torque for shifting is output from the planetary gear mechanism 6.
  • FIG. 5 is a diagram for explaining a torque transmission path in a mode in which the output torque for clamping is output from the planetary gear mechanism 6.
  • the control device 9 In the normal speed change mode, the control device 9 generates a holding torque by the clamping motor 8 and drives (forward or reverse) the speed changing motor 7. That is, the clamping force of the belt is generated by the clamping motor 8 while the variator 2 is shifted based on the torque of the shifting motor 7. That is, the variator 2 is shifted by changing the torque of the transmission motor 7 to generate a differential thrust between the primary pulley 3 and the secondary pulley 4.
  • the output torque (output rotation) of the speed change motor 7 is input to the ring gear R via the motor pinion 72 and the tooth portion 61, and the ring gear R rotates about the rotation axis X.
  • the annular gear 62 connected to the ring gear R rotates around the rotation axis X in the same direction as the ring gear R, and the pinion gear P meshed with the inner teeth (not shown) of the ring gear R It rotates about the rotation axis Xc.
  • the sun gear S in which the pinion gear P meshes with external teeth (not shown) is connected to the output shaft 81 of the clamping motor 8, and the rotation of the sun gear S around the rotation axis X is restricted. . Therefore, when the pinion gear P rotates about the rotation axis Xc by the output rotation transmitted from the ring gear R, the pinion carrier PC supporting the pinion gear P rotates about the rotation axis X in the same direction as the ring gear R. become. Then, the gear 64 connected to the pinion carrier PC via the rotation transmission shaft 63 and the gear 62 connected to the ring gear R rotate in the same direction around the rotation axis X.
  • the gear 64 and the gear 62 mesh with the outer members 37 and 47 of the screw feed mechanisms 35 and 45, respectively, so as to be able to transmit rotation. Therefore, rotation (output torque) around the rotation axis X of the gear 64 and the gear 62 is converted into displacement of the outer members 37 and 47 in the rotation axis X1 and X2 directions by the screw feed mechanisms 35 and 45. .
  • the pressing portion 471 of the outer member 47 is movable. Since the movable pulley 42 is allowed to move away from the sheave portion 422 of the pulley 42 in the direction in which the V-groove 43 is widened, the movable pulley 42 widens the V-groove 43 by the pressing force acting from the belt 5. Will be displaced in the direction. As a result, the wrapping radii of the belt 5 at the primary pulley 3 and the secondary pulley 4 change, and the transmission ratio of the variator 2 is changed.
  • the movable pulley 32 is connected to the belt. 5 is displaced in the direction of widening the V-groove 33, while the pressing portion 471 of the outer member 47 presses the sheave portion 422 of the movable pulley 42 to move in the direction of narrowing the V-groove 43.
  • the pulley 42 is displaced.
  • the control device 9 In the normal speed change mode, the control device 9 generates the holding torque by the clamping motor 8 and drives (forward or reverse) the speed changing motor 7. As a result, the primary pulley 3, the secondary pulley 4, During this time, a differential thrust is generated, and the variator 2 is shifted.
  • the speed ratio fixing mode is performed to generate a thrust for fixing the speed ratio after the end of the speed change.
  • the control device 9 fixes the speed ratio of the variator 2 based on the torque (holding torque) generated by the clamping motor 8.
  • a predetermined torque is also generated in the speed change motor 7. That is, in the fixed gear ratio mode, torque is generated in both the clamping motor 8 and the transmission motor 7 and both the clamping motor 8 and the transmission motor 7 are not rotated (fixed state).
  • the output torque (holding torque) of the clamping motor 8 is input to the sun gear S, and the torque is transmitted via the sun gear S. Then, torque is also transmitted to the pinion gear P meshed with the external teeth (not shown) of the sun gear S.
  • the ring gear R in which the pinion gear P meshes with the internal teeth prevents the rotation of the ring gear R from the speed change motor 7 that can transmit the rotation via the motor pinion 72 and the tooth portion 61. Rotation is regulated by inputting torque in the direction of rotation. Therefore, the output torque (holding torque) of the clamping motor 8 is transmitted to the gear 64 after being transmitted in the order of the sun gear S, the pinion gear P, and the pinion carrier PC.
  • the gear 64 meshes with the outer member 47 of the screw feed mechanism 45 so as to be able to transmit rotation. Therefore, the output torque (holding torque) of the clamping motor 8 transmitted to the gear 64 is converted into a displacement force of the outer member 47 in the direction of the rotation axis X2 by the screw feed mechanism 45.
  • the direction of the torque transmitted to the gear 64 is the arrow CCW direction in FIG. 5, and the direction of the displacement force generated in the outer member 47 on the screw feed mechanism 45 side is the direction indicated by the arrow M1 in the drawing (the movable pulley 42).
  • the pressing force F (see FIG. 5) acting on the belt 5 from the pressing portion 471 via the sheave portion 422 is wound around the belt 5. It acts on the primary pulley 3 (see the solid line thick arrow in the figure).
  • the pressing force F acts via the belt 5 in the direction of displacing the movable pulley 32 in the direction of widening the groove width of the V groove 33, so that the sheave portion 322 of the movable pulley 32 is moved to the screw feed mechanism.
  • the outer member 37 (pressing portion 371: see FIG. 2A) is brought into pressure contact.
  • the stress in the direction in which the pressing portion 371 is separated from the sheave portion 322 acts on the outer member 37 on the screw feed mechanism 35 side from the movable pulley 32 side.
  • the ring gear R receives from the transmission motor 7 in the direction of the arrow CW in order to restrict the rotation of the ring gear R. Holding torque is acting. Therefore, a holding torque in a direction for rotating the gear 62 in the direction of arrow CW (the direction opposite to the rotation direction of the gear 64) acts on the gear 62 connected to the ring gear R.
  • the holding torque transmitted to the gear 62 is converted into a displacement force in the direction of the rotation axis X1 of the outer member 37 by the screw feeding mechanism 35, and the pressing member 371 is applied to the outer member 37 on the screw feeding mechanism 35 side.
  • the stress F1 (see FIG. 5) in the direction of contacting the sheave portion 322 is applied.
  • the pressing force F1 in the direction of narrowing the groove width 33 acts on the sheave portion 322 from the screw feed mechanism 35 side, while the pressing force F in the direction of widening the groove width 33 acts on the belt V side. It will be.
  • the pressing force F1 generated by the holding torque generated by the speed change motor 7 is set so as to balance the pressing force F generated by the rotational torque generated by the clamping motor 8. Therefore, in the gear ratio fixed mode, the groove width 33 of the primary pulley 3 and the groove width 43 of the secondary pulley 4 are maintained without being changed.
  • the output torque of the clamping motor 8 is the planetary gear mechanism 6, the screw feed mechanism 45, the secondary pulley 4 (movable pulley 42), the belt 5, the primary pulley 3 (movable pulley 32), the screw feed. Circulation (loop) is performed in the order of the mechanism 35 and the planetary gear mechanism 6. Then, the output torque from the planetary gear mechanism 6 is amplified and the holding force for holding the belt 5 is increased. Therefore, the movement of the movable pulleys 32 and 42 in the directions of the rotation axes X1 and X2 is reliably restricted, and the variator 2 Is maintained.
  • the clamping motor 8 is controlled to increase the differential thrust between the primary pulley 3 and the secondary pulley 5 and increase the shift speed. It is a mode to make it. Specifically, the thrust difference between the primary pulley 3 and the secondary pulley 4 is increased by reducing the holding torque of the clamping motor 8 as compared with the case of the normal shift.
  • An example of a control instruction that requires an increase in shift speed is a kick down instruction.
  • the output torque (output rotation) of the speed change motor 7 is input to the ring gear R via the motor pinion 72 and the tooth portion 61, and the ring gear R rotates about the rotation axis X. Then, the pinion gear P meshed with the inner teeth (not shown) of the ring gear R rotates about the rotation axis Xc.
  • the sun gear S in which the pinion gear P meshes with external teeth (not shown) is connected to the output shaft 81 of the clamping motor 8, and the sun gear S is a ring gear by torque control of the clamping motor 8. It rotates in the direction opposite to the rotation direction of R. Therefore, when the pinion gear P rotates around the rotation axis Xc by the output rotation transmitted from the ring gear R, and the pinion carrier PC supporting the pinion gear P rotates around the rotation axis X, the sun gear S rotates in the reverse direction. However, as a result of acting in the direction of assisting (promoting) the rotation of the pinion gear P, the rotation of the pinion carrier PC around the rotation axis X is advanced (assisted).
  • the gear 64 connected to the pinion carrier PC via the rotation transmission shaft 63 and the gear 62 have a higher rotational speed than when only the output torque of the speed change motor 7 is input to the planetary gear mechanism 6.
  • it rotates around the rotation axis X.
  • the rotational speed transmitted from the gear 64 and the gear 62 to the outer members 37 and 47 of the screw feed mechanisms 35 and 45 is increased, and the displacement speed of the outer members 37 and 47 in the directions of the rotation axes X1 and X2 is increased. Therefore, the groove widths of the V grooves 33 and 43 are changed earlier than when only the output torque of the transmission motor 7 is input to the planetary gear mechanism 6. Therefore, in the gear shift assist mode, the groove widths of the V grooves 33 and 43 reach the groove width that achieves the target gear ratio in a shorter time than in the normal gear shift mode. It can be done in a short time.
  • a transmission motor 7 (first motor); Clamping motor 8 (second motor, A variator 2 having a primary pulley 3 (first pulley), a secondary pulley 4 (second pulley), and a belt 5 wound around the primary pulley 3 and the secondary pulley 4; A transmission mechanism (planetary gear mechanism 6, screw feed mechanisms 35, 45) for shifting the variator 2 based on the output torque of the transmission motor 7 and fixing the transmission ratio of the variator 2 based on the output torque of the clamping motor 8.
  • a continuously variable transmission 1 having a configuration including
  • a clamping force can be generated when the gear ratio of the variator 2 is fixed by having the motor 8 for clamping and the transmission mechanism. Further, it is not necessary to provide a dedicated transmission mechanism for transmitting the output torque for each motor (transmission motor 7 and clamping motor 8).
  • the maximum rotational speed of the transmission motor 7 is higher than the maximum rotational speed of the clamping motor 8, and the maximum output torque of the clamping motor is higher than the maximum output torque of the transmission motor 7.
  • the speed-changing motor 7 improves the speed of shifting with high rotation and low torque
  • the clamping motor 8 improves the clamping force with low speed and high torque. Since it is not necessary to prepare a large motor with high rotation and high torque and high power consumption, each motor can be reduced in size and power consumption can be reduced.
  • control device 9 (control unit) is configured to vary the torque of the clamping motor 8 during the speed change of the variator 2.
  • the differential thrust between the movable pulleys 32 and 42 can be improved, and the groove width variation speed of the movable pulleys 32 and 42 can be increased. Therefore, for example, when there is a kick down instruction, the return to the low shift is improved.
  • the transmission mechanism is A planetary gear mechanism 6 (torque transmission mechanism) having a ring gear R (first element), a pinion carrier PC (second element), and a sun gear S (third element) in the arrangement order on the alignment chart;
  • a screw feed mechanism 45 that converts the output torque from the planetary gear mechanism 6 into the thrust of the secondary pulley 4, and the output torque of the transmission motor 7 is transmitted to the ring gear R;
  • the output torque of the clamping motor 8 is transmitted to the sun gear S,
  • the output torque of the pinion carrier PC is transmitted to the screw feed mechanism 45,
  • the output torque of the ring gear R is transmitted to the screw feed mechanism 35.
  • the movable pulley 32 (movable pulley 32) externally attached to the shaft portion 311 of the fixed pulley 31 (first fixed pulley) from the direction of the rotation axis X1 (first rotating shaft) is rotated relative to the fixed pulley 31. It is provided to be movable in the direction of the rotation axis X ⁇ b> 1 in a restricted state, and the groove width of the V groove 33 between the sheave portion 312 of the fixed pulley 31 and the sheave portion 322 of the movable pulley 32 is the rotation of the movable pulley 32.
  • a primary pulley 3 (first pulley) that changes according to the position in the direction of the axis X1, Relative rotation of the movable pulley 42 (movable pulley 42) inserted into the shaft portion 411 of the fixed pulley 41 (second fixed pulley) from the direction of the rotation axis X2 (second rotary shaft) with the fixed pulley 41 is restricted.
  • the groove width of the V-groove 43 between the sheave portion 412 of the fixed pulley 41 and the sheave portion 422 of the movable pulley 42 is set in the direction of the rotation axis X2 of the movable pulley 42.
  • Secondary pulley 4 (second pulley) that changes according to the position of A variator 2 having a V groove 33 of the primary pulley 3 and a belt 5 wound around the V groove 43 of the secondary pulley 4; By changing the groove width of the V-groove 33 of the primary pulley 3 and the V-groove 43 of the secondary pulley 4 and changing the wrapping radius of the belt 5 between the primary pulley 3 and the secondary pulley 4, the primary pulley 3 and the secondary pulley 4.
  • a speed change motor 7 (first motor); A clamping motor 8 (second motor) having a maximum rotation speed smaller than that of the transmission motor 7 and a maximum output torque larger than that of the transmission motor 7;
  • a planetary gear mechanism 6 that outputs at least one of an output torque of the transmission motor 7 and an output torque of the clamping motor 8;
  • a screw feed mechanism 35 (first conversion mechanism) capable of converting the output torque of the planetary gear mechanism 6 into a thrust force that presses the movable pulley 32 in the direction of narrowing the groove width of the V-groove 33;
  • a screw feed mechanism 45 (second conversion mechanism) capable of converting the output torque of the planetary gear mechanism 6 into a thrust force that presses the movable pulley 42 in the direction of narrowing the groove width of the V-groove 43;
  • a control device 9 (control means) for controlling the drive of the transmission motor 7 and the clamping motor 8;
  • the control device 9 (control means) for controlling the drive of the transmission motor 7 and the clamping motor 8;
  • the maximum rotational speed of the transmission motor 7 is larger than the maximum rotational speed of the clamping motor 8, and the maximum output torque of the transmission motor 7 is smaller than the maximum output torque of the clamping motor 8.
  • the clamping motor 8 includes the movable pulley 32 and the movable pulley 42. In order to hold the groove widths of the V grooves 33 and 43 at a predetermined width, the motor outputs a rotational torque suitable for holding the positions of the movable pulley 32 and the movable pulley 42 in the rotation axis direction.
  • the output torque of the speed change motor 7 is output from the planetary gear mechanism 6.
  • the output torque of the clamping motor 8 is output from the planetary gear mechanism 6 so that the rotational torque suitable for the purpose can be output.
  • the work of the high-rotation and high-torque motor is shared by the high-rotation and low-torque transmission motor 7 and the low-rotation and high-torque clamping motor 8, so that the work of the high-rotation and high-torque motor can be A small size motor can be used.
  • the mountability to the continuously variable transmission is improved and the energy consumption of the motor can be reduced, so that the fuel efficiency of a vehicle equipped with the continuously variable transmission is expected.
  • the output torque of the clamping motor 8 is output from the planetary gear mechanism 6 in order to generate a thrust when the shift is completed, it is possible to suitably prevent the thrust for gripping the belt 5 from being an excessive thrust. As a result, the friction of the belt 5 is reduced, so that an improvement in fuel consumption of a vehicle equipped with a continuously variable transmission is expected.
  • the planetary gear mechanism 6 is a single pinion type planetary gear having a ring gear R (first element), a pinion carrier PC (second element), and a sun gear S (third element) in the arrangement order on the collinear diagram.
  • a gear mechanism, In the planetary gear mechanism 6, A ring gear R that can transmit rotation to and from the output shaft 71 of the speed change motor 7 and a sun gear S that can transmit rotation to and from the output shaft 81 of the clamping motor 8 are relative to each other on the common rotation axis X.
  • a pinion carrier PC that is rotatably provided and supports a pinion gear P that meshes with the inner teeth of the ring gear R and the outer teeth of the sun gear S so as to be able to rotate about a rotation axis Xc parallel to the rotation axis X. It is provided so as to be rotatable around the rotation axis X,
  • the screw feed mechanism 35 can convert the output torque of the ring gear R into a thrust that presses the movable pulley 32 in the direction of narrowing the groove width of the V groove 33.
  • the screw feed mechanism 45 is configured to be able to convert the output torque of the pinion carrier PC into a thrust force that presses the movable pulley 42 in the direction of narrowing the groove width of the V groove 43.
  • the output torque output from the planetary gear mechanism 6 can be appropriately adjusted from the output torque of the speed change motor 7 and the output torque of the clamping motor 8, and the output torque to the screw feed mechanisms 35 and 45 can be adjusted.
  • Transmission can be performed using one planetary gear mechanism 6. Therefore, it is not necessary to prepare a dedicated mechanism for transmitting the output torque to the screw feed mechanisms 35 and 45 in each of the transmission motor 7 and the clamping motor 8.
  • the magnitude of the thrust converted from the output torque can be adjusted to the desired magnitude, so the type of continuously variable transmission It becomes easy to optimize the thrust every time.
  • the control device 9 When the movable pulley 32 and the movable pulley 42 are displaced in the directions of the rotation axes X1 and X2 in order to change the gear ratio, A structure in which the ring gear R is rotated by the output torque of the transmission motor 7 and the rotation of the sun gear S is regulated by the holding torque of the clamping motor 8 so that the output torque of the transmission motor 7 is output from the planetary gear mechanism 6. did.
  • the thrust to do is balanced. Therefore, if the output torque of the speed change motor 7 is changed, the balance between the thrust acting on the movable pulley 32 and the thrust acting on the movable pulley 42 is lost, and the groove widths of the V grooves 33 and 43 balance the thrust. Since the groove width is quickly changed to a new groove width, a desired gear ratio can be realized only by changing the output torque of the speed change motor 7.
  • the output torque output from the planetary gear mechanism 6 by simply driving / stopping the speed change motor 7 and the clamping motor 8 is used to maintain the output torque suitable for the purpose (the output torque suitable for the speed change and the transmission ratio). Suitable output torque). Therefore, the variator 2 is suitable for a continuously variable transmission that frequently changes and maintains the gear ratio.
  • the control device 9 When the movable pulley 32 and the movable pulley 42 are displaced in the directions of the rotation axes X1 and X2 in order to change the gear ratio, The ring gear R is rotated by the output torque of the transmission motor 7 and the sun gear S is rotated by the output torque of the clamping motor 8 in the direction opposite to the rotation direction of the ring gear R around the rotation axis X, thereby causing a planetary gear mechanism. 6 is configured to amplify the output torque of the speed change motor 7 to be output from 6.
  • the groove widths of the V grooves 33 and 43 can be changed faster than when only the speed change motor 7 is rotationally driven. Therefore, in the gear shift assist mode, the groove widths of the V grooves 33 and 43 reach the groove width that achieves the target gear ratio in a shorter time than in the normal gear shift mode. It can be done in a short time.
  • the displacement of the movable pulleys 32 and 42 is promoted by the output torque of the clamping motor 8 during sudden gear shifting, and a phase difference between the pulleys (primary pulley 3 and secondary pulley 4) is created, so that the gear ratio can be quickly increased. Since it can be changed, the gear ratio can be quickly returned to the low side.
  • the control device 9 When the positions of the movable pulley 32 and the movable pulley 42 are held, the transmission motor 7 and the clamping motor 8 are set in a state where output torque (holding torque) is generated, respectively, and the holding torque of the transmission motor 7 is used.
  • the rotation of the ring gear R is restricted and the holding torque of the clamping motor 8 is input to the sun gear S, and is transmitted to the screw feed mechanism 45 via the sun gear S, the pinion gear P, the pinion carrier PC, and the gear 64.
  • Displacement force that restricts the movement of the operating pulley 32 in the direction of the rotation axis X2 while the holding torque of the clamping motor 8 acts in the direction of pressing the movable pulley 32 of the secondary pulley 3 against the belt 5 by the screw feed mechanism 45. Changed to (thrust).
  • the variator 2 is suitable for holding
  • the screw feed mechanism 35 (first conversion mechanism) An outer member 37 (first outer member) that rotates around the rotation axis X1 of the primary pulley 3 with the output torque of the planetary gear mechanism 6; An inner member 36 (first inner member) disposed inside the outer member 37 in a state where movement in the direction of the rotation axis X1 is restricted; The outer member 37 and the inner member 36 are disposed so as to straddle the spiral groove 361 a provided on the outer periphery of the inner member 36 and the spiral groove 371 a provided on the inner periphery of the outer member 37. And a plurality of balls Ba for supporting relative rotation so that The outer member 37 that rotates around the rotation axis X1 is a ball screw feed mechanism that is displaced in the direction of the rotation axis X1.
  • the output torque (rotation torque) input from the planetary gear mechanism 6 side will be converted into the thrust which displaces the outer side member 37 to the rotating shaft X1 direction, and the movable pulley 32 pushed by the outer side member 37 will be demonstrated.
  • the screw feed mechanism 45 (second conversion mechanism) An outer member 47 (second outer member) that rotates around the rotation axis X2 by the output torque of the planetary gear mechanism 6; An inner member 36 (second inner member) disposed inside the outer member 47 in a state where movement in the rotation axis X2 direction is restricted; The outer member 47 and the inner member 46 are arranged so as to straddle the spiral groove 461a provided on the outer periphery of the inner member 46 and the spiral groove 471a provided on the inner periphery of the outer member 47.
  • a plurality of balls Ba that are rotatably supported, and The outer member 47 rotating around the rotation axis X2 is configured to be a ball screw feed mechanism that displaces in the direction of the rotation axis X2.
  • the output torque (rotational torque) input from the planetary gear mechanism 6 side is converted into a thrust that displaces the outer member 47 in the direction of the rotation axis X ⁇ b> 2, and the movable pulley 42 pushed by the outer member 47. Can be smoothly displaced in the direction of narrowing the groove width of the V-groove 43.
  • a contact portion 371b that contacts from the rotation axis X1 direction and presses the sheave portion 322 is provided on the outer member 37,
  • the rotational axis X1 is applied to the sheave portion 422 of the movable pulley 42.
  • a pressing portion 471b that contacts from the direction and presses the sheave portion 422 is provided on the outer member 37,
  • the screw feeding mechanism 35 displaces the outer member 37 in a direction in which the abutting portion 371b abuts on the sheave portion 322, the screw feeding mechanism 45 in a direction in which the pressing portion 471b is separated from the sheave portion 422.
  • the outer member 47 is displaced;
  • the screw feeding mechanism 35 displaces the outer member 37 in a direction in which the abutting portion 371b is separated from the sheave portion 322, the screw feeding mechanism 45 is in a direction in which the pressing portion 471b abuts on the sheave portion 422.
  • the outer member 47 is configured to be displaced.
  • the output torque (rotational output) of the motor is, for example, the pinion carrier PC, the rotation transmission shaft 63, the gear 64, the screw feed mechanism 45, the secondary pulley 4 ( Movable pulley 42), belt 5, primary pulley 3 (movable pulley 32), screw feed mechanism 35, gear 62, ring gear R, pinion gear P, pinion carrier PC, rotation transmission shaft 63, and planetary gear mechanism 6 Circulates with the variator 2. Then, the output torque (rotational speed) transmitted from the gear 64 to the screw feed mechanism 45 is increased and circulated (looped) between the planetary gear mechanism 6 and the variator 2, so that the belt 5 is held.
  • the output torque of the transmission motor 7 is transmitted to the ring gear R (first element), and the output torque of the clamping motor 8 is transmitted to the sun gear S (third element).
  • the constructed planetary gear mechanism 6 is exemplified.
  • the present invention is not limited to this mode, and the output torque of the clamping motor 8 is transmitted to the ring gear R (first element), and the output torque of the transmission motor 7 is the sun gear S (third element). ) May be a planetary gear mechanism configured to be transmitted.
  • the planetary gear mechanism for outputting one of the output torque of the transmission motor 7 and the output torque of the clamping motor 8 to the screw feed mechanisms 35 and 45 is a single pinion type.
  • the present invention is not limited to this aspect, and the planetary gear mechanism is coaxial with the sun gear, the inner pinion gear that meshes with the sun gear, the outer pinion gear that meshes with the inner pinion gear, and the sun gear that meshes with the outer pinion gear.
  • a Ravigneaux planetary gear mechanism which is a composite planetary gear in which a single pinion planetary gear and a double pinion planetary gear are integrated, may be employed.
  • a combination of a plurality of simple gears may be used as long as a collinear diagram similar to the planetary gear set can be drawn by a combination of a plurality of simple gears. Further, it may be a combination of a plurality of planetary gears.
  • the present invention is not limited to the above-described embodiment, and includes various changes and improvements that can be made within the scope of the technical idea.

Abstract

This stepless transmission (1) has a transmission motor (7), a clamping motor (8), a control device (9), and a variator (2). The variator (2) has a primary pulley (3), a secondary pulley (4), and a belt (5). The stepless transmission (1) also has a planetary gear mechanism (6) and screw-feeding mechanisms (35, 45) so that the speed of the variator (2) is changed on the basis of the output torque of the transmission motor (7) and the transmission ratio of the variator (2) is fixed on the basis of the output torque of the clamping motor (8).

Description

無段変速機Continuously variable transmission
 本発明は、無段変速機に関する。 The present invention relates to a continuously variable transmission.
 車両用のベルト式の無段変速機は、一対のプーリ(プライマリプーリ、セカンダリプーリ)にベルトを巻き掛けたバリエータを有しており、プーリにおけるベルトの巻き掛け半径を変更することで、所望の変速比を実現するようになっている。 A belt-type continuously variable transmission for a vehicle has a variator in which a belt is wound around a pair of pulleys (a primary pulley and a secondary pulley). The gear ratio is realized.
 プーリでは、固定プーリのシーブ面と、この固定プーリの軸部で回転軸方向に移動可能に設けられた可動プーリのシーブ面との間に、ベルトが巻き掛けられるV溝が形成されており、可動プーリを回転軸方向に移動させてV溝の溝幅を変更することで、プーリにおけるベルトの巻き掛け半径を変更するようになっている。 In the pulley, a V groove around which the belt is wound is formed between the sheave surface of the fixed pulley and the sheave surface of the movable pulley provided so as to be movable in the rotation axis direction at the shaft portion of the fixed pulley. By moving the movable pulley in the direction of the rotation axis and changing the groove width of the V-groove, the belt winding radius in the pulley is changed.
 特許文献1には、モータの回転駆動力を、直動機構により回転軸方向の推力に変換して、可動プーリを回転軸方向に変位させるように構成した無段変速機が開示されている。 Patent Document 1 discloses a continuously variable transmission configured to convert a rotational driving force of a motor into a thrust in the direction of the rotation axis by a linear motion mechanism and to displace the movable pulley in the direction of the rotation axis.
 ここで、プーリでは、可動プーリを、V溝の溝幅を広げる方向に変位させようとする応力が、プーリに巻き掛けられたベルトから作用している。この応力により可動プーリが変位して、プーリにおけるベルトの巻き掛け半径が変化すると、無段変速機で実現する変速比が変わってしまう。
 そのため、特許文献1の無段変速機では、無励磁状態における保持トルクの高いモータを採用して、このモータの高い係止力により変速比を維持している。
Here, in the pulley, a stress that attempts to displace the movable pulley in the direction of widening the groove width of the V-groove acts from the belt wound around the pulley. If the movable pulley is displaced by this stress and the belt wrapping radius in the pulley changes, the speed ratio realized by the continuously variable transmission changes.
Therefore, the continuously variable transmission of Patent Document 1 employs a motor having a high holding torque in a non-excited state, and maintains the gear ratio by the high locking force of this motor.
 しかし、特許文献1の無段変速機では、ベルトをプーリに係止させているだけで、ベルトをプーリで積極的にクランプしていないので、プーリに高いトルクが入力されると、ベルトの滑りが生じる虞がある。
 そのため、ベルトをクランプするクランプ力を発生できるようにすることが求められている。
However, in the continuously variable transmission of Patent Document 1, since the belt is merely locked to the pulley, and the belt is not actively clamped by the pulley, the belt slips when a high torque is input to the pulley. May occur.
Therefore, it is required to generate a clamping force for clamping the belt.
特開2002-54706号公報JP 2002-54706 A
 本発明は、
 第1モータと、
 第2モータと、
 第1プーリと、第2プーリと、前記第1プーリと前記第2プーリとに巻き掛けられたベルトと、を有するバリエータと、
 を備え、
 前記第1モータのトルクに基づき前記バリエータを変速させる一方、前記第2モータのトルクに基づき前記バリエータの変速比を固定する無段変速機とした。
The present invention
A first motor;
A second motor;
A variator having a first pulley, a second pulley, and a belt wound around the first pulley and the second pulley;
With
The continuously variable transmission is configured to shift the variator based on the torque of the first motor, while fixing the speed ratio of the variator based on the torque of the second motor.
 本発明によれば、第2モータを有することにより、バリエータの変速比を固定するときにクランプ力を発生させることができる。 According to the present invention, by having the second motor, it is possible to generate a clamping force when fixing the gear ratio of the variator.
実施の形態にかかるベルト式の無段変速機の概略構成図である1 is a schematic configuration diagram of a belt-type continuously variable transmission according to an embodiment. ネジ送り機構を説明する図である。It is a figure explaining a screw feed mechanism. モータの制御態様を説明する図である。It is a figure explaining the control aspect of a motor. トルクの伝達を説明する図である。It is a figure explaining transmission of torque. トルクの伝達を説明する図である。It is a figure explaining transmission of torque.
 以下、本発明の実施の形態を説明する。
 図1は、実施の形態にかかるベルト式の無段変速機1の概略構成図である。
 なお、図1においては、説明の便宜上、プライマリプーリ3とセカンダリプーリ4は、回転軸X1、X2の内側となる半分のみが図示されている。
Embodiments of the present invention will be described below.
FIG. 1 is a schematic configuration diagram of a belt-type continuously variable transmission 1 according to an embodiment.
In FIG. 1, for convenience of explanation, only half of the primary pulley 3 and the secondary pulley 4 that are inside the rotation axes X1 and X2 are shown.
 図1に示すように、車両用の無段変速機1は、プライマリプーリ3と、セカンダリプーリ4と、これらプライマリプーリ3とセカンダリプーリ4とに巻き掛けられたベルト5と、から構成されるバリエータ2を有している。
 このバリエータ2では、プライマリプーリ3とセカンダリプーリ4におけるベルト5の巻掛け半径を変更することで、バリエータ2の入力軸21の入力回転数と出力軸22の出力回転数の比(変速比)を無段階に変化させるようになっている。
As shown in FIG. 1, a continuously variable transmission 1 for a vehicle includes a primary pulley 3, a secondary pulley 4, and a belt 5 wound around the primary pulley 3 and the secondary pulley 4. 2 has.
In this variator 2, the ratio (speed ratio) between the input rotational speed of the input shaft 21 and the output rotational speed of the output shaft 22 of the variator 2 is changed by changing the winding radius of the belt 5 in the primary pulley 3 and the secondary pulley 4. It is designed to change steplessly.
 無段変速機1では、図示しない駆動源の回転駆動力が、トルクコンバータT/Cと入力軸21とを介してバリエータ2に入力されると、入力された回転駆動力が、バリエータ2において所望の変速比で変速されたのち、出力軸22と差動装置DEFとを介して、図示しない駆動輪側に出力されるようになっている。 In the continuously variable transmission 1, when a rotational driving force of a driving source (not shown) is input to the variator 2 via the torque converter T / C and the input shaft 21, the input rotational driving force is desired in the variator 2. After the gear ratio is changed, the output is made to the drive wheel side (not shown) via the output shaft 22 and the differential device DEF.
 プライマリプーリ3は、固定プーリ31と、この固定プーリ31の軸部311に、円筒状の軸部321を外挿して設けられた可動プーリ32と、から構成されており、これら固定プーリ31と可動プーリ32は、回転軸X1回りの相対回転が規制された状態で、回転軸X1の軸方向に沿って相対移動可能なように連結されている。 The primary pulley 3 includes a fixed pulley 31 and a movable pulley 32 provided by extrapolating a cylindrical shaft portion 321 to the shaft portion 311 of the fixed pulley 31. The primary pulley 3 is movable with the fixed pulley 31. The pulley 32 is connected so as to be relatively movable along the axial direction of the rotation axis X1 in a state where relative rotation about the rotation axis X1 is restricted.
 固定プーリ31と可動プーリ32では、軸部311、321から径方向に延びるシーブ部312、322の互いの対向面が、回転軸X1に対して所定角度傾斜したシーブ面312a、322aとなっており、これらシーブ面312a、322aの間に、ベルト5が巻き掛けられるV溝33が形成されている。 In the fixed pulley 31 and the movable pulley 32, the opposing surfaces of the sheave portions 312 and 322 extending in the radial direction from the shaft portions 311 and 321 are sheave surfaces 312a and 322a inclined at a predetermined angle with respect to the rotation axis X1. A V-groove 33 around which the belt 5 is wound is formed between the sheave surfaces 312a and 322a.
 セカンダリプーリ4は、固定プーリ41と、この固定プーリ41の軸部411に、円筒状の軸部421を外挿して設けられた可動プーリ42と、から構成されており、これら固定プーリ41と可動プーリ42は、回転軸X2回りの相対回転が規制された状態で、回転軸X2の軸方向に沿って相対移動可能なように連結されている。 The secondary pulley 4 includes a fixed pulley 41 and a movable pulley 42 that is provided by extrapolating a cylindrical shaft portion 421 to the shaft portion 411 of the fixed pulley 41. The secondary pulley 4 is movable with the fixed pulley 41. The pulley 42 is connected so as to be relatively movable along the axial direction of the rotation axis X2 in a state where relative rotation about the rotation axis X2 is restricted.
 固定プーリ41と可動プーリ42では、軸部411、421から径方向に延びるシーブ部412、422の互いの対向面が、回転軸X2に対して所定角度傾斜したシーブ面412a、422aとなっており、これらシーブ面412a、422aの間に、ベルト5が巻き掛けられるV溝43が形成されている。 In the fixed pulley 41 and the movable pulley 42, the opposing surfaces of the sheave portions 412 and 422 extending in the radial direction from the shaft portions 411 and 421 are sheave surfaces 412a and 422a inclined at a predetermined angle with respect to the rotation axis X2. A V-groove 43 around which the belt 5 is wound is formed between the sheave surfaces 412a and 422a.
 プライマリプーリ3とセカンダリプーリ4では、シーブ部322、422のシーブ面322a、422aとは反対側に、ネジ送り機構35、45が設けられており、このネジ送り機構35、45により、V溝33、43の溝幅を狭める方向に可動プーリ32、42を押圧する推力を発生させるようになっている。 In the primary pulley 3 and the secondary pulley 4, screw feeding mechanisms 35, 45 are provided on the opposite side of the sheave portions 322 a, 422 from the sheave surfaces 322 a, 422 a. , 43 is configured to generate a thrust force that presses the movable pulleys 32, 42 in the direction of narrowing the groove width.
 図2は、ネジ送り機構35、45を説明する図であり、(a)は、ネジ送り機構35の要部を模式的に示した図であり、(b)は、ネジ送り機構45の要部を模式的に示した図である。
 図2に示すように、ネジ送り機構35、45は、固定プーリ31、41の軸部311、411に外挿された内側部材36、46と、この内側部材36、46の筒状部361、461に外挿された外側部材37、47と、を有している。
 内側部材36、46は、回転軸X1、X2にそれぞれ直交するディスク部362、462と、ディスク部362、462の外周縁を全周に亘って囲む筒状部361、461とから、一体に形成されている。
2A and 2B are diagrams for explaining the screw feeding mechanisms 35 and 45. FIG. 2A is a diagram schematically showing a main part of the screw feeding mechanism 35, and FIG. It is the figure which showed the part typically.
As shown in FIG. 2, the screw feed mechanisms 35 and 45 include inner members 36 and 46 that are extrapolated to the shaft portions 311 and 411 of the fixed pulleys 31 and 41, and cylindrical portions 361 of the inner members 36 and 46, And outer members 37 and 47 extrapolated to 461.
The inner members 36 and 46 are integrally formed from disk portions 362 and 462 that are orthogonal to the rotation axes X1 and X2, respectively, and cylindrical portions 361 and 461 that surround the outer periphery of the disk portions 362 and 462 over the entire circumference. Has been.
 ディスク部362、462の内周部362a、462aは、プライマリプーリ3とセカンダリプーリ4の軸部311、411を回転可能に支持するベアリングB1、B1のうちの一方のベアリングB1で、回転軸X1、X2の軸方向の位置決めがされており、内側部材36、46は、固定プーリ31、41から離れる方向の移動が規制された状態で、固定プーリ31、41に対して相対回転可能に設けられている。 The inner peripheral portions 362a and 462a of the disk portions 362 and 462 are one of the bearings B1 and B1 that rotatably support the shaft portions 311 and 411 of the primary pulley 3 and the secondary pulley 4, and the rotation axis X1, X2 is positioned in the axial direction, and the inner members 36 and 46 are provided so as to be rotatable relative to the fixed pulleys 31 and 41 in a state where movement in a direction away from the fixed pulleys 31 and 41 is restricted. Yes.
 筒状部361、461は、可動プーリ32、42の軸部321、421の外径側を、回転軸X1、X2に沿って、シーブ部322、422側に延びており、この筒状部361、461の外周には、回転軸X1、X2周りの周方向に沿って螺旋状に延びる凹溝361a、461aが設けられている。 The cylindrical portions 361 and 461 extend on the outer diameter side of the shaft portions 321 and 421 of the movable pulleys 32 and 42 toward the sheave portions 322 and 422 along the rotation axes X1 and X2, respectively. , 461 are provided with concave grooves 361a, 461a extending spirally along the circumferential direction around the rotation axes X1, X2.
 筒状部361、461の外径側には、外側部材37、47の円筒状の押圧部371、471が位置している。外側部材37、47は、この押圧部371、471と、押圧部371、471よりも外径の大きい筒部372、472と、押圧部371、471の外周と、筒部372、472の内周とを接続する円板状の接続部373、473と、から構成されている。 The cylindrical pressing portions 371 and 471 of the outer members 37 and 47 are located on the outer diameter side of the cylindrical portions 361 and 461. The outer members 37 and 47 include the pressing portions 371 and 471, the cylindrical portions 372 and 472 having a larger outer diameter than the pressing portions 371 and 471, the outer periphery of the pressing portions 371 and 471, and the inner periphery of the cylindrical portions 372 and 472. Disk-shaped connecting portions 373 and 473 that connect the two.
 押圧部371、471は、内径側に位置する筒状部361、461よりも長い回転軸X1、X2の軸方向に沿った長さを有しており、回転軸X1、X2方向の一端側の当接部371b、471bが、スラストベアリングSBを介して、可動プーリ32、42のシーブ部322、422に当接している。
 押圧部371、471は、接続部373、473よりも当接部371b、471b側の領域が、ベアリングB2、B2を介して、可動プーリ32、42の軸部321、421で支持されており、押圧部371、471を有する外側部材37、47は、可動プーリ32、42に対して相対回転可能に設けられている。
The pressing portions 371 and 471 have lengths along the axial direction of the rotation axes X1 and X2 that are longer than the cylindrical portions 361 and 461 located on the inner diameter side, and are on one end side in the rotation axis X1 and X2 directions. The contact portions 371b and 471b are in contact with the sheave portions 322 and 422 of the movable pulleys 32 and 42 via the thrust bearing SB.
The pressing portions 371 and 471 are supported by the shaft portions 321 and 421 of the movable pulleys 32 and 42 through the bearings B2 and B2 in the regions closer to the contact portions 371b and 471b than the connection portions 373 and 473, respectively. The outer members 37 and 47 having the pressing portions 371 and 471 are provided to be rotatable relative to the movable pulleys 32 and 42.
 押圧部371、471では、前記した筒状部361、461に対向する領域の内周に、回転軸X1、X2周りの周方向に沿って螺旋状に延びる凹溝371a、471aが設けられており、この押圧部371、471の凹溝371a、471aに係合したボールBaは、内側部材36、46の凹溝361a、461aにも係合している。 In the pressing parts 371 and 471, concave grooves 371 a and 471 a extending in a spiral shape along the circumferential direction around the rotation axes X <b> 1 and X <b> 2 are provided on the inner periphery of the region facing the cylindrical parts 361 and 461. The balls Ba engaged with the concave grooves 371 a and 471 a of the pressing portions 371 and 471 are also engaged with the concave grooves 361 a and 461 a of the inner members 36 and 46.
 実施の形態では、凹溝361a、461aを有する内側部材36、46と、凹溝371a、471aを有する外側部材37、47と、凹溝361a、461aと凹溝371a、471aとに跨がって係合した複数のボールBaとから、ネジ送り機構35、45(ボールネジ送り機構)を構成している。
 そのため、外側部材37、47に回転が入力されると、外側部材37、47は、このネジ送り機構35、45により、回転軸X1、X2回りに回転しながら、回転軸X1、X2の軸方向に変位する。
In the embodiment, the inner members 36 and 46 having the concave grooves 361a and 461a, the outer members 37 and 47 having the concave grooves 371a and 471a, and the concave grooves 361a and 461a and the concave grooves 371a and 471a are straddled. A plurality of engaged balls Ba constitute screw feed mechanisms 35 and 45 (ball screw feed mechanism).
Therefore, when rotation is input to the outer members 37 and 47, the outer members 37 and 47 are rotated about the rotation axes X1 and X2 by the screw feed mechanisms 35 and 45, and the axial directions of the rotation axes X1 and X2 are rotated. It is displaced to.
 押圧部371、471の外径側に位置する筒部372、472は、当該筒部372、472の外周に設けた歯部を、後記する遊星歯車機構6側のギア62、64(図1参照)に噛合させてある。遊星歯車機構6側から回転トルクが筒部372、472に入力されて、外側部材37、47が回転軸X1、X2回りに回転すると、外側部材37、47が、内側部材36、46に対して回転軸X1、X2方向に変位する。 The cylindrical portions 372 and 472 located on the outer diameter side of the pressing portions 371 and 471 are gears 62 and 64 on the planetary gear mechanism 6 side described later with tooth portions provided on the outer periphery of the cylindrical portions 372 and 472 (see FIG. 1). ). When rotational torque is input to the cylindrical portions 372 and 472 from the planetary gear mechanism 6 side and the outer members 37 and 47 rotate about the rotation axes X1 and X2, the outer members 37 and 47 are moved relative to the inner members 36 and 46, respectively. It is displaced in the direction of the rotation axis X1, X2.
 実施の形態では、バリエータ2における変速比を変更する場合において、遊星歯車機構6側から入力された出力トルク(回転トルク)が、ネジ送り機構35において、可動プーリ32を押圧部371で押圧する方向(V溝33の溝幅を狭める方向)への外側部材37の変位に変換される場合には、ネジ送り機構45では、押圧部471を可動プーリ42から離間させる方向(V溝43の溝幅の拡幅を許容する方向)への外側部材47の変位に変換されるようになっている。 In the embodiment, when changing the transmission gear ratio in the variator 2, the output torque (rotational torque) input from the planetary gear mechanism 6 side causes the screw feed mechanism 35 to press the movable pulley 32 with the pressing portion 371. When converted into the displacement of the outer member 37 in the direction of narrowing the groove width of the V-groove 33, the screw feed mechanism 45 causes the pressing portion 471 to move away from the movable pulley 42 (the groove width of the V-groove 43). The width of the outer member 47 is changed to a direction in which the widening of the outer member 47 is allowed.
 また、バリエータ2における変速比を変更する場合において、遊星歯車機構6側から入力された出力トルク(回転トルク)が、ネジ送り機構35において、押圧部371を可動プーリ32から離間させる方向(V溝33の溝幅の拡幅を許容する方向)への外側部材37の変位に変換される場合には、ネジ送り機構45では、可動プーリ42を押圧部471で押圧する方向(V溝43の溝幅を狭める方向)への外側部材47の変位に変換されるようになっている。 Further, when changing the gear ratio in the variator 2, the output torque (rotational torque) input from the planetary gear mechanism 6 side causes the screw feed mechanism 35 to move the pressing portion 371 away from the movable pulley 32 (V groove). In the case of being converted into the displacement of the outer member 37 in the direction in which the widening of the groove width of 33 is permitted, in the screw feed mechanism 45, the direction in which the movable pulley 42 is pressed by the pressing portion 471 (the groove width of the V groove 43). It is converted into the displacement of the outer member 47 in the direction of narrowing.
 図1に示すように、遊星歯車機構6は、変速用モータ7の出力トルク(回転駆動力)と、クランプ用モータ8の出力トルク(回転駆動力)のうちの少なくとも一方を、ネジ送り機構35、45に出力する出力切替機構であり、実施の形態では、サンギアSと、サンギアSの外周を囲むリングギアRと、サンギアSとリングギアRに噛み合うピニオンギアPと、ピニオンギアPを支持するピニオンキャリアPCとからなるシングルピニオン型の遊星歯車機構を採用している。 As shown in FIG. 1, the planetary gear mechanism 6 uses at least one of the output torque (rotational driving force) of the transmission motor 7 and the output torque (rotational driving force) of the clamping motor 8 as a screw feed mechanism 35. , 45, and in the embodiment, the sun gear S, the ring gear R that surrounds the outer periphery of the sun gear S, the pinion gear P that meshes with the sun gear S and the ring gear R, and the pinion gear P are supported. A single pinion type planetary gear mechanism composed of a pinion carrier PC is adopted.
 遊星歯車機構6では、リングギアRの外周に設けた歯部61に、変速用モータ7のモータピニオン72が噛合している。変速用モータ7とリングギアRは、変速用モータ7の出力軸71に固定されたモータピニオン72と、このモータピニオン72に噛合した歯部61とを介して、回転伝達可能に連結されている。 In the planetary gear mechanism 6, the motor pinion 72 of the speed change motor 7 meshes with the tooth portion 61 provided on the outer periphery of the ring gear R. The speed change motor 7 and the ring gear R are connected to each other so as to transmit rotation through a motor pinion 72 fixed to the output shaft 71 of the speed change motor 7 and a tooth portion 61 meshed with the motor pinion 72. .
 また、リングギアRの内径側には、クランプ用モータ8の出力軸81が連結されたサンギアSが、リングギアRと同軸に配置されている。クランプ用モータ8との間で回転伝達が可能なサンギアSと、変速用モータ7との間で回転伝達可能なリングギアRは、共通の回転軸X上で相対回転可能に設けられている。 Further, on the inner diameter side of the ring gear R, a sun gear S to which the output shaft 81 of the clamping motor 8 is connected is arranged coaxially with the ring gear R. The sun gear S capable of transmitting rotation between the clamping motor 8 and the ring gear R capable of transmitting rotation between the speed-changing motor 7 are provided so as to be relatively rotatable on a common rotation axis X.
 回転軸Xの径方向におけるサンギアSとリングギアRの間には、リングギアRの内歯(図示せず)とサンギアSの外歯(図示せず)とに噛み合うピニオンギアPが設けられており、このピニオンギアPは、回転軸X周りの周方向に所定間隔で複数設けられている。
 ピニオンギアPの各々は、回転軸X回りに回転可能に設けられたピニオンキャリアPCで支持されていると共に、ピニオンキャリアPCにおいてピニオンギアPの各々は、回転軸Xに平行な自転軸Xc回りに回転可能に支持されている。
Between the sun gear S and the ring gear R in the radial direction of the rotation axis X, a pinion gear P that meshes with an inner tooth (not shown) of the ring gear R and an outer tooth (not shown) of the sun gear S is provided. A plurality of pinion gears P are provided at predetermined intervals in the circumferential direction around the rotation axis X.
Each of the pinion gears P is supported by a pinion carrier PC provided so as to be rotatable around the rotation axis X. In the pinion carrier PC, each of the pinion gears P is rotated around a rotation axis Xc parallel to the rotation axis X. It is rotatably supported.
 ピニオンキャリアPCには、回転軸Xに沿ってバリエータ2側に延びる回転伝達軸63の一端が連結されており、この回転伝達軸63の他端には、ギア64が連結されている。
 このギア64は、前記したネジ送り機構45の外側部材47に噛合しており、ピニオンキャリアPCが回転軸X回りに回転すると、このピニオンキャリアPCと一体に回転する回転伝達軸63とギア64とを介して、遊星歯車機構6の出力トルクがネジ送り機構45に入力される。
One end of a rotation transmission shaft 63 extending toward the variator 2 along the rotation axis X is connected to the pinion carrier PC, and a gear 64 is connected to the other end of the rotation transmission shaft 63.
The gear 64 meshes with the outer member 47 of the screw feed mechanism 45 described above. When the pinion carrier PC rotates about the rotation axis X, the rotation transmission shaft 63 and the gear 64 rotate together with the pinion carrier PC. , The output torque of the planetary gear mechanism 6 is input to the screw feed mechanism 45.
 さらにリングギアRには、環状のギア62が一体回転可能に連結されている。
 このギア62は、前記したネジ送り機構35の外側部材37に噛合しており、リングギアRが回転軸X回りに回転すると、遊星歯車機構6の出力トルクがネジ送り機構35にも入力される。
Further, an annular gear 62 is connected to the ring gear R so as to be integrally rotatable.
The gear 62 meshes with the outer member 37 of the screw feed mechanism 35 described above. When the ring gear R rotates about the rotation axis X, the output torque of the planetary gear mechanism 6 is also input to the screw feed mechanism 35. .
 遊星歯車機構6は、変速用モータ7の出力トルク(回転駆動力)と、クランプ用モータ8の出力トルク(回転駆動力)とから、バリエータ2での変速比を変更するためのトルクや、変速比を固定するためのトルクを調整するために設けられている。 The planetary gear mechanism 6 uses a torque for changing a gear ratio in the variator 2 based on an output torque (rotational driving force) of the transmission motor 7 and an output torque (rotational driving force) of the clamping motor 8, It is provided to adjust the torque for fixing the ratio.
 実施の形態では、バリエータ2での変速比を変更する場合には、遊星歯車機構6を介して出力されたモータの出力トルク(回転トルク)が、ネジ送り機構35、45により、外側部材37、47を回転軸X1、X2方向に変位させる推力に変換されて、外側部材37と外側部材47のうちの一方の外側部材が可動プーリ32、42を押圧して、可動プーリ32、42を回転軸X1、X2方向に変位させる。
 ここで、ネジ送り機構35、45に入力される回転量が大きいほど、可動プーリ32、42の変位量が多くなるので、可動プーリ32、42を回転軸X1、X2方向に変位させる際には、最大回転数の大きいモータ(変速用モータ7)の出力トルクを、ネジ送り機構35、45に入力するようにしている。
In the embodiment, when changing the gear ratio in the variator 2, the output torque (rotational torque) of the motor output via the planetary gear mechanism 6 is converted into the outer member 37, by the screw feed mechanisms 35, 45. 47 is converted into a thrust force that displaces the rotary shafts X1 and X2 in the direction, and one of the outer member 37 and the outer member 47 presses the movable pulleys 32 and 42, and the movable pulleys 32 and 42 are rotated. Displace in the X1 and X2 directions.
Here, as the amount of rotation input to the screw feed mechanisms 35 and 45 increases, the amount of displacement of the movable pulleys 32 and 42 increases. Therefore, when the movable pulleys 32 and 42 are displaced in the directions of the rotation axes X1 and X2, The output torque of the motor with the largest maximum number of revolutions (transmission motor 7) is input to the screw feed mechanisms 35 and 45.
 また、可動プーリ32、42を回転軸X1、X2方向の所定位置で保持する場合には、遊星歯車機構6で調整されたモータの出力トルク(回転トルク)が、ネジ送り機構35、45により、外側部材37、47を回転軸X1、X2方向の所定位置で保持する保持力(外側部材37、47の回転を規制する規制力)に変換されて、外側部材37と外側部材47の回転軸X1、X2方向の変位が規制される。
 ここで、ネジ送り機構35、45に入力されるトルクが大きいほど、可動プーリ32、42の変位を規制する力が強くなるので、可動プーリ32、42を回転軸X1、X2方向の所定位置で保持する際には、最大出力トルクの大きいモータ(クランプ用モータ8)の出力トルクを、ネジ送り機構35、45に入力するようにしている。
When the movable pulleys 32 and 42 are held at predetermined positions in the directions of the rotation axes X1 and X2, the output torque (rotational torque) of the motor adjusted by the planetary gear mechanism 6 is adjusted by the screw feed mechanisms 35 and 45. The outer member 37, 47 is converted into a holding force that holds the outer member 37, 47 at a predetermined position in the direction of the rotation axis X1, X2 (regulation force that restricts the rotation of the outer member 37, 47), and the rotation axis X1 of the outer member 37 and the outer member 47 , Displacement in the X2 direction is restricted.
Here, the greater the torque input to the screw feed mechanisms 35 and 45, the stronger the force that regulates the displacement of the movable pulleys 32 and 42. Therefore, the movable pulleys 32 and 42 are moved at predetermined positions in the directions of the rotation axes X1 and X2. At the time of holding, the output torque of the motor (clamping motor 8) having a large maximum output torque is input to the screw feed mechanisms 35 and 45.
 実施の形態では、遊星歯車機構6から出力される出力トルクの調整を、モータ(変速用モータ7、クランプ用モータ8)の駆動を制御する制御装置9が行うようになっている。
 制御装置9によるモータ(変速用モータ7、クランプ用モータ8)の制御態様として、(A)バリエータ2の変速比を変化させるための態様(通常変速モード)と、(B)バリエータ2の変速比を保持するための態様(変速比固定モード)と、(C)バリエータ2の変速比を速やかに変化させるための態様(変速アシストモード)と、が用意されている。
In the embodiment, adjustment of the output torque output from the planetary gear mechanism 6 is performed by the control device 9 that controls the drive of the motors (shifting motor 7 and clamping motor 8).
As control modes of the motors (shifting motor 7 and clamping motor 8) by the control device 9, (A) a mode for changing the gear ratio of the variator 2 (normal transmission mode), and (B) a gear ratio of the variator 2 Are prepared (speed change ratio fixed mode), and (C) an aspect (speed change assist mode) for quickly changing the speed change ratio of the variator 2 is prepared.
 図3は、制御装置9によるモータ(変速用モータ7、クランプ用モータ8)の制御態様を説明する図であって、モータ(変速用モータ7、クランプ用モータ8)と、制御態様との関係を説明する関係図である。
 図4は、変速用の出力トルクを、遊星歯車機構6から出力させる態様でのトルクの伝達経路を説明する図である。
 図5は、クランプ用の出力トルクを、遊星歯車機構6から出力させる態様でのトルクの伝達経路を説明する図である。
FIG. 3 is a diagram for explaining the control mode of the motor (shifting motor 7 and clamping motor 8) by the control device 9, and the relationship between the motor (shifting motor 7 and clamping motor 8) and the control mode. FIG.
FIG. 4 is a diagram for explaining a torque transmission path in a mode in which the output torque for shifting is output from the planetary gear mechanism 6.
FIG. 5 is a diagram for explaining a torque transmission path in a mode in which the output torque for clamping is output from the planetary gear mechanism 6.
[通常変速モード]
 図3および図4に示すように、通常変速モードでは、制御装置9は、クランプ用モータ8で保持トルクを発生させると共に、変速用モータ7を駆動(正回転または逆回転)させる。つまり、ベルトの挟持力をクランプ用モータ8で発生させる一方、変速用モータ7のトルクに基づきバリエータ2の変速を行う。即ち、変速用モータ7のトルクを変動させることにより、プライマリプーリ3とセカンダリプーリ4との間に差推力を発生させることでバリエータ2の変速が行われる。
 この場合には、変速用モータ7の出力トルク(出力回転)が、モータピニオン72と歯部61とを介してリングギアRに入力されて、リングギアRが回転軸X回りに回転する。
 そうすると、リングギアRに連結された環状のギア62が、リングギアRと同じ方向に回転軸X回りに回転すると共に、リングギアRの内歯(図示せず)に噛合したピニオンギアPが、自転軸Xc回りに回転することになる。
[Normal shift mode]
As shown in FIG. 3 and FIG. 4, in the normal speed change mode, the control device 9 generates a holding torque by the clamping motor 8 and drives (forward or reverse) the speed changing motor 7. That is, the clamping force of the belt is generated by the clamping motor 8 while the variator 2 is shifted based on the torque of the shifting motor 7. That is, the variator 2 is shifted by changing the torque of the transmission motor 7 to generate a differential thrust between the primary pulley 3 and the secondary pulley 4.
In this case, the output torque (output rotation) of the speed change motor 7 is input to the ring gear R via the motor pinion 72 and the tooth portion 61, and the ring gear R rotates about the rotation axis X.
Then, the annular gear 62 connected to the ring gear R rotates around the rotation axis X in the same direction as the ring gear R, and the pinion gear P meshed with the inner teeth (not shown) of the ring gear R It rotates about the rotation axis Xc.
 ここで、ピニオンギアPが外歯(図示せず)に噛合したサンギアSは、クランプ用モータ8の出力軸81に連結されており、サンギアSは、回転軸X回りの回転が規制されている。
 そのため、リングギアRから伝達された出力回転でピニオンギアPが自転軸Xc回りに回転すると、ピニオンギアPを支持するピニオンキャリアPCは、リングギアRと同じ方向に回転軸X回りに回転することになる。
 そうすると、ピニオンキャリアPCに、回転伝達軸63を介して連結されたギア64と、リングギアRに連結されたギア62とが、回転軸X回りの同方向に回転することになる。
Here, the sun gear S in which the pinion gear P meshes with external teeth (not shown) is connected to the output shaft 81 of the clamping motor 8, and the rotation of the sun gear S around the rotation axis X is restricted. .
Therefore, when the pinion gear P rotates about the rotation axis Xc by the output rotation transmitted from the ring gear R, the pinion carrier PC supporting the pinion gear P rotates about the rotation axis X in the same direction as the ring gear R. become.
Then, the gear 64 connected to the pinion carrier PC via the rotation transmission shaft 63 and the gear 62 connected to the ring gear R rotate in the same direction around the rotation axis X.
 ギア64とギア62は、それぞれネジ送り機構35、45の外側部材37、47に回転伝達可能に噛合している。そのため、ギア64、ギア62の回転軸X回りの回転(出力トルク)が、ネジ送り機構35、45により、外側部材37、47の回転軸X1、X2方向への変位に変換されることになる。 The gear 64 and the gear 62 mesh with the outer members 37 and 47 of the screw feed mechanisms 35 and 45, respectively, so as to be able to transmit rotation. Therefore, rotation (output torque) around the rotation axis X of the gear 64 and the gear 62 is converted into displacement of the outer members 37 and 47 in the rotation axis X1 and X2 directions by the screw feed mechanisms 35 and 45. .
 例えば、外側部材37の押圧部371が、可動プーリ32のシーブ部322を押圧して、V溝33を狭める方向に可動プーリ32を変位させる場合には、外側部材47の押圧部471が、可動プーリ42のシーブ部422から離間して、V溝43を拡幅させる方向への可動プーリ42の変位を許容するので、可動プーリ42は、ベルト5から作用する押圧力で、V溝43を拡幅する方向に変位することになる。
 これにより、プライマリプーリ3とセカンダリプーリ4でのベルト5の巻き掛け半径がそれぞれ変化して、バリエータ2の変速比が変速されることになる。
For example, when the pressing portion 371 of the outer member 37 presses the sheave portion 322 of the movable pulley 32 to displace the movable pulley 32 in the direction of narrowing the V-groove 33, the pressing portion 471 of the outer member 47 is movable. Since the movable pulley 42 is allowed to move away from the sheave portion 422 of the pulley 42 in the direction in which the V-groove 43 is widened, the movable pulley 42 widens the V-groove 43 by the pressing force acting from the belt 5. Will be displaced in the direction.
As a result, the wrapping radii of the belt 5 at the primary pulley 3 and the secondary pulley 4 change, and the transmission ratio of the variator 2 is changed.
 ちなみに、外側部材37の押圧部371が、可動プーリ32のシーブ部322から離間して、V溝33を拡幅させる方向への可動プーリ32の変位を許容する場合には、可動プーリ32が、ベルト5から作用する押圧力で、V溝33を拡幅する方向に変位する一方で、外側部材47の押圧部471が、可動プーリ42のシーブ部422を押圧して、V溝43を狭める方向に可動プーリ42が変位することになる。 Incidentally, when the pressing portion 371 of the outer member 37 is separated from the sheave portion 322 of the movable pulley 32 and allows the displacement of the movable pulley 32 in the direction in which the V-groove 33 is widened, the movable pulley 32 is connected to the belt. 5 is displaced in the direction of widening the V-groove 33, while the pressing portion 471 of the outer member 47 presses the sheave portion 422 of the movable pulley 42 to move in the direction of narrowing the V-groove 43. The pulley 42 is displaced.
 このように、通常変速モードでは、制御装置9が、クランプ用モータ8で保持トルクを発生させると共に、変速用モータ7を駆動(正回転または逆回転)させる結果、プライマリプーリ3とセカンダリプーリ4との間に差推力が発生して、バリエータ2の変速が行われる。 As described above, in the normal speed change mode, the control device 9 generates the holding torque by the clamping motor 8 and drives (forward or reverse) the speed changing motor 7. As a result, the primary pulley 3, the secondary pulley 4, During this time, a differential thrust is generated, and the variator 2 is shifted.
[変速比固定モード]
 変速比固定モードは、変速の終了後に変速比を固定させるための推力を生じさせるために、実施される。
 図3および図5に示すように、この変速比固定モードでは、制御装置9はクランプ用モータ8にて発生するトルク(保持トルク)に基づきバリエータ2の変速比を固定する。
 なお、保持トルクを安定させるため、変速用モータ7でも所定のトルクを発生させておくことが好ましい。つまり、変速比固定モードでは、クランプ用モータ8及び変速用モータ7の双方にトルクが発生し、且つ、クランプ用モータ8及び変速用モータ7の双方とも回転しない状態(固定状態)となる。
 この場合には、クランプ用モータ8の出力トルク(保持トルク)が、サンギアSに入力されて、サンギアSを介してトルクが伝達される。
 そうすると、サンギアSの外歯(図示せず)に噛合したピニオンギアPにもトルクが伝達されることになる。
[Gear ratio fixed mode]
The speed ratio fixing mode is performed to generate a thrust for fixing the speed ratio after the end of the speed change.
As shown in FIGS. 3 and 5, in this speed ratio fixing mode, the control device 9 fixes the speed ratio of the variator 2 based on the torque (holding torque) generated by the clamping motor 8.
In order to stabilize the holding torque, it is preferable that a predetermined torque is also generated in the speed change motor 7. That is, in the fixed gear ratio mode, torque is generated in both the clamping motor 8 and the transmission motor 7 and both the clamping motor 8 and the transmission motor 7 are not rotated (fixed state).
In this case, the output torque (holding torque) of the clamping motor 8 is input to the sun gear S, and the torque is transmitted via the sun gear S.
Then, torque is also transmitted to the pinion gear P meshed with the external teeth (not shown) of the sun gear S.
 ここで、ピニオンギアPが内歯(図示せず)に噛合したリングギアRは、モータピニオン72と歯部61とを介して回転伝達可能な変速用モータ7から、リングギアRの回転を阻止する方向のトルクが入力されて、回転が規制されている。
 そのため、クランプ用モータ8の出力トルク(保持トルク)は、サンギアS、ピニオンギアP、ピニオンキャリアPCの順番で伝達されたのち、最終的にギア64に伝達される
Here, the ring gear R in which the pinion gear P meshes with the internal teeth (not shown) prevents the rotation of the ring gear R from the speed change motor 7 that can transmit the rotation via the motor pinion 72 and the tooth portion 61. Rotation is regulated by inputting torque in the direction of rotation.
Therefore, the output torque (holding torque) of the clamping motor 8 is transmitted to the gear 64 after being transmitted in the order of the sun gear S, the pinion gear P, and the pinion carrier PC.
 ギア64は、ネジ送り機構45の外側部材47に回転伝達可能に噛合している。そのため、このギア64に伝達されたクランプ用モータ8の出力トルク(保持トルク)は、ネジ送り機構45により、外側部材47の回転軸X2方向への変位力に変換されることになる。 The gear 64 meshes with the outer member 47 of the screw feed mechanism 45 so as to be able to transmit rotation. Therefore, the output torque (holding torque) of the clamping motor 8 transmitted to the gear 64 is converted into a displacement force of the outer member 47 in the direction of the rotation axis X2 by the screw feed mechanism 45.
 例えば、ギア64に伝達されたトルクの方向が、図5において矢印CCW方向であり、ネジ送り機構45側の外側部材47に生じる変位力の方向が、図中矢印M1で示す方向(可動プーリ42のシーブ部422を押圧部471で押圧する方向)である場合には、押圧部471からシーブ部422を介してベルト5に作用する押圧力F(図5参照)は、ベルト5が巻き掛けられたプライマリプーリ3に作用することになる(図中、実線太矢印参照)。 For example, the direction of the torque transmitted to the gear 64 is the arrow CCW direction in FIG. 5, and the direction of the displacement force generated in the outer member 47 on the screw feed mechanism 45 side is the direction indicated by the arrow M1 in the drawing (the movable pulley 42). The pressing force F (see FIG. 5) acting on the belt 5 from the pressing portion 471 via the sheave portion 422 is wound around the belt 5. It acts on the primary pulley 3 (see the solid line thick arrow in the figure).
 プライマリプーリ3では、ベルト5を介して、押圧力Fが、可動プーリ32をV溝33の溝幅を広げる方向に変位させる方向に作用して、可動プーリ32のシーブ部322を、ネジ送り機構35の外側部材37(押圧部371:図2の(a)参照)に圧接させることになる。
 その結果、ネジ送り機構35側の外側部材37には、押圧部371をシーブ部322から離間させる方向の応力が、可動プーリ32側から作用することになる。
In the primary pulley 3, the pressing force F acts via the belt 5 in the direction of displacing the movable pulley 32 in the direction of widening the groove width of the V groove 33, so that the sheave portion 322 of the movable pulley 32 is moved to the screw feed mechanism. The outer member 37 (pressing portion 371: see FIG. 2A) is brought into pressure contact.
As a result, the stress in the direction in which the pressing portion 371 is separated from the sheave portion 322 acts on the outer member 37 on the screw feed mechanism 35 side from the movable pulley 32 side.
 ここで、ギア64に伝達されたトルクの方向が矢印CCW方向である場合には、リングギアRには、当該リングギアRの回転を規制するために、変速用モータ7から、矢印CW方向の保持トルクが作用している。
 そのため、このリングギアRに連結されたギア62には、当該ギア62を、矢印CW方向(ギア64の回転方向とは反対方向)に回転させる方向の保持トルクが作用している。
Here, when the direction of the torque transmitted to the gear 64 is in the direction of the arrow CCW, the ring gear R receives from the transmission motor 7 in the direction of the arrow CW in order to restrict the rotation of the ring gear R. Holding torque is acting.
Therefore, a holding torque in a direction for rotating the gear 62 in the direction of arrow CW (the direction opposite to the rotation direction of the gear 64) acts on the gear 62 connected to the ring gear R.
 そうすると、ギア62に伝達された保持トルクは、ネジ送り機構35により、外側部材37の回転軸X1方向への変位力に変換されて、ネジ送り機構35側の外側部材37には、押圧部371をシーブ部322に当接させる方向の応力F1(図5参照)が作用することになる。 Then, the holding torque transmitted to the gear 62 is converted into a displacement force in the direction of the rotation axis X1 of the outer member 37 by the screw feeding mechanism 35, and the pressing member 371 is applied to the outer member 37 on the screw feeding mechanism 35 side. The stress F1 (see FIG. 5) in the direction of contacting the sheave portion 322 is applied.
 その結果、シーブ部322には、溝幅33を狭める方向の押圧力F1が、ネジ送り機構35側から作用する一方で、溝幅33を広げる方向の押圧力Fが、ベルトV側から作用することになる。 As a result, the pressing force F1 in the direction of narrowing the groove width 33 acts on the sheave portion 322 from the screw feed mechanism 35 side, while the pressing force F in the direction of widening the groove width 33 acts on the belt V side. It will be.
 実施の形態では、変速用モータ7が発生させる保持トルクにより生じる押圧力F1が、クランプ用モータ8が発生させる回転トルクにより生じる押圧力Fと釣り合うように、設定されている。
 そのため、変速比固定モードでは、プライマリプーリ3の溝幅33とセカンダリプーリ4の溝幅43とが、変更されずに保持される。
In the embodiment, the pressing force F1 generated by the holding torque generated by the speed change motor 7 is set so as to balance the pressing force F generated by the rotational torque generated by the clamping motor 8.
Therefore, in the gear ratio fixed mode, the groove width 33 of the primary pulley 3 and the groove width 43 of the secondary pulley 4 are maintained without being changed.
 さらに、変速比固定モードでは、クランプ用モータ8の出力トルクが、遊星歯車機構6、ネジ送り機構45、セカンダリプーリ4(可動プーリ42)、ベルト5、プライマリプーリ3(可動プーリ32)、ネジ送り機構35、遊星歯車機構6の順番で循環(ループ)することになる。
 そうすると、遊星歯車機構6からの出力トルクが増幅されて、ベルト5を保持する保持力が高くなるので、可動プーリ32、42の回転軸X1、X2方向の移動を確実に規制して、バリエータ2における変速比が保持される。
Further, in the fixed gear ratio mode, the output torque of the clamping motor 8 is the planetary gear mechanism 6, the screw feed mechanism 45, the secondary pulley 4 (movable pulley 42), the belt 5, the primary pulley 3 (movable pulley 32), the screw feed. Circulation (loop) is performed in the order of the mechanism 35 and the planetary gear mechanism 6.
Then, the output torque from the planetary gear mechanism 6 is amplified and the holding force for holding the belt 5 is increased. Therefore, the movement of the movable pulleys 32 and 42 in the directions of the rotation axes X1 and X2 is reliably restricted, and the variator 2 Is maintained.
[変速アシストモード]
 変速アシストモードは、変速用モータ7のトルクに基づきバリエータ2を変速させる際に、クランプ用モータ8を制御してプライマリプーリ3とセカンダリプーリ5との間の差推力を増加させ、変速速度を上昇させるモードである。具体的には、通常変速の場合と比較してクランプ用モータ8の保持トルクを減少させることにより、プライマリプーリ3とセカンダリプーリ4との間の差推力を増加させる。なお、変速速度の上昇が求められる制御指示として、例えば、キックダウン指示等がある。
 この場合には、変速用モータ7の出力トルク(出力回転)が、モータピニオン72と歯部61とを介してリングギアRに入力されて、リングギアRが回転軸X回りに回転する。
 そうすると、リングギアRの内歯(図示せず)に噛合したピニオンギアPが、自転軸Xc回りに回転することになる。
[Shift assist mode]
In the shift assist mode, when shifting the variator 2 based on the torque of the shift motor 7, the clamping motor 8 is controlled to increase the differential thrust between the primary pulley 3 and the secondary pulley 5 and increase the shift speed. It is a mode to make it. Specifically, the thrust difference between the primary pulley 3 and the secondary pulley 4 is increased by reducing the holding torque of the clamping motor 8 as compared with the case of the normal shift. An example of a control instruction that requires an increase in shift speed is a kick down instruction.
In this case, the output torque (output rotation) of the speed change motor 7 is input to the ring gear R via the motor pinion 72 and the tooth portion 61, and the ring gear R rotates about the rotation axis X.
Then, the pinion gear P meshed with the inner teeth (not shown) of the ring gear R rotates about the rotation axis Xc.
 ここで、ピニオンギアPが外歯(図示せず)に噛合したサンギアSは、クランプ用モータ8の出力軸81に連結されており、サンギアSは、クランプ用モータ8のトルク制御により、リングギアRの回転方向とは逆方向に回転している。
 そのため、リングギアRから伝達された出力回転でピニオンギアPが自転軸Xc回りに回転して、ピニオンギアPを支持するピニオンキャリアPCが回転軸X回りに回転すると、サンギアSの逆方向の回転が、ピニオンギアPの自転をアシスト(促進)する方向に作用する結果、ピニオンキャリアPCの回転軸X回りの回転が進められる(アシストされる)ことになる。
Here, the sun gear S in which the pinion gear P meshes with external teeth (not shown) is connected to the output shaft 81 of the clamping motor 8, and the sun gear S is a ring gear by torque control of the clamping motor 8. It rotates in the direction opposite to the rotation direction of R.
Therefore, when the pinion gear P rotates around the rotation axis Xc by the output rotation transmitted from the ring gear R, and the pinion carrier PC supporting the pinion gear P rotates around the rotation axis X, the sun gear S rotates in the reverse direction. However, as a result of acting in the direction of assisting (promoting) the rotation of the pinion gear P, the rotation of the pinion carrier PC around the rotation axis X is advanced (assisted).
 そうすると、ピニオンキャリアPCに、回転伝達軸63を介して連結されたギア64と、ギア62とが、変速用モータ7の出力トルクのみが遊星歯車機構6に入力されている場合よりも速い回転速度で、回転軸X回りに回転することになる。
 その結果、ギア64、ギア62からネジ送り機構35、45の外側部材37、47に伝達される回転速度が速くなって、外側部材37、47の回転軸X1、X2方向への変位速度が上昇することになるので、変速用モータ7の出力トルクのみが遊星歯車機構6に入力されている場合よりも早く、V溝33、43の溝幅が変更されることになる。
 よって、変速アシストモードの場合には、通常の変速モードよりも短時間で、V溝33,43の溝幅が、目的の変速比を実現する溝幅まで到達するので、変速比の変更をより短時間で行うことができるようになっている。
Then, the gear 64 connected to the pinion carrier PC via the rotation transmission shaft 63 and the gear 62 have a higher rotational speed than when only the output torque of the speed change motor 7 is input to the planetary gear mechanism 6. Thus, it rotates around the rotation axis X.
As a result, the rotational speed transmitted from the gear 64 and the gear 62 to the outer members 37 and 47 of the screw feed mechanisms 35 and 45 is increased, and the displacement speed of the outer members 37 and 47 in the directions of the rotation axes X1 and X2 is increased. Therefore, the groove widths of the V grooves 33 and 43 are changed earlier than when only the output torque of the transmission motor 7 is input to the planetary gear mechanism 6.
Therefore, in the gear shift assist mode, the groove widths of the V grooves 33 and 43 reach the groove width that achieves the target gear ratio in a shorter time than in the normal gear shift mode. It can be done in a short time.
 以上の通り、実施の形態では、
(1)変速用モータ7(第1モータ)と、
 クランプ用モータ8(第2モータと、
 プライマリプーリ3(第1プーリ)と、セカンダリプーリ4(第2プーリ)と、プライマリプーリ3とセカンダリプーリ4とに巻き掛けられたベルト5と、を有するバリエータ2と、
 変速用モータ7の出力トルクに基づきバリエータ2を変速させる一方、クランプ用モータ8の出力トルクに基づきバリエータ2の変速比を固定する伝達機構(遊星歯車機構6、ネジ送り機構35、45)と、を有する構成の無段変速機1とした。
As described above, in the embodiment,
(1) a transmission motor 7 (first motor);
Clamping motor 8 (second motor,
A variator 2 having a primary pulley 3 (first pulley), a secondary pulley 4 (second pulley), and a belt 5 wound around the primary pulley 3 and the secondary pulley 4;
A transmission mechanism (planetary gear mechanism 6, screw feed mechanisms 35, 45) for shifting the variator 2 based on the output torque of the transmission motor 7 and fixing the transmission ratio of the variator 2 based on the output torque of the clamping motor 8. A continuously variable transmission 1 having a configuration including
 このように構成すると、クランプ用モータ8と伝達機構とを有することにより、バリエータ2の変速比を固定するときにクランプ力を発生させることができる。
 また、モータ(変速用モータ7、クランプ用モータ8)毎に出力トルクを伝達するための専用の伝達機構を設ける必要が無い。
If comprised in this way, a clamping force can be generated when the gear ratio of the variator 2 is fixed by having the motor 8 for clamping and the transmission mechanism.
Further, it is not necessary to provide a dedicated transmission mechanism for transmitting the output torque for each motor (transmission motor 7 and clamping motor 8).
(2)変速用モータ7の最大回転速度は、クランプ用モータ8の最大回転速度よりも高く、クランプ用モータの最大出力トルクは、変速用モータ7の最大出力トルクよりも高いものとした。 (2) The maximum rotational speed of the transmission motor 7 is higher than the maximum rotational speed of the clamping motor 8, and the maximum output torque of the clamping motor is higher than the maximum output torque of the transmission motor 7.
 このように構成すると、変速用モータ7は、高回転・低トルクとして変速速度を向上させる一方、クランプ用モータ8は、低回転・高トルクとしてクランプ力を向上させる。高回転・高トルクの巨大且つ高消費電力のモータを用意する必要がないので、各モータを小型化し、且つ、低消費電力化することが可能である。 With this configuration, the speed-changing motor 7 improves the speed of shifting with high rotation and low torque, while the clamping motor 8 improves the clamping force with low speed and high torque. Since it is not necessary to prepare a large motor with high rotation and high torque and high power consumption, each motor can be reduced in size and power consumption can be reduced.
(3)バリエータ2の変速中にクランプ用モータ8のトルクを変動させる制御装置9(制御部)を有する構成とした。 (3) The control device 9 (control unit) is configured to vary the torque of the clamping motor 8 during the speed change of the variator 2.
 このように構成すると、クランプ用モータ8のトルクを変動させることにより、可動プーリ32、42の間の差推力が向上し、可動プーリ32、42の溝幅変動速度を速くすることができる。よって、例えば、キックダウン指示があった場合などにLow変速への戻りが良くなる。 With this configuration, by varying the torque of the clamping motor 8, the differential thrust between the movable pulleys 32 and 42 can be improved, and the groove width variation speed of the movable pulleys 32 and 42 can be increased. Therefore, for example, when there is a kick down instruction, the return to the low shift is improved.
(4)伝達機構は、
 共線図上での並び順に、リングギアR(第1要素)、ピニオンキャリアPC(第2要素)、サンギアS(第3要素)を有する遊星歯車機構6(トルク伝達機構)と、
 遊星歯車機構6からの出力トルクを、プライマリプーリ3の推力に変換するネジ送り機構35と、
 遊星歯車機構6からの出力トルクを、セカンダリプーリ4の推力に変換するネジ送り機構45と、を有し
 変速用モータ7の出力トルクは、リングギアRへ伝達され、
 クランプ用モータ8の出力トルクは、サンギアSへ伝達され、
 ピニオンキャリアPCの出力トルクは、ネジ送り機構45へ伝達され、
 リングギアRの出力トルクは、ネジ送り機構35へ伝達される構成とした。
(4) The transmission mechanism is
A planetary gear mechanism 6 (torque transmission mechanism) having a ring gear R (first element), a pinion carrier PC (second element), and a sun gear S (third element) in the arrangement order on the alignment chart;
A screw feed mechanism 35 for converting the output torque from the planetary gear mechanism 6 into the thrust of the primary pulley 3,
A screw feed mechanism 45 that converts the output torque from the planetary gear mechanism 6 into the thrust of the secondary pulley 4, and the output torque of the transmission motor 7 is transmitted to the ring gear R;
The output torque of the clamping motor 8 is transmitted to the sun gear S,
The output torque of the pinion carrier PC is transmitted to the screw feed mechanism 45,
The output torque of the ring gear R is transmitted to the screw feed mechanism 35.
 このように構成すると、ネジ送り機構35、45へ伝達される出力トルクの調整を、ひとつの遊星歯車機構6で行うことができるので、モータ(変速用モータ7、クランプ用モータ8)毎に出力トルクを伝達するための専用の伝達機構を設ける必要が無い。 If comprised in this way, since adjustment of the output torque transmitted to the screw feed mechanisms 35 and 45 can be performed with one planetary gear mechanism 6, it outputs for every motor (the motor 7 for shifting, the motor 8 for clamping). There is no need to provide a dedicated transmission mechanism for transmitting torque.
(5)回転軸X1(第1回転軸)方向から固定プーリ31(第1固定プーリ)の軸部311に外挿された可動プーリ32(可動プーリ32)が、固定プーリ31との相対回転が規制された状態で回転軸X1方向に移動可能に設けられており、固定プーリ31のシーブ部312と可動プーリ32のシーブ部322との間のV溝33の溝幅が、可動プーリ32の回転軸X1方向の位置に応じて変化するプライマリプーリ3(第1プーリ)と、
 回転軸X2(第2回転軸)方向から固定プーリ41(第2固定プーリ)の軸部411に外挿された可動プーリ42(可動プーリ42)が、固定プーリ41との相対回転が規制された状態で回転軸X2方向に移動可能に設けられており、固定プーリ41のシーブ部412と可動プーリ42のシーブ部422との間のV溝43の溝幅が、可動プーリ42の回転軸X2方向の位置に応じて変化するセカンダリプーリ4(第2プーリ)と、
 プライマリプーリ3のV溝33とセカンダリプーリ4のV溝43に巻き掛けたベルト5と、を有するバリエータ2を備え、
 プライマリプーリ3のV溝33とセカンダリプーリ4のV溝43の溝幅を変更して、プライマリプーリ3とセカンダリプーリ4におけるベルト5の巻き掛け半径を変更することで、プライマリプーリ3とセカンダリプーリ4との間での回転(トルク)の伝達を、所望の変速比で行うように構成されたベルト式の無段変速機1において、
 変速用モータ7(第1モータ)と、
 最大回転速度が変速用モータ7よりも小さく、最大出力トルクが変速用モータ7よりも大きいクランプ用モータ8(第2モータ)と、
 変速用モータ7の出力トルクとクランプ用モータ8の出力トルクのうちの少なくとも一方を出力する遊星歯車機構6と、
 遊星歯車機構6の出力トルクを、可動プーリ32をV溝33の溝幅を狭める方向に押圧する推力に変換可能なネジ送り機構35(第1変換機構)と、
 遊星歯車機構6の出力トルクを、可動プーリ42をV溝43の溝幅を狭める方向に押圧する推力に変換可能なネジ送り機構45(第2変換機構)と、
 変速用モータ7とクランプ用モータ8の駆動を制御する制御装置9(制御手段)と、を備え、
 制御装置9は、
 変速比を変更するために、可動プーリ32および可動プーリ42を回転軸X1、X2方向に変位させる際には、変速用モータ7の出力トルクを遊星歯車機構6から出力させ、
 変速比を保持するために、可動プーリ32および可動プーリ42の回転軸X1、X2方向の位置を保持する際には、クランプ用モータ8の出力トルクを遊星歯車機構6から出力させる構成の無段変速機1とした。
(5) The movable pulley 32 (movable pulley 32) externally attached to the shaft portion 311 of the fixed pulley 31 (first fixed pulley) from the direction of the rotation axis X1 (first rotating shaft) is rotated relative to the fixed pulley 31. It is provided to be movable in the direction of the rotation axis X <b> 1 in a restricted state, and the groove width of the V groove 33 between the sheave portion 312 of the fixed pulley 31 and the sheave portion 322 of the movable pulley 32 is the rotation of the movable pulley 32. A primary pulley 3 (first pulley) that changes according to the position in the direction of the axis X1,
Relative rotation of the movable pulley 42 (movable pulley 42) inserted into the shaft portion 411 of the fixed pulley 41 (second fixed pulley) from the direction of the rotation axis X2 (second rotary shaft) with the fixed pulley 41 is restricted. The groove width of the V-groove 43 between the sheave portion 412 of the fixed pulley 41 and the sheave portion 422 of the movable pulley 42 is set in the direction of the rotation axis X2 of the movable pulley 42. Secondary pulley 4 (second pulley) that changes according to the position of
A variator 2 having a V groove 33 of the primary pulley 3 and a belt 5 wound around the V groove 43 of the secondary pulley 4;
By changing the groove width of the V-groove 33 of the primary pulley 3 and the V-groove 43 of the secondary pulley 4 and changing the wrapping radius of the belt 5 between the primary pulley 3 and the secondary pulley 4, the primary pulley 3 and the secondary pulley 4. In the belt-type continuously variable transmission 1 configured to transmit the rotation (torque) between the first and second gears at a desired speed ratio,
A speed change motor 7 (first motor);
A clamping motor 8 (second motor) having a maximum rotation speed smaller than that of the transmission motor 7 and a maximum output torque larger than that of the transmission motor 7;
A planetary gear mechanism 6 that outputs at least one of an output torque of the transmission motor 7 and an output torque of the clamping motor 8;
A screw feed mechanism 35 (first conversion mechanism) capable of converting the output torque of the planetary gear mechanism 6 into a thrust force that presses the movable pulley 32 in the direction of narrowing the groove width of the V-groove 33;
A screw feed mechanism 45 (second conversion mechanism) capable of converting the output torque of the planetary gear mechanism 6 into a thrust force that presses the movable pulley 42 in the direction of narrowing the groove width of the V-groove 43;
A control device 9 (control means) for controlling the drive of the transmission motor 7 and the clamping motor 8;
The control device 9
When the movable pulley 32 and the movable pulley 42 are displaced in the directions of the rotation axes X1 and X2 in order to change the speed ratio, the output torque of the speed change motor 7 is output from the planetary gear mechanism 6,
In order to maintain the speed ratio, the stepless configuration is configured to output the output torque of the clamping motor 8 from the planetary gear mechanism 6 when the positions of the movable pulley 32 and the movable pulley 42 in the directions of the rotation axes X1 and X2 are maintained. A transmission 1 was obtained.
 変速用モータ7の最大回転数は、クランプ用モータ8の最大回転数よりも大きく、変速用モータ7の最大出力トルクは、クランプ用モータ8の最大出力トルクよりも小さいので、変速用モータ7は、可動プーリ32と可動プーリ42をV溝33、43の溝幅を狭める方向に変位させるのに適した回転トルクを出力するモータであり、クランプ用モータ8は、可動プーリ32と可動プーリ42をV溝33、43の溝幅を所定幅で保持するために、可動プーリ32と可動プーリ42の回転軸方向の位置を保持するのに適した回転トルクを出力するモータである。
 よって、上記のように構成して、可動プーリ32および可動プーリ42をV溝33、43の溝幅を狭める方向に変位させる際には、変速用モータ7の出力トルクを遊星歯車機構6から出力させ、可動プーリ32および可動プーリ42の位置を保持する際には、クランプ用モータ8の出力トルクを遊星歯車機構6から出力させることで、目的に適した回転トルクを出力させることができる。
The maximum rotational speed of the transmission motor 7 is larger than the maximum rotational speed of the clamping motor 8, and the maximum output torque of the transmission motor 7 is smaller than the maximum output torque of the clamping motor 8. , A motor that outputs a rotational torque suitable for displacing the movable pulley 32 and the movable pulley 42 in the direction of narrowing the groove width of the V grooves 33 and 43. The clamping motor 8 includes the movable pulley 32 and the movable pulley 42. In order to hold the groove widths of the V grooves 33 and 43 at a predetermined width, the motor outputs a rotational torque suitable for holding the positions of the movable pulley 32 and the movable pulley 42 in the rotation axis direction.
Therefore, when the movable pulley 32 and the movable pulley 42 are displaced in the direction of narrowing the groove widths of the V- grooves 33 and 43 with the configuration as described above, the output torque of the speed change motor 7 is output from the planetary gear mechanism 6. When the positions of the movable pulley 32 and the movable pulley 42 are maintained, the output torque of the clamping motor 8 is output from the planetary gear mechanism 6 so that the rotational torque suitable for the purpose can be output.
 一つのモータで、可動プーリ32と可動プーリ42の位置の変位と保持とを行う場合には、最大回転数が大きく、かつ最大出力トルクが大きい大型の高性能モータを用意する必要があるが、無段変速機の変速機ケース内の限られたスペースに、大型のモータを設置することは難しく、大型のモータを採用すると、変速機ケースが大型化してしまう。
 これに対して、最大回転数や、最大出力トルクに特化した専用のモータは、高性能モータよりも小型であるので、専用のモータが二つ必要となっても、無段変速機の変速機ケース内の限られたスペースに設置することは、大型のモータの場合よりも容易である。
 よって、変速機ケースを大型化させることなく、可動プーリ32と可動プーリ42の位置の変位と保持とを行うことが可能になる。
In the case of performing displacement and holding of the positions of the movable pulley 32 and the movable pulley 42 with one motor, it is necessary to prepare a large high-performance motor with a large maximum rotational speed and a large maximum output torque. It is difficult to install a large motor in a limited space in the transmission case of the continuously variable transmission. If a large motor is used, the transmission case becomes large.
On the other hand, a dedicated motor specialized for maximum rotation speed and maximum output torque is smaller than a high-performance motor, so even if two dedicated motors are required, the speed of the continuously variable transmission Installation in a limited space in the machine case is easier than in the case of a large motor.
Therefore, the displacement and holding of the positions of the movable pulley 32 and the movable pulley 42 can be performed without increasing the size of the transmission case.
 また、高回転かつ高トルクのモータの仕事を、高回転かつ低トルクの変速用モータ7と、低回転かつ高トルクのクランプ用モータ8で分担することで、高回転かつ高トルクのモータよりも小さいサイズのモータの採用が可能となる。
 これにより、無段変速機への搭載性が向上すると共に、モータの消費エネルギの低減が可能になるので、無段変速機を搭載する車両の燃費向上が期待される。
In addition, the work of the high-rotation and high-torque motor is shared by the high-rotation and low-torque transmission motor 7 and the low-rotation and high-torque clamping motor 8, so that the work of the high-rotation and high-torque motor can be A small size motor can be used.
As a result, the mountability to the continuously variable transmission is improved and the energy consumption of the motor can be reduced, so that the fuel efficiency of a vehicle equipped with the continuously variable transmission is expected.
 さらに、クランプ用モータ8の出力トルクは、変速の完了時に推力を発生させるために遊星歯車機構6から出力されるので、ベルト5を把持する推力が過推力となることを好適に防止できる。これにより、ベルト5のフリクションが低減するので、無段変速機を搭載する車両の燃費向上が期待される。 Furthermore, since the output torque of the clamping motor 8 is output from the planetary gear mechanism 6 in order to generate a thrust when the shift is completed, it is possible to suitably prevent the thrust for gripping the belt 5 from being an excessive thrust. As a result, the friction of the belt 5 is reduced, so that an improvement in fuel consumption of a vehicle equipped with a continuously variable transmission is expected.
(6)遊星歯車機構6は、共線図上での並び順に、リングギアR(第1要素)、ピニオンキャリアPC(第2要素)、サンギアS(第3要素)を有するシングルピニオン型の遊星歯車機構であり、
 遊星歯車機構6では、
 変速用モータ7の出力軸71との間で回転伝達可能なリングギアRと、クランプ用モータ8の出力軸81との間で回転伝達可能なサンギアSとが、共通の回転軸X上で相対回転可能に設けられていると共に、リングギアRの内歯とサンギアSの外歯とに噛み合うピニオンギアPを、回転軸Xに平行な自転軸Xc回りに自転可能に支持するピニオンキャリアPCが、回転軸X回りに回転可能に設けられており、
 ネジ送り機構35は、リングギアRの出力トルクを、可動プーリ32をV溝33の溝幅を狭める方向に押圧する推力に変換可能であり、
 ネジ送り機構45は、ピニオンキャリアPCの出力トルクを、可動プーリ42をV溝43の溝幅を狭める方向に押圧する推力に変換可能である構成とした。
(6) The planetary gear mechanism 6 is a single pinion type planetary gear having a ring gear R (first element), a pinion carrier PC (second element), and a sun gear S (third element) in the arrangement order on the collinear diagram. A gear mechanism,
In the planetary gear mechanism 6,
A ring gear R that can transmit rotation to and from the output shaft 71 of the speed change motor 7 and a sun gear S that can transmit rotation to and from the output shaft 81 of the clamping motor 8 are relative to each other on the common rotation axis X. A pinion carrier PC that is rotatably provided and supports a pinion gear P that meshes with the inner teeth of the ring gear R and the outer teeth of the sun gear S so as to be able to rotate about a rotation axis Xc parallel to the rotation axis X. It is provided so as to be rotatable around the rotation axis X,
The screw feed mechanism 35 can convert the output torque of the ring gear R into a thrust that presses the movable pulley 32 in the direction of narrowing the groove width of the V groove 33.
The screw feed mechanism 45 is configured to be able to convert the output torque of the pinion carrier PC into a thrust force that presses the movable pulley 42 in the direction of narrowing the groove width of the V groove 43.
 このように構成すると、遊星歯車機構6から出力する出力トルクを、変速用モータ7の出力トルクと、クランプ用モータ8の出力トルクから適切に調整でき、ネジ送り機構35、45への出力トルクの伝達を、ひとつの遊星歯車機構6を用いて行うことができる。
 よって、変速用モータ7とクランプ用モータ8の各々に、出力トルクをネジ送り機構35、45に伝達するための専用の機構を用意する必要が無い。
 また、各ギア(サンギアS、ピニオンギアP、リングギアR)の歯数を設定することで、出力トルクから変換した推力の大きさを所望の大きさに調節できるので、無段変速機の種類毎に推力を最適化することが容易となる。
With this configuration, the output torque output from the planetary gear mechanism 6 can be appropriately adjusted from the output torque of the speed change motor 7 and the output torque of the clamping motor 8, and the output torque to the screw feed mechanisms 35 and 45 can be adjusted. Transmission can be performed using one planetary gear mechanism 6.
Therefore, it is not necessary to prepare a dedicated mechanism for transmitting the output torque to the screw feed mechanisms 35 and 45 in each of the transmission motor 7 and the clamping motor 8.
Also, by setting the number of teeth for each gear (sun gear S, pinion gear P, ring gear R), the magnitude of the thrust converted from the output torque can be adjusted to the desired magnitude, so the type of continuously variable transmission It becomes easy to optimize the thrust every time.
(7)制御装置9は、
 変速比を変更するために、可動プーリ32および可動プーリ42を回転軸X1、X2方向に変位させる際には、
 変速用モータ7の出力トルクでリングギアRを回転させると共に、クランプ用モータ8の保持トルクでサンギアSの回転を規制して、変速用モータ7の出力トルクを遊星歯車機構6から出力させる構成とした。
(7) The control device 9
When the movable pulley 32 and the movable pulley 42 are displaced in the directions of the rotation axes X1 and X2 in order to change the gear ratio,
A structure in which the ring gear R is rotated by the output torque of the transmission motor 7 and the rotation of the sun gear S is regulated by the holding torque of the clamping motor 8 so that the output torque of the transmission motor 7 is output from the planetary gear mechanism 6. did.
 バリエータ2では、プライマリプーリ3とセカンダリプーリ4におけるV溝33、43の溝幅が所望の変速比を実現する溝幅となったときに、可動プーリ32に作用する推力と、可動プーリ42に作用する推力とが釣り合うようにしている。
 そのため、変速用モータ7の出力トルクを変化させると、可動プーリ32に作用する推力と、可動プーリ42に作用する推力とのバランスが崩れて、V溝33、43の溝幅が、推力が釣り合う新たな溝幅へと速やかに変化するので、変速用モータ7の出力トルクを変化させるだけで、所望の変速比を実現できる。
 また、変速用モータ7とクランプ用モータ8の駆動/停止を行うだけで、遊星歯車機構6から出力させる出力トルクを、目的に適した出力トルク(変速に適した出力トルク、変速比の保持に適した出力トルク)にすることができる。
 よって、変速比の変更と保持を頻繁に行う無段変速機に適したバリエータ2となる。
In the variator 2, the thrust acting on the movable pulley 32 and the acting on the movable pulley 42 when the groove widths of the V grooves 33 and 43 in the primary pulley 3 and the secondary pulley 4 become groove widths that realize a desired gear ratio. The thrust to do is balanced.
Therefore, if the output torque of the speed change motor 7 is changed, the balance between the thrust acting on the movable pulley 32 and the thrust acting on the movable pulley 42 is lost, and the groove widths of the V grooves 33 and 43 balance the thrust. Since the groove width is quickly changed to a new groove width, a desired gear ratio can be realized only by changing the output torque of the speed change motor 7.
In addition, the output torque output from the planetary gear mechanism 6 by simply driving / stopping the speed change motor 7 and the clamping motor 8 is used to maintain the output torque suitable for the purpose (the output torque suitable for the speed change and the transmission ratio). Suitable output torque).
Therefore, the variator 2 is suitable for a continuously variable transmission that frequently changes and maintains the gear ratio.
(8)制御装置9は、
 変速比を変更するために、可動プーリ32および可動プーリ42を回転軸X1、X2方向に変位させる際には、
 変速用モータ7の出力トルクでリングギアRを回転させると共に、クランプ用モータ8の出力トルクでサンギアSを、リングギアRの回転軸X回りの回転方向とは逆に回転させて、遊星歯車機構6から出力させる変速用モータ7の出力トルクを増幅する構成とした。
(8) The control device 9
When the movable pulley 32 and the movable pulley 42 are displaced in the directions of the rotation axes X1 and X2 in order to change the gear ratio,
The ring gear R is rotated by the output torque of the transmission motor 7 and the sun gear S is rotated by the output torque of the clamping motor 8 in the direction opposite to the rotation direction of the ring gear R around the rotation axis X, thereby causing a planetary gear mechanism. 6 is configured to amplify the output torque of the speed change motor 7 to be output from 6.
 このように構成すると、リングギアRから伝達された出力回転でピニオンギアPが自転軸Xc回りに回転して、ピニオンギアPを支持するピニオンキャリアPCが回転軸X回りに回転すると、サンギアSの逆回転が、ピニオンギアPの自転をアシスト(促進)する方向に作用する。
 これにより、ピニオンキャリアPCの回転軸X回りの回転を進める(アシストする)方向に、クランプ用モータ8の出力トルクが作用するので、ピニオンキャリアPCに、回転伝達軸63を介して連結されたギア64と、ギア62とが、変速用モータ7のみでピニオンキャリアPCを回転させている場合よりも速い回転速度で、回転軸X回りに回転することになる。
With this configuration, when the pinion gear P rotates about the rotation axis Xc by the output rotation transmitted from the ring gear R, and the pinion carrier PC supporting the pinion gear P rotates about the rotation axis X, the sun gear S The reverse rotation acts in the direction of assisting (promoting) the rotation of the pinion gear P.
As a result, the output torque of the clamping motor 8 acts in the direction of advancing (assisting) the rotation of the pinion carrier PC around the rotation axis X, so that the gear connected to the pinion carrier PC via the rotation transmission shaft 63. 64 and the gear 62 rotate around the rotation axis X at a faster rotational speed than when the pinion carrier PC is rotated only by the speed change motor 7.
 その結果、ギア64、62からネジ送り機構35、45の外側部材37、47に伝達される回転速度が早くなって、外側部材37、47の回転軸X1、X2方向への変位速度が上昇することになるので、変速用モータ7のみを回転駆動している場合よりも速く、V溝33、43の溝幅を変更することができる。
 よって、変速アシストモードの場合には、通常の変速モードよりも短時間で、V溝33、43の溝幅が、目的の変速比を実現する溝幅まで到達するので、変速比の変更をより短時間で行うことができる。
As a result, the rotational speed transmitted from the gears 64 and 62 to the outer members 37 and 47 of the screw feed mechanisms 35 and 45 becomes faster, and the displacement speed of the outer members 37 and 47 in the directions of the rotation axes X1 and X2 increases. Therefore, the groove widths of the V grooves 33 and 43 can be changed faster than when only the speed change motor 7 is rotationally driven.
Therefore, in the gear shift assist mode, the groove widths of the V grooves 33 and 43 reach the groove width that achieves the target gear ratio in a shorter time than in the normal gear shift mode. It can be done in a short time.
 また、急変速時にクランプ用モータ8の出力トルクにより、可動プーリ32、42の変位を促進して、プーリ(プライマリプーリ3、セカンダリプーリ4)間の位相差を作り出すことで、変速比を速やかに変更できるので、変速比のLow側への戻りを速やかに行うことができる。 Moreover, the displacement of the movable pulleys 32 and 42 is promoted by the output torque of the clamping motor 8 during sudden gear shifting, and a phase difference between the pulleys (primary pulley 3 and secondary pulley 4) is created, so that the gear ratio can be quickly increased. Since it can be changed, the gear ratio can be quickly returned to the low side.
(8)制御装置9は、
 可動プーリ32および可動プーリ42の位置を保持する際には、変速用モータ7とクランプ用モータ8を、それぞれ出力トルク(保持トルク)を発生させた状態にして、変速用モータ7の保持トルクでリングギアRの回転を規制すると共に、クランプ用モータ8の保持トルクをサンギアSに入力する構成とし、サンギアSとピニオンギアPとピニオンキャリアPCとギア64とを介して、ネジ送り機構45に伝達されるクランプ用モータ8の保持トルクが、ネジ送り機構45により、セカンダリプーリ3の可動プーリ32をベルト5に押しつける方向に作用しつつ、稼動プーリ32の回転軸X2方向の移動を規制する変位力(推力)に変換されるようにした。
(8) The control device 9
When the positions of the movable pulley 32 and the movable pulley 42 are held, the transmission motor 7 and the clamping motor 8 are set in a state where output torque (holding torque) is generated, respectively, and the holding torque of the transmission motor 7 is used. The rotation of the ring gear R is restricted and the holding torque of the clamping motor 8 is input to the sun gear S, and is transmitted to the screw feed mechanism 45 via the sun gear S, the pinion gear P, the pinion carrier PC, and the gear 64. Displacement force that restricts the movement of the operating pulley 32 in the direction of the rotation axis X2 while the holding torque of the clamping motor 8 acts in the direction of pressing the movable pulley 32 of the secondary pulley 3 against the belt 5 by the screw feed mechanism 45. Changed to (thrust).
 このように構成すると、変速用モータ7とクランプ用モータ8の駆動/停止を行うだけで、遊星歯車機構6から、目的に適した出力トルク(変速に適した出力トルク、変速比の保持に適した出力トルク)を調整して出力することができる。
 よって、変速比の変更と保持を頻繁に行う無段変速機に適したバリエータ2となる。
If comprised in this way, it is suitable for holding | maintaining the output torque suitable for the objective (output torque suitable for a gear shift, and a transmission gear ratio) from the planetary gear mechanism 6 only by driving / stopping the gear shifting motor 7 and the clamping motor 8. Output torque) can be adjusted and output.
Therefore, the variator 2 is suitable for a continuously variable transmission that frequently changes and maintains the gear ratio.
(9)ネジ送り機構35(第1変換機構)は、
 遊星歯車機構6の出力トルクで、プライマリプーリ3の回転軸X1回りに回転する外側部材37(第1外側部材)と、
 回転軸X1方向の移動が規制された状態で、外側部材37の内側に配置された内側部材36(第1内側部材)と、
 内側部材36の外周に設けられた螺旋状の凹溝361aと、外側部材37の内周に設けられた螺旋状の凹溝371aとに跨がって配置されて、外側部材37と内側部材36とを相対回転可能に支持する複数のボールBaと、を有すると共に、
 回転軸X1回りに回転する外側部材37を、回転軸X1方向に変位させるボールネジ送り機構である構成とした。
(9) The screw feed mechanism 35 (first conversion mechanism)
An outer member 37 (first outer member) that rotates around the rotation axis X1 of the primary pulley 3 with the output torque of the planetary gear mechanism 6;
An inner member 36 (first inner member) disposed inside the outer member 37 in a state where movement in the direction of the rotation axis X1 is restricted;
The outer member 37 and the inner member 36 are disposed so as to straddle the spiral groove 361 a provided on the outer periphery of the inner member 36 and the spiral groove 371 a provided on the inner periphery of the outer member 37. And a plurality of balls Ba for supporting relative rotation so that
The outer member 37 that rotates around the rotation axis X1 is a ball screw feed mechanism that is displaced in the direction of the rotation axis X1.
 このように構成すると、遊星歯車機構6側から入力された出力トルク(回転トルク)を、外側部材37を回転軸X1方向に変位させる推力に変換して、外側部材37により押された可動プーリ32を、V溝33の溝幅を狭める方向にスムーズに変位させることができる。 If comprised in this way, the output torque (rotation torque) input from the planetary gear mechanism 6 side will be converted into the thrust which displaces the outer side member 37 to the rotating shaft X1 direction, and the movable pulley 32 pushed by the outer side member 37 will be demonstrated. Can be smoothly displaced in the direction of narrowing the groove width of the V-groove 33.
(10)ネジ送り機構45(第2変換機構)は、
 遊星歯車機構6の出力トルクで回転軸X2回りに回転する外側部材47(第2外側部材)と、
 回転軸X2方向の移動が規制された状態で、外側部材47の内側に配置された内側部材36(第2内側部材)と、
 内側部材46の外周に設けられた螺旋状の溝461aと、外側部材47の内周に設けられた螺旋状の溝471aとに跨がって配置されて、外側部材47と内側部材46とを相対回転可能に支持する複数のボールBaと、を有すると共に、
 回転軸X2回りに回転する外側部材47を回転軸X2方向に変位させるボールネジ送り機構である構成とした。
(10) The screw feed mechanism 45 (second conversion mechanism)
An outer member 47 (second outer member) that rotates around the rotation axis X2 by the output torque of the planetary gear mechanism 6;
An inner member 36 (second inner member) disposed inside the outer member 47 in a state where movement in the rotation axis X2 direction is restricted;
The outer member 47 and the inner member 46 are arranged so as to straddle the spiral groove 461a provided on the outer periphery of the inner member 46 and the spiral groove 471a provided on the inner periphery of the outer member 47. A plurality of balls Ba that are rotatably supported, and
The outer member 47 rotating around the rotation axis X2 is configured to be a ball screw feed mechanism that displaces in the direction of the rotation axis X2.
 このように構成すると、遊星歯車機構6側から入力された出力トルク(回転トルク)を、外側部材47を回転軸X2方向に変位させる推力に変換して、外側部材47により押された可動プーリ42を、V溝43の溝幅を狭める方向にスムーズに変位させることができる。 With this configuration, the output torque (rotational torque) input from the planetary gear mechanism 6 side is converted into a thrust that displaces the outer member 47 in the direction of the rotation axis X <b> 2, and the movable pulley 42 pushed by the outer member 47. Can be smoothly displaced in the direction of narrowing the groove width of the V-groove 43.
(11)ネジ送り機構35では、遊星歯車機構6の出力トルクが、可動プーリ32をV溝33の溝幅を狭める方向に押圧する推力に変換された際に、可動プーリ32のシーブ部322に回転軸X1方向から当接してシーブ部322を押圧する当接部371bが、外側部材37に設けられており、
 ネジ送り機構45では、遊星歯車機構6の出力トルクが、可動プーリ42をV溝43の溝幅を狭める方向に押圧する推力に変換された際に、可動プーリ42のシーブ部422に回転軸X1方向から当接してシーブ部422を押圧する押圧部471bが、外側部材37に設けられており、
 前記ネジ送り機構35が、当接部371bをシーブ部322に当接させる方向に、外側部材37を変位させると、前記ネジ送り機構45が、押圧部471bをシーブ部422から離間させる方向に、外側部材47を変位させ、
 前記ネジ送り機構35が、当接部371bをシーブ部322から離間させる方向に、外側部材37を変位させると、前記ネジ送り機構45が、押圧部471bをシーブ部422に当接させる方向に、外側部材47を変位させる構成とした。
(11) In the screw feed mechanism 35, when the output torque of the planetary gear mechanism 6 is converted into a thrust force that pushes the movable pulley 32 in the direction of narrowing the groove width of the V-groove 33, the sheave portion 322 of the movable pulley 32 is applied. A contact portion 371b that contacts from the rotation axis X1 direction and presses the sheave portion 322 is provided on the outer member 37,
In the screw feed mechanism 45, when the output torque of the planetary gear mechanism 6 is converted into a thrust force that presses the movable pulley 42 in the direction of narrowing the groove width of the V-groove 43, the rotational axis X1 is applied to the sheave portion 422 of the movable pulley 42. A pressing portion 471b that contacts from the direction and presses the sheave portion 422 is provided on the outer member 37,
When the screw feeding mechanism 35 displaces the outer member 37 in a direction in which the abutting portion 371b abuts on the sheave portion 322, the screw feeding mechanism 45 in a direction in which the pressing portion 471b is separated from the sheave portion 422. The outer member 47 is displaced;
When the screw feeding mechanism 35 displaces the outer member 37 in a direction in which the abutting portion 371b is separated from the sheave portion 322, the screw feeding mechanism 45 is in a direction in which the pressing portion 471b abuts on the sheave portion 422. The outer member 47 is configured to be displaced.
 このように構成すると、モータ(変速用モータ7、クランプ用モータ8)の出力トルク(回転出力)は、例えば、ピニオンキャリアPC、回転伝達軸63、ギア64、ネジ送り機構45、セカンダリプーリ4(可動プーリ42)、ベルト5、プライマリプーリ3(可動プーリ32)、ネジ送り機構35、ギア62、リングギアR、ピニオンギアP、ピニオンキャリアPC、回転伝達軸63の順番で、遊星歯車機構6とバリエータ2との間で循環する。
 そうすると、ギア64からネジ送り機構45に伝達される出力トルク(回転速度)が増速されつつ、遊星歯車機構6とバリエータ2との間で循環(ループ)することになるので、ベルト5を保持する保持力が、出力トルク(回転速度)が増速に伴って高くなる結果、可動プーリ32、42の回転軸X1、X2方向の移動を確実に規制して、バリエータ2における変速比が保持されることになる。
With this configuration, the output torque (rotational output) of the motor (transmission motor 7 and clamping motor 8) is, for example, the pinion carrier PC, the rotation transmission shaft 63, the gear 64, the screw feed mechanism 45, the secondary pulley 4 ( Movable pulley 42), belt 5, primary pulley 3 (movable pulley 32), screw feed mechanism 35, gear 62, ring gear R, pinion gear P, pinion carrier PC, rotation transmission shaft 63, and planetary gear mechanism 6 Circulates with the variator 2.
Then, the output torque (rotational speed) transmitted from the gear 64 to the screw feed mechanism 45 is increased and circulated (looped) between the planetary gear mechanism 6 and the variator 2, so that the belt 5 is held. As a result, the output torque (rotational speed) increases as the speed increases, and as a result, the movement of the movable pulleys 32 and 42 in the direction of the rotation axes X1 and X2 is reliably restricted, and the transmission ratio in the variator 2 is maintained. Will be.
 前記した実施の形態では、変速用モータ7の出力トルクがリングギアR(第1要素)に伝達されると共に、クランプ用モータ8の出力トルクがサンギアS(第3要素)に伝達されるように構成された遊星歯車機構6を例示した。
 本発明は、この態様に限定されるものではなく、クランプ用モータ8の出力トルクがリングギアR(第1要素)に伝達されると共に、変速用モータ7の出力トルクがサンギアS(第3要素)に伝達されるように構成された遊星歯車機構としても良い。
In the above-described embodiment, the output torque of the transmission motor 7 is transmitted to the ring gear R (first element), and the output torque of the clamping motor 8 is transmitted to the sun gear S (third element). The constructed planetary gear mechanism 6 is exemplified.
The present invention is not limited to this mode, and the output torque of the clamping motor 8 is transmitted to the ring gear R (first element), and the output torque of the transmission motor 7 is the sun gear S (third element). ) May be a planetary gear mechanism configured to be transmitted.
 さらに、前記した実施の形態では、変速用モータ7の出力トルクとクランプ用モータ8の出力トルクのうちの一方を、ネジ送り機構35、45に出力するための遊星歯車機構が、シングルピニオン式の遊星歯車機構である場合を例示した。
 本発明は、この態様に限定されるものではなく、遊星歯車機構は、サンギアと、サンギアに噛み合う内側ピニオンギアと、内側ピニオンギアに噛み合う外側ピニオンギアと、外側ピニオンギアと噛み合いサンギアと同軸上に配置されたリングギアと、内側ピニオンギアと外側ピニオンギアとを軸支するピニオンキャリアと、から構成されるダブルピニオン式の遊星歯車機構を採用しても良い。
Furthermore, in the above-described embodiment, the planetary gear mechanism for outputting one of the output torque of the transmission motor 7 and the output torque of the clamping motor 8 to the screw feed mechanisms 35 and 45 is a single pinion type. The case where it was a planetary gear mechanism was illustrated.
The present invention is not limited to this aspect, and the planetary gear mechanism is coaxial with the sun gear, the inner pinion gear that meshes with the sun gear, the outer pinion gear that meshes with the inner pinion gear, and the sun gear that meshes with the outer pinion gear. You may employ | adopt the double pinion type planetary gear mechanism comprised from the arrange | positioned ring gear and the pinion carrier which pivotally supports an inner side pinion gear and an outer side pinion gear.
 また、シングルピニオン式の遊星歯車とダブルピニオン式の遊星歯車を一体化した複合型遊星歯車であるラビニオ式の遊星歯車機構を採用しても良い。
 さらに、複数の単純歯車の組合せで遊星歯車組と同様の共線図が描けるのであれば、複数の単純歯車の組み合わせであっても良い。また、複数の遊星歯車の組合せであっても良い。
Alternatively, a Ravigneaux planetary gear mechanism, which is a composite planetary gear in which a single pinion planetary gear and a double pinion planetary gear are integrated, may be employed.
Furthermore, a combination of a plurality of simple gears may be used as long as a collinear diagram similar to the planetary gear set can be drawn by a combination of a plurality of simple gears. Further, it may be a combination of a plurality of planetary gears.
 本発明は上記した実施形態に限定されるものではなく、その技術的思想の範囲内でなしうる様々な変更、改良が含まれる。 The present invention is not limited to the above-described embodiment, and includes various changes and improvements that can be made within the scope of the technical idea.

Claims (6)

  1.  第1モータと、
     第2モータと、
     第1プーリと、第2プーリと、前記第1プーリと前記第2プーリとに巻きかけられたベルトと、を有するバリエータと、
     を備え、
     前記第1モータのトルクに基づき前記バリエータを変速させる一方、前記第2モータのトルクに基づき前記バリエータの変速比を固定する、無段変速機。
    A first motor;
    A second motor;
    A variator having a first pulley, a second pulley, and a belt wound around the first pulley and the second pulley;
    With
    A continuously variable transmission that shifts the variator based on the torque of the first motor and fixes the speed ratio of the variator based on the torque of the second motor.
  2.  前記第1モータの最大回転速度は、前記第2モータの最大回転速度よりも高く、
     前記第2モータの最大出力トルクは、前記第1モータの最大出力トルクよりも高い、請求項1に記載の無段変速機。
    The maximum rotation speed of the first motor is higher than the maximum rotation speed of the second motor,
    The continuously variable transmission according to claim 1, wherein a maximum output torque of the second motor is higher than a maximum output torque of the first motor.
  3.  前記第1モータによる前記バリエータの変速中に、変速速度を高めるように前記第2モータのトルクを変動させる制御部を有する、請求項1または請求項2に記載の無段変速機。 The continuously variable transmission according to claim 1 or 2, further comprising a control unit configured to vary a torque of the second motor so as to increase a speed of the variator during a shift of the variator by the first motor.
  4.  前記第1モータと前記第2モータの双方に接続され、
     前記第1モータのトルクに基づき前記バリエータを変速させる一方、前記第2モータのトルクに基づき前記バリエータの変速比を固定する伝達機構を有する、請求項1~3の何れか一項に記載の無段変速機
    Connected to both the first motor and the second motor;
    The transmission according to any one of claims 1 to 3, further comprising: a transmission mechanism that shifts the variator based on the torque of the first motor and fixes the speed ratio of the variator based on the torque of the second motor. Step transmission
  5.  前記伝達機構は、
     共線図上での並び順に、第1要素、第2要素、第3要素を有するトルク伝達機構と、
     トルクを前記第1プーリの推力に変換する第1変換機構と、
     トルクを前記第2プーリの推力に変換する第2変換機構と、
     を有し
     前記第1モータのトルクは、前記第1要素へ伝達され、
     前記第2モータのトルクは、前記第3要素へ伝達され、
     前記第2要素のトルクは、前記第1変換機構に伝達され、
     前記第1要素のトルクは、前記第2変換機構に伝達される、請求項4に記載の無段変速機。
    The transmission mechanism is
    A torque transmission mechanism having a first element, a second element, and a third element in the order of arrangement on the alignment chart;
    A first conversion mechanism that converts torque into thrust of the first pulley;
    A second conversion mechanism that converts torque into thrust of the second pulley;
    The torque of the first motor is transmitted to the first element,
    The torque of the second motor is transmitted to the third element;
    The torque of the second element is transmitted to the first conversion mechanism,
    The continuously variable transmission according to claim 4, wherein the torque of the first element is transmitted to the second conversion mechanism.
  6.  前記トルク伝達機構は、前記第1要素としてのリングギアと、前記第2要素としてのピニオンキャリアと、前記第3要素としてのサンギアと、を有するシングルピニオン型の遊星歯車機構からなる、請求項5に記載の無段変速機。 6. The torque transmission mechanism comprises a single pinion type planetary gear mechanism having a ring gear as the first element, a pinion carrier as the second element, and a sun gear as the third element. The continuously variable transmission described in 1.
PCT/JP2017/003265 2016-02-09 2017-01-31 Stepless transmission WO2017138396A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017566589A JP6549259B2 (en) 2016-02-09 2017-01-31 Continuously variable transmission

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016022312 2016-02-09
JP2016-022312 2016-02-09

Publications (1)

Publication Number Publication Date
WO2017138396A1 true WO2017138396A1 (en) 2017-08-17

Family

ID=59563892

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/003265 WO2017138396A1 (en) 2016-02-09 2017-01-31 Stepless transmission

Country Status (2)

Country Link
JP (1) JP6549259B2 (en)
WO (1) WO2017138396A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109723778A (en) * 2017-10-30 2019-05-07 通用汽车环球科技运作有限责任公司 Control system for the stepless transmission in vehicle propulsion system
US11293531B2 (en) * 2016-10-11 2022-04-05 Jatco Ltd Automatic transmission and control method of automatic transmission

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001349401A (en) * 2000-06-02 2001-12-21 Yamaha Motor Co Ltd Control mechanism of continuously variable transmission
JP2006511764A (en) * 2002-12-23 2006-04-06 ファン ドールネズ トランスミッシー ビー.ブイ. Continuously variable transmission
JP2010106957A (en) * 2008-10-30 2010-05-13 Ntn Corp Belt-type continuously variable transmission

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001349401A (en) * 2000-06-02 2001-12-21 Yamaha Motor Co Ltd Control mechanism of continuously variable transmission
JP2006511764A (en) * 2002-12-23 2006-04-06 ファン ドールネズ トランスミッシー ビー.ブイ. Continuously variable transmission
JP2010106957A (en) * 2008-10-30 2010-05-13 Ntn Corp Belt-type continuously variable transmission

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11293531B2 (en) * 2016-10-11 2022-04-05 Jatco Ltd Automatic transmission and control method of automatic transmission
CN109723778A (en) * 2017-10-30 2019-05-07 通用汽车环球科技运作有限责任公司 Control system for the stepless transmission in vehicle propulsion system

Also Published As

Publication number Publication date
JP6549259B2 (en) 2019-07-24
JPWO2017138396A1 (en) 2018-10-11

Similar Documents

Publication Publication Date Title
US8656809B2 (en) Gearing
US8187135B2 (en) Continuously variable transmission
WO2017138396A1 (en) Stepless transmission
US6807878B2 (en) Device to provide continuously variable gear reduction
WO2014119138A1 (en) Transmission
JP3736292B2 (en) Transmission
JP2007292140A (en) Continuously variable transmission
US6921349B2 (en) Transmission arrangement
JP5786367B2 (en) Drive device having speed change function and rotation direction conversion function
JPH1163140A (en) Continuously variable transmission equipped with idle pulley
JP6622925B2 (en) Automatic transmission and control method of automatic transmission
WO2005078313A1 (en) Continuously variable transmission
JP2000266154A (en) Continuously variable transmission with infinite gear ratio
JP2007292139A (en) Continuously variable transmission
JP6437241B2 (en) Continuously variable transmission
JP2007271043A (en) Continuously variable transmission
JP2014185703A (en) Worm gear mechanism
JP2003184974A (en) Electric actuator of continuously variable transmission
JP5385725B2 (en) Friction transmission
US2800030A (en) Variable-speed transmission
JP2017053373A (en) Continuously variable transmission
JP5905513B2 (en) Continuously variable transmission
JP6296923B2 (en) Power split type continuously variable transmission
KR20150035128A (en) endless transmission
JP2015124817A (en) Belt-type stepless transmission

Legal Events

Date Code Title Description
DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17750121

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017566589

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17750121

Country of ref document: EP

Kind code of ref document: A1