WO2017135700A1 - Procédé et dispositif destinés à la réception de manière adaptative d'un service de mbms - Google Patents
Procédé et dispositif destinés à la réception de manière adaptative d'un service de mbms Download PDFInfo
- Publication number
- WO2017135700A1 WO2017135700A1 PCT/KR2017/001135 KR2017001135W WO2017135700A1 WO 2017135700 A1 WO2017135700 A1 WO 2017135700A1 KR 2017001135 W KR2017001135 W KR 2017001135W WO 2017135700 A1 WO2017135700 A1 WO 2017135700A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- mcs
- mbsfn
- mbms
- terminal
- information
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W4/00—Services specially adapted for wireless communication networks; Facilities therefor
- H04W4/06—Selective distribution of broadcast services, e.g. multimedia broadcast multicast service [MBMS]; Services to user groups; One-way selective calling services
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W72/00—Local resource management
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W72/00—Local resource management
- H04W72/04—Wireless resource allocation
Definitions
- the present invention relates to a wireless communication system, and more particularly, to a method for adaptively receiving an MBMS service of interest (MBMS) by a terminal and an apparatus for supporting the same.
- MBMS MBMS service of interest
- 3GPP LTE long term evolution
- UMTS Universal Mobile Telecommunications System
- 3GPP LTE uses orthogonal frequency division multiple access (OFDMA) in downlink and single carrier-frequency division multiple access (SC-FDMA) in uplink.
- OFDMA orthogonal frequency division multiple access
- SC-FDMA single carrier-frequency division multiple access
- MIMO multiple input multiple output
- LTE-A 3GPP LTE-Advanced
- MBMS Multimedia Broadcast / Multicast Service
- CBS Cell Broadcast Service
- MBMS is intended for high-speed multimedia data transmission.
- CBS is not based on IP (internet protocol), but MBMS is based on IP multicast. According to the MBMS, when a certain level of users exist in the same cell, the users can receive the same multimedia data using a shared resource (or channel), thereby increasing the efficiency of radio resources and allowing users to value multimedia services. It is available cheaply.
- the MBMS uses a shared channel to efficiently receive data from a plurality of terminals in one service. For one service data, the base station does not allocate a dedicated channel as many as the number of terminals to receive the service in one cell, but allocates only one shared channel. In addition, since a plurality of terminals simultaneously receive the shared channel, the efficiency of radio resources is increased. In relation to the MBMS, the terminal may receive the MBMS after receiving system information about the corresponding cell.
- a method for receiving a multimedia broadcast and multicast service (MBMS) service by a terminal in a wireless communication system receives MCS level information including at least one MCS level for a plurality of Multimedia Broadcast Single Frequency Network (MBSFN) subframes within an MCS Modulation Coding Scheme modification period, and the plurality of MBSFNs.
- the method may include applying the at least one MCS level to a subframe and receiving an MBMS service through a plurality of MBSFN subframes to which the at least one MCS level is applied.
- the at least one MCS level may be one MCS level.
- the one MCS level may be applied to a plurality of MBSFN subframes within the MCS change period.
- the at least one MCS level may be a plurality of MCS levels.
- the number of the plurality of MCS levels may be equal to the number of MBSFN subframes within the MCS change period.
- the plurality of MCS levels may be applied to a plurality of MBSFN subframes within the MCS change period.
- the MCS level information may be received through a physical downlink control channel (PDCCH).
- the PDCCH may be received in one representative subframe within the MCS change period.
- the representative subframe may be the first subframe within the MCS change period.
- the representative subframe may be the first MBSFN subframe within the MCS change period.
- the PDCCH may be addressed with a new Radio Network Temporary Identifier (MBMS-RNTI).
- MBMS-RNTI Radio Network Temporary Identifier
- the terminal may further include receiving MCH scheduling information (Multicast Channel Scheduling Information).
- MCH scheduling information Multicast Channel Scheduling Information
- a terminal for receiving a Multimedia Broadcast and Multicast Service (MBMS) service in a wireless communication system includes a memory; Transceiver; And a processor that connects the memory and the transceiver, wherein the transceiver includes at least one MCS level for a plurality of Multimedia Broadcast Single Frequency Network (MBSFN) subframes within an MCS Modulation Coding Scheme modification period.
- MCS Multimedia Broadcast Single Frequency Network
- control to receive MCS level information including the level apply the at least one MCS level to the plurality of MBSFN subframes, and the transceiver applies a plurality of MBSFN subframes to which the at least one MCS level is applied.
- the terminal may adaptively receive the MBMS service of interest.
- FIG. 1 shows a structure of an LTE system.
- FIG. 2 shows a network structure for MBMS.
- FIG 3 shows an air interface protocol of an LTE system for a control plane and a user plane.
- FIG. 4 shows a structure of an MBSFN subframe.
- FIG. 5 shows an example of configuration of an MBSFN subframe for performing an MBMS service.
- FIG. 6 illustrates a method of notifying the UE of a change in MCCH information when MCCH information is changed.
- FIG. 7 illustrates a method for dynamically receiving an MBMS service by a terminal according to an embodiment of the present invention.
- FIG. 8 is a block diagram illustrating a method of receiving an MBMS service by a terminal according to an embodiment of the present invention.
- FIG. 9 is a block diagram of a wireless communication system in which an embodiment of the present invention is implemented.
- CDMA code division multiple access
- FDMA frequency division multiple access
- TDMA time division multiple access
- OFDMA orthogonal frequency division multiple access
- SC-FDMA single carrier frequency division multiple access
- CDMA may be implemented with a radio technology such as universal terrestrial radio access (UTRA) or CDMA2000.
- TDMA may be implemented with wireless technologies such as global system for mobile communications (GSM) / general packet radio service (GPRS) / enhanced data rates for GSM evolution (EDGE).
- GSM global system for mobile communications
- GPRS general packet radio service
- EDGE enhanced data rates for GSM evolution
- OFDMA may be implemented by wireless technologies such as Institute of Electrical and Electronics Engineers (IEEE) 802.11 (Wi-Fi), IEEE 802.16 (WiMAX), IEEE 802-20, evolved UTRA (E-UTRA), and the like.
- IEEE 802.16m is an evolution of IEEE 802.16e and provides backward compatibility with systems based on IEEE 802.16e.
- UTRA is part of a universal mobile telecommunications system (UMTS).
- 3rd generation partnership project (3GPP) long term evolution (LTE) is part of evolved UMTS (E-UMTS) using evolved-UMTS terrestrial radio access (E-UTRA), which employs OFDMA in downlink and SC in uplink -FDMA is adopted.
- LTE-A (advanced) is the evolution of 3GPP LTE.
- FIG. 1 shows a structure of an LTE system.
- Communication networks are widely deployed to provide various communication services such as IMS and Voice over internet protocol (VoIP) over packet data.
- VoIP Voice over internet protocol
- an LTE system structure includes one or more UEs 10, an evolved-UMTS terrestrial radio access network (E-UTRAN), and an evolved packet core (EPC).
- the terminal 10 is a communication device moved by a user.
- the terminal 10 may be fixed or mobile and may be called by other terms such as a mobile station (MS), a user terminal (UT), a subscriber station (SS), and a wireless device.
- MS mobile station
- UT user terminal
- SS subscriber station
- wireless device a wireless device.
- the E-UTRAN may include one or more evolved node-eB (eNB) 20, and a plurality of terminals may exist in one cell.
- the eNB 20 provides an end point of a control plane and a user plane to the terminal.
- the eNB 20 generally refers to a fixed station communicating with the terminal 10, and may be referred to in other terms such as a base station (BS), a base transceiver system (BTS), an access point, and the like.
- BS base station
- BTS base transceiver system
- One eNB 20 may be arranged per cell. There may be one or more cells within the coverage of the eNB 20.
- One cell may be configured to have one of bandwidths such as 1.25, 2.5, 5, 10, and 20 MHz to provide downlink (DL) or uplink (UL) transmission service to various terminals. In this case, different cells may be configured to provide different bandwidths.
- DL means communication from the eNB 20 to the terminal 10
- UL means communication from the terminal 10 to the eNB 20.
- the transmitter may be part of the eNB 20 and the receiver may be part of the terminal 10.
- the transmitter may be part of the terminal 10 and the receiver may be part of the eNB 20.
- the EPC may include a mobility management entity (MME) that serves as a control plane, and a system architecture evolution (SAE) gateway (S-GW) that serves as a user plane.
- MME mobility management entity
- SAE system architecture evolution gateway
- S-GW gateway
- the MME / S-GW 30 may be located at the end of the network and is connected to an external network.
- the MME has information about the access information of the terminal or the capability of the terminal, and this information may be mainly used for mobility management of the terminal.
- S-GW is a gateway having an E-UTRAN as an endpoint.
- the MME / S-GW 30 provides the terminal 10 with the endpoint of the session and the mobility management function.
- the EPC may further include a packet data network (PDN) -gateway (GW).
- PDN-GW is a gateway with PDN as an endpoint.
- the MME includes non-access stratum (NAS) signaling to the eNB 20, NAS signaling security, access stratum (AS) security control, inter CN (node network) signaling for mobility between 3GPP access networks, idle mode terminal reachability ( Control and execution of paging retransmission), tracking area list management (for terminals in idle mode and active mode), P-GW and S-GW selection, MME selection for handover with MME change, 2G or 3G 3GPP access Bearer management, including roaming, authentication, and dedicated bearer settings, SGSN (serving GPRS support node) for handover to the network, public warning system (ETWS) and commercial mobile alarm system (PWS) It provides various functions such as CMAS) and message transmission support.
- NAS non-access stratum
- AS access stratum
- inter CN node network
- MME selection for handover with MME change
- 2G or 3G 3GPP access Bearer management including roaming, authentication, and dedicated bearer settings
- SGSN serving GPRS support no
- S-GW hosts can be based on per-user packet filtering (eg, through deep packet inspection), legal blocking, terminal IP (Internet protocol) address assignment, transport level packing marking in DL, UL / DL service level charging, gating and It provides various functions of class enforcement, DL class enforcement based on APN-AMBR.
- MME / S-GW 30 is simply represented as a "gateway", which may include both MME and S-GW.
- An interface for user traffic transmission or control traffic transmission may be used.
- the terminal 10 and the eNB 20 may be connected by the Uu interface.
- the eNBs 20 may be interconnected by an X2 interface. Neighboring eNBs 20 may have a mesh network structure by the X2 interface.
- the eNBs 20 may be connected with the EPC by the S1 interface.
- the eNBs 20 may be connected to the EPC by the S1-MME interface and may be connected to the S-GW by the S1-U interface.
- the S1 interface supports a many-to-many-relation between eNB 20 and MME / S-GW 30.
- the eNB 20 may select for the gateway 30, routing to the gateway 30 during radio resource control (RRC) activation, scheduling and transmission of paging messages, scheduling channel information (BCH), and the like.
- RRC radio resource control
- BCH scheduling channel information
- the gateway 30 may perform paging initiation, LTE idle state management, user plane encryption, SAE bearer control, and encryption and integrity protection functions of NAS signaling in the EPC.
- FIG. 2 shows a network structure for a multimedia broadcast / multicast service (MBMS).
- MBMS multimedia broadcast / multicast service
- a radio access network (E-UTRAN) 200 includes a multi-cell coordination entity (hereinafter referred to as MCE, 210) and a base station (eNB) 220.
- the MCE 210 is a main entity controlling the MBMS, and serves as session management, radio resource allocation, or admission control of the base station 220 in the MBSFN region. .
- the MCE 210 may be implemented in the base station 220 or may be implemented independently of the base station 220.
- the interface between the MCE 210 and the base station 220 is called an M2 interface.
- the M2 interface is an internal control plane interface of the wireless access network 200, and MBMS control information is transmitted. If the MCE 210 is implemented in the base station 220, the M2 interface may only exist logically.
- An Evolved Packet Core (EPC) 250 includes an MME 260 and an MBMS Gateway (MBMS GW) 270.
- the MBMS gateway 270 is an entity that transmits MBMS service data and is located between the base station 220 and the BM-SC, and performs MBMS packet transmission and broadcast to the base station 220.
- the MBMS gateway 270 uses PDCP and IP multicast to transmit user data to the base station 220, and performs session control signaling for the radio access network 200.
- the interface between the MME 260 and the MCE 210 is a control plane interface between the radio access network 200 and the EPC 250, which is called an M3 interface, and transmits control information related to MBMS session control.
- the MME 260 and the MCE 210 transmit session control signaling, such as a session start / stop message for session start or session stop, to the base station 220,
- the base station 220 may inform the terminal that the MBMS service is started or stopped through cell notification.
- the interface between the base station 220 and the MBMS gateway 270 is an interface of a user plane, which is called an M1 interface, and transmits MBMS service data.
- FIG. 3 shows an air interface protocol of an LTE system for a control plane and a user plane.
- 3 (a) is the air interface protocol of the LTE system for the control plane
- FIG. 3 (b) is the air interface protocol of the LTE system for the user plane.
- the layer of the air interface protocol between the UE and the E-UTRAN is based on the lower three layers of the open system interconnection (OSI) model, which is well known in communication systems, and includes L1 (first layer), L2 (second layer), and L3 (third layer). Hierarchical).
- the air interface protocol between the UE and the E-UTRAN may be horizontally divided into a physical layer, a data link layer, and a network layer, and vertically a protocol stack for transmitting control signals.
- Layers of the radio interface protocol may exist in pairs in the UE and the E-UTRAN, which may be responsible for data transmission of the Uu interface.
- the physical layer belongs to L1.
- the physical layer provides an information transmission service to a higher layer through a physical channel.
- the physical layer is connected to a higher layer of a media access control (MAC) layer through a transport channel.
- Physical channels are mapped to transport channels.
- Data may be transmitted between the MAC layer and the physical layer through a transport channel.
- Data between different physical layers, that is, between the physical layer of the transmitter and the physical layer of the receiver may be transmitted using radio resources through a physical channel.
- the physical layer may be modulated using an orthogonal frequency division multiplexing (OFDM) scheme, and utilizes time and frequency as radio resources.
- OFDM orthogonal frequency division multiplexing
- the physical layer uses several physical control channels.
- a physical downlink control channel (PDCCH) reports resource allocation of a paging channel (PCH) and a downlink shared channel (DL-SCH), and hybrid automatic repeat request (HARQ) information related to the DL-SCH to the UE.
- the PDCCH may carry an uplink grant to report to the UE regarding resource allocation of uplink transmission.
- the physical control format indicator channel (PCFICH) informs the UE of the number of OFDM symbols used for the PDCCH and is transmitted every subframe.
- a physical hybrid ARQ indicator channel (PHICH) carries a HARQ ACK (non-acknowledgement) / NACK (non-acknowledgement) signal for UL-SCH transmission.
- a physical uplink control channel (PUCCH) carries UL control information such as HARQ ACK / NACK, a scheduling request, and a CQI for downlink transmission.
- the physical uplink shared channel (PUSCH) carries an uplink shared channel (UL-SCH).
- the physical channel includes a plurality of subframes in the time domain and a plurality of subcarriers in the frequency domain.
- One subframe consists of a plurality of symbols in the time domain.
- One subframe consists of a plurality of resource blocks (RBs).
- One resource block is composed of a plurality of symbols and a plurality of subcarriers.
- each subframe may use specific subcarriers of specific symbols of the corresponding subframe for the PDCCH.
- the first symbol of the subframe may be used for the PDCCH.
- the PDCCH may carry dynamically allocated resources, such as a physical resource block (PRB) and modulation and coding schemes (MCS).
- a transmission time interval (TTI) which is a unit time at which data is transmitted, may be equal to the length of one subframe.
- One subframe may have a length of 1 ms.
- a DL transport channel for transmitting data from a network to a UE includes a broadcast channel (BCH) for transmitting system information, a paging channel (PCH) for transmitting a paging message, and a DL-SCH for transmitting user traffic or control signals. And the like.
- BCH broadcast channel
- PCH paging channel
- DL-SCH supports dynamic link adaptation and dynamic / semi-static resource allocation by varying HARQ, modulation, coding and transmit power.
- the DL-SCH may enable the use of broadcast and beamforming throughout the cell.
- System information carries one or more system information blocks. All system information blocks can be transmitted in the same period. Traffic or control signals of a multimedia broadcast / multicast service (MBMS) are transmitted through a multicast channel (MCH).
- MCH multicast channel
- the UL transport channel for transmitting data from the terminal to the network includes a random access channel (RAC) for transmitting an initial control message, a UL-SCH for transmitting user traffic or a control signal, and the like.
- the UL-SCH can support dynamic link adaptation due to HARQ and transmit power and potential changes in modulation and coding.
- the UL-SCH may enable the use of beamforming.
- RACH is generally used for initial connection to a cell.
- the MAC layer belonging to L2 provides a service to a radio link control (RLC) layer, which is a higher layer, through a logical channel.
- RLC radio link control
- the MAC layer provides a mapping function from a plurality of logical channels to a plurality of transport channels.
- the MAC layer also provides a logical channel multiplexing function by mapping from multiple logical channels to a single transport channel.
- the MAC sublayer provides data transfer services on logical channels.
- the logical channel may be divided into a control channel for information transmission in the control plane and a traffic channel for information transmission in the user plane according to the type of information to be transmitted. That is, a set of logical channel types is defined for other data transfer services provided by the MAC layer.
- the logical channel is located above the transport channel and mapped to the transport channel.
- the control channel is used only for conveying information in the control plane.
- the control channel provided by the MAC layer includes a broadcast control channel (BCCH), a paging control channel (PCCH), a common control channel (CCCH), a multicast control channel (MCCH), and a dedicated control channel (DCCH).
- BCCH is a downlink channel for broadcasting system control information.
- PCCH is a downlink channel used for transmitting paging information and paging a terminal whose cell-level location is not known to the network.
- CCCH is used by the terminal when there is no RRC connection with the network.
- MCCH is a one-to-many downlink channel used to transmit MBMS control information from the network to the terminal.
- DCCH is a one-to-one bidirectional channel used by the terminal for transmitting dedicated control information between the terminal and the network in an RRC connection state.
- the traffic channel is used only for conveying information in the user plane.
- the traffic channel provided by the MAC layer includes a dedicated traffic channel (DTCH) and a multicast traffic channel (MTCH).
- DTCH is used for transmission of user information of one UE in a one-to-one channel and may exist in both uplink and downlink.
- MTCH is a one-to-many downlink channel for transmitting traffic data from the network to the terminal.
- the uplink connection between the logical channel and the transport channel includes a DCCH that can be mapped to the UL-SCH, a DTCH that can be mapped to the UL-SCH, and a CCCH that can be mapped to the UL-SCH.
- the downlink connection between the logical channel and the transport channel is a BCCH that can be mapped to a BCH or DL-SCH, a PCCH that can be mapped to a PCH, a DCCH that can be mapped to a DL-SCH, a DTCH that can be mapped to a DL-SCH, MCCH that can be mapped to MCH and MTCH that can be mapped to MCH.
- the RLC layer belongs to L2.
- the function of the RLC layer includes adjusting the size of the data by segmentation / concatenation of the data received from the upper layer in the radio section such that the lower layer is suitable for transmitting data.
- the RLC layer is divided into three modes: transparent mode (TM), unacknowledged mode (UM) and acknowledged mode (AM). Provides three modes of operation.
- TM transparent mode
- UM unacknowledged mode
- AM acknowledged mode
- AM RLC provides retransmission through automatic repeat request (ARQ) for reliable data transmission.
- ARQ automatic repeat request
- the function of the RLC layer may be implemented as a functional block inside the MAC layer, in which case the RLC layer may not exist.
- the packet data convergence protocol (PDCP) layer belongs to L2.
- the PDCP layer introduces an IP packet, such as IPv4 or IPv6, over a relatively low bandwidth air interface to provide header compression that reduces unnecessary control information so that the transmitted data is transmitted efficiently. Header compression improves transmission efficiency in the wireless section by transmitting only the information necessary for the header of the data.
- the PDCP layer provides security. Security functions include encryption to prevent third party inspection and integrity protection to prevent third party data manipulation.
- the radio resource control (RRC) layer belongs to L3.
- the RRC layer at the bottom of L3 is defined only in the control plane.
- the RRC layer serves to control radio resources between the terminal and the network.
- the UE and the network exchange RRC messages through the RRC layer.
- the RRC layer is responsible for the control of logical channels, transport channels and physical channels in connection with the configuration, re-configuration and release of RBs.
- RB is a logical path provided by L1 and L2 for data transmission between the terminal and the network. That is, RB means a service provided by L2 for data transmission between the UE and the E-UTRAN. Setting up an RB means defining the characteristics of the radio protocol layer and channel to provide a particular service, and determining each specific parameter and method of operation.
- RBs may be classified into two types: signaling RBs (SRBs) and data RBs (DRBs).
- SRBs signaling RBs
- DRBs data RBs
- the non-access stratum (NAS) layer located above the RRC layer performs functions such as session management and mobility management.
- the RLC and MAC layer may perform functions such as scheduling, ARQ and HARQ.
- the RRC layer (ended at the eNB at the network side) may perform functions such as broadcast, paging, RRC connection management, RB control, mobility function, and UE measurement report / control.
- the NAS control protocol (terminated at the gateway's MME at the network side) may perform functions such as SAE bearer management, authentication, LTE_IDLE mobility handling, paging initiation at LTE_IDLE, and security control for signaling between the terminal and the gateway.
- the RLC and MAC layer may perform the same function as the function in the control plane.
- the PDCP layer may perform user plane functions such as header compression, integrity protection and encryption.
- the RRC state indicates whether the RRC layer of the UE is logically connected with the RRC layer of the E-UTRAN.
- the RRC state may be divided into two types, such as an RRC connected state (RRC_CONNECTED) and an RRC idle state (RRC_IDLE).
- RRC_CONNECTED RRC connected state
- RRC_IDLE RRC idle state
- the E-UTRAN cannot grasp the terminal of the RRC_IDLE, and manages the terminal in units of a tracking area in which a core network (CN) is larger than a cell. That is, the terminal of the RRC_IDLE is only identified as a unit of a larger area, and in order to receive a normal mobile communication service such as voice or data communication, the terminal must transition to RRC_CONNECTED.
- CN core network
- the terminal may receive a broadcast of system information and paging information.
- the terminal may be assigned an identification (ID) that uniquely designates the terminal in the tracking area, and perform public land mobile network (PLMN) selection and cell reselection.
- ID an identification
- PLMN public land mobile network
- the UE may have an E-UTRAN RRC connection and an RRC context in the E-UTRAN to transmit data to the eNB and / or receive data from the eNB.
- the terminal may report channel quality information and feedback information to the eNB.
- the E-UTRAN may know the cell to which the UE belongs. Therefore, the network may transmit data to the terminal and / or receive data from the terminal, and the network may inter-RAT with a GSM EDGE radio access network (GERAN) through mobility of the terminal (handover and network assisted cell change (NACC)). radio access technology (cell change indication), and the network may perform cell measurement for a neighboring cell.
- GSM EDGE radio access network GERAN
- NACC network assisted cell change
- the UE designates a paging DRX cycle.
- the UE monitors a paging signal at a specific paging occasion for each UE specific paging DRX cycle.
- Paging opportunity is the time interval during which the paging signal is transmitted.
- the terminal has its own paging opportunity.
- the paging message is sent across all cells belonging to the same tracking area. If the terminal moves from one tracking area to another tracking area, the terminal sends a tracking area update (TAU) message to the network to update the location.
- TAU tracking area update
- the terminal When the user first turns on the power of the terminal, the terminal first searches for an appropriate cell and then stays in RRC_IDLE in that cell. When it is necessary to establish an RRC connection, the terminal staying in the RRC_IDLE may make an RRC connection with the RRC of the E-UTRAN through the RRC connection procedure and may transition to the RRC_CONNECTED. The UE staying in RRC_IDLE needs to establish an RRC connection with the E-UTRAN when uplink data transmission is necessary due to a user's call attempt or when a paging message is received from the E-UTRAN and a response message is required. Can be.
- EMM-REGISTERED EPS Mobility Management-REGISTERED
- EMM-DEREGISTERED EMM-DEREGISTERED
- the initial terminal is in the EMM-DEREGISTERED state, and the terminal performs a process of registering with the corresponding network through an initial attach procedure to access the network. If the attach procedure is successfully performed, the UE and the MME are in the EMM-REGISTERED state.
- an EPS Connection Management (ECM) -IDLE state In order to manage a signaling connection between the UE and the EPC, two states are defined, an EPS Connection Management (ECM) -IDLE state and an ECM-CONNECTED state, and these two states are applied to the UE and the MME.
- ECM EPS Connection Management
- ECM-IDLE state When the UE in the ECM-IDLE state establishes an RRC connection with the E-UTRAN, the UE is in the ECM-CONNECTED state.
- the MME in the ECM-IDLE state becomes the ECM-CONNECTED state when it establishes an S1 connection with the E-UTRAN.
- the E-UTRAN does not have the context information of the terminal.
- the UE in the ECM-IDLE state performs a terminal-based mobility related procedure such as cell selection or cell reselection without receiving a command from the network.
- a terminal-based mobility related procedure such as cell selection or cell reselection without receiving a command from the network.
- the terminal when the terminal is in the ECM-CONNECTED state, the mobility of the terminal is managed by the command of the network.
- the terminal In the ECM-IDLE state, if the position of the terminal is different from the position known by the network, the terminal informs the network of the corresponding position of the terminal through a tracking area update procedure.
- MBMS and MBSFN multicast / broadcast single frequency network
- Transmission in MBSFN transmission or MBSFN mode refers to a simultaneous transmission scheme implemented by transmitting the same signal in a plurality of cells at the same time.
- MBSFN transmissions from a plurality of cells within the MBSFN area appear to the UE as a single transmission.
- the MBMS service area is a general term for the area where a particular MBMS service is provided. For example, if an area where a specific MBMS service A is performed is called an MBMS service area A, the network may be in a state of transmitting an MBMS service A in the MBMS service area A. In this case, the terminal may receive the MBMS service A according to the capability of the terminal.
- the MBMS service area may be defined in terms of applications and services as to whether or not a particular service is provided in a certain area.
- a logical channel multicast control channel (MCCH) or a multicast traffic channel (MTCH) may be mapped to a transport channel MCH for an MBMS.
- MCCH transmits MBMS related RRC message
- MTCH transmits traffic of specific MBMS service.
- MBSFN Single Frequency Network
- the terminal may receive a plurality of MCCHs.
- the MCCH contains one MBSFN area setup RRC message and has a list of all MBMS services.
- a physical downlink control channel transmits an MBMS Radio Network Temporary Identity (M-RNTI) and an indicator indicating a specific MCCH.
- M-RNTI MBMS Radio Network Temporary Identity
- the terminal supporting the MBMS may receive the M-RNTI and the MCCH indicator through the PDCCH, determine that the MBMS-related RRC message has been changed in the specific MCCH, and receive the specific MCCH.
- the RRC message of the MCCH may be changed at each modification period, and is repeatedly broadcasted at every repetition period.
- a notification mechanism is used to inform the change of the MCCH due to the presence of the MCCH session start or MBMS counting request message.
- the UE detects a known MCCH change through the MCCH monitoring in the change cycle, not by the notification mechanism.
- the MTCH is a logical channel carrying an MBMS service. When there are many services provided in the MBSFN area, a plurality of MTCHs may be configured.
- the terminal may receive a dedicated service while receiving the MBMS service.
- a user may watch a TV through an MBMS service through his own smartphone, and chat using an IM (instant messaging) service such as MSN or Skype using the smartphone.
- IM instant messaging
- the MBMS service is provided through MTCH received by several terminals together, and the service provided to each terminal individually, such as IM service, will be provided through a dedicated bearer such as DCCH or DTCH.
- some base stations can use multiple frequencies at the same time.
- the network may select one of a plurality of frequencies to provide an MBMS service only at that frequency and provide a dedicated bearer to each terminal at all frequencies.
- the terminal when a terminal that has received a service using a dedicated bearer at a frequency where the MBMS service is not provided, if the terminal wants to receive the MBMS service, the terminal should be handed over to a frequency where the MBMS service is provided.
- the terminal transmits an MBMS interest indication to the base station. That is, when the terminal wants to receive the MBMS service, the terminal transmits an MBMS interest indication to the base station.
- the terminal When the base station receives the instruction, the terminal recognizes that the terminal wants to receive the MBMS service, and the terminal receives the MBMS service frequency. Move to.
- the MBMS interest indicator refers to information that the terminal wants to receive the MBMS service, and additionally includes information on which frequency it wants to move to.
- a terminal that wants to receive a specific MBMS service first identifies frequency information and broadcast time information provided with the specific service. If the MBMS service is already broadcasting or soon starts broadcasting, the terminal sets the highest priority of the frequency in which the MBMS service is provided. The UE moves to a cell providing the MBMS service and receives the MBMS service by performing a cell reselection procedure using the reset frequency priority information.
- the reselected cell is SIB13 (System Information Block 13; System Information).
- SIB13 System Information Block 13; System Information
- SAIs Service Area Identities
- SIB15 is not broadcasted in the serving cell and its frequency is included in the USD of the service.
- the UE should be able to receive MBMS in RRC_IDLE and RRC_CONNECTED states.
- FIG. 4 shows a structure of an MBSFN subframe.
- MBSFN transmission is set in subframe units.
- a subframe configured to perform MBSFN transmission is called an MBSFN subframe.
- MBSFN transmission is performed on the remaining OFDM symbols except for the first two OFDM symbols for PDCCH transmission.
- the area used for MBSFN transmission is referred to as an MBSFN area for convenience. Then, in the MBSFN region, the CRS for unicast is not transmitted, and the MBMS dedicated RS common to all cells participating in the transmission is used.
- the CRS In order to inform the UE that does not receive the MBMS, the CRS is not transmitted in the MBSFN area, and broadcasts the configuration information of the MBSFN subframe in the cell system information. Since most terminals perform radio resource management (RRM), radio link failure (RLF) processing, and synchronization using the CRS, it is important to inform that the CRS is not in a specific region.
- the CRS is transmitted in the first two OFDM symbols used as the PDCCH in the MBSFN subframe, and this CRS is not for MBSFN use.
- the CP of the CRS transmitted (that is, whether the CRS uses a normal CP or an extended CP) is a normal subframe, that is, a subframe other than the MBSFN subframe.
- the CRS according to the general CP is also used in the first two OFDM symbols 412 of the MBSFN subframe.
- subframes that can be configured as MBSFN subframes are designated for FDD and TDD, respectively, and can indicate whether or not they are MBSFN subframes through a bitmap. That is, if a bit corresponding to a specific subframe is 1 in the bitmap, the specific subframe is set to the MBSFN subframe.
- FIG. 5 shows an example of configuration of an MBSFN subframe for performing an MBMS service.
- the UE acquires MBSFN subframe configuration information, MBSFN notification configuration information, and MBSFN area information list to perform MBMS service.
- the UE may know the MBSFN subframe configuration information, that is, the location of the MBSFN subframe through SIB2 and RRC dedicated signaling.
- the MBSFN subframe configuration information may be included in an MBSFN-SubframeConfig information element (IE).
- IE MBSFN-SubframeConfig information element
- the UE may acquire MBSFN region information list and MBMS notification configuration information as information necessary for obtaining MBMS control information associated with one or more MBSFN regions capable of performing MBMS service through SIB13.
- the MBSFN region information list includes MBSFN region ID for each MBSFN region, information on MBSFN region in MBSFN subframe in the MBSFN region, and MBSFN subframe position where MCCH transmission, which is an MBMS control information channel, is generated. May contain information.
- the MBSFN area information list may be included in the MBSFN-AreaInfoList information element.
- MBSFN notification configuration information is the configuration information for the subframe location in which the MBMS notification that informs that there is a change in the MBSFN region configuration information transmitted to the terminal through the MCCH.
- the MBSFN notification configuration information may be included in the MBMS-NotificationConfig information element.
- the MBSFN notification configuration information includes time information used for change notification of the MCCH applicable to all MBSFN regions.
- the time information may include a notification repetition coefficient (notificationRepetitionCoeff), a notification offset (notificationOffset) and a notification subframe index (notificationSF-Index).
- the notification repetition coefficient means a common change notification repetition period for all MCCHs.
- the notification offset indicates an offset of a radio frame for which MCCH change notification information is scheduled.
- the notification subframe index is a subframe index used for transmitting the MCCH change notification on the PDCCH.
- the UE may obtain MBSFN region configuration information through the MCCH corresponding to each of the MBSFN regions obtained through SIB13.
- the MBSFN region configuration information may be included in the MBSFNAreaconfiguration message, and includes information on physical multicast channels (PMCHs) used by the corresponding MBSFN region.
- PMCHs physical multicast channels
- the information on each PMCH includes the location of the MBSFN subframe in which the PMCH is located, Modulation and Coding Scheme (MCS) level information used for data transmission in the subframe, and MBMS service information transmitted by the PMCH. It may include.
- MCS Modulation and Coding Scheme
- MCH Scheduling Information MCH Scheduling Information
- FIG. 6 illustrates a method of notifying the UE of a change in MCCH information when MCCH information is changed.
- a change of MCCH information occurring only in a specific radio frame may occur.
- the same MCCH information may be transmitted multiple times with the MCCH repetition period 640 within the MCCH modification period 620.
- the indication of the MBMS-specific RNTI (M-RNTI) in the PDCCH may be used to inform the UE in the RRC_IDLE state and the change of the MCCH information to the UE in the RRC_CONNECTED state.
- the MCCH information change notification 600 in the PDCCH may be periodically transmitted and may be transmitted in the MBSFN subframe.
- the MBMS capable RRC_IDLE terminal or the RRC_CONNECTED terminal may acquire MCCH information.
- FIG. 7 illustrates a method for dynamically receiving an MBMS service by a terminal according to an embodiment of the present invention.
- the terminal may receive a new RNTI.
- the new RNTI may be referred to as MBMS-RNTI.
- the new RNTI may be used to read link adaptation related information from the PDCCH.
- the new RNTI may be obtained from the network through broadcast.
- the new RNTI may be obtained from the network via unicast.
- the new RNTI may have a fixed value.
- the new RNTI may have a fixed value like the existing M-RNTI. In this case, the terminal may not need to acquire the new RNTI from the network.
- the UE may receive MCS level information and MCH scheduling information.
- the MCS level information and MCS scheduling information may be received from a PDCCH using the new RNTI.
- the MCS level information and MCH scheduling information may be included in the PDCCH of each MBMS subframe. Alternatively, the MCS level information and MCH scheduling information may be included in the PDCCH of the representative subframe.
- MCS level information and MCH scheduling information may be included in a PDCCH of each MBMS subframe.
- the UE may read the PDCCHs of all MBMS subframes including the service of interest with the new RNTI to obtain MCS level information and MCH scheduling information.
- the MCS level information and the MCH scheduling information may be included only in the PDCCH of some special MBSFN subframes, not all MBSFN subframes.
- the some special MBSFN subframe may be a subframe specific to a specific MBMS service.
- the some special MBSFN subframe may be a subframe specialized for V2X service.
- the terminal may receive allocation information of a special MBSFN subframe from the network through the MCCH.
- MCS level information and MCH scheduling information may be included in a PDCCH of a representative subframe.
- the UE may read the PDCCH of the representative subframe with a new RNTI to obtain MCS level information and MCH scheduling information.
- the PDCCH of the representative subframe may include single MCS level information.
- the same MCS level may be used for all MBSFN subframes belonging to the same MCS change period.
- the PDCCH of the representative subframe may include multiple MCS level information in the MCS change period.
- the number of pieces of MCS level information may be equal to the number of MBSFN subframes.
- different MCS levels may be used for other MBSFN subframes belonging to the same MCS change period.
- the MCS change period may be one radio frame (ie, 10 ms).
- the MCS change period setting may be set by a network, and the MCS change period setting may be signaled through MCCH.
- the representative subframe may be the first subframe (ie, the 0th subframe) of each MCS change period.
- the representative subframe may be the first MBSFN subframe within the MCS change period.
- the UE may receive the MBMS service of interest from each MBSFN subframe using the MCS level information and the MCH scheduling information.
- the UE since the MCS level may be changed in units of MBSFN subframes, the UE may adaptively receive an MBMS service of interest.
- FIG. 8 is a block diagram illustrating a method of receiving an MBMS service by a terminal according to an embodiment of the present invention.
- the UE receives MCS level information including at least one MCS level for a plurality of Multimedia Broadcast Single Frequency Network (MBSFN) subframes within an MCS Modulation Coding Scheme modification period. can do.
- the terminal may further receive MCH scheduling information (Multicast Channel Scheduling Information).
- the at least one MCS level may be one MCS level.
- the one MCS level may be applied to a plurality of MBSFN subframes within the MCS change period.
- the at least one MCS level can be a plurality of MCS levels.
- the number of the plurality of MCS levels may be equal to the number of MBSFN subframes within the MCS change period.
- the plurality of MCS levels may be applied to a plurality of MBSFN subframes within the MCS change period.
- the MCS level information may be received through a physical downlink control channel (PDCCH).
- the PDCCH may be received in one representative subframe within the MCS change period.
- the representative subframe may be the first subframe within the MCS change period.
- the representative subframe may be the first MBSFN subframe in the MCS change period.
- the PDCCH may be addressed with a new Radio Network Temporary Identifier (MBMS-RNTI).
- MBMS-RNTI Radio Network Temporary Identifier
- step S820 the UE may apply the at least one MCS level to the plurality of MBSFN subframes.
- the terminal may receive an MBMS service through a plurality of MBSFN subframes to which the at least one MCS level is applied.
- FIG. 9 is a block diagram of a wireless communication system in which an embodiment of the present invention is implemented.
- the base station 900 includes a processor 901, a memory 902, and a transceiver 903.
- the memory 902 is connected to the processor 901 and stores various information for driving the processor 901.
- the transceiver 903 is coupled to the processor 901 to transmit and / or receive wireless signals.
- Processor 901 implements the proposed functions, processes, and / or methods. In the above-described embodiment, the operation of the base station may be implemented by the processor 901.
- the terminal 910 includes a processor 911, a memory 912, and a transceiver 913.
- the memory 912 is connected to the processor 911 and stores various information for driving the processor 911.
- the transceiver 913 is connected to the processor 911 to transmit and / or receive a radio signal.
- Processor 911 implements the proposed functions, processes, and / or methods. In the above-described embodiment, the operation of the terminal may be implemented by the processor 911.
- the processor may include application-specific integrated circuits (ASICs), other chipsets, logic circuits, and / or data processing devices.
- the memory may include read-only memory (ROM), random access memory (RAM), flash memory, memory card, storage medium and / or other storage device.
- the transceiver may include baseband circuitry for processing wireless signals.
- the above-described technique may be implemented as a module (process, function, etc.) for performing the above-described function.
- the module may be stored in memory and executed by a processor.
- the memory may be internal or external to the processor and may be coupled to the processor by various well known means.
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Multimedia (AREA)
- Mobile Radio Communication Systems (AREA)
Abstract
La présente invention concerne un procédé destiné à un terminal recevant un service de diffusion multimédia et de multidiffusion (MBMS) dans un système de communication sans fil et un dispositif prenant en charge ce dernier. Le terminal peut : recevoir des informations de niveau de schéma de codage de modulation (MCS) comprenant au moins un niveau de MCS destiné à une pluralité de sous-trames de réseau à fréquence unique de diffusion multimédia (MBSFN) dans une période de modification de MCS; appliquer le ou les niveaux de MCS à la pluralité de sous-trames de MBSFN; et recevoir un service de MBMS par l'intermédiaire de la pluralité de sous-trames de MBSFN présentant le ou les niveaux de MCS appliqués à ce dernier.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201662292145P | 2016-02-05 | 2016-02-05 | |
US62/292,145 | 2016-02-05 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017135700A1 true WO2017135700A1 (fr) | 2017-08-10 |
Family
ID=59500390
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2017/001135 WO2017135700A1 (fr) | 2016-02-05 | 2017-02-02 | Procédé et dispositif destinés à la réception de manière adaptative d'un service de mbms |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2017135700A1 (fr) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20120099509A1 (en) * | 2009-06-19 | 2012-04-26 | Zte Corporation | Resource allocation method for dynamic multiplexing of multimedia broadcast multicast service |
US20140169255A1 (en) * | 2012-12-17 | 2014-06-19 | Qualcomm Incorporated | Optimization of embms service continuity with mbsfn measurements |
US20140241233A1 (en) * | 2009-04-28 | 2014-08-28 | Alcatel Lucent | Method and apparatus for transmitting mcch control signaling in mbsfn manner |
US20150222331A1 (en) * | 2014-02-04 | 2015-08-06 | Qualcomm Incorporated | Antenna selection with embms |
WO2015190750A1 (fr) * | 2014-06-08 | 2015-12-17 | Lg Electronics Inc. | Procédé et appareil d'indication de l'utilisation d'une zone mbsfn dans un système de communication sans fil |
-
2017
- 2017-02-02 WO PCT/KR2017/001135 patent/WO2017135700A1/fr active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20140241233A1 (en) * | 2009-04-28 | 2014-08-28 | Alcatel Lucent | Method and apparatus for transmitting mcch control signaling in mbsfn manner |
US20120099509A1 (en) * | 2009-06-19 | 2012-04-26 | Zte Corporation | Resource allocation method for dynamic multiplexing of multimedia broadcast multicast service |
US20140169255A1 (en) * | 2012-12-17 | 2014-06-19 | Qualcomm Incorporated | Optimization of embms service continuity with mbsfn measurements |
US20150222331A1 (en) * | 2014-02-04 | 2015-08-06 | Qualcomm Incorporated | Antenna selection with embms |
WO2015190750A1 (fr) * | 2014-06-08 | 2015-12-17 | Lg Electronics Inc. | Procédé et appareil d'indication de l'utilisation d'une zone mbsfn dans un système de communication sans fil |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2017026781A1 (fr) | Procédé et dispositif pour un terminal qui exécute une surveillance de pdcch sur un scptm | |
US10616826B2 (en) | Method and device for transmitting and receiving list of cells providing SCPTM service | |
WO2018164471A1 (fr) | Procédé et appareil pour recevoir un service mbms sur la base d'un faisceau | |
WO2015170866A1 (fr) | Procédé et appareil de configuration d'une transmission d'informations de commande d2d dans un système de communication sans fil | |
WO2015170871A1 (fr) | Procédé et appareil pour indiquer une réserve de ressources d2d dans un système de communication sans fil | |
WO2017135740A1 (fr) | Procédé et appareil pour la mise en œuvre de communications v2x | |
WO2017065501A1 (fr) | Procédé et appareil de prise en charge d'une continuité de service scptm | |
WO2016163834A1 (fr) | Procédé et appareil permettant de configurer des critères pour une configuration de relais dans un système de communication sans fil | |
WO2015142132A1 (fr) | Procédé et appareil d'indication d'informations d2d dans un système de communication sans fil | |
WO2015147615A1 (fr) | Procédé et appareil pour classer par ordre de priorité une transmission de dispositif à dispositif (d2d) et une réception d2d dans un système de communication sans fil | |
WO2015190750A1 (fr) | Procédé et appareil d'indication de l'utilisation d'une zone mbsfn dans un système de communication sans fil | |
WO2015174781A1 (fr) | Procédé d'interaction as-nas pour communication d2d et appareil associé dans un système de communications sans fil | |
WO2015147605A1 (fr) | Procédé et appareil permettant de réaliser une opération d2d dans un système de communication sans fil | |
WO2017052154A1 (fr) | Procédé et dispositif au moyen duquel un service d'ordre prioritaire est transmis | |
WO2016163837A1 (fr) | Procédé et appareil de gestion d'entité l2 en continuité entre une transmission sc-ptm et une transmission mbsfn dans un système de communication sans fil | |
WO2018097528A1 (fr) | Procédé et dispositif de configuration de zone de notification faisant appel à un réseau ran | |
WO2017073992A1 (fr) | Procédé et appareil pour commander une session | |
WO2018012811A1 (fr) | Procédé de réception de service mbms par terminal et dispositif prenant en charge ce procédé | |
WO2018030776A1 (fr) | Procédé et appareil de prise en charge d'une continuité de service mbms | |
WO2016111580A1 (fr) | Procédé et dispositif d'établissement d'une connexion rrc pour une réception scptm | |
US10547984B2 (en) | Method and device for stopping SCPTM transmission | |
WO2017135703A1 (fr) | Procédé et appareil d'exécution d'une transmission de planification semi-persistante avec une demande de planification dans un système de communication sans fil | |
WO2017014533A1 (fr) | Procédé et appareil permettant à un c-sgn de recevoir des informations concernant une transmission de petites données | |
WO2017090953A1 (fr) | Procédé et dispositif de détermination de service mbms d'intérêt pour un terminal | |
WO2018012810A1 (fr) | Procédé destiné à transmettre un message d'indication d'intérêt mbms au moyen d'un terminal et dispositif prenant en charge ce dernier |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17747745 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 17747745 Country of ref document: EP Kind code of ref document: A1 |