WO2017135701A1 - Lbt 우선순위 클래스를 결정하는 방법 및 장치 - Google Patents

Lbt 우선순위 클래스를 결정하는 방법 및 장치 Download PDF

Info

Publication number
WO2017135701A1
WO2017135701A1 PCT/KR2017/001136 KR2017001136W WO2017135701A1 WO 2017135701 A1 WO2017135701 A1 WO 2017135701A1 KR 2017001136 W KR2017001136 W KR 2017001136W WO 2017135701 A1 WO2017135701 A1 WO 2017135701A1
Authority
WO
WIPO (PCT)
Prior art keywords
priority class
lbt priority
terminal
channel
cell
Prior art date
Application number
PCT/KR2017/001136
Other languages
English (en)
French (fr)
Inventor
김상원
김선욱
안준기
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Priority to US16/070,475 priority Critical patent/US10721766B2/en
Publication of WO2017135701A1 publication Critical patent/WO2017135701A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access, e.g. scheduled or random access
    • H04W74/002Transmission of channel access control information
    • H04W74/008Transmission of channel access control information with additional processing of random access related information at receiving side
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/0205Traffic management, e.g. flow control or congestion control at the air interface
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/0247Traffic management, e.g. flow control or congestion control based on conditions of the access network or the infrastructure network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/0252Traffic management, e.g. flow control or congestion control per individual bearer or channel
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/0268Traffic management, e.g. flow control or congestion control using specific QoS parameters for wireless networks, e.g. QoS class identifier [QCI] or guaranteed bit rate [GBR]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/53Allocation or scheduling criteria for wireless resources based on regulatory allocation policies
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/56Allocation or scheduling criteria for wireless resources based on priority criteria
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/56Allocation or scheduling criteria for wireless resources based on priority criteria
    • H04W72/563Allocation or scheduling criteria for wireless resources based on priority criteria of the wireless resources
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access, e.g. scheduled or random access
    • H04W74/02Hybrid access techniques
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access, e.g. scheduled or random access
    • H04W74/08Non-scheduled or contention based access, e.g. random access, ALOHA, CSMA [Carrier Sense Multiple Access]
    • H04W74/0808Non-scheduled or contention based access, e.g. random access, ALOHA, CSMA [Carrier Sense Multiple Access] using carrier sensing, e.g. as in CSMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access, e.g. scheduled or random access
    • H04W74/08Non-scheduled or contention based access, e.g. random access, ALOHA, CSMA [Carrier Sense Multiple Access]
    • H04W74/0833Non-scheduled or contention based access, e.g. random access, ALOHA, CSMA [Carrier Sense Multiple Access] using a random access procedure
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access, e.g. scheduled or random access
    • H04W74/08Non-scheduled or contention based access, e.g. random access, ALOHA, CSMA [Carrier Sense Multiple Access]
    • H04W74/0833Non-scheduled or contention based access, e.g. random access, ALOHA, CSMA [Carrier Sense Multiple Access] using a random access procedure
    • H04W74/0841Non-scheduled or contention based access, e.g. random access, ALOHA, CSMA [Carrier Sense Multiple Access] using a random access procedure with collision treatment
    • H04W74/085Non-scheduled or contention based access, e.g. random access, ALOHA, CSMA [Carrier Sense Multiple Access] using a random access procedure with collision treatment collision avoidance
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access, e.g. scheduled or random access
    • H04W74/08Non-scheduled or contention based access, e.g. random access, ALOHA, CSMA [Carrier Sense Multiple Access]
    • H04W74/0866Non-scheduled or contention based access, e.g. random access, ALOHA, CSMA [Carrier Sense Multiple Access] using a dedicated channel for access
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access, e.g. scheduled or random access
    • H04W74/08Non-scheduled or contention based access, e.g. random access, ALOHA, CSMA [Carrier Sense Multiple Access]
    • H04W74/0866Non-scheduled or contention based access, e.g. random access, ALOHA, CSMA [Carrier Sense Multiple Access] using a dedicated channel for access
    • H04W74/0875Non-scheduled or contention based access, e.g. random access, ALOHA, CSMA [Carrier Sense Multiple Access] using a dedicated channel for access with assigned priorities based access
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access, e.g. scheduled or random access
    • H04W74/002Transmission of channel access control information
    • H04W74/006Transmission of channel access control information in the downlink, i.e. towards the terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/02Terminal devices
    • H04W88/06Terminal devices adapted for operation in multiple networks or having at least two operational modes, e.g. multi-mode terminals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W92/00Interfaces specially adapted for wireless communication networks
    • H04W92/04Interfaces between hierarchically different network devices
    • H04W92/10Interfaces between hierarchically different network devices between terminal device and access point, i.e. wireless air interface

Definitions

  • the present invention relates to a wireless communication system, and more particularly, to a method for a terminal to determine a List-Before-Talk priority class (LBT) in a wireless communication system and an apparatus for supporting the same.
  • LBT List-Before-Talk priority class
  • 3GPP LTE long term evolution
  • UMTS Universal Mobile Telecommunications System
  • 3GPP LTE uses orthogonal frequency division multiple access (OFDMA) in downlink and single carrier-frequency division multiple access (SC-FDMA) in uplink.
  • OFDMA orthogonal frequency division multiple access
  • SC-FDMA single carrier-frequency division multiple access
  • MIMO multiple input multiple output
  • LTE-A 3GPP LTE-Advanced
  • a wireless communication system it is necessary to estimate an uplink channel or a downlink channel for data transmission / reception, system synchronization acquisition, channel information feedback, and the like.
  • fading occurs due to a multipath time delay.
  • the process of restoring the transmission signal by compensating for the distortion of the signal caused by a sudden environmental change due to fading is called channel estimation.
  • channel estimation it is necessary to measure the channel state (channel state) for the cell to which the terminal belongs or other cells.
  • channel estimation is generally performed by using a reference signal (RS) that the transceiver knows from each other.
  • RS reference signal
  • the terminal may perform the measurement in the following three ways.
  • RSRP reference signal received power
  • RSSI Received signal strength indicator
  • RSRQ reference symbol received quality
  • N may be a variable (eg, the number of PRBs) or a function related to a bandwidth for measuring RSSI.
  • LTE-U LTE in Unlicensed spectrum
  • LAA Licensed-Assisted Access using LTE
  • CA carrier aggregation
  • the terminal first accesses the network in the licensed band.
  • the base station may offload the traffic of the licensed band to the unlicensed band by combining the licensed band and the unlicensed band according to the situation.
  • LTE-U can extend the advantages of LTE to unlicensed bands to provide improved mobility, security, and communication quality.
  • LTE-U is more efficient in frequency than existing radio access technologies, resulting in increased throughput. Can be.
  • unlicensed bands are shared with various radio access technologies such as WLANs. Accordingly, each communication node acquires channel usage in the unlicensed band based on competition, which is called carrier sense multiple access with collision avoidance (CSMA / CA). Each communication node needs to perform channel sensing before transmitting a signal to check whether the channel is idle. This is called clear channel assessment (CCA).
  • CCA clear channel assessment
  • the UE needs to perform an LBT procedure to transmit data in the unlicensed band.
  • four channel access priority classes have already been defined, it is not yet defined how the terminal determines a channel access priority class for uplink transmission. Accordingly, there is a need to propose a method for determining a channel access priority class by a terminal intending to perform uplink transmission in an unlicensed band and an apparatus supporting the same.
  • a method of determining, by a terminal, a List-Before-Talk priority class in a wireless communication system may include mapping information between a logical channel and an LBT priority class from a network, and determine a specific LBT priority class based on the logical channel having data to be transmitted and the received mapping information. Can be.
  • the specific LBT priority class may be determined as the one LBT priority class.
  • the specific LBT priority class may be determined as the one LBT priority class.
  • the terminal may represent a representative logic among the plurality of logical channels.
  • the method may further include selecting a channel.
  • the specific LBT priority class may be determined as an LBT priority class corresponding to the representative logical channel.
  • a logical channel having the most data among the plurality of logical channels may be selected as the representative logical channel.
  • the logical channel having the highest priority among the plurality of logical channels may be selected as the representative logical channel.
  • the specific LBT priority class is determined by the plurality of logical channels. Can be determined.
  • the specific LBT priority class may be determined as the one LBT priority class.
  • the terminal may further include performing an LBT procedure based on the determined specific LBT priority class.
  • a terminal for determining an LBT priority class in a wireless communication system includes a memory; Transceiver; And a processor connecting the memory and the transceiver, wherein the processor controls the transceiver to receive mapping information between a logical channel and an LBT priority class from a network, the logical channel having data to transmit; It may be configured to determine a specific LBT priority class based on the received mapping information.
  • the UE may determine the LBT priority class.
  • FIG. 1 shows a structure of an LTE system.
  • FIG. 2 shows an air interface protocol of an LTE system for a control plane.
  • FIG 3 shows an air interface protocol of an LTE system for a user plane.
  • FIG. 5 shows a conventional single carrier system and a carrier aggregation system.
  • FIG 6 shows an example of an LTE service using an unlicensed band.
  • FIG. 7 illustrates a method of determining, by the UE, an LBT priority class and performing an LBT procedure based on the determined LBT priority class according to an embodiment of the present invention.
  • FIG. 8 is a block diagram illustrating a method of determining an LBT priority class by a terminal according to an embodiment of the present invention.
  • FIG. 9 is a block diagram of a wireless communication system in which an embodiment of the present invention is implemented.
  • CDMA code division multiple access
  • FDMA frequency division multiple access
  • TDMA time division multiple access
  • OFDMA orthogonal frequency division multiple access
  • SC-FDMA single carrier frequency division multiple access
  • CDMA may be implemented with a radio technology such as universal terrestrial radio access (UTRA) or CDMA2000.
  • TDMA may be implemented with wireless technologies such as global system for mobile communications (GSM) / general packet radio service (GPRS) / enhanced data rates for GSM evolution (EDGE).
  • GSM global system for mobile communications
  • GPRS general packet radio service
  • EDGE enhanced data rates for GSM evolution
  • OFDMA may be implemented by wireless technologies such as Institute of Electrical and Electronics Engineers (IEEE) 802.11 (Wi-Fi), IEEE 802.16 (WiMAX), IEEE 802-20, evolved UTRA (E-UTRA), and the like.
  • IEEE 802.16m is an evolution of IEEE 802.16e and provides backward compatibility with systems based on IEEE 802.16e.
  • UTRA is part of a universal mobile telecommunications system (UMTS).
  • 3rd generation partnership project (3GPP) long term evolution (LTE) is part of evolved UMTS (E-UMTS) using evolved-UMTS terrestrial radio access (E-UTRA), which employs OFDMA in downlink and SC in uplink -FDMA is adopted.
  • LTE-A (advanced) is the evolution of 3GPP LTE.
  • FIG. 1 shows a structure of an LTE system.
  • Communication networks are widely deployed to provide various communication services such as IMS and Voice over internet protocol (VoIP) over packet data.
  • VoIP Voice over internet protocol
  • an LTE system structure includes one or more UEs 10, an evolved-UMTS terrestrial radio access network (E-UTRAN), and an evolved packet core (EPC).
  • the terminal 10 is a communication device moved by a user.
  • the terminal 10 may be fixed or mobile and may be called by other terms such as a mobile station (MS), a user terminal (UT), a subscriber station (SS), and a wireless device.
  • MS mobile station
  • UT user terminal
  • SS subscriber station
  • wireless device a wireless device.
  • the E-UTRAN may include one or more evolved node-eB (eNB) 20, and a plurality of terminals may exist in one cell.
  • the eNB 20 provides an end point of a control plane and a user plane to the terminal.
  • the eNB 20 generally refers to a fixed station communicating with the terminal 10, and may be referred to in other terms such as a base station (BS), a base transceiver system (BTS), an access point, and the like.
  • BS base station
  • BTS base transceiver system
  • One eNB 20 may be arranged per cell. There may be one or more cells within the coverage of the eNB 20.
  • One cell may be configured to have one of bandwidths such as 1.25, 2.5, 5, 10, and 20 MHz to provide downlink (DL) or uplink (UL) transmission service to various terminals. In this case, different cells may be configured to provide different bandwidths.
  • DL means communication from the eNB 20 to the terminal 10
  • UL means communication from the terminal 10 to the eNB 20.
  • the transmitter may be part of the eNB 20 and the receiver may be part of the terminal 10.
  • the transmitter may be part of the terminal 10 and the receiver may be part of the eNB 20.
  • the EPC may include a mobility management entity (MME) that serves as a control plane, and a system architecture evolution (SAE) gateway (S-GW) that serves as a user plane.
  • MME mobility management entity
  • SAE system architecture evolution gateway
  • S-GW gateway
  • the MME / S-GW 30 may be located at the end of the network and is connected to an external network.
  • the MME has information about the access information of the terminal or the capability of the terminal, and this information may be mainly used for mobility management of the terminal.
  • S-GW is a gateway having an E-UTRAN as an endpoint.
  • the MME / S-GW 30 provides the terminal 10 with the endpoint of the session and the mobility management function.
  • the EPC may further include a packet data network (PDN) -gateway (GW).
  • PDN-GW is a gateway with PDN as an endpoint.
  • the MME includes non-access stratum (NAS) signaling to the eNB 20, NAS signaling security, access stratum (AS) security control, inter CN (node network) signaling for mobility between 3GPP access networks, idle mode terminal reachability ( Control and execution of paging retransmission), tracking area list management (for terminals in idle mode and active mode), P-GW and S-GW selection, MME selection for handover with MME change, 2G or 3G 3GPP access Bearer management, including roaming, authentication, and dedicated bearer settings, SGSN (serving GPRS support node) for handover to the network, public warning system (ETWS) and commercial mobile alarm system (PWS) It provides various functions such as CMAS) and message transmission support.
  • NAS non-access stratum
  • AS access stratum
  • inter CN node network
  • MME selection for handover with MME change
  • 2G or 3G 3GPP access Bearer management including roaming, authentication, and dedicated bearer settings
  • SGSN serving GPRS support no
  • S-GW hosts can be based on per-user packet filtering (eg, through deep packet inspection), legal blocking, terminal IP (Internet protocol) address assignment, transport level packing marking in DL, UL / DL service level charging, gating and It provides various functions of class enforcement, DL class enforcement based on APN-AMBR.
  • MME / S-GW 30 is simply represented as a "gateway", which may include both MME and S-GW.
  • An interface for user traffic transmission or control traffic transmission may be used.
  • the terminal 10 and the eNB 20 may be connected by the Uu interface.
  • the eNBs 20 may be interconnected by an X2 interface. Neighboring eNBs 20 may have a mesh network structure by the X2 interface.
  • the eNBs 20 may be connected with the EPC by the S1 interface.
  • the eNBs 20 may be connected to the EPC by the S1-MME interface and may be connected to the S-GW by the S1-U interface.
  • the S1 interface supports a many-to-many-relation between eNB 20 and MME / S-GW 30.
  • the eNB 20 may select for the gateway 30, routing to the gateway 30 during radio resource control (RRC) activation, scheduling and transmission of paging messages, scheduling channel information (BCH), and the like.
  • RRC radio resource control
  • BCH scheduling channel information
  • the gateway 30 may perform paging initiation, LTE idle state management, user plane encryption, SAE bearer control, and encryption and integrity protection functions of NAS signaling in the EPC.
  • FIG. 2 shows an air interface protocol of an LTE system for a control plane.
  • 3 shows an air interface protocol of an LTE system for a user plane.
  • the physical layer belongs to L1.
  • the physical layer provides an information transmission service to a higher layer through a physical channel.
  • the physical layer is connected to a higher layer of a media access control (MAC) layer through a transport channel.
  • Physical channels are mapped to transport channels.
  • Data may be transmitted between the MAC layer and the physical layer through a transport channel.
  • Data between different physical layers, that is, between the physical layer of the transmitter and the physical layer of the receiver may be transmitted using radio resources through a physical channel.
  • the physical layer may be modulated using an orthogonal frequency division multiplexing (OFDM) scheme, and utilizes time and frequency as radio resources.
  • OFDM orthogonal frequency division multiplexing
  • the physical layer uses several physical control channels.
  • a physical downlink control channel (PDCCH) reports resource allocation of a paging channel (PCH) and a downlink shared channel (DL-SCH), and hybrid automatic repeat request (HARQ) information related to the DL-SCH to the UE.
  • the PDCCH may carry an uplink grant to report to the UE regarding resource allocation of uplink transmission.
  • the physical control format indicator channel (PCFICH) informs the UE of the number of OFDM symbols used for the PDCCH and is transmitted every subframe.
  • a physical hybrid ARQ indicator channel (PHICH) carries a HARQ ACK (non-acknowledgement) / NACK (non-acknowledgement) signal for UL-SCH transmission.
  • a physical uplink control channel (PUCCH) carries UL control information such as HARQ ACK / NACK, a scheduling request, and a CQI for downlink transmission.
  • the physical uplink shared channel (PUSCH) carries an uplink shared channel (UL-SCH).
  • the physical channel includes a plurality of subframes in the time domain and a plurality of subcarriers in the frequency domain.
  • One subframe consists of a plurality of symbols in the time domain.
  • One subframe consists of a plurality of resource blocks (RBs).
  • One resource block is composed of a plurality of symbols and a plurality of subcarriers.
  • each subframe may use specific subcarriers of specific symbols of the corresponding subframe for the PDCCH.
  • the first symbol of the subframe may be used for the PDCCH.
  • the PDCCH may carry dynamically allocated resources, such as a physical resource block (PRB) and modulation and coding schemes (MCS).
  • a transmission time interval (TTI) which is a unit time at which data is transmitted, may be equal to the length of one subframe.
  • One subframe may have a length of 1 ms.
  • a DL transport channel for transmitting data from a network to a UE includes a broadcast channel (BCH) for transmitting system information, a paging channel (PCH) for transmitting a paging message, and a DL-SCH for transmitting user traffic or control signals. And the like.
  • BCH broadcast channel
  • PCH paging channel
  • DL-SCH supports dynamic link adaptation and dynamic / semi-static resource allocation by varying HARQ, modulation, coding and transmit power.
  • the DL-SCH may enable the use of broadcast and beamforming throughout the cell.
  • System information carries one or more system information blocks. All system information blocks can be transmitted in the same period. Traffic or control signals of a multimedia broadcast / multicast service (MBMS) are transmitted through a multicast channel (MCH).
  • MCH multicast channel
  • the logical channel may be divided into a control channel for information transmission in the control plane and a traffic channel for information transmission in the user plane according to the type of information to be transmitted. That is, a set of logical channel types is defined for other data transfer services provided by the MAC layer.
  • the logical channel is located above the transport channel and mapped to the transport channel.
  • RBs may be classified into two types: signaling RBs (SRBs) and data RBs (DRBs).
  • SRBs signaling RBs
  • DRBs data RBs
  • the terminal When the user first turns on the power of the terminal, the terminal first searches for an appropriate cell and then stays in RRC_IDLE in that cell. When it is necessary to establish an RRC connection, the terminal staying in the RRC_IDLE may make an RRC connection with the RRC of the E-UTRAN through the RRC connection procedure and may transition to the RRC_CONNECTED. The UE staying in RRC_IDLE needs to establish an RRC connection with the E-UTRAN when uplink data transmission is necessary due to a user's call attempt or when a paging message is received from the E-UTRAN and a response message is required. Can be.
  • EMM-REGISTERED EPS Mobility Management-REGISTERED
  • EMM-DEREGISTERED EMM-DEREGISTERED
  • the initial terminal is in the EMM-DEREGISTERED state, and the terminal performs a process of registering with the corresponding network through an initial attach procedure to access the network. If the attach procedure is successfully performed, the UE and the MME are in the EMM-REGISTERED state.
  • an EPS Connection Management (ECM) -IDLE state In order to manage a signaling connection between the UE and the EPC, two states are defined, an EPS Connection Management (ECM) -IDLE state and an ECM-CONNECTED state, and these two states are applied to the UE and the MME.
  • ECM EPS Connection Management
  • ECM-IDLE state When the UE in the ECM-IDLE state establishes an RRC connection with the E-UTRAN, the UE is in the ECM-CONNECTED state.
  • the MME in the ECM-IDLE state becomes the ECM-CONNECTED state when it establishes an S1 connection with the E-UTRAN.
  • the E-UTRAN does not have the context information of the terminal.
  • the UE in the ECM-IDLE state performs a terminal-based mobility related procedure such as cell selection or cell reselection without receiving a command from the network.
  • a terminal-based mobility related procedure such as cell selection or cell reselection without receiving a command from the network.
  • the terminal when the terminal is in the ECM-CONNECTED state, the mobility of the terminal is managed by the command of the network.
  • the terminal In the ECM-IDLE state, if the position of the terminal is different from the position known by the network, the terminal informs the network of the corresponding position of the terminal through a tracking area update procedure.
  • the measurement setting information may include the following information.
  • the base station may set only one measurement target for one frequency band to the terminal.
  • Table 1 lists the events that result in measurement reporting. If the measurement result of the terminal satisfies the set event, the terminal transmits a measurement report message to the base station.
  • CA carrier aggregation
  • FIG. 5 shows a conventional single carrier system and a carrier aggregation system.
  • a single carrier system only one carrier is supported to the UE in uplink and downlink.
  • the bandwidth of the carrier may vary, but only one carrier is allocated to the terminal.
  • a plurality of component carriers (DL CC A to C, UL CC A to C) may be allocated to a terminal. For example, three 20 MHz component carriers may be allocated to allocate a 60 MHz bandwidth to the terminal.
  • the carrier aggregation system may be classified into a continuous carrier aggregation system in which each carrier is aggregated and a non-contiguous carrier aggregation system in which each carrier is separated from each other.
  • a carrier aggregation system simply referred to as a carrier aggregation system, it should be understood to include both the case where the component carrier is continuous and the case where it is discontinuous.
  • the target component carrier may use the bandwidth used by the existing system as it is for backward compatibility with the existing system.
  • the 3GPP LTE system supports bandwidths of 1.4 MHz, 3 MHz, 5 MHz, 10 MHz, 15 MHz, and 20 MHz, and the 3GPP LTE-A system may configure a bandwidth of 20 MHz or more using only the bandwidth of the 3GPP LTE system.
  • broadband can be configured by defining new bandwidth without using the bandwidth of the existing system.
  • Deactivation means that transmission or reception of traffic data is impossible, and measurement or transmission of minimum information is possible.
  • the terminal may receive system information (SI) required for packet reception from the deactivated cell.
  • SI system information
  • the terminal does not monitor or receive the control channel (PDCCH) and data channel (PDSCH) of the deactivated cell in order to check the resources (may be frequency, time, etc.) allocated to them.
  • PDCH control channel
  • PDSCH data channel
  • the cell may be divided into a primary cell, a secondary cell, and a serving cell.
  • the primary cell refers to a cell operating at a primary frequency, and is a cell in which the terminal performs an initial connection establishment procedure or connection reestablishment with the base station, or is indicated as a primary cell in a handover process. It means a cell.
  • the secondary cell refers to a cell operating at the secondary frequency and is set up once the RRC connection is established and used to provide additional radio resources.
  • the serving cell is configured as a primary cell when the carrier aggregation (CA) is not configured or the terminal cannot provide the CA.
  • CA carrier aggregation
  • the term serving cell is used to indicate a set of primary cells + one of a plurality of secondary cells or a plurality of secondary cells. That is, the primary cell refers to one serving cell that provides security input and NAS mobility information in an RRC connection or re-establishment state.
  • at least one cell may be configured to form a serving cell set together with a primary cell, wherein the at least one cell is called a secondary cell. Therefore, the set of serving cells configured for one terminal may consist of only one primary cell or one primary cell and at least one secondary cell.
  • a primary component carrier refers to a component carrier (CC) corresponding to a primary cell.
  • the PCC is a CC in which the terminal initially makes a connection (connection or RRC connection) with the base station among several CCs.
  • the PCC is a special CC that manages a connection (Connection or RRC Connection) for signaling regarding a plurality of CCs and manages UE context, which is connection information related to a terminal.
  • the PCC is connected to the terminal and always exists in the active state in the RRC connected mode.
  • Secondary component carrier refers to a CC corresponding to the secondary cell. That is, the SCC is a CC allocated to the terminal other than the PCC, and the SCC is an extended carrier for the additional resource allocation other than the PCC and may be divided into an activated or deactivated state.
  • the primary cell and the secondary cell have the following characteristics.
  • the primary cell is used for transmission of the PUCCH.
  • the primary cell is always activated, while the secondary cell is a carrier that is activated / deactivated according to specific conditions.
  • RLF Radio Link Failure
  • the primary cell may be changed by a security key change or a handover procedure accompanying a RACH (Random Access Channel) procedure.
  • NAS non-access stratum
  • the primary cell always consists of a pair of DL PCC and UL PCC.
  • a different CC may be configured as a primary cell for each UE.
  • procedures such as reconfiguration, adding, and removal of the secondary cell may be performed by the RRC layer.
  • RRC signaling may be used to transmit system information of a dedicated secondary cell.
  • the downlink component carrier may configure one serving cell, or the downlink component carrier and the uplink component carrier may be configured to configure one serving cell.
  • the serving cell is not configured with only one uplink component carrier.
  • the activation / deactivation of the component carrier is equivalent to the concept of activation / deactivation of the serving cell. For example, assuming that serving cell 1 is configured of DL CC1, activation of serving cell 1 means activation of DL CC1. If the serving cell 2 assumes that DL CC2 and UL CC2 are configured to be configured, activation of serving cell 2 means activation of DL CC2 and UL CC2. In this sense, each component carrier may correspond to a cell.
  • the number of component carriers aggregated between the downlink and the uplink may be set differently.
  • the case where the number of downlink CCs and the number of uplink CCs are the same is called symmetric aggregation, and when the number is different, it is called asymmetric aggregation.
  • the size (ie bandwidth) of the CCs may be different. For example, assuming that 5 CCs are used for a 70 MHz band configuration, 5 MHz CC (carrier # 0) + 20 MHz CC (carrier # 1) + 20 MHz CC (carrier # 2) + 20 MHz CC (carrier # 3) It may be configured as + 5MHz CC (carrier # 4).
  • RS reference signal
  • the downlink reference signal refers to a common reference signal (CRS: Common RS) shared by all terminals in a cell, a UE-specific RS (UE-specific RS) only for a specific terminal, and a multimedia broadcast and multicast single frequency network (MBSFN). Signal, positioning reference signal (PRS) and channel state information (CSI) reference signal (CSI RS).
  • CRS Common RS
  • PRS positioning reference signal
  • CSI channel state information
  • the transmitter may provide the receiver with information for demodulation and channel measurement using the reference signals.
  • the receiving end measures the channel state using the CRS, and according to the measured channel state, channel quality such as a channel quality indicator (CQI), a precoding matrix index (PMI), and / or a rank indicator (RI) May be fed back to the transmitter (eg, the base station).
  • CQI channel quality indicator
  • PMI precoding matrix index
  • RI rank indicator
  • the CRS may be referred to as a cell-specific RS.
  • the CRS is transmitted in every downlink subframe in a cell supporting PDSCH transmission.
  • the CRS may refer to section 6.10.1 of 3GPP TS 36.211 V10.1.0 (2011-03).
  • the UE-specific reference signal may be transmitted to the terminals through the resource elements when data demodulation on the PDSCH is needed.
  • the terminal may receive the presence of a terminal specific reference signal through higher layer signaling.
  • the UE specific reference signal is valid only when a corresponding PDSCH signal is mapped.
  • the MBSFN reference signal may be transmitted in a subframe allocated for MBSFN transmission.
  • the PRS may be used for position estimation of the terminal.
  • the CSI RS is used for channel estimation for the PDSCH of the LTE-A terminal.
  • DRS Disovery RS
  • some small cells belonging to the small cell cluster are switched on / off for the appropriate time unit ( ⁇ several tens of ms), and traffic load balancing between cells is performed. Can be done.
  • the turned off small cell also transmits some signals (for example, CRS and CSI RS) at low periods (for example, 40 ms), so that the UE is in a small cell state.
  • RRM can be measured regardless. That is, in order to increase downlink transmission amount, on / off state conversion of small cells belonging to the small cell cluster may be performed.
  • the small cell may transmit the DRS regardless of the on state or the off state.
  • DRS transmits for the state transition of the small cell, and fast state transition of the small cell is very helpful in terms of interference management in the small cell cluster. If adjacent small cells transmit DRS in synchronization, the terminal receiving the DRS has an advantage of performing intra-frequency / inter-frequency RRM measurement through low battery consumption.
  • DRS measurement timing configuration is a time when the UE may perform cell detection and RRM (radio resource measurement) measurement based on the DRS, and detects a plurality of DMTC-based cells for one frequency. Can be. Accordingly, the UE can anticipate the location of the DRS from the DMTC and the DMTC can include at least a period, an offset from the serving cell timing, and a use width, where the period is at least for the UE to perform handover or RRM measurement. 40 ms, 80 ms, or 160 ms.
  • FIG 6 shows an example of an LTE service using an unlicensed band.
  • the wireless device 630 establishes a connection with the first base station 610 and receives a service through a licensed band. For offloading traffic, the wireless device 630 may be provided with a service through an unlicensed band with the second base station 620.
  • the second base station 620 may support other communication protocols such as a wireless local area network (WLAN) in addition to the LTE.
  • the first base station 610 and the second base station 620 may be combined in a carrier aggregation (CA) environment so that a specific cell of the first base station 610 may be a primary cell.
  • CA carrier aggregation
  • the first base station 610 and the second base station 620 may be combined in a dual connectivity environment so that a specific cell of the first base station 610 may be a primary cell.
  • a first base station 610 with a primary cell has wider coverage than a second base station 620.
  • the first base station 610 may be referred to as a macro cell.
  • the licensed band is a band that guarantees exclusive use for a specific communication protocol or a specific operator.
  • the unlicensed band is a band in which various communication protocols coexist and guarantee shared use.
  • the unlicensed band may include the 2.5 GHz and / or 5 GHz bands used by the WLAN.
  • LBT listen before talk
  • CCA clear channel assessment
  • LBT is a method in which a base station or a terminal performs carrier sensing prior to performing transmission, checks whether a corresponding channel is empty, and then performs transmission.
  • DRS Discovery Reference Signal
  • 9us carrier sensing for general user data transmission.
  • the maximum number of transmissions of data to be transmitted may also be limited to the T mcot, p (MCOT; maximum channel occupation time) value changed according to the priority defined in Table 2.
  • CW min, p is the minimum value of the contention window
  • CW max, p is the maximum value of the contention window
  • m p is a continuous slot.
  • CW min, p , CW max, p , m p and Tmcot, p may be determined according to the channel access priority class p.
  • FIG. 7 illustrates a method of determining, by the UE, an LBT priority class and performing an LBT procedure based on the determined LBT priority class according to an embodiment of the present invention.
  • the terminal may determine the LBT priority class based on a logical channel having data to transmit. Specifically, the terminal may determine which LBT priority class to use to occupy an unlicensed frequency based on a logical channel having data to be transmitted.
  • the terminal may receive mapping information from the network.
  • the mapping information may be information including a mutual mapping relationship between logical channels and LBT priority classes.
  • One logical channel ID may be mapped to one LBT priority class.
  • the logical channel configuration may include a corresponding LBT priority class.
  • one logical channel priority may be mapped to one LBT priority class.
  • one logical channel group may be mapped to one LBT priority class.
  • Some logical channel IDs may have a fixed LBT priority class. Then, the mapping information for the partial logical channel ID can be omitted. Some logical channel priorities may have a fixed LBT priority class. Then, the mapping information for some of the logical channel priorities may be omitted. Some logical channel groups may have a fixed LBT priority class. Then, the mapping information for the partial logical channel group can be omitted. For example, assume that the logical channel ID of SRB0 is 0, the logical channel ID of SRB1 is 1, and the logical channel IDs of SRB0 and SRB1 have a fixed LBT priority class. In this case, mapping information for logical channel ID 0 and logical channel ID 1 may be omitted. Thus, the mapping information may only include logical channel ID 2 through logical channel ID 10.
  • the terminal may select the LBT priority class based on the received mapping information. If the terminal needs to perform uplink data transmission on the unlicensed frequency, the terminal may determine which LBT priority class should be used to occupy the unlicensed frequency based on the received mapping information.
  • the terminal may select the LBT priority class. Or, if the MAC PDU is configured with a logical channel belonging to the same LBT priority class, the terminal may select the LBT priority class.
  • the terminal may select a representative logical channel.
  • the terminal may select an LBT priority class corresponding to the representative logical channel.
  • the representative logical channel may be selected based on the amount of data buffered in each logical channel. For example, the terminal may select a logical channel having the most data as the representative logical channel.
  • the representative logical channel may be selected based on logical channel priority. For example, the terminal may select the logical channel having the highest priority as the representative logical channel.
  • the terminal selects an LBT priority class for each logical channel. Can be. In this case, the terminal may perform an LBT procedure for each logical channel. Or, if all logical channels having data to be transmitted do not belong to the same LBT priority class, and the MAC PDU is configured with logical channels belonging to the same LBT priority class, the terminal may select an LBT priority class corresponding to each logical channel group. You can choose. In this case, the terminal may perform an LBT procedure for each logical channel group.
  • the network may explicitly inform the UE of the LBT priority class for every TTI.
  • the MAC entity may perform a Logical Channel Prioritization (LCP) procedure for all logical channels belonging to the determined LBT priority class.
  • LCP Logical Channel Prioritization
  • the LCP procedure is described in section 5.4.3.1 of 3GPP TS 36.321 V12.7.0 (2015-09). For example, if the LBT priority class for a particular TTI is 1, the MAC entity may perform LCP procedures for all logical channels belonging to LBT priority class 1.
  • the MAC entity may perform the LCP procedure for another logical channel.
  • the MAC entity is an LCP procedure for the logical channel corresponding to the high priority class. Can be performed first, and then LCP procedure can be performed for other logical channels.
  • the MAC layer may inform the physical layer of the selected LBT priority class determined to be used.
  • FIG. 8 is a block diagram illustrating a method of determining an LBT priority class by a terminal according to an embodiment of the present invention.
  • the terminal may receive mapping information between a logical channel and an LBT priority class from a network.
  • the terminal may determine a specific LBT priority class based on a logical channel having data to be transmitted and the received mapping information.
  • the specific LBT priority class may be determined as the one LBT priority class.
  • the specific LBT priority class may be determined as the one LBT priority class.
  • the terminal may represent a representative logic among the plurality of logical channels.
  • Channel can be selected.
  • the specific LBT priority class may be determined as an LBT priority class corresponding to the representative logical channel.
  • a logical channel having the most data among the plurality of logical channels may be selected as the representative logical channel.
  • the logical channel having the highest priority among the plurality of logical channels may be selected as the representative logical channel.
  • the specific LBT priority class is determined by the plurality of logical channels. Can be determined.
  • the specific LBT priority class may be determined as the one LBT priority class.
  • the terminal may perform an LBT procedure based on the determined specific LBT priority class.
  • FIG. 9 is a block diagram of a wireless communication system in which an embodiment of the present invention is implemented.
  • the base station 900 includes a processor 901, a memory 902, and a transceiver 903.
  • the memory 902 is connected to the processor 901 and stores various information for driving the processor 901.
  • the transceiver 903 is coupled to the processor 901 to transmit and / or receive wireless signals.
  • Processor 901 implements the proposed functions, processes, and / or methods. In the above-described embodiment, the operation of the base station may be implemented by the processor 901.
  • the terminal 910 includes a processor 911, a memory 912, and a transceiver 913.
  • the memory 912 is connected to the processor 911 and stores various information for driving the processor 911.
  • the transceiver 913 is connected to the processor 911 to transmit and / or receive a radio signal.
  • Processor 911 implements the proposed functions, processes, and / or methods. In the above-described embodiment, the operation of the terminal may be implemented by the processor 911.
  • the processor may include application-specific integrated circuits (ASICs), other chipsets, logic circuits, and / or data processing devices.
  • the memory may include read-only memory (ROM), random access memory (RAM), flash memory, memory card, storage medium and / or other storage device.
  • the transceiver may include baseband circuitry for processing wireless signals.
  • the above-described technique may be implemented as a module (process, function, etc.) for performing the above-described function.
  • the module may be stored in memory and executed by a processor.
  • the memory may be internal or external to the processor and may be coupled to the processor by various well known means.

Abstract

무선 통신 시스템에서 단말이 LBT 우선순위 클래스(Listen-Before-Talk priority class)를 결정하는 방법 및 이를 지원하는 장치가 제공된다. 상기 단말은 논리 채널 및 LBT 우선순위 클래스 사이의 맵핑 정보(mapping information)를 네트워크로부터 수신하고, 전송할 데이터를 가지는 논리 채널 및 상기 수신된 맵핑 정보를 기반으로 특정 LBT 우선순위 클래스를 결정할 수 있다.

Description

LBT 우선순위 클래스를 결정하는 방법 및 장치
본 발명은 무선 통신 시스템에 관한 것으로서, 보다 상세하게는 무선 통신 시스템에서 단말이 LBT 우선순위 클래스(Listen-Before-Talk priority class)를 결정하는 방법 및 이를 지원하는 장치에 관한 것이다.
UMTS(Universal Mobile Telecommunications System)의 향상인 3GPP(3rd Generation Partnership Project) LTE(long term evolution)는 3GPP 릴리즈(release) 8로 소개되고 있다. 3GPP LTE는 하향링크에서 OFDMA(orthogonal frequency division multiple access)를 사용하고, 상향링크에서 SC-FDMA(Single Carrier-frequency division multiple access)를 사용한다. 최대 4개의 안테나를 갖는 MIMO(multiple input multiple output)를 채용한다. 최근에는 3GPP LTE의 진화인 3GPP LTE-A(LTE-Advanced)에 대한 논의가 진행 중이다.
무선 통신 시스템에서는 데이터의 송/수신, 시스템 동기 획득, 채널 정보 피드백 등을 위하여 상향링크 채널 또는 하향링크의 채널을 추정할 필요가 있다. 무선통신 시스템 환경에서는 다중 경로 시간 지연으로 인하여 페이딩이 발생하게 된다. 페이딩으로 인한 급격한 환경 변화에 의하여 생기는 신호의 왜곡을 보상하여 전송 신호를 복원하는 과정을 채널 추정이라고 한다. 또한 단말이 속한 셀 혹은 다른 셀에 대한 채널 상태(channel state)를 측정할 필요가 있다. 채널 추정 또는 채널 상태 측정을 위해서 일반적으로 송수신기가 상호 간에 알고 있는 참조 신호(RS; reference signal)를 이용하여 채널 추정을 수행하게 된다.
단말은 다음 3가지 방법으로 측정을 수행할 수 있다.
1) RSRP(reference signal received power): 전 대역에 걸쳐 전송되는 CRS를 운반하는 모든 RE의 평균 수신 전력을 나타낸다. 이때 CRS 대신 CSI RS를 운반하는 모든 RE의 평균 수신 전력을 측정할 수도 있다.
2) RSSI(received signal strength indicator): 전체 대역에서 측정된 수신 전력을 나타낸다. RSSI는 신호, 간섭(interference), 열 잡음(thermal noise)을 모두 포함한다.
3) RSRQ(reference symbol received quality): CQI를 나타내며, 측정 대역폭(bandwidth) 또는 서브밴드에 따른 RSRP/RSSI로 결정될 수 있다. 즉, RSRQ는 신호 대 잡음 간섭 비(SINR; signal-to-noise interference ratio)를 의미한다. RSRP는 충분한 이동성(mobility) 정보를 제공하지 못하므로, 핸드오버 또는 셀 재선택(cell reselection) 과정에서는 RSRP 대신 RSRQ가 대신 사용될 수 있다.
RSRQ = RSSI/RSSP로 산출될 수 있다. 또는 RSRQ = N*RSSI/RSSP로 산출될 수도 있다. 여기서 N은 RSSI를 측정하는 대역폭에 관련된 변수(예컨대 PRB 개수) 또는 함수일 수 있다.
LTE-U(LTE in Unlicensed spectrum) 또는 LAA(Licensed-Assisted Access using LTE)는 LTE 면허 대역(licensed band)을 앵커(anchor)로 하여, 면허 대역과 비면허 대역을 CA(carrier aggregation)을 이용하여 묶는 기술이다. 단말은 먼저 면허 대역에서 네트워크에 접속한다. 기지국이 상황에 따라 면허 대역과 비면허 대역을 결합하여 면허 대역의 트래픽을 비면허 대역으로 오프로딩(offloading)할 수 있다.
LTE-U는 LTE의 장점을 비면허 대역으로 확장하여 향상된 이동성, 보안성 및 통신 품질을 제공할 수 있고, 기존 무선 접속(radio access) 기술에 비해 LTE가 주파수 효율성이 높아 처리율(throughput)을 증가시킬 수 있다.
독점적 활용이 보장되는 면허 대역과 달리 비면허 대역은 WLAN과 같은 다양한 무선 접속 기술과 공유된다. 따라서, 각 통신 노드는 경쟁을 기반으로 비면허 대역에서 채널 사용을 획득하며, 이를 CSMA/CA(Carrier sense multiple access with collision avoidance)라 한다. 각 통신 노드는 신호를 전송하기 전에 채널 센싱을 수행하여 채널이 아이들한지 여부를 확인해야 하며, 이를 CCA(clear channel assessment)라고 한다.
단말은 비면허 대역에서 데이터를 전송하기 위해 LBT 절차를 수행할 필요가 있다. 다만, 네 가지의 채널 액세스 우선순위 클래스(Channel Access Priority Class)가 이미 정의되었지만, 단말이 상향링크 전송을 위한 채널 액세스 우선순위 클래스를 어떻게 결정하는지는 아직 정의되지 않았다. 따라서, 비면허 대역에서 상향링크 전송을 수행하고자 하는 단말이 채널 액세스 우선순위 클래스를 결정하는 방법 및 이를 지원하는 장치가 제안될 필요가 있다.
일 실시 예에 있어서, 무선 통신 시스템에서 단말이 LBT 우선순위 클래스(Listen-Before-Talk priority class)를 결정하는 방법이 제공된다. 상기 단말은 논리 채널 및 LBT 우선순위 클래스 사이의 맵핑 정보(mapping information)를 네트워크로부터 수신하고, 전송할 데이터를 가지는 논리 채널 및 상기 수신된 맵핑 정보를 기반으로 특정 LBT 우선순위 클래스를 결정하는 것을 포함할 수 있다.
전송할 데이터를 가지는 모든 논리 채널이 하나의 LBT 우선순위 클래스에 대응하면, 상기 특정 LBT 우선순위 클래스는 상기 하나의 LBT 우선순위 클래스로 결정될 수 있다.
MAC PDU가 하나의 LBT 우선순위 클래스에 대응하는 논리 채널만 포함하면, 상기 특정 LBT 우선순위 클래스는 상기 하나의 LBT 우선순위 클래스로 결정될 수 있다.
전송할 데이터를 가지는 복수의 논리 채널이 복수의 LBT 우선순위 클래스에 대응하고, MAC PDU가 복수의 LBT 우선순위 클래스에 대응하는 복수의 논리 채널을 포함하면, 상기 단말은 상기 복수의 논리 채널 중 대표 논리 채널을 선택하는 것을 더 포함할 수 있다. 상기 특정 LBT 우선순위 클래스는 상기 대표 논리 채널에 대응하는 LBT 우선순위 클래스로 결정될 수 있다. 상기 복수의 논리 채널 중 가장 많은 데이터를 가지는 논리 채널이 상기 대표 논리 채널로 선택될 수 있다. 상기 복수의 논리 채널 중 가장 높은 우선순위를 가지는 논리 채널이 상기 대표 논리 채널로 선택될 수 있다.
전송할 데이터를 가지는 복수의 논리 채널이 복수의 LBT 우선순위 클래스에 대응하고, MAC PDU가 하나의 LBT 우선순위 클래스에 대응하는 논리 채널만 포함하면, 상기 특정 LBT 우선순위 클래스는 상기 복수의 논리 채널 별로 결정될 수 있다. 상기 특정 LBT 우선순위 클래스는 상기 하나의 LBT 우선순위 클래스로 결정될 수 있다.
상기 단말은, 상기 결정된 특정 LBT 우선순위 클래스를 기반으로 LBT 절차를 수행하는 것을 더 포함할 수 있다.
다른 실시 예에 있어서, 무선 통신 시스템에서 LBT 우선순위 클래스를 결정하는 단말이 제공된다. 상기 단말은 메모리; 송수신기; 및 상기 메모리와 상기 송수신기를 연결하는 프로세서를 포함하되, 상기 프로세서는 상기 송수신기가 논리 채널 및 LBT 우선순위 클래스 사이의 맵핑 정보(mapping information)를 네트워크로부터 수신하도록 제어하고, 전송할 데이터를 가지는 논리 채널 및 상기 수신된 맵핑 정보를 기반으로 특정 LBT 우선순위 클래스를 결정하도록 구성될 수 있다.
단말이 LBT 우선순위 클래스를 결정할 수 있다.
도 1은 LTE 시스템의 구조를 나타낸다.
도 2는 제어 평면에 대한 LTE 시스템의 무선 인터페이스 프로토콜을 나타낸다.
도 3은 사용자 평면에 대한 LTE 시스템의 무선 인터페이스 프로토콜을 나타낸다.
도 4는 기존의 측정 수행 방법을 나타낸다.
도 5는 기존의 단일 반송파 시스템과 반송파 집성 시스템을 나타낸다.
도 6은 비면허 대역을 이용한 LTE 서비스의 일 예를 나타낸다.
도 7은 본 발명의 일 실시 예에 따라, 단말이 LBT 우선순위 클래스를 결정하고, 결정된 LBT 우선순위 클래스를 기반으로 LBT 절차를 수행하는 방법을 나타낸다.
도 8은 본 발명의 일 실시 예에 따라, 단말이 LBT 우선순위 클래스를 결정하는 방법을 나타내는 블록도이다.
도 9는 본 발명의 실시 예가 구현되는 무선 통신 시스템의 블록도이다.
이하의 기술은 CDMA(code division multiple access), FDMA(frequency division multiple access), TDMA(time division multiple access), OFDMA(orthogonal frequency division multiple access), SC-FDMA(single carrier frequency division multiple access) 등과 같은 다양한 무선 통신 시스템에 사용될 수 있다. CDMA는 UTRA(universal terrestrial radio access)나 CDMA2000과 같은 무선 기술로 구현될 수 있다. TDMA는 GSM(global system for mobile communications)/GPRS(general packet radio service)/EDGE(enhanced data rates for GSM evolution)와 같은 무선 기술로 구현될 수 있다. OFDMA는 IEEE(institute of electrical and electronics engineers) 802.11(Wi-Fi), IEEE 802.16(WiMAX), IEEE 802-20, E-UTRA(evolved UTRA) 등과 같은 무선 기술로 구현될 수 있다. IEEE 802.16m은 IEEE 802.16e의 진화로, IEEE 802.16e에 기반한 시스템과의 하위 호환성(backward compatibility)를 제공한다. UTRA는 UMTS(universal mobile telecommunications system)의 일부이다. 3GPP(3rd generation partnership project) LTE(long term evolution)은 E-UTRA(evolved-UMTS terrestrial radio access)를 사용하는 E-UMTS(evolved UMTS)의 일부로써, 하향링크에서 OFDMA를 채용하고 상향링크에서 SC-FDMA를 채용한다. LTE-A(advanced)는 3GPP LTE의 진화이다.
설명을 명확하게 하기 위해, LTE-A를 위주로 기술하지만 본 발명의 기술적 사상이 이에 제한되는 것은 아니다.
도 1은 LTE 시스템의 구조를 나타낸다. 통신 네트워크는 IMS 및 패킷 데이터를 통한 인터넷 전화(Voice over internet protocol: VoIP)와 같은 다양한 통신 서비스들을 제공하기 위하여 넓게 설치된다.
도 1을 참조하면, LTE 시스템 구조는 하나 이상의 단말(UE; 10), E-UTRAN(evolved-UMTS terrestrial radio access network) 및 EPC(evolved packet core)를 포함한다. 단말(10)은 사용자에 의해 움직이는 통신 장치이다. 단말(10)은 고정되거나 이동성을 가질 수 있으며, MS(mobile station), UT(user terminal), SS(subscriber station), 무선기기(wireless device) 등 다른 용어로 불릴 수 있다.
E-UTRAN은 하나 이상의 eNB(evolved node-B; 20)를 포함할 수 있고, 하나의 셀에 복수의 단말이 존재할 수 있다. eNB(20)는 제어 평면(control plane)과 사용자 평면(user plane)의 끝 지점을 단말에게 제공한다. eNB(20)는 일반적으로 단말(10)과 통신하는 고정된 지점(fixed station)을 말하며, BS(base station), BTS(base transceiver system), 액세스 포인트(access point) 등 다른 용어로 불릴 수 있다. 하나의 eNB(20)는 셀마다 배치될 수 있다. eNB(20)의 커버리지 내에 하나 이상의 셀이 존재할 수 있다. 하나의 셀은 1.25, 2.5, 5, 10 및 20 MHz 등의 대역폭 중 하나를 가지도록 설정되어 여러 단말에게 하향링크(DL; downlink) 또는 상향링크(UL; uplink) 전송 서비스를 제공할 수 있다. 이때 서로 다른 셀은 서로 다른 대역폭을 제공하도록 설정될 수 있다.
이하에서, DL은 eNB(20)에서 단말(10)로의 통신을 의미하며, UL은 단말(10)에서 eNB(20)으로의 통신을 의미한다. DL에서 송신기는 eNB(20)의 일부이고, 수신기는 단말(10)의 일부일 수 있다. UL에서 송신기는 단말(10)의 일부이고, 수신기는 eNB(20)의 일부일 수 있다.
EPC는 제어 평면의 기능을 담당하는 MME(mobility management entity), 사용자 평면의 기능을 담당하는 S-GW(system architecture evolution (SAE) gateway)를 포함할 수 있다. MME/S-GW(30)은 네트워크의 끝에 위치할 수 있으며, 외부 네트워크와 연결된다. MME는 단말의 접속 정보나 단말의 능력에 관한 정보를 가지며, 이러한 정보는 주로 단말의 이동성 관리에 사용될 수 있다. S-GW는 E-UTRAN을 종단점으로 갖는 게이트웨이이다. MME/S-GW(30)은 세션의 종단점과 이동성 관리 기능을 단말(10)에 제공한다. EPC는 PDN(packet data network)-GW(gateway)를 더 포함할 수 있다. PDN-GW는 PDN을 종단점으로 갖는 게이트웨이이다.
MME는 eNB(20)로의 NAS(non-access stratum) 시그널링, NAS 시그널링 보안, AS(access stratum) 보안 제어, 3GPP 액세스 네트워크 간의 이동성을 위한 inter CN(core network) 노드 시그널링, 아이들 모드 단말 도달 가능성(페이징 재전송의 제어 및 실행 포함), 트래킹 영역 리스트 관리(아이들 모드 및 활성화 모드인 단말을 위해), P-GW 및 S-GW 선택, MME 변경과 함께 핸드오버를 위한 MME 선택, 2G 또는 3G 3GPP 액세스 네트워크로의 핸드오버를 위한 SGSN(serving GPRS support node) 선택, 로밍, 인증, 전용 베이러 설정을 포함한 베어러 관리 기능, PWS(public warning system: 지진/쓰나미 경보 시스템(ETWS) 및 상용 모바일 경보 시스템(CMAS) 포함) 메시지 전송 지원 등의 다양한 기능을 제공한다. S-GW 호스트는 사용자 별 기반 패킷 필터링(예를 들면, 심층 패킷 검사를 통해), 합법적 차단, 단말 IP(internet protocol) 주소 할당, DL에서 전송 레벨 패킹 마킹, UL/DL 서비스 레벨 과금, 게이팅 및 등급 강제, APN-AMBR에 기반한 DL 등급 강제의 갖가지 기능을 제공한다. 명확성을 위해 MME/S-GW(30)은 "게이트웨이"로 단순히 표현하며, 이는 MME 및 S-GW를 모두 포함할 수 있다.
사용자 트래픽 전송 또는 제어 트래픽 전송을 위한 인터페이스가 사용될 수 있다. 단말(10) 및 eNB(20)은 Uu 인터페이스에 의해 연결될 수 있다. eNB(20)들은 X2 인터페이스에 의해 상호간 연결될 수 있다. 이웃한 eNB(20)들은 X2 인터페이스에 의한 망형 네트워크 구조를 가질 수 있다. eNB(20)들은 S1 인터페이스에 의해 EPC와 연결될 수 있다. eNB(20)들은 S1-MME 인터페이스에 의해 EPC와 연결될 수 있으며, S1-U 인터페이스에 의해 S-GW와 연결될 수 있다. S1 인터페이스는 eNB(20)와 MME/S-GW(30) 간에 다수-대-다수 관계(many-to-many-relation)를 지원한다.
eNB(20)은 게이트웨이(30)에 대한 선택, RRC(radio resource control) 활성(activation) 동안 게이트웨이(30)로의 라우팅(routing), 페이징 메시지의 스케줄링 및 전송, BCH(broadcast channel) 정보의 스케줄링 및 전송, UL 및 DL에서 단말(10)들로의 자원의 동적 할당, eNB 측정의 설정(configuration) 및 제공(provisioning), 무선 베어러 제어, RAC(radio admission control) 및 LTE 활성 상태에서 연결 이동성 제어 기능을 수행할 수 있다. 상기 언급처럼 게이트웨이(30)는 EPC에서 페이징 개시, LTE 아이들 상태 관리, 사용자 평면의 암호화, SAE 베어러 제어 및 NAS 시그널링의 암호화와 무결성 보호 기능을 수행할 수 있다.
도 2는 제어 평면에 대한 LTE 시스템의 무선 인터페이스 프로토콜을 나타낸다. 도 3은 사용자 평면에 대한 LTE 시스템의 무선 인터페이스 프로토콜을 나타낸다.
단말과 E-UTRAN 간의 무선 인터페이스 프로토콜의 계층은 통신 시스템에서 널리 알려진 OSI(open system interconnection) 모델의 하위 3개 계층을 바탕으로 L1(제1 계층), L2(제2 계층) 및 L3(제3 계층)으로 구분된다. 단말과 E-UTRAN 간의 무선 인터페이스 프로토콜은 수평적으로 물리 계층, 데이터 링크 계층(data link layer) 및 네트워크 계층(network layer)으로 구분될 수 있고, 수직적으로는 제어 신호 전송을 위한 프로토콜 스택(protocol stack)인 제어 평면(control plane)과 데이터 정보 전송을 위한 프로토콜 스택인 사용자 평면(user plane)으로 구분될 수 있다. 무선 인터페이스 프로토콜의 계층은 단말과 E-UTRAN에서 쌍(pair)으로 존재할 수 있고, 이는 Uu 인터페이스의 데이터 전송을 담당할 수 있다.
물리 계층(PHY; physical layer)은 L1에 속한다. 물리 계층은 물리 채널을 통해 상위 계층에 정보 전송 서비스를 제공한다. 물리 계층은 상위 계층인 MAC(media access control) 계층과 전송 채널(transport channel)을 통해 연결된다. 물리 채널은 전송 채널에 맵핑 된다. 전송 채널을 통해 MAC 계층과 물리 계층 사이로 데이터가 전송될 수 있다. 서로 다른 물리 계층 사이, 즉 송신기의 물리 계층과 수신기의 물리 계층 간에 데이터는 물리 채널을 통해 무선 자원을 이용하여 전송될 수 있다. 물리 계층은 OFDM(orthogonal frequency division multiplexing) 방식을 이용하여 변조될 수 있고, 시간과 주파수를 무선 자원으로 활용한다.
물리 계층은 몇몇의 물리 제어 채널(physical control channel)을 사용한다. PDCCH(physical downlink control channel)은 PCH(paging channel) 및 DL-SCH(downlink shared channel)의 자원 할당, DL-SCH와 관련되는 HARQ(hybrid automatic repeat request) 정보에 대하여 단말에 보고한다. PDCCH는 상향링크 전송의 자원 할당에 관하여 단말에 보고하기 위해 상향링크 그랜트를 나를 수 있다. PCFICH(physical control format indicator channel)은 PDCCH를 위해 사용되는 OFDM 심벌의 개수를 단말에 알려주며, 모든 서브프레임마다 전송된다. PHICH(physical hybrid ARQ indicator channel)은 UL-SCH 전송에 대한 HARQ ACK(acknowledgement)/NACK(non-acknowledgement) 신호를 나른다. PUCCH(physical uplink control channel)은 하향링크 전송을 위한 HARQ ACK/NACK, 스케줄링 요청 및 CQI와 같은 UL 제어 정보를 나른다. PUSCH(physical uplink shared channel)은 UL-SCH(uplink shared channel)를 나른다.
물리 채널은 시간 영역에서 복수의 서브프레임(subframe)들과 주파수 영역에서 복수의 부반송파(subcarrier)들로 구성된다. 하나의 서브프레임은 시간 영역에서 복수의 심벌들로 구성된다. 하나의 서브프레임은 복수의 자원 블록(RB; resource block)들로 구성된다. 하나의 자원 블록은 복수의 심벌들과 복수의 부반송파들로 구성된다. 또한, 각 서브프레임은 PDCCH를 위하여 해당 서브프레임의 특정 심벌들의 특정 부반송파들을 이용할 수 있다. 예를 들어, 서브프레임의 첫 번째 심벌이 PDCCH를 위하여 사용될 수 있다. PDCCH는 PRB(physical resource block) 및 MCS(modulation and coding schemes)와 같이 동적으로 할당된 자원을 나를 수 있다. 데이터가 전송되는 단위 시간인 TTI(transmission time interval)는 1개의 서브프레임의 길이와 동일할 수 있다. 서브프레임 하나의 길이는 1ms일 수 있다.
전송채널은 채널이 공유되는지 아닌지에 따라 공통 전송 채널 및 전용 전송 채널로 분류된다. 네트워크에서 단말로 데이터를 전송하는 DL 전송 채널(DL transport channel)은 시스템 정보를 전송하는 BCH(broadcast channel), 페이징 메시지를 전송하는 PCH(paging channel), 사용자 트래픽 또는 제어 신호를 전송하는 DL-SCH 등을 포함한다. DL-SCH는 HARQ, 변조, 코딩 및 전송 전력의 변화에 의한 동적 링크 적응 및 동적/반정적 자원 할당을 지원한다. 또한, DL-SCH는 셀 전체에 브로드캐스트 및 빔포밍의 사용을 가능하게 할 수 있다. 시스템 정보는 하나 이상의 시스템 정보 블록들을 나른다. 모든 시스템 정보 블록들은 같은 주기로 전송될 수 있다. MBMS(multimedia broadcast/multicast service)의 트래픽 또는 제어 신호는 MCH(multicast channel)를 통해 전송된다.
단말에서 네트워크로 데이터를 전송하는 UL 전송 채널은 초기 제어 메시지(initial control message)를 전송하는 RACH(random access channel), 사용자 트래픽 또는 제어 신호를 전송하는 UL-SCH 등을 포함한다. UL-SCH는 HARQ 및 전송 전력 및 잠재적인 변조 및 코딩의 변화에 의한 동적 링크 적응을 지원할 수 있다. 또한, UL-SCH는 빔포밍의 사용을 가능하게 할 수 있다. RACH는 일반적으로 셀로의 초기 접속에 사용된다.
L2에 속하는 MAC 계층은 논리 채널(logical channel)을 통해 상위 계층인 RLC(radio link control) 계층에게 서비스를 제공한다. MAC 계층은 복수의 논리 채널에서 복수의 전송 채널로의 맵핑 기능을 제공한다. 또한, MAC 계층은 복수의 논리 채널에서 단수의 전송 채널로의 맵핑에 의한 논리 채널 다중화 기능을 제공한다. MAC 부 계층은 논리 채널상의 데이터 전송 서비스를 제공한다.
논리 채널은 전송되는 정보의 종류에 따라, 제어 평면의 정보 전달을 위한 제어 채널과 사용자 평면의 정보 전달을 위한 트래픽 채널로 나눌 수 있다. 즉, 논리 채널 타입의 집합은 MAC 계층에 의해 제공되는 다른 데이터 전송 서비스를 위해 정의된다. 논리채널은 전송 채널의 상위에 위치하고 전송채널에 맵핑 된다.
제어 채널은 제어 평면의 정보 전달만을 위해 사용된다. MAC 계층에 의하여 제공되는 제어 채널은 BCCH(broadcast control channel), PCCH(paging control channel), CCCH(common control channel), MCCH(multicast control channel) 및 DCCH(dedicated control channel)을 포함한다. BCCH는 시스템 제어 정보를 방송하기 위한 하향링크 채널이다. PCCH는 페이징 정보의 전송 및 셀 단위의 위치가 네트워크에 알려지지 않은 단말을 페이징 하기 위해 사용되는 하향링크 채널이다. CCCH는 네트워크와 RRC 연결을 갖지 않을 때 단말에 의해 사용된다. MCCH는 네트워크로부터 단말에게 MBMS 제어 정보를 전송하는데 사용되는 일대다 하향링크 채널이다. DCCH는 RRC 연결 상태에서 단말과 네트워크간에 전용 제어 정보 전송을 위해 단말에 의해 사용되는 일대일 양방향 채널이다.
트래픽 채널은 사용자 평면의 정보 전달만을 위해 사용된다. MAC 계층에 의하여 제공되는 트래픽 채널은 DTCH(dedicated traffic channel) 및 MTCH(multicast traffic channel)을 포함한다. DTCH는 일대일 채널로 하나의 단말의 사용자 정보의 전송을 위해 사용되며, 상향링크 및 하향링크 모두에 존재할 수 있다. MTCH는 네트워크로부터 단말에게 트래픽 데이터를 전송하기 위한 일대다 하향링크 채널이다.
논리 채널과 전송 채널간의 상향링크 연결은 UL-SCH에 맵핑 될 수 있는 DCCH, UL-SCH에 맵핑 될 수 있는 DTCH 및 UL-SCH에 맵핑 될 수 있는 CCCH를 포함한다. 논리 채널과 전송 채널간의 하향링크 연결은 BCH 또는 DL-SCH에 맵핑 될 수 있는 BCCH, PCH에 맵핑 될 수 있는 PCCH, DL-SCH에 맵핑 될 수 있는 DCCH, DL-SCH에 맵핑 될 수 있는 DTCH, MCH에 맵핑 될 수 있는 MCCH 및 MCH에 맵핑 될 수 있는 MTCH를 포함한다.
RLC 계층은 L2에 속한다. RLC 계층의 기능은 하위 계층이 데이터를 전송하기에 적합하도록 무선 섹션에서 상위 계층으로부터 수신된 데이터의 분할/연접에 의한 데이터의 크기 조정을 포함한다. 무선 베어러(RB; radio bearer)가 요구하는 다양한 QoS를 보장하기 위해, RLC 계층은 투명 모드(TM; transparent mode), 비 확인 모드(UM; unacknowledged mode) 및 확인 모드(AM; acknowledged mode)의 세 가지의 동작 모드를 제공한다. AM RLC는 신뢰성 있는 데이터 전송을 위해 ARQ(automatic repeat request)를 통해 재전송 기능을 제공한다. 한편, RLC 계층의 기능은 MAC 계층 내부의 기능 블록으로 구현될 수 있으며, 이때 RLC 계층은 존재하지 않을 수도 있다.
PDCP(packet data convergence protocol) 계층은 L2에 속한다. PDCP 계층은 상대적으로 대역폭이 작은 무선 인터페이스 상에서 IPv4 또는 IPv6와 같은 IP 패킷을 도입하여 전송되는 데이터가 효율적으로 전송되도록 불필요한 제어 정보를 줄이는 헤더 압축 기능을 제공한다. 헤더 압축은 데이터의 헤더에 필요한 정보만을 전송함으로써 무선 섹션에서 전송 효율을 높인다. 게다가, PDCP 계층은 보안 기능을 제공한다. 보안기능은 제3자의 검사를 방지하는 암호화 및 제3자의 데이터 조작을 방지하는 무결성 보호를 포함한다.
RRC(radio resource control) 계층은 L3에 속한다. L3의 가장 하단 부분에 위치하는 RRC 계층은 오직 제어 평면에서만 정의된다. RRC 계층은 단말과 네트워크 간의 무선 자원을 제어하는 역할을 수행한다. 이를 위해 단말과 네트워크는 RRC 계층을 통해 RRC 메시지를 교환한다. RRC 계층은 RB들의 구성(configuration), 재구성(re-configuration) 및 해제(release)와 관련되어 논리 채널, 전송 채널 및 물리 채널들의 제어를 담당한다. RB는 단말과 네트워크 간의 데이터 전달을 위해 L1 및 L2에 의해 제공되는 논리적 경로이다. 즉, RB는 단말과 E-UTRAN 간의 데이터 전송을 위해 L2에 의해 제공되는 서비스를 의미한다. RB가 설정된다는 것은 특정 서비스를 제공하기 위해 무선 프로토콜 계층 및 채널의 특성을 규정하고, 각각의 구체적인 파라미터 및 동작 방법을 결정함을 의미한다. RB는 SRB(signaling RB)와 DRB(data RB) 두 가지로 구분될 수 있다. SRB는 제어 평면에서 RRC 메시지를 전송하는 통로로 사용되며, DRB는 사용자 평면에서 사용자 데이터를 전송하는 통로로 사용된다.
RRC 계층 상위에 위치하는 NAS(Non-Access Stratum) 계층은 연결관리(Session Management)와 이동성 관리(Mobility Management) 등의 기능을 수행한다.
도 2를 참조하면, RLC 및 MAC 계층(네트워크 측에서 eNB에서 종료)은 스케줄링, ARQ 및 HARQ와 같은 기능을 수행할 수 있다. RRC 계층(네트워크 측에서 eNB에서 종료)은 방송, 페이징, RRC 연결 관리, RB 제어, 이동성 기능 및 단말 측정 보고/제어와 같은 기능을 수행할 수 있다. NAS 제어 프로토콜(네트워크 측에서 게이트웨이의 MME에서 종료)은 SAE 베어러 관리, 인증, LTE_IDLE 이동성 핸들링, LTE_IDLE에서 페이징 개시 및 단말과 게이트웨이 간의 시그널링을 위한 보안 제어와 같은 기능을 수행할 수 있다.
도 3을 참조하면, RLC 및 MAC 계층(네트워크 측에서 eNB에서 종료)은 제어 평면에서의 기능과 동일한 기능을 수행할 수 있다. PDCP 계층(네트워크 측에서 eNB에서 종료)은 헤더 압축, 무결성 보호 및 암호화와 같은 사용자 평면 기능을 수행할 수 있다.
이하, 단말의 RRC 상태(RRC state)와 RRC 연결 방법에 대해 설명한다.
RRC 상태는 단말의 RRC 계층이 E-UTRAN의 RRC 계층과 논리적으로 연결되어 있는지 여부를 지시한다. RRC 상태는 RRC 연결 상태(RRC_CONNECTED) 및 RRC 아이들 상태(RRC_IDLE)와 같이 두 가지로 나누어질 수 있다. 단말의 RRC 계층과 E-UTRAN의 RRC 계층 간의 RRC 연결이 설정되어 있을 때, 단말은 RRC 연결 상태에 있게 되며, 그렇지 않은 경우 단말은 RRC 아이들 상태에 있게 된다. RRC_CONNECTED의 단말은 E-UTRAN과 RRC 연결이 설정되어 있으므로, E-UTRAN은 RRC_CONNECTED의 단말의 존재를 파악할 수 있고, 단말을 효과적으로 제어할 수 있다. 한편, E-UTRAN은 RRC_IDLE의 단말을 파악할 수 없으며, 핵심 망(CN; core network)이 셀보다 더 큰 영역인 트래킹 영역(tracking area) 단위로 단말을 관리한다. 즉, RRC_IDLE의 단말은 더 큰 영역의 단위로 존재만 파악되며, 음성 또는 데이터 통신과 같은 통상의 이동 통신 서비스를 받기 위해서 단말은 RRC_CONNECTED로 천이해야 한다.
RRC_IDLE 상태에서, 단말이 NAS에 의해 설정된 DRX(discontinuous reception)를 지정하는 동안에, 단말은 시스템 정보 및 페이징 정보의 방송을 수신할 수 있다. 그리고, 단말은 트래킹 영역에서 단말을 고유하게 지정하는 ID(identification)를 할당 받고, PLMN(public land mobile network) 선택 및 셀 재선택을 수행할 수 있다. 또한 RRC_IDLE 상태에서, 어떠한 RRC context도 eNB에 저장되지 않는다.
RRC_CONNECTED 상태에서, 단말은 E-UTRAN에서 E-UTRAN RRC 연결 및 RRC context를 가져, eNB로 데이터를 전송 및/또는 eNB로부터 데이터를 수신하는 것이 가능하다. 또한, 단말은 eNB로 채널 품질 정보 및 피드백 정보를 보고할 수 있다. RRC_CONNECTED 상태에서, E-UTRAN은 단말이 속한 셀을 알 수 있다. 그러므로 네트워크는 단말에게 데이터를 전송 및/또는 단말로부터 데이터를 수신할 수 있고, 네트워크는 단말의 이동성(핸드오버 및 NACC(network assisted cell change)를 통한 GERAN(GSM EDGE radio access network)으로 inter-RAT(radio access technology) 셀 변경 지시)을 제어할 수 있으며, 네트워크는 이웃 셀을 위해 셀 측정을 수행할 수 있다.
RRC_IDLE 상태에서 단말은 페이징 DRX 주기를 지정한다. 구체적으로 단말은 단말 특정 페이징 DRX 주기 마다의 특정 페이징 기회(paging occasion)에 페이징 신호를 모니터링 한다. 페이징 기회는 페이징 신호가 전송되는 동안의 시간 간격이다. 단말은 자신만의 페이징 기회를 가지고 있다.
페이징 메시지는 동일한 트래킹 영역에 속하는 모든 셀에 걸쳐 전송된다. 만약 단말이 하나의 트래킹 영역에서 다른 하나의 트래킹 영역으로 이동하면, 단말은 위치를 업데이트하기 위해 TAU(tracking area update) 메시지를 네트워크에 전송한다.
사용자가 단말의 전원을 최초로 켰을 때, 단말은 먼저 적절한 셀을 탐색한 후 해당 셀에서 RRC_IDLE에 머무른다. RRC 연결을 맺을 필요가 있을 때, RRC_IDLE에 머무르던 단말은 RRC 연결 절차를 통해 E-UTRAN의 RRC와 RRC 연결을 맺고 RRC_CONNECTED로 천이할 수 있다. RRC_IDLE에 머무르던 단말은 사용자의 통화 시도 등의 이유로 상향링크 데이터 전송이 필요할 때, 또는 E-UTRAN으로부터 페이징 메시지를 수신하고 이에 대한 응답 메시지 전송이 필요할 때 등에 E-UTRAN과 RRC 연결을 맺을 필요가 있을 수 있다.
NAS 계층에서 단말의 이동성을 관리하기 위하여 EMM-REGISTERED(EPS Mobility Management-REGISTERED) 및 EMM-DEREGISTERED 두 가지 상태가 정의되어 있으며, 이 두 상태는 단말과 MME에게 적용된다. 초기 단말은 EMM-DEREGISTERED 상태이며, 이 단말이 네트워크에 접속하기 위해서 초기 연결(Initial Attach) 절차를 통해서 해당 네트워크에 등록하는 과정을 수행한다. 상기 연결(Attach) 절차가 성공적으로 수행되면 단말 및 MME는 EMM-REGISTERED 상태가 된다.
단말과 EPC간 시그널링 연결(signaling connection)을 관리하기 위하여 ECM(EPS Connection Management)-IDLE 상태 및 ECM-CONNECTED 상태 두 가지 상태가 정의되어 있으며, 이 두 상태는 단말 및 MME에게 적용된다. ECM-IDLE 상태의 단말이 E-UTRAN과 RRC 연결을 맺으면 해당 단말은 ECM-CONNECTED 상태가 된다. ECM-IDLE 상태에 있는 MME는 E-UTRAN과 S1 연결(S1 connection)을 맺으면 ECM-CONNECTED 상태가 된다. 단말이 ECM-IDLE 상태에 있을 때에는 E-UTRAN은 단말의 context 정보를 가지고 있지 않다. 따라서 ECM-IDLE 상태의 단말은 네트워크의 명령을 받을 필요 없이 셀 선택(cell selection) 또는 셀 재선택(reselection)과 같은 단말 기반의 이동성 관련 절차를 수행한다. 반면 단말이 ECM-CONNECTED 상태에 있을 때에는 단말의 이동성은 네트워크의 명령에 의해서 관리된다. ECM-IDLE 상태에서 단말의 위치가 네트워크가 알고 있는 위치와 달라질 경우 단말은 트래킹 영역 갱신(Tracking Area Update) 절차를 통해 네트워크에 단말의 해당 위치를 알린다.
도 4는 기존의 측정 수행 방법을 나타낸다.
단말은 기지국으로부터 측정 설정(measurement configuration) 정보를 수신한다(S410). 측정 설정 정보를 포함하는 메시지를 측정 설정 메시지라 한다. 단말은 측정 설정 정보를 기반으로 측정을 수행한다(S420). 단말은 측정 결과가 측정 설정 정보 내의 보고 조건을 만족하면, 측정 결과를 기지국에게 보고한다(S430). 측정 결과를 포함하는 메시지를 측정 보고 메시지라 한다.
측정 설정 정보는 다음과 같은 정보를 포함할 수 있다.
(1) 측정 대상(Measurement object) 정보: 단말이 측정을 수행할 대상에 관한 정보이다. 측정 대상은 셀 내 측정의 대상인 인트라-주파수 측정 대상, 셀 간 측정의 대상인 인터-주파수 측정 대상, 및 인터-RAT 측정의 대상인 인터-RAT 측정 대상 중 적어도 어느 하나를 포함한다. 예를 들어, 인트라-주파수 측정 대상은 서빙 셀과 동일한 주파수 밴드를 갖는 주변 셀을 지시하고, 인터-주파수 측정 대상은 서빙 셀과 다른 주파수 밴드를 갖는 주변 셀을 지시하고, 인터-RAT 측정 대상은 서빙 셀의 RAT와 다른 RAT의 주변 셀을 지시할 수 있다.
(2) 보고 설정(Reporting configuration) 정보: 단말이 측정 결과를 전송하는 것을 언제 보고하는지에 관한 보고 조건 및 보고 타입(type)에 관한 정보이다. 보고 설정 정보는 보고 설정의 리스트로 구성될 수 있다. 각 보고 설정은 보고 기준(reporting criterion) 및 보고 포맷(reporting format)을 포함할 수 있다. 보고 기준은 단말이 측정 결과를 전송하는 것을 트리거하는 기준이다. 보고 기준은 측정 보고의 주기 또는 측정 보고를 위한 단일 이벤트일 수 있다. 보고 포맷은 단말이 측정 결과를 어떤 타입으로 구성할 것인지에 관한 정보이다.
(3) 측정 식별자(Measurement identity) 정보: 측정 대상과 보고 설정을 연관시켜, 단말이 어떤 측정 대상에 대해 언제 어떤 타입으로 보고할 것인지를 결정하도록 하는 측정 식별자에 관한 정보이다. 측정 식별자 정보는 측정 보고 메시지에 포함되어, 측정 결과가 어떤 측정 대상에 대한 것이며, 측정 보고가 어떤 보고 조건으로 발생하였는지를 나타낼 수 있다.
(4) 양적 설정(Quantity configuration) 정보: 측정 단위, 보고 단위 및/또는 측정 결과값의 필터링을 설정하기 위한 파라미터에 관한 정보이다.
(5) 측정 갭(Measurement gap) 정보: 하향링크 전송 또는 상향링크 전송이 스케줄링되지 않아, 단말이 서빙 셀과의 데이터 전송에 대한 고려 없이 오직 측정을 하는데 사용될 수 있는 구간인 측정 갭에 관한 정보이다.
단말은 측정 절차를 수행하기 위해, 측정 대상 리스트, 측정 보고 설정 리스트 및 측정 식별자 리스트를 가지고 있다.
3GPP LTE에서 기지국은 단말에게 하나의 주파수 밴드에 대해 하나의 측정 대상만을 설정할 수 있다. 표 1은 측정 보고가 유발되는 이벤트이다. 단말의 측정 결과가 설정된 이벤트를 만족하면, 단말은 측정 보고 메시지를 기지국으로 전송한다.
이벤트 보고 조건
Event A1 Serving becomes better than threshold
Event A2 Serving becomes worse than threshold
Event A3 Neighbour becomes offset better than PCell/PSCell
Event A4 Neighbour becomes better than threshold
Event A5 PCell/PSCell becomes worse than threshold1 and neighbour becomes better than threshold2
Event A6 Neighbour becomes offset better than SCell
Event B1 Inter RAT neighbour becomes better than threshold
Event B2 PCell becomes worse than threshold1 and inter RAT neighbour becomes better than threshold2
Event C1 CSI-RS resource becomes better than threshold
Event C2 CSI-RS resource becomes offset better than reference CSI-RS resource
측정 보고는 측정 식별자, 서빙 셀의 측정된 품질 및 주변 셀(neighboring cell)의 측정 결과를 포함할 수 있다. 측정 식별자는 측정 보고가 트리거된 측정 대상을 식별한다. 주변 셀의 측정 결과는 주변 셀의 셀 식별자 및 측정된 품질을 포함할 수 있다. 측정된 품질은 RSRP(Reference Signal Received Power) 및 RSRQ(Reference Signal Received Quality) 중 적어도 하나를 포함할 수 있다.
이하, 반송파 집성(CA; carrier aggregation) 시스템에 대하여 설명한다.
도 5는 기존의 단일 반송파 시스템과 반송파 집성 시스템을 나타낸다.
도 5를 참조하면, 단일 반송파 시스템에서는 상향링크와 하향링크에 하나의 반송파만을 단말에게 지원한다. 반송파의 대역폭은 다양할 수 있으나, 단말에게 할당되는 반송파는 하나이다. 반면, 반송파 집성 시스템에서는 단말에게 복수의 요소 반송파(DL CC A 내지 C, UL CC A 내지 C)가 할당될 수 있다. 예를 들어, 단말에게 60MHz의 대역폭을 할당하기 위해 3개의 20MHz의 요소 반송파가 할당될 수 있다.
반송파 집성 시스템은 집성하는 각 반송파가 연속한 연속(contiguous) 반송파 집성 시스템과 각 반송파가 서로 떨어져 있는 불연속(non-contiguous) 반송파 집성 시스템으로 구분될 수 있다. 이하에서 단순히 반송파 집성 시스템이라 할 때, 이는 요소 반송파가 연속인 경우와 불연속인 경우를 모두 포함하는 것으로 이해되어야 한다.
1개 이상의 요소 반송파를 모을 때 대상이 되는 요소 반송파는 기존 시스템과의 하위 호환성(backward compatibility)을 위하여 기존 시스템에서 사용하는 대역폭을 그대로 사용할 수 있다. 예를 들어 3GPP LTE 시스템에서는 1.4MHz, 3MHz, 5MHz, 10MHz, 15MHz 및 20MHz의 대역폭을 지원하며, 3GPP LTE-A 시스템에서는 상기 3GPP LTE 시스템의 대역폭만을 이용하여 20MHz 이상의 광대역을 구성할 수 있다. 또는 기존 시스템의 대역폭을 그대로 사용하지 않고 새로운 대역폭을 정의하여 광대역을 구성할 수도 있다.
무선 통신 시스템의 시스템 대역은 복수의 반송파 주파수(Carrier-frequency)로 구분된다. 여기서, 반송파 주파수는 셀의 중심 주파수(Center frequency of a cell)를 의미한다. 이하에서 셀(cell)은 하향링크 주파수 자원과 상향링크 주파수 자원을 의미할 수 있다. 또는 셀은 하향링크 주파수 자원과 선택적인(optional) 상향링크 주파수 자원의 조합(combination)을 의미할 수 있다. 또한, 일반적으로 반송파 집성(CA)을 고려하지 않은 경우, 하나의 셀(cell)은 상향 및 하향링크 주파수 자원이 항상 쌍으로 존재할 수 있다. 특정 셀을 통하여 패킷 데이터의 송수신이 이루어지기 위해서는, 단말은 먼저 특정 셀에 대해 설정(configuration)을 완료해야 한다. 여기서, 설정(configuration)이란 해당 셀에 대한 데이터 송수신에 필요한 시스템 정보 수신을 완료한 상태를 의미한다. 예를 들어, 설정(configuration)은 데이터 송수신에 필요한 공통 물리계층 파라미터들, 또는 MAC 계층 파라미터들, 또는 RRC 계층에서 특정 동작에 필요한 파라미터들을 수신하는 전반의 과정을 포함할 수 있다. 설정 완료된 셀은, 패킷 데이터가 전송될 수 있다는 정보만 수신하면, 즉시 패킷의 송수신이 가능해지는 상태이다.
설정완료 상태의 셀은 활성화(Activation) 혹은 비활성화(Deactivation) 상태로 존재할 수 있다. 여기서, 활성화는 데이터의 송신 또는 수신이 행해지거나 준비 상태(ready state)에 있는 것을 말한다. 단말은 자신에게 할당된 자원(주파수, 시간 등일 수 있음)을 확인하기 위하여 활성화된 셀의 제어채널(PDCCH) 및 데이터 채널(PDSCH)을 모니터링 혹은 수신할 수 있다.
비활성화는 트래픽 데이터의 송신 또는 수신이 불가능하고, 측정이나 최소 정보의 송신/수신이 가능한 것을 말한다. 단말은 비활성화 셀로부터 패킷 수신을 위해 필요한 시스템 정보(SI)를 수신할 수 있다. 반면, 단말은 자신에게 할당된 자원(주파수, 시간 등일 수도 있음)을 확인하기 위하여 비활성화된 셀의 제어채널(PDCCH) 및 데이터 채널(PDSCH)을 모니터링 혹은 수신하지 않는다.
셀은 프라이머리 셀(primary cell)과 세컨더리 셀(secondary cell), 서빙 셀(serving cell)로 구분될 수 있다.
프라이머리 셀은 프라이머리 주파수에서 동작하는 셀을 의미하며, 단말이 기지국과의 최초 연결 확립 과정(initial connection establishment procedure) 또는 연결 재확립 과정을 수행하는 셀, 또는 핸드오버 과정에서 프라이머리 셀로 지시된 셀을 의미한다. 세컨더리 셀은 세컨더리 주파수에서 동작하는 셀을 의미하며, 일단 RRC 연결이 확립되면 설정되고, 추가적인 무선 자원을 제공하는데 사용된다.
서빙 셀은 반송파 집성(CA; carrier aggregation)이 설정되지 않거나 CA를 제공할 수 없는 단말인 경우에는 프라이머리 셀로 구성된다. CA가 설정된 경우 서빙 셀이라는 용어는 프라이머리 셀 + 모든 세컨더리 셀들 중 하나 또는 복수의 세컨더리 셀로 구성된 집합을 나타내는데 사용된다. 즉, 프라이머리 셀은 RRC 연결(establishment) 또는 재연결(re-establishment) 상태에서, 보안입력(security input)과 NAS 이동 정보(mobility information)을 제공하는 하나의 서빙 셀을 의미한다. 단말의 성능(capabilities)에 따라, 적어도 하나의 셀이 프라이머리 셀과 함께 서빙 셀 집합을 형성하도록 구성될 수 있는데, 상기 적어도 하나의 셀을 세컨더리 셀이라 한다. 따라서, 하나의 단말에 대해 설정된 서빙 셀의 집합은 하나의 프라이머리 셀만으로 구성되거나, 또는 하나의 프라이머리 셀과 적어도 하나의 세컨더리 셀로 구성될 수 있다.
PCC(primary component carrier)는 프라이머리 셀에 대응하는 요소 반송파(component carrier, CC)를 의미한다. PCC는 단말이 여러 CC 중에 초기에 기지국과 접속(Connection 혹은 RRC Connection)을 이루게 되는 CC이다. PCC는 다수의 CC에 관한 시그널링을 위한 연결(Connection 혹은 RRC Connection)을 담당하고, 단말과 관련된 연결정보인 단말문맥정보(UE Context)를 관리하는 특별한 CC이다. 또한, PCC는 단말과 접속을 이루게 되어 RRC 연결상태(RRC Connected Mode)일 경우에는 항상 활성화 상태로 존재한다.
SCC(secondary component carrier)는 세컨더리 셀에 대응하는 CC를 의미한다. 즉, SCC는 PCC 이외에 단말에 할당된 CC로서, SCC는 단말이 PCC 이외에 추가적인 자원할당 등을 위하여 확장된 반송파(Extended Carrier)이며 활성화 혹은 비활성화 상태로 나뉠 수 있다.
프라이머리 셀에 대응하는 하향링크 요소 반송파를 하향링크 주요소 반송파(DownLink Primary Component Carrier, DL PCC)라 하고, 프라이머리 셀에 대응하는 상향링크 요소 반송파를 상향링크 주요소 반송파(UL PCC)라 한다. 또한, 하향링크에서 세컨더리 셀에 대응하는 요소 반송파를 하향링크 부요소 반송파(DL Secondary CC, DL SCC)라 하고, 상향링크에서 세컨더리 셀에 대응하는 요소 반송파를 상향링크 부요소 반송파(UL SCC)라 한다.
프라이머리 셀과 세컨더리 셀은 다음과 같은 특징을 가진다.
첫째, 프라이머리 셀은 PUCCH의 전송을 위해 사용된다. 둘째, 프라이머리 셀은 항상 활성화되어 있는 반면, 세컨더리 셀은 특정 조건에 따라 활성화/비활성화되는 반송파이다. 셋째, 프라이머리 셀이 무선링크실패(Radio Link Failure; 이하 RLF)를 경험할 때, RRC 재연결이 트리거링(triggering)된다. 넷째, 프라이머리 셀은 보안키(security key) 변경이나 RACH(Random Access Channel) 절차와 동반하는 핸드오버 절차에 의해서 변경될 수 있다. 다섯째, NAS(non-access stratum) 정보는 프라이머리 셀을 통해서 수신한다. 여섯째, 언제나 프라이머리 셀은 DL PCC와 UL PCC가 쌍(pair)으로 구성된다. 일곱째, 각 단말마다 다른 요소 반송파(CC)가 프라이머리 셀로 설정될 수 있다. 여덟째, 세컨더리 셀의 재설정(reconfiguration), 추가(adding) 및 제거(removal)와 같은 절차는 RRC 계층에 의해 수행될 수 있다. 신규 세컨더리 셀의 추가에 있어서, 전용(dedicated) 세컨더리 셀의 시스템 정보를 전송하는데 RRC 시그널링이 사용될 수 있다.
하향링크 요소 반송파가 하나의 서빙 셀을 구성할 수도 있고, 하향링크 요소 반송파와 상향링크 요소 반송파가 연결 설정되어 하나의 서빙 셀을 구성할 수 있다. 그러나, 하나의 상향링크 요소 반송파만으로는 서빙 셀이 구성되지 않는다. 요소 반송파의 활성화/비활성화는 곧 서빙 셀의 활성화/비활성화의 개념과 동등하다. 예를 들어, 서빙 셀1이 DL CC1으로 구성되어 있다고 가정할 때, 서빙 셀1의 활성화는 DL CC1의 활성화를 의미한다. 만약, 서빙 셀2가 DL CC2와 UL CC2가 연결 설정되어 구성되어 있다고 가정할 때, 서빙 셀2의 활성화는 DL CC2와 UL CC2의 활성화를 의미한다. 이러한 의미에서, 각 요소 반송파는 셀(cell)에 대응될 수 있다.
하향링크와 상향링크 간에 집성되는 요소 반송파들의 수는 다르게 설정될 수 있다. 하향링크 CC 수와 상향링크 CC 수가 동일한 경우를 대칭적(symmetric) 집성이라고 하고, 그 수가 다른 경우를 비대칭적(asymmetric) 집성이라고 한다. 또한, CC들의 크기(즉 대역폭)는 서로 다를 수 있다. 예를 들어, 70MHz 대역의 구성을 위해 5개의 CC들이 사용된다고 할 때, 5MHz CC(carrier #0) + 20MHz CC(carrier #1) + 20MHz CC(carrier #2) + 20MHz CC(carrier #3) + 5MHz CC(carrier #4)과 같이 구성될 수도 있다.
이하, 참조 신호(RS; Reference Signal)에 대하여 설명한다.
무선 통신 시스템에서 데이터/신호는 무선 채널을 통해 전송되기 때문에, 데이터/신호는 전송 중에 무선상에서 왜곡될 수 있다. 수신단에서 왜곡된 신호를 정확하게 수신하기 위하여, 왜곡되어 수신된 신호는 채널 정보를 이용하여 보정되는 것이 바람직하다. 이때, 송신단 및/또는 수신단은 채널 정보를 검출하기 위하여 양측에서 모두 알고 있는 참조신호(RS)를 이용할 수 있다. 참조신호는 파일럿 신호라고 불릴 수 있다. 송신단에서 다중 입출력 안테나를 이용하여 데이터를 송수신할 때, 수신단에서 데이터를 정확하게 수신하기 위하여 송신 안테나와 수신 안테나 간의 채널 상태가 검출되는 것이 바람직하다. 이때, 수신단에서 채널 상태를 검출하기 위해 송신단의 각 송신 안테나는 개별적인 참조 신호를 가지는 것이 바람직하다.
하향링크 참조 신호에는 하나의 셀 내 모든 단말이 공유하는 공통 참조 신호(CRS: Common RS), 특정 단말만을 위한 단말 특정 참조 신호(UE-specific RS), MBSFN(multimedia broadcast and multicast single frequency network) 참조 신호, 포지셔닝 참조 신호(PRS; positioning RS) 및 채널 상태 정보(CSI; channel state information) 참조 신호(CSI RS)가 있다.
송신단은 이와 같은 참조 신호들을 이용하여 복조(demodulation)와 채널 측정(channel measurement)을 위한 정보를 수신단에 제공할 수 있다. 수신단(예를 들어, 단말)은 CRS를 이용하여 채널 상태를 측정하고, 측정된 채널 상태에 따라 CQI(Channel Quality Indicator), PMI(Precoding Matrix Index) 및/또는 RI(Rank Indicator)와 같은 채널 품질과 관련된 지시자를 송신단(예를 들어, 기지국)으로 피드백할 수 있다. 본 명세서에서 CRS는 셀 특정 참조 신호(cell-specific RS)라 할 수 있다. CRS는 PDSCH 전송을 지원하는 셀 내의 모든 하향링크 서브프레임에서 전송된다. CRS는 안테나 포트 0 내지 3 상으로 전송될 수 있으며, CRS는 Δf=15kHz에 대해서만 정의될 수 있다. CRS는 3GPP TS 36.211 V10.1.0 (2011-03)의 6.10.1절을 참조할 수 있다.
반면, 채널 상태 정보(CSI)의 피드백과 관련된 참조 신호를 CSI-RS라고 정의할 수 있다. CSI RS는 주파수 영역 또는 시간 영역에서 비교적 드물게(sparse) 배치되며, 일반 서브프레임 또는 MBSFN 서브프레임의 데이터 영역에서는 생략(punctured)될 수 있다. CSI의 추정을 통해 필요한 경우에 CQI, PMI 및 RI 등이 단말로부터 보고될 수 있다.
단말 특정 참조 신호는 PDSCH 상의 데이터 복조가 필요한 경우에 자원 요소들을 통해 단말들로 전송될 수 있다. 단말은 상위 계층 시그널링을 통하여 단말 특정 참조 신호의 존재 여부를 수신할 수 있다. 단말 특정 참조 신호는 상응하는 PDSCH 신호가 매핑되는 경우에만 유효하다.
MBSFN 참조 신호는 MBSFN 전송을 위해 할당된 서브프레임에서 전송될 수 있다. PRS는 단말의 위치 추정에 사용될 수 있다. CSI RS는 LTE-A 단말의 PDSCH에 대한 채널 추정에 사용된다.
참조 신호(RS; reference signal)는 일반적으로 시퀀스로 전송된다. 참조 신호 시퀀스는 특별한 제한 없이 임의의 시퀀스가 사용될 수 있다. 참조 신호 시퀀스는 PSK(phase shift keying) 기반의 컴퓨터를 통해 생성된 시퀀스(PSK-based computer generated sequence)를 사용할 수 있다. PSK의 예로는 BPSK(binary phase shift keying), QPSK(quadrature phase shift keying) 등이 있다. 또는, 참조 신호 시퀀스는 CAZAC(constant amplitude zero auto-correlation) 시퀀스를 사용할 수 있다. CAZAC 시퀀스의 예로는 ZC(Zadoff-Chu) 기반 시퀀스(ZC-based sequence), 순환 확장(cyclic extension)된 ZC 시퀀스(ZC sequence with cyclic extension), 절단(truncation) ZC 시퀀스(ZC sequence with truncation) 등이 있다. 또는, 참조 신호 시퀀스는 PN(pseudo-random) 시퀀스를 사용할 수 있다. PN 시퀀스의 예로는 m-시퀀스, 컴퓨터를 통해 생성된 시퀀스, 골드(Gold) 시퀀스, 카사미(Kasami) 시퀀스 등이 있다. 또, 참조 신호 시퀀스는 순환 쉬프트된 시퀀스(cyclically shifted sequence)를 이용할 수 있다.
이하, DRS(Discovery RS)에 대하여 설명한다.
넓은 커버리지를 가지는 매크로 셀의 커버리지(coverage) 내 특정 위치에 서비스 커버리지가 작은 마이크로 셀(micro cell), 펨토 셀(femto cell), 피코 셀(pico cell)등이 설치될 수 있다. 이와 같은 셀을 스몰 셀(small cell)이라 할 수 있다. 스몰 셀 클러스터(Small cell cluster)는 지리적으로 인접한 스몰 셀들의 집합으로써, 대개의 경우 하나의 매크로 셀(혹은 섹터) 내에 한 개 또는 두 개의 클러스터가 위치하여 단말에게 높은 전송량을 제공할 수 있다.
Inter-cell interference 조절을 위해서, 스몰 셀 클러스터에 속한 일부의 스몰 셀을 적절한 시간(~수십 ms) 단위로 셀의 상태를 변환(on/off)시키고, 셀 간 트래픽 로드 밸런싱(traffic load balancing)을 수행할 수 있다. 스몰 셀의 상태 변환에 소요되는 시간을 줄이기 위해서 꺼진 스몰 셀도 일부 신호(예를 들어, CRS, CSI RS)를 낮은 주기(예를 들어, 40 ms)로 전송하여, 단말이 스몰 셀의 상태에 무관하게 RRM 측정할 수 있도록 할 수 있다. 즉, 하향링크 전송량을 높이기 위해 스몰 셀 클러스터에 속한 스몰 셀들의 on/off 상태변환을 수행할 수 있다. 트래픽 부하가 증가한 off 상태의 스몰 셀은 on 상태로 재빨리 변환하고, 트래픽 부하가 적은 on 상태의 스몰 셀은 off 상태로 변환할 필요가 있다. 스몰 셀이 on 상태에서 serving 단말들을 인접 스몰 셀에게 트래픽 부하(load)를 넘기고 해당 스몰 셀은 off 상태로 변환하는 방법을 고려할 수 있다. 해당 스몰 셀이 off 상태이므로 인접 스몰 셀은 간섭의 양이 감소하여, 간접적으로는 하향링크 전송량이 증가하는 효과가 있을 수 있다.
On 상태의 스몰 셀은 제어채널(예를 들어, PDCCH), 파일럿(예를 들어, CRS, 단말 특정 참조 신호), 데이터를 매 서브프레임마다 전송할 수 있다. Off 상태의 스몰 셀은 간섭 관리 측면에서 아무런 신호도 전송하지 않는 것이 바람직하다. 하지만, 스몰 셀의 상태변화가 충분히 빨라서 트래픽 로드 변화에 빠르게 대응하면, 아무런 신호도 전송하지 않는 경우 하향링크 전송량은 오히려 증가할 수 있다. 따라서 off 상태의 스몰 셀은 최소한의 신호를 전송하여 on 상태로의 전환이 빠르게 일어날 수 있도록 할 수 있다. 상기 최소한의 신호를 Rel-12에서 새로이 도입하였으며, 이를 DRS(Discovery Reference Signal)라 할 수 있다.
Rel-12에서 도입하는 DRS는 Rel-8 주 동기 신호(PSS; primary synchronization signal), Rel-8 부 동기 신호(SSS; secondary synchronization signal), Rel-8 CRS port 0의 조합으로 이루어지며 필요한 경우에는 Rel-10 CSI-RS port 15를 추가로 설정할 수 있다. 단말은 스몰 셀로부터 PSS와 SSS를 통하여 해당 스몰 셀과의 대강의 시간 동기와 주파수 동기를 얻을 수 있다. CRS port 0을 이용해서 정확한 시간 동기와 주파수 동기를 얻을 수 있다. 만일 CRS 만을 사용해서 DRS를 설정한 경우에는 CRS 만을 이용해서 RRM(Radio Resource Management) 측정할 수 있으며, CSI-RS도 추가로 DRS를 설정한 경우에는 PSS/SSS/CRS를 이용하여 획득한 동기를 바탕으로 CSI-RS 만을 이용해서 RRM(Radio Resource Management) 측정할 수 있다.
스몰 셀은 on 상태 혹은 off 상태와 무관하게 DRS를 전송할 수 있다. DRS는 스몰 셀의 상태변환을 위해 전송하며, 스몰 셀의 빠른 상태변환은 스몰 셀 클러스터에서의 간섭관리 측면에서 큰 도움이 된다. 만일 인접한 스몰 셀들이 동기를 맞추어 DRS 를 전송하면, 이를 수신하는 단말은 적은 배터리 소모를 통하여 동주파수/타주파수(intra-frequency/inter-frequency) RRM 측정을 수행할 수 있는 장점이 있다.
DRS 측정 타이밍 구성(DMTC; DRS measurement timing configuration)은 단말이 DRS 기반으로 셀 검출과 RRM(radio resource measurement) 측정을 수행해도 되는 시간을 나타낸 것으로 하나의 주파수에 대해 DMTC 기반의 다수의 셀을 검출할 수 있다. 따라서, 단말은 DMTC로부터 DRS의 위치를 예상할 수 있고 DMTC는 최소한 주기, 서빙 셀 타이밍으로부터의 오프셋, 및 사용 폭을 포함할 수 있는데, 여기서 주기는 단말이 핸드오버 수행 또는 RRM 측정을 하기 위해서 최소한 40ms, 80ms, 또는 160ms로 설정될 수 있다.
이하, 비면허 대역(Unlicensed band)에 대하여 설명한다.
도 6은 비면허 대역을 이용한 LTE 서비스의 일 예를 나타낸다.
도 6을 참조하면, 무선기기(630)는 제 1 기지국(610)과 연결을 확립하고, 면허 대역(licensed band)를 통해 서비스를 제공받는다. 트래픽 오프로딩을 위해, 무선기기(630)는 제 2 기지국(620)과 비면허 대역(unlicensed band)을 통해 서비스를 제공받을 수 있다.
제 1 기지국(610)은 LTE 시스템을 지원하는 기지국이지만, 제 2 기지국(620)은 LTE 외에 WLAN(wireless local area network) 등 타 통신 프로토콜을 지원할 수 있다. 제 1 기지국(610)과 제 2 기지국(620)은 CA(carrier aggregation) 환경으로 결합되어, 제 1 기지국(610)의 특정 셀이 1차 셀일 수 있다. 또는, 제 1 기지국(610)과 제 2 기지국(620)는 이중 접속(dual connectivity) 환경으로 결합되어, 제 1 기지국(610)의 특정 셀이 1차 셀일 수 있다. 일반적으로 1차 셀을 갖는 제 1 기지국(610)이 제 2 기지국(620) 보다 더 넓은 커버리지를 갖는다. 제 1 기지국(610)은 매크로 셀이라고 할 수 있다. 제 2 기지국(620)은 스몰 셀, 펨토 셀 또는 마이크로 셀이라고 할 수 있다. 제 1 기지국(610)은 1차 셀과 영 또는 그 이상의 2차 셀을 운용할 수 있다. 제 2 기지국(620)은 하나 이상의 2차 셀을 운용할 수 있다. 2차 셀은 1차 셀의 지시에 의해 활성화/비활성화될 수 있다. 상기 설명한 예는 일 예에 불과하고, 제 1 기지국(610)은 1차 셀에 해당되고, 제 2 기지국(620)은 2차 셀에 해당되어, 하나의 기지국에 의해 관리될 수 있다.
면허 대역은 특정 통신 프로토콜 또는 특정 사업자에게 독점적인 사용(exclusive use)을 보장하는 대역이다. 비면허 대역은 다양한 통신 프로토콜이 공존하며, 공유 사용(shared use)을 보장하는 대역이다. 비면허 대역은 WLAN이 사용하는 2.5 GHz 및/또는 5 GHz 대역을 포함할 수 있다.
기본적으로 비면허 대역에서는 각 통신 노드 간의 경쟁을 통한 채널 확보를 가정한다. 따라서, 비면허 대역에서의 통신은 채널 센싱을 수행하여 다른 통신 노드가 신호 전송을 하지 않음을 확인할 것을 요구하고 있다. 이를 편의상 LBT(listen before talk)라고 하며, 다른 통신 노드가 신호를 전송하지 않는다고 판단한 경우를 CCA(clear channel assessment)가 확인되었다고 정의한다.
LBT는 전송을 수행하기 전에 기지국이나 단말이 먼저 캐리어 센싱(Carrier Sensing)을 수행하여, 해당 채널이 비어 있는지 여부를 확인한 후, 전송을 수행하는 방법이다. LAA에서 하향링크의 경우, DRS(Discovery Reference Signal) 전송을 위한 25us 캐리어 센싱 및 일반적인 사용자 데이터 전송을 위한 9us 캐리어 센싱이 존재한다. 캐리어 센싱을 수행한 결과, 해당 채널이 점유되지 않았다고 확인되면, 전송할 데이터의 최대 전송 횟수 또한 표 2에서 정의된 우선순위에 따라 변경되는 Tmcot,p(MCOT; maximum channel occupation time) 값으로 제한될 수 있다.
Channel Access Priority Class (p) mp CWmin,p CWmax,p Tmcot,p allowed CWp sizes
1 1 3 7 2 ms {3,7}
2 1 7 15 3 ms {7,15}
3 3 15 63 8 or 10 ms {15,31,63}
4 7 15 1023 8 or 10 ms {15,31,63,127,255,511,1023}
상기 표 2에서, CWmin,p는 경쟁 윈도우(contention window)의 최솟값이고, CWmax,p는 경쟁 윈도우의 최댓값이며, mp는 연속 슬롯(consecutive slot)이다. CWmin,p, CWmax,p, mp 및 Tmcot,p는 채널 접근 우선순위 클래스(p)에 따라 결정될 수 있다.
상기 설명한 바와 같이, LBT 절차는 비면허 대역에서 데이터 전송을 위해 필요하다. 그리고, 네 가지의 LBT 우선순위 클래스가 WiFi에서 정의되었다. 본 명세서에서, 상기 LBT 우선순위 클래스(LBT Priority Class)와 채널 액세스 우선순위 클래스(Channel Access Priority Class)는 동일한 개념으로 사용될 수 있다. 하지만, LTE 단말이 상향링크 전송을 위해 LBT 우선순위 클래스를 결정하는 방법은 아직 정의되지 않았다. 이하, 본 발명의 일 실시 예에 따라, 단말이 LBT 우선순위 클래스를 결정하는 방법 및 이를 지원하는 장치에 대하여 설명한다.
도 7은 본 발명의 일 실시 예에 따라, 단말이 LBT 우선순위 클래스를 결정하고, 결정된 LBT 우선순위 클래스를 기반으로 LBT 절차를 수행하는 방법을 나타낸다.
단말은 전송할 데이터를 가지는 논리채널을 기반으로 LBT 우선순위 클래스를 결정할 수 있다. 구체적으로, 단말은 전송할 데이터를 갖는 논리 채널을 기반으로 비면허 주파수를 점유하기 위해 어떤 LBT 우선순위 클래스를 사용할지 결정할 수 있다.
도 7을 참조하면, 단계 S710에서, 단말은 네트워크로부터 맵핑 정보를 수신할 수 있다. 상기 맵핑 정보는 논리 채널과 LBT 우선순위 클래스 사이의 상호 맵핑 관계를 포함하는 정보일 수 있다.
하나의 논리 채널 ID는 하나의 LBT 우선순위 클래스에 맵핑될 수 있다. 이 경우, 논리 채널 설정(logical channel configuration)은 해당 LBT 우선순위 클래스를 포함할 수 있다. 또는, 하나의 논리 채널 우선순위는 하나의 LBT 우선순위 클래스에 맵핑될 수 있다. 또는, 하나의 논리 채널 그룹은 하나의 LBT 우선순위 클래스에 맵핑될 수 있다.
일부 논리 채널 ID는 고정된 LBT 우선순위 클래스를 가질 수 있다. 그러면, 상기 일부 논리 채널 ID에 대한 맵핑 정보는 생략될 수 있다. 일부 논리 채널 우선순위는 고정된 LBT 우선순위 클래스를 가질 수 있다. 그러면, 상기 일부 논리 채널 우선순위에 대한 맵핑 정보는 생략될 수 있다. 일부 논리 채널 그룹은 고정된 LBT 우선순위 클래스를 가질 수 있다. 그러면, 상기 일부 논리채널 그룹에 대한 맵핑 정보는 생략될 수 있다. 예를 들어, SRB0의 논리 채널 ID가 0이고, SRB1의 논리 채널 ID가 1이며, 상기 SRB0 및 SRB1의 논리 채널 ID는 고정된 LBT 우선순위 클래스를 가진다고 가정한다. 이 경우, 논리 채널 ID 0 및 논리 채널 ID 1에 대한 맵핑 정보는 생략될 수 있다. 따라서, 맵핑 정보는 오직 논리 채널 ID 2부터 논리 채널 ID 10까지만 포함할 수 있다.
단계 S720에서, 단말은 수신된 맵핑 정보를 기반으로 LBT 우선순위 클래스를 선택할 수 있다. 단말은 비면허 주파수 상에서 상향링크 데이터 전송을 수행할 필요가 있으면, 상기 단말은 수신된 맵핑 정보를 기반으로 비면허 주파수를 점유하기 위해 어떤 LBT 우선순위 클래스를 사용해야 하는지 결정할 수 있다.
(1) 만약 전송할 데이터를 가지는 모든 논리 채널이 동일한 LBT 우선순위 클래스에 속하면, 단말은 상기 LBT 우선순위 클래스를 선택할 수 있다. 또는, 만약 MAC PDU가 동일한 LBT 우선순위 클래스에 속하는 논리 채널로 구성되면, 단말은 상기 LBT 우선순위 클래스를 선택할 수 있다.
(2) 만약 전송할 데이터를 가지는 모든 논리 채널이 동일한 LBT 우선순위 클래스에 속하지 않고, MAC PDU가 다른 LBT 우선순위 클래스에 속하는 논리 채널로 구성되면, 단말은 대표 논리 채널을 선택할 수 있다. 그리고, 단말은 상기 대표 논리 채널에 대응하는 LBT 우선순위 클래스를 선택할 수 있다. 상기 대표 논리 채널은 각 논리 채널에 버퍼된 데이터 양을 기반으로 선택될 수 있다. 예를 들어, 단말은 가장 많은 데이터를 가지는 논리 채널을 상기 대표 논리 채널로 선택할 수 있다. 상기 대표 논리 채널은 논리 채널 우선순위를 기반으로 선택될 수 있다. 예를 들어, 단말은 가장 높은 우선순위를 가지는 논리 채널을 상기 대표 논리 채널로 선택할 수 있다.
(3) 만약 전송할 데이터를 가지는 모든 논리 채널이 동일한 LBT 우선순위 클래스에 속하지 않고, MAC PDU가 동일한 LBT 우선순위 클래스에 속하는 논리 채널로 구성되면, 단말은 각 논리 채널에 대하여 LBT 우선순위 클래스를 선택할 수 있다. 이 경우, 단말은 논리 채널 별로 LBT 절차를 수행할 수 있다. 또는, 만약 전송할 데이터를 가지는 모든 논리 채널이 동일한 LBT 우선순위 클래스에 속하지 않고, MAC PDU가 동일한 LBT 우선순위 클래스에 속하는 논리 채널로 구성되면, 단말은 각 논리 채널 그룹에 대응하는 LBT 우선순위 클래스를 선택할 수 있다. 이 경우, 단말은 논리 채널 그룹 별로 LBT 절차를 수행할 수 있다.
바람직하게, 네트워크는 매(every) TTI 마다 LBT 우선순위 클래스를 단말에게 명시적으로 알릴 수 있다. 이 경우, MAC 엔티티(entity)는 상기 결정된 LBT 우선순위 클래스에 속하는 모든 논리 채널에 대하여 LCP(Logical Channel Prioritization) 절차를 수행할 수 있다. 상기 LCP 절차는 3GPP TS 36.321 V12.7.0 (2015-09)의 5.4.3.1절에 기술되어 있다. 예를 들어, 만약 특정 TTI에 대한 LBT 우선순위 클래스가 1이면, MAC 엔티티는 LBT 우선순위 클래스 1에 속하는 모든 논리 채널에 대한 LCP 절차를 수행할 수 있다.
MAC 엔티티가 상기 결정된 LBT 우선순위 클래스에 속하는 모든 논리 채널에 대한 LCP 절차를 수행한 이후, 만약 MAC PDU에 공간이 남아있으면, MAC 엔티티는 다른 논리 채널에 대하여 LCP 절차를 수행할 수 있다. 또는, MAC 엔티티가 상기 결정된 LBT 우선순위 클래스에 속하는 모든 논리 채널에 대한 LCP 절차를 수행한 이후, 만약 MAC PDU에 공간이 남아있으면, MAC 엔티티는 높은 우선순위 클래스에 대응하는 논리 채널에 대한 LCP 절차를 먼저 수행한 후, 다른 논리 채널에 대해 LCP 절차를 수행할 수 있다.
단계 S730에서, 상향링크 데이터가 RLC 엔티티 또는 PDCP 엔티티에서 전송이 가능해지면, MAC 계층은 사용하기로 결정한 선택된 LBT 우선순위 클래스를 물리 계층에게 알릴 수 있다.
단계 S740에서, 상기 물리 계층은 비면허 주파수를 점유하기 위해 LBT 우선순위 클래스를 기반으로 LBT 절차를 수행할 수 있다.
도 8은 본 발명의 일 실시 예에 따라, 단말이 LBT 우선순위 클래스를 결정하는 방법을 나타내는 블록도이다.
도 8을 참조하면, 단계 S810에서, 단말은 논리 채널 및 LBT 우선순위 클래스 사이의 맵핑 정보(mapping information)를 네트워크로부터 수신할 수 있다.
단계 S820에서, 단말은 전송할 데이터를 가지는 논리 채널 및 상기 수신된 맵핑 정보를 기반으로 특정 LBT 우선순위 클래스를 결정할 수 있다.
전송할 데이터를 가지는 모든 논리 채널이 하나의 LBT 우선순위 클래스에 대응하면, 상기 특정 LBT 우선순위 클래스는 상기 하나의 LBT 우선순위 클래스로 결정될 수 있다. 또는, MAC PDU가 하나의 LBT 우선순위 클래스에 대응하는 논리 채널만 포함하면, 상기 특정 LBT 우선순위 클래스는 상기 하나의 LBT 우선순위 클래스로 결정될 수 있다.
전송할 데이터를 가지는 복수의 논리 채널이 복수의 LBT 우선순위 클래스에 대응하고, MAC PDU가 복수의 LBT 우선순위 클래스에 대응하는 복수의 논리 채널을 포함하면, 상기 단말은 상기 복수의 논리 채널 중 대표 논리 채널을 선택할 수 있다. 상기 특정 LBT 우선순위 클래스는 상기 대표 논리 채널에 대응하는 LBT 우선순위 클래스로 결정될 수 있다. 상기 복수의 논리 채널 중 가장 많은 데이터를 가지는 논리 채널이 상기 대표 논리 채널로 선택될 수 있다. 또는, 상기 복수의 논리 채널 중 가장 높은 우선순위를 가지는 논리 채널이 상기 대표 논리 채널로 선택될 수 있다.
전송할 데이터를 가지는 복수의 논리 채널이 복수의 LBT 우선순위 클래스에 대응하고, MAC PDU가 하나의 LBT 우선순위 클래스에 대응하는 논리 채널만 포함하면, 상기 특정 LBT 우선순위 클래스는 상기 복수의 논리 채널 별로 결정될 수 있다. 상기 특정 LBT 우선순위 클래스는 상기 하나의 LBT 우선순위 클래스로 결정될 수 있다.
상기 단말은 상기 결정된 특정 LBT 우선순위 클래스를 기반으로 LBT 절차를 수행할 수 있다.
도 9는 본 발명의 실시 예가 구현되는 무선 통신 시스템의 블록도이다.
기지국(900)은 프로세서(processor, 901), 메모리(memory, 902) 및 송수신기(transceiver, 903)를 포함한다. 메모리(902)는 프로세서(901)와 연결되어, 프로세서(901)를 구동하기 위한 다양한 정보를 저장한다. 송수신기(903)는 프로세서(901)와 연결되어, 무선 신호를 송신 및/또는 수신한다. 프로세서(901)는 제안된 기능, 과정 및/또는 방법을 구현한다. 전술한 실시 예에서 기지국의 동작은 프로세서(901)에 의해 구현될 수 있다.
단말(910)은 프로세서(911), 메모리(912) 및 송수신기(913)를 포함한다. 메모리(912)는 프로세서(911)와 연결되어, 프로세서(911)를 구동하기 위한 다양한 정보를 저장한다. 송수신기(913)는 프로세서(911)와 연결되어, 무선 신호를 송신 및/또는 수신한다. 프로세서(911)는 제안된 기능, 과정 및/또는 방법을 구현한다. 전술한 실시 예에서 단말의 동작은 프로세서(911)에 의해 구현될 수 있다.
프로세서는 ASIC(application-specific integrated circuit), 다른 칩셋, 논리 회로 및/또는 데이터 처리 장치를 포함할 수 있다. 메모리는 ROM(read-only memory), RAM(random access memory), 플래쉬 메모리, 메모리 카드, 저장 매체 및/또는 다른 저장 장치를 포함할 수 있다. 송수신기는 무선 신호를 처리하기 위한 베이스밴드 회로를 포함할 수 있다. 실시 예가 소프트웨어로 구현될 때, 상술한 기법은 상술한 기능을 수행하는 모듈(과정, 기능 등)로 구현될 수 있다. 모듈은 메모리에 저장되고, 프로세서에 의해 실행될 수 있다. 메모리는 프로세서 내부 또는 외부에 있을 수 있고, 잘 알려진 다양한 수단으로 프로세서와 연결될 수 있다.
상술한 일례들에 기초하여 본 명세서에 따른 다양한 기법들이 도면과 도면 부호를 통해 설명되었다. 설명의 편의를 위해, 각 기법들은 특정한 순서에 따라 다수의 단계나 블록들을 설명하였으나, 이러한 단계나 블록의 구체적 순서는 청구항에 기재된 발명을 제한하는 것이 아니며, 각 단계나 블록은 다른 순서로 구현되거나, 또 다른 단계나 블록들과 동시에 수행되는 것이 가능하다. 또한, 통상의 기술자라면 간 단계나 블록이 한정적으로 기술된 것이나 아니며, 발명의 보호 범위에 영향을 주지 않는 범위 내에서 적어도 하나의 다른 단계들이 추가되거나 삭제되는 것이 가능하다는 것을 알 수 있을 것이다.
상술한 실시 예는 다양한 일례를 포함한다. 통상의 기술자라면 발명의 모든 가능한 일례의 조합이 설명될 수 없다는 점을 알 것이고, 또한 본 명세서의 기술로부터 다양한 조합이 파생될 수 있다는 점을 알 것이다. 따라서 발명의 보호범위는, 이하 청구항에 기재된 범위를 벗어나지 않는 범위 내에서, 상세한 설명에 기재된 다양한 일례를 조합하여 판단해야 할 것이다.

Claims (15)

  1. 무선 통신 시스템에서 단말이 LBT 우선순위 클래스(Listen-Before-Talk priority class)를 결정하는 방법에 있어서,
    논리 채널 및 LBT 우선순위 클래스 사이의 맵핑 정보(mapping information)를 네트워크로부터 수신하고,
    전송할 데이터를 가지는 논리 채널 및 상기 수신된 맵핑 정보를 기반으로 특정 LBT 우선순위 클래스를 결정하는 것을 포함하는 것을 특징으로 하는 방법.
  2. 제 1 항에 있어서,
    전송할 데이터를 가지는 모든 논리 채널이 하나의 LBT 우선순위 클래스에 대응하면, 상기 특정 LBT 우선순위 클래스는 상기 하나의 LBT 우선순위 클래스로 결정되는 것을 특징으로 하는 방법.
  3. 제 1 항에 있어서,
    MAC PDU가 하나의 LBT 우선순위 클래스에 대응하는 논리 채널만 포함하면, 상기 특정 LBT 우선순위 클래스는 상기 하나의 LBT 우선순위 클래스로 결정되는 것을 특징으로 하는 방법.
  4. 제 1 항에 있어서,
    전송할 데이터를 가지는 복수의 논리 채널이 복수의 LBT 우선순위 클래스에 대응하고, MAC PDU가 복수의 LBT 우선순위 클래스에 대응하는 복수의 논리 채널을 포함하면, 상기 단말은 상기 복수의 논리 채널 중 대표 논리 채널을 선택하는 것을 더 포함하는 것을 특징으로 하는 방법.
  5. 제 4 항에 있어서,
    상기 특정 LBT 우선순위 클래스는 상기 대표 논리 채널에 대응하는 LBT 우선순위 클래스로 결정되는 것을 특징으로 하는 방법.
  6. 제 5 항에 있어서,
    상기 복수의 논리 채널 중 가장 많은 데이터를 가지는 논리 채널이 상기 대표 논리 채널로 선택되는 것을 특징으로 하는 방법.
  7. 제 5 항에 있어서,
    상기 복수의 논리 채널 중 가장 높은 우선순위를 가지는 논리 채널이 상기 대표 논리 채널로 선택되는 것을 특징으로 하는 방법.
  8. 제 1 항에 있어서,
    전송할 데이터를 가지는 복수의 논리 채널이 복수의 LBT 우선순위 클래스에 대응하고, MAC PDU가 하나의 LBT 우선순위 클래스에 대응하는 논리 채널만 포함하면, 상기 특정 LBT 우선순위 클래스는 상기 복수의 논리 채널 별로 결정되는 것을 특징으로 하는 방법.
  9. 제 8 항에 있어서,
    상기 특정 LBT 우선순위 클래스는 상기 하나의 LBT 우선순위 클래스로 결정되는 것을 특징으로 하는 방법.
  10. 제 1 항에 있어서,
    상기 단말은, 상기 결정된 특정 LBT 우선순위 클래스를 기반으로 LBT 절차를 수행하는 것을 더 포함하는 것을 특징으로 하는 방법.
  11. 무선 통신 시스템에서 LBT 우선순위 클래스를 결정하는 단말에 있어서,
    메모리; 송수신기; 및 상기 메모리와 상기 송수신기를 연결하는 프로세서를 포함하되, 상기 프로세서는
    상기 송수신기가 논리 채널 및 LBT 우선순위 클래스 사이의 맵핑 정보(mapping information)를 네트워크로부터 수신하도록 제어하고,
    전송할 데이터를 가지는 논리 채널 및 상기 수신된 맵핑 정보를 기반으로 특정 LBT 우선순위 클래스를 결정하도록 구성되는 것을 특징으로 하는 단말.
  12. 제 11 항에 있어서,
    전송할 데이터를 가지는 모든 논리 채널이 하나의 LBT 우선순위 클래스에 대응하면, 상기 특정 LBT 우선순위 클래스는 상기 하나의 LBT 우선순위 클래스로 결정되는 것을 특징으로 하는 단말.
  13. 제 11 항에 있어서,
    MAC PDU가 하나의 LBT 우선순위 클래스에 대응하는 논리 채널만 포함하면, 상기 특정 LBT 우선순위 클래스는 상기 하나의 LBT 우선순위 클래스로 결정되는 것을 특징으로 하는 단말.
  14. 제 11 항에 있어서, 상기 프로세서는
    전송할 데이터를 가지는 복수의 논리 채널이 복수의 LBT 우선순위 클래스에 대응하고, MAC PDU가 복수의 LBT 우선순위 클래스에 대응하는 복수의 논리 채널을 포함하면, 상기 복수의 논리 채널 중 대표 논리 채널을 선택하도록 구성되는 것을 특징으로 하는 단말.
  15. 제 14 항에 있어서,
    상기 특정 LBT 우선순위 클래스는 상기 대표 논리 채널에 대응하는 LBT 우선순위 클래스로 결정되는 것을 특징으로 하는 단말.
PCT/KR2017/001136 2016-02-04 2017-02-02 Lbt 우선순위 클래스를 결정하는 방법 및 장치 WO2017135701A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/070,475 US10721766B2 (en) 2016-02-04 2017-02-02 Method and device for determining LBT priority class

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201662291462P 2016-02-04 2016-02-04
US62/291,462 2016-02-04

Publications (1)

Publication Number Publication Date
WO2017135701A1 true WO2017135701A1 (ko) 2017-08-10

Family

ID=59500452

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/001136 WO2017135701A1 (ko) 2016-02-04 2017-02-02 Lbt 우선순위 클래스를 결정하는 방법 및 장치

Country Status (2)

Country Link
US (1) US10721766B2 (ko)
WO (1) WO2017135701A1 (ko)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11122619B2 (en) * 2016-03-25 2021-09-14 Telefonaktiebolaget Lm Ericsson (Publ) Channel access priority class selection
CN109804702B (zh) 2016-08-12 2024-03-15 瑞典爱立信有限公司 针对srs传输的lbt参数
US10470050B2 (en) * 2016-11-16 2019-11-05 Apple Inc. License assisted access uplink communication with Wi-Fi preamble
EP3777439A1 (en) * 2018-04-03 2021-02-17 IDAC Holdings, Inc. Methods for channel access management
CN110769463A (zh) * 2018-07-27 2020-02-07 索尼公司 电子装置、无线通信方法和计算机可读介质
US11272539B2 (en) * 2018-08-09 2022-03-08 Ofinno, Llc Channel access and bandwidth part switching
US11272540B2 (en) * 2018-08-09 2022-03-08 Ofinno, Llc Channel access and uplink switching
CN113170477A (zh) * 2019-02-13 2021-07-23 联发科技(新加坡)私人有限公司 未授权新无线电中的信令无线电承载的信道接入优先级等级
EP3928586B1 (en) * 2019-02-23 2023-10-25 Google LLC Enhanced listen-before-talk
EP3703421B1 (en) * 2019-02-28 2021-07-07 LG Electronics Inc. Method and apparatus for public warning system on unlicensed frequency in a wireless communication system
CN115024011A (zh) * 2020-02-21 2022-09-06 中兴通讯股份有限公司 非许可频带的数据传输方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014178502A1 (ko) * 2013-05-02 2014-11-06 엘지전자 주식회사 무선랜 시스템에서 동적 채널 센싱 방법 및 장치

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101636931B1 (ko) * 2009-12-11 2016-07-06 삼성전자 주식회사 이동통신 시스템에서 경쟁 기반 액세스를 수행하는 방법 및 장치
US10251197B2 (en) * 2015-07-23 2019-04-02 Qualcomm Incorporated Transmitting uplink control channel information when a clear channel assessment of an unlicensed carrier fails
CN106559882B (zh) * 2015-09-25 2021-12-10 中兴通讯股份有限公司 一种授权协助接入设备竞争接入参数配置的方法及装置
CN108029146B (zh) * 2015-10-26 2022-10-11 苹果公司 在授权辅助接入中为上行链路批准传输配置下行链路先听后说优先级等级

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014178502A1 (ko) * 2013-05-02 2014-11-06 엘지전자 주식회사 무선랜 시스템에서 동적 채널 센싱 방법 및 장치

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
"3GPP; TSGRAN; E-UTRA; Medium Access Control (MAC) Protocol Specification (Release 13", 3GPP TS 36.321, 14 January 2016 (2016-01-14) *
"Downlink LBT Priority Classes", R1-157379, 3GPP TSG RAN WG1 MEETING #83, 6 November 2015 (2015-11-06), Anaheim, USA, XP051003563 *
RAN1 ET AL.: "LS on RANI Agreements on LAA", R1-157905 , 3GPP TSG RAN WG1 MEETING #83, 25 November 2015 (2015-11-25), Anaheim, USA, XP051022992 *
SAMSUNG ET AL.: "WF on MCOT for LBT Priority Classes", R1-157670, 3GPP TSG RAN WG1 MEETING #83, 24 November 2015 (2015-11-24), Anaheim, USA, XP051043849 *

Also Published As

Publication number Publication date
US20190053273A1 (en) 2019-02-14
US10721766B2 (en) 2020-07-21

Similar Documents

Publication Publication Date Title
WO2017135701A1 (ko) Lbt 우선순위 클래스를 결정하는 방법 및 장치
WO2016144002A1 (ko) 비면허 주파수에 의해 점유된 서브프레임을 통한 통신 방법 및 장치
WO2017171354A1 (ko) 단말이 이동성을 수행하는 방법 및 장치
JP7118098B2 (ja) 測定結果を報告するための方法及び装置
US20200235896A1 (en) Method and apparatus for activating bandwidth part
WO2014051333A1 (en) Method and apparatus for supporting a control plane and a user plane in a wireless communication system
WO2016036113A1 (en) Method and apparatus for performing interworking between 3gpp and wlan for dual connectivity in wireless communication system
WO2017135740A1 (ko) V2x 통신을 수행하는 방법 및 장치
WO2018164431A1 (ko) 슬라이스 별로 간섭을 조정하는 방법 및 장치
US11032730B2 (en) Method and device for terminal performing WLAN measurement
WO2017078316A1 (ko) 단말이 주파수 측정을 수행하는 방법 및 장치
KR20170125817A (ko) 페이징 시그널링을 감소시키기 위한 방법 및 장치
WO2016056761A1 (ko) Drs 측정 또는 crs 측정을 선택적으로 수행하는 방법 및 장치.
US10136366B2 (en) Method and apparatus for terminal to perform frequency measurement on basis of cell specific priority
WO2018097528A1 (ko) Ran 기반 통지 영역을 설정하는 방법 및 장치
WO2016072789A1 (ko) Dmtc를 기반으로 서빙 셀의 rsrq를 측정하는 방법 및 장치
WO2016048084A1 (en) Method and apparatus for configuring user equipment initiated messages for dual connectivity in wireless communication system
WO2017171355A2 (ko) 시스템 정보를 획득하는 방법 및 장치
US10349300B2 (en) Method and device for applying load-specific offset by terminal in wireless communication system
WO2018084620A1 (ko) 단말이 셀 재선택 절차를 수행하는 방법 및 이를 지원하는 장치
WO2018012811A1 (ko) 단말이 mbms 서비스를 수신하는 방법 및 이를 지원하는 장치
US10382994B2 (en) Method and device for terminal applying offset to measurement report triggering condition
US10993133B2 (en) Method and apparatus for reporting measurement result
WO2017078325A1 (ko) 단말이 ttt 중지 타이머를 기반으로 측정 보고를 수행하는 방법 및 장치
WO2017052121A1 (ko) 기지국이 ran 공유를 지원하는 방법 및 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17747746

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17747746

Country of ref document: EP

Kind code of ref document: A1