WO2017135297A1 - Terminal device, wireless base station, and communication method - Google Patents

Terminal device, wireless base station, and communication method Download PDF

Info

Publication number
WO2017135297A1
WO2017135297A1 PCT/JP2017/003580 JP2017003580W WO2017135297A1 WO 2017135297 A1 WO2017135297 A1 WO 2017135297A1 JP 2017003580 W JP2017003580 W JP 2017003580W WO 2017135297 A1 WO2017135297 A1 WO 2017135297A1
Authority
WO
WIPO (PCT)
Prior art keywords
uplink
cell
subframe
transmission
downlink
Prior art date
Application number
PCT/JP2017/003580
Other languages
French (fr)
Japanese (ja)
Inventor
直紀 草島
翔一 鈴木
立志 相羽
渉 大内
林 貴志
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Publication of WO2017135297A1 publication Critical patent/WO2017135297A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/14Spectrum sharing arrangements between different networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation

Definitions

  • the present invention relates to a technology of a terminal device, a base station device, and a communication method that realize efficient communication.
  • Eol realized high-speed communication by adopting OFDM (Orthogonal Frequency-Division Multiplexing) communication method and flexible scheduling in predetermined frequency and time units called resource blocks.
  • OFDM Orthogonal Frequency-Division Multiplexing
  • UTRA Universal Terrestrial Radio Access
  • E-UTRA realizes higher-speed data transmission and has upward compatibility with E-UTRA.
  • a base station apparatus is a communication system on the premise of a network having substantially the same cell configuration (cell size).
  • base stations (cells) having different configurations are in the same area.
  • a communication system based on a mixed network (a heterogeneous wireless network, a heterogeneous network) has been studied.
  • E-UTRA is also referred to as LTE (Long TermEEvolution), and Advanced E-UTRA is also referred to as LTE-Advanced.
  • LTE can also be a generic term including LTE-Advanced.
  • the terminal device includes a macro cell and a small cell.
  • Carrier aggregation (CA) technology and dual connectivity (DC) technology for simultaneous communication and communication are defined (Non-patent Document 1).
  • Non-Patent Document 2 discusses license-assisted access (LAA).
  • LAA for example, an unassigned frequency band (Unlicensed spectrum) used by a wireless LAN (Local Area Network) is used as LTE.
  • an unassigned frequency band is set as a secondary cell (secondary component carrier).
  • the secondary cell used as the LAA is assisted with respect to connection, communication and / or setting by a primary cell (primary component carrier) set in an assigned frequency band (Licensed spectrum).
  • LAA expands the frequency band that can be used in LTE, thereby enabling broadband transmission.
  • LAA is also used in a shared frequency band (shared spectrum) shared between predetermined operators.
  • LAA when an unassigned frequency band or a shared frequency band is used, the frequency band is shared with other systems and / or other operators.
  • LTE is designed on the assumption that it is used in an allocated frequency band or a non-shared frequency band. Therefore, the conventional LTE cannot be used in the unassigned frequency band or the shared frequency band.
  • the present invention provides a terminal device, a base station device, and a communication method that can efficiently control a cell using a non-assigned frequency band or a shared frequency band.
  • a terminal apparatus includes a transmission unit that transmits a physical uplink shared channel (PUSCH) using a set of one or more consecutive resource blocks in a serving cell.
  • the transmission unit transmits PUSCH using three or more sets when the serving cell is an LAA secondary cell, and transmits PUSCH using up to two sets when the serving cell is not an LAA secondary cell.
  • PUSCH physical uplink shared channel
  • a base station apparatus includes a receiving unit that receives a physical uplink shared channel (PUSCH) using a set of one or more consecutive resource blocks in a serving cell.
  • the receiving unit receives PUSCHs using three or more sets when the serving cell is an LAA secondary cell, and receives PUSCHs using up to two sets when the serving cell is not an LAA secondary cell.
  • PUSCH physical uplink shared channel
  • the communication method of the terminal device includes a step of transmitting a physical uplink shared channel (PUSCH) using a set of one or more consecutive resource blocks in a serving cell.
  • the process transmits PUSCH using three or more sets when the serving cell is an LAA secondary cell, and transmits PUSCH using up to two sets when the serving cell is not an LAA secondary cell.
  • PUSCH physical uplink shared channel
  • the communication method of the base station apparatus includes a step of receiving a physical uplink shared channel (PUSCH) using a set of one or more consecutive resource blocks in a serving cell.
  • the process receives PUSCH using three or more sets when the serving cell is an LAA secondary cell, and receives PUSCH using up to two sets when the serving cell is not an LAA secondary cell.
  • PUSCH physical uplink shared channel
  • transmission efficiency can be improved in a wireless communication system in which a base station device and a terminal device communicate.
  • a first embodiment of the present invention will be described below.
  • a base station apparatus base station, Node B, eNB (eNodeB)
  • a terminal apparatus terminal, mobile station, user apparatus, UE (User equipment)
  • a communication system cellular system
  • a channel means a medium used for signal transmission
  • a physical channel means a physical medium used for signal transmission.
  • a physical channel can be used synonymously with a signal.
  • the physical channel may be added in the future, or the structure and format of the physical channel may be changed or added in EUTRA and Advanced EUTRA, but even if changed or added, the description of the present embodiment is not affected.
  • Radio frames In EUTRA and Advanced EUTRA, scheduling of physical channels or physical signals is managed using radio frames.
  • One radio frame is 10 ms, and one radio frame is composed of 10 subframes. Further, one subframe is composed of two slots (that is, one subframe is 1 ms, and one slot is 0.5 ms).
  • resource blocks are used as a minimum scheduling unit in which physical channels are allocated.
  • a resource block is defined by a constant frequency region composed of a set of a plurality of subcarriers (for example, 12 subcarriers) and a region composed of a constant transmission time interval (1 slot) on the frequency axis.
  • Frame structure type 1 (Frame structure type 1) can be applied to Frequency Division Duplex (FDD).
  • Frame structure type 2 (Frame structure type 2) can be applied to time division duplex (TDD).
  • FIG. 1 is a diagram illustrating an example of a downlink radio frame configuration according to the present embodiment.
  • An OFDM access scheme is used for the downlink.
  • transmitting a downlink signal and / or a downlink physical channel is referred to as downlink transmission.
  • a PDCCH, an EPDCCH, a physical downlink shared channel (PDSCH), a physical downlink shared channel, and the like are allocated.
  • the downlink radio frame is composed of a downlink resource block (RB) pair.
  • One downlink RB pair is composed of two downlink RBs (RB bandwidth ⁇ slot) that are continuous in the time domain.
  • One downlink RB is composed of 12 subcarriers in the frequency domain.
  • One slot includes 7 OFDM symbols in the time domain when a normal cyclic prefix (CP) is added, and 6 OFDM symbols when a cyclic prefix longer than normal is added. Consists of A region defined by one subcarrier in the frequency domain and one OFDM symbol in the time domain is referred to as a resource element (RE).
  • the physical downlink control channel is a physical channel through which downlink control information such as a terminal device identifier, physical downlink shared channel scheduling information, physical uplink shared channel scheduling information, modulation scheme, coding rate, and retransmission parameter is transmitted.
  • CC Component Carrier
  • a synchronization signal is assigned.
  • the synchronization signal is mainly a downlink signal and / or channel timing between a base station apparatus that transmits a downlink signal and / or channel and a terminal apparatus that receives the downlink signal and / or channel. Used to adjust.
  • the synchronization signal is used to adjust the reception timing of a radio frame, a subframe, or an OFDM symbol.
  • the synchronization signal is also used for detecting the center frequency of the element carrier.
  • the synchronization signal is also used for detecting the CP length of the OFDM symbol.
  • the synchronization signal is also used to identify the cell (base station device) to which the synchronization signal is transmitted. In other words, in the terminal device, the synchronization signal is also used for detecting the cell identifier of the cell to which the synchronization signal is transmitted. In the terminal device, the synchronization signal may also be used to perform AGC (Automatic Gain Control). In the terminal device, the synchronization signal may be used to adjust the processing timing of symbols for performing FFT (Fast Fourier Transform). In the terminal device, the synchronization signal may be used for calculating reference signal received power (RSRP). The synchronization signal may be used for securing a channel through which the synchronization signal is transmitted.
  • AGC Automatic Gain Control
  • the synchronization signal may be used to adjust the processing timing of symbols for performing FFT (Fast Fourier Transform).
  • FFT Fast Fourier Transform
  • the synchronization signal may be used for calculating reference signal received power (RSRP).
  • the synchronization signal may be used for securing
  • the primary synchronization signal (first primary synchronization signal) and the secondary synchronization signal (first secondary synchronization signal) are transmitted on the downlink to facilitate cell search.
  • the cell search is a procedure by the terminal device in which the terminal device acquires time and frequency synchronization with the cell and detects a physical cell identifier (physical layer Cell ID) of the cell.
  • E-UTRA cell search supports a flexible overall transmission bandwidth equivalent to 6 resource blocks and more.
  • FIG. 9 shows formulas for determining subcarriers and OFDM symbols on which synchronization signals are arranged. If k is defined as an index for designating a resource element in the frequency domain and l is defined in the time domain, the primary synchronization signal and the secondary synchronization signal are represented by Equation (0-a), Equation (1-a), and Equation (2) in FIG. ).
  • N RB DL is the number of resource blocks specified from the downlink bandwidth setting information
  • N sc RB is the resource block size in the frequency domain
  • N symb DL is the downlink The number of OFDM symbols per slot.
  • a k, l is a symbol in the resource element (k, l)
  • d is a sequence
  • n takes a value from 0 to 2N M ⁇ 1.
  • mod is a function representing the remainder
  • AmodB represents the remainder when A is divided by B.
  • N M is 31.
  • h is 1 in the primary synchronization signal and the secondary synchronization signal.
  • the primary synchronization signal (Primary Synchronization Signal, PSS) and the secondary synchronization signal (Secondary Synchronization Signal, SSS) shown in FIG. 1 do not depend on the downlink bandwidth (downlink system bandwidth, downlink transmission bandwidth).
  • a DC subcarrier (DC subcarrier) corresponding to the center of subcarriers in the system bandwidth is not used as a primary synchronization signal and a secondary synchronization signal.
  • 5 subcarriers (5 resource elements) at both ends of the primary synchronization signal and the secondary synchronization signal are reserved and are not used for transmission of the primary synchronization signal and the secondary synchronization signal.
  • the 5 resource elements at both ends are also referred to as a primary synchronization signal and a secondary synchronization signal.
  • the primary synchronization signal is generated based on a Zadoff-Chu sequence (ZC sequence) in the frequency domain.
  • ZC Zadoff-Chu sequence
  • NZC is the sequence length of the Zadoff-Chu sequence
  • u is the root index (Zadoff-Chu root sequence index).
  • the primary synchronization signal is generated based on three types of route indexes.
  • the root index is associated with three unique identifiers derived from cell identifiers (cell ID, physical layer cell identifier, physical-layer cell identity).
  • the primary synchronization signal is located in the last OFDM symbol of slot 0 (ie, the first slot of subframe 0) and slot 10 (ie, the first slot of subframe 5) in frame configuration type 1.
  • the primary synchronization signal is located in the third OFDM symbol of the first slot of subframes 1 and 6 in frame configuration type 2.
  • the secondary synchronization signal is defined by a combination of two 31-length sequences.
  • the sequence used for the secondary synchronization signal is a sequence in which two sequences of length 31 are alternately arranged.
  • the concatenated sequence is scrambled by a scramble sequence given by the primary synchronization signal.
  • the sequence of length 31 is generated based on the M sequence.
  • the length 31 sequence is generated based on 168 unique physical layer cell identifier groups derived from the cell identifiers.
  • the scramble sequence given by the primary synchronization signal is an M sequence generated based on three unique identifiers.
  • the mapping of the secondary synchronization signal sequence to the resource element depends on the frame configuration.
  • the secondary synchronization signal is located in the second OFDM symbol from the end of slot 0 (ie, the first slot of subframe 0) and slot 10 (ie, the first slot of subframe 5) in frame configuration type 1. Is done.
  • the secondary synchronization signal is located in the last OFDM symbol of slot 1 (ie, the second slot of subframe 0) and slot 11 (ie, the second slot of subframe 5) in frame configuration type 2.
  • a physical broadcast information channel or a downlink reference signal may be arranged in the downlink subframe.
  • CSI Channel State Information
  • CRS Cell-specific RS
  • CSI channel state information
  • URS terminal specific reference signal
  • DMRS Demodulation reference signals
  • positioned may be sufficient.
  • a part of CRS transmission ports for example, transmission port 0 only
  • signals similar to those corresponding to all transmission ports referred to as extended synchronization signals
  • a terminal-specific reference signal transmitted through the same transmission port as a part of PDSCH is also referred to as a terminal-specific reference signal or DMRS associated with the PDSCH.
  • the demodulation reference signal transmitted at the same transmission port as the EPDCCH is also referred to as DMRS associated with the EPDCCH.
  • the downlink subframe mainly includes zero power CSI-RS (ZP CSI-RS) used mainly for rate matching of PDSCH transmitted at the same time, and mainly channel state information.
  • ZP CSI-RS zero power CSI-RS
  • CSI-IM CSI interference management
  • Zero power CSI-RS and CSI-IM may be arranged in resource elements where non-zero power CSI-RS can be arranged.
  • the CSI-IM may be set over the zero power CSI-RS.
  • a detection signal may be arranged in the downlink subframe.
  • DS DS Occlusion
  • DS DS Occlusion
  • the predetermined number is 1 to 5 in FDD (Frame structure type 1) and 2 to 5 in TDD (Frame structure type 2).
  • the predetermined number is set by RRC signaling.
  • the predetermined number is 1 in LAA secondary cell operation (frame configuration type 3), and is configured by a time period of 12 OFDM symbols in a non-empty subframe.
  • the terminal device is set with a section for measuring the DS period.
  • the setting of the section for measuring the DS period is also referred to as DMTC (Discovery signals measurement timing configuration).
  • a section in which the terminal apparatus measures the DS period (DMTC section, DMTC Occasion) is set in a section of 6 ms (6 subframes).
  • the terminal assumes that the DS is transmitted (mapped and generated) for each subframe set by the parameter dmtc-Periodicity set by RRC signaling.
  • the terminal assumes the presence of a DS configured to include the following signals.
  • CRS of antenna port 0 in DwPTS of all downlink subframes and all special subframes in the DS period In FDD, PSS in the first subframe of the DS period.
  • PSS in the second subframe of the DS period.
  • SSS in the first subframe of the DS period.
  • Non-zero power CSI-RS in zero or more subframes of the DS period.
  • the non-zero power CSI-RS is set by RRC signaling.
  • the terminal performs measurement based on the set DS.
  • the measurement is performed using CRS in DS or non-zero power CSI-RS in DS.
  • a plurality of non-zero power CSI-RSs can be set.
  • the terminal device can measure RSSI (received signal strength) and channel occupancy in a predetermined section in LAA secondary cell operation (frame configuration type 3).
  • RSSI is an average value of transmission / reception power observed in a predetermined OFDM symbol.
  • the channel occupancy is the percentage of the number of samples where the RSSI exceeds the set threshold for all samples in the set interval.
  • the terminal device is set with a section for measuring RSSI and channel occupation.
  • the setting of a section for measuring RSSI and channel occupancy is also referred to as RMTC (RSSI and channel occupancy measurement timing) configuration).
  • FIG. 2 is a diagram illustrating an example of an uplink radio frame configuration according to the present embodiment.
  • the SC-FDMA scheme is used for the uplink.
  • transmission of an uplink signal and / or an uplink physical channel is referred to as uplink transmission. That is, uplink transmission can be rephrased as PUSCH transmission.
  • PUSCH Physical Uplink Shared Channel
  • PUCCH Physical Uplink Shared Channel
  • an uplink reference signal (uplink reference signal) is assigned to a part of PUSCH or PUCCH.
  • the uplink radio frame is composed of uplink RB pairs.
  • One uplink RB pair is composed of two uplink RBs (RB bandwidth ⁇ slot) that are continuous in the time domain.
  • One uplink RB is composed of 12 subcarriers in the frequency domain.
  • One uplink RB is 7 SC-FDMA symbols in the time domain when a normal cyclic prefix is added, and 6 when a cyclic prefix longer than normal is added. Consists of Here, although an uplink subframe in one CC is described, an uplink subframe is defined for each CC. From the viewpoint of the terminal device, the head of the uplink radio frame (uplink subframe) is adjusted to be ahead of the head of the downlink radio frame (downlink subframe) from the viewpoint of the terminal device due to propagation delay correction and the like. .
  • the synchronization signal is composed of three types of primary synchronization signals and a secondary synchronization signal composed of 31 types of codes arranged alternately in the frequency domain, and the base signal depends on the combination of the primary synchronization signal and the secondary synchronization signal.
  • 504 cell identifiers (physical cell identity (PCI)) for identifying a station device and frame timing for radio synchronization are shown.
  • the terminal device specifies the physical cell ID of the synchronization signal received by the cell search.
  • the physical broadcast information channel (PBCH; Physical Broadcast Channel) is transmitted for the purpose of notifying (setting) control parameters (broadcast information (system information); System information) commonly used in terminal devices in the cell.
  • Radio resources for transmitting broadcast information on the physical downlink control channel are notified to terminal devices in the cell, and broadcast information not notified on the physical broadcast information channel is transmitted by the physical downlink shared channel in the notified radio resources.
  • a layer 3 message (system information) for notifying broadcast information is transmitted.
  • CGI Cell Global Identifier
  • TAI tracking area identifier
  • Downlink reference signals are classified into multiple types according to their use.
  • a cell-specific reference signal is a pilot signal transmitted at a predetermined power for each cell, and is a downlink reference signal that is periodically repeated in the frequency domain and the time domain based on a predetermined rule. It is.
  • the terminal device measures the reception quality for each cell by receiving the cell-specific RS.
  • the terminal apparatus also uses the cell-specific RS as a reference signal for demodulating the physical downlink control channel or the physical downlink shared channel transmitted simultaneously with the cell-specific RS.
  • a sequence used for the cell-specific RS a sequence that can be identified for each cell is used.
  • the downlink reference signal is also used for estimation of downlink propagation path fluctuation.
  • a downlink reference signal used for estimation of propagation path fluctuation is referred to as a channel state information reference signal (CSI-RS).
  • the downlink reference signal set individually for the terminal device is called UE specific reference signals (URS), Demodulation Reference Signal (DMRS) or Dedicated RS (DRS), and is an extended physical downlink control channel or Referenced for channel propagation path compensation processing when demodulating a physical downlink shared channel.
  • URS UE specific reference signals
  • DMRS Demodulation Reference Signal
  • DRS Dedicated RS
  • a physical downlink control channel (PDCCH; Physical Downlink Control Channel) is transmitted in several OFDM symbols (for example, 1 to 4 OFDM symbols) from the top of each subframe.
  • An extended physical downlink control channel (EPDCCH; Enhanced Physical Downlink Control Channel) is a physical downlink control channel arranged in an OFDM symbol in which the physical downlink shared channel PDSCH is arranged.
  • the PDCCH or EPDCCH is used for the purpose of notifying the terminal device of radio resource allocation information according to the scheduling of the base station device and information for instructing an adjustment amount of increase / decrease of transmission power.
  • a physical downlink control channel (PDCCH) it means both physical channels of PDCCH and EPDCCH unless otherwise specified.
  • the terminal device monitors (monitors) the physical downlink control channel addressed to itself before transmitting / receiving the downlink data and the layer 2 message and the layer 3 message (paging, handover command, etc.) that are the upper layer control information.
  • the radio resource allocation information called uplink grant (uplink assignment) at the time of transmission and downlink grant (downlink assignment) at the time of transmission is physically downlink controlled. Need to get from channel.
  • the physical downlink control channel may be configured to be transmitted in the area of the resource block that is assigned individually (dedicated) from the base station apparatus to the terminal apparatus, in addition to being transmitted by the OFDM symbol described above. Is possible.
  • an uplink grant can be paraphrased as DCI format (uplink DCI format) which schedules PUSCH.
  • the downlink grant can be rephrased as a DCI format (downlink DCI format) for scheduling PDSCH.
  • the subframe in which the PDSCH is scheduled is a subframe that has received the DCI format instructing reception of the PDSCH.
  • the subframe in which the PUSCH is scheduled is indicated in association with the subframe that has received the DCI format instructing transmission of the PUSCH. For example, in the case of an FDD cell, a subframe in which PUSCH is scheduled is four subframes after a subframe in which a DCI format instructing transmission of the PUSCH is received. That is, a subframe in which PUSCH and PDSCH are scheduled is associated with a subframe that has received a DCI format instructed to be transmitted or received.
  • the physical uplink control channel (PUCCH; Physical Uplink Control Channel) is a downlink data reception confirmation response (HARQ-ACK; Hybrid Automatic Repeat reQuestNackingAcknowledgementACK / NACK); It is used to perform Acknowledgment), downlink propagation path (channel state) information (CSI; Channel State Information), and uplink radio resource allocation request (radio resource request, scheduling request (SR)).
  • PUCCH Physical Uplink Control Channel
  • HARQ-ACK Hybrid Automatic Repeat reQuestNackingAcknowledgementACK / NACK
  • CSI downlink propagation path
  • CSI Channel State Information
  • SR uplink radio resource allocation request
  • the CSI includes the serving cell reception quality index (CQI: Channel Quality Indicator), precoding matrix index (PMI: Precoding Matrix Indicator), precoding type index (PTI: Precoding Type Indicator), and rank index corresponding to the CSI. And can be used to specify (represent) a suitable modulation scheme and coding rate, a suitable precoding matrix, a suitable PMI type, and a suitable rank, respectively. Each Indicator may be written as Indication.
  • CQI and PMI wideband CQI and PMI assuming transmission using all resource blocks in one cell and some continuous resource blocks (subbands) in one cell were used. It is classified into subband CQI and PMI assuming transmission.
  • the PMI uses two types of PMIs, the first PMI and the second PMI. There is a type of PMI that represents a recording matrix.
  • the terminal apparatus 1 occupies a group of downlink physical resource blocks, and the error probability of one PDSCH transport determined by a combination of a modulation scheme and a transport block size corresponding to the CQI index has a predetermined value (for example, , 0.1), a CQI index that satisfies the condition is not reported.
  • a predetermined value for example, , 0.1
  • CSI reference resource the downlink physical resource block used for the calculation of CQI, PMI and / or RI.
  • the terminal device 1 reports the CSI to the base station device 2.
  • the CSI report includes a periodic CSI report and an aperiodic CSI report.
  • periodic CSI reporting the terminal device 1 reports CSI at the timing set in the higher layer.
  • aperiodic CSI report the terminal device 1 reports the CSI at a timing based on the information of the CSI request included in the received uplink DCI format (uplink grant) or random access response grant.
  • the terminal device 1 reports CQI and / or PMI and / or RI. Note that the terminal apparatus 1 may not report PMI and / or RI depending on the setting of the upper layer.
  • the settings of the upper layer are, for example, a transmission mode, a feedback mode, a report type, and a parameter indicating whether to report PMI / RI.
  • one or a plurality of CSI processes may be set for one serving cell.
  • the CSI process is set in association with the CSI report.
  • One CSI process is associated with one CSI-RS resource and one CSI-IM resource.
  • the physical downlink shared channel (PDSCH; Physical Downlink Shared Channel), in addition to downlink data, provides response to random access (random access response, RAR), paging, and broadcast information (system information) that is not notified by the physical broadcast information channel. It is also used to notify the terminal device as a layer 3 message.
  • the radio resource allocation information of the physical downlink shared channel is indicated by the physical downlink control channel.
  • the physical downlink shared channel is transmitted after being arranged in an OFDM symbol other than the OFDM symbol through which the physical downlink control channel is transmitted. That is, the physical downlink shared channel and the physical downlink control channel are time division multiplexed within one subframe.
  • the physical uplink shared channel (PUSCH; Physical Uplink Shared Channel) mainly transmits uplink data and uplink control information, and can also include uplink control information such as CSI and ACK / NACK. In addition to uplink data, it is also used to notify the base station apparatus of layer 2 messages and layer 3 messages, which are higher layer control information. Similarly to the downlink, the radio resource allocation information of the physical uplink shared channel is indicated by the physical downlink control channel.
  • the uplink reference signal (uplink reference signal; Uplink Reference Signal, uplink pilot signal, also referred to as uplink pilot channel) is transmitted from the base station apparatus to the physical uplink control channel PUCCH and / or the physical uplink shared channel PUSCH.
  • demodulation reference signal (DMRS) used for demodulation and sounding reference signal (SRS) used mainly by base station equipment to estimate uplink channel conditions It is.
  • the sounding reference signal includes a periodic sounding reference signal (Periodic SRS) transmitted periodically and an aperiodic sounding reference signal (Aperiodic SRS) transmitted when instructed by the base station apparatus.
  • the demodulation reference signal used for demodulating the physical uplink shared channel PUSCH is also referred to as UL DMRS.
  • UL DMRS is generated mainly based on Zadoff-Chu sequence (ZC sequence).
  • ZC sequence Zadoff-Chu sequence
  • the maximum value among prime numbers equal to or less than the number of assigned subcarriers is used.
  • a physical random access channel is a channel used to notify (set) a preamble sequence and has a guard time.
  • the preamble sequence is configured to notify information to the base station apparatus by a plurality of sequences. For example, when 64 types of sequences are prepared, 6-bit information can be indicated to the base station apparatus.
  • the physical random access channel is used as an access means for the terminal device to the base station device.
  • the terminal apparatus transmits transmission timing adjustment information (timing required for an uplink radio resource request when the physical uplink control channel is not set for the SR, or for matching the uplink transmission timing with the reception timing window of the base station apparatus.
  • the physical random access channel is used to request the base station apparatus for an advance (also called a timing advance (TA) command). Also, the base station apparatus can request the terminal apparatus to start a random access procedure using the physical downlink control channel.
  • TA timing advance
  • the random access response is response information from the base station apparatus with respect to the random access of the terminal apparatus.
  • the random access response is included in the PDSCH scheduled by the control information of the PDCCH having the CRC scrambled by the RA-RNTI, and is transmitted from the base station apparatus.
  • the random access response includes transmission timing adjustment information, an uplink grant (the uplink grant included in the random access response is also referred to as a random access response grant), and Temporary C-RNTI information that is a temporary terminal device identifier. include.
  • the layer 3 message is a message handled in the protocol of the control plane (CP (Control-plane, C-Plane)) exchanged between the terminal device and the RRC (Radio Resource Control) layer of the base station device, and RRC signaling or RRC Can be used interchangeably with message.
  • CP Control-plane, C-Plane
  • RRC Radio Resource Control
  • a protocol that handles user data (uplink data and downlink data) with respect to the control plane is referred to as a user plane (UP (User-plane, U-Plane)).
  • UP User-plane, U-Plane
  • the transport block that is transmission data in the physical layer includes a C-Plane message and U-Plane data in the upper layer. Detailed descriptions of other physical channels are omitted.
  • the communicable range (communication area) of each frequency controlled by the base station apparatus is regarded as a cell.
  • the communication area covered by the base station apparatus may have a different width and a different shape for each frequency.
  • the area to cover may differ for every frequency.
  • a wireless network in which cells having different types of base station apparatuses and different cell radii are mixed in areas of the same frequency and / or different frequencies to form one communication system is referred to as a heterogeneous network. .
  • the terminal device operates by regarding the inside of the cell as a communication area.
  • a terminal device moves from one cell to another cell, it moves to another appropriate cell by a cell reselection procedure during non-wireless connection (during non-communication) and by a handover procedure during wireless connection (during communication).
  • An appropriate cell is a cell that is generally determined that access by a terminal device is not prohibited based on information specified by a base station device, and the downlink reception quality satisfies a predetermined condition. Indicates the cell to be used.
  • the terminal device and the base station device aggregate (aggregate) frequencies (component carriers or frequency bands) of a plurality of different frequency bands (frequency bands) by carrier aggregation to obtain one frequency (frequency band).
  • Component carriers include uplink component carriers corresponding to the uplink and downlink component carriers corresponding to the downlink.
  • a frequency and a frequency band may be used synonymously.
  • a terminal device capable of carrier aggregation considers these as a frequency bandwidth of 100 MHz and performs transmission / reception.
  • the component carriers to be aggregated may be continuous frequencies, or may be frequencies at which all or part of them are discontinuous.
  • the usable frequency band is 800 MHz band, 2 GHz band, and 3.5 GHz band
  • one component carrier is transmitted in the 800 MHz band
  • another component carrier is transmitted in the 2 GHz band
  • another component carrier is transmitted in the 3.5 GHz band. It may be.
  • the frequency bandwidth of each component carrier may be a frequency bandwidth (for example, 5 MHz or 10 MHz) narrower than the receivable frequency bandwidth (for example, 20 MHz) of the terminal device, and the aggregated frequency bandwidth may be different from each other.
  • the frequency bandwidth is preferably equal to one of the frequency bandwidths of the conventional cell in consideration of backward compatibility, but may be a frequency bandwidth different from that of the conventional cell.
  • component carriers that are not backward compatible may be aggregated.
  • the number of uplink component carriers assigned (set or added) to the terminal device by the base station device is preferably equal to or less than the number of downlink component carriers.
  • a cell composed of an uplink component carrier in which an uplink control channel is set for a radio resource request and a downlink component carrier that is cell-specifically connected to the uplink component carrier is a primary cell (PCell: Primary cell). ). Moreover, the cell comprised from component carriers other than a primary cell is called a secondary cell (SCell: Secondary cell).
  • the terminal device performs reception of a paging message in the primary cell, detection of update of broadcast information, initial access procedure, setting of security information, and the like, but may not perform these in the secondary cell.
  • the primary cell is not subject to activation and deactivation control (that is, it is always considered to be activated), but the secondary cell is in a state of activation and deactivation. These state changes are explicitly specified from the base station apparatus, and the state is changed based on a timer set in the terminal apparatus for each component carrier.
  • the primary cell and the secondary cell are collectively referred to as a serving cell.
  • carrier aggregation is communication by a plurality of cells using a plurality of component carriers (frequency bands), and is also referred to as cell aggregation.
  • the terminal device may be wirelessly connected to the base station device via a relay station device (or repeater) for each frequency. That is, the base station apparatus of this embodiment can be replaced with a relay station apparatus.
  • the base station apparatus manages a cell, which is an area in which the terminal apparatus can communicate with the base station apparatus, for each frequency.
  • One base station apparatus may manage a plurality of cells.
  • the cells are classified into a plurality of types according to the size (cell size) of the area communicable with the terminal device. For example, the cell is classified into a macro cell and a small cell. Further, small cells are classified into femtocells, picocells, and nanocells according to the size of the area.
  • a cell set to be used for communication with the terminal device among the cells of the base station device is a serving cell. A cell that is not used for other communication is referred to as a neighbor cell.
  • a plurality of configured serving cells include one primary cell and one or a plurality of secondary cells.
  • the primary cell is a serving cell in which an initial connection establishment procedure has been performed, a serving cell that has started a connection reconstruction procedure, or a cell designated as a primary cell in a handover procedure.
  • the primary cell operates at the primary frequency.
  • the secondary cell may be set at the time when the connection is (re-) built or after that.
  • the secondary cell operates at the secondary frequency.
  • the connection may be referred to as an RRC connection.
  • aggregation is performed by one primary cell and one or more secondary cells.
  • LAA Licensed Assisted Access
  • an assigned frequency is set (used) in the primary cell, and an unassigned frequency is set in at least one of the secondary cells.
  • a secondary cell in which an unassigned frequency is set is assisted from a primary cell or a secondary cell in which an assigned frequency is set.
  • a primary cell or a secondary cell in which an assigned frequency is set is set and / or controlled by a RRC signaling, a MAC signaling, and / or a PDCCH signaling with respect to a secondary cell in which an unassigned frequency is set.
  • a cell assisted from a primary cell or a secondary cell is also referred to as an LAA cell.
  • LAA cells can be aggregated (assisted) by carrier aggregation with a primary cell and / or a secondary cell.
  • the primary cell or secondary cell that assists the LAA cell is also referred to as an assist cell.
  • LAA operation in a secondary cell is referred to as LAA secondary cell operation, and the secondary cell is also referred to as an LAA secondary cell.
  • the LAA secondary cell has a serving cell to which the frame configuration type 3 is applied, a serving cell that is operated using a band 46 defined by a 5 GHz band unlicensed band, and a LAA secondary cell-specific setting (LAA-SCellConfiguration). Is equivalent to a serving cell.
  • LAA cells may be aggregated (assisted) by primary connectivity and / or secondary cells and dual connectivity.
  • the terminal device 1 is simultaneously connected to a plurality of base station devices 2 (for example, the base station device 2-1 and the base station device 2-2) will be described.
  • the base station device 2-1 is a base station device constituting a macro cell
  • the base station device 2-2 is a base station device constituting a small cell.
  • the simultaneous connection using the plurality of cells belonging to the plurality of base station apparatuses 2 by the terminal apparatus 1 is referred to as dual connectivity.
  • the cells belonging to each base station apparatus 2 may be operated at the same frequency or may be operated at different frequencies.
  • carrier aggregation is different from dual connectivity in that one base station apparatus 2 manages a plurality of cells and the frequency of each cell is different.
  • carrier aggregation is a technique for connecting one terminal apparatus 1 and one base station apparatus 2 via a plurality of cells having different frequencies
  • dual connectivity is a technique for connecting one terminal apparatus 1 to one terminal apparatus 1. This is a technique for connecting a plurality of base station apparatuses 2 via a plurality of cells having the same or different frequencies.
  • the terminal device 1 and the base station device 2 can apply a technique applied to carrier aggregation to dual connectivity.
  • the terminal device 1 and the base station device 2 may apply techniques such as primary cell and secondary cell allocation, activation / deactivation, and the like to cells connected by dual connectivity.
  • the base station apparatus 2-1 or the base station apparatus 2-2 is connected to the MME, the SGW, and the backbone line.
  • the MME is a higher-level control station device corresponding to MME (Mobility Management Entity), and plays a role of setting mobility of the terminal device 1 and authentication control (security control) and a route of user data to the base station device 2.
  • MME Mobility Management Entity
  • the SGW is a higher-level control station apparatus corresponding to Serving Gateway (S-GW), and has a role of transmitting user data according to a user data path to the terminal apparatus 1 set by the MME.
  • S-GW Serving Gateway
  • connection path between the base station apparatus 2-1 or the base station apparatus 2-2 and the SGW is referred to as an SGW interface.
  • connection path between the base station apparatus 2-1 or the base station apparatus 2-2 and the MME is referred to as an MME interface.
  • the connection path between the base station apparatus 2-1 and the base station apparatus 2-2 is called a base station interface.
  • the SGW interface is also referred to as an S1-U interface in EUTRA.
  • the MME interface is also referred to as an S1-MME interface in EUTRA.
  • the base station interface is also referred to as an X2 interface in EUTRA.
  • the base station apparatus 2-1 and the MME are connected by an MME interface.
  • the base station apparatus 2-1 and the SGW are connected by an SGW interface.
  • the base station device 2-1 provides a communication path with the MME and / or the SGW to the base station device 2-2 via the base station interface.
  • the base station apparatus 2-2 is connected to the MME and / or SGW via the base station apparatus 2-1.
  • the base station apparatus 2-1 and the MME are connected by an MME interface.
  • the base station apparatus 2-1 and the SGW are connected by an SGW interface.
  • the base station apparatus 2-1 provides a communication path with the MME to the base station apparatus 2-2 via the base station interface.
  • the base station device 2-2 is connected to the MME via the base station device 2-1.
  • the base station device 2-2 is connected to the SGW via the SGW interface.
  • the base station device 2-2 and the MME may be directly connected by the MME interface.
  • dual connectivity refers to radio resources provided from at least two different network points (a master base station device (MeNB: Master eNB) and a secondary base station device (SeNB: Secondary eNB)). This is an operation consumed by the terminal device.
  • the dual connectivity is that the terminal device performs RRC connection at at least two network points.
  • the terminal devices may be connected in a RRC connection (RRC_CONNECTED) state and by a non-ideal backhaul.
  • a base station device connected to at least the S1-MME and serving as a mobility anchor of the core network is referred to as a master base station device.
  • a base station device that is not a master base station device that provides additional radio resources to the terminal device is referred to as a secondary base station device.
  • MCG master cell group
  • SCG secondary cell group
  • the cell group may be a serving cell group.
  • the primary cell belongs to the MCG.
  • SCG a secondary cell corresponding to a primary cell is referred to as a primary secondary cell (pSCell: Primary Secondary Cell).
  • pSCell Primary Secondary Cell
  • the pSCell may be referred to as a special cell or a special secondary cell (Special SCell: Special Secondary Cell).
  • the special SCell base station apparatus configuring the special SCell
  • only some functions of PCell may be supported by pSCell.
  • the pSCell may support a function of transmitting PDCCH.
  • the pSCell may support a function of performing PDCCH transmission using a search space different from CSS (common search space) or USS (UE dedicated search space).
  • a search space different from USS is based on a search space determined based on a value defined in the specification, a search space determined based on an RNTI different from C-RNTI, and a value set in an upper layer different from RNTI.
  • Search space determined by Further, the pSCell may always be in an activated state.
  • pSCell is a cell which can receive PUCCH.
  • a data radio bearer (DRB: Date Radio Bearer) may be individually allocated in the MeNB and SeNB.
  • SRB Signaling Radio Bearer
  • duplex modes may be set individually for MCG and SCG or PCell and pSCell, respectively.
  • MCG and SCG or PCell and pSCell may not be synchronized.
  • a plurality of timing adjustment parameters (TAG: Timing Advance Group) may be set in each of the MCG and the SCG. That is, the terminal device can perform uplink transmission at different timings in each CG.
  • the terminal device can transmit the UCI corresponding to the cell in the MCG only to the MeNB (PCell), and the UCI corresponding to the cell in the SCG can be transmitted only to the SeNB (pSCell).
  • UCI is SR, HARQ-ACK, and / or CSI.
  • a transmission method using PUCCH and / or PUSCH is applied to each cell group.
  • All signals can be transmitted / received in the primary cell, but there are signals that cannot be transmitted / received in the secondary cell.
  • PUCCH Physical Uplink Control Channel
  • PRACH Physical Random Access Channel
  • PBCH Physical Broadcast Channel
  • MIB Master Information Block
  • PUCCH Physical Uplink Control Channel
  • PRACH Physical Random Access Channel
  • MIB Master Information Block
  • RLF Radio Link Failure
  • the secondary cell does not recognize that the RLF is detected even if the condition for detecting the RLF is satisfied.
  • the RLF is detected if the condition is satisfied.
  • the upper layer of the primary secondary cell notifies the upper layer of the primary cell that the RLF has been detected.
  • SPS Semi-Persistent Scheduling
  • DRX Discontinuous Reception
  • the secondary cell may perform the same DRX as the primary cell.
  • information / parameters related to MAC settings are basically shared with the primary cell / primary secondary cell of the same cell group.
  • Some parameters may be set for each secondary cell. Some timers and counters may be applied only to the primary cell and / or the primary secondary cell. A timer or a counter that is applied only to the secondary cell may be set.
  • the MCG base station apparatus 2-1
  • the SCG base station apparatus 2-2
  • the LAA cell is set as a pSCell of SCG.
  • the MCG is a base station apparatus that constitutes a primary cell
  • the SCG is a base station apparatus that constitutes a pSCell and an LAA cell. That is, the LAA cell is assisted from the pSCell in the SCG.
  • the LAA cell may be assisted from the secondary cell.
  • the MCG is a base station apparatus that constitutes a primary cell and an LAA cell
  • the SCG is a base station apparatus that constitutes a pSCell. That is, the LAA cell is assisted from the primary cell in the MCG.
  • the LAA cell may be assisted from the secondary cell.
  • FIG. 3 is a schematic diagram illustrating an example of a block configuration of the base station apparatus 2 according to the present embodiment.
  • the base station apparatus 2 includes an upper layer (upper layer control information notification unit, upper layer processing unit) 301, a control unit (base station control unit) 302, a codeword generation unit 303, a downlink subframe generation unit 304, and an OFDM signal transmission.
  • the downlink subframe generation unit 304 includes a downlink reference signal generation unit 305.
  • the uplink subframe processing unit 310 includes an uplink control information extraction unit (CSI acquisition unit) 311.
  • FIG. 4 is a schematic diagram illustrating an example of a block configuration of the terminal device 1 according to the present embodiment.
  • the terminal device 1 includes a reception antenna (terminal reception antenna) 401, an OFDM signal reception unit (downlink reception unit) 402, a downlink subframe processing unit 403, a transport block extraction unit (data extraction unit) 405, a control unit (terminal) Control unit) 406, upper layer (upper layer control information acquisition unit, upper layer processing unit) 407, channel state measurement unit (CSI generation unit) 408, uplink subframe generation unit 409, SC-FDMA signal transmission unit (UCI transmission) Part) 411 and a transmission antenna (terminal transmission antenna) 412.
  • the downlink subframe processing unit 403 includes a downlink reference signal extraction unit 404.
  • the uplink subframe generation unit 409 includes an uplink control information generation unit (UCI generation unit) 410.
  • UCI generation unit uplink control information generation unit
  • the control unit 302 includes MCS (Modulation and Coding Scheme) indicating a downlink modulation scheme and coding rate, downlink resource allocation indicating an RB used for data transmission, and information used for HARQ control ( The redundancy version, HARQ process number, and new data index) are stored, and the codeword generation unit 303 and the downlink subframe generation unit 304 are controlled based on these.
  • the downlink data (also referred to as downlink transport block) sent from the upper layer 301 is subjected to processing such as error correction coding and rate matching processing in the codeword generation unit 303 under the control of the control unit 302. And a codeword is generated.
  • MCS Modulation and Coding Scheme
  • the downlink subframe generation unit 304 generates a downlink subframe according to an instruction from the control unit 302.
  • the codeword generated by the codeword generation unit 303 is converted into a modulation symbol sequence by a modulation process such as PSK (Phase Shift Keying) modulation or QAM (Quadrature Amplitude Modulation) modulation.
  • the modulation symbol sequence is mapped to REs in some RBs, and a downlink subframe for each antenna port is generated by precoding processing.
  • the transmission data sequence sent from the higher layer 301 includes higher layer control information which is control information (for example, dedicated (individual) RRC (Radio Resource Control) signaling) in the higher layer.
  • the downlink reference signal generation section 305 generates a downlink reference signal.
  • the downlink subframe generation unit 304 maps the downlink reference signal to the RE in the downlink subframe according to an instruction from the control unit 302.
  • the downlink subframe generated by the downlink subframe generation unit 304 is modulated into an OFDM signal by the OFDM signal transmission unit 306 and transmitted via the transmission antenna 307.
  • the downlink subframe generation unit 304 can also have a capability of generating a physical layer downlink control channel such as PDCCH or EPDCCH and mapping it to the RE in the downlink subframe.
  • a plurality of base station apparatuses (base station apparatus 2-1 and base station apparatus 2-2) each transmit an individual downlink subframe.
  • the base station apparatus 2 operated in the LAA cell includes a CCA check unit 312 that determines whether the channel is idle or busy.
  • the CCA check unit 312 is implemented with a method of determining using received power from the reception antenna 308, a method of determining whether a specific signal from the uplink subframe processing unit 310 is detected, or the like.
  • the determination result of the CCA check unit 312 is sent to the control unit 302 and used for transmission control.
  • the OFDM signal is received by the OFDM signal reception unit 402 via the reception antenna 401, and subjected to OFDM demodulation processing.
  • the downlink subframe processing unit 403 first detects a downlink control channel in the physical layer such as PDCCH and EPDCCH. More specifically, the downlink subframe processing unit 403 decodes the PDCCH or EPDCCH transmitted in an area where the PDCCH or EPDCCH can be allocated, and confirms a CRC (Cyclic Redundancy Check) bit added in advance. (Blind decoding) That is, the downlink subframe processing unit 403 monitors PDCCH and EPDCCH.
  • CRC Cyclic Redundancy Check
  • One CRC bit is allocated to one terminal such as an ID (C-RNTI (Cell-Radio Network Temporary Identifier) or SPS-C-RNTI (Semi Persistent Scheduling-C-RNTI)) previously allocated from the base station apparatus. If it matches the terminal unique identifier or Temporary C-RNTI), the downlink subframe processing unit 403 recognizes that the PDCCH or EPDCCH has been detected, and uses the control information included in the detected PDCCH or EPDCCH to perform PDSCH. Take out.
  • C-RNTI Cell-Radio Network Temporary Identifier
  • SPS-C-RNTI Semi Persistent Scheduling-C-RNTI
  • the control unit 406 holds MCS indicating the modulation scheme and coding rate in the downlink based on the control information, downlink resource allocation indicating the RB used for downlink data transmission, and information used for HARQ control, based on these And controls the downlink subframe processing unit 403, the transport block extraction unit 405, and the like. More specifically, the control unit 406 performs control so as to perform RE demapping processing and demodulation processing corresponding to the RE mapping processing and modulation processing in the downlink subframe generation unit 304.
  • the PDSCH extracted from the received downlink subframe is sent to the transport block extraction unit 405.
  • the downlink reference signal extraction unit 404 in the downlink subframe processing unit 403 extracts a downlink reference signal from the downlink subframe.
  • the transport block extraction unit 405 performs rate matching processing in the codeword generation unit 303, rate matching processing corresponding to error correction coding, error correction decoding, and the like, and extracts transport blocks and sends them to the upper layer 407. It is done.
  • the transport block includes upper layer control information, and the upper layer 407 informs the control unit 406 of necessary physical layer parameters based on the upper layer control information.
  • the plurality of base station apparatuses 2 (base station apparatus 2-1 and base station apparatus 2-2) transmit individual downlink subframes, and the terminal apparatus 1 receives these, so that The processing may be performed for each downlink subframe for each of the plurality of base station apparatuses 2.
  • the terminal device 1 may or may not recognize that a plurality of downlink subframes are transmitted from the plurality of base station devices 2. When not recognizing, the terminal device 1 may simply recognize that a plurality of downlink subframes are transmitted in a plurality of cells. Further, the transport block extraction unit 405 determines whether or not the transport block has been correctly detected, and the determination result is sent to the control unit 406. Note that the terminal device 1 operated in the LAA cell includes a CCA check unit 413 that determines whether the channel is idle or busy. The CCA check unit 413 is implemented with a method of determining using received power from the receiving antenna 401, a method of determining whether a specific signal from the downlink subframe processing unit 403 is detected, or the like. The determination result of the CCA check unit 413 is sent to the control unit 406 and used for transmission control.
  • the control unit 406 under the instruction of the control unit 406, the downlink reference signal extracted by the downlink reference signal extraction unit 404 is sent to the channel state measurement unit 408, and the channel state measurement unit 408 performs channel state and / or interference. And CSI is calculated based on the measured channel conditions and / or interference.
  • the control unit 406 sends the HARQ-ACK (DTX (not transmitted), ACK (successful detection), or NACK ( Detection failure)) and mapping to downlink subframes. The terminal device 1 performs these processes on the downlink subframes for each of a plurality of cells.
  • Uplink control information generating section 410 generates PUCCH including the calculated CSI and / or HARQ-ACK.
  • the PUSCH including the uplink data sent from the higher layer 407 and the PUCCH generated in the uplink control information generation unit 410 are mapped to the RB in the uplink subframe, and the uplink A subframe is generated.
  • the uplink subframe is subjected to SC-FDMA modulation in the SC-FDMA signal transmission unit 411 to generate an SC-FDMA signal and transmitted via the transmission antenna 412.
  • the terminal device 1 performs (derived) channel measurement for calculating the value of CQI based on CRS or CSI-RS (non-zero power CSI-RS). Whether the terminal device 1 derives based on CRS or CSI-RS is switched by an upper layer signal. Specifically, in a transmission mode in which CSI-RS is set, channel measurement for calculating CQI is derived based only on CSI-RS. Specifically, in a transmission mode in which CSI-RS is not set, channel measurement for calculating CQI is derived based on CRS. An RS used in channel measurement for calculating CSI is also referred to as a first RS.
  • the terminal apparatus 1 when the terminal apparatus 1 is set in an upper layer, the terminal apparatus 1 performs (derived) interference measurement for calculating the CQI based on the CSI-IM or the second RS. Specifically, in a transmission mode in which CSI-IM is set, an interference measurement for calculating CQI is derived based on CSI-IM. Specifically, in a transmission mode in which CSI-IM is configured, an interference measurement for deriving a CQI value corresponding to the CSI process is derived based only on the CSI-IM resource associated with the CSI process.
  • the RS or IM used in channel measurement for calculating CSI is also referred to as a second RS.
  • the terminal device 1 may perform interference measurement for calculating CQI based on CRS (may be derived). For example, if CSI-IM is not configured, an interference measurement for calculating CQI based on CRS may be derived.
  • channel and / or interference for calculating CQI may be used for the channel and / or interference for calculating PMI or RI as well.
  • the uplink grant is defined by, for example, DCI format 0 or DCI format 4.
  • One DCI format 0 is used for PUSCH scheduling in one uplink cell.
  • Carrier indicator (Carrier indicator), flag for format 0 / format 1A distinction (Flag for format0 / format1A differentiation), frequency hopping flag (Frequency hopping flag), resource block assignment and hopping resource allocation (Resource block assignment and hopping resource allocation) ), Modulation and coding scheme and redundancy version (Modulation and coding scheme and redundancy version), new data indicator (New data indicator), TPC command for scheduled PUSCH (TPC command for forscheduled PUSCH), cyclic shift and OCC for DMRS Index (Cyclic shift for DM RS and OCC index), UL index (UL index), downlink assignment index (Downlink Assignment Index: DAI), CS
  • the I request (CSI request), the SRS request (SRS request), and the resource allocation type (Resource allocation type) are transmitted in DCI format 0.
  • DCI format 0 has the same payload size as DCI format 1A, which is a kind of downlink assignment. Thereby, the number of blind decoding of PDCCH can be reduced.
  • One DCI format 4 is used for PUSCH scheduling in one UL cell in the multi-antenna port transmission mode.
  • Carrier indicator Carrier indicator
  • resource block assignment Resource block assignment
  • TPC command TPCScommand for scheduled PUSCH
  • cyclic shift and OCC index Cyclic shift for DM RS and OCC index
  • UL index UL index
  • Downlink Assignment index: DAI Downlink Assignment index
  • CSI request CSI request
  • modulation and coding scheme and redundancy version Modulation and coding scheme and redundant redundancy version
  • new data indicator New data
  • precoding information and the number of layers are transmitted in DCI format 4.
  • the uplink DCI format for scheduling PUSCH transmission in the LAA cell includes a HARQ process field corresponding to the PUSCH.
  • the terminal device can asynchronously perform PUSCH HARQ combining in the LAA cell.
  • the first downlink resource allocation type (downlink resource allocation type 0: resource allocation type 0), the second downlink resource allocation type (downlink resource allocation type 1: resource) allocation type 1) and a third downlink resource allocation type (downlink resource allocation type 2: resource allocation type 2) are defined.
  • the downlink resource allocation type 0 indicates virtual resource blocks allocated non-sequentially to a scheduled terminal device in a bitmap format.
  • the minimum unit of virtual resource blocks that can be allocated is called a resource block group (RBG).
  • a resource block group is defined as a set of consecutive virtual resource blocks with values from 1 to 4.
  • the RBG size is determined corresponding to the system bandwidth.
  • the total number of RBGs is determined by the downlink system bandwidth and the RBG size.
  • RBGs are indexed in order from low frequency.
  • One bit in the bitmap format corresponds to one RBG.
  • the downlink resource allocation type 1 indicates a virtual resource block from a set of virtual resource blocks allocated non-sequentially to a scheduled terminal device.
  • a set of virtual resource blocks is configured from the RBG subset.
  • the information of downlink resource allocation type 1 is composed of three fields. The first field is used to indicate an RBG subset selected from among a plurality of RBG subsets. The second field is used to indicate the shift amount of the resource allocation interval in the subset. The third field is a bitmap, and the bits of the bitmap correspond to one virtual resource block in the RBG subset selected in the first field. When the bit value of the bitmap is 1, the corresponding virtual resource block is allocated to the terminal device.
  • the downlink resource allocation type 2 indicates one set of one or a plurality of virtual resource blocks continuously allocated to the scheduled terminal device.
  • the resource allocation area (resource allocation field) included in the uplink resource allocation type 0 is configured with one value corresponding to the length of the resource block allocated continuously with the start (start position) of the resource block. .
  • One of the values is also referred to as RIV (resource indication value).
  • the resource allocation type field included in the DCI format is commonly used for each resource allocation type.
  • the type of downlink resource allocation type to be applied is determined by the type of DCI format. For example, when instructed using the DCI format 1A, 1B, 1C, or 1D, the downlink resource allocation type 2 is applied, and when instructed using the other DCI format, the downlink Link resource allocation type 0 or 1 applies.
  • the type of downlink resource allocation type is determined by a predetermined indicator (field) included in the DCI format. For example, when the indicator included in the DCI format indicates type 0, downlink resource allocation type 0 is applied, and when the indicator indicates type 1, downlink resource allocation type 1 is applied.
  • the uplink grant (uplink DCI format) includes a first uplink resource allocation type (uplink resource allocation type 0: resource allocation type 0) and a second uplink resource allocation type (uplink resource).
  • Allocation type 1 resource allocation type 1) is defined.
  • resource allocation type bit is not present in the uplink DCI format, only resource allocation type 0 is supported.
  • the resource allocation type indicated by the bit is applied.
  • the uplink resource allocation type 0 indicates one set of one or a plurality of virtual resource blocks continuously allocated to the scheduled terminal apparatus.
  • the resource allocation area (resource allocation field) included in the uplink resource allocation type 0 is configured with one value corresponding to the length of the resource block allocated continuously with the start (start position) of the resource block. .
  • One of the values is also referred to as RIV (resource indication value).
  • the uplink resource allocation type 1 indicates two sets of one or a plurality of virtual resource blocks continuously allocated to the scheduled terminal device.
  • the resource allocation area included in the uplink resource allocation type 1 is composed of one index combining the start position and the end position (resource block) of each of the two sets.
  • a set of one or a plurality of resource blocks continuous on a frequency assigned to one terminal apparatus is also referred to as a cluster.
  • LAA cell The details of the LAA cell will be described below.
  • the frequency used by the LAA cell is shared with other communication systems and / or other LTE operators.
  • LAA cells require fairness with other communication systems and / or other LTE operators.
  • a fair frequency sharing technique (method) is necessary in a communication system used in an LAA cell.
  • the LAA cell is a cell that performs a communication method (communication procedure) to which a fair frequency sharing technique can be applied (used).
  • LBT Listen-Before-Talk
  • a base station or a terminal Before transmitting a signal using a certain frequency (component carrier, carrier, cell, channel, medium), a base station or a terminal performs LBT interference power (interference signal, received power, received signal, noise power). , Noise signal) etc., the frequency is idle (free, not congested, Absence, Clear) or busy (not free, congested) (Presence, Occupied) is identified (detected, assumed, determined). If the frequency is identified as idle based on the LBT, the LAA cell can transmit a signal at a predetermined timing at that frequency.
  • the LAA cell does not transmit a signal at a predetermined timing at that frequency.
  • the LBT can be controlled so as not to interfere with signals transmitted by other base stations and / or terminals including other communication systems and / or other LTE operators.
  • LBT performed by the base station apparatus before downlink transmission is referred to as downlink LBT
  • LBT performed by the terminal apparatus before uplink transmission is referred to as uplink LBT.
  • the LBT procedure is defined as a mechanism that applies a CCA (Clear Channel Assessment) check before a certain base station or terminal uses the frequency (channel).
  • the CCA performs power detection or signal detection to determine the presence or absence of other signals on the channel to identify whether the frequency is idle or busy.
  • the definition of CCA may be equivalent to the definition of LBT.
  • CCA is also referred to as carrier sense.
  • CCA various methods can be used for determining the presence or absence of other signals. For example, CCA is determined based on whether the interference power at a certain frequency exceeds a certain threshold. Also, for example, CCA is determined based on whether the received power of a predetermined signal or channel at a certain frequency exceeds a certain threshold value.
  • the threshold value may be defined in advance. The threshold may be set from the base station or another terminal. The threshold value may be determined (set) based at least on other values (parameters) such as transmission power (maximum transmission power). Also, for example, CCA is determined based on whether or not a predetermined channel at a certain frequency has been decoded.
  • ICCA Initial CCC, single sensing, LBT category 2, FBE: Frame-based Equipment
  • ECCAs Extended CCA, multiple sensing, LBT category 3/4, LBE: Load-based Equipment
  • the period during which the CCA check is performed by the ICCA is referred to as an ICCA period or an ICCA slot length, and is 34 microseconds, for example.
  • the period during which the CCA check is performed by ECCA is referred to as ECCA period or ECCA slot length, and is, for example, 9 microseconds.
  • the predetermined number is also referred to as a back-off counter (counter, random number counter, ECCA counter).
  • the period for performing the CCA check is referred to as a defer period, or an ECCA defer period, for example, 34 microseconds.
  • FIG. 6 shows an example of LBT (LBT category 4, LBE) procedure in downlink transmission.
  • LBT LBT category 4, LBE
  • a CCA check is performed during an initial CCA period (Initial CCA period) to detect whether the channel is idle or busy (S6031).
  • the base station apparatus acquires the access right of the channel and shifts to a transmission operation.
  • downlink transmission is performed (S605).
  • S606 After performing the downlink transmission, it is determined whether or not other information that requires downlink transmission still exists (residual) (S606). If other information that requires downlink transmission does not yet exist (residual), the process returns to the idle state (S601).
  • S603 As a result of performing the initial CCA (S603), when it is determined that the channel is busy, it is determined whether or not other information that requires downlink transmission still exists (residual) (S606).
  • the process proceeds to extended CCA (S607).
  • the base station apparatus randomly generates a counter value N from the range of 0 to q ⁇ 1 (S6071).
  • the base station apparatus senses whether the channel is idle or busy in the ECCA differential section (S6072). If it is determined that the channel is busy in the ECCA deferred section, it is detected again whether the channel is idle or busy in the ECCA deferred section (S6072).
  • the base station apparatus senses the channel (medium) in one ECCA slot time (S6073) and determines whether the channel is idle or busy. Is determined (S6074). If it is determined that the channel is idle, it is decremented by one from the counter value N (S6075). If it is determined that the channel is busy, the process returns to the process of sensing the channel again in the ECCA deferred section (S6072). Then, the base station apparatus determines whether or not the counter value has become 0 (S6076). If the counter value has become 0, the base station apparatus shifts to a process of performing transmission (S604 and S605).
  • the channel (medium) is sensed again in one ECCA slot time (S6073).
  • the value of the collision window q when generating the counter value N is updated so as to be a value between X and Y according to the channel state (S6077).
  • the value of the collision window q is, for example, the PDRQ HARQ-ACK response transmitted by the base station apparatus, the power value obtained by sensing the channel of the base station apparatus, the RSRP, RSRQ, and / or RSSI report, It is determined based on the above.
  • the value of the collision window q is increased exponentially as an example.
  • the minimum value X and the maximum value Y used when determining the value of the collision window q are parameters set in the upper layer.
  • extended CCA does not have to be performed in the LBT procedure of FIG. Specifically, when it is determined that the channel is busy as a result of the initial CCA (S603), the base station apparatus may return to the idle state (S601) without shifting to the extended CCA process (S607). . In addition, even when there is still information that needs to be transmitted after downlink transmission (S606), the process does not transition to the extended CCA process (S607), and the base station apparatus is in an idle state ( You may return to S601).
  • An LBT that performs such a process is also referred to as LBT category 2.
  • An LBT that performs such a process may be applied as an LBT for DS transmission, PDSCH transmission of a length of 1 ms or less, or PDCCH only transmission, for example.
  • the CCA in the LAA cell does not need to be recognized by the terminal connected (set) to the LAA cell.
  • the terminal device 1 may consider that transmission is continuous for several subframes after detecting the first transmission.
  • Several subframes in which transmission continues are also referred to as a transmission burst.
  • several subframes in which PDSCH transmission is continued are referred to as PDSCH transmission bursts.
  • the PDSCH transmission burst may include channels and / or signals other than PDSCH.
  • the PDSCH transmission burst may be transmitted including PDSCH and DS.
  • several subframes in which only the DS is transmitted are referred to as a DS transmission burst.
  • the number of subframes transmitted continuously by the transmission burst may be set in the terminal device 1 by the RRC message.
  • a downlink signal or channel transmission burst is also referred to as downlink transmission
  • an uplink signal or channel transmission burst is also referred to as uplink transmission.
  • the terminal device When the terminal device detects a reservation signal included at the beginning of the transmission burst, the terminal device can detect the transmission burst.
  • the terminal apparatus regards several subframes as a transmission burst from the subframes in which the reservation signal is detected.
  • a first synchronization signal, a second synchronization signal, or a third synchronization signal, which will be described later, is detected instead of the reservation signal, the terminal apparatus sets the subsequent several subframes as transmission bursts. It can be considered.
  • the terminal device can detect the transmission burst when decoding the information of the subframe specifying the transmission burst included in the DCI.
  • the DCI is notified by being included in PDCCH or EPDCCH arranged in CSS. Further, the DCI may be notified by being included in the PDCCH or EPDCCH arranged in the USS.
  • the LAA cell may be defined as a cell different from the secondary cell using the allocated frequency.
  • the LAA cell is set differently from the setting of the secondary cell using the allocated frequency. Some of the parameters set in the LAA cell are not set in the secondary cell using the allocated frequency. Some of the parameters set in the secondary cell using the allocated frequency are not set in the LAA cell.
  • the LAA cell is described as a cell different from the primary cell and the secondary cell, but the LAA cell may be defined as one of the secondary cells.
  • the conventional secondary cell is also referred to as a first secondary cell, and the LAA cell is also referred to as a second secondary cell.
  • the conventional primary cell and secondary cell are also referred to as a first serving cell, and the LAA cell is also referred to as a second serving cell.
  • the LAA cell may be different from the conventional frame configuration type.
  • the conventional serving cell uses (sets) the first frame configuration type (FDD, frame structure type 1) or the second frame configuration type (TDD, frame structure type 2), while the LAA cell A third frame configuration type (frame structure type 3) is used (set).
  • the LAA cell may use the first frame configuration type or the second frame configuration type (may be set).
  • the third frame configuration type is preferably a frame configuration type having characteristics of an FDD cell while being a TDD cell in which uplink and downlink can be transmitted at the same frequency.
  • the third frame configuration type includes an uplink subframe, a downlink subframe, and a special subframe, and the PUSCH scheduled from the uplink grant after receiving the uplink grant is The interval until transmission or the interval of HARQ feedback for the PDSCH after receiving the PDSCH may be the same as that of the FDD cell.
  • the third frame configuration type is a frame configuration type that does not depend on the conventional TDD UL / DL setting (TDD uplink / downlink configuration).
  • the uplink subframe, the downlink subframe, and the special subframe may be set aperiodically with respect to the radio frame.
  • the uplink subframe, the downlink subframe, and the special subframe may be determined based on PDCCH or EPDCCH.
  • 10 subframes (all subframes) of radio frames can be used for downlink transmission. Further, in the third frame configuration type, 10 subframes (all subframes) of the radio frames can be used for uplink transmission. Note that subframes # 0 and # 5 in the radio frame may not be used for uplink transmission. In other words, in the third frame configuration type, subframes # 0 and # 5 in the radio frame may be used only for downlink transmission.
  • Downlink transmission is occupied by one or more consecutive non-empty subframes.
  • the start of downlink transmission may be from anywhere in the subframe.
  • the end of downlink transmission is either the subframe boundary (the boundary between OFDM symbol # 0 and OFDM symbol # 13 of the previous subframe) or the length of DwPTS.
  • the end of downlink transmission may be the boundary between OFDM symbol # 12 and OFDM symbol # 13.
  • the end of downlink transmission may be a slot boundary (a boundary between OFDM symbol # 6 and OFDM symbol # 7).
  • Uplink transmission is occupied by one or more consecutive non-empty subframes.
  • the start of uplink transmission is preferably from a subframe boundary.
  • the start of uplink transmission may be from anywhere in the subframe.
  • the end of uplink transmission is a subframe boundary (SC-FDMA symbol # 0 and SC-FDMA symbol # 13 boundary of the previous subframe) or a last SC-FDMA symbol boundary (SC-FDMA symbol # 12 and SC). -Boundary of FDMA symbol # 13) or boundary of the second SC-FDMA symbol from the end (boundary of SC-FDMA symbol # 11 and SC-FDMA symbol # 12).
  • the end of uplink transmission may be a slot boundary (a boundary between SC-FDMA symbol # 6 and SC-FDMA symbol # 7).
  • a subframe in which transmission starts from a subframe boundary and transmission ends at a subframe boundary is referred to as a full subframe.
  • a subframe in which transmission starts from other than a subframe boundary or transmission ends at other than a subframe boundary is referred to as a partial subframe.
  • the uplink subframe and the terminal apparatus recognize the subframe in which PUSCH transmission is instructed by the uplink grant.
  • the terminal apparatus recognizes a subframe in which PUSCH transmission is not instructed by the uplink grant as a downlink subframe or an empty subframe.
  • the subframe or the next subframe is recognized by the uplink subframe and the terminal device.
  • the terminal apparatus recognizes the subframe or the next subframe as a downlink subframe or an empty subframe.
  • information indicating the uplink subframe is included in the PDCCH accompanied by the DCI CRC (CRC with DCI) scrambled by CC-RNTI, and the subframe indicated as the uplink subframe by the information is the uplink.
  • the terminal device recognizes that it is a link subframe.
  • the terminal apparatus recognizes that the subframe not designated as the uplink subframe by the information in the PDCCH is the downlink subframe or the empty subframe.
  • the information is, for example, information indicating the position of uplink transmission and / or the length of uplink transmission. Note that the information may not be included in the PDCCH with the DCI CRC scrambled by CC-RNTI, and may be transmitted in the PHICH resource, for example.
  • the terminal apparatus recognizes that it is a downlink subframe. It is not recognized as an uplink subframe.
  • the occupied OFDM symbol is an OFDM symbol used for transmission of a downlink physical channel and / or a downlink physical signal.
  • the non-assigned frequency is a frequency different from the assigned frequency assigned as a dedicated frequency to a predetermined operator.
  • the unassigned frequency is a frequency used by the wireless LAN.
  • the non-assigned frequency is a frequency that is not set in the conventional LTE
  • the assigned frequency is a frequency that can be set in the conventional LTE.
  • the frequency set in the LAA cell is described as an unassigned frequency, but is not limited to this. That is, the unassigned frequency can be replaced with a frequency set in the LAA cell.
  • the non-assigned frequency is a frequency that cannot be set in the primary cell and can be set only in the secondary cell.
  • unassigned frequencies also include frequencies that are shared with multiple operators. Further, for example, the unassigned frequency is a frequency that is set only for a cell that is set, assumed, and / or processed differently from a conventional primary cell or secondary cell.
  • the LAA cell may be a cell that uses a scheme different from the conventional scheme with regard to the configuration and communication procedures of LTE radio frames, physical signals, and / or physical channels.
  • a predetermined signal and / or channel set (transmitted) in the primary cell and / or the secondary cell is not set (transmitted).
  • the predetermined signal and / or channel includes CRS, DS, PDCCH, EPDCCH, PDSCH, PSS, SSS, PBCH, PHICH, PCFICH, CSI-RS, and / or SIB.
  • signals and / or channels that are not set in the LAA cell are as follows. The signals and / or channels described below may be used in combination. In the present embodiment, signals and / or channels that are not set in the LAA cell may be read as signals and / or channels that the terminal does not expect from the LAA cell.
  • the terminal In the LAA cell, physical layer control information is not transmitted on the PDCCH, but is transmitted only on the EPDCCH. (2) In the LAA cell, CRS, DMRS, URS, PDCCH, EPDCCH and / or PDSCH are not transmitted in all subframes even in a subframe that is activated (on), and the terminal transmits in all subframes. Do not assume that it is. (3) In the LAA cell, the terminal assumes that DS, PSS, and / or SSS are transmitted in a subframe that is activated (ON). (4) In the LAA cell, the terminal is notified of information on CRS mapping for each subframe, and makes a CRS mapping assumption based on the information.
  • the CRS mapping assumption is not mapped to all resource elements of that subframe.
  • the assumption of CRS mapping is not mapped to some resource elements of the subframe (for example, all resource elements in the first two OFDM symbols).
  • CRS mapping assumptions are mapped to all resource elements of that subframe.
  • information on CRS mapping is notified from the LAA cell or a cell different from the LAA cell.
  • Information on CRS mapping is included in DCI and is notified by PDCCH or EPDCCH.
  • a predetermined signal and / or channel that is not set (transmitted) in the primary cell and / or the secondary cell is set (transmitted).
  • only downlink component carriers or subframes are defined, and only downlink signals and / or channels are transmitted. That is, in the LAA cell, no uplink component carrier or subframe is defined, and no uplink signal and / or channel is transmitted.
  • the DCI (Downlink Control Information) format that can be supported is different from the DCI format that can correspond to the primary cell and / or the secondary cell.
  • a DCI format corresponding only to the LAA cell is defined.
  • the DCI format corresponding to the LAA cell includes control information effective only for the LAA cell.
  • the terminal device can recognize the LAA cell according to the parameters by the upper layer. For example, the terminal device can recognize a conventional cell (band) or LAA cell (LAA band) from the parameter for reporting the center frequency of the element carrier. In this case, the information related to the center frequency is associated with the cell (band) type.
  • the assumption of signals and / or channels is different from that of the conventional secondary cell.
  • a terminal satisfying a part or all of the following conditions, except for transmission of DS has PSS, SSS, PBCH, CRS, PCFICH, PDSCH, PDCCH, EPDCCH, PHICH, DMRS and / or CSI-RS as its secondary cell. Assume that it may not be sent by. The terminal also assumes that the DS is always transmitted by the secondary cell. Further, the assumption continues until a subframe in which an activation command (command for activation) is received in a secondary cell at a certain carrier frequency of the terminal. (1) The terminal supports settings (parameters) related to the DS. (2) The RRM measurement based on DS is set in the secondary cell of the terminal. (3) The secondary cell is in a deactivated state (deactivated state). (4) The terminal is not set to receive MBMS by the upper layer in the secondary cell.
  • the terminal when the secondary cell is in an activated state (activated state), the terminal performs PSS, SSS, PBCH, CRS, PCFICH, PDSCH, PDCCH, in a set predetermined subframe or all subframes. Assume that EPDCCH, PHICH, DMRS and / or CSI-RS are transmitted by the secondary cell.
  • a terminal that satisfies some or all of the following conditions includes the transmission of DS, PSS, SSS, PBCH, CRS, PCFICH, PDSCH, PDCCH, EPDCCH, PHICH, DMRS, and / or CSI-RS in its LAA cell Assume that it may not be sent by. Further, the assumption continues until a subframe in which an activation command (command for activation) is received in a secondary cell at a certain carrier frequency of the terminal.
  • the terminal supports settings (parameters) related to the DS.
  • the RRM measurement based on DS is set in the LAA cell of the terminal.
  • the LAA cell is deactivated (inactivated state). (4) The terminal is not set to receive MBMS by the upper layer in the LAA cell.
  • the terminal determines that the LAA cell is PSS, SSS, PBCH, CRS, except for a predetermined subframe set in the LAA cell. Assume that PCFICH, PDSCH, PDCCH, EPDCCH, PHICH, DMRS and / or CSI-RS may not be transmitted. Details thereof will be described later.
  • CCA is performed in one subframe
  • the time (period) for performing CCA is not limited to this.
  • the time for performing CCA may vary for each LAA cell, for each timing of CCA, and for each execution of CCA.
  • CCA is performed at a time based on a predetermined time slot (time interval, time domain).
  • the predetermined time slot may be defined or set by a time obtained by dividing one subframe into a predetermined number.
  • the predetermined time slot may be defined or set by a predetermined number of subframes.
  • the size of the field in the time domain is a predetermined time unit.
  • T s is 1 / (15000 * 2048) seconds.
  • the time of one subframe is 30720 * T s (1 millisecond).
  • one ICCA slot length or defer period is 1044 * T s (about 33.98 microseconds), or 1045 * T s (about 34.02 microseconds).
  • one ECCA slot length is 276 * T s (about 8.984 microseconds), or 277 * T s (about 9.017 microseconds).
  • one ECCA slot length is 307 * T s (about 9.993 microseconds), or 308 * T s (about 10.03 microseconds).
  • whether or not a channel and / or a signal (including a reservation signal) can be transmitted from a symbol in the middle of a subframe in which the LAA cell is present may be set for the terminal or the LAA cell. For example, information indicating whether or not such transmission is possible is set in the terminal regarding the LAA cell by RRC signaling. Based on the information, the terminal switches processing related to reception (monitoring, recognition, decoding) in the LAA cell.
  • subframes that can be transmitted from intermediate symbols may be all subframes in the LAA cell.
  • the subframe that can be transmitted from a halfway symbol may be a subframe previously defined for the LAA cell or a set subframe.
  • subframes that can be transmitted from intermediate symbols are set, notified, or determined based on the TDD uplink downlink configuration (UL / DL configuration).
  • a subframe is a subframe notified (designated) as a special subframe in the UL / DL setting.
  • the special subframe in the LAA cell is a subframe including at least one of three fields of DwPTS (Downlink Pilot Time Slot), GP (Guard Period) and UpPTS (Uplink Pilot Time Slot).
  • the setting related to the special subframe in the LAA cell may be set or notified by RRC signaling, PDCCH or EPDCCH signaling.
  • This setting sets the length of time for at least one of DwPTS, GP and UpPTS.
  • This setting is index information indicating candidates for a predetermined length of time.
  • This setting can use the same length of time as DwPTS, GP, and UpPTS used in the special subframe setting set in the conventional TDD cell. That is, the length of time during which transmission is possible in a certain subframe is determined based on one of DwPTS, GP, and UpPTS.
  • the reservation signal can be a signal that can be received by an LAA cell different from the LAA cell that is transmitting the reservation signal.
  • an LAA cell different from the LAA cell that transmits the reservation signal is an LAA cell (adjacent LAA cell) that is adjacent to the LAA cell that transmits the reservation signal.
  • the reservation signal includes information regarding a transmission status (usage status) of a predetermined subframe and / or symbol in the LAA cell.
  • the LAA cell that has received the reservation signal uses a predetermined subframe and / or symbol based on the reservation signal. Recognize the transmission status and perform scheduling according to the status.
  • the LAA cell that has received the reservation signal may perform LBT before transmitting the channel and / or signal.
  • the LBT is performed based on the received reservation signal. For example, in the LBT, scheduling including resource allocation and MCS selection is performed in consideration of a channel and / or signal transmitted (assumed to be transmitted) by the LAA cell that transmitted the reservation signal.
  • the predetermined method is a method of transmitting a predetermined channel and / or signal including a reservation signal. Further, for example, the predetermined method is a method of notifying through a backhaul such as an X2 interface.
  • the conventional terminal can set up to 5 serving cells, but the terminal in the present embodiment can extend the maximum number of serving cells that can be set. That is, the terminal in this embodiment can set more than 5 serving cells. For example, the terminal in this embodiment can set up to 16 or 32 serving cells. For example, more than five serving cells set in the terminal in the present embodiment include LAA cells. Further, all of the 5 or more serving cells set in the terminal in the present embodiment may be LAA cells.
  • the settings for some serving cells may be different from the settings for a conventional serving cell (ie, a conventional secondary cell).
  • a conventional serving cell ie, a conventional secondary cell
  • the settings described below may be used in combination.
  • the terminal is configured with up to 5 conventional serving cells and up to 11 or 27 serving cells different from the conventional one. That is, the terminal is configured with up to four conventional secondary cells in addition to the conventional primary cell, and with up to 11 or 27 secondary cells different from the conventional one.
  • the setting regarding the serving cell (secondary cell) different from the conventional one includes the setting regarding the LAA cell.
  • the terminal sets up to four secondary cells that do not include settings related to the LAA cell, and sets up to 11 or 27 secondary cells different from the conventional one.
  • the base station (including the LAA cell) and / or the terminal can perform processing or assumption different from that when setting up to five serving cells.
  • the processing or assumption the following is different.
  • the processes or assumptions described below may be used in combination.
  • the terminal assumes that PDCCH, EPDCCH and / or PDSCH are simultaneously transmitted (received) from a maximum of 5 serving cells even when more than 5 serving cells are set. Accordingly, the terminal can use a method similar to the conventional method for reception of PDCCH, EPDCCH and / or PDSCH and transmission of HARQ-ACK for the PDSCH.
  • the terminal sets a combination (group) of cells for performing HARQ-ACK bundling for the PDSCH in those serving cells.
  • all serving cells, all secondary cells, all LAA cells, or all non-conventional secondary cells each include information (setting) on HARQ-ACK bundling between serving cells.
  • information related to HARQ-ACK bundling between serving cells is an identifier (index, ID) for performing bundling.
  • HARQ-ACK is bundled across cells having the same identifier for bundling. The bundling is performed by a logical product operation on the target HARQ-ACK.
  • the maximum number of identifiers for bundling can be 5.
  • the maximum number of identifiers for performing bundling can be set to 5 including the number of cells for which bundling is not performed. That is, the maximum number of groups that perform bundling beyond the serving cell can be five. Accordingly, the terminal can use a method similar to the conventional method for reception of PDCCH, EPDCCH and / or PDSCH and transmission of HARQ-ACK for the PDSCH. (3) When more than five serving cells are set, the terminal sets a combination (group) of cells that perform HARQ-ACK multiplexing on the PDSCH in those serving cells.
  • the multiplexed HARQ-ACK is transmitted by PUCCH or PUSCH based on the group.
  • the maximum number of serving cells to be multiplexed is defined or set.
  • the maximum number is defined or set based on the maximum number of serving cells set in the terminal. For example, the maximum number is the same as the maximum number of serving cells set in the terminal, or half the maximum number of serving cells set in the terminal.
  • the maximum number of PUCCHs transmitted simultaneously is defined or set based on the maximum number of serving cells multiplexed in each group and the maximum number of serving cells set in the terminal.
  • the number of configured first serving cells i.e., primary cells and / or secondary cells
  • a predetermined number i.e., 5
  • configured first serving cells and second serving cells i.e., The total number of LAA cells exceeds a predetermined number.
  • terminal capabilities related to LAA will be described.
  • the terminal Based on an instruction from the base station, the terminal notifies (transmits) information (terminal capability) on the capability (capability) of the terminal to the base station through RRC signaling.
  • the terminal capability for a certain function (feature) is notified (transmitted) when the function (feature) is supported, and is not notified (transmitted) when the function (feature) is not supported.
  • the terminal capability for a certain function (feature) may be information indicating whether the test and / or implementation of the function (feature) has been completed.
  • the terminal capabilities in this embodiment are as follows. The terminal capabilities described below may be used in combination.
  • the terminal capabilities related to support of LAA cells and the terminal capabilities related to support of setting of more than five serving cells are defined independently.
  • a terminal that supports LAA cells supports setting of more than 5 serving cells. That is, a terminal that does not support setting of more than five serving cells does not support LAA cells. In that case, a terminal that supports setting of more than five serving cells may or may not support the LAA cell.
  • the terminal capabilities related to support of LAA cells and the terminal capabilities related to support of setting of more than five serving cells are defined independently. For example, a terminal that supports setting of more than 5 serving cells supports LAA cells. That is, a terminal that does not support the LAA cell does not support setting of more than five serving cells.
  • the terminal supporting the LAA cell may or may not support setting of more than five serving cells.
  • the terminal capability related to the downlink in the LAA cell and the terminal capability related to the uplink in the LAA cell are defined independently.
  • a terminal that supports uplink in the LAA cell supports downlink in the LAA cell. That is, a terminal that does not support the downlink in the LAA cell does not support the uplink in the LAA cell. In that case, the terminal that supports the downlink in the LAA cell may or may not support the uplink in the LAA cell.
  • the terminal capabilities related to LAA cell support include support for transmission modes set only in the LAA cell.
  • the terminal capabilities related to the downlink in the setting of more than five serving cells and the terminal capabilities related to the uplink in the setting of more than five serving cells are defined independently.
  • a terminal that supports uplink in setting of more than 5 serving cells supports downlink in setting of more than 5 serving cells. That is, a terminal that does not support the downlink in setting more than 5 serving cells does not support the uplink in setting more than 5 serving cells.
  • a terminal that supports the downlink in the configuration of more than five serving cells may or may not support the uplink in the configuration of more than five serving cells.
  • the terminal capability that supports setting of up to 16 downlink serving cells (component carriers) and the terminal capability supporting setting of up to 32 downlink serving cells are: Are defined independently.
  • a terminal that supports setting of up to 16 downlink serving cells supports setting of at least one uplink serving cell.
  • a terminal that supports setting of up to 32 downlink serving cells supports setting of at least two uplink serving cells. That is, a terminal that supports setting of up to 16 downlink serving cells may not support setting of two or more uplink serving cells.
  • the terminal capability related to the support of the LAA cell is notified based on the frequency (band) used in the LAA cell.
  • the terminal in the notification of the frequency or combination of frequencies supported by the terminal, if the notified frequency or combination of frequencies includes at least one frequency used in the LAA cell, the terminal implicitly supports the LAA cell. Notice. That is, if the notified frequency or combination of frequencies does not include any frequency used in the LAA cell, the terminal implicitly notifies that it does not support the LAA cell.
  • the present invention is not limited to this. Is not to be done.
  • a serving cell different from the LAA cell transmits PDCCH or EPDCCH for notifying DCI for PDSCH transmitted in the LAA cell (that is, in the case of cross-carrier scheduling)
  • this embodiment will be described. Applied methods are applicable.
  • information for recognizing a symbol for transmitting a channel and / or signal may be based on a symbol for which a channel and / or signal is not transmitted.
  • the information is information indicating the last symbol of a symbol for which a channel and / or signal is not transmitted.
  • information for recognizing a symbol on which a channel and / or signal is transmitted may be determined based on other information or parameters.
  • the symbol for transmitting the channel and / or signal may be set (notified or specified) independently for the channel and / or signal.
  • information for recognizing a symbol for transmitting a channel and / or a signal and a notification method thereof can be set (notified or defined) independently for each channel and / or signal.
  • information for recognizing a channel and / or symbol on which a signal is transmitted and a notification method thereof can be set (notified and specified) independently for PDSCH and EPDCCH.
  • a symbol / subframe in which a channel and / or signal is not transmitted is a symbol / subframe in which a channel and / or signal is not assumed to be transmitted (can be transmitted) from the viewpoint of the terminal. It is good. That is, the terminal can consider that the LAA cell is not transmitting a channel and / or signal in the symbol / subframe.
  • the symbol / subframe in which the channel and / or signal is transmitted is the symbol / subframe in which the channel and / or signal may be transmitted from the viewpoint of the terminal. It is good. That is, the terminal may consider that the LAA cell may or may not be transmitting a channel and / or signal in that symbol / subframe.
  • a symbol / subframe in which a channel and / or signal is transmitted (transmittable) is a symbol / subframe that is assumed to be transmitted from the terminal point of view. Also good. That is, the terminal can consider that the LAA cell always transmits a channel and / or signal in the symbol / subframe.
  • FIG. 5 is a diagram illustrating an example of a configuration of a downlink reference signal.
  • the CRS can be arranged in the REs of R0 to R3.
  • R0 is the RE in which the CRS of the antenna port 0 is arranged
  • R1 is the RE in which the CRS of the antenna port 1 is arranged
  • R2 is the RE in which the CRS of the antenna port 2 is arranged
  • R3 is the CRS of the antenna port 3.
  • An example of RE is shown.
  • the CRS may be arranged in the frequency direction depending on a parameter related to the cell identifier. Specifically, based on the value of N cell ID mod6, the index k at which the RE specifies the arrangement is increased.
  • N cell ID is the value of the physical cell identifier.
  • the DMRS can be arranged in the REs of D1 to D2.
  • D1 shows an example of RE in which DMRSs of antenna ports 7, 8, 11, and 13 are arranged
  • D2 shows an example of RE in which DMRS of antenna ports 9, 10, 12, and 14 are arranged.
  • the CSI-RS can be arranged in C1 to C4 REs.
  • C0 is an RE in which the CSI-RS of the antenna ports 15 and 16 is arranged
  • C1 is an RE in which the CSI-RS of the antenna ports 17 and 18 is arranged
  • C2 is an RE in which the CSI-RS of the antenna ports 19 and 20 is arranged.
  • C3 shows an example of RE in which CSI-RS of antenna ports 21 and 22 is arranged.
  • CSI-RS may be arranged in OFDM symbol # 5 or # 6 in slot 0 and RE in OFDM symbol # 1, # 2 or # 3 in slot 1.
  • the RE to be arranged is instructed based on the upper layer parameters.
  • FIG. 7 shows an example of the relationship between the interval between downlink transmission and uplink transmission on the time axis and the type of LBT.
  • FIG. 7A shows a case where the downlink transmission and the uplink transmission are sufficiently separated on the time axis.
  • the case where there is a sufficient separation between downlink transmission and uplink transmission is, for example, a case where there is an interval of 1 subframe (1 millisecond) or more.
  • the LBT performed before the uplink transmission in FIG. 7A is referred to as a first uplink LBT.
  • FIG. 7B shows a case where the downlink transmission and the uplink transmission are slightly separated on the time axis.
  • the case where the transmission between the downlink transmission and the uplink transmission is slightly separated is, for example, a case where there is an interval of several symbols (several tens of microseconds to several hundred microseconds).
  • the terminal apparatus since the channel state (channel sensing result) can be regarded as being maintained before uplink transmission by CCA performed before downlink transmission, the terminal apparatus performs uplink after performing simple CCA.
  • a link signal may be transmitted.
  • the LBT performed before the uplink transmission in FIG. 7B is referred to as a second uplink LBT.
  • FIG. 7C shows a case where there is almost no separation between downlink transmission and uplink transmission on the time axis.
  • the case where there is almost no separation between the downlink transmission and the uplink transmission is a case where there are some microseconds to several tens of microseconds apart, such as 34 microseconds or 40 microseconds.
  • the terminal device may perform uplink transmission without performing CCA.
  • the LBT procedure performed according to the interval between downlink transmission and uplink transmission, it is possible to efficiently transmit uplink signals and / or channels in the LAA cell. it can.
  • uplink transmission and downlink transmission in FIG. 7 may be interchanged. That is, when the uplink transmission and the downlink transmission are hardly separated on the time axis, the downlink LBT may be omitted.
  • before performing uplink transmission or before transmitting uplink means before the timing (subframe) at which the uplink transmission is instructed.
  • the first uplink LBT performs a CCA check a plurality of times using a back-off counter before the timing at which uplink transmission is instructed.
  • the terminal device tries the CCA check as many times as the value of the back-off counter.
  • the terminal apparatus can acquire the access right of the channel and transmit the uplink.
  • FIG. 8 shows an example of the procedure of the first uplink LBT.
  • a terminal device performs 1st CCA (S803), when an uplink grant is detected from an idle state (S801) (S802).
  • the terminal device randomly generates a counter value N from the range of 0 to q ⁇ 1 (S8031).
  • the terminal apparatus indicates a numerical value related to the counter value N by the uplink grant
  • the terminal apparatus does not generate the counter value but uses the counter value N based on the numerical value.
  • the terminal device may use the remaining counter value N without generating the counter value N.
  • the terminal device starts CCA from a predetermined timing (S8032).
  • the terminal device senses a channel (medium) in one CCA slot time (S8033), and determines whether the channel is idle or busy (S8034). If it is determined that the channel is idle, the counter value N is decremented by one (S8035). If it is determined that the channel is busy, the uplink transmission indicated by the uplink grant is not performed, and the idle state ( Return to S801). The terminal device determines whether or not the counter value has reached 0 (S8036). If the counter value has reached 0, the terminal device acquires the access right for the channel and performs the transmission operation (S804 and S805). ). On the other hand, if the counter value is not 0, the channel (medium) is sensed again in one CCA slot time (S8033).
  • the value of the collision window q when generating the counter value N is updated so as to be a value between X and Y according to the channel state (S8037).
  • the terminal apparatus determines whether or not uplink transmission is actually performed at the timing (S804), and performs uplink transmission when it is determined to perform uplink transmission (S805). If the terminal apparatus determines not to perform uplink transmission, the terminal apparatus returns to the idle state (S801) without performing uplink transmission instructed by the uplink grant.
  • the period of the first CCA is the same as the ECCA period in the downlink LBT.
  • ICCA may be performed before the first CCA as in the downlink LBT. However, even if it is determined by ICCA that the channel is idle, the uplink is not transmitted, and the operation shifts to the first CCA operation.
  • the second uplink LBT performs a CCA check only once before the timing at which uplink transmission is instructed.
  • the terminal device once tries the CCA check.
  • the terminal apparatus can acquire the access right of the channel and transmit the uplink.
  • FIG. 9 shows an example of the procedure of the second uplink LBT.
  • the terminal device performs the second CCA (S903) when the uplink grant is detected from the idle state (S901) (S902).
  • the terminal device starts CCA from a predetermined timing (S9031).
  • a CCA check is performed during the CCA period to detect whether the channel is idle or busy (S9032).
  • the base station apparatus acquires the access right of the channel and shifts to the transmission operation.
  • the uplink transmission instructed by the uplink grant is not performed and the process returns to the idle state (S901).
  • it is determined whether or not uplink transmission is actually performed at that timing S904.
  • uplink transmission is performed (S905). If the terminal apparatus determines not to perform uplink transmission, the terminal apparatus returns to the idle state (S901) without performing uplink transmission instructed by the uplink grant.
  • the period of the second CCA is the same as the ICCA period in the downlink LBT.
  • the base station apparatus performs a CCA check.
  • the terminal device performs a CCA check.
  • the downlink LBT starts LBT processing when information required for transmission (data, buffer, load, traffic) occurs.
  • the uplink LBT is instructed for uplink transmission from the base station apparatus (when the uplink grant is received)
  • the LBT process is started.
  • the ICCA period of the downlink LBT and the period of the second CCA are preferably the same.
  • the ECCA period of downlink LBT and the period of 1st CCA are the same.
  • an uplink LBT procedure is switched based on a predetermined field included in an uplink grant (DCI format 0 or 4) instructing uplink transmission.
  • DCI format 0 or 4 an uplink grant
  • the predetermined field is, for example, 1-bit information that specifies the uplink LBT for the terminal device.
  • the predetermined field is 1-bit information indicating whether or not a channel is reserved (reserved) in a subframe immediately before the subframe indicated by the uplink grant.
  • the terminal apparatus performs the first uplink LBT before performing uplink transmission.
  • the terminal apparatus performs the second uplink LBT or does not perform the uplink LBT before performing the uplink transmission.
  • the predetermined field is information related to the counter value N used in the first uplink LBT, for example.
  • the terminal apparatus performs the second uplink LBT or does not perform the uplink LBT before performing the uplink transmission.
  • the terminal apparatus if the predetermined field contains a numerical value other than 0 (invalid, impossible), the terminal apparatus generates a counter value N based on the numerical value before performing uplink transmission, Uplink LBT is performed.
  • the information related to the counter value N is, for example, the counter value N.
  • the terminal device does not generate the counter value N by itself but sets the value of the predetermined field to the counter value N.
  • the information related to the counter value N is, for example, index information indicating the set counter value N.
  • index information indicating the set counter value N.
  • the information related to the counter value N is information related to the collision window q, for example.
  • a plurality of collision window q candidates are set by the dedicated RRC in the terminal device.
  • the terminal device acquires the value of the predetermined field, the terminal device generates the counter value N using the set value of the collision window q corresponding to the field information.
  • the information related to the collision window q may be the value of the collision window q.
  • the above example may be switching between the case where the second uplink LBT is performed and the uplink is transmitted, or the case where the uplink is transmitted without performing the uplink LBT.
  • the terminal apparatus performs the second uplink LBT before performing uplink transmission.
  • the terminal apparatus does not perform uplink LBT before performing uplink transmission.
  • the information of the predetermined field may be information indicating whether or not to generate a gap for performing LBT. For example, when 1 bit of the predetermined field is 1, the terminal device transmits a PUSCH with a predetermined SC-FDMA symbol opened, and when 1 bit of the predetermined field is 0, The terminal apparatus transmits PUSCH without opening a predetermined SC-FDMA symbol.
  • the predetermined SC-FDMA symbol is, for example, several SC-FDMA symbols at the head or rear of the subframe, and slots at the head or rear of the subframe.
  • the predetermined field may be used in combination with other fields.
  • the uplink LBT procedure may be switched by the SRS request field. Specifically, when the SRS request field indicates 0, the terminal apparatus performs the second uplink LBT before performing uplink transmission, and when the SRS request field indicates 1, the terminal LRS Not performed. If the SRS request field indicates 0, nothing is transmitted in the last SC-FDMA symbol of the subframe. The terminal apparatus performs the second uplink LBT in the last one SC-FDMA symbol.
  • the procedure of the uplink LBT is switched based on a predetermined field included in DCI different from the uplink grant.
  • the DCI different from the uplink grant is, for example, DCI for notifying the terminal apparatus whether or not downlink transmission (transmission burst) is performed in the subframe specified by the DCI.
  • the subframe specified by the DCI includes a subframe immediately before uplink transmission, and a predetermined field of the DCI is information for notifying whether or not downlink transmission is performed.
  • the terminal apparatus performs the first uplink LBT before performing uplink transmission.
  • the terminal apparatus performs the second uplink LBT or does not perform the uplink LBT before performing the uplink transmission.
  • the information notified by DCI different from the uplink grant is, for example, the length of downlink transmission.
  • the head and / or tail of downlink transmission is notified.
  • the length of the downlink transmission is specified or set in advance, so that the terminal apparatus can recognize the length of the downlink transmission only with the head or tail information of the downlink transmission.
  • the terminal apparatus performs the specified 1 subframe. It is recognized that downlink transmission is performed in the frame.
  • DCI different from the uplink grant is preferably arranged in the non-LAA cell.
  • the DCI is arranged in a shared search space existing in a primary cell or a primary secondary cell, and information corresponding to a plurality of serving cells can be notified by the single DCI.
  • the DCI different from the uplink grant is scrambled by a dedicated RNTI (downlink transmission notification dedicated RNTI, B-RNTI) different from the C-RNTI.
  • the downlink transmission notification dedicated RNTI is preferably set individually for a plurality of terminal devices, but may be set with a value common to the terminal devices.
  • the DCI different from the uplink grant has the same format size as the DCI format 1C used for, for example, very small scheduling for one PDSCH codeword, MCCH change notification, and TDD reconfiguration.
  • the DCI has the same format size as, for example, the DCI format 3 or DCI format 3A used for transmission of a TPC command for PUCCH or PUSCH.
  • uplink transmission transmission burst
  • the above example may be switching between the case where the second uplink LBT is performed and the uplink is transmitted, or the case where the uplink is transmitted without performing the uplink LBT. Specifically, when it is instructed not to perform downlink transmission by a predetermined field of the DCI, the terminal apparatus performs the second uplink LBT before performing uplink transmission. On the other hand, when it is instructed that downlink transmission is performed by a predetermined field of the DCI, the terminal apparatus does not perform uplink LBT before performing uplink transmission.
  • the procedure of the uplink LBT is switched according to the uplink channel and signal type scheduled to be transmitted.
  • the terminal device performs the first uplink LBT before transmitting the PUSCH.
  • the terminal device performs the second uplink LBT before performing the PRACH or does not perform the uplink LBT.
  • the terminal apparatus performs the first uplink LBT before transmitting the SRS with PUSCH.
  • the terminal apparatus performs the second uplink LBT or does not perform the uplink LBT before performing the SRS without PUSCH.
  • the procedure of the uplink LBT is determined depending on whether or not it is detected that a downlink signal or channel is transmitted from a cell to which the terminal device is connected. Switch.
  • a comparison between CRS received power and a threshold value is used.
  • the terminal apparatus determines that the received power of the RE in which the CRS of antenna port 0 (or antenna ports 1, 2, and 3) is arranged is lower than a predetermined threshold in the subframe immediately before the subframe that performs uplink transmission In this case, the terminal apparatus performs the first uplink LBT before performing uplink transmission.
  • the terminal device determines whether the received power of the RE in which the CRS of antenna port 0 (or antenna ports 1, 2, 3) is arranged exceeds a predetermined threshold in the subframe immediately before the subframe in which uplink transmission is performed. If it is determined, the terminal apparatus performs the second uplink LBT or does not perform the uplink LBT before performing the uplink transmission.
  • the reference for detecting that a downlink signal or channel is transmitted from a cell to which the terminal device is connected is, for example, whether or not a reservation signal has been detected.
  • the terminal apparatus can detect the reserved signal, the time (subframe, symbol, RE, Ts) when the reserved signal is detected and the length of the downlink transmission are determined. It is possible to determine whether or not downlink transmission is performed in a subframe immediately before a subframe in which uplink transmission is performed. When it is determined that downlink transmission is not performed in a subframe immediately before a subframe in which uplink transmission is performed, the terminal apparatus performs first uplink LBT before performing uplink transmission.
  • the terminal apparatus performs the second uplink LBT before performing uplink transmission, or uplink Link LBT is not performed.
  • the criterion for determining whether or not the terminal device has detected the reservation signal is, for example, a comparison between the received power of the RE to which the reservation signal is assigned and a predetermined threshold value.
  • the reference for detecting that a downlink signal or channel is transmitted from the cell to which the terminal device is connected is, for example, whether PDCCH or EPDCCH has been detected.
  • PDCCH or EPDCCH can be decoded in a subframe immediately before a subframe for uplink transmission
  • the terminal device recognizes that the subframe is reserved by the base station apparatus as a downlink subframe. it can. That is, when the PDCCH or EPDCCH decoding is successful in the subframe immediately before the subframe in which uplink transmission is performed, the terminal apparatus performs the first uplink LBT before performing the uplink transmission.
  • the terminal apparatus performs second uplink LBT before performing uplink transmission, or Link LBT is not performed.
  • the reference for detecting that a downlink signal or channel is transmitted from a cell to which the terminal device is connected is, for example, whether or not PDSCH has been detected.
  • the terminal device can recognize that the subframe is reserved by the base station apparatus as the downlink subframe. That is, when PDSCH decoding is successful in a subframe immediately before a subframe in which uplink transmission is performed, the terminal apparatus performs a first uplink LBT before performing uplink transmission. On the other hand, if the PDSCH decoding is not successful in the subframe immediately before the subframe for performing uplink transmission, the terminal apparatus performs the second uplink LBT before performing the uplink transmission, or the uplink LBT. Do not do.
  • the reference for detecting that a downlink signal or channel is transmitted from a cell to which the terminal device is connected is, for example, whether DMRS has been detected.
  • the terminal device can recognize that the subframe is reserved as a downlink subframe by the base station device. That is, when DMRS can be detected in a subframe immediately before a subframe in which uplink transmission is performed, the terminal apparatus performs first uplink LBT before performing uplink transmission.
  • the terminal apparatus performs the second uplink LBT or does not perform the uplink LBT before performing uplink transmission.
  • the criterion for determining whether or not the terminal device has detected the reservation signal is, for example, a comparison between the reception power of the RE to which the DMRS is assigned and a predetermined threshold. That is, the received power of the antenna port 7 or 9 is compared with a predetermined threshold value.
  • the procedure of the uplink LBT is switched depending on whether or not the terminal device is transmitting an uplink signal or channel.
  • the subframe can be reserved without an LBT because the channel can be reserved as an uplink subframe. Can do. That is, in a subframe immediately before a subframe in which uplink transmission is performed, when the terminal apparatus does not transmit PUSCH, the terminal apparatus performs the first uplink LBT or the second uplink before performing uplink transmission. Link LBT is performed. On the other hand, when the PUSCH is transmitted in the subframe immediately before the subframe in which uplink transmission is performed, the terminal apparatus does not perform the uplink LBT.
  • the subframe can be reserved without an LBT because the channel can be reserved as an uplink subframe. Can do. That is, in a subframe immediately before a subframe in which uplink transmission is performed, when the terminal apparatus does not transmit SRS, the terminal apparatus performs the first uplink LBT or the second uplink before performing uplink transmission. Link LBT is performed. On the other hand, when the SRS is transmitted in the subframe immediately before the subframe in which uplink transmission is performed, the terminal apparatus does not perform the uplink LBT.
  • the subframe is reserved without an LBT because the channel can be reserved as an uplink subframe. Can do. That is, in a subframe immediately before a subframe in which uplink transmission is performed, if the terminal apparatus does not transmit PRACH, the terminal apparatus does not perform uplink transmission before the first uplink LBT or second uplink. Link LBT is performed. On the other hand, when the PRACH is transmitted in the subframe immediately before the subframe in which uplink transmission is performed, the terminal apparatus does not perform the uplink LBT.
  • the uplink LBT procedure is switched according to the setting from the upper layer.
  • the setting from the upper layer is, for example, setting information that specifies an uplink LBT procedure.
  • the terminal device When the terminal device is set to designate the first uplink LBT, the terminal device performs the first uplink LBT before performing the uplink transmission of the LAA cell.
  • the terminal device When the terminal device is set to designate the second uplink LBT, the terminal device performs the second uplink LBT before performing the uplink transmission of the LAA cell.
  • the terminal device is set to designate not to perform uplink LBT, the terminal device does not perform uplink LBT before performing uplink transmission of the LAA cell.
  • the setting from the higher layer is, for example, a setting for performing cross carrier scheduling for the LAA cell.
  • the terminal apparatus When cross-carrier scheduling is set for the LAA cell, the terminal apparatus performs the first uplink LBT, and when self-scheduling is set for the LAA cell (in other words, for the LAA cell).
  • the terminal apparatus When cross carrier scheduling is not set), the terminal apparatus performs the second uplink LBT or does not perform the uplink LBT. That is, when the uplink grant PDCCH or EPDCCH that schedules uplink transmission to the LAA cell is set to be monitored outside the LAA cell, the terminal apparatus performs the first transmission before performing uplink transmission. Perform uplink LBT.
  • the terminal device performs the second transmission before performing uplink transmission. Perform uplink LBT or do not perform uplink LBT.
  • the setting of cross carrier scheduling may be set for each of the downlink grant and the uplink grant.
  • an example of the above switching is considered as switching whether or not the uplink grant is set as cross carrier scheduling.
  • the setting from the upper layer is, for example, setting of information indicating the country in which the LAA cell is operated.
  • the terminal device When the information indicates a specific country (for example, Japan or Europe), the terminal device performs the first uplink LBT before performing the uplink transmission of the LAA cell.
  • the terminal device when the information indicates a country other than a specific country (for example, the United States or China), the terminal device performs the second uplink LBT before performing the uplink transmission of the LAA cell, or the uplink. Do not perform LBT.
  • the information indicating the country of operation is, for example, PLMN (Public Land Mobile Mobile Network).
  • PLMN is an identifier indicating a country and an operator.
  • the PLMN is included in the SIB1 and is notified to the terminal device.
  • the uplink LBT procedure may be switched according to the operating band in addition to the information of the operating country.
  • Information indicating the band to be operated can be identified from information on the center frequency of the carrier (EARFCN value) set
  • Specified countries are countries that need to perform LBT.
  • the country information may correspond to the capability of the terminal device. That is, the terminal device may be designated with an essential capability in association with information of a specific country.
  • the setting from the upper layer is, for example, the setting of the first uplink LBT.
  • the procedure of the uplink LBT is switched depending on whether or not the first uplink LBT is set for the terminal device. Specifically, when the first uplink LBT is set from the upper layer, the terminal apparatus performs the first uplink LBT before performing the uplink transmission of the LAA cell. On the other hand, when the first uplink LBT is not set from the upper layer, the terminal apparatus performs the second uplink LBT or does not perform the uplink LBT before performing the uplink transmission of the LAA cell.
  • the setting of the first uplink LBT includes, for example, information on the ranges X and Y for determining the collision window q or the value of the collision window q, the CCA slot length, the CCA threshold, and the like.
  • the uplink LBT procedure may be switched depending on whether or not the second uplink LBT has been set for the terminal device. Specifically, when the second uplink LBT is not set from the upper layer, the terminal apparatus performs the first uplink LBT before performing the uplink transmission of the LAA cell. On the other hand, when the second uplink LBT is set from the upper layer, the terminal apparatus performs the second uplink LBT before performing the uplink transmission of the LAA cell.
  • the setting of the second uplink LBT includes, for example, the value of the collision window q, the slot length of the CCA, the threshold value of the CCA, and the like.
  • the setting of the first uplink LBT and the setting of the second uplink LBT are set in a cell-specific manner.
  • switching may be performed when a plurality of settings from higher layers are combined.
  • the terminal apparatus transmits uplink transmission of the LAA cell. Before performing the second uplink LBT or not performing the uplink LBT.
  • the terminal device Before performing the first uplink LBT.
  • the terminal device Before the uplink transmission of the LAA cell, the first uplink LBT is performed. Otherwise, the terminal apparatus performs the second uplink LBT before performing the uplink transmission of the LAA cell, or the uplink LBT. Do not do.
  • the terminal apparatus performs the first uplink LBT, but when self-scheduling is set for the LAA cell, the value set in the upper layer (RRC) is applied to the collision window q.
  • the collision window q is updated for each transmission opportunity based on the value set in the upper layer (RRC).
  • the above example may be switching between the case where the second uplink LBT is performed and the uplink is transmitted, or the case where the uplink is transmitted without performing the uplink LBT.
  • the terminal device before performing uplink transmission A second uplink LBT is performed.
  • the terminal apparatus performs the uplink LBT before performing the uplink transmission. Do not do.
  • a terminal apparatus may allocate and transmit PUSCH to one or a plurality of continuous subcarriers or a set (cluster) of one or a plurality of resource blocks. That is, in the LAA cell, the PUSCH may be transmitted using a plurality of clusters without being transmitted by one or two clusters.
  • FIG. 10 shows an example of frequency multiplexing of PUSCH in the LAA cell.
  • resources to which PUSCHs are allocated may not be allocated continuously in the frequency direction, but may be allocated in several steps by opening several subcarriers or several resource blocks.
  • PUSCH between different terminal devices is interlaced and assigned so as to be nested in a set of a plurality of subcarriers or a set of a plurality of resource blocks.
  • the PUSCH clusters are arranged at equal intervals.
  • uplink transmission power is evenly distributed over the bandwidth.
  • PUSCHs are allocated at intervals of 3 subcarriers, and PUSCHs of three terminal apparatuses are allocated interwoven with each subcarrier.
  • the terminal device can use the entire bandwidth with less allocated resources.
  • the minimum allocation unit of the cluster has been described as one subcarrier.
  • the present invention is not limited to this, and a plurality of subcarriers and a plurality of resource blocks may be continuously allocated.
  • the number of terminal devices to be multiplexed is not limited to three, and the maximum number of terminal devices to be multiplexed is determined based on the interval between clusters and the granularity of resources to which clusters are allocated.
  • the uplink channel and / or the uplink signal from each terminal apparatus is a base station apparatus. It is necessary to adjust the transmission timing of the terminal device so that it can be received simultaneously. Further, in the LAA cell, uplink LBT is performed before uplink transmission. When performing LBT based on the counter value N, the number of CCA trials and the time required for the LBT change according to the counter value N. Hereinafter, a relationship between uplink transmission and uplink LBT start timing will be described.
  • FIG. 11 is an example of a relationship between uplink transmission and uplink LBT start timing.
  • FIG. 11 is premised on operating in the procedure of the uplink LBT of FIG.
  • the base station apparatus notifies the uplink transmission timing (subframe) to each terminal apparatus.
  • the timing of uplink transmission is reported implicitly from, for example, an uplink grant reception subframe.
  • the terminal device generates the counter value N independently.
  • the terminal apparatus estimates the time for completing the uplink LBT from the counter value N and the CCA period, and determines the start timing of the LBT. That is, the terminal device can calculate the start timing of the uplink LBT from the start timing of the uplink transmission and the number of times of the first CCA (counter value N). That is, CCA for uplink transmission is started from the head of the uplink subframe in the terminal device (counter value N ⁇ CCA period) microseconds before.
  • the terminal device that determines that the channel is busy does not perform uplink transmission at the instructed uplink transmission timing.
  • the counter value N is not discarded and is taken over to the next uplink LBT.
  • the counter value N may be discarded and not transferred to the next uplink LBT.
  • the terminal device discards the counter value N and does not take over to the next uplink LBT.
  • the counter value N may be associated with the HARQ process. That is, the counter value N of the uplink LBT for PUSCH between different HARQ processes is independent.
  • the uplink transmission may be transmitted from the middle of the uplink subframe.
  • CCA for uplink transmission is started from the head of uplink transmission instructed to the terminal device (counter value N ⁇ CCA period) microseconds before.
  • initial CCA may be performed in the uplink LBT.
  • the CCA for uplink transmission is started from the beginning of the uplink subframe in which uplink transmission is instructed in the terminal apparatus, from (initial CCA period + counter value N ⁇ CCA period) microseconds before.
  • the start timing of the uplink LBT is determined in consideration of the time. That is, the CCA for uplink transmission is (counter value N ⁇ CCA period + switching time from receiver to transmitter) microseconds before the head of the uplink subframe in which uplink transmission is instructed in the terminal device. Starts from.
  • the start timing of CCA for uplink transmission may be calculated based on a downlink radio frame (downlink subframe). That is, the CCA for uplink transmission starts from the head of the downlink subframe corresponding to the uplink subframe in which uplink transmission is instructed in the terminal device by (counter value N ⁇ CCA period + uplink ⁇ downlink frame). Timing adjustment time) Start from microseconds ago.
  • the uplink-downlink frame timing adjustment time is (N TA + N TA_offset ) ⁇ T s
  • N TA is a value unique to the terminal device that adjusts the uplink transmission timing that is a value between 0 and 20512.
  • the parameter N TA_offset is a parameter specific to the frame configuration type for adjusting the uplink transmission timing.
  • the value that NTA can take may be limited. That is, in the LAA cell, the maximum value of N TA is less than 20512.
  • FIG. 12 is an example of a relationship between uplink transmission and uplink LBT start timing.
  • FIG. 12 is premised on operating in the procedure of the uplink LBT of FIG.
  • the base station apparatus notifies each terminal apparatus of information related to the start timing of the uplink LBT and the counter value N.
  • the start timing of the uplink LBT is implicitly notified from, for example, an uplink grant reception subframe.
  • the terminal device can recognize the uplink transmission start timing from the uplink LBT start timing and the counter value N. That is, the terminal apparatus can calculate the uplink transmission start timing from the start timing of the uplink LBT and the number of first CCA (counter value N). That is, uplink transmission is started after the microsecond (counter value N ⁇ CCA period) from the head of the uplink subframe in which CCA is instructed in the terminal device.
  • the same counter value N is set for all the terminal devices to be multiplexed.
  • the information related to the counter value N is, for example, the counter value N.
  • the terminal device When the terminal device is notified of the counter value N, the terminal device performs uplink LBT using the value.
  • the information related to the counter value N is, for example, a seed of random numbers for generating the counter value N.
  • the terminal device generates a counter value N using the notified value and other parameters.
  • Other parameters include, for example, a cumulative value of HARQ-ACK for the PUSCH, a cell ID, a subframe number, a system frame number, and the like.
  • the terminal device that determines that the channel is busy does not perform uplink transmission at the instructed uplink transmission timing.
  • the counter value N is discarded, and the next uplink LBT is not taken over.
  • initial CCA may be performed in the uplink LBT.
  • uplink transmission is started after (initial CCA period + counter value N ⁇ CCA period) microseconds from the head of the uplink subframe in which CCA is instructed in the terminal apparatus.
  • the start timing of the uplink LBT is determined in consideration of the time. That is, uplink transmission is started after the microsecond (counter value N ⁇ CCA period + switching time from receiver to transmitter) from the head of the uplink subframe in which CCA is instructed in the terminal device.
  • the uplink transmission may be calculated based on a downlink radio frame (downlink subframe). That is, in uplink transmission, (counter value N ⁇ CCA period ⁇ uplink ⁇ downlink frame timing adjustment time) microseconds from the beginning of the downlink subframe corresponding to the uplink subframe in which CCA is indicated in the terminal apparatus It will start later.
  • the uplink-downlink frame timing adjustment time is (N TA + N TA_offset ) ⁇ T s
  • N TA is a value unique to the terminal device that adjusts the uplink transmission timing that is a value between 0 and 20512.
  • the parameter N TA_offset is a parameter specific to the frame configuration type for adjusting the uplink transmission timing.
  • FIG. 13 shows an example of the relationship between uplink transmission and uplink LBT start timing.
  • FIG. 13 is premised on operating in the procedure of the uplink LBT of FIG.
  • the base station apparatus notifies the uplink transmission timing (subframe) to each terminal apparatus.
  • the timing of uplink transmission is reported implicitly from, for example, an uplink grant reception subframe.
  • a terminal device estimates the time when uplink LBT is completed from a CCA period, and determines the start timing of LBT. That is, CCA for uplink transmission is started from the head of the uplink subframe in which uplink transmission is instructed in the terminal apparatus (CCA period) microseconds before.
  • CCA period the terminal apparatus
  • the start timing of the uplink LBT may be notified instead of the timing of uplink transmission.
  • the terminal apparatus can recognize the timing of uplink transmission from the CCA period. That is, CCA for uplink transmission is started from the head of the uplink subframe in which uplink transmission is instructed in the terminal apparatus (CCA period) microseconds before.
  • the terminal device that determines that the channel is busy does not perform uplink transmission at the instructed uplink transmission timing.
  • FIG. 14 shows an example of the relationship between uplink transmission and uplink LBT start timing.
  • FIG. 14 is premised on operating in the procedure of the uplink LBT of FIG. 15 to be described later.
  • the base station apparatus notifies the uplink transmission timing (subframe) to each terminal apparatus.
  • the timing of uplink transmission is reported implicitly from, for example, an uplink grant reception subframe.
  • the terminal device starts the first CCA from the start timing of the first CCA. When the counter value N becomes 0, the terminal device waits until the start timing of the third CCA. Then, the third CCA is performed from the start timing of the third CCA, and uplink transmission is performed when the channel is idle in all CCA periods.
  • the start timing of the first CCA is, for example, the head of a subframe before uplink transmission. That is, the first CCA for uplink transmission is started from the head of the latest subframe from the head of the uplink transmission instructed to the terminal apparatus.
  • the start timing of the first CCA is determined based on, for example, the collision window q of the terminal device. That is, the first CCA for uplink transmission is started from the beginning of uplink transmission instructed to the terminal device (collision window q ⁇ CCA period) microseconds before.
  • the third CCA for uplink transmission is started from the head of the uplink subframe in which uplink transmission is instructed in the terminal device (third CCA period) before microseconds.
  • the period of the third CCA for uplink transmission is preferably the same as the ICCA period.
  • FIG. 15 is an example of an uplink LBT procedure.
  • a terminal device performs 1st CCA (S1503), when an uplink grant is detected from an idle state (S1501) (S1502).
  • the terminal apparatus randomly generates a counter value N from the range of 0 to q ⁇ 1 (S15031).
  • the terminal apparatus does not generate the counter value but uses the counter value N based on the numerical value.
  • the terminal device may use the remaining counter value N without generating the counter value N.
  • the terminal device starts CCA from a predetermined timing (S15032).
  • the terminal device senses a channel (medium) in one CCA slot time (S15033), and determines whether the channel is idle or busy (S15034). If it is determined that the channel is idle, the counter value N is decremented by one (S15035). If it is determined that the channel is busy, it is determined whether or not the third CCA check timing has been exceeded. (S15038). If the third CCA check timing has not been exceeded, the terminal device returns to the process of sensing a channel (medium) in one CCA slot time (S15033). When the third CCA check timing is exceeded, the terminal apparatus does not perform uplink transmission instructed by the uplink grant, and returns to the idle state (S1501).
  • the terminal apparatus determines whether or not the counter value has become 0 (S15036). If the counter value has become 0, the operation of the third CCA (S1504) Migrate to On the other hand, if the counter value is not 0, the channel (medium) is sensed again in one CCA slot time (S15033). Note that the value of the collision window q when generating the counter value N is updated so as to be a value between X and Y according to the channel state (S15037). Next, in the third CCA (S1504), the terminal device waits until the timing for starting the third CCA (S15041), and senses a channel in the third CCA period (S15042).
  • the terminal apparatus determines whether or not uplink transmission is actually performed at the timing (S1505), and performs uplink transmission when it is determined to perform uplink transmission (S1506). If the terminal apparatus determines not to perform uplink transmission, the terminal apparatus returns to the idle state (S1501) without performing uplink transmission instructed by the uplink grant.
  • ICCA may be performed in the same manner as the downlink LBT. However, even if it is determined by ICCA that the channel is idle, the uplink is not transmitted, and the operation shifts to ECCA operation.
  • one subframe can be multiplexed and transmitted by a plurality of terminal devices while performing a long-term CCA check by random number backoff.
  • the LAA cell is preferably operated in half duplex.
  • the terminal apparatus does not expect reception of downlink signals and / or channels from other LAA cells set as serving cells in a subframe in which uplink transmission is performed in a certain LAA cell. Specifically, the terminal device does not expect to receive PDCCH or EPDCCH in all LAA cells set as serving cells in a subframe in which PUSCH is scheduled in DCI format 0/4 in a certain LAA cell. Further, the terminal device does not perform uplink LBT in the LAA cell set as the serving cell in the subframe. Alternatively, the terminal apparatus may be considered busy as a result of the uplink LBT of the LAA cell set as the serving cell in the subframe.
  • the terminal apparatus does not perform uplink transmission in another LAA cell set as a serving cell in a subframe in which downlink reception is performed in a certain LAA cell.
  • the terminal apparatus does not perform uplink transmission in a subframe set as a DMTC section.
  • the terminal device does not expect PUSCH to be scheduled for the subframe set as the DMTC section.
  • the terminal apparatus in the serving cell operated in the LAA cell, the terminal apparatus generates a guard period by not receiving the last part of the downlink subframe immediately before the uplink subframe.
  • the terminal device does not receive the downlink subframe immediately before the uplink subframe and does not receive the downlink subframe immediately after the uplink subframe. Generate a guard period.
  • uplink LBT may be performed in the guard period.
  • the PUSCH may be transmitted in three or more clusters. Therefore, the uplink resource allocation type 0 used for indicating one set of consecutively allocated resource blocks and the uplink used for indicating two consecutively allocated sets of resource blocks An uplink resource allocation type (uplink resource allocation type 2, third uplink) used to indicate a set of two or more consecutively allocated resource blocks different from the link resource allocation type 1
  • the PUSCH transmitted in the LAA cell is indicated by the resource allocation type of the link.
  • the uplink resource allocation type (uplink resource allocation type 2, third uplink resource allocation type) may be used to indicate a set of three or more consecutively allocated resource blocks. Good.
  • the field of uplink resource allocation type 2 includes a combination of information that can uniquely identify the positions (arrangement, map) of a plurality of clusters allocated to the terminal device.
  • the total number of resource blocks allocated to the PUSCH in one subframe, the number of clusters that divide the resource, and the frequency of the cluster that is divided from the reference resource block or subcarrier The offset value and the interval between the divided clusters are notified to the terminal device.
  • the total number of resource blocks allocated to the PUSCH in one subframe, the number of clusters, the value of the frequency offset from the reference resource block or subcarrier to the cluster, and the interval between clusters are reported in the DCI format. Also good.
  • the terminal apparatus recognizes the resource blocks allocated to the terminal apparatus based on the information on the total number of resource blocks, the number of clusters, the value of the frequency offset, and the cluster interval set or notified from the base station apparatus.
  • the value of the frequency offset from the reference resource block or the subcarrier to the cluster and / or the interval between the clusters may be set or notified as individual parameters (values, fields) for each cluster and / or terminal device. Further, the value of the frequency offset from the reference resource block or the subcarrier to the cluster and / or the interval between the clusters may be set or notified as parameters (values, fields) common to the clusters and / or between the terminal devices.
  • the common parameters may be set in advance in the terminal device, or may be set in an upper layer (for example, a dedicated RRC message).
  • the common parameter may be determined corresponding to predetermined information.
  • the predetermined information is preferably information common to terminals in the cell, for example, the uplink system bandwidth.
  • the number of clusters allocated to the terminal device may be notified by being included in DCI, may be set in the terminal device in advance, or may be set by an upper layer (for example, a dedicated RRC message).
  • the number of clusters may be determined corresponding to predetermined information.
  • the predetermined information is, for example, an uplink system bandwidth.
  • the length of the allocated cluster may be set or notified instead of the total number of resource blocks allocated to the PUSCH in one subframe.
  • the cluster length information may be common between the clusters, or may be individually set or notified. Further, the cluster length information may be set or notified individually for each terminal.
  • the uplink resource allocation type 2 is information composed of one index in which the start and end positions (resource blocks) of a plurality of clusters having the same format as the uplink resource allocation type 1 are combined. May be notified to the terminal device.
  • the index is information on only the start or end position of each cluster, and it is assumed that the start and end of the cluster are alternately indicated from the position where the frequency is low in the terminal device. Instead of one index, the start and end positions of each cluster may be notified as individual information. When indicating the start and end positions of each cluster, it is possible to reduce the number of bits of information configured by the index by assuming that the allocated resources are not duplicated between the clusters.
  • the uplink resource allocation type 2 may be the same format as the downlink resource allocation type.
  • the PUSCH resource allocation instruction using the uplink resource allocation type 2 may be applied in the same format as the downlink resource allocation type 0.
  • the PUSCH resource allocation instruction using the uplink resource allocation type 2 may be applied in the same format as the downlink resource allocation type 1.
  • the minimum unit of the allocation cluster in FIG. 16 is a resource block or a resource block group. Note that the minimum unit of the allocation cluster may be a subcarrier or a set of a plurality of consecutive subcarriers. The minimum unit of this assigned cluster determines the number of bits in the field. The minimum unit of the allocation cluster may be notified by DCI, may be set in an upper layer, may be set in advance, or may be a value associated with other information such as an uplink system bandwidth. May be determined.
  • notification may be made with a bitmap composed of a subset of resource blocks that can be allocated and each bit corresponding to each subset.
  • subset indices are assigned in order from the low frequency in order.
  • clusters can be allocated at equal intervals on the frequency axis.
  • the terminal apparatus recognizes a corresponding subset from the bits of the bitmap, and when resource allocation is instructed by the bit, transmits a PUSCH using the resource block of the corresponding subset.
  • the number of bits in the bitmap is determined based on the minimum unit of the allocation cluster and the uplink system bandwidth.
  • Uplink resource allocation type 2 is applied under specific conditions. In the following, an example of conditions under which uplink resource allocation type 2 is applied is shown.
  • uplink resource allocation type 2 is applied (used) when scheduled according to a predetermined DCI format.
  • the predetermined DCI format is, for example, DCI format 0A or 4A, and is an uplink DCI format other than DCI format 0 or 4.
  • uplink resource allocation type 2 is not applied, and uplink resource allocation type 0 or 1 is applied.
  • the uplink resource allocation type 2 is applied (used) corresponding to the information of the indicator that identifies the resource allocation type included in the DCI format 0 or 4. Specifically, when the type 2 is instructed by the indicator information, the uplink resource allocation type 2 is applied. When the indicator information is not instructed as the type 2, the uplink resource allocation type 2 is The uplink resource allocation type 0 or 1 is not applied.
  • uplink resource allocation type 2 is applied (used) when scheduled for an LAA secondary cell with DCI format 0 or 4.
  • uplink resource allocation type 2 is not applied, and uplink resource allocation type 0 or 1 is applied.
  • a terminal device capable of LAA operation has a capability of transmitting PUSCH divided into a plurality of clusters by uplink resource allocation type 2.
  • uplink resource allocation types 0 and 1 may not be supported. In other words, only the uplink resource allocation type 2 is supported in the LAA secondary cell.
  • uplink resource allocation types 0 and 1 may not be supported when operated in a country corresponding to Europe.
  • the uplink resource allocation types 0 and 1 may not be supported in the LAA secondary cell operated by the base station.
  • the uplink resource allocation type 2 is applied (used) when the application of the uplink resource allocation type 2 is set by RRC.
  • uplink resource allocation type 2 is not applied, and uplink resource allocation type 0 or 1 is applied.
  • LAA PSCell LAA primary secondary cell
  • uplink resource allocation type 2 may be applied to the random access response grant for the LAA secondary cell or the LAA primary secondary cell. That is, the terminal apparatus may interpret the resource block allocation field information of PUSCH included in the random access response grant as the resource allocation type 2.
  • the random access response grant for the LAA secondary cell may be transmitted in the primary cell.
  • the random access response grant for the LAA primary secondary cell may be transmitted in the LAA primary secondary cell.
  • the uplink resource allocation type 0 may be applied to the random access response grant for the serving cell that is not the LAA secondary cell and the LAA primary secondary cell. That is, the terminal apparatus may interpret the resource block allocation field information of PUSCH included in the random access response grant as resource allocation type 0.
  • the random access response grant does not include resource allocation type bits.
  • a random access response grant for a serving cell that is not the LAA secondary cell and the LAA primary secondary cell may be transmitted in the primary cell.
  • the PUSCH allocated by the above resource allocation type may be further frequency hopped.
  • the physical resource block in which PUSCH is transmitted may be different between slot 0 and slot 1.
  • the physical resource block in which the PUSCH is transmitted may be different in the SC-FDMA symbol. Parameters used for frequency hopping are set by an upper layer.
  • UL DMRS used for PUSCH demodulation is also transmitted in three or more clusters in the same way as PUSCH.
  • the structure of UL DMRS in a LAA cell is demonstrated.
  • the UL DMRS of the LAA cell is composed of one sequence in one subframe, and is divided into each cluster and transmitted. That is, a continuous sequence is used for UL DMRS between adjacent clusters on the frequency axis.
  • This UL DMRS sequence is initialized based on information in an uplink DCI format in which, for example, a subframe to which a cluster is mapped and a PUSCH accompanying the UL DMRS is indicated.
  • the information in the uplink DCI format is, for example, information on cyclic shift of UL DMRS and / or OCC (Orthogonal Cover Code) index.
  • the configuration of this UL DMRS sequence is referred to as a first UL DMRS.
  • a sequence is configured for each cluster in one subframe. That is, even if the clusters are transmitted in the same subframe, the sequences are different if the clusters are different, and a discontinuous sequence is used for UL DMRS between adjacent clusters on the frequency axis. That is, this UL DMRS sequence is generated independently between clusters.
  • This UL DMRS sequence includes, for example, information in the uplink DCI format in which the subframe to which the cluster is mapped, the resource block or resource element to which the cluster is mapped, and / or the PUSCH accompanying the UL DMRS is indicated. It is initialized based on.
  • the information in the uplink DCI format is, for example, information on cyclic shift of UL DMRS and / or OCC (Orthogonal Cover Code) index.
  • a plurality of the information may be included in the DCI format, and each of the information may indicate a UL DMRS sequence of the corresponding cluster.
  • This UL DMRS line configuration is referred to as a second UL DMRS.
  • the UL DMRS sequence may be determined by the number of clusters. For example, when the number of clusters is two or less in one subframe, the first UL DMRS is used. When there are more than two clusters in one subframe, the second UL DMRS is used.
  • the UL DMRS sequence may be determined by the type of uplink resource allocation type. For example, when uplink resource allocation type 1 is applied, the first UL DMRS is used. When uplink resource allocation type 2 is applied, the second UL DMRS is used.
  • the UL DMRS sequence may be determined by the frame configuration type of the serving cell. For example, when the serving frame configuration type in which the UL DMRS is transmitted is the frame configuration type 1 or 2, the first UL DMRS is used. When the serving frame configuration type in which the UL DMRS is transmitted is the frame configuration type 3, the second UL DMRS is used.
  • the UL DMRS series may be determined by the length of the cluster. For example, when the length of one cluster is shorter than 3 resource blocks (36 subcarriers), the first UL DMRS is used. When the length of one cluster is 3 resource blocks or more, the second UL DMRS is used.
  • the first UL DMRS and the second UL DMRS may be combined and transmitted. For example, of the three clusters, the first UL DMRS may be applied to two clusters, and the second UL DMRS may be applied to the remaining one cluster. For example, out of four clusters, the first UL DMRS is used for a cluster scheduled for a cluster length shorter than 3 resource blocks, and the first for a cluster scheduled for a cluster length of 3 resource blocks or more. Second UL DMRS is used.
  • the relationship between the uplink grant and PUSCH timing may be shorter than 4 subframes in the FDD cell.
  • PUSCH may be transmitted in subframes prior to 4 subframes from the subframe that received the DCI format instructing transmission of the PUSCH. That is, in the LAA cell, the PUSCH may be transmitted in a subframe after 1, 2, or 3 subframes from the subframe that received the DCI format instructing transmission of the PUSCH. For example, when an uplink DCI format to which uplink resource allocation type 2 is applied is received, PUSCH may be transmitted in subframes prior to four subframes from the subframe that received the uplink DCI format. .
  • PUSCH when PUSCH is instruct
  • PUSCH when PUSCH is instruct
  • the PUSCH when the DCI format is received in a full subframe, the PUSCH may be transmitted in a subframe prior to four subframes from the subframe that received the DCI format instructing transmission of the PUSCH.
  • the PUSCH When the DCI format is received in the partial subframe, the PUSCH may be transmitted in a subframe four subframes after the subframe that received the DCI format instructing transmission of the PUSCH.
  • a terminal apparatus that does not have the capability transmits a PUSCH four subframes after the subframe that received the DCI format instructing transmission of the PUSCH in the LAA cell.
  • a subframe for transmitting a PUSCH may be determined based on a field indicating the DCI format and the PUSCH timing in the DCI format.
  • PUSCH may be transmitted in subframes prior to 4 subframes from the subframe that received the DCI format instructing transmission of the PUSCH.
  • the PUSCH indicated by the random access response grant for the LAA cell is transmitted 6 subframes after the subframe in which the random access response grant is detected. Note that the PUSCH may be transmitted in the first uplink subframe after 6 subframes.
  • the terminal device having the capability (capability) capable of shortening the relationship between the uplink grant and the PUSCH timing may transmit in a subframe before 6 subframes from the subframe in which the random access response grant is detected. .
  • the terminal device in this embodiment includes a transmission unit that transmits a physical uplink shared channel (PUSCH) using a set of one or more continuous resource blocks in a serving cell.
  • the transmission unit transmits PUSCH using three or more sets when the serving cell is an LAA secondary cell, and transmits PUSCH using up to two sets when the serving cell is not an LAA secondary cell.
  • PUSCH physical uplink shared channel
  • the terminal device includes a receiving unit that receives a physical downlink control channel (PDCCH) with a DCI format instructing transmission of PUSCH.
  • the DCI format includes information about the total number of sets, the set offsets, and the set spacing.
  • the terminal device includes a receiving unit that receives a physical downlink control channel (PDCCH) with a DCI format instructing transmission of PUSCH.
  • the DCI format includes a bitmap composed of bits corresponding to a set index.
  • the base station apparatus in this embodiment includes a receiving unit that receives a physical uplink shared channel (PUSCH) using a set of one or more continuous resource blocks in a serving cell.
  • the receiving unit receives PUSCHs using three or more sets when the serving cell is an LAA secondary cell, and receives PUSCHs using up to two sets when the serving cell is not an LAA secondary cell.
  • PUSCH physical uplink shared channel
  • the base station apparatus includes a receiving unit that receives a physical downlink control channel (PDCCH) with a DCI format instructing transmission of PUSCH.
  • the DCI format includes information about the total number of sets, the set offsets, and the set spacing.
  • the base station apparatus includes a receiving unit that receives a physical downlink control channel (PDCCH) with a DCI format instructing transmission of PUSCH.
  • the DCI format includes a bitmap composed of bits corresponding to a set index.
  • the uplink LBT of this embodiment may be similarly applied to the side link LBT for side link transmission.
  • the side link transmission is used for communication between the terminal device and the terminal device (D2D, device device communication).
  • the predetermined serving cell may be regarded as an LAA cell.
  • the settings necessary for LAA communication are, for example, a parameter related to a reservation signal, a parameter related to RSSI measurement, and a parameter related to the setting of the second DS.
  • the terms primary cell and PS cell have been described, but these terms are not necessarily used.
  • the primary cell in each of the above embodiments can also be called a master cell
  • the PS cell in each of the above embodiments can also be called a primary cell.
  • a program that operates in the base station apparatus 2 and the terminal apparatus 1 related to the present invention is a program that controls a CPU (Central Processing Unit) or the like (a program that causes a computer to function) so as to realize the functions of the above-described embodiments related to the present invention ).
  • Information handled by these devices is temporarily stored in RAM (Random Access Memory) during the processing, and then stored in various ROMs such as Flash ROM (Read Only Memory) and HDD (Hard Disk Drive). Reading, correction, and writing are performed by the CPU as necessary.
  • the terminal device 1, the base station device 2-1, or a part of the base station device 2-2 in the above-described embodiment may be realized by a computer.
  • the program for realizing the control function may be recorded on a computer-readable recording medium, and the program recorded on the recording medium may be read by the computer system and executed.
  • the “computer system” here is a computer system built in the terminal device 1, the base station device 2-1, or the base station device 2-2, and includes hardware such as an OS and peripheral devices. Shall be.
  • the “computer-readable recording medium” refers to a storage device such as a flexible medium, a magneto-optical disk, a portable medium such as a ROM or a CD-ROM, and a hard disk incorporated in a computer system.
  • the “computer-readable recording medium” is a medium that dynamically holds a program for a short time, such as a communication line when transmitting a program via a network such as the Internet or a communication line such as a telephone line,
  • a volatile memory inside a computer system serving as a server or a client may be included and a program that holds a program for a certain period of time.
  • the program may be a program for realizing a part of the functions described above, and may be a program capable of realizing the functions described above in combination with a program already recorded in a computer system.
  • the base station device 2-1 or the base station device 2-2 in the above-described embodiment can also be realized as an aggregate (device group) composed of a plurality of devices.
  • Each of the devices constituting the device group may include some or all of each function or each functional block of the base station device 2-1 or the base station device 2-2 according to the above-described embodiment.
  • the device group only needs to have one function or each function block of the base station device 2-1 or the base station device 2-2.
  • the terminal device 1 according to the above-described embodiment can also communicate with the base station device as an aggregate.
  • the base station device 2-1 or the base station device 2-2 in the above-described embodiment may be EUTRAN (Evolved Universal Terrestrial Radio Access Network).
  • the base station apparatus 2-1 or the base station apparatus 2-2 in the above-described embodiment may have a part or all of the functions of the upper node for the eNodeB.
  • a part or all of the terminal device 1, the base station device 2-1, or the base station device 2-2 in the above-described embodiment may be realized as an LSI that is typically an integrated circuit, or a chip set. It may be realized as.
  • Each functional block of the terminal device 1, the base station device 2-1, or the base station device 2-2 may be individually chipped, or a part or all of them may be integrated into a chip.
  • the method of circuit integration is not limited to LSI, and may be realized by a dedicated circuit or a general-purpose processor.
  • an integrated circuit based on the technology can also be used.
  • the cellular mobile station device is described as an example of the terminal device or the communication device. It can also be applied to terminal devices or communication devices such as AV devices, kitchen devices, cleaning / washing devices, air conditioning devices, office devices, vending machines, robots, and other daily life devices.
  • terminal devices or communication devices such as AV devices, kitchen devices, cleaning / washing devices, air conditioning devices, office devices, vending machines, robots, and other daily life devices.

Abstract

The purpose of the present invention is to efficiently control a cell using a non-allocated frequency band or a shared frequency band. Provided is a terminal device that receives a PDCCH accompanied by a DCI format which commands transmission of a first PUSCH, and that transmits the first PUSCH in an LAA cell. The PDCCH includes information indicating a first PUSCH resource, the information indicating the first PUSCH resource indicating one or more subsets, and each of the one or more subsets including a plurality of non-continuous resource blocks in a frequency band.

Description

端末装置、基地局装置および通信方法Terminal apparatus, base station apparatus, and communication method
 本発明は、効率的な通信を実現する端末装置、基地局装置および通信方法の技術に関する。
 本願は、2016年2月4日に、日本に出願された特願2016-019539号に基づき優先権を主張し、その内容をここに援用する。
The present invention relates to a technology of a terminal device, a base station device, and a communication method that realize efficient communication.
This application claims priority based on Japanese Patent Application No. 2016-019539 filed in Japan on February 4, 2016, the contents of which are incorporated herein by reference.
 標準化プロジェクトである3GPP(3rd Generation Partnership Project)において、OFDM(Orthogonal Frequency-Division Multiplexing)通信方式やリソースブロックと呼ばれる所定の周波数・時間単位の柔軟なスケジューリングの採用によって、高速な通信を実現させたEvolved Universal Terrestrial Radio Access(以降E-UTRAと称する)の標準化が行なわれた。 In the standardization project 3GPP (3rd Generation Partnership Project), Eol realized high-speed communication by adopting OFDM (Orthogonal Frequency-Division Multiplexing) communication method and flexible scheduling in predetermined frequency and time units called resource blocks. Universal Terrestrial Radio Access (hereinafter referred to as E-UTRA) was standardized.
 また、3GPPでは、より高速なデータ伝送を実現し、E-UTRAに対して上位互換性を持つAdvanced E-UTRAの検討を行っている。E-UTRAでは、基地局装置がほぼ同一のセル構成(セルサイズ)から成るネットワークを前提とした通信システムであったが、Advanced E-UTRAでは、異なる構成の基地局装置(セル)が同じエリアに混在しているネットワーク(異種無線ネットワーク、ヘテロジニアスネットワーク(Heterogeneous Network))を前提とした通信システムの検討が行われている。なお、E-UTRAはLTE(Long Term Evolution)とも呼称され、Advanced E-UTRAはLTE-Advancedとも呼称される。また、LTEは、LTE-Advancedを含めた総称とすることもできる。 Also, 3GPP is studying Advanced E-UTRA, which realizes higher-speed data transmission and has upward compatibility with E-UTRA. In E-UTRA, a base station apparatus is a communication system on the premise of a network having substantially the same cell configuration (cell size). However, in Advanced E-UTRA, base stations (cells) having different configurations are in the same area. A communication system based on a mixed network (a heterogeneous wireless network, a heterogeneous network) has been studied. Note that E-UTRA is also referred to as LTE (Long TermEEvolution), and Advanced E-UTRA is also referred to as LTE-Advanced. LTE can also be a generic term including LTE-Advanced.
 ヘテロジニアスネットワークのように、セル半径の大きいセル(マクロセル)と、セル半径がマクロセルよりも小さいセル(小セル、スモールセル)とが配置される通信システムにおいて、端末装置が、マクロセルとスモールセルとに同時に接続して通信を行うキャリアアグリゲーション(CA)技術およびデュアルコネクティビティ(DC)技術が規定されている(非特許文献1)。 In a communication system in which a cell having a large cell radius (macro cell) and a cell having a cell radius smaller than the macro cell (small cell, small cell) are arranged as in a heterogeneous network, the terminal device includes a macro cell and a small cell. Carrier aggregation (CA) technology and dual connectivity (DC) technology for simultaneous communication and communication are defined (Non-patent Document 1).
 一方、非特許文献2において、ライセンス補助アクセス(LAA;Licensed-Assisted Access)が、検討されている。LAAでは、例えば、無線LAN(Local Area Network)が利用している非割り当て周波数帯域(Unlicensed spectrum)が、LTEとして用いられる。具体的には、非割り当て周波数帯域がセカンダリセル(セカンダリコンポーネントキャリア)として設定される。LAAとして用いられているセカンダリセルは、割り当て周波数帯域(Licensed spectrum)で設定されるプライマリセル(プライマリコンポーネントキャリア)によって、接続、通信および/または設定に関して、アシストされる。LAAによって、LTEで利用可能な周波数帯域が広がるため、広帯域伝送が可能になる。なお、LAAは、所定のオペレータ間で共有される共有周波数帯域(shared spectrum)でも用いられる。 On the other hand, Non-Patent Document 2 discusses license-assisted access (LAA). In LAA, for example, an unassigned frequency band (Unlicensed spectrum) used by a wireless LAN (Local Area Network) is used as LTE. Specifically, an unassigned frequency band is set as a secondary cell (secondary component carrier). The secondary cell used as the LAA is assisted with respect to connection, communication and / or setting by a primary cell (primary component carrier) set in an assigned frequency band (Licensed spectrum). LAA expands the frequency band that can be used in LTE, thereby enabling broadband transmission. Note that LAA is also used in a shared frequency band (shared spectrum) shared between predetermined operators.
 LAAでは、非割り当て周波数帯域または共有周波数帯域が用いられる場合、その周波数帯域は他のシステムおよび/または他のオペレータと共有することになる。しかしながら、LTEは、割り当て周波数帯域または非共有周波数帯域で用いられることを前提に設計されている。そのため、非割り当て周波数帯域または共有周波数帯域で従来のLTEを用いることはできない。 In LAA, when an unassigned frequency band or a shared frequency band is used, the frequency band is shared with other systems and / or other operators. However, LTE is designed on the assumption that it is used in an allocated frequency band or a non-shared frequency band. Therefore, the conventional LTE cannot be used in the unassigned frequency band or the shared frequency band.
 本発明は、非割り当て周波数帯域または共有周波数帯域を用いたセルを効率的に制御することができる端末装置、基地局装置および通信方法を提供する。 The present invention provides a terminal device, a base station device, and a communication method that can efficiently control a cell using a non-assigned frequency band or a shared frequency band.
 (1)上記の目的を達成するために、本発明は、以下のような手段を講じた。すなわち、本発明の一様態による端末装置は、サービングセルで一つ以上の連続するリソースブロックのセットを用いて物理上りリンク共用チャネル(PUSCH)を送信する送信部を備える。送信部は、サービングセルがLAAセカンダリセルである場合に、三つ以上のセットを用いたPUSCHを送信し、サービングセルがLAAセカンダリセルでない場合に、最大二つまでのセットを用いたPUSCHを送信する。 (1) In order to achieve the above object, the present invention has taken the following measures. That is, a terminal apparatus according to an aspect of the present invention includes a transmission unit that transmits a physical uplink shared channel (PUSCH) using a set of one or more consecutive resource blocks in a serving cell. The transmission unit transmits PUSCH using three or more sets when the serving cell is an LAA secondary cell, and transmits PUSCH using up to two sets when the serving cell is not an LAA secondary cell.
 (2)また、本発明の一様態による基地局装置は、サービングセルで一つ以上の連続するリソースブロックのセットを用いて物理上りリンク共用チャネル(PUSCH)を受信する受信部を備える。受信部は、サービングセルがLAAセカンダリセルである場合に、三つ以上のセットを用いたPUSCHを受信し、サービングセルがLAAセカンダリセルでない場合に、最大二つまでのセットを用いたPUSCHを受信する。 (2) In addition, a base station apparatus according to an aspect of the present invention includes a receiving unit that receives a physical uplink shared channel (PUSCH) using a set of one or more consecutive resource blocks in a serving cell. The receiving unit receives PUSCHs using three or more sets when the serving cell is an LAA secondary cell, and receives PUSCHs using up to two sets when the serving cell is not an LAA secondary cell.
 (3)また、本発明の一様態による端末装置の通信方法は、サービングセルで一つ以上の連続するリソースブロックのセットを用いて物理上りリンク共用チャネル(PUSCH)を送信する工程を含む。工程は、サービングセルがLAAセカンダリセルである場合に、三つ以上のセットを用いたPUSCHを送信し、サービングセルがLAAセカンダリセルでない場合に、最大二つまでのセットを用いたPUSCHを送信する。 (3) Moreover, the communication method of the terminal device according to an aspect of the present invention includes a step of transmitting a physical uplink shared channel (PUSCH) using a set of one or more consecutive resource blocks in a serving cell. The process transmits PUSCH using three or more sets when the serving cell is an LAA secondary cell, and transmits PUSCH using up to two sets when the serving cell is not an LAA secondary cell.
 (4)また、本発明の一様態による基地局装置の通信方法は、サービングセルで一つ以上の連続するリソースブロックのセットを用いて物理上りリンク共用チャネル(PUSCH)を受信する工程を含む。工程は、サービングセルがLAAセカンダリセルである場合に、三つ以上のセットを用いたPUSCHを受信し、サービングセルがLAAセカンダリセルでない場合に、最大二つまでのセットを用いたPUSCHを受信する。 (4) Moreover, the communication method of the base station apparatus according to an aspect of the present invention includes a step of receiving a physical uplink shared channel (PUSCH) using a set of one or more consecutive resource blocks in a serving cell. The process receives PUSCH using three or more sets when the serving cell is an LAA secondary cell, and receives PUSCH using up to two sets when the serving cell is not an LAA secondary cell.
 この発明によれば、基地局装置と端末装置が通信する無線通信システムにおいて、伝送効率を向上させることができる。 According to the present invention, transmission efficiency can be improved in a wireless communication system in which a base station device and a terminal device communicate.
本実施形態に係る下りリンクの無線フレーム構成の一例を示す図である。It is a figure which shows an example of a radio frame structure of the downlink which concerns on this embodiment. 本実施形態に係る上りリンクの無線フレーム構成の一例を示す図である。It is a figure which shows an example of the radio frame structure of the uplink which concerns on this embodiment. 本実施形態に係る基地局装置2のブロック構成の一例を示す概略図である。It is the schematic which shows an example of the block configuration of the base station apparatus 2 which concerns on this embodiment. 本実施形態に係る端末装置1のブロック構成の一例を示す概略図である。It is the schematic which shows an example of the block configuration of the terminal device 1 which concerns on this embodiment. 本実施形態に係る下りリンクの信号構成の一例を示す図である。It is a figure which shows an example of the signal structure of the downlink which concerns on this embodiment. 本実施形態に係る下りリンク送信のためのCCAの手順の一例を示す図である。It is a figure which shows an example of the procedure of CCA for the downlink transmission which concerns on this embodiment. 本実施形態に係る下りリンク送信と上りリンク送信の間隔とCCAの種類の関係の一例を示す図である。It is a figure which shows an example of the relationship between the space | interval of downlink transmission which concerns on this embodiment, and an uplink transmission, and the kind of CCA. 本実施形態に係る上りリンク送信のためのCCAの手順の一例を示す図である。It is a figure which shows an example of the procedure of CCA for the uplink transmission which concerns on this embodiment. 本実施形態に係る上りリンク送信のためのCCAの手順の一例を示す図である。It is a figure which shows an example of the procedure of CCA for the uplink transmission which concerns on this embodiment. 本実施形態に係る物理上りリンク共用チャネルの周波数多重の一例を示す図である。It is a figure which shows an example of the frequency multiplexing of the physical uplink shared channel which concerns on this embodiment. 本実施形態に係る上りリンク送信のためのCCAの一例を示す図である。It is a figure which shows an example of CCA for the uplink transmission which concerns on this embodiment. 本実施形態に係る上りリンク送信のためのCCAの一例を示す図である。It is a figure which shows an example of CCA for the uplink transmission which concerns on this embodiment. 本実施形態に係る上りリンク送信のためのCCAの一例を示す図である。It is a figure which shows an example of CCA for the uplink transmission which concerns on this embodiment. 本実施形態に係る上りリンク送信のためのCCAの一例を示す図である。It is a figure which shows an example of CCA for the uplink transmission which concerns on this embodiment. 本実施形態に係る上りリンク送信のためのCCAの手順の一例を示す図である。It is a figure which shows an example of the procedure of CCA for the uplink transmission which concerns on this embodiment. 本実施形態に係る物理上りリンク共用チャネルのリソース割当の一例を示す図である。It is a figure which shows an example of the resource allocation of the physical uplink shared channel which concerns on this embodiment. 本実施形態に係る物理上りリンク共用チャネルのリソース割当の一例を示す図である。It is a figure which shows an example of the resource allocation of the physical uplink shared channel which concerns on this embodiment.
 <第1の実施形態>
 本発明の第1の実施形態について以下に説明する。基地局装置(基地局、ノードB、eNB(eNodeB))と端末装置(端末、移動局、ユーザ装置、UE(User equipment))とが、セルにおいて通信する通信システム(セルラーシステム)を用いて説明する。
<First Embodiment>
A first embodiment of the present invention will be described below. A base station apparatus (base station, Node B, eNB (eNodeB)) and a terminal apparatus (terminal, mobile station, user apparatus, UE (User equipment)) will be described using a communication system (cellular system) in which communication is performed in a cell. To do.
 EUTRAおよびAdvanced EUTRAで使用される主な物理チャネル、および物理シグナルについて説明を行なう。チャネルとは信号の送信に用いられる媒体を意味し、物理チャネルとは信号の送信に用いられる物理的な媒体を意味する。本実施形態において、物理チャネルは、信号と同義的に使用され得る。物理チャネルは、EUTRA、およびAdvanced EUTRAにおいて、今後追加、または、その構造やフォーマット形式が変更または追加される可能性があるが、変更または追加された場合でも本実施形態の説明には影響しない。 Main physical channels and physical signals used in EUTRA and Advanced EUTRA will be described. A channel means a medium used for signal transmission, and a physical channel means a physical medium used for signal transmission. In this embodiment, a physical channel can be used synonymously with a signal. The physical channel may be added in the future, or the structure and format of the physical channel may be changed or added in EUTRA and Advanced EUTRA, but even if changed or added, the description of the present embodiment is not affected.
 EUTRAおよびAdvanced EUTRAでは、物理チャネルまたは物理シグナルのスケジューリングについて無線フレームを用いて管理している。1無線フレームは10msであり、1無線フレームは10サブフレームで構成される。さらに、1サブフレームは2スロットで構成される(すなわち、1サブフレームは1ms、1スロットは0.5msである)。また、物理チャネルが配置されるスケジューリングの最小単位としてリソースブロックを用いて管理している。リソースブロックとは、周波数軸を複数サブキャリア(例えば12サブキャリア)の集合で構成される一定の周波数領域と、一定の送信時間間隔(1スロット)で構成される領域で定義される。 In EUTRA and Advanced EUTRA, scheduling of physical channels or physical signals is managed using radio frames. One radio frame is 10 ms, and one radio frame is composed of 10 subframes. Further, one subframe is composed of two slots (that is, one subframe is 1 ms, and one slot is 0.5 ms). Also, resource blocks are used as a minimum scheduling unit in which physical channels are allocated. A resource block is defined by a constant frequency region composed of a set of a plurality of subcarriers (for example, 12 subcarriers) and a region composed of a constant transmission time interval (1 slot) on the frequency axis.
 EUTRAおよびAdvanced EUTRAでは、フレーム構成タイプが定義される。フレーム構成タイプ1(Frame structure type 1)は周波数分割複信(Frequency Division Duplex、FDD)に適用できる。フレーム構成タイプ2(Frame structure type 2)は時分割複信(Time Division Duplex、TDD)に適用できる。 In EUTRA and Advanced EUTRA, frame configuration types are defined. Frame structure type 1 (Frame structure type 1) can be applied to Frequency Division Duplex (FDD). Frame structure type 2 (Frame structure type 2) can be applied to time division duplex (TDD).
 図1は、本実施形態に係る下りリンクの無線フレーム構成の一例を示す図である。下りリンクはOFDMアクセス方式が用いられる。下りリンクにおいて、下りリンクの信号および/または下りリンクの物理チャネルを送信することを、下りリンク送信と呼称される。下りリンクでは、PDCCH、EPDCCH、物理下りリンク共用チャネル(PDSCH;Physical Downlink Shared CHannel)などが割り当てられる。下りリンクの無線フレームは、下りリンクのリソースブロック(RB;Resource Block)ペアから構成されている。この下りリンクのRBペアは、下りリンクの無線リソースの割り当てなどの単位であり、予め決められた幅の周波数帯(RB帯域幅)及び時間帯(2個のスロット=1個のサブフレーム)からなる。1個の下りリンクのRBペアは、時間領域で連続する2個の下りリンクのRB(RB帯域幅×スロット)から構成される。1個の下りリンクのRBは、周波数領域において12個のサブキャリアから構成される。また、1個のスロットは、時間領域においては、通常のサイクリックプレフィックス(CP)が付加される場合には7個、通常よりも長いサイクリックプレフィックスが付加される場合には6個のOFDMシンボルから構成される。周波数領域において一つのサブキャリア、時間領域において一つのOFDMシンボルにより規定される領域をリソースエレメント(RE;Resource Element)と称する。物理下りリンク制御チャネルは、端末装置識別子、物理下りリンク共用チャネルのスケジューリング情報、物理上りリンク共用チャネルのスケジューリング情報、変調方式、符号化率、再送パラメータなどの下りリンク制御情報が送信される物理チャネルである。なお、ここでは一つの要素キャリア(CC;Component Carrier)における下りリンクサブフレームを記載しているが、CC毎に下りリンクサブフレームが規定され、下りリンクサブフレームはCC間でほぼ同期している。 FIG. 1 is a diagram illustrating an example of a downlink radio frame configuration according to the present embodiment. An OFDM access scheme is used for the downlink. In the downlink, transmitting a downlink signal and / or a downlink physical channel is referred to as downlink transmission. In the downlink, a PDCCH, an EPDCCH, a physical downlink shared channel (PDSCH), a physical downlink shared channel, and the like are allocated. The downlink radio frame is composed of a downlink resource block (RB) pair. This downlink RB pair is a unit such as downlink radio resource allocation, and is based on a predetermined frequency band (RB bandwidth) and time band (2 slots = 1 subframe). Become. One downlink RB pair is composed of two downlink RBs (RB bandwidth × slot) that are continuous in the time domain. One downlink RB is composed of 12 subcarriers in the frequency domain. One slot includes 7 OFDM symbols in the time domain when a normal cyclic prefix (CP) is added, and 6 OFDM symbols when a cyclic prefix longer than normal is added. Consists of A region defined by one subcarrier in the frequency domain and one OFDM symbol in the time domain is referred to as a resource element (RE). The physical downlink control channel is a physical channel through which downlink control information such as a terminal device identifier, physical downlink shared channel scheduling information, physical uplink shared channel scheduling information, modulation scheme, coding rate, and retransmission parameter is transmitted. It is. In addition, although the downlink sub-frame in one element carrier (CC; Component Carrier) is described here, a downlink sub-frame is prescribed | regulated for every CC, and a downlink sub-frame is substantially synchronized between CC. .
 下りリンクでは、同期信号が割り当てられる。同期信号とは、主に下りリンクの信号および/またはチャネルを送信する基地局装置と下りリンクの信号および/またはチャネルを受信する端末装置との間において、下りリンクの信号および/またはチャネルのタイミングを調整するために用いられる。具体的には、端末装置において、同期信号は無線フレームまたはサブフレームまたはOFDMシンボルの受信タイミングを調整するために用いられる。また、端末装置において、同期信号は要素キャリアの中心周波数の検出にも用いられる。また、端末装置において、同期信号はOFDMシンボルのCP長の検出にも用いられる。また、端末装置において、同期信号は、その同期信号が送信されたセル(基地局装置)の識別にも用いられる。言い換えると、端末装置において、同期信号は、その同期信号が送信されたセルのセル識別子の検出にも用いられる。なお、端末装置において、同期信号はAGC(Automatic Gain Control)を行うためにも用いられてもよい。なお、端末装置において、同期信号はFFT(Fast Fourier Transform)を行うためのシンボルの処理タイミングを調整するために用いられてもよい。なお、端末装置において、同期信号は参照信号受信電力(RSRP)の計算に用いられてもよい。なお、同期信号は、その同期信号が送信されるチャネルの確保のために用いられてもよい。 In the downlink, a synchronization signal is assigned. The synchronization signal is mainly a downlink signal and / or channel timing between a base station apparatus that transmits a downlink signal and / or channel and a terminal apparatus that receives the downlink signal and / or channel. Used to adjust. Specifically, in the terminal device, the synchronization signal is used to adjust the reception timing of a radio frame, a subframe, or an OFDM symbol. In the terminal device, the synchronization signal is also used for detecting the center frequency of the element carrier. In the terminal device, the synchronization signal is also used for detecting the CP length of the OFDM symbol. In the terminal device, the synchronization signal is also used to identify the cell (base station device) to which the synchronization signal is transmitted. In other words, in the terminal device, the synchronization signal is also used for detecting the cell identifier of the cell to which the synchronization signal is transmitted. In the terminal device, the synchronization signal may also be used to perform AGC (Automatic Gain Control). In the terminal device, the synchronization signal may be used to adjust the processing timing of symbols for performing FFT (Fast Fourier Transform). In the terminal device, the synchronization signal may be used for calculating reference signal received power (RSRP). The synchronization signal may be used for securing a channel through which the synchronization signal is transmitted.
 プライマリー同期信号(第1のプライマリー同期信号)とセカンダリー同期信号(第1のセカンダリー同期信号)は、セル捜索を促進するために下りリンクで送信される。セル捜索とは、端末装置がセルとの時間および周波数同期を取得し、そのセルの物理セル識別子(physical layer Cell ID)を検出する、端末装置による手順である。E-UTRAセル捜索は6リソースブロックとそれ以上に相当する柔軟で全体的な送信帯域幅をサポートする。 The primary synchronization signal (first primary synchronization signal) and the secondary synchronization signal (first secondary synchronization signal) are transmitted on the downlink to facilitate cell search. The cell search is a procedure by the terminal device in which the terminal device acquires time and frequency synchronization with the cell and detects a physical cell identifier (physical layer Cell ID) of the cell. E-UTRA cell search supports a flexible overall transmission bandwidth equivalent to 6 resource blocks and more.
 プライマリー同期信号およびセカンダリー同期信号の配置(位置、マッピング)の具体例を説明する。図9は、同期信号が配置されるサブキャリアおよびOFDMシンボルを決定する数式を示す。kを周波数領域、lを時間領域でリソースエレメントを指定するインデックスと定義すると、プライマリー同期信号およびセカンダリー同期信号は、図9の数式(0-a)、数式(1-a)、および数式(2)で定義される。ここで、NRB DLは下りリンク帯域幅の設定情報から指定されるリソースブロック数、Nsc RBは周波数領域上リソースブロックサイズであり、1リソースブロックあたりのサブキャリア数、Nsymb DLは下りリンクスロットあたりのOFDMシンボル数である。ここで、ak,lはリソースエレメント(k,l)におけるシンボル、dは系列であり、nは0から2NM-1までの値をとる。また、modは余りを表す関数であり、AmodBは、AをBで除算したときの余りを示す。また、ここで、プライマリー同期信号およびセカンダリー同期信号において、NMは31である。また、ここで、プライマリー同期信号およびセカンダリー同期信号において、hは1である。 A specific example of the arrangement (position, mapping) of the primary synchronization signal and the secondary synchronization signal will be described. FIG. 9 shows formulas for determining subcarriers and OFDM symbols on which synchronization signals are arranged. If k is defined as an index for designating a resource element in the frequency domain and l is defined in the time domain, the primary synchronization signal and the secondary synchronization signal are represented by Equation (0-a), Equation (1-a), and Equation (2) in FIG. ). Here, N RB DL is the number of resource blocks specified from the downlink bandwidth setting information, N sc RB is the resource block size in the frequency domain, the number of subcarriers per resource block, and N symb DL is the downlink The number of OFDM symbols per slot. Here, a k, l is a symbol in the resource element (k, l), d is a sequence, and n takes a value from 0 to 2N M −1. Further, mod is a function representing the remainder, and AmodB represents the remainder when A is divided by B. In addition, here, the primary synchronization signals and secondary synchronization signals, N M is 31. Here, h is 1 in the primary synchronization signal and the secondary synchronization signal.
 図1に図示されるプライマリー同期信号(Primary Synchronization Signal、PSS)とセカンダリー同期信号(Secondary Synchronization Signal、SSS)は、下りリンク帯域幅(下りリンクのシステム帯域幅、下りリンク送信帯域幅)に依らず、中心周波数を中心とした62サブキャリア(62リソースエレメント)を用いて送信される。なお、システム帯域幅内のサブキャリアの中央に相当する直流サブキャリア(DCサブキャリア)は、プライマリー同期信号およびセカンダリー同期信号として用いられない。なお、プライマリー同期信号とセカンダリー同期信号の両端の5サブキャリア(5リソースエレメント)は予約され、プライマリー同期信号およびセカンダリー同期信号の送信のためには用いられない。上記の送信のために用いられる62リソースエレメントに加え、両端の5リソースエレメントも含めてプライマリー同期信号およびセカンダリー同期信号と呼称される。 The primary synchronization signal (Primary Synchronization Signal, PSS) and the secondary synchronization signal (Secondary Synchronization Signal, SSS) shown in FIG. 1 do not depend on the downlink bandwidth (downlink system bandwidth, downlink transmission bandwidth). And 62 subcarriers (62 resource elements) centered on the center frequency. Note that a DC subcarrier (DC subcarrier) corresponding to the center of subcarriers in the system bandwidth is not used as a primary synchronization signal and a secondary synchronization signal. Note that 5 subcarriers (5 resource elements) at both ends of the primary synchronization signal and the secondary synchronization signal are reserved and are not used for transmission of the primary synchronization signal and the secondary synchronization signal. In addition to the 62 resource elements used for the transmission described above, the 5 resource elements at both ends are also referred to as a primary synchronization signal and a secondary synchronization signal.
 プライマリー同期信号は、周波数領域のZadoff-Chu系列(ZC系列)に基づいて生成される。ここで、NZCはZadoff-Chu系列の系列長、uはルートインデックス(Zadoff-Chu root sequence index)である。プライマリー同期信号は、3種類のルートインデックスに基づいて生成される。ルートインデックスは、セル識別子(セルID、物理層セル識別子、physical-layer cell identity)から導出される三つの固有な識別子と関連付けられる。プライマリー同期信号は、フレーム構成タイプ1において、スロット0(すなわち、サブフレーム0の1番目のスロット)およびスロット10(すなわち、サブフレーム5の1番目のスロット)の最後のOFDMシンボルに位置される。プライマリー同期信号は、フレーム構成タイプ2において、サブフレーム1および6の1番目のスロットの3番目のOFDMシンボルに位置される。 The primary synchronization signal is generated based on a Zadoff-Chu sequence (ZC sequence) in the frequency domain. Here, NZC is the sequence length of the Zadoff-Chu sequence, and u is the root index (Zadoff-Chu root sequence index). The primary synchronization signal is generated based on three types of route indexes. The root index is associated with three unique identifiers derived from cell identifiers (cell ID, physical layer cell identifier, physical-layer cell identity). The primary synchronization signal is located in the last OFDM symbol of slot 0 (ie, the first slot of subframe 0) and slot 10 (ie, the first slot of subframe 5) in frame configuration type 1. The primary synchronization signal is located in the third OFDM symbol of the first slot of subframes 1 and 6 in frame configuration type 2.
 セカンダリー同期信号は、二つの長さ31の系列の組み合わせで定義される。セカンダリー同期信号に用いられる系列は二つの長さ31の系列を交互配置して連結した系列である。連結された系列はプライマリー同期信号によって与えられるスクランブル系列によってスクランブルされる。長さ31の系列は、M系列に基づいて生成される。長さ31の系列は、セル識別子から導出される168の固有な物理層セル識別子グループに基づいて生成される。プライマリー同期信号によって与えられるスクランブル系列は、三つの固有な識別子に基づいて生成されるM系列である。セカンダリー同期信号の系列のリソースエレメントへのマッピングは、フレーム構成に依存する。セカンダリー同期信号は、フレーム構成タイプ1において、スロット0(すなわち、サブフレーム0の1番目のスロット)およびスロット10(すなわち、サブフレーム5の1番目のスロット)の最後から2番目のOFDMシンボルに位置される。セカンダリー同期信号は、フレーム構成タイプ2において、スロット1(すなわち、サブフレーム0の2番目のスロット)およびスロット11(すなわち、サブフレーム5の2番目のスロット)の最後のOFDMシンボルに位置される。 The secondary synchronization signal is defined by a combination of two 31-length sequences. The sequence used for the secondary synchronization signal is a sequence in which two sequences of length 31 are alternately arranged. The concatenated sequence is scrambled by a scramble sequence given by the primary synchronization signal. The sequence of length 31 is generated based on the M sequence. The length 31 sequence is generated based on 168 unique physical layer cell identifier groups derived from the cell identifiers. The scramble sequence given by the primary synchronization signal is an M sequence generated based on three unique identifiers. The mapping of the secondary synchronization signal sequence to the resource element depends on the frame configuration. The secondary synchronization signal is located in the second OFDM symbol from the end of slot 0 (ie, the first slot of subframe 0) and slot 10 (ie, the first slot of subframe 5) in frame configuration type 1. Is done. The secondary synchronization signal is located in the last OFDM symbol of slot 1 (ie, the second slot of subframe 0) and slot 11 (ie, the second slot of subframe 5) in frame configuration type 2.
 なお、ここでは図示していないが、下りリンクサブフレームには、物理報知情報チャネルや下りリンク参照信号(RS:Reference Signal、下りリンクリファレンスシグナル)が配置されてもよい。下りリンク参照信号としては、PDCCHと同じ送信ポートで送信されるセル固有参照信号(CRS:Cell-specific RS)、チャネル状態情報(CSI:Channel State Information)の測定に用いられるチャネル状態情報参照信号(CSI-RS、非ゼロ電力CSI-RS、NZP CSI-RS)、一部のPDSCHと同じ送信ポートで送信される端末固有参照信号(URS:UE-specific RS)、EPDCCHと同じ送信ポートで送信される復調用参照信号(DMRS:Demodulation RS)などがある。また、CRSが配置されないキャリアであってもよい。このとき一部のサブフレーム(例えば、無線フレーム中の1番目と6番目のサブフレーム)に、時間および/または周波数のトラッキング用の信号として、CRSの一部の送信ポート(例えば送信ポート0だけ)あるいは全部の送信ポートに対応する信号と同様の信号(拡張同期シグナルと呼称する)を挿入することができる。また、一部のPDSCHと同じ送信ポートで送信される端末固有参照信号は、PDSCHに関連付けられる端末固有参照信号またはDMRSとも呼称される。また、EPDCCHと同じ送信ポートで送信される復調用参照信号は、EPDCCHに関連付けられるDMRSとも呼称される。 Although not shown here, a physical broadcast information channel or a downlink reference signal (RS: Reference Signal, downlink reference signal) may be arranged in the downlink subframe. As downlink reference signals, channel state information reference signals (CSI: Channel State Information) used for measurement of cell specific reference signals (CRS: Cell-specific RS) and channel state information (CSI) transmitted on the same transmission port as PDCCH ( CSI-RS, non-zero power CSI-RS, NZP CSI-RS), terminal specific reference signal (URS: UE-specific RS) transmitted on the same transmission port as some PDSCH, transmitted on the same transmission port as EPDCCH Demodulation reference signals (DMRS: Demodulation RS). Moreover, the carrier in which CRS is not arrange | positioned may be sufficient. At this time, in some subframes (for example, the first and sixth subframes in a radio frame), as a time and / or frequency tracking signal, a part of CRS transmission ports (for example, transmission port 0 only) ) Or signals similar to those corresponding to all transmission ports (referred to as extended synchronization signals) can be inserted. In addition, a terminal-specific reference signal transmitted through the same transmission port as a part of PDSCH is also referred to as a terminal-specific reference signal or DMRS associated with the PDSCH. The demodulation reference signal transmitted at the same transmission port as the EPDCCH is also referred to as DMRS associated with the EPDCCH.
 なお、ここでは図示していないが、下りリンクサブフレームには、主に同時に送信されるPDSCHのレートマッチングのために用いられるゼロ電力CSI-RS(ZP CSI-RS)や、主にチャネル状態情報の干渉測定に用いられるCSI干渉マネージメント(CSI-IM)が配置されてもよい。ゼロ電力CSI-RSとCSI-IMは、非ゼロ電力CSI-RSが配置可能なリソースエレメントに配置されてもよい。CSI-IMは、ゼロ電力CSI-RSに重ねて設定されてもよい。 Although not shown here, the downlink subframe mainly includes zero power CSI-RS (ZP CSI-RS) used mainly for rate matching of PDSCH transmitted at the same time, and mainly channel state information. CSI interference management (CSI-IM) used for the interference measurement may be arranged. Zero power CSI-RS and CSI-IM may be arranged in resource elements where non-zero power CSI-RS can be arranged. The CSI-IM may be set over the zero power CSI-RS.
 なお、ここでは図示していないが、下りリンクサブフレームには、検出信号(DS:Discovery Signal)が配置されてもよい。あるセルにおいて、DS(DS Occasion)は、連続する所定数のサブフレームの時間期間(DS期間)で構成される。その所定数は、FDD(Frame structure type 1)において1から5であり、TDD(Frame structure type 2)において2から5である。その所定数は、RRCのシグナリングによって設定される。また、その所定数は、LAAセカンダリセル運用(フレーム構成タイプ3)において1であり、非空サブフレームの中の12OFDMシンボルの長さの時間期間で構成される。また、端末装置はDS期間を測定する区間が設定される。DS期間を測定する区間の設定を、DMTC(Discovery signals measurement timing configuration)とも呼称される。端末装置がDS期間を測定する区間(DMTC区間、DMTC Occasion)は、6ms(6サブフレーム)の区間で設定される。端末は、そのDSが、RRCのシグナリングによって設定されるパラメータdmtc-Periodicityで設定されるサブフレーム毎に、送信(マッピング、発生)していると想定する。また、下りリンクサブフレームにおいて、端末は以下の信号を含んで構成されるDSの存在を想定する。
  (1)そのDS期間における全ての下りリンクサブフレームと全てのスペシャルサブフレームのDwPTS内の、アンテナポート0のCRS。
  (2)FDDにおいて、そのDS期間の最初のサブフレーム内のPSS。TDDにおいて、そのDS期間の2番目のサブフレーム内のPSS。
  (3)そのDS期間の最初のサブフレーム内のSSS。
  (4)そのDS期間のゼロ個以上のサブフレーム内の非ゼロ電力CSI-RS。その非ゼロ電力CSI-RSはRRCのシグナリングによって設定される。
Although not shown here, a detection signal (DS: Discovery Signal) may be arranged in the downlink subframe. In a certain cell, DS (DS Occlusion) is configured by a time period (DS period) of a predetermined number of consecutive subframes. The predetermined number is 1 to 5 in FDD (Frame structure type 1) and 2 to 5 in TDD (Frame structure type 2). The predetermined number is set by RRC signaling. The predetermined number is 1 in LAA secondary cell operation (frame configuration type 3), and is configured by a time period of 12 OFDM symbols in a non-empty subframe. The terminal device is set with a section for measuring the DS period. The setting of the section for measuring the DS period is also referred to as DMTC (Discovery signals measurement timing configuration). A section in which the terminal apparatus measures the DS period (DMTC section, DMTC Occasion) is set in a section of 6 ms (6 subframes). The terminal assumes that the DS is transmitted (mapped and generated) for each subframe set by the parameter dmtc-Periodicity set by RRC signaling. In the downlink subframe, the terminal assumes the presence of a DS configured to include the following signals.
(1) CRS of antenna port 0 in DwPTS of all downlink subframes and all special subframes in the DS period.
(2) In FDD, PSS in the first subframe of the DS period. In TDD, PSS in the second subframe of the DS period.
(3) SSS in the first subframe of the DS period.
(4) Non-zero power CSI-RS in zero or more subframes of the DS period. The non-zero power CSI-RS is set by RRC signaling.
 端末は、設定されたDSに基づいて、測定を行う。その測定は、DSにおけるCRS、または、DSにおける非ゼロ電力CSI-RSを用いて行われる。また、DSに関する設定において、複数の非ゼロ電力CSI-RSが設定できる。 The terminal performs measurement based on the set DS. The measurement is performed using CRS in DS or non-zero power CSI-RS in DS. Moreover, in the setting regarding DS, a plurality of non-zero power CSI-RSs can be set.
 また、端末装置は、LAAセカンダリセル運用(フレーム構成タイプ3)において、所定の区間でRSSI(received signal strength indicator)とチャネル占有を測定することができる。RSSIは、所定のOFDMシンボルで観測される送受信電力の平均値である。チャネル占有は、設定された区間におけるすべてのサンプル数に対するRSSIが設定された閾値を上回ったサンプル数のパーセンテージである。また、端末装置はRSSIおよびチャネル占有を測定する区間が設定される。RSSIおよびチャネル占有を測定する区間の設定を、RMTC(RSSI and channel occupancy measurement timing configuration)とも呼称される。 In addition, the terminal device can measure RSSI (received signal strength) and channel occupancy in a predetermined section in LAA secondary cell operation (frame configuration type 3). RSSI is an average value of transmission / reception power observed in a predetermined OFDM symbol. The channel occupancy is the percentage of the number of samples where the RSSI exceeds the set threshold for all samples in the set interval. The terminal device is set with a section for measuring RSSI and channel occupation. The setting of a section for measuring RSSI and channel occupancy is also referred to as RMTC (RSSI and channel occupancy measurement timing) configuration).
 図2は、本実施形態に係る上りリンクの無線フレーム構成の一例を示す図である。上りリンクはSC-FDMA方式が用いられる。上りリンクにおいて、上りリンクの信号および/または上りリンクの物理チャネルを送信することを、上りリンク送信と呼称される。つまり、上りリンク送信は、PUSCHの送信と換言できる。上りリンクでは、物理上りリンク共用チャネル(Physical Uplink Shared Channel;PUSCH)、PUCCHなどが割り当てられる。また、PUSCHやPUCCHの一部に、上りリンク参照信号(上りリンクリファレンスシグナル)が割り当てられる。上りリンクの無線フレームは、上りリンクのRBペアから構成されている。この上りリンクのRBペアは、上りリンクの無線リソースの割り当てなどの単位であり、予め決められた幅の周波数帯(RB帯域幅)及び時間帯(2個のスロット=1個のサブフレーム)からなる。1個の上りリンクのRBペアは、時間領域で連続する2個の上りリンクのRB(RB帯域幅×スロット)から構成される。1個の上りリンクのRBは、周波数領域において12個のサブキャリアから構成される。1個の上りリンクのRBは、時間領域においては、通常のサイクリックプレフィックスが付加される場合には7個、通常よりも長いサイクリックプレフィックスが付加される場合には6個のSC-FDMAシンボルから構成される。なお、ここでは一つのCCにおける上りリンクサブフレームを記載しているが、CC毎に上りリンクサブフレームが規定される。伝搬遅延の補正などから、端末装置の視点から、上りリンクの無線フレーム(上りリンクサブフレーム)の先頭は下りリンクの無線フレーム(下りリンクサブフレーム)の先頭よりも前になるように調整される。 FIG. 2 is a diagram illustrating an example of an uplink radio frame configuration according to the present embodiment. The SC-FDMA scheme is used for the uplink. In the uplink, transmission of an uplink signal and / or an uplink physical channel is referred to as uplink transmission. That is, uplink transmission can be rephrased as PUSCH transmission. In the uplink, a physical uplink shared channel (Physical Uplink Shared Channel (PUSCH), PUCCH, and the like are allocated. Further, an uplink reference signal (uplink reference signal) is assigned to a part of PUSCH or PUCCH. The uplink radio frame is composed of uplink RB pairs. This uplink RB pair is a unit for allocation of uplink radio resources and the like, and is based on a predetermined frequency band (RB bandwidth) and time band (2 slots = 1 subframe). Become. One uplink RB pair is composed of two uplink RBs (RB bandwidth × slot) that are continuous in the time domain. One uplink RB is composed of 12 subcarriers in the frequency domain. One uplink RB is 7 SC-FDMA symbols in the time domain when a normal cyclic prefix is added, and 6 when a cyclic prefix longer than normal is added. Consists of Here, although an uplink subframe in one CC is described, an uplink subframe is defined for each CC. From the viewpoint of the terminal device, the head of the uplink radio frame (uplink subframe) is adjusted to be ahead of the head of the downlink radio frame (downlink subframe) from the viewpoint of the terminal device due to propagation delay correction and the like. .
 同期シグナルは、3種類のプライマリー同期シグナルと、周波数領域で互い違いに配置される31種類の符号から構成されるセカンダリー同期シグナルとで構成され、プライマリー同期シグナルとセカンダリー同期シグナルの信号の組み合わせによって、基地局装置を識別する504通りのセル識別子(物理セルID(Physical Cell Identity; PCI))と、無線同期のためのフレームタイミングが示される。端末装置は、セルサーチによって受信した同期シグナルの物理セルIDを特定する。 The synchronization signal is composed of three types of primary synchronization signals and a secondary synchronization signal composed of 31 types of codes arranged alternately in the frequency domain, and the base signal depends on the combination of the primary synchronization signal and the secondary synchronization signal. 504 cell identifiers (physical cell identity (PCI)) for identifying a station device and frame timing for radio synchronization are shown. The terminal device specifies the physical cell ID of the synchronization signal received by the cell search.
 物理報知情報チャネル(PBCH; Physical Broadcast Channel)は、セル内の端末装置で共通に用いられる制御パラメータ(報知情報(システム情報);System information)を通知(設定)する目的で送信される。物理下りリンク制御チャネルで報知情報が送信される無線リソースがセル内の端末装置に対して通知され、物理報知情報チャネルで通知されない報知情報は、通知された無線リソースにおいて、物理下りリンク共用チャネルによって報知情報を通知するレイヤ3メッセージ(システムインフォメーション)が送信される。 The physical broadcast information channel (PBCH; Physical Broadcast Channel) is transmitted for the purpose of notifying (setting) control parameters (broadcast information (system information); System information) commonly used in terminal devices in the cell. Radio resources for transmitting broadcast information on the physical downlink control channel are notified to terminal devices in the cell, and broadcast information not notified on the physical broadcast information channel is transmitted by the physical downlink shared channel in the notified radio resources. A layer 3 message (system information) for notifying broadcast information is transmitted.
 報知情報として、セル個別の識別子を示すセルグローバル識別子(CGI; Cell Global Identifier)、ページングによる待ち受けエリアを管理するトラッキングエリア識別子(TAI; Tracking Area Identifier)、ランダムアクセス設定情報(送信タイミングタイマーなど)、当該セルにおける共通無線リソース設定情報、周辺セル情報、上りリンクアクセス制限情報などが通知される。 As broadcast information, a cell global identifier (CGI; Cell Global Identifier) indicating a cell-specific identifier, a tracking area identifier (TAI) for managing a standby area by paging, random access setting information (transmission timing timer, etc.), Common radio resource setting information, neighboring cell information, uplink access restriction information, etc. in the cell are notified.
 下りリンクリファレンスシグナルは、その用途によって複数のタイプに分類される。例えば、セル固有RS(Cell-specific reference signals)は、セル毎に所定の電力で送信されるパイロットシグナルであり、所定の規則に基づいて周波数領域および時間領域で周期的に繰り返される下りリンクリファレンスシグナルである。端末装置は、セル固有RSを受信することでセル毎の受信品質を測定する。また、端末装置は、セル固有RSと同時に送信される物理下りリンク制御チャネル、または物理下りリンク共用チャネルの復調のための参照用の信号としてもセル固有RSを使用する。セル固有RSに使用される系列は、セル毎に識別可能な系列が用いられる。 Downlink reference signals are classified into multiple types according to their use. For example, a cell-specific reference signal (RS) is a pilot signal transmitted at a predetermined power for each cell, and is a downlink reference signal that is periodically repeated in the frequency domain and the time domain based on a predetermined rule. It is. The terminal device measures the reception quality for each cell by receiving the cell-specific RS. The terminal apparatus also uses the cell-specific RS as a reference signal for demodulating the physical downlink control channel or the physical downlink shared channel transmitted simultaneously with the cell-specific RS. As a sequence used for the cell-specific RS, a sequence that can be identified for each cell is used.
 また、下りリンクリファレンスシグナルは下りリンクの伝搬路変動の推定にも用いられる。伝搬路変動の推定に用いられる下りリンクリファレンスシグナルのことをチャネル状態情報リファレンスシグナル(Channel State Information Reference Signals;CSI-RS)と称する。また、端末装置に対して個別に設定される下りリンクリファレンスシグナルは、UE specific Reference Signals(URS)、Demodulation Reference Signal(DMRS)またはDedicated RS(DRS)と称され、拡張物理下りリンク制御チャネル、または物理下りリンク共用チャネルを復調するときのチャネルの伝搬路補償処理のために参照される。 Also, the downlink reference signal is also used for estimation of downlink propagation path fluctuation. A downlink reference signal used for estimation of propagation path fluctuation is referred to as a channel state information reference signal (CSI-RS). In addition, the downlink reference signal set individually for the terminal device is called UE specific reference signals (URS), Demodulation Reference Signal (DMRS) or Dedicated RS (DRS), and is an extended physical downlink control channel or Referenced for channel propagation path compensation processing when demodulating a physical downlink shared channel.
 物理下りリンク制御チャネル(PDCCH; Physical Downlink Control Channel)は、各サブフレームの先頭からいくつかのOFDMシンボル(例えば1~4OFDMシンボル)で送信される。拡張物理下りリンク制御チャネル(EPDCCH; Enhanced Physical Downlink Control Channel)は、物理下りリンク共用チャネルPDSCHが配置されるOFDMシンボルに配置される物理下りリンク制御チャネルである。PDCCHまたはEPDCCHは、端末装置に対して基地局装置のスケジューリングに従った無線リソース割り当て情報や、送信電力の増減の調整量を指示する情報を通知する目的で使用される。以降、単に物理下りリンク制御チャネル(PDCCH)と記載した場合、特に明記がなければ、PDCCHとEPDCCHの両方の物理チャネルを意味する。 A physical downlink control channel (PDCCH; Physical Downlink Control Channel) is transmitted in several OFDM symbols (for example, 1 to 4 OFDM symbols) from the top of each subframe. An extended physical downlink control channel (EPDCCH; Enhanced Physical Downlink Control Channel) is a physical downlink control channel arranged in an OFDM symbol in which the physical downlink shared channel PDSCH is arranged. The PDCCH or EPDCCH is used for the purpose of notifying the terminal device of radio resource allocation information according to the scheduling of the base station device and information for instructing an adjustment amount of increase / decrease of transmission power. Hereinafter, when simply referred to as a physical downlink control channel (PDCCH), it means both physical channels of PDCCH and EPDCCH unless otherwise specified.
 端末装置は、下りリンクデータや上位層制御情報であるレイヤ2メッセージおよびレイヤ3メッセージ(ページング、ハンドオーバーコマンドなど)を送受信する前に、自装置宛の物理下りリンク制御チャネルを監視(モニタ)し、自装置宛の物理下りリンク制御チャネルを受信することで、送信時には上りリンクグラント(上りリンクアサインメント)、受信時には下りリンクグラント(下りリンクアサインメント)と呼ばれる無線リソース割り当て情報を物理下りリンク制御チャネルから取得する必要がある。なお、物理下りリンク制御チャネルは、上述したOFDMシンボルで送信される以外に、基地局装置から端末装置に対して個別(dedicated)に割り当てられるリソースブロックの領域で送信されるように構成することも可能である。なお、上りリンクグラントは、PUSCHをスケジュールするDCIフォーマット(上りリンクDCIフォーマット)と換言することができる。なお、下りリンクグラントは、PDSCHをスケジュールするDCIフォーマット(下りリンクDCIフォーマット)と換言することができる。PDSCHがスケジュールされるサブフレームは、そのPDSCHの受信を指示するDCIフォーマットを受信したサブフレームである。また、PUSCHがスケジュールされるサブフレームは、そのPUSCHの送信を指示するDCIフォーマットを受信したサブフレームに関連付けられて指示される。例えば、FDDセルの場合、PUSCHがスケジュールされるサブフレームは、そのPUSCHの送信を指示するDCIフォーマットを受信したサブフレームから4サブフレーム後である。すなわち、PUSCHおよびPDSCHがスケジュールされるサブフレームは、その送信または受信が指示されるDCIフォーマットを受信したサブフレームに関連付けられる。 The terminal device monitors (monitors) the physical downlink control channel addressed to itself before transmitting / receiving the downlink data and the layer 2 message and the layer 3 message (paging, handover command, etc.) that are the upper layer control information. By receiving the physical downlink control channel addressed to its own device, the radio resource allocation information called uplink grant (uplink assignment) at the time of transmission and downlink grant (downlink assignment) at the time of transmission is physically downlink controlled. Need to get from channel. In addition, the physical downlink control channel may be configured to be transmitted in the area of the resource block that is assigned individually (dedicated) from the base station apparatus to the terminal apparatus, in addition to being transmitted by the OFDM symbol described above. Is possible. In addition, an uplink grant can be paraphrased as DCI format (uplink DCI format) which schedules PUSCH. The downlink grant can be rephrased as a DCI format (downlink DCI format) for scheduling PDSCH. The subframe in which the PDSCH is scheduled is a subframe that has received the DCI format instructing reception of the PDSCH. Also, the subframe in which the PUSCH is scheduled is indicated in association with the subframe that has received the DCI format instructing transmission of the PUSCH. For example, in the case of an FDD cell, a subframe in which PUSCH is scheduled is four subframes after a subframe in which a DCI format instructing transmission of the PUSCH is received. That is, a subframe in which PUSCH and PDSCH are scheduled is associated with a subframe that has received a DCI format instructed to be transmitted or received.
 物理上りリンク制御チャネル(PUCCH; Physical Uplink Control Channel)は、物理下りリンク共用チャネルで送信された下りリンクデータの受信確認応答(HARQ-ACK;Hybrid Automatic Repeat reQuest-AcknowledgementあるいはACK/NACK;Acknowledgement/Negative Acknowledgement)や下りリンクの伝搬路(チャネル状態)情報(CSI;Channel State Information)、上りリンクの無線リソース割り当て要求(無線リソース要求、スケジューリングリクエスト(SR;Scheduling Request))を行なうために使用される。 The physical uplink control channel (PUCCH; Physical Uplink Control Channel) is a downlink data reception confirmation response (HARQ-ACK; Hybrid Automatic Repeat reQuestNackingAcknowledgementACK / NACK); It is used to perform Acknowledgment), downlink propagation path (channel state) information (CSI; Channel State Information), and uplink radio resource allocation request (radio resource request, scheduling request (SR)).
 CSIは、そのCSIに対応するサービングセルの受信品質指標(CQI:Channel Quality Indicator)、プレコーディング行列指標(PMI:Precoding Matrix Indicator)、プレコーディングタイプ指標(PTI:Precoding Type Indicator)、ランク指標(RI:Rank Indicator)を含み、それぞれ、好適な変調方式および符号化率、好適なプレコーディング行列、好適なPMIのタイプ、好適なランクを指定する(表現する)ために用いられることができる。各Indicatorは、Indicationと表記されてもよい。また、CQIおよびPMIには、一つのセル内のすべてのリソースブロックを用いた送信を想定したワイドバンドCQIおよびPMIと、一つのセル内の一部の連続するリソースブロック(サブバンド)を用いた送信を想定したサブバンドCQIおよびPMIとに分類される。また、PMIは、一つのPMIで一つの好適なプレコーディング行列を表現する通常のタイプのPMIの他に、第一のPMIと第二のPMIの2種類のPMIを用いて一つの好適なプレコーディング行列を表現するタイプのPMIが存在する。 The CSI includes the serving cell reception quality index (CQI: Channel Quality Indicator), precoding matrix index (PMI: Precoding Matrix Indicator), precoding type index (PTI: Precoding Type Indicator), and rank index corresponding to the CSI. And can be used to specify (represent) a suitable modulation scheme and coding rate, a suitable precoding matrix, a suitable PMI type, and a suitable rank, respectively. Each Indicator may be written as Indication. In addition, for CQI and PMI, wideband CQI and PMI assuming transmission using all resource blocks in one cell and some continuous resource blocks (subbands) in one cell were used. It is classified into subband CQI and PMI assuming transmission. In addition to the normal type of PMI that expresses one suitable precoding matrix with one PMI, the PMI uses two types of PMIs, the first PMI and the second PMI. There is a type of PMI that represents a recording matrix.
 例えば、端末装置1は、下りリンク物理リソースブロックのグループを占領し、CQIインデックスに対応する変調方式およびトランスポートブロックサイズの組み合わせによって決定される一つのPDSCHトランスポートの誤り確率が所定の値(例えば、0.1)を超えないような条件を満たすCQIインデックスを報告する。 For example, the terminal apparatus 1 occupies a group of downlink physical resource blocks, and the error probability of one PDSCH transport determined by a combination of a modulation scheme and a transport block size corresponding to the CQI index has a predetermined value (for example, , 0.1), a CQI index that satisfies the condition is not reported.
 尚、CQI、PMI、および/または、RIの計算に用いられる下りリンク物理リソースブロックはCSI参照リソース(CSI reference resource)と称される。 Note that the downlink physical resource block used for the calculation of CQI, PMI and / or RI is referred to as a CSI reference resource (CSI reference resource).
 端末装置1は、CSIを基地局装置2に報告する。CSI報告は、周期的なCSI報告と非周期的なCSI報告がある。周期的なCSI報告では、端末装置1は、上位層で設定されたタイミングにおいて、CSIを報告する。非周期的なCSI報告では、端末装置1は、受信した上りリンクDCIフォーマット(上りリンクグラント)またはランダムアクセスレスポンスグラントに含まれるCSI要求の情報に基づいたタイミングにおいて、CSIを報告する。 The terminal device 1 reports the CSI to the base station device 2. The CSI report includes a periodic CSI report and an aperiodic CSI report. In periodic CSI reporting, the terminal device 1 reports CSI at the timing set in the higher layer. In the aperiodic CSI report, the terminal device 1 reports the CSI at a timing based on the information of the CSI request included in the received uplink DCI format (uplink grant) or random access response grant.
 端末装置1は、CQIおよび/またはPMIおよび/またはRIを報告する。尚、端末装置1は、上位層の設定によって、PMIおよび/またはRIを報告しなくてもよい。上位層の設定は、例えば、送信モード、フィードバックモード、報告タイプ、PMI/RIを報告するか否かのパラメータ、である。 The terminal device 1 reports CQI and / or PMI and / or RI. Note that the terminal apparatus 1 may not report PMI and / or RI depending on the setting of the upper layer. The settings of the upper layer are, for example, a transmission mode, a feedback mode, a report type, and a parameter indicating whether to report PMI / RI.
 また、端末装置1は、一つのサービングセルに対して一つまたは複数のCSIプロセス(CSI process)が設定されてもよい。CSIプロセスは、CSIの報告と対応付けられて設定される。一つのCSIプロセスは、一つのCSI-RSリソースと一つのCSI-IMリソースに関連付けられる。 Also, in the terminal device 1, one or a plurality of CSI processes (CSI processes) may be set for one serving cell. The CSI process is set in association with the CSI report. One CSI process is associated with one CSI-RS resource and one CSI-IM resource.
 物理下りリンク共用チャネル(PDSCH; Physical Downlink Shared Channel)は、下りリンクデータの他、ランダムアクセスに対する返答(ランダムアクセスレスポンス、RAR)、ページングや、物理報知情報チャネルで通知されない報知情報(システムインフォメーション)をレイヤ3メッセージとして端末装置に通知するためにも使用される。物理下りリンク共用チャネルの無線リソース割り当て情報は、物理下りリンク制御チャネルで示される。物理下りリンク共用チャネルは物理下りリンク制御チャネルが送信されるOFDMシンボル以外のOFDMシンボルに配置されて送信される。すなわち、物理下りリンク共用チャネルと物理下りリンク制御チャネルは1サブフレーム内で時分割多重されている。 The physical downlink shared channel (PDSCH; Physical Downlink Shared Channel), in addition to downlink data, provides response to random access (random access response, RAR), paging, and broadcast information (system information) that is not notified by the physical broadcast information channel. It is also used to notify the terminal device as a layer 3 message. The radio resource allocation information of the physical downlink shared channel is indicated by the physical downlink control channel. The physical downlink shared channel is transmitted after being arranged in an OFDM symbol other than the OFDM symbol through which the physical downlink control channel is transmitted. That is, the physical downlink shared channel and the physical downlink control channel are time division multiplexed within one subframe.
 物理上りリンク共用チャネル(PUSCH; Physical Uplink Shared Channel)は、主に上りリンクデータと上りリンク制御情報を送信し、CSIやACK/NACKなどの上りリンク制御情報を含めることも可能である。また、上りリンクデータの他、上位層制御情報であるレイヤ2メッセージおよびレイヤ3メッセージを端末装置から基地局装置に通知するためにも使用される。また、下りリンクと同様に物理上りリンク共用チャネルの無線リソース割り当て情報は、物理下りリンク制御チャネルで示される。 The physical uplink shared channel (PUSCH; Physical Uplink Shared Channel) mainly transmits uplink data and uplink control information, and can also include uplink control information such as CSI and ACK / NACK. In addition to uplink data, it is also used to notify the base station apparatus of layer 2 messages and layer 3 messages, which are higher layer control information. Similarly to the downlink, the radio resource allocation information of the physical uplink shared channel is indicated by the physical downlink control channel.
 上りリンクリファレンスシグナル(上りリンク参照信号;Uplink Reference Signal、上りリンクパイロット信号、上りリンクパイロットチャネルとも呼称する)は、基地局装置が、物理上りリンク制御チャネルPUCCHおよび/または物理上りリンク共用チャネルPUSCHを復調するために使用する復調参照信号(DMRS;Demodulation Reference Signal)と、基地局装置が、主に、上りリンクのチャネル状態を推定するために使用するサウンディング参照信号(SRS;Sounding Reference Signal)が含まれる。また、サウンディング参照信号には、周期的に送信される周期的サウンディング参照信号(Periodic SRS)と、基地局装置から指示されたときに送信される非周期的サウンディング参照信号(Aperiodic SRS)とがある。物理上りリンク共用チャネルPUSCHを復調するために使用する復調参照信号は、UL DMRSとも称す。 The uplink reference signal (uplink reference signal; Uplink Reference Signal, uplink pilot signal, also referred to as uplink pilot channel) is transmitted from the base station apparatus to the physical uplink control channel PUCCH and / or the physical uplink shared channel PUSCH. Includes demodulation reference signal (DMRS) used for demodulation and sounding reference signal (SRS) used mainly by base station equipment to estimate uplink channel conditions It is. The sounding reference signal includes a periodic sounding reference signal (Periodic SRS) transmitted periodically and an aperiodic sounding reference signal (Aperiodic SRS) transmitted when instructed by the base station apparatus. . The demodulation reference signal used for demodulating the physical uplink shared channel PUSCH is also referred to as UL DMRS.
 UL DMRSは、主にZadoff-Chu系列(ZC系列)に基づいて生成される。UL DMRSで用いられるZadoff-Chu系列の系列長は、割り当てられるサブキャリア数以下の素数のうちの最大値が用いられる。 UL DMRS is generated mainly based on Zadoff-Chu sequence (ZC sequence). As the sequence length of the Zadoff-Chu sequence used in UL DMRS, the maximum value among prime numbers equal to or less than the number of assigned subcarriers is used.
 物理ランダムアクセスチャネル(PRACH; Physical Random Access Channel)は、プリアンブル系列を通知(設定)するために使用されるチャネルであり、ガードタイムを有する。プリアンブル系列は、複数のシーケンスによって基地局装置へ情報を通知するように構成される。例えば、64種類のシーケンスが用意されている場合、6ビットの情報を基地局装置へ示すことができる。物理ランダムアクセスチャネルは、端末装置の基地局装置へのアクセス手段として用いられる。 A physical random access channel (PRACH) is a channel used to notify (set) a preamble sequence and has a guard time. The preamble sequence is configured to notify information to the base station apparatus by a plurality of sequences. For example, when 64 types of sequences are prepared, 6-bit information can be indicated to the base station apparatus. The physical random access channel is used as an access means for the terminal device to the base station device.
 端末装置は、SRに対する物理上りリンク制御チャネル未設定時の上りリンクの無線リソース要求のため、または、上りリンク送信タイミングを基地局装置の受信タイミングウィンドウに合わせるために必要な送信タイミング調整情報(タイミングアドバンス(Timing Advance;TA)コマンドとも呼ばれる)を基地局装置に要求するためなどに物理ランダムアクセスチャネルを用いる。また、基地局装置は、端末装置に対して物理下りリンク制御チャネルを用いてランダムアクセス手順の開始を要求することもできる。 The terminal apparatus transmits transmission timing adjustment information (timing required for an uplink radio resource request when the physical uplink control channel is not set for the SR, or for matching the uplink transmission timing with the reception timing window of the base station apparatus. The physical random access channel is used to request the base station apparatus for an advance (also called a timing advance (TA) command). Also, the base station apparatus can request the terminal apparatus to start a random access procedure using the physical downlink control channel.
 ランダムアクセスレスポンスは、端末装置のランダムアクセスに対する基地局装置からの返答情報である。ランダムアクセスレスポンスは、RA-RNTIによってスクランブルされたCRCを有するPDCCHの制御情報によりスケジュールされたPDSCHに含まれて基地局装置から送信される。ランダムアクセスレスポンスには、送信タイミング調整情報、上りリンクグラント(ランダムアクセスレスポンスに含まれる上りリンクグラントをランダムアクセスレスポンスグラントとも称する。)、一時的な端末装置の識別子であるTemporary C-RNTIの情報が含まれている。 The random access response is response information from the base station apparatus with respect to the random access of the terminal apparatus. The random access response is included in the PDSCH scheduled by the control information of the PDCCH having the CRC scrambled by the RA-RNTI, and is transmitted from the base station apparatus. The random access response includes transmission timing adjustment information, an uplink grant (the uplink grant included in the random access response is also referred to as a random access response grant), and Temporary C-RNTI information that is a temporary terminal device identifier. include.
 レイヤ3メッセージは、端末装置と基地局装置のRRC(無線リソース制御)層でやり取りされる制御平面(CP(Control-plane、C-Plane))のプロトコルで取り扱われるメッセージであり、RRCシグナリングまたはRRCメッセージと同義的に使用され得る。なお、制御平面に対し、ユーザデータ(上りリンクデータおよび下りリンクデータ)を取り扱うプロトコルのことをユーザ平面(UP(User-plane、U-Plane))と称する。ここで、物理層における送信データであるトランスポートブロックは、上位層におけるC-PlaneのメッセージとU-Planeのデータとを含む。なお、それ以外の物理チャネルは、詳細な説明は省略する。 The layer 3 message is a message handled in the protocol of the control plane (CP (Control-plane, C-Plane)) exchanged between the terminal device and the RRC (Radio Resource Control) layer of the base station device, and RRC signaling or RRC Can be used interchangeably with message. A protocol that handles user data (uplink data and downlink data) with respect to the control plane is referred to as a user plane (UP (User-plane, U-Plane)). Here, the transport block that is transmission data in the physical layer includes a C-Plane message and U-Plane data in the upper layer. Detailed descriptions of other physical channels are omitted.
 基地局装置によって制御される各周波数の通信可能範囲(通信エリア)はセルとしてみなされる。このとき、基地局装置がカバーする通信エリアは周波数毎にそれぞれ異なる広さ、異なる形状であっても良い。また、カバーするエリアが周波数毎に異なっていてもよい。基地局装置の種別やセル半径の大きさが異なるセルが、同一の周波数および/または異なる周波数のエリアに混在して一つの通信システムを形成している無線ネットワークのことを、ヘテロジニアスネットワークと称する。 The communicable range (communication area) of each frequency controlled by the base station apparatus is regarded as a cell. At this time, the communication area covered by the base station apparatus may have a different width and a different shape for each frequency. Moreover, the area to cover may differ for every frequency. A wireless network in which cells having different types of base station apparatuses and different cell radii are mixed in areas of the same frequency and / or different frequencies to form one communication system is referred to as a heterogeneous network. .
 端末装置は、セルの中を通信エリアとみなして動作する。端末装置が、あるセルから別のセルへ移動するときは、非無線接続時(非通信中)はセル再選択手順、無線接続時(通信中)はハンドオーバー手順によって別の適切なセルへ移動する。適切なセルとは、一般的に端末装置のアクセスが基地局装置から指定される情報に基づいて禁止されていないと判断したセルであって、かつ、下りリンクの受信品質が所定の条件を満足するセルのことを示す。 The terminal device operates by regarding the inside of the cell as a communication area. When a terminal device moves from one cell to another cell, it moves to another appropriate cell by a cell reselection procedure during non-wireless connection (during non-communication) and by a handover procedure during wireless connection (during communication). To do. An appropriate cell is a cell that is generally determined that access by a terminal device is not prohibited based on information specified by a base station device, and the downlink reception quality satisfies a predetermined condition. Indicates the cell to be used.
 また、端末装置と基地局装置は、キャリアアグリゲーションによって複数の異なる周波数バンド(周波数帯)の周波数(コンポーネントキャリア、または周波数帯域)を集約(アグリゲート、aggregate)して一つの周波数(周波数帯域)のように扱う技術を適用してもよい。コンポーネントキャリアには、上りリンクに対応する上りリンクコンポーネントキャリアと、下りリンクに対応する下りリンクコンポーネントキャリアとがある。本明細書において、周波数と周波数帯域は同義的に使用され得る。 In addition, the terminal device and the base station device aggregate (aggregate) frequencies (component carriers or frequency bands) of a plurality of different frequency bands (frequency bands) by carrier aggregation to obtain one frequency (frequency band). You may apply the technique to handle as follows. Component carriers include uplink component carriers corresponding to the uplink and downlink component carriers corresponding to the downlink. In this specification, a frequency and a frequency band may be used synonymously.
 例えば、キャリアアグリゲーションによって周波数帯域幅が20MHzのコンポーネントキャリアを5個集約した場合、キャリアアグリゲーションを可能な能力を持つ端末装置はこれらを100MHzの周波数帯域幅とみなして送受信を行う。なお、集約するコンポーネントキャリアは連続した周波数であっても、全てまたは一部が不連続となる周波数であってもよい。例えば、使用可能な周波数バンドが800MHz帯、2GHz帯、3.5GHz帯である場合、あるコンポーネントキャリアが800MHz帯、別のコンポーネントキャリアが2GHz帯、さらに別のコンポーネントキャリアが3.5GHz帯で送信されていてもよい。 For example, when five component carriers having a frequency bandwidth of 20 MHz are aggregated by carrier aggregation, a terminal device capable of carrier aggregation considers these as a frequency bandwidth of 100 MHz and performs transmission / reception. The component carriers to be aggregated may be continuous frequencies, or may be frequencies at which all or part of them are discontinuous. For example, when the usable frequency band is 800 MHz band, 2 GHz band, and 3.5 GHz band, one component carrier is transmitted in the 800 MHz band, another component carrier is transmitted in the 2 GHz band, and another component carrier is transmitted in the 3.5 GHz band. It may be.
 また、同一周波数帯の連続または不連続の複数のコンポーネントキャリアを集約することも可能である。各コンポーネントキャリアの周波数帯域幅は端末装置の受信可能周波数帯域幅(例えば20MHz)よりも狭い周波数帯域幅(例えば5MHzや10MHz)であっても良く、集約する周波数帯域幅が各々異なっていても良い。周波数帯域幅は、後方互換性を考慮して従来のセルの周波数帯域幅のいずれかと等しいことが望ましいが、従来のセルの周波数帯域と異なる周波数帯域幅でも構わない。 Also, it is possible to aggregate a plurality of continuous or discontinuous component carriers in the same frequency band. The frequency bandwidth of each component carrier may be a frequency bandwidth (for example, 5 MHz or 10 MHz) narrower than the receivable frequency bandwidth (for example, 20 MHz) of the terminal device, and the aggregated frequency bandwidth may be different from each other. . The frequency bandwidth is preferably equal to one of the frequency bandwidths of the conventional cell in consideration of backward compatibility, but may be a frequency bandwidth different from that of the conventional cell.
 また、後方互換性のないコンポーネントキャリア(キャリアタイプ)を集約してもよい。なお、基地局装置が端末装置に割り当てる(設定する、追加する)上りリンクコンポーネントキャリアの数は、下りリンクコンポーネントキャリアの数と同じか少ないことが望ましい。 Also, component carriers (carrier types) that are not backward compatible may be aggregated. Note that the number of uplink component carriers assigned (set or added) to the terminal device by the base station device is preferably equal to or less than the number of downlink component carriers.
 無線リソース要求のための上りリンク制御チャネルの設定が行われる上りリンクコンポーネントキャリアと、当該上りリンクコンポーネントキャリアとセル固有接続される下りリンクコンポーネントキャリアから構成されるセルは、プライマリセル(PCell:Primary cell)と称される。また、プライマリセル以外のコンポーネントキャリアから構成されるセルは、セカンダリセル(SCell:Secondary cell)と称される。端末装置は、プライマリセルでページングメッセージの受信、報知情報の更新の検出、初期アクセス手順、セキュリティ情報の設定などを行う一方、セカンダリセルではこれらを行わないでもよい。 A cell composed of an uplink component carrier in which an uplink control channel is set for a radio resource request and a downlink component carrier that is cell-specifically connected to the uplink component carrier is a primary cell (PCell: Primary cell). ). Moreover, the cell comprised from component carriers other than a primary cell is called a secondary cell (SCell: Secondary cell). The terminal device performs reception of a paging message in the primary cell, detection of update of broadcast information, initial access procedure, setting of security information, and the like, but may not perform these in the secondary cell.
 プライマリセルは活性化(Activation)および不活性化(Deactivation)の制御の対象外であるが(つまり必ず活性化しているとみなされる)、セカンダリセルは活性化および不活性化という状態(state)を持ち、これらの状態の変更は、基地局装置から明示的に指定されるほか、コンポーネントキャリア毎に端末装置に設定されるタイマーに基づいて状態が変更される。プライマリセルとセカンダリセルとを合わせてサービングセル(在圏セル)と称する。 The primary cell is not subject to activation and deactivation control (that is, it is always considered to be activated), but the secondary cell is in a state of activation and deactivation. These state changes are explicitly specified from the base station apparatus, and the state is changed based on a timer set in the terminal apparatus for each component carrier. The primary cell and the secondary cell are collectively referred to as a serving cell.
 なお、キャリアアグリゲーションは、複数のコンポーネントキャリア(周波数帯域)を用いた複数のセルによる通信であり、セル・アグリゲーションとも称される。なお、端末装置は、周波数毎にリレー局装置(またはリピーター)を介して基地局装置と無線接続されても良い。すなわち、本実施形態の基地局装置は、リレー局装置に置き換えることが出来る。 Note that carrier aggregation is communication by a plurality of cells using a plurality of component carriers (frequency bands), and is also referred to as cell aggregation. The terminal device may be wirelessly connected to the base station device via a relay station device (or repeater) for each frequency. That is, the base station apparatus of this embodiment can be replaced with a relay station apparatus.
 基地局装置は端末装置が該基地局装置で通信可能なエリアであるセルを周波数毎に管理する。一つの基地局装置が複数のセルを管理していてもよい。セルは、端末装置と通信可能なエリアの大きさ(セルサイズ)に応じて複数の種別に分類される。例えば、セルは、マクロセルとスモールセルに分類される。さらに、スモールセルは、そのエリアの大きさに応じて、フェムトセル、ピコセル、ナノセルに分類される。また、端末装置がある基地局装置と通信可能であるとき、その基地局装置のセルのうち、端末装置との通信に使用されるように設定されているセルは在圏セル(Serving cell)であり、その他の通信に使用されないセルは周辺セル(Neighboring cell)と称される。 The base station apparatus manages a cell, which is an area in which the terminal apparatus can communicate with the base station apparatus, for each frequency. One base station apparatus may manage a plurality of cells. The cells are classified into a plurality of types according to the size (cell size) of the area communicable with the terminal device. For example, the cell is classified into a macro cell and a small cell. Further, small cells are classified into femtocells, picocells, and nanocells according to the size of the area. In addition, when a terminal device can communicate with a certain base station device, a cell set to be used for communication with the terminal device among the cells of the base station device is a serving cell. A cell that is not used for other communication is referred to as a neighbor cell.
 言い換えると、キャリアアグリゲーションにおいて、設定された複数のサービングセルは、一つのプライマリセルと一つまたは複数のセカンダリセルとを含む。 In other words, in the carrier aggregation, a plurality of configured serving cells include one primary cell and one or a plurality of secondary cells.
 プライマリセルは、初期コネクション構築プロシージャが行なわれたサービングセル、コネクション再構築プロシージャを開始したサービングセル、または、ハンドオーバプロシージャにおいてプライマリセルと指示されたセルである。プライマリセルは、プライマリー周波数でオペレーションする。コネクションが(再)構築された時点、または、その後に、セカンダリセルが設定されてもよい。セカンダリセルは、セカンダリー周波数でオペレーションする。なお、コネクションは、RRCコネクションと称されてもよい。CAをサポートしている端末装置に対して、一つのプライマリセルと一つ以上のセカンダリセルで集約される。 The primary cell is a serving cell in which an initial connection establishment procedure has been performed, a serving cell that has started a connection reconstruction procedure, or a cell designated as a primary cell in a handover procedure. The primary cell operates at the primary frequency. The secondary cell may be set at the time when the connection is (re-) built or after that. The secondary cell operates at the secondary frequency. The connection may be referred to as an RRC connection. For a terminal device supporting CA, aggregation is performed by one primary cell and one or more secondary cells.
 本実施形態では、LAA(Licensed Assisted Access)が用いられる。LAAにおいて、プライマリセルは割り当て周波数が設定され(用いられ)、セカンダリセルの少なくとも一つは非割り当て周波数が設定される。非割り当て周波数が設定されるセカンダリセルは、割り当て周波数が設定されるプライマリセルまたはセカンダリセルからアシストされる。例えば、割り当て周波数が設定されるプライマリセルまたはセカンダリセルは、非割り当て周波数が設定されるセカンダリセルに対して、RRCのシグナリング、MACのシグナリング、および/またはPDCCHのシグナリングによって、設定および/または制御情報の通知を行う。本実施形態において、プライマリセルまたはセカンダリセルからアシストされるセルはLAAセルとも呼称される。LAAセルは、プライマリセルおよび/またはセカンダリセルとキャリアアグリゲーションによって、集約(アシスト)できる。また、LAAセルをアシストするプライマリセルまたはセカンダリセルはアシストセルとも呼称される。特に、セカンダリセルにおいてLAAが運用されることをLAAセカンダリセル運用、そしてそのセカンダリセルをLAAセカンダリセルとも呼称される。なお、LAAセカンダリセルは、フレーム構成タイプ3が適用されるサービングセル、5GHz帯の免許不要帯域で定義されるバンド46を用いて運用されるサービングセル、LAAセカンダリセル特有の設定(LAA-SCellConfiguration)が設定されるサービングセル、と同意義である。 In this embodiment, LAA (Licensed Assisted Access) is used. In LAA, an assigned frequency is set (used) in the primary cell, and an unassigned frequency is set in at least one of the secondary cells. A secondary cell in which an unassigned frequency is set is assisted from a primary cell or a secondary cell in which an assigned frequency is set. For example, a primary cell or a secondary cell in which an assigned frequency is set is set and / or controlled by a RRC signaling, a MAC signaling, and / or a PDCCH signaling with respect to a secondary cell in which an unassigned frequency is set. Notification of. In the present embodiment, a cell assisted from a primary cell or a secondary cell is also referred to as an LAA cell. LAA cells can be aggregated (assisted) by carrier aggregation with a primary cell and / or a secondary cell. The primary cell or secondary cell that assists the LAA cell is also referred to as an assist cell. In particular, LAA operation in a secondary cell is referred to as LAA secondary cell operation, and the secondary cell is also referred to as an LAA secondary cell. Note that the LAA secondary cell has a serving cell to which the frame configuration type 3 is applied, a serving cell that is operated using a band 46 defined by a 5 GHz band unlicensed band, and a LAA secondary cell-specific setting (LAA-SCellConfiguration). Is equivalent to a serving cell.
 LAAセルは、プライマリセルおよび/またはセカンダリセルとデュアルコネクティビティによって、集約(アシスト)されてもよい。 LAA cells may be aggregated (assisted) by primary connectivity and / or secondary cells and dual connectivity.
 以下では、デュアルコネクティビティの基本構造(アーキテクチャー)について説明する。例えば、端末装置1が、複数の基地局装置2(例えば、基地局装置2-1、基地局装置2-2)と同時に接続している場合を説明する。基地局装置2-1はマクロセルを構成する基地局装置であり、基地局装置2-2はスモールセルを構成する基地局装置であるとする。このように、端末装置1が、複数の基地局装置2に属する複数のセルを用いて同時に接続することをデュアルコネクティビティと称する。各基地局装置2に属するセルは同じ周波数で運用されていてもよいし、異なる周波数で運用されていてもよい。 Below, the basic structure (architecture) of dual connectivity will be explained. For example, a case where the terminal device 1 is simultaneously connected to a plurality of base station devices 2 (for example, the base station device 2-1 and the base station device 2-2) will be described. Assume that the base station device 2-1 is a base station device constituting a macro cell, and the base station device 2-2 is a base station device constituting a small cell. As described above, the simultaneous connection using the plurality of cells belonging to the plurality of base station apparatuses 2 by the terminal apparatus 1 is referred to as dual connectivity. The cells belonging to each base station apparatus 2 may be operated at the same frequency or may be operated at different frequencies.
 なお、キャリアアグリゲーションは、複数のセルを一つの基地局装置2が管理し、各セルの周波数が異なるという点がデュアルコネクティビティと異なる。換言すると、キャリアアグリゲーションは、一つの端末装置1と一つの基地局装置2とを、周波数が異なる複数のセルを介して接続させる技術であるのに対し、デュアルコネクティビティは、一つの端末装置1と複数の基地局装置2とを、周波数が同じまたは異なる複数のセルを介して接続させる技術である。 Note that carrier aggregation is different from dual connectivity in that one base station apparatus 2 manages a plurality of cells and the frequency of each cell is different. In other words, carrier aggregation is a technique for connecting one terminal apparatus 1 and one base station apparatus 2 via a plurality of cells having different frequencies, whereas dual connectivity is a technique for connecting one terminal apparatus 1 to one terminal apparatus 1. This is a technique for connecting a plurality of base station apparatuses 2 via a plurality of cells having the same or different frequencies.
 端末装置1と基地局装置2は、キャリアアグリゲーションに適用される技術を、デュアルコネクティビティに対して適用することができる。例えば、端末装置1と基地局装置2は、プライマリセルおよびセカンダリセルの割り当て、活性化/不活性化などの技術をデュアルコネクティビティにより接続されるセルに対して適用してもよい。 The terminal device 1 and the base station device 2 can apply a technique applied to carrier aggregation to dual connectivity. For example, the terminal device 1 and the base station device 2 may apply techniques such as primary cell and secondary cell allocation, activation / deactivation, and the like to cells connected by dual connectivity.
 デュアルコネクティビティにおいて、基地局装置2-1または基地局装置2-2は、MMEとSGWとバックボーン回線で接続されている。MMEは、MME(Mobility Management Entity)に対応する上位の制御局装置であり、端末装置1の移動性管理や認証制御(セキュリティ制御)および基地局装置2に対するユーザデータの経路を設定する役割などを持つ。SGWは、Serving Gateway(S-GW)に対応する上位の制御局装置であり、MMEによって設定された端末装置1へのユーザデータの経路に従ってユーザデータを伝送する役割などを持つ。 In the dual connectivity, the base station apparatus 2-1 or the base station apparatus 2-2 is connected to the MME, the SGW, and the backbone line. The MME is a higher-level control station device corresponding to MME (Mobility Management Entity), and plays a role of setting mobility of the terminal device 1 and authentication control (security control) and a route of user data to the base station device 2. Have. The SGW is a higher-level control station apparatus corresponding to Serving Gateway (S-GW), and has a role of transmitting user data according to a user data path to the terminal apparatus 1 set by the MME.
 また、デュアルコネクティビティにおいて、基地局装置2-1または基地局装置2-2とSGWの接続経路は、SGWインターフェースと称される。また、基地局装置2-1または基地局装置2-2とMMEの接続経路は、MMEインターフェースと称される。また、基地局装置2-1と基地局装置2-2の接続経路は、基地局インターフェースと称される。SGWインターフェースは、EUTRAにおいてS1-Uインターフェースとも称される。また、MMEインターフェースは、EUTRAにおいてS1-MMEインターフェースとも称される。また、基地局インターフェースは、EUTRAにおいてX2インターフェースとも称される。 Also, in dual connectivity, the connection path between the base station apparatus 2-1 or the base station apparatus 2-2 and the SGW is referred to as an SGW interface. Further, the connection path between the base station apparatus 2-1 or the base station apparatus 2-2 and the MME is referred to as an MME interface. The connection path between the base station apparatus 2-1 and the base station apparatus 2-2 is called a base station interface. The SGW interface is also referred to as an S1-U interface in EUTRA. The MME interface is also referred to as an S1-MME interface in EUTRA. The base station interface is also referred to as an X2 interface in EUTRA.
 デュアルコネクティビティを実現するアーキテクチャーの一例を説明する。デュアルコネクティビティにおいて、基地局装置2-1とMMEは、MMEインターフェースによって接続されている。また、基地局装置2-1とSGWは、SGWインターフェースによって接続されている。また、基地局装置2-1は、基地局インターフェースを介して、基地局装置2-2へMME、および/またはSGWとの通信経路を提供する。換言すると、基地局装置2-2は、基地局装置2-1を経由してMME、および/またはSGWと接続されている。 An example of an architecture that realizes dual connectivity will be described. In dual connectivity, the base station apparatus 2-1 and the MME are connected by an MME interface. The base station apparatus 2-1 and the SGW are connected by an SGW interface. Further, the base station device 2-1 provides a communication path with the MME and / or the SGW to the base station device 2-2 via the base station interface. In other words, the base station apparatus 2-2 is connected to the MME and / or SGW via the base station apparatus 2-1.
 また、デュアルコネクティビティを実現する別のアーキテクチャーの別の一例を説明する。デュアルコネクティビティにおいて、基地局装置2-1とMMEは、MMEインターフェースによって接続されている。また、基地局装置2-1とSGWは、SGWインターフェースによって接続されている。基地局装置2-1は、基地局インターフェースを介して、基地局装置2-2へMMEとの通信経路を提供する。換言すると、基地局装置2-2は、基地局装置2-1を経由してMMEと接続されている。また、基地局装置2-2は、SGWインターフェースを介してSGWと接続されている。 Also, another example of another architecture that realizes dual connectivity will be described. In dual connectivity, the base station apparatus 2-1 and the MME are connected by an MME interface. The base station apparatus 2-1 and the SGW are connected by an SGW interface. The base station apparatus 2-1 provides a communication path with the MME to the base station apparatus 2-2 via the base station interface. In other words, the base station device 2-2 is connected to the MME via the base station device 2-1. The base station device 2-2 is connected to the SGW via the SGW interface.
 なお、基地局装置2-2とMMEが、MMEインターフェースによって直接接続されるような構成であってもよい。 The base station device 2-2 and the MME may be directly connected by the MME interface.
 別の観点から説明すると、デュアルコネクティビティとは、少なくとも二つの異なるネットワークポイント(マスター基地局装置(MeNB:Master eNB)とセカンダリー基地局装置(SeNB:Secondary eNB))から提供される無線リソースを所定の端末装置が消費するオペレーションである。言い換えると、デュアルコネクティビティは、端末装置が、少なくとも二つのネットワークポイントでRRC接続を行なうことである。デュアルコネクティビティにおいて、端末装置は、RRC接続(RRC_CONNECTED)状態で、且つ、非理想的バックホール(non-ideal backhaul)によって接続されてもよい。 From another viewpoint, dual connectivity refers to radio resources provided from at least two different network points (a master base station device (MeNB: Master eNB) and a secondary base station device (SeNB: Secondary eNB)). This is an operation consumed by the terminal device. In other words, the dual connectivity is that the terminal device performs RRC connection at at least two network points. In dual connectivity, the terminal devices may be connected in a RRC connection (RRC_CONNECTED) state and by a non-ideal backhaul.
 デュアルコネクティビティにおいて、少なくともS1-MMEに接続され、コアネットワークのモビリティアンカーの役割を果たす基地局装置をマスター基地局装置と称される。また、端末装置に対して追加の無線リソースを提供するマスター基地局装置ではない基地局装置をセカンダリー基地局装置と称される。マスター基地局装置に関連されるサービングセルのグループをマスターセルグループ(MCG:Master Cell Group)、セカンダリー基地局装置に関連されるサービングセルのグループをセカンダリーセルグループ(SCG:Secondary Cell Group)と称される場合もある。なお、セルグループは、サービングセルグループであってもよい。 In the dual connectivity, a base station device connected to at least the S1-MME and serving as a mobility anchor of the core network is referred to as a master base station device. A base station device that is not a master base station device that provides additional radio resources to the terminal device is referred to as a secondary base station device. When the serving cell group associated with the master base station device is referred to as a master cell group (MCG), and the serving cell group associated with the secondary base station device is referred to as a secondary cell group (SCG). There is also. The cell group may be a serving cell group.
 デュアルコネクティビティにおいて、プライマリセルは、MCGに属する。また、SCGにおいて、プライマリセルに相当するセカンダリセルをプライマリセカンダリセル(pSCell:Primary Secondary Cell)と称する。なお、pSCellをスペシャルセルやスペシャルセカンダリーセル(Special SCell:Special Secondary Cell)と称する場合もある。スペシャルSCell(スペシャルSCellを構成する基地局装置)には、PCell(PCellを構成する基地局装置)の機能の一部(例えば、PUCCHを送受信する機能など)がサポートされてもよい。また、pSCellには、PCellの一部の機能だけがサポートされてもよい。例えば、pSCellには、PDCCHを送信する機能がサポートされてもよい。また、pSCellには、CSS(共通サーチスペース)またはUSS(UE個別サーチスペース)とは異なるサーチスペースを用いて、PDCCH送信を行なう機能がサポートされてもよい。例えば、USSとは異なるサーチスペースは、仕様で規定された値に基づいて決まるサーチスペース、C-RNTIとは異なるRNTIに基づいて決まるサーチスペース、RNTIとは異なる上位レイヤで設定される値に基づいて決まるサーチスペースなどである。また、pSCellは、常に、起動の状態であってもよい。また、pSCellは、PUCCHを受信できるセルである。 In dual connectivity, the primary cell belongs to the MCG. In SCG, a secondary cell corresponding to a primary cell is referred to as a primary secondary cell (pSCell: Primary Secondary Cell). Note that the pSCell may be referred to as a special cell or a special secondary cell (Special SCell: Special Secondary Cell). The special SCell (base station apparatus configuring the special SCell) may support a part of the function of the PCell (base station apparatus configuring the PCell) (for example, a function of transmitting and receiving PUCCH). Moreover, only some functions of PCell may be supported by pSCell. For example, the pSCell may support a function of transmitting PDCCH. Further, the pSCell may support a function of performing PDCCH transmission using a search space different from CSS (common search space) or USS (UE dedicated search space). For example, a search space different from USS is based on a search space determined based on a value defined in the specification, a search space determined based on an RNTI different from C-RNTI, and a value set in an upper layer different from RNTI. Search space determined by Further, the pSCell may always be in an activated state. Moreover, pSCell is a cell which can receive PUCCH.
 デュアルコネクティビティにおいて、データ無線ベアラ(DRB:Date Radio Bearer)は、MeNBとSeNBで個別に割り当てられてもよい。一方、シグナリング無線ベアラ(SRB:Signalling Radio Bearer)はMeNBだけに割り当てられてもよい。デュアルコネクティビティにおいて、MCGとSCGまたはPCellとpSCellでは、それぞれ個別にデュプレックスモードが設定されてもよい。デュアルコネクティビティにおいて、MCGとSCGまたはPCellとpSCellで、同期されなくてもよい。デュアルコネクティビティにおいて、MCGとSCGそれぞれにおいて、複数のタイミング調整のためのパラメータ(TAG:Timing Advancce Group)が設定されてもよい。つまり、端末装置は、各CG内において、異なる複数のタイミングでの上りリンク送信が可能である。 In dual connectivity, a data radio bearer (DRB: Date Radio Bearer) may be individually allocated in the MeNB and SeNB. On the other hand, a signaling radio bearer (SRB: Signaling Radio Bearer) may be allocated only to the MeNB. In dual connectivity, duplex modes may be set individually for MCG and SCG or PCell and pSCell, respectively. In dual connectivity, MCG and SCG or PCell and pSCell may not be synchronized. In the dual connectivity, a plurality of timing adjustment parameters (TAG: Timing Advance Group) may be set in each of the MCG and the SCG. That is, the terminal device can perform uplink transmission at different timings in each CG.
 デュアルコネクティビティにおいて、端末装置は、MCG内のセルに対応するUCIは、MeNB(PCell)のみに送信し、SCG内のセルに対応するUCIは、SeNB(pSCell)のみに送信することができる。例えば、UCIはSR、HARQ-ACK、および/またはCSIである。また、それぞれのUCIの送信において、PUCCHおよび/またはPUSCHを用いた送信方法はそれぞれのセルグループで適用される。 In the dual connectivity, the terminal device can transmit the UCI corresponding to the cell in the MCG only to the MeNB (PCell), and the UCI corresponding to the cell in the SCG can be transmitted only to the SeNB (pSCell). For example, UCI is SR, HARQ-ACK, and / or CSI. Further, in each UCI transmission, a transmission method using PUCCH and / or PUSCH is applied to each cell group.
 プライマリセルでは、すべての信号が送受信可能であるが、セカンダリセルでは、送受信できない信号がある。例えば、PUCCH(Physical Uplink Control Channel)は、プライマリセルでのみ送信される。また、PRACH(Physical Random Access Channel)は、セル間で、複数のTAG(Timing Advance Group)が設定されない限り、プライマリセルでのみ送信される。また、PBCH(Physical Broadcast Channel)は、プライマリセルでのみ送信される。また、MIB(Master Information Block)は、プライマリセルでのみ送信される。プライマリセカンダリセルでは、プライマリセルで送受信可能な信号が送受信される。例えば、PUCCHは、プライマリセカンダリセルで送信されてもよい。また、PRACHは、複数のTAGが設定されているかにかかわらず、プライマリセカンダリセルで送信されてもよい。また、PBCHやMIBがプライマリセカンダリセルで送信されてもよい。 All signals can be transmitted / received in the primary cell, but there are signals that cannot be transmitted / received in the secondary cell. For example, PUCCH (Physical Uplink Control Channel) is transmitted only in the primary cell. Further, PRACH (Physical Random Access Channel) is transmitted only in the primary cell unless a plurality of TAGs (Timing Advance Group) are set between cells. Also, PBCH (Physical Broadcast Channel) is transmitted only in the primary cell. Also, MIB (Master Information Block) is transmitted only in the primary cell. In the primary secondary cell, signals that can be transmitted and received in the primary cell are transmitted and received. For example, PUCCH may be transmitted in the primary secondary cell. Moreover, PRACH may be transmitted by a primary secondary cell irrespective of whether several TAG is set. Moreover, PBCH and MIB may be transmitted in the primary secondary cell.
 プライマリセルでは、RLF(Radio Link Failure)が検出される。セカンダリセルでは、RLFが検出される条件が整ってもRLFが検出されたと認識しない。プライマリセカンダリセルでは、条件を満たせば、RLFが検出される。プライマリセカンダリセルにおいて、RLFが検出された場合、プライマリセカンダリセルの上位層は、プライマリセルの上位層へRLFが検出されたことを通知する。プライマリセルでは、SPS(Semi-Persistent Scheduling)やDRX(Discontinuous Reception)を行なってもよい。セカンダリセルでは、プライマリセルと同じDRXを行なってもよい。セカンダリセルにおいて、MACの設定に関する情報/パラメータは、基本的に、同じセルグループのプライマリセル/プライマリセカンダリセルと共有している。一部のパラメータ(例えば、sTAG-Id)は、セカンダリセル毎に設定されてもよい。一部のタイマーやカウンタが、プライマリセルおよび/またはプライマリセカンダリセルに対してのみ適用されてもよい。セカンダリセルに対してのみ、適用されるタイマーやカウンタが設定されてもよい。 In the primary cell, RLF (Radio Link Failure) is detected. The secondary cell does not recognize that the RLF is detected even if the condition for detecting the RLF is satisfied. In the primary secondary cell, the RLF is detected if the condition is satisfied. When the RLF is detected in the primary secondary cell, the upper layer of the primary secondary cell notifies the upper layer of the primary cell that the RLF has been detected. In the primary cell, SPS (Semi-Persistent Scheduling) or DRX (Discontinuous Reception) may be performed. The secondary cell may perform the same DRX as the primary cell. In the secondary cell, information / parameters related to MAC settings are basically shared with the primary cell / primary secondary cell of the same cell group. Some parameters (for example, sTAG-Id) may be set for each secondary cell. Some timers and counters may be applied only to the primary cell and / or the primary secondary cell. A timer or a counter that is applied only to the secondary cell may be set.
 LAAセルにデュアルコネクティビティが適用される場合の一例において、MCG(基地局装置2-1)はプライマリセルを構成する基地局装置であり、SCG(基地局装置2-2)はLAAセルを構成する基地局装置である。すなわち、LAAセルは、SCGのpSCellとして設定される。 In an example in which dual connectivity is applied to the LAA cell, the MCG (base station apparatus 2-1) is a base station apparatus constituting the primary cell, and the SCG (base station apparatus 2-2) constitutes the LAA cell. It is a base station device. That is, the LAA cell is set as a pSCell of SCG.
 LAAセルにデュアルコネクティビティが適用される場合の別の一例において、MCGはプライマリセルを構成する基地局装置であり、SCGはpSCellおよびLAAセルを構成する基地局装置である。すなわち、LAAセルは、SCGにおいて、pSCellからアシストされる。なお、SCGにセカンダリセルがさらに設定された場合、LAAセルは、そのセカンダリセルからアシストされてもよい。 In another example when dual connectivity is applied to the LAA cell, the MCG is a base station apparatus that constitutes a primary cell, and the SCG is a base station apparatus that constitutes a pSCell and an LAA cell. That is, the LAA cell is assisted from the pSCell in the SCG. When a secondary cell is further set in the SCG, the LAA cell may be assisted from the secondary cell.
 LAAセルにデュアルコネクティビティが適用される場合の別の一例において、MCGはプライマリセルおよびLAAセルを構成する基地局装置であり、SCGはpSCellを構成する基地局装置である。すなわち、LAAセルは、MCGにおいて、プライマリセルからアシストされる。なお、MCGにセカンダリセルがさらに設定された場合、LAAセルは、そのセカンダリセルからアシストされてもよい。 In another example when dual connectivity is applied to the LAA cell, the MCG is a base station apparatus that constitutes a primary cell and an LAA cell, and the SCG is a base station apparatus that constitutes a pSCell. That is, the LAA cell is assisted from the primary cell in the MCG. When a secondary cell is further set in the MCG, the LAA cell may be assisted from the secondary cell.
 図3は、本実施形態に係る基地局装置2のブロック構成の一例を示す概略図である。基地局装置2は、上位層(上位層制御情報通知部、上位層処理部)301、制御部(基地局制御部)302、コードワード生成部303、下りリンクサブフレーム生成部304、OFDM信号送信部(下りリンク送信部)306、送信アンテナ(基地局送信アンテナ)307、受信アンテナ(基地局受信アンテナ)308、SC-FDMA信号受信部(CSI受信部)309、上りリンクサブフレーム処理部310を有する。下りリンクサブフレーム生成部304は、下りリンク参照信号生成部305を有する。また、上りリンクサブフレーム処理部310は、上りリンク制御情報抽出部(CSI取得部)311を有する。 FIG. 3 is a schematic diagram illustrating an example of a block configuration of the base station apparatus 2 according to the present embodiment. The base station apparatus 2 includes an upper layer (upper layer control information notification unit, upper layer processing unit) 301, a control unit (base station control unit) 302, a codeword generation unit 303, a downlink subframe generation unit 304, and an OFDM signal transmission. Unit (downlink transmission unit) 306, transmission antenna (base station transmission antenna) 307, reception antenna (base station reception antenna) 308, SC-FDMA signal reception unit (CSI reception unit) 309, and uplink subframe processing unit 310 Have. The downlink subframe generation unit 304 includes a downlink reference signal generation unit 305. Further, the uplink subframe processing unit 310 includes an uplink control information extraction unit (CSI acquisition unit) 311.
 図4は、本実施形態に係る端末装置1のブロック構成の一例を示す概略図である。端末装置1は、受信アンテナ(端末受信アンテナ)401、OFDM信号受信部(下りリンク受信部)402、下りリンクサブフレーム処理部403、トランスポートブロック抽出部(データ抽出部)405、制御部(端末制御部)406、上位層(上位層制御情報取得部、上位層処理部)407、チャネル状態測定部(CSI生成部)408、上りリンクサブフレーム生成部409、SC-FDMA信号送信部(UCI送信部)411、送信アンテナ(端末送信アンテナ)412を有する。下りリンクサブフレーム処理部403は、下りリンク参照信号抽出部404を有する。また、上りリンクサブフレーム生成部409は、上りリンク制御情報生成部(UCI生成部)410を有する。 FIG. 4 is a schematic diagram illustrating an example of a block configuration of the terminal device 1 according to the present embodiment. The terminal device 1 includes a reception antenna (terminal reception antenna) 401, an OFDM signal reception unit (downlink reception unit) 402, a downlink subframe processing unit 403, a transport block extraction unit (data extraction unit) 405, a control unit (terminal) Control unit) 406, upper layer (upper layer control information acquisition unit, upper layer processing unit) 407, channel state measurement unit (CSI generation unit) 408, uplink subframe generation unit 409, SC-FDMA signal transmission unit (UCI transmission) Part) 411 and a transmission antenna (terminal transmission antenna) 412. The downlink subframe processing unit 403 includes a downlink reference signal extraction unit 404. Also, the uplink subframe generation unit 409 includes an uplink control information generation unit (UCI generation unit) 410.
 まず、図3および図4を用いて、下りリンクデータの送受信の流れについて説明する。基地局装置2において、制御部302は、下りリンクにおける変調方式および符号化率などを示すMCS(Modulation and Coding Scheme)、データ送信に用いるRBを示す下りリンクリソース割り当て、HARQの制御に用いる情報(リダンダンシーバージョン、HARQプロセス番号、新データ指標)を保持し、これらに基づいてコードワード生成部303や下りリンクサブフレーム生成部304を制御する。上位層301から送られてくる下りリンクデータ(下りリンクトランスポートブロックとも称す)は、コードワード生成部303において、制御部302の制御の下で、誤り訂正符号化やレートマッチング処理などの処理が施され、コードワードが生成される。一つのセルにおける一つのサブフレームにおいて、最大二つのコードワードが同時に送信される。下りリンクサブフレーム生成部304では、制御部302の指示により、下りリンクサブフレームが生成される。まず、コードワード生成部303において生成されたコードワードは、PSK(Phase Shift Keying)変調やQAM(Quadrature Amplitude Modulation)変調などの変調処理により、変調シンボル系列に変換される。また、変調シンボル系列は、一部のRB内のREにマッピングされ、プレコーディング処理によりアンテナポート毎の下りリンクサブフレームが生成される。このとき、上位層301から送られてくる送信データ系列は、上位層における制御情報(例えば専用(個別)RRC(Radio Resource Control)シグナリング)である上位層制御情報を含む。また、下りリンク参照信号生成部305では、下りリンク参照信号が生成される。下りリンクサブフレーム生成部304は、制御部302の指示により、下りリンク参照信号を下りリンクサブフレーム内のREにマッピングする。下りリンクサブフレーム生成部304で生成された下りリンクサブフレームは、OFDM信号送信部306においてOFDM信号に変調され、送信アンテナ307を介して送信される。なお、ここではOFDM信号送信部306と送信アンテナ307を一つずつ有する構成を例示しているが、複数のアンテナポートを用いて下りリンクサブフレームを送信する場合は、OFDM信号送信部306と送信アンテナ307とを複数有する構成であってもよい。また、下りリンクサブフレーム生成部304は、PDCCHやEPDCCHなどの物理層の下りリンク制御チャネルを生成して下りリンクサブフレーム内のREにマッピングする能力も有することができる。複数の基地局装置(基地局装置2-1および基地局装置2-2)は、それぞれ個別の下りリンクサブフレームを送信する。なお、LAAセルで運用される基地局装置2は、チャネルがアイドルかビジーかを判定するCCAチェック部312を含んで構成される。CCAチェック部312は、受信アンテナ308からの受信電力を用いて判定する方法や、上りリンクサブフレーム処理部310からの特定の信号を検出したか否かで判定する方法などが実装される。CCAチェック部312の判定結果は制御部302に送られ、送信の制御に用いられる。 First, the flow of downlink data transmission / reception will be described using FIG. 3 and FIG. In the base station apparatus 2, the control unit 302 includes MCS (Modulation and Coding Scheme) indicating a downlink modulation scheme and coding rate, downlink resource allocation indicating an RB used for data transmission, and information used for HARQ control ( The redundancy version, HARQ process number, and new data index) are stored, and the codeword generation unit 303 and the downlink subframe generation unit 304 are controlled based on these. The downlink data (also referred to as downlink transport block) sent from the upper layer 301 is subjected to processing such as error correction coding and rate matching processing in the codeword generation unit 303 under the control of the control unit 302. And a codeword is generated. In one subframe in one cell, a maximum of two codewords are transmitted simultaneously. The downlink subframe generation unit 304 generates a downlink subframe according to an instruction from the control unit 302. First, the codeword generated by the codeword generation unit 303 is converted into a modulation symbol sequence by a modulation process such as PSK (Phase Shift Keying) modulation or QAM (Quadrature Amplitude Modulation) modulation. Also, the modulation symbol sequence is mapped to REs in some RBs, and a downlink subframe for each antenna port is generated by precoding processing. At this time, the transmission data sequence sent from the higher layer 301 includes higher layer control information which is control information (for example, dedicated (individual) RRC (Radio Resource Control) signaling) in the higher layer. Also, the downlink reference signal generation section 305 generates a downlink reference signal. The downlink subframe generation unit 304 maps the downlink reference signal to the RE in the downlink subframe according to an instruction from the control unit 302. The downlink subframe generated by the downlink subframe generation unit 304 is modulated into an OFDM signal by the OFDM signal transmission unit 306 and transmitted via the transmission antenna 307. Here, a configuration having one OFDM signal transmission unit 306 and one transmission antenna 307 is illustrated here, but when transmitting a downlink subframe using a plurality of antenna ports, transmission is performed with the OFDM signal transmission unit 306. A configuration having a plurality of antennas 307 may be used. Further, the downlink subframe generation unit 304 can also have a capability of generating a physical layer downlink control channel such as PDCCH or EPDCCH and mapping it to the RE in the downlink subframe. A plurality of base station apparatuses (base station apparatus 2-1 and base station apparatus 2-2) each transmit an individual downlink subframe. The base station apparatus 2 operated in the LAA cell includes a CCA check unit 312 that determines whether the channel is idle or busy. The CCA check unit 312 is implemented with a method of determining using received power from the reception antenna 308, a method of determining whether a specific signal from the uplink subframe processing unit 310 is detected, or the like. The determination result of the CCA check unit 312 is sent to the control unit 302 and used for transmission control.
 端末装置1では、受信アンテナ401を介して、OFDM信号受信部402においてOFDM信号が受信され、OFDM復調処理が施される。下りリンクサブフレーム処理部403は、まずPDCCHやEPDCCHなどの物理層の下りリンク制御チャネルを検出する。より具体的には、下りリンクサブフレーム処理部403は、PDCCHやEPDCCHが割り当てられ得る領域においてPDCCHやEPDCCHが送信されたものとしてデコードし、予め付加されているCRC(Cyclic Redundancy Check)ビットを確認する(ブラインドデコーディング)。すなわち、下りリンクサブフレーム処理部403は、PDCCHやEPDCCHをモニタリングする。CRCビットが予め基地局装置から割り当てられたID(C-RNTI(Cell-Radio Network Temporary Identifier)、SPS-C-RNTI(Semi Persistent Scheduling―C-RNTI)など一つの端末に対して一つ割り当てられる端末固有識別子、あるいはTemporaly C-RNTI)と一致する場合、下りリンクサブフレーム処理部403は、PDCCHあるいはEPDCCHを検出できたものと認識し、検出したPDCCHあるいはEPDCCHに含まれる制御情報を用いてPDSCHを取り出す。制御部406は、制御情報に基づく下りリンクにおける変調方式および符号化率などを示すMCS、下りリンクデータ送信に用いるRBを示す下りリンクリソース割り当て、HARQの制御に用いる情報を保持し、これらに基づいて下りリンクサブフレーム処理部403やトランスポートブロック抽出部405などを制御する。より具体的には、制御部406は、下りリンクサブフレーム生成部304におけるREマッピング処理や変調処理に対応するREデマッピング処理や復調処理などを行うように制御する。受信した下りリンクサブフレームから取り出されたPDSCHは、トランスポートブロック抽出部405に送られる。また、下りリンクサブフレーム処理部403内の下りリンク参照信号抽出部404は、下りリンクサブフレームから下りリンク参照信号を取り出す。トランスポートブロック抽出部405では、コードワード生成部303におけるレートマッチング処理、誤り訂正符号化に対応するレートマッチング処理、誤り訂正復号化などが施され、トランスポートブロックが抽出され、上位層407に送られる。トランスポートブロックには、上位層制御情報が含まれており、上位層407は上位層制御情報に基づいて制御部406に必要な物理層パラメータを知らせる。なお、複数の基地局装置2(基地局装置2-1および基地局装置2-2)は、それぞれ個別の下りリンクサブフレームを送信しており、端末装置1ではこれらを受信するため、上述の処理を複数の基地局装置2毎の下りリンクサブフレームに対して、それぞれ行うようにしてもよい。このとき、端末装置1は複数の下りリンクサブフレームが複数の基地局装置2から送信されていると認識してもよいし、認識しなくてもよい。認識しない場合、端末装置1は、単に複数のセルにおいて複数の下りリンクサブフレームが送信されていると認識するだけでもよい。また、トランスポートブロック抽出部405では、トランスポートブロックが正しく検出できたか否かを判定し、判定結果は制御部406に送られる。なお、LAAセルで運用される端末装置1は、チャネルがアイドルかビジーかを判定するCCAチェック部413を含んで構成される。CCAチェック部413は、受信アンテナ401からの受信電力を用いて判定する方法や、下りリンクサブフレーム処理部403からの特定の信号を検出したか否かで判定する方法などが実装される。CCAチェック部413の判定結果は制御部406に送られ、送信の制御に用いられる。 In the terminal device 1, the OFDM signal is received by the OFDM signal reception unit 402 via the reception antenna 401, and subjected to OFDM demodulation processing. The downlink subframe processing unit 403 first detects a downlink control channel in the physical layer such as PDCCH and EPDCCH. More specifically, the downlink subframe processing unit 403 decodes the PDCCH or EPDCCH transmitted in an area where the PDCCH or EPDCCH can be allocated, and confirms a CRC (Cyclic Redundancy Check) bit added in advance. (Blind decoding) That is, the downlink subframe processing unit 403 monitors PDCCH and EPDCCH. One CRC bit is allocated to one terminal such as an ID (C-RNTI (Cell-Radio Network Temporary Identifier) or SPS-C-RNTI (Semi Persistent Scheduling-C-RNTI)) previously allocated from the base station apparatus. If it matches the terminal unique identifier or Temporary C-RNTI), the downlink subframe processing unit 403 recognizes that the PDCCH or EPDCCH has been detected, and uses the control information included in the detected PDCCH or EPDCCH to perform PDSCH. Take out. The control unit 406 holds MCS indicating the modulation scheme and coding rate in the downlink based on the control information, downlink resource allocation indicating the RB used for downlink data transmission, and information used for HARQ control, based on these And controls the downlink subframe processing unit 403, the transport block extraction unit 405, and the like. More specifically, the control unit 406 performs control so as to perform RE demapping processing and demodulation processing corresponding to the RE mapping processing and modulation processing in the downlink subframe generation unit 304. The PDSCH extracted from the received downlink subframe is sent to the transport block extraction unit 405. Also, the downlink reference signal extraction unit 404 in the downlink subframe processing unit 403 extracts a downlink reference signal from the downlink subframe. The transport block extraction unit 405 performs rate matching processing in the codeword generation unit 303, rate matching processing corresponding to error correction coding, error correction decoding, and the like, and extracts transport blocks and sends them to the upper layer 407. It is done. The transport block includes upper layer control information, and the upper layer 407 informs the control unit 406 of necessary physical layer parameters based on the upper layer control information. The plurality of base station apparatuses 2 (base station apparatus 2-1 and base station apparatus 2-2) transmit individual downlink subframes, and the terminal apparatus 1 receives these, so that The processing may be performed for each downlink subframe for each of the plurality of base station apparatuses 2. At this time, the terminal device 1 may or may not recognize that a plurality of downlink subframes are transmitted from the plurality of base station devices 2. When not recognizing, the terminal device 1 may simply recognize that a plurality of downlink subframes are transmitted in a plurality of cells. Further, the transport block extraction unit 405 determines whether or not the transport block has been correctly detected, and the determination result is sent to the control unit 406. Note that the terminal device 1 operated in the LAA cell includes a CCA check unit 413 that determines whether the channel is idle or busy. The CCA check unit 413 is implemented with a method of determining using received power from the receiving antenna 401, a method of determining whether a specific signal from the downlink subframe processing unit 403 is detected, or the like. The determination result of the CCA check unit 413 is sent to the control unit 406 and used for transmission control.
 次に、上りリンク信号の送受信の流れについて説明する。端末装置1では制御部406の指示の下で、下りリンク参照信号抽出部404で抽出された下りリンク参照信号がチャネル状態測定部408に送られ、チャネル状態測定部408においてチャネル状態および/または干渉が測定され、さらに測定されたチャネル状態および/または干渉に基づいて、CSIが算出される。また、制御部406は、トランスポートブロックが正しく検出できたか否かの判定結果に基づいて、上りリンク制御情報生成部410にHARQ-ACK(DTX(未送信)、ACK(検出成功)またはNACK(検出失敗))の生成および下りリンクサブフレームへのマッピングを指示する。端末装置1は、これらの処理を複数のセル毎の下りリンクサブフレームに対して、それぞれ行う。上りリンク制御情報生成部410では、算出されたCSIおよび/またはHARQ-ACKを含むPUCCHが生成される。上りリンクサブフレーム生成部409では、上位層407から送られる上りリンクデータを含むPUSCHと、上りリンク制御情報生成部410において生成されるPUCCHとが上りリンクサブフレーム内のRBにマッピングされ、上りリンクサブフレームが生成される。上りリンクサブフレームは、SC-FDMA信号送信部411において、SC-FDMA変調が施されSC-FDMA信号が生成され、送信アンテナ412を介して送信される。 Next, the flow of uplink signal transmission / reception will be described. In the terminal device 1, under the instruction of the control unit 406, the downlink reference signal extracted by the downlink reference signal extraction unit 404 is sent to the channel state measurement unit 408, and the channel state measurement unit 408 performs channel state and / or interference. And CSI is calculated based on the measured channel conditions and / or interference. In addition, based on the determination result of whether or not the transport block has been correctly detected, the control unit 406 sends the HARQ-ACK (DTX (not transmitted), ACK (successful detection), or NACK ( Detection failure)) and mapping to downlink subframes. The terminal device 1 performs these processes on the downlink subframes for each of a plurality of cells. Uplink control information generating section 410 generates PUCCH including the calculated CSI and / or HARQ-ACK. In the uplink subframe generation unit 409, the PUSCH including the uplink data sent from the higher layer 407 and the PUCCH generated in the uplink control information generation unit 410 are mapped to the RB in the uplink subframe, and the uplink A subframe is generated. The uplink subframe is subjected to SC-FDMA modulation in the SC-FDMA signal transmission unit 411 to generate an SC-FDMA signal and transmitted via the transmission antenna 412.
 ここで、端末装置1はCRSまたはCSI-RS(非ゼロ電力CSI-RS)に基づいてCQIの値を計算するためのチャネル測定を行う(導出する)。端末装置1が、CRS、または、CSI-RSに基づいて導出するかは上位層シグナルによって切り替えられる。具体的には、CSI-RSが設定される送信モードにおいては、CSI-RSのみに基づいてCQIを計算するためのチャネル測定を導出する。具体的には、CSI-RSが設定されない送信モードにおいては、CRSに基づいてCQIを計算するためのチャネル測定を導出する。CSIを計算するためのチャネル測定で用いられるRSは、第1のRSとも呼称される。 Here, the terminal device 1 performs (derived) channel measurement for calculating the value of CQI based on CRS or CSI-RS (non-zero power CSI-RS). Whether the terminal device 1 derives based on CRS or CSI-RS is switched by an upper layer signal. Specifically, in a transmission mode in which CSI-RS is set, channel measurement for calculating CQI is derived based only on CSI-RS. Specifically, in a transmission mode in which CSI-RS is not set, channel measurement for calculating CQI is derived based on CRS. An RS used in channel measurement for calculating CSI is also referred to as a first RS.
 ここで、端末装置1は、上位層で設定された場合、CSI-IMまたは第2のRSに基づいてCQIを計算するための干渉測定を行う(導出する)。具体的には、CSI-IMが設定される送信モードにおいて、CSI-IMに基づいてCQIを計算するための干渉測定を導出する。具体的には、CSI-IMが設定される送信モードにおいて、CSIプロセスに関連付けられたCSI-IMリソースのみに基づいてそのCSIプロセスに対応するCQIの値を計算するための干渉測定を導出する。CSIを計算するためのチャネル測定で用いられるRSまたはIMは、第2のRSとも呼称される。 Here, when the terminal apparatus 1 is set in an upper layer, the terminal apparatus 1 performs (derived) interference measurement for calculating the CQI based on the CSI-IM or the second RS. Specifically, in a transmission mode in which CSI-IM is set, an interference measurement for calculating CQI is derived based on CSI-IM. Specifically, in a transmission mode in which CSI-IM is configured, an interference measurement for deriving a CQI value corresponding to the CSI process is derived based only on the CSI-IM resource associated with the CSI process. The RS or IM used in channel measurement for calculating CSI is also referred to as a second RS.
 尚、端末装置1は、CRSに基づいてCQIを計算するための干渉測定を行ってもよい(導出してもよい)。例えば、CSI-IMが設定されない場合に、CRSに基づいてCQIを計算するための干渉測定を導出してもよい。 In addition, the terminal device 1 may perform interference measurement for calculating CQI based on CRS (may be derived). For example, if CSI-IM is not configured, an interference measurement for calculating CQI based on CRS may be derived.
 尚、CQIを計算するためのチャネルおよび/または干渉は、同様にPMIまたはRIを計算するためのチャネルおよび/または干渉に用いてもよい。 Note that the channel and / or interference for calculating CQI may be used for the channel and / or interference for calculating PMI or RI as well.
 PUSCHは、上りリンクグラントによってスケジュールされる。上りリンクグラントは、例えば、DCIフォーマット0やDCIフォーマット4によって定義される。 PUSCH is scheduled by the uplink grant. The uplink grant is defined by, for example, DCI format 0 or DCI format 4.
 一つのDCIフォーマット0は、一つの上りリンクセルでのPUSCHのスケジューリングに用いられる。 One DCI format 0 is used for PUSCH scheduling in one uplink cell.
 キャリアインディケータ(Carrier indicator)、フォーマット0/フォーマット1Aの区別に対するフラグ(Flag for format0/format1A differentiation)、周波数ホッピングフラグ(Frequency hopping flag)、リソースブロックアサインメントおよびホッピングリソース割当(Resource block assignment and hopping resource allocation)、変調および符号方式と冗長バージョン(Modulation and coding scheme and redundancy version)、新データインディケータ(New data indicator)、スケジュールされたPUSCHに対するTPCコマンド(TPC command for scheduled PUSCH)、DMRSに対するサイクリックシフトおよびOCCインデックス(Cyclic shift for DM RS and OCC index)、ULインデックス(UL index)、下りリンクアサインメントインデックス(Downlink Assignment Index: DAI)、CSI要求(CSI request)、SRS要求(SRS request)、およびリソース割当タイプ(Resource allocation type)、はDCIフォーマット0によって送信される。 Carrier indicator (Carrier indicator), flag for format 0 / format 1A distinction (Flag for format0 / format1A differentiation), frequency hopping flag (Frequency hopping flag), resource block assignment and hopping resource allocation (Resource block assignment and hopping resource allocation) ), Modulation and coding scheme and redundancy version (Modulation and coding scheme and redundancy version), new data indicator (New data indicator), TPC command for scheduled PUSCH (TPC command for forscheduled PUSCH), cyclic shift and OCC for DMRS Index (Cyclic shift for DM RS and OCC index), UL index (UL index), downlink assignment index (Downlink Assignment Index: DAI), CS The I request (CSI request), the SRS request (SRS request), and the resource allocation type (Resource allocation type) are transmitted in DCI format 0.
 DCIフォーマット0は、下りリンクアサインメントの一種であるDCIフォーマット1Aと同じペイロードサイズである。これにより、PDCCHのブラインドデコーディング数を削減することができる。 DCI format 0 has the same payload size as DCI format 1A, which is a kind of downlink assignment. Thereby, the number of blind decoding of PDCCH can be reduced.
 一つのDCIフォーマット4は、複数アンテナポート送信モードの一つのULセルでのPUSCHのスケジューリングに用いられる。 One DCI format 4 is used for PUSCH scheduling in one UL cell in the multi-antenna port transmission mode.
 キャリアインディケータ(Carrier indicator)、リソースブロック割当(Resource block assignment)、スケジュールされたPUSCHに対するTPCコマンド(TPC command for scheduled PUSCH)、DMRSに対するサイクリックシフトおよびOCCインデックス(Cyclic shift for DM RS and OCC index)、ULインデックス(UL index)、下りリンクアサインメントインデックス(Downlink Assignment Index: DAI)、CSI要求(CSI request)、変調および符号方式と冗長バージョン(Modulation and coding scheme and redundancy version)、新データインディケータ(New data indicator)、プリコーディング情報とレイヤ数(Precoding information and number of layers)、はDCIフォーマット4によって送信される。 Carrier indicator (Carrier indicator), resource block assignment (Resource block assignment), TPC command (TPCScommand for scheduled PUSCH) for scheduled PUSCH, cyclic shift and OCC index (Cyclic shift for DM RS and OCC index) for DMRS, UL index (UL index), downlink assignment index (Downlink Assignment index: DAI), CSI request (CSI request), modulation and coding scheme and redundancy version (Modulation and coding scheme and redundant redundancy version), new data indicator (New data) indicator), precoding information and the number of layers (Precoding information and number of layers) are transmitted in DCI format 4.
 なお、LAAセルでのPUSCHの送信をスケジュールする上りリンクDCIフォーマットの中にはそのPUSCHに対応するHARQプロセスのフィールドが含まれる。このHARQプロセスの情報により、LAAセルにおいて、端末装置は非同期的にPUSCHのHARQ合成を行うことができる。 Note that the uplink DCI format for scheduling PUSCH transmission in the LAA cell includes a HARQ process field corresponding to the PUSCH. With this HARQ process information, the terminal device can asynchronously perform PUSCH HARQ combining in the LAA cell.
 下りリンクアサインメントには、第一の下りリンクのリソース割当タイプ(下りリンクのリソース割当タイプ0:resource allocation type 0)、第二の下りリンクのリソース割当タイプ(下りリンクのリソース割当タイプ1:resource allocation type 1)、および第三の下りリンクのリソース割当タイプ(下りリンクのリソース割当タイプ2:resource allocation type 2)が定義される。 For the downlink assignment, the first downlink resource allocation type (downlink resource allocation type 0: resource allocation type 0), the second downlink resource allocation type (downlink resource allocation type 1: resource) allocation type 1) and a third downlink resource allocation type (downlink resource allocation type 2: resource allocation type 2) are defined.
 下りリンクのリソース割当タイプ0は、スケジュールされた端末装置に対して非連続で割り当てられた仮想リソースブロックをビットマップ形式によって指示する。割り当てることができる仮想リソースブロックの最小単位は、リソースブロックグループ(RBG)と呼称される。リソースブロックグループは、1から4までの値の連続した仮想リソースブロックのセットとして定義される。RBGサイズは、システム帯域幅に対応して決定される。RBGの総数は、下りリンクのシステム帯域幅とRBGサイズによって決定される。RBGは、低周波数から順番にインデックスが付けられる。ビットマップ形式のうちの一つのビットは、一つのRBGに対応する。 The downlink resource allocation type 0 indicates virtual resource blocks allocated non-sequentially to a scheduled terminal device in a bitmap format. The minimum unit of virtual resource blocks that can be allocated is called a resource block group (RBG). A resource block group is defined as a set of consecutive virtual resource blocks with values from 1 to 4. The RBG size is determined corresponding to the system bandwidth. The total number of RBGs is determined by the downlink system bandwidth and the RBG size. RBGs are indexed in order from low frequency. One bit in the bitmap format corresponds to one RBG.
 下りリンクのリソース割当タイプ1は、スケジュールされた端末装置に対して非連続で割り当てられた仮想リソースブロックのセットの中から仮想リソースブロックを指示する。仮想リソースブロックのセットは、RBGサブセットから設定される。下りリンクのリソース割当タイプ1の情報は、三つのフィールドによって構成される。第一のフィールドは、複数のRBGサブセットの中から選択したRBGサブセットを指示するために用いられる。第二のフィールドは、サブセット内のリソース割当間隔のシフト量を指示するために用いられる。第三のフィールドは、ビットマップであり、そのビットマップのビットは第一のフィールドで選択されたRBGサブセットの中の一つの仮想リソースブロックに対応する。ビットマップのビットの値が1である場合に、対応する仮想リソースブロックが端末装置に対して割り当てられる。 The downlink resource allocation type 1 indicates a virtual resource block from a set of virtual resource blocks allocated non-sequentially to a scheduled terminal device. A set of virtual resource blocks is configured from the RBG subset. The information of downlink resource allocation type 1 is composed of three fields. The first field is used to indicate an RBG subset selected from among a plurality of RBG subsets. The second field is used to indicate the shift amount of the resource allocation interval in the subset. The third field is a bitmap, and the bits of the bitmap correspond to one virtual resource block in the RBG subset selected in the first field. When the bit value of the bitmap is 1, the corresponding virtual resource block is allocated to the terminal device.
 下りリンクのリソース割当タイプ2は、スケジュールされた端末装置に対して連続して割り当てられた一つまたは複数の仮想リソースブロックの一つのセットを指示する。上りリンクのリソース割当タイプ0に含まれるリソース割当領域(resource allocation field)は、リソースブロックの開始(開始位置)と連続して割り当てられたリソースブロックの長さに対応する一つの値で構成される。その一つの値は、RIV(resource indication value)とも呼称される。 The downlink resource allocation type 2 indicates one set of one or a plurality of virtual resource blocks continuously allocated to the scheduled terminal device. The resource allocation area (resource allocation field) included in the uplink resource allocation type 0 is configured with one value corresponding to the length of the resource block allocated continuously with the start (start position) of the resource block. . One of the values is also referred to as RIV (resource indication value).
 DCIフォーマットに含まれるリソース割当タイプのフィールドは各々のリソース割当タイプで共通に用いられる。DCIフォーマットの種類によって、適用される下りリンクのリソース割当タイプの種類が決まる。例えば、DCIフォーマット1A、1B、1C、または、1Dを用いて指示された場合には、下りリンクのリソース割当タイプ2が適用され、それ以外のDCIフォーマットを用いて指示された場合には、下りリンクのリソース割当タイプ0または1が適用される。また、DCIフォーマットに含まれる所定のインディケータ(フィールド)によって下りリンクのリソース割当タイプの種類が決まる。例えば、DCIフォーマットに含まれるインディケータがタイプ0を示す場合、下りリンクのリソース割当タイプ0が適用され、そのインディケータがタイプ1を示す場合、下りリンクのリソース割当タイプ1が適用される。 The resource allocation type field included in the DCI format is commonly used for each resource allocation type. The type of downlink resource allocation type to be applied is determined by the type of DCI format. For example, when instructed using the DCI format 1A, 1B, 1C, or 1D, the downlink resource allocation type 2 is applied, and when instructed using the other DCI format, the downlink Link resource allocation type 0 or 1 applies. Also, the type of downlink resource allocation type is determined by a predetermined indicator (field) included in the DCI format. For example, when the indicator included in the DCI format indicates type 0, downlink resource allocation type 0 is applied, and when the indicator indicates type 1, downlink resource allocation type 1 is applied.
 上りリンクグラント(上りリンクDCIフォーマット)には、第一の上りリンクのリソース割当タイプ(上りリンクのリソース割当タイプ0:resource allocation type 0)および第二の上りリンクのリソース割当タイプ(上りリンクのリソース割当タイプ1:resource allocation type 1)が定義される。 The uplink grant (uplink DCI format) includes a first uplink resource allocation type (uplink resource allocation type 0: resource allocation type 0) and a second uplink resource allocation type (uplink resource). Allocation type 1: resource allocation type 1) is defined.
 リソース割当タイプビットが上りリンクDCIフォーマットに存在しなかった場合、リソース割当タイプ0のみがサポートされる。リソース割当タイプビットが上りリンクDCIフォーマットに存在する場合、そのビットが示すリソース割当タイプが適用される。 If the resource allocation type bit is not present in the uplink DCI format, only resource allocation type 0 is supported. When the resource allocation type bit exists in the uplink DCI format, the resource allocation type indicated by the bit is applied.
 上りリンクのリソース割当タイプ0は、下りリンクのリソース割当タイプ2と同様に、スケジュールされた端末装置に対して連続して割り当てられた一つまたは複数の仮想リソースブロックの一つのセットを指示する。上りリンクのリソース割当タイプ0に含まれるリソース割当領域(resource allocation field)は、リソースブロックの開始(開始位置)と連続して割り当てられたリソースブロックの長さに対応する一つの値で構成される。その一つの値は、RIV(resource indication value)とも呼称される。 Similarly to the downlink resource allocation type 2, the uplink resource allocation type 0 indicates one set of one or a plurality of virtual resource blocks continuously allocated to the scheduled terminal apparatus. The resource allocation area (resource allocation field) included in the uplink resource allocation type 0 is configured with one value corresponding to the length of the resource block allocated continuously with the start (start position) of the resource block. . One of the values is also referred to as RIV (resource indication value).
 上りリンクのリソース割当タイプ1は、スケジュールされた端末装置に対して連続して割り当てられた一つまたは複数の仮想リソースブロックの二つのセットを指示する。上りリンクのリソース割当タイプ1に含まれるリソース割当領域は、その二つのセットのそれぞれの開始の位置と終了の位置(リソースブロック)を組み合わせた一つのインデックスで構成される。一つの端末装置に対して割り当てられた周波数上に連続する一つまたは複数のリソースブロックのセットは、クラスタとも呼称される。 The uplink resource allocation type 1 indicates two sets of one or a plurality of virtual resource blocks continuously allocated to the scheduled terminal device. The resource allocation area included in the uplink resource allocation type 1 is composed of one index combining the start position and the end position (resource block) of each of the two sets. A set of one or a plurality of resource blocks continuous on a frequency assigned to one terminal apparatus is also referred to as a cluster.
 以下では、LAAセルの詳細について説明する。 The details of the LAA cell will be described below.
 LAAセルが用いる周波数は、他の通信システムおよび/または他のLTEオペレータと共用される。周波数の共用において、LAAセルは、他の通信システムおよび/または他のLTEオペレータとの公平性が必要になる。例えば、LAAセルで用いられる通信方式において、公平な周波数共用技術(方法)が必要である。換言すると、LAAセルは、公平な周波数共用技術が適用できる(用いられる)通信方式(通信手順)を行うセルである。 The frequency used by the LAA cell is shared with other communication systems and / or other LTE operators. In frequency sharing, LAA cells require fairness with other communication systems and / or other LTE operators. For example, a fair frequency sharing technique (method) is necessary in a communication system used in an LAA cell. In other words, the LAA cell is a cell that performs a communication method (communication procedure) to which a fair frequency sharing technique can be applied (used).
 公平な周波数共用技術の一例は、LBT(Listen-Before-Talk)である。LBTは、ある基地局または端末がある周波数(コンポーネントキャリア、キャリア、セル、チャネル、媒体)を用いて信号を送信する前に、その周波数の干渉電力(干渉信号、受信電力、受信信号、雑音電力、雑音信号)などを測定(検出)することにより、その周波数がアイドル状態(空いている状態、混雑していない状態、Absence、Clear)であるか、またはビジー状態(空いていない状態、混雑している状態、Presence、Occupied)であるかを、識別(検出、想定、決定)する。LBTに基づいて、その周波数がアイドル状態であると識別した場合、そのLAAセルはその周波数における所定のタイミングで信号を送信することができる。LBTに基づいて、その周波数がビジー状態であると識別した場合、そのLAAセルはその周波数における所定のタイミングでは信号を送信しない。LBTによって、他の通信システムおよび/または他のLTEオペレータを含む他の基地局および/または端末が送信している信号に対して、干渉しないように制御できる。なお、下りリンク送信の前に基地局装置が行うLBTを下りリンクLBT、上りリンク送信の前に端末装置が行うLBTを上りリンクLBTと呼称される。また、サイドリンク送信のために端末装置が行うLBTをサイドリンクLBTと呼称してもよい。 An example of a fair frequency sharing technique is LBT (Listen-Before-Talk). Before transmitting a signal using a certain frequency (component carrier, carrier, cell, channel, medium), a base station or a terminal performs LBT interference power (interference signal, received power, received signal, noise power). , Noise signal) etc., the frequency is idle (free, not congested, Absence, Clear) or busy (not free, congested) (Presence, Occupied) is identified (detected, assumed, determined). If the frequency is identified as idle based on the LBT, the LAA cell can transmit a signal at a predetermined timing at that frequency. If it is determined that the frequency is busy based on the LBT, the LAA cell does not transmit a signal at a predetermined timing at that frequency. The LBT can be controlled so as not to interfere with signals transmitted by other base stations and / or terminals including other communication systems and / or other LTE operators. In addition, LBT performed by the base station apparatus before downlink transmission is referred to as downlink LBT, and LBT performed by the terminal apparatus before uplink transmission is referred to as uplink LBT. Moreover, you may call LBT which a terminal device performs for side link transmission as side link LBT.
 LBTの手順は、ある基地局または端末がその周波数(チャネル)を用いる前にCCA(Clear Channel Assessment)チェックを適用するメカニズムとして定義される。そのCCAは、その周波数がアイドル状態かビジー状態かどうかを識別するために、そのチャネルにおいて、他の信号の有無を決定するための電力検出または信号検出を行う。なお、本実施形態において、CCAの定義はLBTの定義と同等であってもよい。なお、本実施形態において、CCAはキャリアセンスとも呼称される。 The LBT procedure is defined as a mechanism that applies a CCA (Clear Channel Assessment) check before a certain base station or terminal uses the frequency (channel). The CCA performs power detection or signal detection to determine the presence or absence of other signals on the channel to identify whether the frequency is idle or busy. In the present embodiment, the definition of CCA may be equivalent to the definition of LBT. In the present embodiment, CCA is also referred to as carrier sense.
 CCAにおいて、他の信号の有無を決定する方法は、様々な方法を用いることができる。例えば、CCAは、ある周波数における干渉電力が、あるしきい値を超えるかどうかに基づいて決定する。また、例えば、CCAは、ある周波数における所定の信号またはチャネルの受信電力が、あるしきい値を超えるかどうかに基づいて決定する。そのしきい値は予め規定されてもよい。そのしきい値は基地局または他の端末から設定されてもよい。そのしきい値は送信電力(最大送信電力)などの他の値(パラメータ)に少なくとも基づいて決定(設定)されてもよい。また、例えば、CCAは、ある周波数における所定のチャネルが復号できたか否かに基づいて決定する。 In CCA, various methods can be used for determining the presence or absence of other signals. For example, CCA is determined based on whether the interference power at a certain frequency exceeds a certain threshold. Also, for example, CCA is determined based on whether the received power of a predetermined signal or channel at a certain frequency exceeds a certain threshold value. The threshold value may be defined in advance. The threshold may be set from the base station or another terminal. The threshold value may be determined (set) based at least on other values (parameters) such as transmission power (maximum transmission power). Also, for example, CCA is determined based on whether or not a predetermined channel at a certain frequency has been decoded.
 LBTの手順として、1度のCCAチェックを行った後に信号を送信することができるICCA(Initial CCA、single sensing、LBT category 2、FBE: Frame-based Equipment)と、所定回数のCCAチェックを行った後に信号を送信することができるECCA(Extended CCA、multiple sensing、LBT category 3/4、LBE: Load-based Equipment)がある。ICCAによってCCAチェックを行う期間を、ICCA期間、またはICCAスロット長と称され、例えば、34マイクロ秒である。またECCAによってCCAチェックを行う期間を、ECCA期間、またはECCAスロット長と称され、例えば、9マイクロ秒である。なお、所定回数は、バックオフカウンタ(カウンタ、乱数カウンタ、ECCAカウンタ)とも称される。また、その周波数がビジー状態からアイドル状態に変化した後に、CCAチェックを行う期間を、デファ期間(defer period)、またはECCA デファ期間(ECCA defer period)と称され、例えば、34マイクロ秒である。 As the LBT procedure, ICCA (Initial CCC, single sensing, LBT category 2, FBE: Frame-based Equipment) that can transmit a signal after performing one CCA check and a predetermined number of CCA checks were performed. There are ECCAs (Extended CCA, multiple sensing, LBT category 3/4, LBE: Load-based Equipment) that can later transmit signals. The period during which the CCA check is performed by the ICCA is referred to as an ICCA period or an ICCA slot length, and is 34 microseconds, for example. The period during which the CCA check is performed by ECCA is referred to as ECCA period or ECCA slot length, and is, for example, 9 microseconds. The predetermined number is also referred to as a back-off counter (counter, random number counter, ECCA counter). In addition, after the frequency changes from the busy state to the idle state, the period for performing the CCA check is referred to as a defer period, or an ECCA defer period, for example, 34 microseconds.
 図6に、下りリンク送信におけるLBT(LBT category 4、LBE)の手順の一例を示す。基地局装置は、下りリンク送信を待機しているアイドル状態(S601)から、端末装置に対して下りリンク送信が必要な情報(データ、バッファ、ロード、トラヒック)が発生した場合、送信が必要か否かを決定し(S602)、初期CCA(S603)に移行する。初期CCAでは、初期CCA期間(Initial CCA period)にCCAチェックを行い、チャネルがアイドルかビジーかを感知する(S6031)。初期CCA(S603)を行った結果、チャネルがアイドルであったと判断した場合、基地局装置はそのチャネルのアクセス権を獲得し、送信の動作に移行する。そして、そのタイミングで実際に下りリンク送信を行うか否かを判断し(S604)、下りリンク送信を行うと決定した場合に下りリンク送信を行う(S605)。その下りリンク送信を行った後、他の下りリンク送信が必要な情報がまだ存在(残留)しているか否かを判別する(S606)。他の下りリンク送信が必要な情報がまだ存在(残留)していない場合には、アイドル状態(S601)に戻る。一方で、初期CCA(S603)を行った結果、チャネルがビジーであったと判断した場合や、他の下りリンク送信が必要な情報がまだ存在(残留)しているか否かの判別(S606)の結果、下りリンク送信後に他の下りリンク送信が必要な情報がまだ存在(残留)している場合には、拡張CCA(S607)に移行する。拡張CCAでは、初めに、基地局装置は0からq-1の範囲からランダムにカウンタ値Nを生成する(S6071)。次に、基地局装置はECCAデファ区間でチャネルがアイドルかビジーかを感知する(S6072)。ECCAデファ区間においてチャネルがビジーであると判断した場合は、再度ECCAデファ区間でチャネルがアイドルかビジーかを感知する(S6072)。一方で、ECCAデファ区間においてチャネルがアイドルであると判断した場合は、次に、基地局装置は、一つのECCAスロット時間でチャネル(媒体)を感知し(S6073)、そのチャネルがアイドルかビジーかを判断する(S6074)。そのチャネルがアイドルと判断した場合は、カウンタ値Nから一つ減らし(S6075)、そのチャネルがビジーと判断した場合は、再度ECCAデファ区間でチャネルを感知するプロセス(S6072)に戻る。そして、基地局装置は、カウンタ値が0になったか否かを判断し(S6076)、カウンタ値が0になった場合には、送信を行うプロセス(S604、S605)に移行する。一方で、カウンタ値が0ではない場合には、再度一つのECCAスロット時間でチャネル(媒体)を感知する(S6073)。なお、カウンタ値Nを生成する際の衝突窓qの値はチャネルの状態に応じてXとYの間の値となるように更新される(S6077)。 FIG. 6 shows an example of LBT (LBT category 4, LBE) procedure in downlink transmission. Whether the base station apparatus needs transmission when information (data, buffer, load, traffic) that requires downlink transmission occurs from the idle state (S601) waiting for downlink transmission to the terminal apparatus. (S602), and the process proceeds to the initial CCA (S603). In the initial CCA, a CCA check is performed during an initial CCA period (Initial CCA period) to detect whether the channel is idle or busy (S6031). As a result of performing the initial CCA (S603), when it is determined that the channel is idle, the base station apparatus acquires the access right of the channel and shifts to a transmission operation. Then, it is determined whether or not downlink transmission is actually performed at that timing (S604). When it is determined that downlink transmission is to be performed, downlink transmission is performed (S605). After performing the downlink transmission, it is determined whether or not other information that requires downlink transmission still exists (residual) (S606). If other information that requires downlink transmission does not yet exist (residual), the process returns to the idle state (S601). On the other hand, as a result of performing the initial CCA (S603), when it is determined that the channel is busy, it is determined whether or not other information that requires downlink transmission still exists (residual) (S606). As a result, when there is still (remaining) information that requires other downlink transmission after downlink transmission, the process proceeds to extended CCA (S607). In the extended CCA, first, the base station apparatus randomly generates a counter value N from the range of 0 to q−1 (S6071). Next, the base station apparatus senses whether the channel is idle or busy in the ECCA differential section (S6072). If it is determined that the channel is busy in the ECCA deferred section, it is detected again whether the channel is idle or busy in the ECCA deferred section (S6072). On the other hand, if it is determined that the channel is idle in the ECCA deferred section, then the base station apparatus senses the channel (medium) in one ECCA slot time (S6073) and determines whether the channel is idle or busy. Is determined (S6074). If it is determined that the channel is idle, it is decremented by one from the counter value N (S6075). If it is determined that the channel is busy, the process returns to the process of sensing the channel again in the ECCA deferred section (S6072). Then, the base station apparatus determines whether or not the counter value has become 0 (S6076). If the counter value has become 0, the base station apparatus shifts to a process of performing transmission (S604 and S605). On the other hand, if the counter value is not 0, the channel (medium) is sensed again in one ECCA slot time (S6073). Note that the value of the collision window q when generating the counter value N is updated so as to be a value between X and Y according to the channel state (S6077).
 衝突窓qの値は、例えば、その基地局装置が送信するPDSCHのHARQ-ACK応答や、その基地局装置のチャネルの感知によって得られる電力値や、RSRP、RSRQ、および/またはRSSIの報告、などに基づいて決定される。衝突窓qの値は、一例として、指数的に増加される。また、衝突窓qの値を決定する際に用いられる最小値Xと最大値Yの値は、上位層で設定されるパラメータである。 The value of the collision window q is, for example, the PDRQ HARQ-ACK response transmitted by the base station apparatus, the power value obtained by sensing the channel of the base station apparatus, the RSRP, RSRQ, and / or RSSI report, It is determined based on the above. The value of the collision window q is increased exponentially as an example. The minimum value X and the maximum value Y used when determining the value of the collision window q are parameters set in the upper layer.
 なお、図6のLBTの手順において、拡張CCAを行わなくてもよい。具体的には、初期CCA(S603)の結果、チャネルがビジーであったと判断した場合は、拡張CCAのプロセス(S607)に遷移せず、基地局装置はアイドル状態(S601)に戻ってもよい。また、下りリンク送信を行った後に他の下りリンク送信が必要な情報がまだ存在している場合(S606)においても、拡張CCAのプロセス(S607)に遷移せず、基地局装置はアイドル状態(S601)に戻ってもよい。この様なプロセスを行うLBTは、LBT category 2とも呼称される。この様なプロセスを行うLBTは、例えば、DSの送信や、1ms以下の長さのPDSCH送信、PDCCHのみの送信のためのLBTとして適用されてもよい。 Note that extended CCA does not have to be performed in the LBT procedure of FIG. Specifically, when it is determined that the channel is busy as a result of the initial CCA (S603), the base station apparatus may return to the idle state (S601) without shifting to the extended CCA process (S607). . In addition, even when there is still information that needs to be transmitted after downlink transmission (S606), the process does not transition to the extended CCA process (S607), and the base station apparatus is in an idle state ( You may return to S601). An LBT that performs such a process is also referred to as LBT category 2. An LBT that performs such a process may be applied as an LBT for DS transmission, PDSCH transmission of a length of 1 ms or less, or PDCCH only transmission, for example.
 なお、LAAセルにおけるCCAは、そのLAAセルに接続している(設定されている)端末が認識する必要はない。 Note that the CCA in the LAA cell does not need to be recognized by the terminal connected (set) to the LAA cell.
 端末装置1は、LAAセルにおけるCCAが完了した後からの送信を検出できる場合、最初の送信を検出した後から送信が数サブフレーム連続する、とみなしてよい。送信が連続する数サブフレームを、送信バーストとも呼称される。特に、PDSCHの送信が連続する数サブフレームを、PDSCH送信バーストと呼称される。PDSCH送信バーストには、PDSCH以外のチャネルおよび/または信号を含んでもよい。例えば、PDSCH送信バーストには、PDSCHとDSが含まれて送信されてもよい。また、特に、DSのみが送信される数サブフレームを、DS送信バーストと呼称される。送信バーストによって連続して送信されるサブフレーム数は、RRCメッセージによって端末装置1に設定されてもよい。本実施形態では、下りリンク信号またはチャネルの送信バーストを下りリンク送信、上りリンク信号またはチャネルの送信バーストを上りリンク送信、とも称する。 When the terminal device 1 can detect transmission after CCA in the LAA cell is completed, the terminal device 1 may consider that transmission is continuous for several subframes after detecting the first transmission. Several subframes in which transmission continues are also referred to as a transmission burst. In particular, several subframes in which PDSCH transmission is continued are referred to as PDSCH transmission bursts. The PDSCH transmission burst may include channels and / or signals other than PDSCH. For example, the PDSCH transmission burst may be transmitted including PDSCH and DS. In particular, several subframes in which only the DS is transmitted are referred to as a DS transmission burst. The number of subframes transmitted continuously by the transmission burst may be set in the terminal device 1 by the RRC message. In this embodiment, a downlink signal or channel transmission burst is also referred to as downlink transmission, and an uplink signal or channel transmission burst is also referred to as uplink transmission.
 端末装置は、送信バーストの先頭に含まれる予約信号を検出した場合に、その送信バーストを検知することができる。端末装置は、その予約信号を検出したサブフレームから数サブフレームを送信バーストとみなす。なお、予約信号の代わりに、後述する第1の同期信号、または、第2の同期信号、または、第3の同期信号を検出した場合に、端末装置は、その後の数サブフレームを送信バーストとみなすこともできる。 When the terminal device detects a reservation signal included at the beginning of the transmission burst, the terminal device can detect the transmission burst. The terminal apparatus regards several subframes as a transmission burst from the subframes in which the reservation signal is detected. When a first synchronization signal, a second synchronization signal, or a third synchronization signal, which will be described later, is detected instead of the reservation signal, the terminal apparatus sets the subsequent several subframes as transmission bursts. It can be considered.
 また、端末装置は、DCIに含まれる送信バーストを指定するサブフレームの情報を復号した場合に、送信バーストを検知することができる。そのDCIは、CSSに配置されたPDCCHまたはEPDCCHに含まれて通知される。また、そのDCIはUSSで配置されたPDCCHまたはEPDCCHに含まれて通知されてもよい。 In addition, the terminal device can detect the transmission burst when decoding the information of the subframe specifying the transmission burst included in the DCI. The DCI is notified by being included in PDCCH or EPDCCH arranged in CSS. Further, the DCI may be notified by being included in the PDCCH or EPDCCH arranged in the USS.
 LAAセルは、割り当て周波数を用いるセカンダリセルとは異なるセルとして定義されてもよい。例えば、LAAセルは、割り当て周波数を用いるセカンダリセルの設定とは異なって設定される。LAAセルに設定されるパラメータの一部は、割り当て周波数を用いるセカンダリセルに設定されない。割り当て周波数を用いるセカンダリセルに設定されるパラメータの一部は、LAAセルに設定されない。本実施形態において、LAAセルは、プライマリセルおよびセカンダリセルとは異なるセルとして説明するが、LAAセルはセカンダリセルの一つとして定義されてもよい。また、従来のセカンダリセルは第1のセカンダリセルとも呼称され、LAAセルは第2のセカンダリセルとも呼称される。また、従来のプライマリセルおよびセカンダリセルは第1のサービングセルとも呼称され、LAAセルは第2のサービングセルとも呼称される。 The LAA cell may be defined as a cell different from the secondary cell using the allocated frequency. For example, the LAA cell is set differently from the setting of the secondary cell using the allocated frequency. Some of the parameters set in the LAA cell are not set in the secondary cell using the allocated frequency. Some of the parameters set in the secondary cell using the allocated frequency are not set in the LAA cell. In the present embodiment, the LAA cell is described as a cell different from the primary cell and the secondary cell, but the LAA cell may be defined as one of the secondary cells. The conventional secondary cell is also referred to as a first secondary cell, and the LAA cell is also referred to as a second secondary cell. The conventional primary cell and secondary cell are also referred to as a first serving cell, and the LAA cell is also referred to as a second serving cell.
 また、LAAセルは、従来のフレーム構成タイプとは異なってもよい。例えば、従来のサービングセルは、第1のフレーム構成タイプ(FDD、frame structure type 1)または第2のフレーム構成タイプ(TDD、frame structure type 2)が用いられる(設定される)が、LAAセルは、第3のフレーム構成タイプ(frame structure type 3)が用いられる(設定される)。尚、LAAセルは、第1のフレーム構成タイプまたは第2のフレーム構成タイプが用いられてもよい(設定されてもよい)。 Also, the LAA cell may be different from the conventional frame configuration type. For example, the conventional serving cell uses (sets) the first frame configuration type (FDD, frame structure type 1) or the second frame configuration type (TDD, frame structure type 2), while the LAA cell A third frame configuration type (frame structure type 3) is used (set). Note that the LAA cell may use the first frame configuration type or the second frame configuration type (may be set).
 また、第3のフレーム構成タイプは、上りリンクおよび下りリンクが同一周波数で送信可能なTDDセルでありながら、FDDセルの特徴を有するフレーム構成タイプであることが好ましい。例えば、第3のフレーム構成タイプは、上りリンクサブフレーム、下りリンクサブフレーム、および、スペシャルサブフレームを有しているが、上りリンクグラントを受信してから該上りリンクグラントからスケジュールされるPUSCHが送信するまでの間隔、または、PDSCHを受信してから該PDSCHに対するHARQフィードバックの間隔は、FDDセルと同様であってもよい。 In addition, the third frame configuration type is preferably a frame configuration type having characteristics of an FDD cell while being a TDD cell in which uplink and downlink can be transmitted at the same frequency. For example, the third frame configuration type includes an uplink subframe, a downlink subframe, and a special subframe, and the PUSCH scheduled from the uplink grant after receiving the uplink grant is The interval until transmission or the interval of HARQ feedback for the PDSCH after receiving the PDSCH may be the same as that of the FDD cell.
 また、第3のフレーム構成タイプは、従来のTDD UL/DL設定(TDD uplink/downlink configuration)に依存しないフレーム構成タイプであることが好ましい。例えば、上りリンクサブフレーム、下りリンクサブフレーム、および、スペシャルサブフレームは、無線フレームに対して非周期的に設定されてもよい。例えば、上りリンクサブフレーム、下りリンクサブフレーム、および、スペシャルサブフレームは、PDCCHまたはEPDCCHに基づいて決定されてもよい。 Also, it is preferable that the third frame configuration type is a frame configuration type that does not depend on the conventional TDD UL / DL setting (TDD uplink / downlink configuration). For example, the uplink subframe, the downlink subframe, and the special subframe may be set aperiodically with respect to the radio frame. For example, the uplink subframe, the downlink subframe, and the special subframe may be determined based on PDCCH or EPDCCH.
 また、第3のフレーム構成タイプにおいて、無線フレームのうちの10サブフレーム(全てのサブフレーム)が下りリンク送信として利用できる。また、第3のフレーム構成タイプにおいて、無線フレームのうちの10サブフレーム(全てのサブフレーム)が上りリンク送信としても利用できる。なお、無線フレームのうちのサブフレーム#0および#5は上りリンク送信として利用できなくてもよい。換言すると、第3のフレーム構成タイプにおいて、無線フレームのうちのサブフレーム#0および#5は下りリンク送信としてのみ利用してもよい。 Also, in the third frame configuration type, 10 subframes (all subframes) of radio frames can be used for downlink transmission. Further, in the third frame configuration type, 10 subframes (all subframes) of the radio frames can be used for uplink transmission. Note that subframes # 0 and # 5 in the radio frame may not be used for uplink transmission. In other words, in the third frame configuration type, subframes # 0 and # 5 in the radio frame may be used only for downlink transmission.
 下りリンク送信は一つまたは複数の連続した非空サブフレームで占められる。下りリンク送信の開始はサブフレームのどこからでもよい。下りリンク送信の終了はサブフレームの境界(OFDMシンボル#0と前のサブフレームのOFDMシンボル#13の境界)またはDwPTSの長さのいずれかである。なお、下りリンク送信の終了はOFDMシンボル#12とOFDMシンボル#13の境界であってもよい。なお、下りリンク送信の終了はスロットの境界(OFDMシンボル#6とOFDMシンボル#7の境界)であってもよい。 Downlink transmission is occupied by one or more consecutive non-empty subframes. The start of downlink transmission may be from anywhere in the subframe. The end of downlink transmission is either the subframe boundary (the boundary between OFDM symbol # 0 and OFDM symbol # 13 of the previous subframe) or the length of DwPTS. The end of downlink transmission may be the boundary between OFDM symbol # 12 and OFDM symbol # 13. The end of downlink transmission may be a slot boundary (a boundary between OFDM symbol # 6 and OFDM symbol # 7).
 上りリンク送信は一つまたは複数の連続した非空サブフレームで占められる。上りリンク送信の開始はサブフレームの境界からであることが好ましい。なお、上りリンク送信の開始はサブフレームのどこからであってもよい。上りリンク送信の終了はサブフレームの境界(SC-FDMAシンボル#0と前のサブフレームのSC-FDMAシンボル#13の境界)または最後のSC-FDMAシンボルの境界(SC-FDMAシンボル#12とSC-FDMAシンボル#13の境界)または最後から2個目のSC-FDMAシンボルの境界(SC-FDMAシンボル#11とSC-FDMAシンボル#12の境界)のいずれかである。なお、上りリンク送信の終了はスロットの境界(SC-FDMAシンボル#6とSC-FDMAシンボル#7の境界)であってもよい。 Uplink transmission is occupied by one or more consecutive non-empty subframes. The start of uplink transmission is preferably from a subframe boundary. In addition, the start of uplink transmission may be from anywhere in the subframe. The end of uplink transmission is a subframe boundary (SC-FDMA symbol # 0 and SC-FDMA symbol # 13 boundary of the previous subframe) or a last SC-FDMA symbol boundary (SC-FDMA symbol # 12 and SC). -Boundary of FDMA symbol # 13) or boundary of the second SC-FDMA symbol from the end (boundary of SC-FDMA symbol # 11 and SC-FDMA symbol # 12). The end of uplink transmission may be a slot boundary (a boundary between SC-FDMA symbol # 6 and SC-FDMA symbol # 7).
 なお、サブフレームの境界から送信が開始、および、サブフレームの境界で送信が終了するサブフレームは、フルサブフレームと呼称される。一方で、サブフレームの境界以外から送信が開始、または、サブフレームの境界以外で送信が終了するサブフレームは、部分サブフレームと呼称される。 Note that a subframe in which transmission starts from a subframe boundary and transmission ends at a subframe boundary is referred to as a full subframe. On the other hand, a subframe in which transmission starts from other than a subframe boundary or transmission ends at other than a subframe boundary is referred to as a partial subframe.
 LAAセルにおいて、上りリンクグラントによってPUSCHの送信が指示されたサブフレームを上りリンクサブフレームと端末装置は認識する。一方で、LAAセルにおいて、上りリンクグラントによってPUSCHの送信が指示されなかったサブフレームは、下りリンクサブフレームまたは空サブフレームと端末装置は認識する。 In the LAA cell, the uplink subframe and the terminal apparatus recognize the subframe in which PUSCH transmission is instructed by the uplink grant. On the other hand, in the LAA cell, the terminal apparatus recognizes a subframe in which PUSCH transmission is not instructed by the uplink grant as a downlink subframe or an empty subframe.
 または、LAAセルにおいて、上りリンク送信のためのLBTのセンシングによってチャネルがアイドルである場合に、そのサブフレームまたは次のサブフレームは上りリンクサブフレームと端末装置は認識する。一方で、LAAセルにおいて、上りリンク送信のためのLBTのセンシングによってチャネルがビジーである場合に、そのサブフレームまたは次のサブフレームは下りリンクサブフレームまたは空サブフレームと端末装置は認識する。 Or, in the LAA cell, when the channel is idle due to sensing of LBT for uplink transmission, the subframe or the next subframe is recognized by the uplink subframe and the terminal device. On the other hand, in the LAA cell, when the channel is busy due to sensing of LBT for uplink transmission, the terminal apparatus recognizes the subframe or the next subframe as a downlink subframe or an empty subframe.
 または、CC-RNTIでスクランブルされたDCI CRC(DCIを伴うCRC)を伴うPDCCHの中に上りリンクサブフレームを指示する情報が含まれ、その情報によって上りリンクサブフレームと指示されたサブフレームは上りリンクサブフレームであると端末装置は認識する。一方で、そのPDCCHの中の情報によって上りリンクサブフレームと指示されなかったサブフレームは下りリンクサブフレームまたは空サブフレームであると端末装置は認識する。その情報は、例えば、上りリンク送信の位置および/または上りリンク送信の長さを指示する情報である。なお、その情報はCC-RNTIでスクランブルされたDCI CRCを伴うPDCCHの中に含まれなくてもよく、例えば、PHICHのリソースに含まれて送信されてもよい。 Or, information indicating the uplink subframe is included in the PDCCH accompanied by the DCI CRC (CRC with DCI) scrambled by CC-RNTI, and the subframe indicated as the uplink subframe by the information is the uplink. The terminal device recognizes that it is a link subframe. On the other hand, the terminal apparatus recognizes that the subframe not designated as the uplink subframe by the information in the PDCCH is the downlink subframe or the empty subframe. The information is, for example, information indicating the position of uplink transmission and / or the length of uplink transmission. Note that the information may not be included in the PDCCH with the DCI CRC scrambled by CC-RNTI, and may be transmitted in the PHICH resource, for example.
 LAAセルにおいて、上りリンクサブフレームでは、CC-RNTIでスクランブルされたDCI CRCを伴うPDCCHのモニタを行わなくてもよい。 In the LAA cell, it is not necessary to monitor the PDCCH with the DCI CRC scrambled by CC-RNTI in the uplink subframe.
 なお、LAAセルにおいて、CC-RNTIでスクランブルされたDCI CRC(DCIを伴うCRC)を伴うPDCCHによって占有OFDMシンボルの設定が指示されたサブフレームでは、下りリンクサブフレームであると端末装置は認識し、上りリンクサブフレームとは認識しない。占有OFDMシンボルとは、下りリンク物理チャネルおよびまたは下りリンク物理信号の送信のために用いられるOFDMシンボルである。 In the LAA cell, in the subframe in which the setting of the dedicated OFDM symbol is instructed by the PDCCH accompanied by the DCI CRC (CRC with DCI) scrambled with CC-RNTI, the terminal apparatus recognizes that it is a downlink subframe. It is not recognized as an uplink subframe. The occupied OFDM symbol is an OFDM symbol used for transmission of a downlink physical channel and / or a downlink physical signal.
 ここで、非割り当て周波数は、所定のオペレータに対して専有周波数として割り当てられる割り当て周波数とは異なる周波数である。例えば、非割り当て周波数は、無線LANが用いている周波数である。また、例えば、非割り当て周波数は従来のLTEでは設定されない周波数であり、割り当て周波数は従来のLTEで設定可能な周波数である。本実施形態において、LAAセルに設定される周波数は、非割り当て周波数として説明するが、これに限定されるものではない。すなわち、非割り当て周波数は、LAAセルに設定される周波数と置き換えることが可能である。例えば、非割り当て周波数は、プライマリセルに設定できない周波数であり、セカンダリセルのみに設定できる周波数である。例えば、非割り当て周波数は、複数のオペレータに対して共有される周波数も含む。また、例えば、非割り当て周波数は、従来のプライマリセルまたはセカンダリセルとは異なる設定、想定および/または処理がされるセルのみに設定される周波数である。 Here, the non-assigned frequency is a frequency different from the assigned frequency assigned as a dedicated frequency to a predetermined operator. For example, the unassigned frequency is a frequency used by the wireless LAN. For example, the non-assigned frequency is a frequency that is not set in the conventional LTE, and the assigned frequency is a frequency that can be set in the conventional LTE. In the present embodiment, the frequency set in the LAA cell is described as an unassigned frequency, but is not limited to this. That is, the unassigned frequency can be replaced with a frequency set in the LAA cell. For example, the non-assigned frequency is a frequency that cannot be set in the primary cell and can be set only in the secondary cell. For example, unassigned frequencies also include frequencies that are shared with multiple operators. Further, for example, the unassigned frequency is a frequency that is set only for a cell that is set, assumed, and / or processed differently from a conventional primary cell or secondary cell.
 LAAセルは、LTEにおける無線フレーム、物理信号、および/または物理チャネルなどの構成および通信手順に関して、従来の方式とは異なる方式を用いるセルとすることができる。 The LAA cell may be a cell that uses a scheme different from the conventional scheme with regard to the configuration and communication procedures of LTE radio frames, physical signals, and / or physical channels.
 例えば、LAAセルでは、プライマリセルおよび/またはセカンダリセルで設定(送信)される所定の信号および/またはチャネルが設定(送信)されない。その所定の信号および/またはチャネルは、CRS、DS、PDCCH、EPDCCH、PDSCH、PSS、SSS、PBCH、PHICH、PCFICH、CSI-RSおよび/またはSIBなどを含む。例えば、LAAセルで設定されない信号および/またはチャネルは、以下の通りである。なお、以下で説明される信号および/またはチャネルは組み合わせて用いられてもよい。なお、本実施形態において、LAAセルで設定されない信号および/またはチャネルは、端末がそのLAAセルからの送信を期待しない信号および/またはチャネルと読み替えてもよい。
  (1)LAAセルでは、物理レイヤの制御情報は、PDCCHで送信されず、EPDCCHのみで送信される。
  (2)LAAセルでは、アクティベーション(オン)であるサブフレームにおいても、全てのサブフレームでCRS、DMRS、URS、PDCCH、EPDCCHおよび/またはPDSCHが送信されず、端末は全てのサブフレームで送信されていることを想定しない。
  (3)LAAセルでは、端末は、アクティベーション(オン)であるサブフレームにおいて、DS、PSS、および/またはSSSが送信されていることを想定する。
  (4)LAAセルでは、端末は、CRSのマッピングに関する情報がサブフレーム毎に通知され、その情報に基づいて、CRSのマッピングの想定を行う。例えば、CRSのマッピングの想定は、そのサブフレームの全てのリソースエレメントにマッピングされない。CRSのマッピングの想定は、そのサブフレームの一部のリソースエレメント(例えば、先頭の2OFDMシンボルにおける全てのリソースエレメント)にマッピングされない。CRSのマッピングの想定は、そのサブフレームの全てのリソースエレメントにマッピングされる。また、例えば、CRSのマッピングに関する情報は、そのLAAセルまたはそのLAAセルとは異なるセルから通知される。CRSのマッピングに関する情報は、DCIに含まれ、PDCCHまたはEPDCCHによって通知される。
For example, in the LAA cell, a predetermined signal and / or channel set (transmitted) in the primary cell and / or the secondary cell is not set (transmitted). The predetermined signal and / or channel includes CRS, DS, PDCCH, EPDCCH, PDSCH, PSS, SSS, PBCH, PHICH, PCFICH, CSI-RS, and / or SIB. For example, signals and / or channels that are not set in the LAA cell are as follows. The signals and / or channels described below may be used in combination. In the present embodiment, signals and / or channels that are not set in the LAA cell may be read as signals and / or channels that the terminal does not expect from the LAA cell.
(1) In the LAA cell, physical layer control information is not transmitted on the PDCCH, but is transmitted only on the EPDCCH.
(2) In the LAA cell, CRS, DMRS, URS, PDCCH, EPDCCH and / or PDSCH are not transmitted in all subframes even in a subframe that is activated (on), and the terminal transmits in all subframes. Do not assume that it is.
(3) In the LAA cell, the terminal assumes that DS, PSS, and / or SSS are transmitted in a subframe that is activated (ON).
(4) In the LAA cell, the terminal is notified of information on CRS mapping for each subframe, and makes a CRS mapping assumption based on the information. For example, the CRS mapping assumption is not mapped to all resource elements of that subframe. The assumption of CRS mapping is not mapped to some resource elements of the subframe (for example, all resource elements in the first two OFDM symbols). CRS mapping assumptions are mapped to all resource elements of that subframe. Also, for example, information on CRS mapping is notified from the LAA cell or a cell different from the LAA cell. Information on CRS mapping is included in DCI and is notified by PDCCH or EPDCCH.
 また、例えば、LAAセルでは、プライマリセルおよび/またはセカンダリセルで設定(送信)されない所定の信号および/またはチャネルが設定(送信)される。 Also, for example, in the LAA cell, a predetermined signal and / or channel that is not set (transmitted) in the primary cell and / or the secondary cell is set (transmitted).
 また、例えば、LAAセルでは、下りリンクコンポーネントキャリアまたはサブフレームのみが定義され、下りリンク信号および/またはチャネルのみが送信される。すなわち、LAAセルでは、上りリンクコンポーネントキャリアまたはサブフレームが定義されず、上りリンク信号および/またはチャネルは送信されない。 Also, for example, in the LAA cell, only downlink component carriers or subframes are defined, and only downlink signals and / or channels are transmitted. That is, in the LAA cell, no uplink component carrier or subframe is defined, and no uplink signal and / or channel is transmitted.
 また、例えば、LAAセルでは、対応できるDCI(Downlink Control Information)フォーマットが、プライマリセルおよび/またはセカンダリセルに対応できるDCIフォーマットと異なる。LAAセルのみに対応するDCIフォーマットが規定される。LAAセルに対応するDCIフォーマットは、LAAセルのみに有効な制御情報を含む。 Also, for example, in the LAA cell, the DCI (Downlink Control Information) format that can be supported is different from the DCI format that can correspond to the primary cell and / or the secondary cell. A DCI format corresponding only to the LAA cell is defined. The DCI format corresponding to the LAA cell includes control information effective only for the LAA cell.
 端末装置は、上位層によるパラメータによって、LAAセルを認知することができる。例えば、要素キャリアの中心周波数を通知するパラメータから、端末装置は、従来のセル(バンド)またはLAAセル(LAAバンド)を認知することができる。この場合、中心周波数に関連する情報とセル(バンド)の種類が関連付けている。 The terminal device can recognize the LAA cell according to the parameters by the upper layer. For example, the terminal device can recognize a conventional cell (band) or LAA cell (LAA band) from the parameter for reporting the center frequency of the element carrier. In this case, the information related to the center frequency is associated with the cell (band) type.
 また、例えば、LAAセルでは、信号および/またはチャネルの想定が、従来のセカンダリセルと異なる。 Also, for example, in the LAA cell, the assumption of signals and / or channels is different from that of the conventional secondary cell.
 まず、従来のセカンダリセルにおける信号および/またはチャネルの想定を説明する。以下の条件の一部または全部を満たす端末は、DSの送信を除いて、PSS、SSS、PBCH、CRS、PCFICH、PDSCH、PDCCH、EPDCCH、PHICH、DMRSおよび/またはCSI-RSが、そのセカンダリセルによって送信されないかもしれないと想定する。また、その端末は、DSがそのセカンダリセルによって常に送信されていると想定する。また、その想定は、その端末があるキャリア周波数におけるセカンダリセルにおいてアクティベーションコマンド(活性化するためのコマンド)が受信されるサブフレームまで継続する。
  (1)端末がDSに関する設定(パラメータ)をサポートする。
  (2)端末がそのセカンダリセルにおいて、DSに基づくRRM測定が設定される。
  (3)そのセカンダリセルはデアクティベーション(非活性化された状態)である。
  (4)端末は、そのセカンダリセルにおいて、上位層によってMBMSを受信することが設定されていない。
First, the assumption of the signal and / or channel in the conventional secondary cell is demonstrated. A terminal satisfying a part or all of the following conditions, except for transmission of DS, has PSS, SSS, PBCH, CRS, PCFICH, PDSCH, PDCCH, EPDCCH, PHICH, DMRS and / or CSI-RS as its secondary cell. Assume that it may not be sent by. The terminal also assumes that the DS is always transmitted by the secondary cell. Further, the assumption continues until a subframe in which an activation command (command for activation) is received in a secondary cell at a certain carrier frequency of the terminal.
(1) The terminal supports settings (parameters) related to the DS.
(2) The RRM measurement based on DS is set in the secondary cell of the terminal.
(3) The secondary cell is in a deactivated state (deactivated state).
(4) The terminal is not set to receive MBMS by the upper layer in the secondary cell.
 また、そのセカンダリセルがアクティベーション(活性化された状態)である場合、端末は、設定された所定のサブフレームまたは全てのサブフレームにおいて、PSS、SSS、PBCH、CRS、PCFICH、PDSCH、PDCCH、EPDCCH、PHICH、DMRSおよび/またはCSI-RSがそのセカンダリセルによって送信されると想定する。 In addition, when the secondary cell is in an activated state (activated state), the terminal performs PSS, SSS, PBCH, CRS, PCFICH, PDSCH, PDCCH, in a set predetermined subframe or all subframes. Assume that EPDCCH, PHICH, DMRS and / or CSI-RS are transmitted by the secondary cell.
 次に、LAAセルにおける信号および/またはチャネルの想定の一例を説明する。以下の条件の一部または全部を満たす端末は、DSの送信を含めて、PSS、SSS、PBCH、CRS、PCFICH、PDSCH、PDCCH、EPDCCH、PHICH、DMRSおよび/またはCSI-RSが、そのLAAセルによって送信されないかもしれないと想定する。また、その想定は、その端末があるキャリア周波数におけるセカンダリセルにおいてアクティベーションコマンド(活性化するためのコマンド)が受信されるサブフレームまで継続する。
  (1)端末がDSに関する設定(パラメータ)をサポートする。
  (2)端末がそのLAAセルにおいて、DSに基づくRRM測定が設定される。
  (3)そのLAAセルはデアクティベーション(非活性化された状態)である。
  (4)端末は、そのLAAセルにおいて、上位層によってMBMSを受信することが設定されていない。
Next, an example of signal and / or channel assumption in the LAA cell will be described. A terminal that satisfies some or all of the following conditions includes the transmission of DS, PSS, SSS, PBCH, CRS, PCFICH, PDSCH, PDCCH, EPDCCH, PHICH, DMRS, and / or CSI-RS in its LAA cell Assume that it may not be sent by. Further, the assumption continues until a subframe in which an activation command (command for activation) is received in a secondary cell at a certain carrier frequency of the terminal.
(1) The terminal supports settings (parameters) related to the DS.
(2) The RRM measurement based on DS is set in the LAA cell of the terminal.
(3) The LAA cell is deactivated (inactivated state).
(4) The terminal is not set to receive MBMS by the upper layer in the LAA cell.
 また、LAAセルにおける信号および/またはチャネルの想定の別の一例を説明する。そのLAAセルがデアクティベーション(非活性化された状態)である場合、そのLAAセルにおける信号および/またはチャネルの想定は、従来のセカンダリセルにおける信号および/またはチャネルの想定と同じである。そのLAAセルがアクティベーション(活性化された状態)である場合、そのLAAセルにおける信号および/またはチャネルの想定は、従来のセカンダリセルにおける信号および/またはチャネルの想定と異なる。例えば、そのLAAセルがアクティベーション(活性化された状態)である場合、端末は、そのLAAセルが、そのLAAセルに設定された所定のサブフレームを除いて、PSS、SSS、PBCH、CRS、PCFICH、PDSCH、PDCCH、EPDCCH、PHICH、DMRSおよび/またはCSI-RSが送信されないかもしれないと想定する。その詳細は後述する。 Further, another example of signal and / or channel assumption in the LAA cell will be described. When the LAA cell is in a deactivated state, the signal and / or channel assumption in the LAA cell is the same as the signal and / or channel assumption in the conventional secondary cell. When the LAA cell is in an activated state, the signal and / or channel assumptions in the LAA cell are different from the signal and / or channel assumptions in the conventional secondary cell. For example, when the LAA cell is activated (activated state), the terminal determines that the LAA cell is PSS, SSS, PBCH, CRS, except for a predetermined subframe set in the LAA cell. Assume that PCFICH, PDSCH, PDCCH, EPDCCH, PHICH, DMRS and / or CSI-RS may not be transmitted. Details thereof will be described later.
 また、CCAは、一つのサブフレームで行われることを示したが、CCAを行う時間(期間)はこれに限定されるものではない。CCAを行う時間は、LAAセル毎、CCAのタイミング毎、CCAの実行毎に変動してもよい。例えば、CCAは、所定の時間スロット(時間間隔、時間領域)に基づいた時間で行う。その所定の時間スロットは、一つのサブフレームを所定数に分割した時間で規定または設定されてもよい。その所定の時間スロットは、所定数のサブフレームで規定または設定されてもよい。 In addition, although it has been shown that CCA is performed in one subframe, the time (period) for performing CCA is not limited to this. The time for performing CCA may vary for each LAA cell, for each timing of CCA, and for each execution of CCA. For example, CCA is performed at a time based on a predetermined time slot (time interval, time domain). The predetermined time slot may be defined or set by a time obtained by dividing one subframe into a predetermined number. The predetermined time slot may be defined or set by a predetermined number of subframes.
 また、本実施形態において、CCAを行う時間(時間スロット)や、あるサブフレームにおいてチャネルおよび/または信号が送信される(送信できる)時間などの、時間領域におけるフィールドのサイズは、所定の時間ユニットを用いて表現できる。例えば、時間領域におけるフィールドのサイズは、いくつかの時間ユニットTsとして表現される。Tsは、1/(15000*2048)秒である。例えば、一つのサブフレームの時間は、30720*Ts(1ミリ秒)である。例えば、一つのICCAスロット長またはdefer期間は、1044*Ts(約33.98マイクロ秒)、または1045*Ts(約34.02マイクロ秒)である。例えば、一つのECCAスロット長は、276*Ts(約8.984マイクロ秒)、または277*Ts(約9.017マイクロ秒)である。例えば、一つのECCAスロット長は、307*Ts(約9.993マイクロ秒)、または308*Ts(約10.03マイクロ秒)である。 In the present embodiment, the size of the field in the time domain, such as the time for performing CCA (time slot) and the time during which a channel and / or signal is transmitted (can be transmitted) in a certain subframe, is a predetermined time unit. Can be expressed using. For example, the size of the field in the time domain is expressed as several time units T s . T s is 1 / (15000 * 2048) seconds. For example, the time of one subframe is 30720 * T s (1 millisecond). For example, one ICCA slot length or defer period is 1044 * T s (about 33.98 microseconds), or 1045 * T s (about 34.02 microseconds). For example, one ECCA slot length is 276 * T s (about 8.984 microseconds), or 277 * T s (about 9.017 microseconds). For example, one ECCA slot length is 307 * T s (about 9.993 microseconds), or 308 * T s (about 10.03 microseconds).
 また、LAAセルがあるサブフレームにおける途中のシンボルから、チャネルおよび/または信号(予約信号を含む)を送信できるか否かが、端末またはLAAセルに対して設定されてもよい。例えば、端末は、RRCのシグナリングによって、LAAセルに関する設定において、そのような送信が可能かどうかを示す情報が設定される。端末は、その情報に基づいて、LAAセルにおける受信(モニタリング、認識、復号)に関する処理を切り替える。 Further, whether or not a channel and / or a signal (including a reservation signal) can be transmitted from a symbol in the middle of a subframe in which the LAA cell is present may be set for the terminal or the LAA cell. For example, information indicating whether or not such transmission is possible is set in the terminal regarding the LAA cell by RRC signaling. Based on the information, the terminal switches processing related to reception (monitoring, recognition, decoding) in the LAA cell.
 また、途中のシンボルから送信が可能なサブフレーム(途中のシンボルまで送信が可能なサブフレームも含む)は、LAAセルにおける全てのサブフレームでもよい。また、途中のシンボルから送信が可能なサブフレームは、LAAセルに対して予め規定されたサブフレームまたは設定されたサブフレームでもよい。 Also, subframes that can be transmitted from intermediate symbols (including subframes that can be transmitted up to intermediate symbols) may be all subframes in the LAA cell. Further, the subframe that can be transmitted from a halfway symbol may be a subframe previously defined for the LAA cell or a set subframe.
 また、途中のシンボルから送信が可能なサブフレーム(途中のシンボルまで送信が可能なサブフレームも含む)は、TDDの上りリンク下りリンク設定(UL/DL設定)に基づいて設定、通知または決定されることができる。例えば、そのようなサブフレームは、UL/DL設定でスペシャルサブフレームと通知(指定)されたサブフレームである。LAAセルにおけるスペシャルサブフレームは、DwPTS(Downlink Pilot Time Slot)、GP(Guard Period)およびUpPTS(Uplink Pilot Time Slot)の三つのフィールドのうち少なくとも一つを含むサブフレームである。LAAセルにおけるスペシャルサブフレームに関する設定が、RRCのシグナリング、PDCCHまたはEPDCCHのシグナリングによって設定または通知されてもよい。この設定は、DwPTS、GPおよびUpPTSの少なくとも一つに対する時間の長さを設定する。また、この設定は、予め規定された時間の長さの候補を示すインデックス情報である。また、この設定は、従来のTDDセルに設定されるスペシャルサブフレーム設定で用いられるDwPTS、GPおよびUpPTSと同じ時間の長さを用いることができる。すなわち、あるサブフレームにおいて送信が可能な時間の長さは、DwPTS、GPおよびUpPTSのいずれかに基づいて決まる。 Also, subframes that can be transmitted from intermediate symbols (including subframes that can be transmitted up to intermediate symbols) are set, notified, or determined based on the TDD uplink downlink configuration (UL / DL configuration). Can. For example, such a subframe is a subframe notified (designated) as a special subframe in the UL / DL setting. The special subframe in the LAA cell is a subframe including at least one of three fields of DwPTS (Downlink Pilot Time Slot), GP (Guard Period) and UpPTS (Uplink Pilot Time Slot). The setting related to the special subframe in the LAA cell may be set or notified by RRC signaling, PDCCH or EPDCCH signaling. This setting sets the length of time for at least one of DwPTS, GP and UpPTS. This setting is index information indicating candidates for a predetermined length of time. This setting can use the same length of time as DwPTS, GP, and UpPTS used in the special subframe setting set in the conventional TDD cell. That is, the length of time during which transmission is possible in a certain subframe is determined based on one of DwPTS, GP, and UpPTS.
 また、本実施形態において、予約信号は、その予約信号を送信しているLAAセルとは異なるLAAセルが受信できる信号とすることができる。例えば、その予約信号を送信しているLAAセルとは異なるLAAセルは、その予約信号を送信しているLAAセルに隣接しているLAAセル(隣接LAAセル)である。例えば、その予約信号は、そのLAAセルにおける所定のサブフレームおよび/またはシンボルの送信状況(使用状況)に関する情報を含む。ある予約信号を送信しているLAAセルとは異なるLAAセルがその予約信号を受信した場合、その予約信号を受信したLAAセルは、その予約信号に基づいて、所定のサブフレームおよび/またはシンボルの送信状況を認識し、その状況に応じてスケジューリングを行う。 In the present embodiment, the reservation signal can be a signal that can be received by an LAA cell different from the LAA cell that is transmitting the reservation signal. For example, an LAA cell different from the LAA cell that transmits the reservation signal is an LAA cell (adjacent LAA cell) that is adjacent to the LAA cell that transmits the reservation signal. For example, the reservation signal includes information regarding a transmission status (usage status) of a predetermined subframe and / or symbol in the LAA cell. When an LAA cell that is different from the LAA cell that is transmitting a reservation signal receives the reservation signal, the LAA cell that has received the reservation signal uses a predetermined subframe and / or symbol based on the reservation signal. Recognize the transmission status and perform scheduling according to the status.
 また、その予約信号を受信したLAAセルは、チャネルおよび/または信号を送信する前に、LBTを行ってもよい。そのLBTは、受信した予約信号に基づいて行われる。例えば、そのLBTにおいて、予約信号を送信したLAAセルが送信する(送信すると想定される)チャネルおよび/または信号を考慮して、リソース割り当てやMCSの選択などを含むスケジューリングを行う。 Also, the LAA cell that has received the reservation signal may perform LBT before transmitting the channel and / or signal. The LBT is performed based on the received reservation signal. For example, in the LBT, scheduling including resource allocation and MCS selection is performed in consideration of a channel and / or signal transmitted (assumed to be transmitted) by the LAA cell that transmitted the reservation signal.
 また、その予約信号を受信したLAAセルがその予約信号に基づいてチャネルおよび/または信号を送信するスケジューリングを行った場合、所定の方法により、その予約信号を送信したLAAセルを含む一つ以上のLAAセルにそのスケジューリングに関する情報を通知することができる。例えば、その所定の方法は、予約信号を含む所定のチャネルおよび/または信号を送信する方法である。また、例えば、その所定の方法は、X2インターフェースなどのバックホールを通じて通知する方法である。 In addition, when the LAA cell that has received the reservation signal performs scheduling to transmit a channel and / or a signal based on the reservation signal, one or more LAA cells including the LAA cell that has transmitted the reservation signal are transmitted by a predetermined method. Information about the scheduling can be notified to the LAA cell. For example, the predetermined method is a method of transmitting a predetermined channel and / or signal including a reservation signal. Further, for example, the predetermined method is a method of notifying through a backhaul such as an X2 interface.
 また、キャリアアグリゲーションおよび/またはデュアルコネクティビティにおいて、従来の端末は5個までのサービングセルを設定することができたが、本実施形態における端末は設定できるサービングセルの最大数を拡張することができる。すなわち、本実施形態における端末は、5個を超えるサービングセルを設定できる。例えば、本実施形態における端末は16個または32個までのサービングセルを設定できる。例えば、本実施形態における端末に設定される5個を超えるサービングセルは、LAAセルを含む。また、本実施形態における端末に設定される5個を超えるサービングセルは、全てLAAセルであってもよい。 Also, in the carrier aggregation and / or dual connectivity, the conventional terminal can set up to 5 serving cells, but the terminal in the present embodiment can extend the maximum number of serving cells that can be set. That is, the terminal in this embodiment can set more than 5 serving cells. For example, the terminal in this embodiment can set up to 16 or 32 serving cells. For example, more than five serving cells set in the terminal in the present embodiment include LAA cells. Further, all of the 5 or more serving cells set in the terminal in the present embodiment may be LAA cells.
 また、5個を超えるサービングセルを設定できる場合において、一部のサービングセルに関する設定は従来のサービングセル(すなわち、従来のセカンダリセル)の設定と異なってもよい。例えば、その設定に関して、以下が異なる。以下で説明する設定は、組み合わせて用いられてもよい。
  (1)端末は、従来のサービングセルが5個まで設定され、従来とは異なるサービングセルが11個または27個まで設定される。すなわち、端末は、従来のプライマリセルに加えて、従来のセカンダリセルが4個まで設定され、従来とは異なるセカンダリセルが11個または27個まで設定される。
  (2)従来とは異なるサービングセル(セカンダリセル)に関する設定は、LAAセルに関する設定を含む。例えば、端末は、従来のプライマリセルに加えて、LAAセルに関する設定を含まないセカンダリセルが4個まで設定され、従来とは異なるセカンダリセルが11個または27個まで設定される。
In addition, when more than five serving cells can be set, the settings for some serving cells may be different from the settings for a conventional serving cell (ie, a conventional secondary cell). For example, the following is different regarding the setting. The settings described below may be used in combination.
(1) The terminal is configured with up to 5 conventional serving cells and up to 11 or 27 serving cells different from the conventional one. That is, the terminal is configured with up to four conventional secondary cells in addition to the conventional primary cell, and with up to 11 or 27 secondary cells different from the conventional one.
(2) The setting regarding the serving cell (secondary cell) different from the conventional one includes the setting regarding the LAA cell. For example, in addition to the conventional primary cell, the terminal sets up to four secondary cells that do not include settings related to the LAA cell, and sets up to 11 or 27 secondary cells different from the conventional one.
 また、5個を超えるサービングセルを設定できる場合において、基地局(LAAセルを含む)および/または端末は、5個までのサービングセルを設定する場合と異なる処理または想定を行うことができる。例えば、その処理または想定に関して、以下が異なる。以下で説明する処理または想定は、組み合わせて用いられてもよい。
  (1)端末は、5個を超えるサービングセルが設定された場合でも、PDCCH、EPDCCHおよび/またはPDSCHは最大5個のサービングセルから同時に送信される(受信する)と想定する。これにより、端末は、PDCCH、EPDCCHおよび/またはPDSCHの受信と、そのPDSCHに対するHARQ-ACKの送信について、従来と同様の方法を用いることができる。
  (2)端末は、5個を超えるサービングセルが設定された場合、それらのサービングセルにおいて、PDSCHに対するHARQ-ACKのバンドリングを行うセルの組み合わせ(グループ)が設定される。例えば、全てのサービングセル、全てのセカンダリセル、全てのLAAセル、または全ての従来とは異なるセカンダリセルは、それぞれサービングセル間におけるHARQ-ACKのバンドリングに関する情報(設定)を含む。例えば、サービングセル間におけるHARQ-ACKのバンドリングに関する情報は、そのバンドリングを行う識別子(インデックス、ID)である。例えば、HARQ-ACKは、そのバンドリングを行う識別子が同じセルを渡って、バンドリングされる。そのバンドリングは、対象となるHARQ-ACKに対して論理積演算によって行われる。また、そのバンドリングを行う識別子の最大数は5にすることができる。また、そのバンドリングを行う識別子の最大数は、そのバンドリングを行わないセルの数を含めて5にすることができる。すなわち、サービングセルを超えてバンドリングを行うグループの数を最大5にすることができる。これにより、端末は、PDCCH、EPDCCHおよび/またはPDSCHの受信と、そのPDSCHに対するHARQ-ACKの送信について、従来と同様の方法を用いることができる。
  (3)端末は、5個を超えるサービングセルが設定された場合、それらのサービングセルにおいて、PDSCHに対するHARQ-ACKの多重(multiplexing)を行うセルの組み合わせ(グループ)が設定される。PDSCHに対するHARQ-ACKの多重を行うセルの組み合わせ(グループ)が設定される場合、多重されたHARQ-ACKは、そのグループに基づいてPUCCHまたはPUSCHにより送信される。それぞれのグループにおいて、多重されるサービングセルの最大数が規定または設定される。その最大数は、端末に設定されるサービングセルの最大数に基づいて規定または設定される。例えば、その最大数は、端末に設定されるサービングセルの最大数と同数、または、端末に設定されるサービングセルの最大数の半数である。また、同時に送信されるPUCCHの最大数は、それぞれのグループにおいて多重されるサービングセルの最大数と、端末に設定されるサービングセルの最大数とに基づいて、規定または設定される。
Further, when more than five serving cells can be set, the base station (including the LAA cell) and / or the terminal can perform processing or assumption different from that when setting up to five serving cells. For example, regarding the processing or assumption, the following is different. The processes or assumptions described below may be used in combination.
(1) The terminal assumes that PDCCH, EPDCCH and / or PDSCH are simultaneously transmitted (received) from a maximum of 5 serving cells even when more than 5 serving cells are set. Accordingly, the terminal can use a method similar to the conventional method for reception of PDCCH, EPDCCH and / or PDSCH and transmission of HARQ-ACK for the PDSCH.
(2) When more than five serving cells are set, the terminal sets a combination (group) of cells for performing HARQ-ACK bundling for the PDSCH in those serving cells. For example, all serving cells, all secondary cells, all LAA cells, or all non-conventional secondary cells each include information (setting) on HARQ-ACK bundling between serving cells. For example, information related to HARQ-ACK bundling between serving cells is an identifier (index, ID) for performing bundling. For example, HARQ-ACK is bundled across cells having the same identifier for bundling. The bundling is performed by a logical product operation on the target HARQ-ACK. The maximum number of identifiers for bundling can be 5. Further, the maximum number of identifiers for performing bundling can be set to 5 including the number of cells for which bundling is not performed. That is, the maximum number of groups that perform bundling beyond the serving cell can be five. Accordingly, the terminal can use a method similar to the conventional method for reception of PDCCH, EPDCCH and / or PDSCH and transmission of HARQ-ACK for the PDSCH.
(3) When more than five serving cells are set, the terminal sets a combination (group) of cells that perform HARQ-ACK multiplexing on the PDSCH in those serving cells. When a combination (group) of cells for performing HARQ-ACK multiplexing on the PDSCH is set, the multiplexed HARQ-ACK is transmitted by PUCCH or PUSCH based on the group. In each group, the maximum number of serving cells to be multiplexed is defined or set. The maximum number is defined or set based on the maximum number of serving cells set in the terminal. For example, the maximum number is the same as the maximum number of serving cells set in the terminal, or half the maximum number of serving cells set in the terminal. Further, the maximum number of PUCCHs transmitted simultaneously is defined or set based on the maximum number of serving cells multiplexed in each group and the maximum number of serving cells set in the terminal.
 換言すると、設定される第1のサービングセル(すなわち、プライマリセルおよび/またはセカンダリセル)の数は所定数(すなわち、5)以下であり、設定される第1のサービングセルと第2のサービングセル(すなわち、LAAセル)の合計は所定数を超える。 In other words, the number of configured first serving cells (i.e., primary cells and / or secondary cells) is less than or equal to a predetermined number (i.e., 5), and configured first serving cells and second serving cells (i.e., The total number of LAA cells exceeds a predetermined number.
 次に、LAAに関連する端末ケイパビリティを説明する。端末は、基地局からの指示に基づいて、RRCのシグナリングによって、その端末のケイパビリティ(能力)に関する情報(端末ケイパビリティ)を基地局に通知(送信)する。ある機能(特徴)に対する端末ケイパビリティは、その機能(特徴)をサポートする場合に通知(送信)され、その機能(特徴)をサポートしない場合に通知(送信)されない。また、ある機能(特徴)に対する端末ケイパビリティは、その機能(特徴)のテストおよび/または実装が完了しているかどうかを示す情報であってもよい。例えば、本実施形態における端末ケイパビリティは、以下の通りである。以下で説明する端末ケイパビリティは、組み合わせて用いられてもよい。
  (1)LAAセルのサポートに関する端末ケイパビリティと、5個を超えるサービングセルの設定のサポートに関する端末ケイパビリティは、それぞれ独立に定義される。例えば、LAAセルをサポートする端末は、5個を超えるサービングセルの設定をサポートする。すなわち、5個を超えるサービングセルの設定をサポートしない端末は、LAAセルをサポートしない。その場合、5個を超えるサービングセルの設定をサポートする端末は、LAAセルをサポートしてもよいし、しなくてもよい。
  (2)LAAセルのサポートに関する端末ケイパビリティと、5個を超えるサービングセルの設定のサポートに関する端末ケイパビリティは、それぞれ独立に定義される。例えば、5個を超えるサービングセルの設定をサポートする端末は、LAAセルをサポートする。すなわち、LAAセルをサポートしない端末は、5個を超えるサービングセルの設定をサポートしない。その場合、LAAセルをサポートする端末は、5個を超えるサービングセルの設定をサポートしてもよいし、しなくてもよい。
  (3)LAAセルにおける下りリンクに関する端末ケイパビリティと、LAAセルにおける上りリンクに関する端末ケイパビリティは、それぞれ独立に定義される。例えば、LAAセルにおける上りリンクをサポートする端末は、LAAセルにおける下りリンクをサポートする。すなわち、LAAセルにおける下りリンクをサポートしない端末は、LAAセルにおける上りリンクをサポートしない。その場合、LAAセルにおける下りリンクをサポートする端末は、LAAセルにおける上りリンクをサポートしてもよいし、サポートしなくてもよい。
  (4)LAAセルのサポートに関する端末ケイパビリティは、LAAセルのみに設定される送信モードのサポートを含む。
  (5)5個を超えるサービングセルの設定における下りリンクに関する端末ケイパビリティと、5個を超えるサービングセルの設定における上りリンクに関する端末ケイパビリティは、それぞれ独立に定義される。例えば、5個を超えるサービングセルの設定における上りリンクをサポートする端末は、5個を超えるサービングセルの設定における下りリンクをサポートする。すなわち、5個を超えるサービングセルの設定における下りリンクをサポートしない端末は、5個を超えるサービングセルの設定における上りリンクをサポートしない。その場合、5個を超えるサービングセルの設定における下りリンクをサポートする端末は、5個を超えるサービングセルの設定における上りリンクをサポートしてもよいし、サポートしなくてもよい。
  (6)5個を超えるサービングセルの設定における端末ケイパビリティにおいて、最大16個の下りリンクサービングセル(コンポーネントキャリア)の設定をサポートする端末ケイパビリティと、最大32個の下りリンクサービングセルの設定をサポートする端末ケイパビリティは、それぞれ独立に定義される。また、最大16個の下りリンクサービングセルの設定をサポートする端末は、少なくとも一つの上りリンクサービングセルの設定をサポートする。最大32個の下りリンクサービングセルの設定をサポートする端末は、少なくとも二つの上りリンクサービングセルの設定をサポートする。すなわち、最大16個の下りリンクサービングセルの設定をサポートする端末は、二つ以上の上りリンクサービングセルの設定をサポートしなくてもよい。
  (7)LAAセルのサポートに関する端末ケイパビリティは、LAAセルで用いられる周波数(バンド)に基づいて通知される。例えば、端末がサポートする周波数または周波数の組み合わせの通知において、通知される周波数または周波数の組み合わせがLAAセルで用いられる周波数を少なくとも一つ含む場合、その端末はLAAセルをサポートすることを黙示的に通知する。すなわち、通知される周波数または周波数の組み合わせがLAAセルで用いられる周波数を全く含まない場合、その端末はLAAセルをサポートしないことを黙示的に通知する。
Next, terminal capabilities related to LAA will be described. Based on an instruction from the base station, the terminal notifies (transmits) information (terminal capability) on the capability (capability) of the terminal to the base station through RRC signaling. The terminal capability for a certain function (feature) is notified (transmitted) when the function (feature) is supported, and is not notified (transmitted) when the function (feature) is not supported. In addition, the terminal capability for a certain function (feature) may be information indicating whether the test and / or implementation of the function (feature) has been completed. For example, the terminal capabilities in this embodiment are as follows. The terminal capabilities described below may be used in combination.
(1) The terminal capabilities related to support of LAA cells and the terminal capabilities related to support of setting of more than five serving cells are defined independently. For example, a terminal that supports LAA cells supports setting of more than 5 serving cells. That is, a terminal that does not support setting of more than five serving cells does not support LAA cells. In that case, a terminal that supports setting of more than five serving cells may or may not support the LAA cell.
(2) The terminal capabilities related to support of LAA cells and the terminal capabilities related to support of setting of more than five serving cells are defined independently. For example, a terminal that supports setting of more than 5 serving cells supports LAA cells. That is, a terminal that does not support the LAA cell does not support setting of more than five serving cells. In that case, the terminal supporting the LAA cell may or may not support setting of more than five serving cells.
(3) The terminal capability related to the downlink in the LAA cell and the terminal capability related to the uplink in the LAA cell are defined independently. For example, a terminal that supports uplink in the LAA cell supports downlink in the LAA cell. That is, a terminal that does not support the downlink in the LAA cell does not support the uplink in the LAA cell. In that case, the terminal that supports the downlink in the LAA cell may or may not support the uplink in the LAA cell.
(4) The terminal capabilities related to LAA cell support include support for transmission modes set only in the LAA cell.
(5) The terminal capabilities related to the downlink in the setting of more than five serving cells and the terminal capabilities related to the uplink in the setting of more than five serving cells are defined independently. For example, a terminal that supports uplink in setting of more than 5 serving cells supports downlink in setting of more than 5 serving cells. That is, a terminal that does not support the downlink in setting more than 5 serving cells does not support the uplink in setting more than 5 serving cells. In that case, a terminal that supports the downlink in the configuration of more than five serving cells may or may not support the uplink in the configuration of more than five serving cells.
(6) In the terminal capability in setting more than 5 serving cells, the terminal capability that supports setting of up to 16 downlink serving cells (component carriers) and the terminal capability supporting setting of up to 32 downlink serving cells are: Are defined independently. In addition, a terminal that supports setting of up to 16 downlink serving cells supports setting of at least one uplink serving cell. A terminal that supports setting of up to 32 downlink serving cells supports setting of at least two uplink serving cells. That is, a terminal that supports setting of up to 16 downlink serving cells may not support setting of two or more uplink serving cells.
(7) The terminal capability related to the support of the LAA cell is notified based on the frequency (band) used in the LAA cell. For example, in the notification of the frequency or combination of frequencies supported by the terminal, if the notified frequency or combination of frequencies includes at least one frequency used in the LAA cell, the terminal implicitly supports the LAA cell. Notice. That is, if the notified frequency or combination of frequencies does not include any frequency used in the LAA cell, the terminal implicitly notifies that it does not support the LAA cell.
 また、本実施形態において、LAAセルが、そのLAAセルで送信されるPDSCHのためのDCIを通知するPDCCHまたはEPDCCHを、送信する場合(すなわち、セルフスケジューリングの場合)を説明したが、これに限定されるものではない。例えば、LAAセルとは異なるサービングセルが、そのLAAセルで送信されるPDSCHのためのDCIを通知するPDCCHまたはEPDCCHを、送信する場合(すなわち、クロスキャリアスケジューリングの場合)においても、本実施形態で説明された方法は適用できる。 Further, in the present embodiment, the case where the LAA cell transmits PDCCH or EPDCCH that notifies DCI for PDSCH transmitted in the LAA cell has been described (that is, in the case of self-scheduling), but the present invention is not limited to this. Is not to be done. For example, even when a serving cell different from the LAA cell transmits PDCCH or EPDCCH for notifying DCI for PDSCH transmitted in the LAA cell (that is, in the case of cross-carrier scheduling), this embodiment will be described. Applied methods are applicable.
 また、本実施形態において、チャネルおよび/または信号が送信されるシンボルを認識するための情報は、チャネルおよび/または信号が送信されないシンボルに基づいてもよい。例えば、その情報は、チャネルおよび/または信号が送信されないシンボルの最後のシンボルを示す情報である。また、チャネルおよび/または信号が送信されるシンボルを認識するための情報は、他の情報またはパラメータに基づいて決まってもよい。 In the present embodiment, information for recognizing a symbol for transmitting a channel and / or signal may be based on a symbol for which a channel and / or signal is not transmitted. For example, the information is information indicating the last symbol of a symbol for which a channel and / or signal is not transmitted. In addition, information for recognizing a symbol on which a channel and / or signal is transmitted may be determined based on other information or parameters.
 また、本実施形態において、チャネルおよび/または信号が送信されるシンボルは、チャネルおよび/または信号に対して独立に設定(通知、規定)されてもよい。すなわち、チャネルおよび/または信号が送信されるシンボルを認識するための情報と、その通知方法は、チャネルおよび/または信号に対して、それぞれ独立に設定(通知、規定)できる。例えば、チャネルおよび/または信号が送信されるシンボルを認識するための情報と、その通知方法は、PDSCHとEPDCCHでそれぞれ独立に設定(通知、規定)できる。 Further, in the present embodiment, the symbol for transmitting the channel and / or signal may be set (notified or specified) independently for the channel and / or signal. In other words, information for recognizing a symbol for transmitting a channel and / or a signal and a notification method thereof can be set (notified or defined) independently for each channel and / or signal. For example, information for recognizing a channel and / or symbol on which a signal is transmitted and a notification method thereof can be set (notified and specified) independently for PDSCH and EPDCCH.
 また、本実施形態において、チャネルおよび/または信号が送信されない(送信できない)シンボル/サブフレームは、端末の観点から、チャネルおよび/または信号が送信される(送信できる)と想定されないシンボル/サブフレームとしてもよい。すなわち、その端末は、そのLAAセルがそのシンボル/サブフレームでチャネルおよび/または信号を送信していないと見なすことができる。 In this embodiment, a symbol / subframe in which a channel and / or signal is not transmitted (cannot be transmitted) is a symbol / subframe in which a channel and / or signal is not assumed to be transmitted (can be transmitted) from the viewpoint of the terminal. It is good. That is, the terminal can consider that the LAA cell is not transmitting a channel and / or signal in the symbol / subframe.
 また、本実施形態において、チャネルおよび/または信号が送信される(送信できる)シンボル/サブフレームは、端末の観点から、チャネルおよび/または信号が送信されるかもしれないと想定するシンボル/サブフレームとしてもよい。すなわち、その端末は、そのLAAセルがそのシンボル/サブフレームでチャネルおよび/または信号を送信しているかもしれないし、送信していないかもしれないと見なすことができる。 In the present embodiment, the symbol / subframe in which the channel and / or signal is transmitted (can be transmitted) is the symbol / subframe in which the channel and / or signal may be transmitted from the viewpoint of the terminal. It is good. That is, the terminal may consider that the LAA cell may or may not be transmitting a channel and / or signal in that symbol / subframe.
 また、本実施形態において、チャネルおよび/または信号が送信される(送信できる)シンボル/サブフレームは、端末の観点から、チャネルおよび/または信号が必ず送信されていると想定するシンボル/サブフレームとしてもよい。すなわち、その端末は、そのLAAセルがそのシンボル/サブフレームでチャネルおよび/または信号を必ず送信していると見なすことができる。 Further, in the present embodiment, a symbol / subframe in which a channel and / or signal is transmitted (transmittable) is a symbol / subframe that is assumed to be transmitted from the terminal point of view. Also good. That is, the terminal can consider that the LAA cell always transmits a channel and / or signal in the symbol / subframe.
 次に、LAAセルにおける下りリンクの参照信号の構成の一例を説明する。 Next, an example of the configuration of the downlink reference signal in the LAA cell will be described.
 図5は、下りリンクの参照信号の構成の一例を示す図である。一例として、CRSは、R0~R3のREに配置されることができる。R0はアンテナポート0のCRSが配置されるRE、R1はアンテナポート1のCRSが配置されるRE、R2はアンテナポート2のCRSが配置されるRE、R3はアンテナポート3のCRSが配置されるREの一例を示す。なお、CRSは、セル識別子に関連するパラメータによって周波数方向に移って配置されてもよい。具体的には、Ncell IDmod6の値に基づいて、REが配置を指定するインデックスkを増加させる。ここで、Ncell IDは物理セル識別子の値である。DMRSはD1~D2のREに配置されることができる。D1はアンテナポート7、8、11、13のDMRSが配置されるRE、D2はアンテナポート9、10、12、14のDMRSが配置されるREの一例を示す。CSI-RSは、C1~C4のREに配置されることができる。C0はアンテナポート15、16のCSI-RSが配置されるRE、C1はアンテナポート17、18のCSI-RSが配置されるRE、C2はアンテナポート19、20のCSI-RSが配置されるRE、C3はアンテナポート21、22のCSI-RSが配置されるREの一例を示す。なお、CSI-RSは、スロット0のOFDMシンボル#5または#6と、スロット1のOFDMシンボル#1、#2、または、#3のREに配置されてもよい。なお、CSI-RSは、上位層のパラメータに基づいて、配置されるREが指示される。 FIG. 5 is a diagram illustrating an example of a configuration of a downlink reference signal. As an example, the CRS can be arranged in the REs of R0 to R3. R0 is the RE in which the CRS of the antenna port 0 is arranged, R1 is the RE in which the CRS of the antenna port 1 is arranged, R2 is the RE in which the CRS of the antenna port 2 is arranged, and R3 is the CRS of the antenna port 3. An example of RE is shown. Note that the CRS may be arranged in the frequency direction depending on a parameter related to the cell identifier. Specifically, based on the value of N cell ID mod6, the index k at which the RE specifies the arrangement is increased. Here, N cell ID is the value of the physical cell identifier. The DMRS can be arranged in the REs of D1 to D2. D1 shows an example of RE in which DMRSs of antenna ports 7, 8, 11, and 13 are arranged, and D2 shows an example of RE in which DMRS of antenna ports 9, 10, 12, and 14 are arranged. The CSI-RS can be arranged in C1 to C4 REs. C0 is an RE in which the CSI-RS of the antenna ports 15 and 16 is arranged, C1 is an RE in which the CSI-RS of the antenna ports 17 and 18 is arranged, and C2 is an RE in which the CSI-RS of the antenna ports 19 and 20 is arranged. , C3 shows an example of RE in which CSI-RS of antenna ports 21 and 22 is arranged. Note that CSI-RS may be arranged in OFDM symbol # 5 or # 6 in slot 0 and RE in OFDM symbol # 1, # 2 or # 3 in slot 1. In CSI-RS, the RE to be arranged is instructed based on the upper layer parameters.
 次に、下りリンク送信と上りリンク送信とLBTの関係性について説明する。 Next, the relationship between downlink transmission, uplink transmission, and LBT will be described.
 図7に、時間軸上における下りリンク送信と上りリンク送信の間隔とLBTの種類の関係の一例を示す。図7の(a)は、時間軸上において下りリンク送信と上りリンク送信の間が十分に離れている場合を示している。下りリンク送信と上りリンク送信の間が十分に離れている場合とは、例えば、1サブフレーム(1ミリ秒)以上の間隔が空いている場合である。このような場合においては、下りリンク送信と上りリンク送信の間にチャネル状態(チャネルセンシング結果)の相関が無いため、それぞれの送信に対して十分にキャリアセンスを行うLBTを行う必要がある。ここで、図7の(a)の上りリンク送信の前に行われるLBTを、第一の上りリンクLBTと呼称する。図7の(b)は、時間軸上において下りリンク送信と上りリンク送信の間が僅かに離れている場合を示している。下りリンク送信と上りリンク送信の間が僅かに離れている場合とは、例えば、数シンボル(数十マイクロ秒から数百マイクロ秒)の間隔が空いている場合である。このような場合においては、下りリンク送信の前に行ったCCAによってチャネル状態(チャネルセンシング結果)が上りリンク送信の前も保たれるとみなせるため、端末装置は簡易的なCCAを行ってから上りリンクの信号を送信してもよい。ここで、図7の(b)の上りリンク送信の前に行われるLBTを、第二の上りリンクLBTと呼称する。そして、図7の(c)は、時間軸上において下りリンク送信と上りリンク送信の間が殆ど離れていない場合を示している。下りリンク送信と上りリンク送信の間が殆ど離れていない場合とは、例えば、34マイクロ秒や40マイクロ秒など、数マイクロ秒から数十マイクロ秒ほど離れている場合である。このような場合においては、下りリンク送信によって既に上りリンク送信のためのチャネルが予約(確保)されているため、下りリンク送信と上りリンク送信は一つの送信バーストとみなすことができる。そのため、端末装置はCCAを行わずに上りリンク送信を行ってもよい。これらの一例のように、下りリンク送信と上りリンク送信の間隔に応じて、行われるLBTの手順を変更することで、LAAセルにおいても上りリンクの信号および/またはチャネルを能率よく送信することができる。 FIG. 7 shows an example of the relationship between the interval between downlink transmission and uplink transmission on the time axis and the type of LBT. FIG. 7A shows a case where the downlink transmission and the uplink transmission are sufficiently separated on the time axis. The case where there is a sufficient separation between downlink transmission and uplink transmission is, for example, a case where there is an interval of 1 subframe (1 millisecond) or more. In such a case, since there is no correlation between channel states (channel sensing results) between downlink transmission and uplink transmission, it is necessary to perform LBT that sufficiently performs carrier sense for each transmission. Here, the LBT performed before the uplink transmission in FIG. 7A is referred to as a first uplink LBT. FIG. 7B shows a case where the downlink transmission and the uplink transmission are slightly separated on the time axis. The case where the transmission between the downlink transmission and the uplink transmission is slightly separated is, for example, a case where there is an interval of several symbols (several tens of microseconds to several hundred microseconds). In such a case, since the channel state (channel sensing result) can be regarded as being maintained before uplink transmission by CCA performed before downlink transmission, the terminal apparatus performs uplink after performing simple CCA. A link signal may be transmitted. Here, the LBT performed before the uplink transmission in FIG. 7B is referred to as a second uplink LBT. FIG. 7C shows a case where there is almost no separation between downlink transmission and uplink transmission on the time axis. The case where there is almost no separation between the downlink transmission and the uplink transmission is a case where there are some microseconds to several tens of microseconds apart, such as 34 microseconds or 40 microseconds. In such a case, since a channel for uplink transmission has already been reserved (reserved) by downlink transmission, downlink transmission and uplink transmission can be regarded as one transmission burst. Therefore, the terminal device may perform uplink transmission without performing CCA. As in these examples, by changing the LBT procedure performed according to the interval between downlink transmission and uplink transmission, it is possible to efficiently transmit uplink signals and / or channels in the LAA cell. it can.
 なお、図7における上りリンク送信と下りリンク送信を入れ替えてもよい。つまり、時間軸上において上りリンク送信と下りリンク送信の間が殆ど離れていない場合は、下りリンクLBTを省略してもよい。 Note that uplink transmission and downlink transmission in FIG. 7 may be interchanged. That is, when the uplink transmission and the downlink transmission are hardly separated on the time axis, the downlink LBT may be omitted.
 以下では、上りリンクLBTの詳細について説明する。 Hereinafter, details of the uplink LBT will be described.
 なお、以下、上りリンク送信を行う前や上りリンクを送信する前とは、その上りリンク送信が指示されたタイミング(サブフレーム)よりも前という意味である。 In the following description, before performing uplink transmission or before transmitting uplink means before the timing (subframe) at which the uplink transmission is instructed.
 第一の上りリンクLBTは、上りリンク送信が指示されたタイミングよりも前にバックオフカウンタを用いて複数回CCAチェックを行う。端末装置は、バックオフカウンタの値と同じ回数のCCAチェックを試みる。全てのCCAチェックにおいてチャネルがアイドルであったと判断した場合に、端末装置は、そのチャネルのアクセス権を取得し、上りリンクを送信することができる。 The first uplink LBT performs a CCA check a plurality of times using a back-off counter before the timing at which uplink transmission is instructed. The terminal device tries the CCA check as many times as the value of the back-off counter. When it is determined that the channel is idle in all the CCA checks, the terminal apparatus can acquire the access right of the channel and transmit the uplink.
 図8に、第一の上りリンクLBTの手順の一例を示す。端末装置は、アイドル状態(S801)から上りリンクグラントを検出した(S802)場合に、第一のCCA(S803)を行う。第一のCCAでは、初めに、端末装置は0からq-1の範囲からランダムにカウンタ値Nを生成する(S8031)。なお、上りリンクグラントによって基地局装置からカウンタ値Nに関連する数値が指示される場合は、端末装置はカウンタ値を生成せずに、その数値に基づいたカウンタ値Nを用いる。なお、前回のLBTでカウンタ値Nが0にならず、まだカウンタ値が残っている場合は、端末装置はカウンタ値Nを生成せずに、残ったカウンタ値Nを用いてもよい。次に、端末装置は、所定のタイミングからCCAを開始する(S8032)。端末装置は、一つのCCAスロット時間でチャネル(媒体)を感知し(S8033)、そのチャネルがアイドルかビジーかを判断する(S8034)。そのチャネルがアイドルと判断した場合は、カウンタ値Nから一つ減らし(S8035)、そのチャネルがビジーと判断した場合は、その上りリンクグラントで指示された上りリンクの送信を行わず、アイドル状態(S801)に戻る。端末装置は、カウンタ値が0になったか否かを判断し(S8036)、カウンタ値が0になった場合には、端末装置はそのチャネルのアクセス権を獲得し、送信の動作(S804、S805)に移行する。一方で、カウンタ値が0ではない場合には、再度一つのCCAスロット時間でチャネル(媒体)を感知する(S8033)。なお、カウンタ値Nを生成する際の衝突窓qの値はチャネルの状態に応じてXとYの間の値となるように更新される(S8037)。端末装置は、送信を行うプロセスにおいて、そのタイミングで実際に上りリンク送信を行うか否かを判断し(S804)、上りリンク送信を行うと決定した場合に上りリンク送信を行う(S805)。端末装置は、上りリンク送信を行わないと決定した場合は、その上りリンクグラントで指示された上りリンクの送信を行わず、アイドル状態(S801)に戻る。 FIG. 8 shows an example of the procedure of the first uplink LBT. A terminal device performs 1st CCA (S803), when an uplink grant is detected from an idle state (S801) (S802). In the first CCA, first, the terminal device randomly generates a counter value N from the range of 0 to q−1 (S8031). When the base station apparatus indicates a numerical value related to the counter value N by the uplink grant, the terminal apparatus does not generate the counter value but uses the counter value N based on the numerical value. When the counter value N does not become 0 in the previous LBT and the counter value still remains, the terminal device may use the remaining counter value N without generating the counter value N. Next, the terminal device starts CCA from a predetermined timing (S8032). The terminal device senses a channel (medium) in one CCA slot time (S8033), and determines whether the channel is idle or busy (S8034). If it is determined that the channel is idle, the counter value N is decremented by one (S8035). If it is determined that the channel is busy, the uplink transmission indicated by the uplink grant is not performed, and the idle state ( Return to S801). The terminal device determines whether or not the counter value has reached 0 (S8036). If the counter value has reached 0, the terminal device acquires the access right for the channel and performs the transmission operation (S804 and S805). ). On the other hand, if the counter value is not 0, the channel (medium) is sensed again in one CCA slot time (S8033). Note that the value of the collision window q when generating the counter value N is updated so as to be a value between X and Y according to the channel state (S8037). In the transmission process, the terminal apparatus determines whether or not uplink transmission is actually performed at the timing (S804), and performs uplink transmission when it is determined to perform uplink transmission (S805). If the terminal apparatus determines not to perform uplink transmission, the terminal apparatus returns to the idle state (S801) without performing uplink transmission instructed by the uplink grant.
 第一のCCAの期間は、下りリンクLBTにおけるECCA期間と同じであることが好ましい。 It is preferable that the period of the first CCA is the same as the ECCA period in the downlink LBT.
 なお、下りリンクLBTと同様に第一のCCAを行う前にICCAを行ってもよい。ただし、ICCAによってチャネルがアイドルだと判断したとしても上りリンクは送信されず、第一のCCAの動作に移行する。 It should be noted that ICCA may be performed before the first CCA as in the downlink LBT. However, even if it is determined by ICCA that the channel is idle, the uplink is not transmitted, and the operation shifts to the first CCA operation.
 第二の上りリンクLBTは、上りリンク送信が指示されたタイミングよりも前に一度だけCCAチェックを行う。端末装置は、一度CCAチェックを試みる。そのCCAチェックにおいてチャネルがアイドルであったと判断した場合に、端末装置は、そのチャネルのアクセス権を取得し、上りリンクを送信することができる。 The second uplink LBT performs a CCA check only once before the timing at which uplink transmission is instructed. The terminal device once tries the CCA check. When it is determined in the CCA check that the channel is idle, the terminal apparatus can acquire the access right of the channel and transmit the uplink.
 図9に、第二の上りリンクLBTの手順の一例を示す。端末装置は、アイドル状態(S901)から上りリンクグラントを検出した(S902)場合に、第二のCCA(S903)を行う。第二のCCAでは端末装置は、所定のタイミングからCCAを開始する(S9031)。CCA期間にCCAチェックを行い、チャネルがアイドルかビジーかを感知する(S9032)。第二のCCA(S903)を行った結果、チャネルがアイドルであったと判断した場合、基地局装置はそのチャネルのアクセス権を獲得し、送信の動作に移行する。一方で、第二のCCA(S903)を行った結果、チャネルがビジーであったと判断した場合、その上りリンクグラントで指示された上りリンクの送信を行わず、アイドル状態(S901)に戻る。送信の動作に移行後、そのタイミングで実際に上りリンク送信を行うか否かを判断し(S904)、上りリンク送信を行うと決定した場合に上りリンク送信を行う(S905)。端末装置は、上りリンク送信を行わないと決定した場合は、その上りリンクグラントで指示された上りリンクの送信を行わず、アイドル状態(S901)に戻る。 FIG. 9 shows an example of the procedure of the second uplink LBT. The terminal device performs the second CCA (S903) when the uplink grant is detected from the idle state (S901) (S902). In the second CCA, the terminal device starts CCA from a predetermined timing (S9031). A CCA check is performed during the CCA period to detect whether the channel is idle or busy (S9032). As a result of performing the second CCA (S903), when it is determined that the channel is idle, the base station apparatus acquires the access right of the channel and shifts to the transmission operation. On the other hand, as a result of performing the second CCA (S903), when it is determined that the channel is busy, the uplink transmission instructed by the uplink grant is not performed and the process returns to the idle state (S901). After shifting to the transmission operation, it is determined whether or not uplink transmission is actually performed at that timing (S904). When it is determined that uplink transmission is performed, uplink transmission is performed (S905). If the terminal apparatus determines not to perform uplink transmission, the terminal apparatus returns to the idle state (S901) without performing uplink transmission instructed by the uplink grant.
 第二のCCAの期間は、下りリンクLBTにおけるICCA期間と同じであることが好ましい。 It is preferable that the period of the second CCA is the same as the ICCA period in the downlink LBT.
 以下では、下りリンクLBTと上りリンクLBTの違いを列挙する。 In the following, differences between downlink LBT and uplink LBT are listed.
 下りリンクLBTは、基地局装置がCCAチェックを行う。一方で、上りリンクLBTは端末装置がCCAチェックを行う。 In the downlink LBT, the base station apparatus performs a CCA check. On the other hand, in the uplink LBT, the terminal device performs a CCA check.
 下りリンクLBTは、送信が必要とする情報(データ、バッファ、ロード、トラヒック)が発生した場合に、LBTの処理が開始される。一方で、上りリンクLBTは基地局装置からの上りリンク送信の指示がされた場合(上りリンクグラントを受信した場合)に、LBTの処理が開始される。 The downlink LBT starts LBT processing when information required for transmission (data, buffer, load, traffic) occurs. On the other hand, when the uplink LBT is instructed for uplink transmission from the base station apparatus (when the uplink grant is received), the LBT process is started.
 なお、下りリンクLBTのICCA期間と、第二のCCAの期間は同じであることが好ましい。なお、下りリンクLBTのECCA期間と、第一のCCAの期間は同じであることが好ましい。 Note that the ICCA period of the downlink LBT and the period of the second CCA are preferably the same. In addition, it is preferable that the ECCA period of downlink LBT and the period of 1st CCA are the same.
 次に、第一の上りリンクLBTを行って上りリンクを送信する場合と、第二の上りリンクLBTを行って、または上りリンクLBTを行わずに、上りリンクを送信する場合と、の切り替えの具体例を挙げる。 Next, switching between the case where the first uplink LBT is performed and the uplink is transmitted and the case where the second uplink LBT is performed or the uplink is transmitted without performing the uplink LBT is performed. A specific example is given.
 一例として、上りリンク送信を指示する上りリンクグラント(DCIフォーマット0または4)に含まれる所定のフィールドに基づいて上りリンクLBTの手順を切り替える。 As an example, an uplink LBT procedure is switched based on a predetermined field included in an uplink grant (DCI format 0 or 4) instructing uplink transmission.
 所定のフィールドとは、例えば、端末装置に対して上りリンクLBTを指定する1ビットの情報である。言い換えると、その所定のフィールドとは、上りリンクグラントで指示されたサブフレームの直前のサブフレームでチャネルを予約(確保)できているか否かを示す1ビットの情報である。その所定の1ビットが、0(偽、無効、不可能)を示す場合、端末装置は上りリンク送信を行う前に第一の上りリンクLBTを行う。一方で、その所定の1ビットが、1(真、有効、可能)を示す場合、端末装置は上りリンク送信を行う前に第二の上りリンクLBTを行う、または上りリンクLBTを行わない。 The predetermined field is, for example, 1-bit information that specifies the uplink LBT for the terminal device. In other words, the predetermined field is 1-bit information indicating whether or not a channel is reserved (reserved) in a subframe immediately before the subframe indicated by the uplink grant. When the predetermined 1 bit indicates 0 (false, invalid, impossible), the terminal apparatus performs the first uplink LBT before performing uplink transmission. On the other hand, when the predetermined 1 bit indicates 1 (true, valid, possible), the terminal apparatus performs the second uplink LBT or does not perform the uplink LBT before performing the uplink transmission.
 または、所定のフィールドとは、例えば、第一の上りリンクLBTで用いられるカウンタ値Nに関連する情報である。その所定のフィールドが、0(無効、不可能)であった場合、端末装置は上りリンク送信を行う前に第二の上りリンクLBTを行う、または上りリンクLBTを行わない。一方で、その所定のフィールドに、0(無効、不可能)以外の数値が入っていた場合、端末装置は上りリンク送信を行う前に、その数値に基づいてカウンタ値Nを生成し、第一の上りリンクLBTを行う。 Or, the predetermined field is information related to the counter value N used in the first uplink LBT, for example. When the predetermined field is 0 (invalid, impossible), the terminal apparatus performs the second uplink LBT or does not perform the uplink LBT before performing the uplink transmission. On the other hand, if the predetermined field contains a numerical value other than 0 (invalid, impossible), the terminal apparatus generates a counter value N based on the numerical value before performing uplink transmission, Uplink LBT is performed.
 そのカウンタ値Nに関連する情報は、例えば、カウンタ値Nである。端末装置は、端末装置自身でカウンタ値Nを生成せず、その所定のフィールドの値をカウンタ値Nにセットする。 The information related to the counter value N is, for example, the counter value N. The terminal device does not generate the counter value N by itself but sets the value of the predetermined field to the counter value N.
 また、カウンタ値Nに関連する情報は、例えば、設定されたカウンタ値Nを示すインデックス情報である。端末装置に複数のカウンタ値Nの候補が専用RRCによって設定され、その所定のフィールドの値を取得した場合、フィールドの情報に対応する設定されたカウンタ値Nが用いられる。 Further, the information related to the counter value N is, for example, index information indicating the set counter value N. When a plurality of candidates for the counter value N are set in the terminal device by the dedicated RRC and the value of the predetermined field is acquired, the set counter value N corresponding to the field information is used.
 また、カウンタ値Nに関連する情報は、例えば、衝突窓qに関連する情報である。端末装置に複数の衝突窓qの候補が専用RRCによって設定される。端末装置は、その所定のフィールドの値を取得した場合、フィールドの情報に対応する設定された衝突窓qの値を用いて、カウンタ値Nを生成する。なお、衝突窓qに関連する情報は、衝突窓qの値でもよい。 Also, the information related to the counter value N is information related to the collision window q, for example. A plurality of collision window q candidates are set by the dedicated RRC in the terminal device. When the terminal device acquires the value of the predetermined field, the terminal device generates the counter value N using the set value of the collision window q corresponding to the field information. The information related to the collision window q may be the value of the collision window q.
 なお、上記の一例は、第二の上りリンクLBTを行って上りリンクを送信する場合と、または上りリンクLBTを行わずに上りリンクを送信する場合と、の切り替えであってもよい。具体的には、所定の1ビットが、0を示す場合、端末装置は上りリンク送信を行う前に第二の上りリンクLBTを行う。一方で、その所定の1ビットが、1(真、有効、可能)を示す場合、端末装置は上りリンク送信を行う前に上りリンクLBTを行わない。 Note that the above example may be switching between the case where the second uplink LBT is performed and the uplink is transmitted, or the case where the uplink is transmitted without performing the uplink LBT. Specifically, when the predetermined 1 bit indicates 0, the terminal apparatus performs the second uplink LBT before performing uplink transmission. On the other hand, when the predetermined 1 bit indicates 1 (true, valid, possible), the terminal apparatus does not perform uplink LBT before performing uplink transmission.
 なお、所定のフィールドの情報は、LBTを行うギャップを生成するか否かを示す情報であってもよい。例えば、その所定のフィールドの1ビットが、1であった場合、端末装置は、所定のSC-FDMAシンボルを開けてPUSCHを送信し、その所定のフィールドの1ビットが、0であった場合、端末装置は、所定のSC-FDMAシンボルを開けないでPUSCHを送信する。所定のSC-FDMAシンボルは、例えば、サブフレームの先頭または後方の数SC-FDMAシンボル、サブフレームの先頭または後方のスロット、である。 Note that the information of the predetermined field may be information indicating whether or not to generate a gap for performing LBT. For example, when 1 bit of the predetermined field is 1, the terminal device transmits a PUSCH with a predetermined SC-FDMA symbol opened, and when 1 bit of the predetermined field is 0, The terminal apparatus transmits PUSCH without opening a predetermined SC-FDMA symbol. The predetermined SC-FDMA symbol is, for example, several SC-FDMA symbols at the head or rear of the subframe, and slots at the head or rear of the subframe.
 なお、所定のフィールドは、他のフィールドと併用して用いられてもよい。例えば、SRSリクエストフィールドによって上りリンクLBTの手順を切り替えてもよい。具体的には、そのSRSリクエストフィールドが、0を示す場合、端末装置は上りリンク送信を行う前に第二の上りリンクLBTを行い、そのSRSリクエストフィールドが、1を示す場合、上りリンクLBTを行わない。そのSRSリクエストフィールドが、0を示す場合、サブフレームの最後の一つのSC-FDMAシンボルには何も送信されない。端末装置は、その最後の一つのSC-FDMAシンボルにおいて、第二の上りリンクLBTを行う。 Note that the predetermined field may be used in combination with other fields. For example, the uplink LBT procedure may be switched by the SRS request field. Specifically, when the SRS request field indicates 0, the terminal apparatus performs the second uplink LBT before performing uplink transmission, and when the SRS request field indicates 1, the terminal LRS Not performed. If the SRS request field indicates 0, nothing is transmitted in the last SC-FDMA symbol of the subframe. The terminal apparatus performs the second uplink LBT in the last one SC-FDMA symbol.
 一例として、上りリンクグラントとは異なるDCIに含まれる所定のフィールドに基づいて上りリンクLBTの手順を切り替える。 As an example, the procedure of the uplink LBT is switched based on a predetermined field included in DCI different from the uplink grant.
 上りリンクグラントとは異なるDCIとは、例えば、そのDCIで指定したサブフレームにおいて下りリンクの送信(送信バースト)がされているか否かを端末装置に通知するためのDCIである。具体的には、そのDCIで指定したサブフレームが上りリンク送信の直前のサブフレームを含み、そのDCIの所定のフィールドは、下りリンク送信がされるか否かを通知する情報である。そのDCIの所定のフィールドによって下りリンク送信がされないと指示された場合、端末装置は上りリンク送信を行う前に、第一の上りリンクLBTを行う。一方で、そのDCIの所定のフィールドによって下りリンク送信がされると指示された場合、端末装置は上りリンク送信を行う前に第二の上りリンクLBTを行う、または上りリンクLBTを行わない。 The DCI different from the uplink grant is, for example, DCI for notifying the terminal apparatus whether or not downlink transmission (transmission burst) is performed in the subframe specified by the DCI. Specifically, the subframe specified by the DCI includes a subframe immediately before uplink transmission, and a predetermined field of the DCI is information for notifying whether or not downlink transmission is performed. When the predetermined field of the DCI indicates that downlink transmission is not performed, the terminal apparatus performs the first uplink LBT before performing uplink transmission. On the other hand, when it is instructed that downlink transmission is performed by a predetermined field of the DCI, the terminal apparatus performs the second uplink LBT or does not perform the uplink LBT before performing the uplink transmission.
 その上りリンクグラントとは異なるDCIで通知される情報は、例えば、下りリンク送信の長さである。その情報によって、下りリンク送信の先頭および/または後尾が通知される。なお、下りリンク送信の長さは予め規定、もしくは、設定されることで、端末装置は下りリンク送信の先頭または後尾の情報のみで下りリンク送信の長さを認知することができる。一例として、長さが1サブフレームであり、DCIで通知される情報が下りリンク送信の先頭が所定のサブフレームの先頭から始まることを指示される場合は、端末装置は、指定された1サブフレームにおいて下りリンク送信がされると認知する。 The information notified by DCI different from the uplink grant is, for example, the length of downlink transmission. With this information, the head and / or tail of downlink transmission is notified. Note that the length of the downlink transmission is specified or set in advance, so that the terminal apparatus can recognize the length of the downlink transmission only with the head or tail information of the downlink transmission. As an example, when the length is 1 subframe and the information notified by DCI indicates that the head of the downlink transmission starts from the head of a predetermined subframe, the terminal apparatus performs the specified 1 subframe. It is recognized that downlink transmission is performed in the frame.
 また、その上りリンクグラントとは異なるDCIは、非LAAセルに配置されることが好ましい。具体的には、そのDCIは、プライマリセルまたはプライマリセカンダリセルに存在する共有サーチスペースに配置され、その一つのDCIで複数のサービングセルに対応する情報を通知することができる。 Also, DCI different from the uplink grant is preferably arranged in the non-LAA cell. Specifically, the DCI is arranged in a shared search space existing in a primary cell or a primary secondary cell, and information corresponding to a plurality of serving cells can be notified by the single DCI.
 また、その上りリンクグラントとは異なるDCIは、C-RNTIとは異なる専用のRNTI(下りリンク送信通知専用RNTI、B-RNTI)によってスクランブルされる。その下りリンク送信通知専用RNTIは、複数の端末装置に対して個別に設定されるのが好ましいが、端末装置共通の値で設定されてもよい。 Also, the DCI different from the uplink grant is scrambled by a dedicated RNTI (downlink transmission notification dedicated RNTI, B-RNTI) different from the C-RNTI. The downlink transmission notification dedicated RNTI is preferably set individually for a plurality of terminal devices, but may be set with a value common to the terminal devices.
 また、その上りリンクグラントとは異なるDCIは、例えば、一つのPDSCHコードワードに対する非常に小型なスケジューリングや、MCCH変更の通知、TDD再設定のために用いられるDCIフォーマット1Cと同じフォーマットサイズである。または、そのDCIは、例えば、PUCCHやPUSCHに対するTPCコマンドの送信に用いられるDCIフォーマット3またはDCIフォーマット3Aと同じフォーマットサイズである。 Also, the DCI different from the uplink grant has the same format size as the DCI format 1C used for, for example, very small scheduling for one PDSCH codeword, MCCH change notification, and TDD reconfiguration. Alternatively, the DCI has the same format size as, for example, the DCI format 3 or DCI format 3A used for transmission of a TPC command for PUCCH or PUSCH.
 なお、その上りリンクグラントとは異なるDCIで、そのDCIで指定したサブフレームにおける上りリンクの送信(送信バースト)がされているかを通知されてもよい。 Note that it may be notified whether uplink transmission (transmission burst) is performed in a subframe specified by the DCI using a DCI different from the uplink grant.
 なお、上記の一例は、第二の上りリンクLBTを行って上りリンクを送信する場合と、または上りリンクLBTを行わずに上りリンクを送信する場合と、の切り替えであってもよい。具体的には、そのDCIの所定のフィールドによって下りリンク送信がされないと指示された場合、端末装置は上りリンク送信を行う前に、第二の上りリンクLBTを行う。一方で、そのDCIの所定のフィールドによって下りリンク送信がされると指示された場合、端末装置は上りリンク送信を行う前に上りリンクLBTを行わない。 Note that the above example may be switching between the case where the second uplink LBT is performed and the uplink is transmitted, or the case where the uplink is transmitted without performing the uplink LBT. Specifically, when it is instructed not to perform downlink transmission by a predetermined field of the DCI, the terminal apparatus performs the second uplink LBT before performing uplink transmission. On the other hand, when it is instructed that downlink transmission is performed by a predetermined field of the DCI, the terminal apparatus does not perform uplink LBT before performing uplink transmission.
 一例として、送信が予定される上りリンクのチャネルや信号の種類に応じて上りリンクLBTの手順を切り替える。 As an example, the procedure of the uplink LBT is switched according to the uplink channel and signal type scheduled to be transmitted.
 例えば、端末装置はPUSCHの送信を行う前に、第一の上りリンクLBTを行う。端末装置はPRACHを行う前に第二の上りリンクLBTを行う、または上りリンクLBTを行わない。 For example, the terminal device performs the first uplink LBT before transmitting the PUSCH. The terminal device performs the second uplink LBT before performing the PRACH or does not perform the uplink LBT.
 例えば、端末装置はPUSCHを伴うSRSの送信を行う前に、第一の上りリンクLBTを行う。端末装置はPUSCHを伴わないSRSを行う前に第二の上りリンクLBTを行う、または上りリンクLBTを行わない。 For example, the terminal apparatus performs the first uplink LBT before transmitting the SRS with PUSCH. The terminal apparatus performs the second uplink LBT or does not perform the uplink LBT before performing the SRS without PUSCH.
 一例として、端末装置が上りリンクを送信する前に、その端末装置が接続しているセルからの下りリンクの信号またはチャネルが送信されていることを検出したか否かによって上りリンクLBTの手順を切り替える。 As an example, before the terminal device transmits an uplink, the procedure of the uplink LBT is determined depending on whether or not it is detected that a downlink signal or channel is transmitted from a cell to which the terminal device is connected. Switch.
 その端末装置が接続しているセルからの下りリンクの信号またはチャネルが送信されていることを検出する基準は、例えば、CRSの受信電力と閾値との比較が用いられる。上りリンク送信を行うサブフレームの直前のサブフレームにおいて、アンテナポート0(またはアンテナポート1、2、3)のCRSが配置されるREの受信電力が所定の閾値を下回ると端末装置が判断した場合には、端末装置は上りリンク送信を行う前に第一の上りリンクLBTを行う。一方で、上りリンク送信を行うサブフレームの直前のサブフレームにおいて、アンテナポート0(またはアンテナポート1、2、3)のCRSが配置されるREの受信電力が所定の閾値を上回ると端末装置が判断した場合には、端末装置は上りリンク送信を行う前に第二の上りリンクLBTを行う、または上りリンクLBTを行わない。 As a reference for detecting that a downlink signal or channel is transmitted from a cell to which the terminal device is connected, for example, a comparison between CRS received power and a threshold value is used. When the terminal apparatus determines that the received power of the RE in which the CRS of antenna port 0 (or antenna ports 1, 2, and 3) is arranged is lower than a predetermined threshold in the subframe immediately before the subframe that performs uplink transmission In this case, the terminal apparatus performs the first uplink LBT before performing uplink transmission. On the other hand, when the received power of the RE in which the CRS of antenna port 0 (or antenna ports 1, 2, 3) is arranged exceeds a predetermined threshold in the subframe immediately before the subframe in which uplink transmission is performed, the terminal device If it is determined, the terminal apparatus performs the second uplink LBT or does not perform the uplink LBT before performing the uplink transmission.
 その端末装置が接続しているセルからの下りリンクの信号またはチャネルが送信されていることを検出する基準は、例えば、予約信号が検出できたか否かである。下りリンク送信の長さが予め規定もしくは設定され、端末装置が予約信号を検出できた場合、その予約信号を検出した時間(サブフレーム、シンボル、RE、Ts)とその下りリンク送信の長さから、上りリンク送信を行うサブフレームの直前のサブフレームにおいて、下りリンク送信がされるか否かを判別することができる。上りリンク送信を行うサブフレームの直前のサブフレームにおいて下りリンク送信がされないと判断した場合には、端末装置は上りリンク送信を行う前に第一の上りリンクLBTを行う。一方で、上りリンク送信を行うサブフレームの直前のサブフレームにおいて下りリンク送信がされると判断した場合には、端末装置は上りリンク送信を行う前に第二の上りリンクLBTを行う、または上りリンクLBTを行わない。端末装置が予約信号を検出できたか否かの基準は、例えば、予約信号が割り当てられるREの受信電力と所定の閾値との比較である。 The reference for detecting that a downlink signal or channel is transmitted from a cell to which the terminal device is connected is, for example, whether or not a reservation signal has been detected. When the downlink transmission length is specified or set in advance and the terminal apparatus can detect the reserved signal, the time (subframe, symbol, RE, Ts) when the reserved signal is detected and the length of the downlink transmission are determined. It is possible to determine whether or not downlink transmission is performed in a subframe immediately before a subframe in which uplink transmission is performed. When it is determined that downlink transmission is not performed in a subframe immediately before a subframe in which uplink transmission is performed, the terminal apparatus performs first uplink LBT before performing uplink transmission. On the other hand, if it is determined that downlink transmission is performed in the subframe immediately before the subframe in which uplink transmission is performed, the terminal apparatus performs the second uplink LBT before performing uplink transmission, or uplink Link LBT is not performed. The criterion for determining whether or not the terminal device has detected the reservation signal is, for example, a comparison between the received power of the RE to which the reservation signal is assigned and a predetermined threshold value.
 その端末装置が接続しているセルからの下りリンクの信号またはチャネルが送信されていることを検出する基準は、例えば、PDCCHまたはEPDCCHが検出できたか否かである。上りリンク送信を行うサブフレームの直前のサブフレームにおいて、PDCCHまたはEPDCCHが復号できた場合に、そのサブフレームは下りリンクサブフレームとして基地局装置が予約していることが端末装置で認識することができる。すなわち、上りリンク送信を行うサブフレームの直前のサブフレームにおいて、PDCCHまたはEPDCCHの復号が成功した場合、端末装置は上りリンク送信を行う前に第一の上りリンクLBTを行う。一方で、上りリンク送信を行うサブフレームの直前のサブフレームにおいて、PDCCHまたはEPDCCHの復号が成功しなかった場合、端末装置は上りリンク送信を行う前に第二の上りリンクLBTを行う、または上りリンクLBTを行わない。 The reference for detecting that a downlink signal or channel is transmitted from the cell to which the terminal device is connected is, for example, whether PDCCH or EPDCCH has been detected. When PDCCH or EPDCCH can be decoded in a subframe immediately before a subframe for uplink transmission, the terminal device recognizes that the subframe is reserved by the base station apparatus as a downlink subframe. it can. That is, when the PDCCH or EPDCCH decoding is successful in the subframe immediately before the subframe in which uplink transmission is performed, the terminal apparatus performs the first uplink LBT before performing the uplink transmission. On the other hand, if decoding of PDCCH or EPDCCH is not successful in a subframe immediately before a subframe in which uplink transmission is performed, the terminal apparatus performs second uplink LBT before performing uplink transmission, or Link LBT is not performed.
 その端末装置が接続しているセルからの下りリンクの信号またはチャネルが送信されていることを検出する基準は、例えば、PDSCHが検出できたか否かである。上りリンク送信を行うサブフレームの直前のサブフレームにおいて、PDSCHが復号できた場合に、そのサブフレームは下りリンクサブフレームとして基地局装置が予約していることが端末装置で認識することができる。すなわち、上りリンク送信を行うサブフレームの直前のサブフレームにおいて、PDSCHの復号が成功した場合、端末装置は上りリンク送信を行う前に第一の上りリンクLBTを行う。一方で、上りリンク送信を行うサブフレームの直前のサブフレームにおいて、PDSCHの復号が成功しなかった場合、端末装置は上りリンク送信を行う前に第二の上りリンクLBTを行う、または上りリンクLBTを行わない。 The reference for detecting that a downlink signal or channel is transmitted from a cell to which the terminal device is connected is, for example, whether or not PDSCH has been detected. When the PDSCH can be decoded in the subframe immediately before the subframe in which uplink transmission is performed, the terminal device can recognize that the subframe is reserved by the base station apparatus as the downlink subframe. That is, when PDSCH decoding is successful in a subframe immediately before a subframe in which uplink transmission is performed, the terminal apparatus performs a first uplink LBT before performing uplink transmission. On the other hand, if the PDSCH decoding is not successful in the subframe immediately before the subframe for performing uplink transmission, the terminal apparatus performs the second uplink LBT before performing the uplink transmission, or the uplink LBT. Do not do.
 その端末装置が接続しているセルからの下りリンクの信号またはチャネルが送信されていることを検出する基準は、例えば、DMRSが検出できたか否かである。上りリンク送信を行うサブフレームの直前のサブフレームにおいて、DMRSが検出できた場合に、そのサブフレームは下りリンクサブフレームとして基地局装置が予約していることが端末装置で認識することができる。すなわち、上りリンク送信を行うサブフレームの直前のサブフレームにおいて、DMRSが検出できた場合、端末装置は上りリンク送信を行う前に第一の上りリンクLBTを行う。一方で、上りリンク送信を行うサブフレームの直前のサブフレームにおいて、DMRSが検出できた場合、端末装置は上りリンク送信を行う前に第二の上りリンクLBTを行う、または上りリンクLBTを行わない。端末装置が予約信号を検出できたか否かの基準は、例えば、DMRSが割り当てられるREの受信電力と所定の閾値との比較である。すなわち、アンテナポート7または9の受信電力と所定の閾値との比較である。 The reference for detecting that a downlink signal or channel is transmitted from a cell to which the terminal device is connected is, for example, whether DMRS has been detected. When a DMRS can be detected in a subframe immediately before a subframe in which uplink transmission is performed, the terminal device can recognize that the subframe is reserved as a downlink subframe by the base station device. That is, when DMRS can be detected in a subframe immediately before a subframe in which uplink transmission is performed, the terminal apparatus performs first uplink LBT before performing uplink transmission. On the other hand, if a DMRS can be detected in a subframe immediately before a subframe in which uplink transmission is performed, the terminal apparatus performs the second uplink LBT or does not perform the uplink LBT before performing uplink transmission. . The criterion for determining whether or not the terminal device has detected the reservation signal is, for example, a comparison between the reception power of the RE to which the DMRS is assigned and a predetermined threshold. That is, the received power of the antenna port 7 or 9 is compared with a predetermined threshold value.
 一例として、端末装置が上りリンクを送信する前に、その端末装置が上りリンクの信号またはチャネルが送信しているか否かによって上りリンクLBTの手順を切り替える。 As an example, before a terminal device transmits an uplink, the procedure of the uplink LBT is switched depending on whether or not the terminal device is transmitting an uplink signal or channel.
 例えば、上りリンク送信を行うサブフレームの直前のサブフレームにおいて、端末装置がPUSCHを送信している場合に、そのサブフレームは上りリンクサブフレームとしてチャネルを予約できているためLBT無しで送信することができる。すなわち、上りリンク送信を行うサブフレームの直前のサブフレームにおいて、端末装置がPUSCHを送信していない場合、その端末装置は上りリンク送信を行う前に第一の上りリンクLBT、または第二の上りリンクLBTを行う。一方で、上りリンク送信を行うサブフレームの直前のサブフレームにおいて、PUSCHを送信している場合、端末装置は上りリンクLBTを行わない。 For example, when a terminal apparatus transmits PUSCH in a subframe immediately before a subframe in which uplink transmission is performed, the subframe can be reserved without an LBT because the channel can be reserved as an uplink subframe. Can do. That is, in a subframe immediately before a subframe in which uplink transmission is performed, when the terminal apparatus does not transmit PUSCH, the terminal apparatus performs the first uplink LBT or the second uplink before performing uplink transmission. Link LBT is performed. On the other hand, when the PUSCH is transmitted in the subframe immediately before the subframe in which uplink transmission is performed, the terminal apparatus does not perform the uplink LBT.
 例えば、上りリンク送信を行うサブフレームの直前のサブフレームにおいて、端末装置がSRSを送信している場合に、そのサブフレームは上りリンクサブフレームとしてチャネルを予約できているためLBT無しで送信することができる。すなわち、上りリンク送信を行うサブフレームの直前のサブフレームにおいて、端末装置がSRSを送信していない場合、その端末装置は上りリンク送信を行う前に第一の上りリンクLBT、または第二の上りリンクLBTを行う。一方で、上りリンク送信を行うサブフレームの直前のサブフレームにおいて、SRSを送信している場合、端末装置は上りリンクLBTを行わない。 For example, when a terminal apparatus transmits an SRS in a subframe immediately before a subframe in which uplink transmission is performed, the subframe can be reserved without an LBT because the channel can be reserved as an uplink subframe. Can do. That is, in a subframe immediately before a subframe in which uplink transmission is performed, when the terminal apparatus does not transmit SRS, the terminal apparatus performs the first uplink LBT or the second uplink before performing uplink transmission. Link LBT is performed. On the other hand, when the SRS is transmitted in the subframe immediately before the subframe in which uplink transmission is performed, the terminal apparatus does not perform the uplink LBT.
 例えば、上りリンク送信を行うサブフレームの直前のサブフレームにおいて、端末装置がPRACHを送信している場合に、そのサブフレームは上りリンクサブフレームとしてチャネルを予約できているためLBT無しで送信することができる。すなわち、上りリンク送信を行うサブフレームの直前のサブフレームにおいて、端末装置がPRACHを送信していない場合、その端末装置は上りリンク送信を行う前に第一の上りリンクLBT、または第二の上りリンクLBTを行う。一方で、上りリンク送信を行うサブフレームの直前のサブフレームにおいて、PRACHを送信している場合、端末装置は上りリンクLBTを行わない。 For example, when a terminal apparatus transmits a PRACH in a subframe immediately before a subframe in which uplink transmission is performed, the subframe is reserved without an LBT because the channel can be reserved as an uplink subframe. Can do. That is, in a subframe immediately before a subframe in which uplink transmission is performed, if the terminal apparatus does not transmit PRACH, the terminal apparatus does not perform uplink transmission before the first uplink LBT or second uplink. Link LBT is performed. On the other hand, when the PRACH is transmitted in the subframe immediately before the subframe in which uplink transmission is performed, the terminal apparatus does not perform the uplink LBT.
 一例として、上位層からの設定に応じて、上りリンクLBTの手順を切り替える。 As an example, the uplink LBT procedure is switched according to the setting from the upper layer.
 上位層からの設定とは、例えば、上りリンクLBTの手順を指定する設定情報である。端末装置に対して第一の上りリンクLBTを指定する設定がされた場合、端末装置はそのLAAセルの上りリンク送信を行う前に第一の上りリンクLBTを行う。端末装置に対して第二の上りリンクLBTを指定する設定がされた場合、端末装置はそのLAAセルの上りリンク送信を行う前に第二の上りリンクLBTを行う。端末装置に対して上りリンクLBTを行わないことを指定する設定がされた場合、端末装置はそのLAAセルの上りリンク送信を行う前に上りリンクLBTを行わない。 The setting from the upper layer is, for example, setting information that specifies an uplink LBT procedure. When the terminal device is set to designate the first uplink LBT, the terminal device performs the first uplink LBT before performing the uplink transmission of the LAA cell. When the terminal device is set to designate the second uplink LBT, the terminal device performs the second uplink LBT before performing the uplink transmission of the LAA cell. When the terminal device is set to designate not to perform uplink LBT, the terminal device does not perform uplink LBT before performing uplink transmission of the LAA cell.
 上位層からの設定とは、例えば、そのLAAセルに対してクロスキャリアスケジューリングを行う設定である。そのLAAセルに対してクロスキャリアスケジューリングが設定された場合、端末装置は第一の上りリンクLBTを行い、そのLAAセルに対してセルフスケジューリングが設定された場合(換言すると、そのLAAセルに対してクロスキャリアスケジューリングが設定されない場合)には、端末装置は第二の上りリンクLBTを行う、または上りリンクLBTを行わない。すなわち、そのLAAセルに対しての上りリンク送信をスケジュールする上りリンクグラントのPDCCHまたはEPDCCHがそのLAAセル以外でモニタすることが設定された場合、端末装置は上りリンク送信を行う前に第一の上りリンクLBTを行う。一方で、そのLAAセルに対しての上りリンク送信をスケジュールする上りリンクグラントのPDCCHまたはEPDCCHがそのLAAセル以外でモニタすることが設定されない場合、端末装置は上りリンク送信を行う前に第二の上りリンクLBTを行う、または上りリンクLBTを行わない。 The setting from the higher layer is, for example, a setting for performing cross carrier scheduling for the LAA cell. When cross-carrier scheduling is set for the LAA cell, the terminal apparatus performs the first uplink LBT, and when self-scheduling is set for the LAA cell (in other words, for the LAA cell). When cross carrier scheduling is not set), the terminal apparatus performs the second uplink LBT or does not perform the uplink LBT. That is, when the uplink grant PDCCH or EPDCCH that schedules uplink transmission to the LAA cell is set to be monitored outside the LAA cell, the terminal apparatus performs the first transmission before performing uplink transmission. Perform uplink LBT. On the other hand, if the PDCCH or EPDCCH of the uplink grant that schedules uplink transmission for the LAA cell is not set to be monitored other than the LAA cell, the terminal device performs the second transmission before performing uplink transmission. Perform uplink LBT or do not perform uplink LBT.
 クロスキャリアスケジューリングの設定は、下りリンクグラントと上りリンクグラントに対してそれぞれ設定されてもよい。その場合、上記の切り替えの一例は、上りリンクグラントがクロスキャリアスケジューリングとして設定されたか否か、の切り替えと見做す。 The setting of cross carrier scheduling may be set for each of the downlink grant and the uplink grant. In this case, an example of the above switching is considered as switching whether or not the uplink grant is set as cross carrier scheduling.
 上位層からの設定とは、例えば、そのLAAセルが運用される国を示す情報の設定である。その情報において、特定の国(例えば、日本やヨーロッパ)を示す場合、端末装置はそのLAAセルの上りリンク送信を行う前に第一の上りリンクLBTを行う。一方で、その情報において、特定の国以外の国(例えば、アメリカや中国)を示す場合、端末装置はそのLAAセルの上りリンク送信を行う前に第二の上りリンクLBTを行う、または上りリンクLBTを行わない。その運用される国を示す情報は、例えば、PLMN(Public Land Mobile Network)である。PLMNとは、国とオペレータを示す識別子である。PLMNは、SIB1に含まれて、端末装置に報知される。なお、運用される国の情報に加え、運用するバンド(operating band)に応じて上りリンクLBTの手順を切り替えてもよい。運用するバンドを示す情報は、上位層から設定されるキャリアの中心周波数の情報(EARFCN value)から識別することができる。 The setting from the upper layer is, for example, setting of information indicating the country in which the LAA cell is operated. When the information indicates a specific country (for example, Japan or Europe), the terminal device performs the first uplink LBT before performing the uplink transmission of the LAA cell. On the other hand, when the information indicates a country other than a specific country (for example, the United States or China), the terminal device performs the second uplink LBT before performing the uplink transmission of the LAA cell, or the uplink. Do not perform LBT. The information indicating the country of operation is, for example, PLMN (Public Land Mobile Mobile Network). PLMN is an identifier indicating a country and an operator. The PLMN is included in the SIB1 and is notified to the terminal device. Note that the uplink LBT procedure may be switched according to the operating band in addition to the information of the operating country. Information indicating the band to be operated can be identified from information on the center frequency of the carrier (EARFCN value) set from the upper layer.
 特定の国とは、LBTを行うことが必要な国である。国の情報と端末装置の能力(ケイパビリティ)は対応されてもよい。すなわち、端末装置は、特定の国の情報に紐付いて、必須である能力が指定されてもよい。 Specified countries are countries that need to perform LBT. The country information may correspond to the capability of the terminal device. That is, the terminal device may be designated with an essential capability in association with information of a specific country.
 上位層からの設定とは、例えば、第一の上りリンクLBTの設定である。端末装置に対して第一の上りリンクLBTの設定がされたか否かに応じて上りリンクLBTの手順を切り替える。具体的には、上位層から第一の上りリンクLBTの設定がされた場合、端末装置はそのLAAセルの上りリンク送信を行う前に第一の上りリンクLBTを行う。一方で、上位層から第一の上りリンクLBTの設定がされなかった場合、端末装置はそのLAAセルの上りリンク送信を行う前に第二の上りリンクLBTを行う、または上りリンクLBTを行わない。第一の上りリンクLBTの設定は、例えば、衝突窓qを決定するための範囲XおよびYの情報または衝突窓qの値、CCAのスロット長、CCAの閾値、などが含まれる。 The setting from the upper layer is, for example, the setting of the first uplink LBT. The procedure of the uplink LBT is switched depending on whether or not the first uplink LBT is set for the terminal device. Specifically, when the first uplink LBT is set from the upper layer, the terminal apparatus performs the first uplink LBT before performing the uplink transmission of the LAA cell. On the other hand, when the first uplink LBT is not set from the upper layer, the terminal apparatus performs the second uplink LBT or does not perform the uplink LBT before performing the uplink transmission of the LAA cell. . The setting of the first uplink LBT includes, for example, information on the ranges X and Y for determining the collision window q or the value of the collision window q, the CCA slot length, the CCA threshold, and the like.
 なお、端末装置に対して第二の上りリンクLBTの設定がされたか否かに応じて上りリンクLBTの手順を切り替えてもよい。具体的には、上位層から第二の上りリンクLBTの設定がされなかった場合、端末装置はそのLAAセルの上りリンク送信を行う前に第一の上りリンクLBTを行う。一方で、上位層から第二の上りリンクLBTの設定がされた場合、端末装置はそのLAAセルの上りリンク送信を行う前に第二の上りリンクLBTを行う。第二の上りリンクLBTの設定は、例えば、衝突窓qの値、CCAのスロット長、CCAの閾値、などが含まれる。 The uplink LBT procedure may be switched depending on whether or not the second uplink LBT has been set for the terminal device. Specifically, when the second uplink LBT is not set from the upper layer, the terminal apparatus performs the first uplink LBT before performing the uplink transmission of the LAA cell. On the other hand, when the second uplink LBT is set from the upper layer, the terminal apparatus performs the second uplink LBT before performing the uplink transmission of the LAA cell. The setting of the second uplink LBT includes, for example, the value of the collision window q, the slot length of the CCA, the threshold value of the CCA, and the like.
 第一の上りリンクLBTの設定、および、第二の上りリンクLBTの設定は、セル固有に設定されることが好ましい。なお、サービングセルとして設定された全セルに対して一つの設定情報によって共通に設定されてもよい。この場合、サービングセルとして設定された非LAAセルには適用されない。 It is preferable that the setting of the first uplink LBT and the setting of the second uplink LBT are set in a cell-specific manner. In addition, you may set in common with one setting information with respect to all the cells set as a serving cell. In this case, it is not applied to a non-LAA cell set as a serving cell.
 なお、上位層からの設定を複数組み合わせた場合に切り替えられてもよい。具体例として、そのLAAセルに対してクロスキャリアスケジューリングが設定されず、かつ、そのLAAセルが運用される国が特定の国であると通知された場合、端末装置はそのLAAセルの上りリンク送信を行う前に第二の上りリンクLBTを行う、または上りリンクLBTを行わない。そのLAAセルに対してクロスキャリアスケジューリングが設定される、または、そのLAAセルが運用される国が特定の国以外の国であると通知された場合、端末装置はそのLAAセルの上りリンク送信を行う前に第一の上りリンクLBTを行う。 Note that switching may be performed when a plurality of settings from higher layers are combined. As a specific example, when cross carrier scheduling is not set for the LAA cell and the country in which the LAA cell is operated is notified as a specific country, the terminal apparatus transmits uplink transmission of the LAA cell. Before performing the second uplink LBT or not performing the uplink LBT. When cross-carrier scheduling is set for the LAA cell, or when it is notified that the country in which the LAA cell is operated is a country other than a specific country, the terminal device performs uplink transmission of the LAA cell. Before performing the first uplink LBT.
 さらに、上記の一例を複数組み合わせた場合に切り替えられてもよい。具体例として、そのLAAセルに対してセルフスケジューリングが設定され、かつ、上りリンク送信を指示する上りリンクグラントに含まれる所定のフィールドによって第一のLBTを行うことを指示する場合、端末装置はそのLAAセルの上りリンク送信を行う前に第一の上りリンクLBTを行い、それ以外は、端末装置はそのLAAセルの上りリンク送信を行う前に第二の上りリンクLBTを行う、または上りリンクLBTを行わない。 Furthermore, it may be switched when a plurality of the above examples are combined. As a specific example, when self-scheduling is set for the LAA cell, and when it is instructed to perform the first LBT by a predetermined field included in the uplink grant instructing uplink transmission, the terminal device Before the uplink transmission of the LAA cell, the first uplink LBT is performed. Otherwise, the terminal apparatus performs the second uplink LBT before performing the uplink transmission of the LAA cell, or the uplink LBT. Do not do.
 なお、上記の一例によって、パラメータが切り替わってもよい。具体例として、端末装置は第一の上りリンクLBTを行うが、そのLAAセルに対してセルフスケジューリングが設定された場合には、衝突窓qは上位層(RRC)で設定された値が適用され、そのLAAセルに対してクロスキャリアスケジューリングが設定された場合には、衝突窓qは上位層(RRC)で設定された値に基づいて送信機会ごとに更新される。 Note that the parameters may be switched according to the above example. As a specific example, the terminal apparatus performs the first uplink LBT, but when self-scheduling is set for the LAA cell, the value set in the upper layer (RRC) is applied to the collision window q. When cross carrier scheduling is set for the LAA cell, the collision window q is updated for each transmission opportunity based on the value set in the upper layer (RRC).
 なお、上記の一例は、第二の上りリンクLBTを行って上りリンクを送信する場合と、または上りリンクLBTを行わずに上りリンクを送信する場合と、の切り替えであってもよい。具体的には、そのLAAセルに対しての上りリンク送信をスケジュールする上りリンクグラントのPDCCHまたはEPDCCHがそのLAAセル以外でモニタすることが設定された場合、端末装置は上りリンク送信を行う前に第二の上りリンクLBTを行う。一方で、そのLAAセルに対しての上りリンク送信をスケジュールする上りリンクグラントのPDCCHまたはEPDCCHがそのLAAセル以外でモニタすることが設定されない場合、端末装置は上りリンク送信を行う前に上りリンクLBTを行わない。 Note that the above example may be switching between the case where the second uplink LBT is performed and the uplink is transmitted, or the case where the uplink is transmitted without performing the uplink LBT. Specifically, when the PDCCH or EPDCCH of the uplink grant that schedules uplink transmission to the LAA cell is set to be monitored outside the LAA cell, the terminal device before performing uplink transmission A second uplink LBT is performed. On the other hand, if the PDCCH or EPDCCH of the uplink grant that schedules the uplink transmission for the LAA cell is not set to be monitored other than the LAA cell, the terminal apparatus performs the uplink LBT before performing the uplink transmission. Do not do.
 LAAセルでは、端末装置は連続する一つまたは複数のサブキャリア、または、一つまたは複数のリソースブロックのセット(クラスタ)にPUSCHを割り当てて送信してもよい。すなわち、LAAセルでは、一つまたは二つのクラスタによって送信されるとは限らず、複数のクラスタを用いてPUSCHが送信されてもよい。一例として、図10に、LAAセルにおけるPUSCHの周波数多重の一例を示す。LAAセルでは、PUSCHが割り当てられるリソースは、周波数方向に連続で割り当てられず、数サブキャリアまたは数リソースブロックを開けて飛び飛びに割り当てられてもよい。そして、異なる端末装置間のPUSCHは、複数のサブキャリアのセットまたは複数のリソースブロックのセットで入れ子になるように織り交ぜて割り当てられる。また、一例として、PUSCHのクラスタの間隔は均等になるように配置されることが好ましい。これにより、上りリンクの送信電力が帯域幅に対して均等に分散される。図10の一例では、3サブキャリア間隔でPUSCHが割り当てられており、三つの端末装置のPUSCHが1サブキャリアごとに織り交ぜて割り当てられる。これにより、端末装置は少ない割り当てリソースで帯域幅の全体を利用することができる。なお、図10では、クラスタの最小割り当て単位を1サブキャリアとして説明したが、これに限らず、複数のサブキャリアや複数のリソースブロックを連続で割り当ててもよい。なお、多重される端末装置の数は3に限らず、クラスタの間隔やクラスタを割り当てるリソースの粒度に基づいて、多重される端末装置の最大数が決まる。 In an LAA cell, a terminal apparatus may allocate and transmit PUSCH to one or a plurality of continuous subcarriers or a set (cluster) of one or a plurality of resource blocks. That is, in the LAA cell, the PUSCH may be transmitted using a plurality of clusters without being transmitted by one or two clusters. As an example, FIG. 10 shows an example of frequency multiplexing of PUSCH in the LAA cell. In an LAA cell, resources to which PUSCHs are allocated may not be allocated continuously in the frequency direction, but may be allocated in several steps by opening several subcarriers or several resource blocks. And PUSCH between different terminal devices is interlaced and assigned so as to be nested in a set of a plurality of subcarriers or a set of a plurality of resource blocks. Also, as an example, it is preferable that the PUSCH clusters are arranged at equal intervals. As a result, uplink transmission power is evenly distributed over the bandwidth. In the example of FIG. 10, PUSCHs are allocated at intervals of 3 subcarriers, and PUSCHs of three terminal apparatuses are allocated interwoven with each subcarrier. As a result, the terminal device can use the entire bandwidth with less allocated resources. In FIG. 10, the minimum allocation unit of the cluster has been described as one subcarrier. However, the present invention is not limited to this, and a plurality of subcarriers and a plurality of resource blocks may be continuously allocated. The number of terminal devices to be multiplexed is not limited to three, and the maximum number of terminal devices to be multiplexed is determined based on the interval between clusters and the granularity of resources to which clusters are allocated.
 LAAセルにおいて、同じサブフレーム(時間リソース)を用いて複数の端末装置間で周波数多重または空間多重を行うためには、それぞれの端末装置からの上りリンクチャネルおよび/または上りリンク信号が基地局装置で同時に受信されるように、端末装置の送信タイミングを調整する必要がある。さらに、LAAセルにおいて、上りリンク送信を行う前には上りリンクLBTが行われる。カウンタ値Nに基づくLBTを行う場合は、カウンタ値Nに応じてCCAの試行回数およびLBTにかかる時間が変化する。以下では、上りリンク送信と上りリンクLBTの開始タイミングの関係について説明する。 In order to perform frequency multiplexing or spatial multiplexing between a plurality of terminal apparatuses using the same subframe (time resource) in the LAA cell, the uplink channel and / or the uplink signal from each terminal apparatus is a base station apparatus. It is necessary to adjust the transmission timing of the terminal device so that it can be received simultaneously. Further, in the LAA cell, uplink LBT is performed before uplink transmission. When performing LBT based on the counter value N, the number of CCA trials and the time required for the LBT change according to the counter value N. Hereinafter, a relationship between uplink transmission and uplink LBT start timing will be described.
 図11は、上りリンク送信と上りリンクLBTの開始タイミングの関係の一例である。図11は、図8の上りリンクLBTの手順で動作することを前提にしている。基地局装置は各端末装置に対して上りリンク送信のタイミング(サブフレーム)を通知する。上りリンク送信のタイミングは、例えば、上りリンクグラントの受信サブフレームから暗示的に通知される。端末装置はカウンタ値Nを独立に生成する。そして端末装置は、カウンタ値NとCCA期間から上りリンクLBTが完了する時間を推定し、LBTの開始タイミングを決定する。つまり、端末装置は、上りリンク送信の開始タイミングと、第一のCCAの回数(カウンタ値N)から、上りリンクLBTの開始タイミングを計算することができる。すなわち、上りリンク送信のためのCCAは、端末装置における上りリンクサブフレームの先頭より、(カウンタ値N×CCA期間)マイクロ秒前から開始される。 FIG. 11 is an example of a relationship between uplink transmission and uplink LBT start timing. FIG. 11 is premised on operating in the procedure of the uplink LBT of FIG. The base station apparatus notifies the uplink transmission timing (subframe) to each terminal apparatus. The timing of uplink transmission is reported implicitly from, for example, an uplink grant reception subframe. The terminal device generates the counter value N independently. Then, the terminal apparatus estimates the time for completing the uplink LBT from the counter value N and the CCA period, and determines the start timing of the LBT. That is, the terminal device can calculate the start timing of the uplink LBT from the start timing of the uplink transmission and the number of times of the first CCA (counter value N). That is, CCA for uplink transmission is started from the head of the uplink subframe in the terminal device (counter value N × CCA period) microseconds before.
 CCAの結果、チャネルがビジーと判断した端末装置は、その指示された上りリンク送信のタイミングにおいて、上りリンク送信を行わない。このとき、カウンタ値Nは破棄されず、次の上りリンクLBTに引き継がれる。言い換えると、カウンタ値Nが残っている場合は、カウンタ値Nを生成しない。なお、DCIフォーマットの種類や特定のパラメータによっては、カウンタ値Nを破棄し、次の上りリンクLBTに引き継がなくてもよい。例えば、新データを示すパラメータ(New data indicator)で初送を示す情報を受信した場合、端末装置はカウンタ値Nを破棄し、次の上りリンクLBTに引き継がない。また、カウンタ値Nは、HARQプロセスと紐付けてもよい。すなわち、異なるHARQプロセス間のPUSCHに対する上りリンクLBTのカウンタ値Nは独立である。 As a result of CCA, the terminal device that determines that the channel is busy does not perform uplink transmission at the instructed uplink transmission timing. At this time, the counter value N is not discarded and is taken over to the next uplink LBT. In other words, when the counter value N remains, the counter value N is not generated. Note that, depending on the type of DCI format and specific parameters, the counter value N may be discarded and not transferred to the next uplink LBT. For example, when information indicating initial transmission is received by a parameter indicating new data (New デ ー タ data indicator), the terminal device discards the counter value N and does not take over to the next uplink LBT. Further, the counter value N may be associated with the HARQ process. That is, the counter value N of the uplink LBT for PUSCH between different HARQ processes is independent.
 なお、上りリンク送信は、上りリンクサブフレームの途中から送信されてもよい。そのとき、上りリンク送信のためのCCAは、端末装置に指示された上りリンク送信の先頭より、(カウンタ値N×CCA期間)マイクロ秒前から開始される。 Note that the uplink transmission may be transmitted from the middle of the uplink subframe. At this time, CCA for uplink transmission is started from the head of uplink transmission instructed to the terminal device (counter value N × CCA period) microseconds before.
 なお、上りリンクLBTにおいて、初期CCAを行ってもよい。そのとき、上りリンク送信のためのCCAは、端末装置における上りリンク送信が指示された上りリンクサブフレームの先頭より、(初期CCA期間+カウンタ値N×CCA期間)マイクロ秒前から開始される。 Note that initial CCA may be performed in the uplink LBT. At that time, the CCA for uplink transmission is started from the beginning of the uplink subframe in which uplink transmission is instructed in the terminal apparatus, from (initial CCA period + counter value N × CCA period) microseconds before.
 なお、受信機から送信機への切り替え時間が必要な場合は、その時間も考慮して上りリンクLBTの開始タイミングが定まる。すなわち、上りリンク送信のためのCCAは、端末装置における上りリンク送信が指示された上りリンクサブフレームの先頭より、(カウンタ値N×CCA期間+受信機から送信機への切り替え時間)マイクロ秒前から開始される。 In addition, when the switching time from the receiver to the transmitter is necessary, the start timing of the uplink LBT is determined in consideration of the time. That is, the CCA for uplink transmission is (counter value N × CCA period + switching time from receiver to transmitter) microseconds before the head of the uplink subframe in which uplink transmission is instructed in the terminal device. Starts from.
 なお、上りリンク送信のためのCCAの開始タイミングは、下りリンクの無線フレーム(下りリンクサブフレーム)を基準に計算されてもよい。すなわち、上りリンク送信のためのCCAは、端末装置における上りリンク送信が指示された上りリンクサブフレームに相当する下りリンクサブフレームの先頭より、(カウンタ値N×CCA期間+上りリンク-下りリンクフレームタイミング調整時間)マイクロ秒前から開始される。ここで、上りリンク-下りリンクフレームタイミング調整時間は、(NTA+NTA_offset)×Tsであり、NTAは0から20512の間の値になる上りリンク送信タイミングを調整する端末装置固有のパラメータ、NTA_offsetは上りリンク送信タイミングを調整するフレーム構成タイプ固有のパラメータである。 Note that the start timing of CCA for uplink transmission may be calculated based on a downlink radio frame (downlink subframe). That is, the CCA for uplink transmission starts from the head of the downlink subframe corresponding to the uplink subframe in which uplink transmission is instructed in the terminal device by (counter value N × CCA period + uplink−downlink frame). Timing adjustment time) Start from microseconds ago. Here, the uplink-downlink frame timing adjustment time is (N TA + N TA_offset ) × T s , and N TA is a value unique to the terminal device that adjusts the uplink transmission timing that is a value between 0 and 20512. The parameter N TA_offset is a parameter specific to the frame configuration type for adjusting the uplink transmission timing.
 ここで、LAAセルにおいて、NTAが取り得る値に制限が掛かってもよい。すなわち、LAAセルにおいて、NTAの最大値は20512よりも小さい。 Here, in the LAA cell, the value that NTA can take may be limited. That is, in the LAA cell, the maximum value of N TA is less than 20512.
 図12は、上りリンク送信と上りリンクLBTの開始タイミングの関係の一例である。図12は、図8の上りリンクLBTの手順で動作することを前提にしている。基地局装置は各端末装置に対して上りリンクLBTの開始タイミングとカウンタ値Nに関連する情報を通知する。上りリンクLBTの開始タイミングは、例えば、上りリンクグラントの受信サブフレームから暗示的に通知される。端末装置は、上りリンクLBTの開始タイミングとカウンタ値Nから上りリンク送信の開始タイミングを認識することができる。つまり、端末装置は、上りリンクLBTの開始タイミングと、第一のCCAの回数(カウンタ値N)から、上りリンク送信の開始タイミングを計算することができる。すなわち、上りリンク送信は、端末装置におけるCCAが指示された上りリンクサブフレームの先頭から、(カウンタ値N×CCA期間)マイクロ秒後に開始される。ここで、多重される全ての端末装置に同じカウンタ値Nが設定される。 FIG. 12 is an example of a relationship between uplink transmission and uplink LBT start timing. FIG. 12 is premised on operating in the procedure of the uplink LBT of FIG. The base station apparatus notifies each terminal apparatus of information related to the start timing of the uplink LBT and the counter value N. The start timing of the uplink LBT is implicitly notified from, for example, an uplink grant reception subframe. The terminal device can recognize the uplink transmission start timing from the uplink LBT start timing and the counter value N. That is, the terminal apparatus can calculate the uplink transmission start timing from the start timing of the uplink LBT and the number of first CCA (counter value N). That is, uplink transmission is started after the microsecond (counter value N × CCA period) from the head of the uplink subframe in which CCA is instructed in the terminal device. Here, the same counter value N is set for all the terminal devices to be multiplexed.
 カウンタ値Nに関連する情報は、例えば、カウンタ値Nである。端末装置は、カウンタ値Nを通知された場合、その値を用いて上りリンクLBTを行う。 The information related to the counter value N is, for example, the counter value N. When the terminal device is notified of the counter value N, the terminal device performs uplink LBT using the value.
 また、カウンタ値Nに関連する情報は、例えば、カウンタ値Nを生成するための乱数の種である。端末装置は、通知された値と他のパラメータを用いてカウンタ値Nを生成する。他のパラメータは、例えば、PUSCHに対するHARQ-ACKの累積値、セルID、サブフレーム番号、システムフレーム番号、などである。 Further, the information related to the counter value N is, for example, a seed of random numbers for generating the counter value N. The terminal device generates a counter value N using the notified value and other parameters. Other parameters include, for example, a cumulative value of HARQ-ACK for the PUSCH, a cell ID, a subframe number, a system frame number, and the like.
 CCAの結果、チャネルがビジーと判断した端末装置は、その指示された上りリンク送信のタイミングにおいて、上りリンク送信を行わない。このとき、カウンタ値Nを破棄し、次の上りリンクLBTに引き継がない。 As a result of CCA, the terminal device that determines that the channel is busy does not perform uplink transmission at the instructed uplink transmission timing. At this time, the counter value N is discarded, and the next uplink LBT is not taken over.
 なお、上りリンクLBTにおいて、初期CCAを行ってもよい。そのとき、上りリンク送信は、端末装置におけるCCAが指示された上りリンクサブフレームの先頭から、(初期CCA期間+カウンタ値N×CCA期間)マイクロ秒後に開始される。 Note that initial CCA may be performed in the uplink LBT. At that time, uplink transmission is started after (initial CCA period + counter value N × CCA period) microseconds from the head of the uplink subframe in which CCA is instructed in the terminal apparatus.
 なお、受信機から送信機への切り替え時間が必要な場合は、その時間も考慮して上りリンクLBTの開始タイミングが定まる。すなわち、上りリンク送信は、端末装置におけるCCAが指示された上りリンクサブフレームの先頭から、(カウンタ値N×CCA期間+受信機から送信機への切り替え時間)マイクロ秒後に開始される。 In addition, when the switching time from the receiver to the transmitter is necessary, the start timing of the uplink LBT is determined in consideration of the time. That is, uplink transmission is started after the microsecond (counter value N × CCA period + switching time from receiver to transmitter) from the head of the uplink subframe in which CCA is instructed in the terminal device.
 なお、上りリンク送信は、下りリンクの無線フレーム(下りリンクサブフレーム)を基準に計算されてもよい。すなわち、上りリンク送信は、端末装置におけるCCAが指示された上りリンクサブフレームに相当する下りリンクサブフレームの先頭より、(カウンタ値N×CCA期間―上りリンク-下りリンクフレームタイミング調整時間)マイクロ秒後から開始される。ここで、上りリンク-下りリンクフレームタイミング調整時間は、(NTA+NTA_offset)×Tsであり、NTAは0から20512の間の値になる上りリンク送信タイミングを調整する端末装置固有のパラメータ、NTA_offsetは上りリンク送信タイミングを調整するフレーム構成タイプ固有のパラメータである。 The uplink transmission may be calculated based on a downlink radio frame (downlink subframe). That is, in uplink transmission, (counter value N × CCA period−uplink−downlink frame timing adjustment time) microseconds from the beginning of the downlink subframe corresponding to the uplink subframe in which CCA is indicated in the terminal apparatus It will start later. Here, the uplink-downlink frame timing adjustment time is (N TA + N TA_offset ) × T s , and N TA is a value unique to the terminal device that adjusts the uplink transmission timing that is a value between 0 and 20512. The parameter N TA_offset is a parameter specific to the frame configuration type for adjusting the uplink transmission timing.
 図13は、上りリンク送信と上りリンクLBTの開始タイミングの関係の一例である。図13は、図9の上りリンクLBTの手順で動作することを前提にしている。基地局装置は各端末装置に対して上りリンク送信のタイミング(サブフレーム)を通知する。上りリンク送信のタイミングは、例えば、上りリンクグラントの受信サブフレームから暗示的に通知される。そして端末装置は、CCA期間から上りリンクLBTが完了する時間を推定し、LBTの開始タイミングを決定する。すなわち、上りリンク送信のためのCCAは、端末装置における上りリンク送信が指示された上りリンクサブフレームの先頭より、(CCA期間)マイクロ秒前から開始される。 FIG. 13 shows an example of the relationship between uplink transmission and uplink LBT start timing. FIG. 13 is premised on operating in the procedure of the uplink LBT of FIG. The base station apparatus notifies the uplink transmission timing (subframe) to each terminal apparatus. The timing of uplink transmission is reported implicitly from, for example, an uplink grant reception subframe. And a terminal device estimates the time when uplink LBT is completed from a CCA period, and determines the start timing of LBT. That is, CCA for uplink transmission is started from the head of the uplink subframe in which uplink transmission is instructed in the terminal apparatus (CCA period) microseconds before.
 なお、上りリンク送信のタイミングの代わりに上りリンクLBTの開始タイミングを通知してもよい。その場合、端末装置は、CCA期間から上りリンク送信のタイミングを認知することができる。すなわち、上りリンク送信のためのCCAは、端末装置における上りリンク送信が指示された上りリンクサブフレームの先頭から、(CCA期間)マイクロ秒前に開始される。 Note that the start timing of the uplink LBT may be notified instead of the timing of uplink transmission. In that case, the terminal apparatus can recognize the timing of uplink transmission from the CCA period. That is, CCA for uplink transmission is started from the head of the uplink subframe in which uplink transmission is instructed in the terminal apparatus (CCA period) microseconds before.
 CCAの結果、チャネルがビジーと判断した端末装置は、その指示された上りリンク送信のタイミングにおいて、上りリンク送信を行わない。 As a result of CCA, the terminal device that determines that the channel is busy does not perform uplink transmission at the instructed uplink transmission timing.
 図14は、上りリンク送信と上りリンクLBTの開始タイミングの関係の一例である。図14は、後述する図15の上りリンクLBTの手順で動作することを前提にしている。基地局装置は各端末装置に対して上りリンク送信のタイミング(サブフレーム)を通知する。上りリンク送信のタイミングは、例えば、上りリンクグラントの受信サブフレームから暗示的に通知される。端末装置は、第一のCCAの開始タイミングから第一のCCAを開始する。カウンタ値Nが0になった場合は、端末装置は、第三のCCAの開始タイミングまで、待機する。そして、第三のCCAの開始タイミングから第三のCCAを行い、全てのCCA期間においてチャネルがアイドルであった場合に、上りリンク送信が行われる。 FIG. 14 shows an example of the relationship between uplink transmission and uplink LBT start timing. FIG. 14 is premised on operating in the procedure of the uplink LBT of FIG. 15 to be described later. The base station apparatus notifies the uplink transmission timing (subframe) to each terminal apparatus. The timing of uplink transmission is reported implicitly from, for example, an uplink grant reception subframe. The terminal device starts the first CCA from the start timing of the first CCA. When the counter value N becomes 0, the terminal device waits until the start timing of the third CCA. Then, the third CCA is performed from the start timing of the third CCA, and uplink transmission is performed when the channel is idle in all CCA periods.
 第一のCCAの開始タイミングは、例えば、上りリンク送信の前のサブフレームの先頭である。すなわち、上りリンク送信のための第一のCCAは、端末装置に指示された上りリンク送信の先頭から最近のサブフレームの先頭から開始される。 The start timing of the first CCA is, for example, the head of a subframe before uplink transmission. That is, the first CCA for uplink transmission is started from the head of the latest subframe from the head of the uplink transmission instructed to the terminal apparatus.
 または、第一のCCAの開始タイミングは、例えば、その端末装置の衝突窓qに基づいて決まる。すなわち、上りリンク送信のための第一のCCAは、端末装置に指示された上りリンク送信の先頭から(衝突窓q×CCA期間)マイクロ秒前から開始される。 Alternatively, the start timing of the first CCA is determined based on, for example, the collision window q of the terminal device. That is, the first CCA for uplink transmission is started from the beginning of uplink transmission instructed to the terminal device (collision window q × CCA period) microseconds before.
 上りリンク送信のための第三のCCAは、端末装置における上りリンク送信が指示された上りリンクサブフレームの先頭より、(第三のCCA期間)マイクロ秒前から開始される。 The third CCA for uplink transmission is started from the head of the uplink subframe in which uplink transmission is instructed in the terminal device (third CCA period) before microseconds.
 上りリンク送信のための第三のCCAの期間は、ICCA期間と同じであることが好ましい。 The period of the third CCA for uplink transmission is preferably the same as the ICCA period.
 図15は、上りリンクLBTの手順の一例である。端末装置は、アイドル状態(S1501)から上りリンクグラントを検出した(S1502)場合に、第一のCCA(S1503)を行う。第一のCCAでは、初めに、端末装置は0からq-1の範囲からランダムにカウンタ値Nを生成する(S15031)。なお、上りリンクグラントによって基地局装置からカウンタ値Nに関連する数値が指示される場合は、端末装置はカウンタ値を生成せずに、その数値に基づいたカウンタ値Nを用いる。なお、前回のLBTでカウンタ値Nが0にならず、まだカウンタ値が残っている場合は、端末装置はカウンタ値Nを生成せずに、残ったカウンタ値Nを用いてもよい。次に、端末装置は、所定のタイミングからCCAを開始する(S15032)。端末装置は、一つのCCAスロット時間でチャネル(媒体)を感知し(S15033)、そのチャネルがアイドルかビジーかを判断する(S15034)。そのチャネルがアイドルであると判断された場合は、カウンタ値Nから一つ減らし(S15035)、そのチャネルがビジーだと判断された場合は、第三のCCAチェックタイミングを超えたか否かを判断する(S15038)。第三のCCAチェックタイミングを超えていない場合は、端末装置は一つのCCAスロット時間でチャネル(媒体)を感知するプロセス(S15033)に戻る。第三のCCAチェックタイミングを超えた場合は、端末装置はその上りリンクグラントで指示された上りリンクの送信を行わず、アイドル状態(S1501)に戻る。カウンタ値Nを一つ減らした後、端末装置は、カウンタ値が0になったか否かを判断し(S15036)、カウンタ値が0になった場合には、第三のCCA(S1504)の動作に移行する。一方で、カウンタ値が0ではない場合には、再度一つのCCAスロット時間でチャネル(媒体)を感知する(S15033)。なお、カウンタ値Nを生成する際の衝突窓qの値はチャネルの状態に応じてXとYの間の値となるように更新される(S15037)。次に、第三のCCA(S1504)では、端末装置は第三のCCAを開始するタイミングまで待機し(S15041)、第三のCCA期間でチャネルを感知する(S15042)。その結果、チャネルがビジーであると判断した場合には、端末装置はその上りリンクグラントで指示された上りリンクの送信を行わず、アイドル状態(S1501)に戻る。一方で、その結果、チャネルがアイドルであると判断した場合には、端末装置はそのチャネルのアクセス権を獲得し、送信の動作(S1505、S1506)に移行する。端末装置は、送信を行うプロセスにおいて、そのタイミングで実際に上りリンク送信を行うか否かを判断し(S1505)、上りリンク送信を行うと決定した場合に上りリンク送信を行う(S1506)。端末装置は、上りリンク送信を行わないと決定した場合は、その上りリンクグラントで指示された上りリンクの送信を行わず、アイドル状態(S1501)に戻る。 FIG. 15 is an example of an uplink LBT procedure. A terminal device performs 1st CCA (S1503), when an uplink grant is detected from an idle state (S1501) (S1502). In the first CCA, first, the terminal apparatus randomly generates a counter value N from the range of 0 to q−1 (S15031). When the base station apparatus indicates a numerical value related to the counter value N by the uplink grant, the terminal apparatus does not generate the counter value but uses the counter value N based on the numerical value. When the counter value N does not become 0 in the previous LBT and the counter value still remains, the terminal device may use the remaining counter value N without generating the counter value N. Next, the terminal device starts CCA from a predetermined timing (S15032). The terminal device senses a channel (medium) in one CCA slot time (S15033), and determines whether the channel is idle or busy (S15034). If it is determined that the channel is idle, the counter value N is decremented by one (S15035). If it is determined that the channel is busy, it is determined whether or not the third CCA check timing has been exceeded. (S15038). If the third CCA check timing has not been exceeded, the terminal device returns to the process of sensing a channel (medium) in one CCA slot time (S15033). When the third CCA check timing is exceeded, the terminal apparatus does not perform uplink transmission instructed by the uplink grant, and returns to the idle state (S1501). After decrementing the counter value N by 1, the terminal apparatus determines whether or not the counter value has become 0 (S15036). If the counter value has become 0, the operation of the third CCA (S1504) Migrate to On the other hand, if the counter value is not 0, the channel (medium) is sensed again in one CCA slot time (S15033). Note that the value of the collision window q when generating the counter value N is updated so as to be a value between X and Y according to the channel state (S15037). Next, in the third CCA (S1504), the terminal device waits until the timing for starting the third CCA (S15041), and senses a channel in the third CCA period (S15042). As a result, if it is determined that the channel is busy, the terminal apparatus does not perform uplink transmission instructed by the uplink grant, and returns to the idle state (S1501). On the other hand, as a result, when it is determined that the channel is idle, the terminal device acquires the access right of the channel and shifts to the transmission operation (S1505, S1506). In the transmission process, the terminal apparatus determines whether or not uplink transmission is actually performed at the timing (S1505), and performs uplink transmission when it is determined to perform uplink transmission (S1506). If the terminal apparatus determines not to perform uplink transmission, the terminal apparatus returns to the idle state (S1501) without performing uplink transmission instructed by the uplink grant.
 なお、下りリンクLBTと同様にICCAを行ってもよい。ただし、ICCAによってチャネルがアイドルだと判断したとしても上りリンクは送信されず、ECCAの動作に移行する。 It should be noted that ICCA may be performed in the same manner as the downlink LBT. However, even if it is determined by ICCA that the channel is idle, the uplink is not transmitted, and the operation shifts to ECCA operation.
 これらにより、乱数バックオフによって長期間のCCAチェックを行いながらも、一つのサブフレームを複数の端末装置で多重して送受信することができる。 Thus, one subframe can be multiplexed and transmitted by a plurality of terminal devices while performing a long-term CCA check by random number backoff.
 なお、LAAセルは半二重(half duplex)で運用されることが好ましい。端末装置は、あるLAAセルで上りリンク送信を行っているサブフレームにおいて、サービングセルとして設定された他のLAAセルからの下りリンクの信号および/またはチャネルの受信を期待しない。具体的には、端末装置は、あるLAAセルにおいてDCIフォーマット0/4によってPUSCHがスケジュールされたサブフレームでは、サービングセルとして設定された全てのLAAセルにおいてPDCCHまたはEPDCCHを受信することを期待しない。さらに、端末装置は、そのサブフレームにおいて、サービングセルとして設定されたLAAセルにおいて上りリンクLBTを行わない。もしくは、端末装置は、そのサブフレームにおいて、サービングセルとして設定されたLAAセルの上りリンクLBTの結果としてビジーだと思ってもよい。また、端末装置は、あるLAAセルで下りリンクの受信を行っているサブフレームにおいて、サービングセルとして設定された他のLAAセルで上りリンク送信を行わない。具体例として、端末装置は、DMTC区間として設定されたサブフレームにおいては、上りリンク送信を行わない。端末装置は、DMTC区間として設定されたサブフレームに対して、PUSCHがスケジュールされることを期待しない。また、LAAセルで運用されるサービングセルにおいて、端末装置は上りリンクサブフレームの直前の下りリンクサブフレームの最後の部分を受信しないことによってガード期間を生成する。または、LAAセルで運用されるサービングセルにおいて、端末装置は、上りリンクサブフレームの直前の下りリンクサブフレームを受信しないこと、および、上りリンクサブフレームの直後の下りリンクサブフレームを受信しないこと、によってガード期間を生成する。 Note that the LAA cell is preferably operated in half duplex. The terminal apparatus does not expect reception of downlink signals and / or channels from other LAA cells set as serving cells in a subframe in which uplink transmission is performed in a certain LAA cell. Specifically, the terminal device does not expect to receive PDCCH or EPDCCH in all LAA cells set as serving cells in a subframe in which PUSCH is scheduled in DCI format 0/4 in a certain LAA cell. Further, the terminal device does not perform uplink LBT in the LAA cell set as the serving cell in the subframe. Alternatively, the terminal apparatus may be considered busy as a result of the uplink LBT of the LAA cell set as the serving cell in the subframe. Further, the terminal apparatus does not perform uplink transmission in another LAA cell set as a serving cell in a subframe in which downlink reception is performed in a certain LAA cell. As a specific example, the terminal apparatus does not perform uplink transmission in a subframe set as a DMTC section. The terminal device does not expect PUSCH to be scheduled for the subframe set as the DMTC section. Also, in the serving cell operated in the LAA cell, the terminal apparatus generates a guard period by not receiving the last part of the downlink subframe immediately before the uplink subframe. Alternatively, in the serving cell operated in the LAA cell, the terminal device does not receive the downlink subframe immediately before the uplink subframe and does not receive the downlink subframe immediately after the uplink subframe. Generate a guard period.
 なお、そのガード期間において上りリンクLBTを行ってもよい。 Note that uplink LBT may be performed in the guard period.
 以下では、LAAセルに対するリソース割当方法について説明する。 Hereinafter, a resource allocation method for the LAA cell will be described.
 LAAセルでは、図16のように、三つ以上のクラスタに分かれてPUSCHが送信される場合がある。そのため、一つの連続して割り当てられたリソースブロックのセットを指示するために用いられる上りリンクのリソース割当タイプ0や、二つの連続して割り当てられたリソースブロックのセットを指示するために用いられる上りリンクのリソース割当タイプ1とは異なる、二つ以上の連続して割り当てられたリソースブロックのセットを指示するために用いられる上りリンクのリソース割当タイプ(上りリンクのリソース割当タイプ2、第三の上りリンクのリソース割当タイプ)によって、LAAセルで送信されるPUSCHが指示される。上りリンクのリソース割当タイプ(上りリンクのリソース割当タイプ2、第三の上りリンクのリソース割当タイプ)は、三つ以上の連続して割り当てられたリソースブロックのセットを指示するために用いられてもよい。 In the LAA cell, as shown in FIG. 16, the PUSCH may be transmitted in three or more clusters. Therefore, the uplink resource allocation type 0 used for indicating one set of consecutively allocated resource blocks and the uplink used for indicating two consecutively allocated sets of resource blocks An uplink resource allocation type (uplink resource allocation type 2, third uplink) used to indicate a set of two or more consecutively allocated resource blocks different from the link resource allocation type 1 The PUSCH transmitted in the LAA cell is indicated by the resource allocation type of the link. The uplink resource allocation type (uplink resource allocation type 2, third uplink resource allocation type) may be used to indicate a set of three or more consecutively allocated resource blocks. Good.
 上りリンクのリソース割当タイプ2のフィールドは、端末装置に対して割り当てられた複数のクラスタの位置(配置、マップ)を一意に識別することが可能な情報の組み合わせを含む。 The field of uplink resource allocation type 2 includes a combination of information that can uniquely identify the positions (arrangement, map) of a plurality of clusters allocated to the terminal device.
 一例として、上りリンクのリソース割当タイプ2では、一つのサブフレームでPUSCHに割り当てられる全体のリソースブロック数と、そのリソースを分割するクラスタ数と、基準リソースブロックまたはサブキャリアから分割したクラスタとの周波数オフセットの値と、分割したクラスタの間隔と、が端末装置に通知される。一つのサブフレームでPUSCHに割り当てられる全体のリソースブロック数と、クラスタ数と、基準リソースブロックまたはサブキャリアからクラスタとの周波数オフセットの値と、クラスタの間隔、はDCIフォーマットに含まれて通知されてもよい。端末装置は、基地局装置から設定または通知された全体のリソースブロック数、クラスタ数、周波数オフセットの値、クラスタの間隔の情報に基づいて、その端末装置に割り当てられるリソースブロックを認識する。 As an example, in uplink resource allocation type 2, the total number of resource blocks allocated to the PUSCH in one subframe, the number of clusters that divide the resource, and the frequency of the cluster that is divided from the reference resource block or subcarrier The offset value and the interval between the divided clusters are notified to the terminal device. The total number of resource blocks allocated to the PUSCH in one subframe, the number of clusters, the value of the frequency offset from the reference resource block or subcarrier to the cluster, and the interval between clusters are reported in the DCI format. Also good. The terminal apparatus recognizes the resource blocks allocated to the terminal apparatus based on the information on the total number of resource blocks, the number of clusters, the value of the frequency offset, and the cluster interval set or notified from the base station apparatus.
 基準リソースブロックまたはサブキャリアからクラスタとの周波数オフセットの値および/またはクラスタの間隔は、クラスタおよび/または端末装置ごとに個別なパラメータ(値、フィールド)として設定または通知されてもよい。また、基準リソースブロックまたはサブキャリアからクラスタとの周波数オフセットの値および/またはクラスタの間隔は、クラスタ間および/または端末装置間で共通なパラメータ(値、フィールド)として設定または通知されてもよい。なお、その共通なパラメータは、あらかじめ端末装置に設定されてもよいし、上位層(例えば、専用RRCメッセージ)によって設定されてもよい。なお、その共通なパラメータは所定の情報に対応して決定されてもよい。その所定の情報とは、セル内の端末間で共通な情報であることが好ましく、例えば、上りリンクのシステム帯域幅、である。 The value of the frequency offset from the reference resource block or the subcarrier to the cluster and / or the interval between the clusters may be set or notified as individual parameters (values, fields) for each cluster and / or terminal device. Further, the value of the frequency offset from the reference resource block or the subcarrier to the cluster and / or the interval between the clusters may be set or notified as parameters (values, fields) common to the clusters and / or between the terminal devices. Note that the common parameters may be set in advance in the terminal device, or may be set in an upper layer (for example, a dedicated RRC message). The common parameter may be determined corresponding to predetermined information. The predetermined information is preferably information common to terminals in the cell, for example, the uplink system bandwidth.
 端末装置に割り当てられるクラスタの数は、DCIに含まれて通知されてもよいし、あらかじめ端末装置に設定されてもよいし、上位層(例えば、専用RRCメッセージ)によって設定されてもよい。クラスタの数は、所定の情報に対応して決定されてもよい。その所定の情報とは、例えば、上りリンクのシステム帯域幅、である。 The number of clusters allocated to the terminal device may be notified by being included in DCI, may be set in the terminal device in advance, or may be set by an upper layer (for example, a dedicated RRC message). The number of clusters may be determined corresponding to predetermined information. The predetermined information is, for example, an uplink system bandwidth.
 なお、一つのサブフレームでPUSCHに割り当てられる全体のリソースブロック数の代わりに、割り当てクラスタの長さが設定または通知されてもよい。クラスタの長さの情報は、クラスタ間で共通であってもよし、個別に設定または通知されてもよい。また、クラスタの長さの情報は、端末個別に設定または通知されてもよい。 Note that the length of the allocated cluster may be set or notified instead of the total number of resource blocks allocated to the PUSCH in one subframe. The cluster length information may be common between the clusters, or may be individually set or notified. Further, the cluster length information may be set or notified individually for each terminal.
 また、上りリンクのリソース割当タイプ2は、上りリンクのリソース割当タイプ1と同様な形式である複数のクラスタの開始と終了の位置(リソースブロック)のそれぞれを組み合わせた一つのインデックスで構成された情報を用いて端末装置に通知されてもよい。そのインデックスは各クラスタの開始または終了の位置のみの情報であり、端末装置において周波数が低い位置からクラスタの開始と終了が交互に指示されると想定する。なお、一つのインデックスの代わりに、各々のクラスタの開始と終了の位置が個別の情報として通知されてもよい。その各々のクラスタの開始と終了の位置を指示する場合、クラスタ間で割当リソースが重複されないことを想定することで、そのインデックスで構成された情報のビット数を削減することができる。 Also, the uplink resource allocation type 2 is information composed of one index in which the start and end positions (resource blocks) of a plurality of clusters having the same format as the uplink resource allocation type 1 are combined. May be notified to the terminal device. The index is information on only the start or end position of each cluster, and it is assumed that the start and end of the cluster are alternately indicated from the position where the frequency is low in the terminal device. Instead of one index, the start and end positions of each cluster may be notified as individual information. When indicating the start and end positions of each cluster, it is possible to reduce the number of bits of information configured by the index by assuming that the allocated resources are not duplicated between the clusters.
 また、上りリンクのリソース割当タイプ2は、下りリンクのリソース割当タイプと同じ形式であってもよい。例えば、上りリンクのリソース割当タイプ2を用いたPUSCHのリソースの割り当ての指示は、下りリンクのリソース割当タイプ0と同じ形式が適用されてもよい。例えば、上りリンクのリソース割当タイプ2を用いたPUSCHのリソースの割り当ての指示は、下りリンクのリソース割当タイプ1と同じ形式が適用されてもよい。 Also, the uplink resource allocation type 2 may be the same format as the downlink resource allocation type. For example, the PUSCH resource allocation instruction using the uplink resource allocation type 2 may be applied in the same format as the downlink resource allocation type 0. For example, the PUSCH resource allocation instruction using the uplink resource allocation type 2 may be applied in the same format as the downlink resource allocation type 1.
 図16における割り当てクラスタの最小単位は、リソースブロックまたはリソースブロックグループである。なお、割り当てクラスタの最小単位は、サブキャリアまたは連続する複数のサブキャリアのセットであってもよい。この割り当てクラスタの最小単位によって、フィールドのビット数が決まる。割り当てクラスタの最小単位は、DCIで通知されてもよいし、上位層で設定されてもよいし、予め設定されてもよいし、上りリンクのシステム帯域幅などの他の情報に紐づいて値が決定されてもよい。 The minimum unit of the allocation cluster in FIG. 16 is a resource block or a resource block group. Note that the minimum unit of the allocation cluster may be a subcarrier or a set of a plurality of consecutive subcarriers. The minimum unit of this assigned cluster determines the number of bits in the field. The minimum unit of the allocation cluster may be notified by DCI, may be set in an upper layer, may be set in advance, or may be a value associated with other information such as an uplink system bandwidth. May be determined.
 また、一例として、図17のように、割り当て可能なリソースブロックのサブセットと、各サブセットに対応する各ビットで構成されたビットマップで通知してもよい。例えば、図17のように、低周波数から順番かつ周期的にサブセットのインデックスが割り当てられる。これにより、周波数軸上に等間隔でクラスタを割り当てることができる。端末装置は、ビットマップのビットから対応するサブセットを認識し、そのビットによってリソースの割り当てが指示された場合に、対応するサブセットのリソースブロックを用いてPUSCHを送信する。ビットマップのビット数は、割り当てクラスタの最小単位および上りリンクのシステム帯域幅に基づいて決まる。 Also, as an example, as shown in FIG. 17, notification may be made with a bitmap composed of a subset of resource blocks that can be allocated and each bit corresponding to each subset. For example, as shown in FIG. 17, subset indices are assigned in order from the low frequency in order. Thereby, clusters can be allocated at equal intervals on the frequency axis. The terminal apparatus recognizes a corresponding subset from the bits of the bitmap, and when resource allocation is instructed by the bit, transmits a PUSCH using the resource block of the corresponding subset. The number of bits in the bitmap is determined based on the minimum unit of the allocation cluster and the uplink system bandwidth.
 上りリンクのリソース割当タイプ2は、特定の条件の場合に適用される。以下では、上りリンクのリソース割当タイプ2が適用される条件の一例を示す。 Uplink resource allocation type 2 is applied under specific conditions. In the following, an example of conditions under which uplink resource allocation type 2 is applied is shown.
 一例として、上りリンクのリソース割当タイプ2は、所定のDCIフォーマットによってスケジュールされる場合に、適用(使用)される。所定のDCIフォーマットは、例えば、DCIフォーマット0Aまたは4Aであり、DCIフォーマット0または4以外の上りリンクDCIフォーマットである。一方で、所定のDCIフォーマットによってスケジュールされない場合は、上りリンクのリソース割当タイプ2は適用されず、上りリンクのリソース割当タイプ0または1が適用される。 As an example, uplink resource allocation type 2 is applied (used) when scheduled according to a predetermined DCI format. The predetermined DCI format is, for example, DCI format 0A or 4A, and is an uplink DCI format other than DCI format 0 or 4. On the other hand, when not scheduled according to a predetermined DCI format, uplink resource allocation type 2 is not applied, and uplink resource allocation type 0 or 1 is applied.
 一例として、上りリンクのリソース割当タイプ2は、DCIフォーマット0または4の中に含まれるリソース割当タイプを識別するインディケータの情報に対応して、適用(使用)される。具体的には、そのインディケータの情報によってタイプ2と指示された場合に、上りリンクのリソース割当タイプ2が適用され、インディケータの情報によってタイプ2と指示されない場合に、上りリンクのリソース割当タイプ2は適用されず、上りリンクのリソース割当タイプ0または1が適用される。 As an example, the uplink resource allocation type 2 is applied (used) corresponding to the information of the indicator that identifies the resource allocation type included in the DCI format 0 or 4. Specifically, when the type 2 is instructed by the indicator information, the uplink resource allocation type 2 is applied. When the indicator information is not instructed as the type 2, the uplink resource allocation type 2 is The uplink resource allocation type 0 or 1 is not applied.
 一例として、上りリンクのリソース割当タイプ2は、DCIフォーマット0または4によってLAAセカンダリセルに対してスケジュールされる場合に、適用(使用)される。一方で、DCIフォーマット0または4によってLAAセカンダリセルではないサービングセルに対してスケジュールされる場合に、上りリンクのリソース割当タイプ2は適用されず、上りリンクのリソース割当タイプ0または1が適用される。 As an example, uplink resource allocation type 2 is applied (used) when scheduled for an LAA secondary cell with DCI format 0 or 4. On the other hand, when scheduling is performed for a serving cell that is not an LAA secondary cell according to DCI format 0 or 4, uplink resource allocation type 2 is not applied, and uplink resource allocation type 0 or 1 is applied.
 LAA運用が可能な端末装置は、上りリンクのリソース割当タイプ2によって複数のクラスタに分割したPUSCHを送信できる能力を有する。 A terminal device capable of LAA operation has a capability of transmitting PUSCH divided into a plurality of clusters by uplink resource allocation type 2.
 なお、LAAセカンダリセルでは、上りリンクのリソース割当タイプ0および1がサポートされなくてもよい。換言すると、LAAセカンダリセルでは、上りリンクのリソース割当タイプ2のみサポートされる。 Note that in the LAA secondary cell, uplink resource allocation types 0 and 1 may not be supported. In other words, only the uplink resource allocation type 2 is supported in the LAA secondary cell.
 なお、欧州に該当する国で運用された場合には、上りリンクのリソース割当タイプ0および1をサポートされなくてもよい。例えば、欧州に該当するオペレータのPLMN(Public Land Mobile Network)を受信した場合、その基地局が運用するLAAセカンダリセルでは、上りリンクのリソース割当タイプ0および1がサポートされなくてもよい。 It should be noted that uplink resource allocation types 0 and 1 may not be supported when operated in a country corresponding to Europe. For example, when receiving the PLMN (Public Land Mobile Mobile Network) of an operator corresponding to Europe, the uplink resource allocation types 0 and 1 may not be supported in the LAA secondary cell operated by the base station.
 一例として、上りリンクのリソース割当タイプ2は、RRCによって上りリンクのリソース割当タイプ2を適用することが設定された場合において、適用(使用)される。一方で、RRCによって上りリンクのリソース割当タイプ2を適用することが設定されない場合において、上りリンクのリソース割当タイプ2は、適用されず、上りリンクのリソース割当タイプ0または1が適用される。 As an example, the uplink resource allocation type 2 is applied (used) when the application of the uplink resource allocation type 2 is set by RRC. On the other hand, when application of uplink resource allocation type 2 is not set by RRC, uplink resource allocation type 2 is not applied, and uplink resource allocation type 0 or 1 is applied.
 なお、これらの条件は、LAAプライマリセカンダリセル(LAA PSCell)においても、同様に適用されてもよい。 In addition, these conditions may be similarly applied to the LAA primary secondary cell (LAA PSCell).
 なお、LAAセカンダリセル、または、LAAプライマリセカンダリセルに対するランダムアクセスレスポンスグラントに対して、上りリンクのリソース割当タイプ2が適用されてもよい。つまり、端末装置は、そのランダムアクセスレスポンスグラントに含まれるPUSCHのリソースブロック割当のフィールドの情報をリソース割当タイプ2と解釈してもよい。LAAセカンダリセルに対するランダムアクセスレスポンスグラントはプライマリセルにおいて送信されてもよい。LAAプライマリセカンダリセルに対するランダムアクセスレスポンスグラントは、LAAプライマリセカンダリセルにおいて送信されてもよい。 Note that uplink resource allocation type 2 may be applied to the random access response grant for the LAA secondary cell or the LAA primary secondary cell. That is, the terminal apparatus may interpret the resource block allocation field information of PUSCH included in the random access response grant as the resource allocation type 2. The random access response grant for the LAA secondary cell may be transmitted in the primary cell. The random access response grant for the LAA primary secondary cell may be transmitted in the LAA primary secondary cell.
 LAAセカンダリセルおよびLAAプライマリセカンダリセルではないサービングセルに対するランダムアクセスレスポンスグラントに対して、上りリンクのリソース割当タイプ0が適用されてもよい。つまり、端末装置は、そのランダムアクセスレスポンスグラントに含まれるPUSCHのリソースブロック割当のフィールドの情報をリソース割当タイプ0と解釈してもよい。ランダムアクセスレスポンスグラントはリソース割当タイプビットを含まない。LAAセカンダリセルおよびLAAプライマリセカンダリセルではないサービングセルに対するランダムアクセスレスポンスグラントはプライマリセルにおいて送信されてもよい。 The uplink resource allocation type 0 may be applied to the random access response grant for the serving cell that is not the LAA secondary cell and the LAA primary secondary cell. That is, the terminal apparatus may interpret the resource block allocation field information of PUSCH included in the random access response grant as resource allocation type 0. The random access response grant does not include resource allocation type bits. A random access response grant for a serving cell that is not the LAA secondary cell and the LAA primary secondary cell may be transmitted in the primary cell.
 なお、LAAセルでは、上記のリソース割当タイプによって割り当てられたPUSCHを更に周波数ホッピングしてもよい。例えば、LAAセルでは、PUSCHが送信される物理リソースブロックがスロット0とスロット1で異なってもよい。例えば、LAAセルでは、PUSCHが送信される物理リソースブロックがSC-FDMAシンボルで異なってもよい。周波数ホッピングに用いられるパラメータは、上位層によって設定される。 In the LAA cell, the PUSCH allocated by the above resource allocation type may be further frequency hopped. For example, in the LAA cell, the physical resource block in which PUSCH is transmitted may be different between slot 0 and slot 1. For example, in the LAA cell, the physical resource block in which the PUSCH is transmitted may be different in the SC-FDMA symbol. Parameters used for frequency hopping are set by an upper layer.
 LAAセルにおいて、図16のように、三つ以上のクラスタに分かれてPUSCHが送信される場合、PUSCHの復調に用いられるUL DMRSもPUSCHと同様に三つ以上のクラスタに分かれて送信される。以下では、LAAセルにおけるUL DMRSの構成について説明する。 In the LAA cell, when PUSCH is transmitted in three or more clusters as shown in FIG. 16, UL DMRS used for PUSCH demodulation is also transmitted in three or more clusters in the same way as PUSCH. Below, the structure of UL DMRS in a LAA cell is demonstrated.
 一例として、LAAセルのUL DMRSは、一つのサブフレームにおいて一つの系列で構成され、各クラスタに分割されて配置され、送信される。すなわち、周波数軸上に隣のクラスタ間でUL DMRSは連続した系列が用いられる。このUL DMRSの系列は、例えば、クラスタがマップされるサブフレーム、そのUL DMRSに伴うPUSCHが指示された上りリンクDCIフォーマットの中の情報に基づいて初期化される。その上りリンクDCIフォーマットの中の情報は、例えば、UL DMRSのサイクリックシフトに関する情報および/またはOCC(Orthogonal Cover Code)インデックスである。このUL DMRSの系列は、このUL DMRSの系列の構成を第一のUL DMRSと称する。 As an example, the UL DMRS of the LAA cell is composed of one sequence in one subframe, and is divided into each cluster and transmitted. That is, a continuous sequence is used for UL DMRS between adjacent clusters on the frequency axis. This UL DMRS sequence is initialized based on information in an uplink DCI format in which, for example, a subframe to which a cluster is mapped and a PUSCH accompanying the UL DMRS is indicated. The information in the uplink DCI format is, for example, information on cyclic shift of UL DMRS and / or OCC (Orthogonal Cover Code) index. In this UL DMRS sequence, the configuration of this UL DMRS sequence is referred to as a first UL DMRS.
 一例として、LAAセルのUL DMRSは、一つのサブフレームにおいてクラスタごとに系列が構成される。すなわち、同じサブフレームで送信されるクラスタであっても、クラスタが異なる場合は系列が異なり、周波数軸上に隣のクラスタ間でUL DMRSは不連続な系列が用いられる。すなわち、クラスタ間でこのUL DMRSの系列は独立に生成される。このUL DMRSの系列は、例えば、クラスタがマップされるサブフレーム、クラスタがマップされるリソースブロックまたはリソースエレメント、および/または、そのUL DMRSに伴うPUSCHが指示された上りリンクDCIフォーマットの中の情報に基づいて初期化される。その上りリンクDCIフォーマットの中の情報は、例えば、UL DMRSのサイクリックシフトに関する情報および/またはOCC(Orthogonal Cover Code)インデックスである。その情報はDCIフォーマットの中に複数含み、その情報のそれぞれは対応するクラスタのUL DMRSの系列を指示するものであってもよい。このUL DMRSの系列の構成を第二のUL DMRSと称する。 As an example, in the UL DMRS of the LAA cell, a sequence is configured for each cluster in one subframe. That is, even if the clusters are transmitted in the same subframe, the sequences are different if the clusters are different, and a discontinuous sequence is used for UL DMRS between adjacent clusters on the frequency axis. That is, this UL DMRS sequence is generated independently between clusters. This UL DMRS sequence includes, for example, information in the uplink DCI format in which the subframe to which the cluster is mapped, the resource block or resource element to which the cluster is mapped, and / or the PUSCH accompanying the UL DMRS is indicated. It is initialized based on. The information in the uplink DCI format is, for example, information on cyclic shift of UL DMRS and / or OCC (Orthogonal Cover Code) index. A plurality of the information may be included in the DCI format, and each of the information may indicate a UL DMRS sequence of the corresponding cluster. This UL DMRS line configuration is referred to as a second UL DMRS.
 UL DMRSの系列は、クラスタの数によって決定されてもよい。例えば、一つのサブフレームにおいてクラスタの数が2個以下の場合は、第一のUL DMRSが用いられる。一つのサブフレームにおいてクラスタの数が2個よりも多い場合は、第二のUL DMRSが用いられる。 The UL DMRS sequence may be determined by the number of clusters. For example, when the number of clusters is two or less in one subframe, the first UL DMRS is used. When there are more than two clusters in one subframe, the second UL DMRS is used.
 また、UL DMRSの系列は、上りリンクのリソース割当タイプの種類によって決まってもよい。例えば、上りリンクのリソース割当タイプ1が適用された場合は、第一のUL DMRSが用いられる。上りリンクのリソース割当タイプ2が適用された場合は、第二のUL DMRSが用いられる。 Also, the UL DMRS sequence may be determined by the type of uplink resource allocation type. For example, when uplink resource allocation type 1 is applied, the first UL DMRS is used. When uplink resource allocation type 2 is applied, the second UL DMRS is used.
 また、UL DMRSの系列は、サービングセルのフレーム構成タイプによって決まってもよい。例えば、UL DMRSが送信されるサービングのフレーム構成タイプがフレーム構成タイプ1または2である場合は、第一のUL DMRSが用いられる。UL DMRSが送信されるサービングのフレーム構成タイプがフレーム構成タイプ3である場合は、第二のUL DMRSが用いられる。 Also, the UL DMRS sequence may be determined by the frame configuration type of the serving cell. For example, when the serving frame configuration type in which the UL DMRS is transmitted is the frame configuration type 1 or 2, the first UL DMRS is used. When the serving frame configuration type in which the UL DMRS is transmitted is the frame configuration type 3, the second UL DMRS is used.
 また、UL DMRSの系列は、クラスタの長さによって決まってもよい。例えば、一つのクラスタの長さが3リソースブロック(36サブキャリア)よりも短い場合は第一のUL DMRSが用いられる。一つのクラスタの長さが3リソースブロック以上の場合は第二のUL DMRSが用いられる。 Also, the UL DMRS series may be determined by the length of the cluster. For example, when the length of one cluster is shorter than 3 resource blocks (36 subcarriers), the first UL DMRS is used. When the length of one cluster is 3 resource blocks or more, the second UL DMRS is used.
 なお、一つのサブフレームにおいて、クラスタが3個以上ある場合、第一のUL DMRSと第二のUL DMRSが組み合わされて送信されてもよい。例えば、3個のクラスタのうち、2個のクラスタでは第一のUL DMRSが適用され、残りの1個のクラスタでは第二のUL DMRSが適用されてもよい。例えば、4個のクラスタのうち、クラスタの長さが3リソースブロックよりも短くスケジュールされたクラスタでは第一のUL DMRSが用いられ、クラスタの長さが3リソースブロック以上でスケジュールされたクラスタでは第二のUL DMRSが用いられる。 If there are three or more clusters in one subframe, the first UL DMRS and the second UL DMRS may be combined and transmitted. For example, of the three clusters, the first UL DMRS may be applied to two clusters, and the second UL DMRS may be applied to the remaining one cluster. For example, out of four clusters, the first UL DMRS is used for a cluster scheduled for a cluster length shorter than 3 resource blocks, and the first for a cluster scheduled for a cluster length of 3 resource blocks or more. Second UL DMRS is used.
 以下では、LAAセルにおける上りリンクグラントとPUSCHのタイミングについて説明する。 Hereinafter, the uplink grant and PUSCH timing in the LAA cell will be described.
 LAAセルにおいて、上りリンクグラントとPUSCHのタイミングの関係は、FDDセルにおける4サブフレームよりも短くてよい。具体的には、LAAセルにおいて、PUSCHは、そのPUSCHの送信を指示するDCIフォーマットを受信したサブフレームから4サブフレームよりも前のサブフレームで送信されてもよい。すなわち、LAAセルにおいて、PUSCHは、そのPUSCHの送信を指示するDCIフォーマットを受信したサブフレームから1、2、または3サブフレーム後のサブフレームで送信されてもよい。例えば、上りリンクのリソース割当タイプ2が適用された上りリンクDCIフォーマットを受信した場合、その上りリンクDCIフォーマットを受信したサブフレームから4サブフレームよりも前のサブフレームでPUSCHが送信されてもよい。 In the LAA cell, the relationship between the uplink grant and PUSCH timing may be shorter than 4 subframes in the FDD cell. Specifically, in the LAA cell, PUSCH may be transmitted in subframes prior to 4 subframes from the subframe that received the DCI format instructing transmission of the PUSCH. That is, in the LAA cell, the PUSCH may be transmitted in a subframe after 1, 2, or 3 subframes from the subframe that received the DCI format instructing transmission of the PUSCH. For example, when an uplink DCI format to which uplink resource allocation type 2 is applied is received, PUSCH may be transmitted in subframes prior to four subframes from the subframe that received the uplink DCI format. .
 なお、セルフスケジューリングによってPUSCHが指示される場合に、PUSCHは、そのPUSCHの送信を指示するDCIフォーマットを受信したサブフレームから4サブフレームよりも前のサブフレームで送信されてもよい。クロスキャリアスケジューリングによってPUSCHが指示される場合には、PUSCHは、そのPUSCHの送信を指示するDCIフォーマットを受信したサブフレームから4サブフレーム後のサブフレームで送信されてもよい。 In addition, when PUSCH is instruct | indicated by self-scheduling, PUSCH may be transmitted by the subframe before 4 subframes from the subframe which received the DCI format which instruct | indicates transmission of the PUSCH. When PUSCH is instruct | indicated by cross-carrier scheduling, PUSCH may be transmitted by the sub-frame 4 sub-frames after the sub-frame which received the DCI format which instruct | indicates transmission of the PUSCH.
 なお、フルサブフレームでDCIフォーマットを受信した場合に、PUSCHは、そのPUSCHの送信を指示するDCIフォーマットを受信したサブフレームから4サブフレームよりも前のサブフレームで送信されてもよい。部分サブフレームでDCIフォーマットを受信した場合に、PUSCHは、そのPUSCHの送信を指示するDCIフォーマットを受信したサブフレームから4サブフレーム後のサブフレームで送信されてもよい。 Note that, when the DCI format is received in a full subframe, the PUSCH may be transmitted in a subframe prior to four subframes from the subframe that received the DCI format instructing transmission of the PUSCH. When the DCI format is received in the partial subframe, the PUSCH may be transmitted in a subframe four subframes after the subframe that received the DCI format instructing transmission of the PUSCH.
 なお、上りリンクグラントとPUSCHのタイミングの関係を短くできるケイパビリティ(能力)を持つ端末装置は、LAAセルにおいて、PUSCHを、そのPUSCHの送信を指示するDCIフォーマットを受信したサブフレームから4サブフレームよりも前のサブフレームで送信してもよい。一方で、そのケイパビリティを持たない端末装置は、LAAセルにおいて、PUSCHをそのPUSCHの送信を指示するDCIフォーマットを受信したサブフレームから4サブフレーム後に送信する。 In addition, the terminal device having the capability (capability) capable of shortening the relationship between the uplink grant and the PUSCH timing, in the LAA cell, from 4 subframes to the PUSCH from the subframe that received the DCI format instructing transmission of the PUSCH. May also be transmitted in the previous subframe. On the other hand, a terminal apparatus that does not have the capability transmits a PUSCH four subframes after the subframe that received the DCI format instructing transmission of the PUSCH in the LAA cell.
 なお、DCIフォーマットの中のそのDCIフォーマットとPUSCHのタイミングを指示するフィールドに基づいて、PUSCHを送信するサブフレームを決定してもよい。そのフィールドで指示された場合に、PUSCHは、そのPUSCHの送信を指示するDCIフォーマットを受信したサブフレームから4サブフレームよりも前のサブフレームで送信されてもよい。 Note that a subframe for transmitting a PUSCH may be determined based on a field indicating the DCI format and the PUSCH timing in the DCI format. When indicated in the field, PUSCH may be transmitted in subframes prior to 4 subframes from the subframe that received the DCI format instructing transmission of the PUSCH.
 LAAセルに対するランダムアクセスレスポンスグラントによって指示されたPUSCHは、そのランダムアクセスレスポンスグラントを検出したサブフレームから6サブフレーム後に送信される。なお、そのPUSCHは6サブフレーム以降で最初の上りリンクサブフレームで送信されてもよい。なお、上りリンクグラントとPUSCHのタイミングの関係を短くできるケイパビリティ(能力)を持つ端末装置は、そのランダムアクセスレスポンスグラントを検出したサブフレームから6サブフレームよりも前のサブフレームで送信してもよい。 The PUSCH indicated by the random access response grant for the LAA cell is transmitted 6 subframes after the subframe in which the random access response grant is detected. Note that the PUSCH may be transmitted in the first uplink subframe after 6 subframes. In addition, the terminal device having the capability (capability) capable of shortening the relationship between the uplink grant and the PUSCH timing may transmit in a subframe before 6 subframes from the subframe in which the random access response grant is detected. .
 本実施形態において説明された内容の一部を換言すると以下の通りである。 In other words, a part of the contents described in this embodiment is as follows.
 本実施形態における端末装置は、サービングセルで一つ以上の連続するリソースブロックのセットを用いて物理上りリンク共用チャネル(PUSCH)を送信する送信部を備える。送信部は、サービングセルがLAAセカンダリセルである場合に、三つ以上のセットを用いたPUSCHを送信し、サービングセルがLAAセカンダリセルでない場合に、最大二つまでのセットを用いたPUSCHを送信する。 The terminal device in this embodiment includes a transmission unit that transmits a physical uplink shared channel (PUSCH) using a set of one or more continuous resource blocks in a serving cell. The transmission unit transmits PUSCH using three or more sets when the serving cell is an LAA secondary cell, and transmits PUSCH using up to two sets when the serving cell is not an LAA secondary cell.
 その端末装置は、PUSCHの送信を指示するDCIフォーマットを伴う物理下りリンク制御チャネル(PDCCH)を受信する受信部を備える。そのDCIフォーマットは、セットの総数と、セットのオフセットと、セットの間隔に関する情報を含む。 The terminal device includes a receiving unit that receives a physical downlink control channel (PDCCH) with a DCI format instructing transmission of PUSCH. The DCI format includes information about the total number of sets, the set offsets, and the set spacing.
 その端末装置は、PUSCHの送信を指示するDCIフォーマットを伴う物理下りリンク制御チャネル(PDCCH)を受信する受信部を備える。そのDCIフォーマットは、セットのインデックスに対応するビットで構成されるビットマップを含む。 The terminal device includes a receiving unit that receives a physical downlink control channel (PDCCH) with a DCI format instructing transmission of PUSCH. The DCI format includes a bitmap composed of bits corresponding to a set index.
 本実施形態における基地局装置は、サービングセルで一つ以上の連続するリソースブロックのセットを用いて物理上りリンク共用チャネル(PUSCH)を受信する受信部を備える。受信部は、サービングセルがLAAセカンダリセルである場合に、三つ以上のセットを用いたPUSCHを受信し、サービングセルがLAAセカンダリセルでない場合に、最大二つまでのセットを用いたPUSCHを受信する。 The base station apparatus in this embodiment includes a receiving unit that receives a physical uplink shared channel (PUSCH) using a set of one or more continuous resource blocks in a serving cell. The receiving unit receives PUSCHs using three or more sets when the serving cell is an LAA secondary cell, and receives PUSCHs using up to two sets when the serving cell is not an LAA secondary cell.
 その基地局装置は、PUSCHの送信を指示するDCIフォーマットを伴う物理下りリンク制御チャネル(PDCCH)を受信する受信部を備える。そのDCIフォーマットは、セットの総数と、セットのオフセットと、セットの間隔に関する情報を含む。 The base station apparatus includes a receiving unit that receives a physical downlink control channel (PDCCH) with a DCI format instructing transmission of PUSCH. The DCI format includes information about the total number of sets, the set offsets, and the set spacing.
 その基地局装置は、PUSCHの送信を指示するDCIフォーマットを伴う物理下りリンク制御チャネル(PDCCH)を受信する受信部を備える。そのDCIフォーマットは、セットのインデックスに対応するビットで構成されるビットマップを含む。 The base station apparatus includes a receiving unit that receives a physical downlink control channel (PDCCH) with a DCI format instructing transmission of PUSCH. The DCI format includes a bitmap composed of bits corresponding to a set index.
 なお、本実施形態の上りリンクLBTは、サイドリンク送信のためのサイドリンクLBTに対しても同様に適用されてもよい。サイドリンク送信とは、端末装置と端末装置の間(D2D、device to device communication)の通信に用いられる。 Note that the uplink LBT of this embodiment may be similarly applied to the side link LBT for side link transmission. The side link transmission is used for communication between the terminal device and the terminal device (D2D, device device communication).
 尚、端末装置1に所定のサービングセルに対してLAAの通信に必要な設定(LAA-Config)が一つ以上された場合、所定のサービングセルはLAAセルとみなしてもよい。LAAの通信に必要な設定は、例えば、予約信号に関するパラメータ、RSSIの測定に関するパラメータ、第2のDSの設定に関するパラメータ、である。 In addition, when one or more settings (LAA-Config) necessary for LAA communication are performed on the predetermined serving cell in the terminal device 1, the predetermined serving cell may be regarded as an LAA cell. The settings necessary for LAA communication are, for example, a parameter related to a reservation signal, a parameter related to RSSI measurement, and a parameter related to the setting of the second DS.
 また、上記各実施形態では、プライマリセルやPSセルという用語を用いて説明したが、必ずしもこれらの用語を用いる必要はない。例えば、上記各実施形態におけるプライマリセルをマスターセルと呼ぶこともできるし、上記各実施形態におけるPSセルをプライマリセルと呼ぶこともできる。 In each of the above embodiments, the terms primary cell and PS cell have been described, but these terms are not necessarily used. For example, the primary cell in each of the above embodiments can also be called a master cell, and the PS cell in each of the above embodiments can also be called a primary cell.
 本発明に関わる基地局装置2および端末装置1で動作するプログラムは、本発明に関わる上記実施形態の機能を実現するように、CPU(Central Processing Unit)等を制御するプログラム(コンピュータを機能させるプログラム)であっても良い。そして、これら装置で取り扱われる情報は、その処理時に一時的にRAM(Random Access Memory)に蓄積され、その後、Flash ROM(Read Only Memory)などの各種ROMやHDD(Hard Disk Drive)に格納され、必要に応じてCPUによって読み出し、修正・書き込みが行われる。 A program that operates in the base station apparatus 2 and the terminal apparatus 1 related to the present invention is a program that controls a CPU (Central Processing Unit) or the like (a program that causes a computer to function) so as to realize the functions of the above-described embodiments related to the present invention ). Information handled by these devices is temporarily stored in RAM (Random Access Memory) during the processing, and then stored in various ROMs such as Flash ROM (Read Only Memory) and HDD (Hard Disk Drive). Reading, correction, and writing are performed by the CPU as necessary.
 尚、上述した実施形態における端末装置1、基地局装置2-1あるいは基地局装置2-2の一部、をコンピュータで実現するようにしても良い。その場合、この制御機能を実現するためのプログラムをコンピュータが読み取り可能な記録媒体に記録して、この記録媒体に記録されたプログラムをコンピュータシステムに読み込ませ、実行することによって実現しても良い。 It should be noted that the terminal device 1, the base station device 2-1, or a part of the base station device 2-2 in the above-described embodiment may be realized by a computer. In that case, the program for realizing the control function may be recorded on a computer-readable recording medium, and the program recorded on the recording medium may be read by the computer system and executed.
 尚、ここでいう「コンピュータシステム」とは、端末装置1、又は基地局装置2-1あるいは基地局装置2-2に内蔵されたコンピュータシステムであって、OSや周辺機器等のハードウェアを含むものとする。また、「コンピュータ読み取り可能な記録媒体」とは、フレキシブルディスク、光磁気ディスク、ROM、CD-ROM等の可搬媒体、コンピュータシステムに内蔵されるハードディスク等の記憶装置のことをいう。 Note that the “computer system” here is a computer system built in the terminal device 1, the base station device 2-1, or the base station device 2-2, and includes hardware such as an OS and peripheral devices. Shall be. The “computer-readable recording medium” refers to a storage device such as a flexible medium, a magneto-optical disk, a portable medium such as a ROM or a CD-ROM, and a hard disk incorporated in a computer system.
 さらに「コンピュータ読み取り可能な記録媒体」とは、インターネット等のネットワークや電話回線等の通信回線を介してプログラムを送信する場合の通信線のように、短時間、動的にプログラムを保持するもの、その場合のサーバやクライアントとなるコンピュータシステム内部の揮発性メモリのように、一定時間プログラムを保持しているものも含んでも良い。また上記プログラムは、前述した機能の一部を実現するためのものであっても良く、さらに前述した機能をコンピュータシステムにすでに記録されているプログラムとの組み合わせで実現できるものであっても良い。 Furthermore, the “computer-readable recording medium” is a medium that dynamically holds a program for a short time, such as a communication line when transmitting a program via a network such as the Internet or a communication line such as a telephone line, In such a case, a volatile memory inside a computer system serving as a server or a client may be included and a program that holds a program for a certain period of time. The program may be a program for realizing a part of the functions described above, and may be a program capable of realizing the functions described above in combination with a program already recorded in a computer system.
 また、上述した実施形態における基地局装置2-1あるいは基地局装置2-2は、複数の装置から構成される集合体(装置グループ)として実現することもできる。装置グループを構成する装置の各々は、上述した実施形態に関わる基地局装置2-1あるいは基地局装置2-2の各機能または各機能ブロックの一部、または、全部を備えてもよい。装置グループとして、基地局装置2-1あるいは基地局装置2-2の一通りの各機能または各機能ブロックを有していればよい。また、上述した実施形態に関わる端末装置1は、集合体としての基地局装置と通信することも可能である。 In addition, the base station device 2-1 or the base station device 2-2 in the above-described embodiment can also be realized as an aggregate (device group) composed of a plurality of devices. Each of the devices constituting the device group may include some or all of each function or each functional block of the base station device 2-1 or the base station device 2-2 according to the above-described embodiment. The device group only needs to have one function or each function block of the base station device 2-1 or the base station device 2-2. The terminal device 1 according to the above-described embodiment can also communicate with the base station device as an aggregate.
 また、上述した実施形態における基地局装置2-1あるいは基地局装置2-2は、EUTRAN(Evolved Universal Terrestrial Radio Access Network)であってもよい。また、上述した実施形態における基地局装置2-1あるいは基地局装置2-2は、eNodeBに対する上位ノードの機能の一部または全部を有してもよい。 In addition, the base station device 2-1 or the base station device 2-2 in the above-described embodiment may be EUTRAN (Evolved Universal Terrestrial Radio Access Network). In addition, the base station apparatus 2-1 or the base station apparatus 2-2 in the above-described embodiment may have a part or all of the functions of the upper node for the eNodeB.
 また、上述した実施形態における端末装置1、基地局装置2-1あるいは基地局装置2-2の一部、又は全部を典型的には集積回路であるLSIとして実現してもよいし、チップセットとして実現してもよい。端末装置1、基地局装置2-1あるいは基地局装置2-2の各機能ブロックは個別にチップ化してもよいし、一部、又は全部を集積してチップ化してもよい。また、集積回路化の手法はLSIに限らず専用回路、又は汎用プロセッサで実現しても良い。また、半導体技術の進歩によりLSIに代替する集積回路化の技術が出現した場合、当該技術による集積回路を用いることも可能である。 Further, a part or all of the terminal device 1, the base station device 2-1, or the base station device 2-2 in the above-described embodiment may be realized as an LSI that is typically an integrated circuit, or a chip set. It may be realized as. Each functional block of the terminal device 1, the base station device 2-1, or the base station device 2-2 may be individually chipped, or a part or all of them may be integrated into a chip. Further, the method of circuit integration is not limited to LSI, and may be realized by a dedicated circuit or a general-purpose processor. In addition, when an integrated circuit technology that replaces LSI appears due to progress in semiconductor technology, an integrated circuit based on the technology can also be used.
 また、上述した実施形態では、端末装置もしくは通信装置の一例としてセルラー移動局装置を記載したが、本願発明は、これに限定されるものではなく、屋内外に設置される据え置き型、または非可動型の電子機器、たとえば、AV機器、キッチン機器、掃除・洗濯機器、空調機器、オフィス機器、自動販売機、ロボット、その他生活機器などの端末装置もしくは通信装置にも適用出来る。 In the above-described embodiment, the cellular mobile station device is described as an example of the terminal device or the communication device. It can also be applied to terminal devices or communication devices such as AV devices, kitchen devices, cleaning / washing devices, air conditioning devices, office devices, vending machines, robots, and other daily life devices.
 以上、この発明の実施形態に関して図面を参照して詳述してきたが、具体的な構成はこの実施形態に限られるものではなく、この発明の要旨を逸脱しない範囲の設計変更等も含まれる。また、本発明は、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。また、上記各実施形態に記載された要素であり、同様の効果を奏する要素同士を置換した構成も含まれる。 As described above, the embodiment of the present invention has been described in detail with reference to the drawings. However, the specific configuration is not limited to this embodiment, and includes design changes and the like without departing from the gist of the present invention. The present invention can be modified in various ways within the scope of the claims, and embodiments obtained by appropriately combining technical means disclosed in different embodiments are also included in the technical scope of the present invention. It is. Moreover, it is the element described in each said embodiment, and the structure which substituted the element which has the same effect is also contained.
 301 上位層
 302 制御部
 303 コードワード生成部
 304 下りリンクサブフレーム生成部
 305 下りリンク参照信号生成部
  306 OFDM信号送信部
  307 送信アンテナ
  308 受信アンテナ
  309 SC-FDMA信号受信部
  310 上りリンクサブフレーム処理部
  311 上りリンク制御情報抽出部
  401 受信アンテナ
  402 OFDM信号受信部
  403 下りリンクサブフレーム処理部
  404 下りリンク参照信号抽出部
  405 トランスポートブロック抽出部
  406 制御部
  407 上位層
  408 チャネル状態測定部
  409 上りリンクサブフレーム生成部
  410 上りリンク制御情報生成部
  411 SC-FDMA信号送信部
  412 送信アンテナ
301 Upper layer 302 Control unit 303 Codeword generation unit 304 Downlink subframe generation unit 305 Downlink reference signal generation unit 306 OFDM signal transmission unit 307 Transmission antenna 308 Reception antenna 309 SC-FDMA signal reception unit 310 Uplink subframe processing unit 311 Uplink control information extraction unit 401 Reception antenna 402 OFDM signal reception unit 403 Downlink subframe processing unit 404 Downlink reference signal extraction unit 405 Transport block extraction unit 406 Control unit 407 Upper layer 408 Channel state measurement unit 409 Uplink sub Frame generation unit 410 uplink control information generation unit 411 SC-FDMA signal transmission unit 412 transmission antenna

Claims (3)

  1.  第1の物理上りリンク共用チャネルの送信を指示するDCIフォーマットを伴う物理下りリンク制御チャネルを受信する受信部と、
     LAAセルにおいて前記第1の物理上りリンク共用チャネルを送信する送信部を備え、
     前記物理下りリンク制御チャネルは、前記第1の物理上りリンク共用チャネルのリソースを示す情報を含み、
     前記第1の物理上りリンク共用チャネルのリソースを示す情報は、1つ、または、複数のサブセットを示し、
     前記1つ、または、複数のサブセットのそれぞれは、周波数領域において非連続である複数のリソースブロックを含む
     端末装置。
    A receiving unit for receiving a physical downlink control channel with a DCI format instructing transmission of the first physical uplink shared channel;
    A transmission unit for transmitting the first physical uplink shared channel in an LAA cell;
    The physical downlink control channel includes information indicating resources of the first physical uplink shared channel,
    The information indicating the resource of the first physical uplink shared channel indicates one or a plurality of subsets,
    Each of the one or the plurality of subsets includes a plurality of resource blocks that are non-contiguous in the frequency domain.
  2.  前記受信部は、前記LAAセルにおいて送信したランダムアクセスプリアンブルに対応するランダムアクセスレスポンスを受信し、
     前記ランダムアクセスレスポンスは、前記LAAセルにおける第2の物理上りリンク共用チャネルのリソースを指示する情報を含み、
     前記第2の物理上りリンク共用チャネルのリソースを指示する情報は、1つ、または、複数の連続するリソースブロックの1つのセットの開始位置と長さを示す
     請求項1に記載の端末装置。
    The receiving unit receives a random access response corresponding to the random access preamble transmitted in the LAA cell;
    The random access response includes information indicating a resource of a second physical uplink shared channel in the LAA cell;
    The terminal apparatus according to claim 1, wherein the information indicating the resource of the second physical uplink shared channel indicates a start position and a length of one set of one or a plurality of consecutive resource blocks.
  3.  第1の物理上りリンク共用チャネルの送信を指示するDCIフォーマットを伴う物理下りリンク制御チャネルを送信する送信部と、
     LAAセルにおいて前記第1の物理上りリンク共用チャネルを受信する受信部を備え、
     前記物理下りリンク制御チャネルは、前記第1の物理上りリンク共用チャネルのリソースを示す情報を含み、
     前記第1の物理上りリンク共用チャネルのリソースを示す情報は、1つ、または、複数のサブセットを示し、
     前記1つ、または、複数のサブセットのそれぞれは、周波数領域において非連続である複数のリソースブロックを含む
     基地局装置。
    A transmitter for transmitting a physical downlink control channel with a DCI format instructing transmission of the first physical uplink shared channel;
    A receiving unit for receiving the first physical uplink shared channel in an LAA cell;
    The physical downlink control channel includes information indicating resources of the first physical uplink shared channel,
    The information indicating the resource of the first physical uplink shared channel indicates one or a plurality of subsets,
    Each of the one or the plurality of subsets includes a plurality of resource blocks that are non-contiguous in the frequency domain.
PCT/JP2017/003580 2016-02-04 2017-02-01 Terminal device, wireless base station, and communication method WO2017135297A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-019539 2016-02-04
JP2016019539A JP2019057748A (en) 2016-02-04 2016-02-04 Terminal device, base station device, and communication method

Publications (1)

Publication Number Publication Date
WO2017135297A1 true WO2017135297A1 (en) 2017-08-10

Family

ID=59499697

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/003580 WO2017135297A1 (en) 2016-02-04 2017-02-01 Terminal device, wireless base station, and communication method

Country Status (2)

Country Link
JP (1) JP2019057748A (en)
WO (1) WO2017135297A1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110099392A (en) * 2018-01-30 2019-08-06 华为技术有限公司 A kind of measurement method and measuring device
WO2019215889A1 (en) * 2018-05-10 2019-11-14 株式会社Nttドコモ User terminal and wireless communication method
CN110663277A (en) * 2017-11-09 2020-01-07 Oppo广东移动通信有限公司 Uplink control channel resource determination method, terminal and network side equipment
WO2020217309A1 (en) * 2019-04-23 2020-10-29 株式会社Nttドコモ User terminal and wireless communication method
CN112533289A (en) * 2019-09-17 2021-03-19 普天信息技术有限公司 Uplink control information transmission method, terminal, electronic device, and storage medium
CN112586072A (en) * 2018-08-09 2021-03-30 Lg 电子株式会社 Method for transmitting data in unlicensed band by terminal and apparatus using the same
US20220322416A1 (en) * 2019-03-22 2022-10-06 Samsung Electronics Co., Ltd. Adjusting parameters of a transmission in response to interference
CN112533289B (en) * 2019-09-17 2024-04-23 普天信息技术有限公司 Uplink control information transmission method, terminal, electronic equipment and storage medium

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016006449A1 (en) * 2014-07-11 2016-01-14 株式会社Nttドコモ Wireless base station, user terminal, and wireless communication method

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016006449A1 (en) * 2014-07-11 2016-01-14 株式会社Nttドコモ Wireless base station, user terminal, and wireless communication method

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ZTE: "Overview on LAA UL", 3GPP TSG RAN WG1 MEETING #81 R1-152970, 25 May 2015 (2015-05-25), XP050972652 *

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110663277A (en) * 2017-11-09 2020-01-07 Oppo广东移动通信有限公司 Uplink control channel resource determination method, terminal and network side equipment
CN110099392A (en) * 2018-01-30 2019-08-06 华为技术有限公司 A kind of measurement method and measuring device
CN110099392B (en) * 2018-01-30 2021-05-04 华为技术有限公司 Measuring method and measuring device
US11297523B2 (en) 2018-01-30 2022-04-05 Huawei Technologies Co., Ltd. Measurement method and measurement apparatus
WO2019215889A1 (en) * 2018-05-10 2019-11-14 株式会社Nttドコモ User terminal and wireless communication method
CN112369096A (en) * 2018-05-10 2021-02-12 株式会社Ntt都科摩 User terminal and wireless communication method
CN112586072A (en) * 2018-08-09 2021-03-30 Lg 电子株式会社 Method for transmitting data in unlicensed band by terminal and apparatus using the same
CN112586072B (en) * 2018-08-09 2023-09-01 Lg 电子株式会社 Method for transmitting data in unlicensed band by terminal and apparatus using the same
US20220322416A1 (en) * 2019-03-22 2022-10-06 Samsung Electronics Co., Ltd. Adjusting parameters of a transmission in response to interference
WO2020217309A1 (en) * 2019-04-23 2020-10-29 株式会社Nttドコモ User terminal and wireless communication method
CN112533289A (en) * 2019-09-17 2021-03-19 普天信息技术有限公司 Uplink control information transmission method, terminal, electronic device, and storage medium
CN112533289B (en) * 2019-09-17 2024-04-23 普天信息技术有限公司 Uplink control information transmission method, terminal, electronic equipment and storage medium

Also Published As

Publication number Publication date
JP2019057748A (en) 2019-04-11

Similar Documents

Publication Publication Date Title
WO2017154618A1 (en) Terminal device and base station device
JP6671372B2 (en) Terminal device and communication method
WO2017130764A1 (en) Terminal apparatus, base station apparatus, and communication method
WO2017022748A1 (en) Terminal device, base station device, and communication method
WO2017078148A1 (en) Terminal apparatus, base station apparatus and method
JP6660382B2 (en) Terminal device
WO2016121603A1 (en) Terminal device, base station device, communications method, and integrated circuit
WO2017135297A1 (en) Terminal device, wireless base station, and communication method
WO2017130771A1 (en) Terminal apparatus, base station apparatus, and communication method
WO2017090710A1 (en) Terminal device, base station device, and communication method
WO2016121560A1 (en) Terminal device, base station device, and communications method
JP2017060092A (en) Base station device and method
JP6634391B2 (en) Terminal device, base station device, communication method, and integrated circuit
JP2019075596A (en) Terminal device and base station device
JP2017022539A (en) Terminal device, base station device and communication method
JP2017022538A (en) Terminal device, base station device and communication method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17747453

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17747453

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP