WO2017135136A1 - Structure in which single atoms are dispersed on support, method for manufacturing structure in which single atoms are dispersed on support, and sputtering device - Google Patents

Structure in which single atoms are dispersed on support, method for manufacturing structure in which single atoms are dispersed on support, and sputtering device Download PDF

Info

Publication number
WO2017135136A1
WO2017135136A1 PCT/JP2017/002670 JP2017002670W WO2017135136A1 WO 2017135136 A1 WO2017135136 A1 WO 2017135136A1 JP 2017002670 W JP2017002670 W JP 2017002670W WO 2017135136 A1 WO2017135136 A1 WO 2017135136A1
Authority
WO
WIPO (PCT)
Prior art keywords
support
atoms
sputtering
target
dispersed
Prior art date
Application number
PCT/JP2017/002670
Other languages
French (fr)
Japanese (ja)
Inventor
一壽 郷原
洋祐 前原
憲慈 山崎
Original Assignee
国立大学法人北海道大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人北海道大学 filed Critical 国立大学法人北海道大学
Priority to JP2017565507A priority Critical patent/JP6957022B2/en
Publication of WO2017135136A1 publication Critical patent/WO2017135136A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/42Platinum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/46Ruthenium, rhodium, osmium or iridium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/48Silver or gold
    • B01J23/52Gold
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/34Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/18Nanoonions; Nanoscrolls; Nanohorns; Nanocones; Nanowalls
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/182Graphene
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering

Definitions

  • the present invention relates to a structure in which single atoms are dispersed on a support, a method for producing a structure in which single atoms are dispersed on a support, and a sputtering apparatus.
  • Small size particles may have different properties from bulk materials.
  • transition metals such as platinum (Pt) and gold (Au) are known to exhibit various catalytic capabilities when made into nanoparticles.
  • Non-Patent Document 1 describes that the smaller the particle size of the nanoparticle, the greater the number of coordination unsaturated sites of the metal atom, resulting in an increase in the catalytic ability of the particle.
  • Non-Patent Document 1 Non-Patent Document 2 and Non-Patent Document 3 report that Pt atoms and palladium (Pd) atoms dispersed by single atoms selectively and efficiently catalyze various reactions.
  • a dispersion of particles with a smaller average particle size, particularly a monoatomic dispersion can be produced, not only can it be applied to highly functional catalysts, It is expected to be applied in various fields, such as enabling research at the molecular level of physical or physical reactions.
  • Non-Patent Document 1 and Non-Patent Document 2 when the particle size is reduced, the surface free energy of the molecule is higher and the particles are more likely to aggregate. Therefore, it is not easy to produce a dispersion of particles having a small average particle diameter (particularly, a monoatomic dispersion), and a special method is required.
  • Monoatomic Pt or Pd is dispersed on the surface of the substrate by a deposition method or the like.
  • monoatomic Pt is dispersed on the surface of a substrate made of copper (Cu) by an electron beam evaporation method in which the film formation rate is controlled to 0.02 layers per minute.
  • the electron beam vapor deposition method employed in Non-Patent Document 3 is a kind of physical vapor deposition method.
  • As the physical vapor deposition method in addition to the vapor deposition method performed in an ultrahigh vacuum, sputtering is performed. Sputtering performed in the presence of gas is known.
  • Non-Patent Document 4 and Non-Patent Document 5 in sputtering, atoms repelled from the target collide with the sputtering gas and become charged, or conversely, trajectories are formed by the molecules of the sputtering gas. It was thought that it was easily changed and agglomerated between atoms.
  • Non-Patent Document 1 and Non-Patent Document 2 the types of precursor compounds that can be used are limited, and only limited types of molecules can be used. In addition, since it takes time to react the precursor compound in the system, it is difficult to increase the production efficiency of the dispersion.
  • Non-Patent Document 3 since the vapor deposition method as described in Non-Patent Document 3 is performed in a high-temperature environment, the kinetic energy of the evaporated molecules increases, and tends to aggregate before adhering to the substrate. Therefore, a monoatomic dispersion cannot be produced particularly stably.
  • the present invention has been made in view of the above problems, and a structure in which atoms of various types are dispersed on a support capable of dispersing various types of atoms with a single atom, and such a structure are manufactured. It is an object of the present invention to provide a method and a sputtering apparatus capable of manufacturing such a structure.
  • the present invention relates to a structure in which single atoms are dispersed on the following support, a method for producing a structure in which single atoms are dispersed on a support, and a sputtering apparatus.
  • the support is a laminate in which one or more layers made of nanographene are stacked in an island shape on graphene, and the anchor site is on the surface of the layer made of graphene or nanographene.
  • [3] The structure according to [1] or [2], wherein the support is activated carbon.
  • [4] The structure according to any one of [1] to [3], which is a dispersion in which 90% or more of the atoms are dispersed as single atoms.
  • [5] The structure according to any one of [1] to [4], wherein the atoms that can be sputtered are transition metal atoms.
  • the structure according to any one of [1] to [5], wherein the atoms that can be sputtered are platinum (Pt), gold (Au), iridium (Ir), and ruthenium (Ru).
  • a target including a sputtering-capable atom and a support on which an anchor site capable of adsorbing a sputterable atom is disposed and obtained in advance in a chamber into which a sputtering gas is introduced. And applying a voltage between the target and the support under sputtering conditions that allow at least a part of the atoms that can be sputtered to be dispersed on the support as single atoms.
  • a method for producing a structure in which single atoms are dispersed on a support including a step of sputtering.
  • the support is a support in which one or more layers made of nanographene are stacked in an island shape on graphene, and the anchor site is on the surface of the layer made of graphene or nanographene.
  • the method according to [7] or [8], wherein the support is activated carbon.
  • the method according to any one of [7] to [9], wherein the voltage is 150 V or less.
  • the sputtering gas is a gas containing 70% by volume or more of nitrogen (N 2 ).
  • the target includes a transition metal.
  • the target is platinum (Pt), gold (Au), iridium (Ir), or ruthenium (Ru).
  • a voltage is applied between the target and the support, and a support arrangement part where a support on which a simple anchor site is formed is arranged; a sputtering gas introduction part for introducing a sputtering gas into the chamber;
  • a controller that applies a voltage between the target and the support.
  • a sputtering apparatus capable of producing a body is provided.
  • FIG. 1A is a high-angle scattering dark field / scanning transmission electron microscope showing a structure in which Pt single atoms are dispersed on a support that is a laminate in which one or more layers of nanographene are stacked in an island shape on graphene. It is the image imaged by (HAADF-STEM).
  • FIG. 1B is a diagram in which the region surrounded by the dotted line in FIG. 1A is enlarged and color-coded for each region where the pixel intensities are substantially the same.
  • FIG. 1A is a high-angle scattering dark field / scanning transmission electron microscope showing a structure in which Pt single atoms are dispersed on a support that is a laminate in which one or more layers of nanographene are stacked in an island shape on graphene. It is the image imaged by (HAADF-STEM).
  • FIG. 1B is a diagram in which the region surrounded by the dotted line in FIG. 1A is enlarged and color-coded for each region where
  • FIG. 2A is an image of a structure in which gold (Au) is dispersed on a support that is a stacked body in which one or a plurality of layers made of nanographene are stacked in an island shape on graphene, using HAADF-STEM.
  • FIG. 2B is an image of a structure in which iridium (Ir) is dispersed in a support that is a stacked body in which one or a plurality of layers made of nanographene is stacked in an island shape on graphene, which is captured by HAADF-STEM.
  • FIG. 2C is an image of a structure in which ruthenium (Ru) is dispersed in a support, which is a stacked body in which one or a plurality of layers made of nanographene are stacked in an island shape on graphene, captured by HAADF-STEM.
  • FIG. 3 is a schematic view showing a state in which sputtered atoms reach the support in a single atom state, diffuse on the support, and are adsorbed on the anchor site.
  • FIG. 4 shows that when the support is a laminate in which a layer made of nanographene is stacked in an island shape on a graphene substrate, the sputtered atoms arrive in a single atom state and diffuse on the support
  • FIG. 5A is a schematic view showing a method for producing a structure in which single atoms are dispersed on a support, which is graphene formed on a copper foil, by a roll-to-roll (RTR) method.
  • FIG. 5B is a schematic diagram showing a method of manufacturing the structure on graphene transferred to another sheet after being formed on a copper foil.
  • RTR roll-to-roll
  • FIG. 6 is a schematic view showing a sputtering apparatus according to an embodiment of the present invention.
  • FIG. 7A is an image obtained by capturing the support manufactured in Example 1 with HAADF-STEM.
  • FIG. 7B is a graph in which the distance from the start point is plotted on the horizontal axis and the intensity for each pixel is plotted on the vertical axis for the region set in the image shown in FIG. 7A.
  • FIG. 7C is a diagram in which FIG. 7A is color-coded for each region where the pixel intensities are substantially the same.
  • FIG. 8A is an image obtained by imaging a region set on the substrate surface with HAADF-STEM after sputtering with a sputtering time of 1 second in Example 1.
  • FIG. 8A is an image obtained by imaging a region set on the substrate surface with HAADF-STEM after sputtering with a sputtering time of 1 second in Example 1.
  • FIG. 8A is an image obtained by imaging
  • FIG. 8B is an image obtained by imaging a region set on the substrate surface with HAADF-STEM after sputtering with a sputtering time of 2 seconds in Example 1.
  • FIG. 8C is an image obtained by imaging a region set on the substrate surface with HAADF-STEM after sputtering with a sputtering time of 5 seconds in Example 1.
  • FIG. 8D is an image obtained by imaging a region set on the substrate surface with HAADF-STEM after sputtering with a sputtering time of 10 seconds in Example 1.
  • FIG. 8E is an image obtained by imaging a region set on the substrate surface with HAADF-STEM after sputtering with a sputtering time of 30 seconds in Example 1.
  • FIG. 9A is an image obtained by imaging a region set on the substrate surface with HAADF-STEM when the sputtering time is 10 seconds.
  • FIG. 9B is an image obtained by capturing the same region as FIG. 9A with characteristic X-rays having a wavelength corresponding to Pt by energy dispersive X-ray analysis (EDX).
  • FIG. 10 is a graph in which the sputtering time (unit: seconds) is plotted on the horizontal axis, and the relative value of the number of Pt atoms present on the substrate surface at each sputtering time is plotted on the vertical axis.
  • FIG. 11A is an image obtained by imaging a region set on the substrate surface with HAADF-STEM when the sputtering time is 1 second.
  • FIG. 11B is an image obtained by performing noise processing on FIG. 11A using a low-pass filter and threshold processing.
  • FIG. 12 shows the number of points where the distance between the closest points is rounded to the nearest decimal point for each point in FIG. 11B, and the result is represented as a histogram. It is.
  • FIG. 13 shows, for each number of points constituting each dispersion in FIG. 11B, the number of dispersions having the value of the number of points, and the result is represented as a histogram.
  • FIG. 14A is an image obtained by imaging a region set on the substrate surface with HAADF-STEM after sputtering using He atmosphere as the atmosphere gas in Example 5.
  • FIG. 14B is an image obtained by changing the magnification of FIG. 14A.
  • FIG. 14C is an image obtained by imaging a region set on the substrate surface with HAADF-STEM after sputtering using atmospheric gas as the atmosphere in Example 5.
  • FIG. 14D is an image obtained by changing the magnification of FIG
  • One embodiment of the present invention relates to a structure in which single atoms are dispersed on a support.
  • An anchor site capable of adsorbing atoms that can be sputtered is formed on the support, and at least a part of the atoms that can be sputtered is adsorbed to the anchor sites as single atoms.
  • another embodiment of the present invention relates to a method for producing a structure in which single atoms are dispersed on the support.
  • a target including an atom that can be sputtered and a support on which an anchor site capable of adsorbing an atom that can be sputtered is disposed, and sputtering is performed.
  • a voltage is applied between the target and the support under sputtering conditions in which at least a part of the atoms that can be sputtered can be dispersed on the support as single atoms in a gas-introduced chamber. It can be manufactured by applying and sputtering the target.
  • being dispersed by single atoms means that the distance between adjacent single atoms is larger than the distance between atoms (bonding distance) when the atoms are bonded to each other.
  • a Pt atom is dispersed as a single atom means that the distance between the Pt atom and another Pt atom that is the shortest distance from the Pt atom is the interatomic distance between Pt and Pt. It means that it is larger than a certain 2.7cm.
  • the interatomic distance can be the smallest among the interatomic distances required for all combinations of atoms constituting the dispersion.
  • the sputtering conditions can be determined in advance for each combination with atoms to be dispersed as a condition for producing a structure in which single atoms are dispersed. If sputtering is performed from the next time under the conditions thus obtained, the structure can be easily manufactured.
  • Sputtering is a technique for forming a thin film, and formation of a monoatomic dispersion by sputtering has not been conceived until now. Further, in view of the common technical knowledge described in Non-Patent Document 4 and Non-Patent Document 5, even if an attempt is made to form a monoatomic dispersion by sputtering, a stable dispersion (in particular, a monoatomic dispersion). The formation of is usually considered difficult. On the other hand, the present inventors have found that, even in sputtering, the sputtered atoms can reach the support in a single atom state by appropriately controlling the conditions.
  • the present inventors have made it possible to disperse atoms that have reached the support in the state of the single atom as a single atom by allowing the sputtered atoms to reach the support on which the anchor site is formed. I found it. The inventors of the present invention have completed the present invention through further studies based on these findings.
  • the sputtering conditions for allowing the sputtered atoms to reach the support in a single atom state are the type of atoms, the distance between anchor sites, the amount of single atoms that reach the support per unit time, and the support. It is thought that it depends on the rate at which the single atom diffuses on the support. Therefore, it is considered that there are many appropriate sputtering conditions depending on these combinations. However, once an appropriate condition is searched and found, the same process can be performed without changing the condition from the next process, and the present invention can be implemented without excessive burden. According to the knowledge of the present inventors, the sputtering conditions are not greatly different from the normal sputtering conditions for forming a thin film except that the time for applying a voltage is shorter. . Therefore, it is considered that the sputtering conditions suitable for each atom can be found relatively easily.
  • the conditions for causing the sputtered atoms to reach the support in the state of a single atom can be obtained by the following method, for example. Sputtering is performed while changing the conditions to attach atoms constituting the target to the support surface, and for each condition, the atoms attached to the support surface are imaged by energy dispersive X-ray analysis (EDX) or the like. Temporarily selecting an image in which particles having a particle size of several sparsely sparsely disperse on the surface of the support among images taken for each condition.
  • EDX energy dispersive X-ray analysis
  • the size (particle size) of the particles is the same as the atomic radius of the sputtered atoms (usually about several microns), and the distance between adjacent particles is the above If the distance is greater than the interatomic distance (bonding distance: usually several tens of kilometers), it can be determined that the particle is a single atom.
  • a certain region for example, a region of 50 nm ⁇ 50 nm
  • a predetermined ratio of all atoms present in the region was a single atom
  • sputtering was performed under the condition that the image was obtained. It can be determined that the predetermined proportion of atoms can reach the support in a single atom state.
  • the predetermined ratio can be determined according to the use of the structure to be manufactured, and is, for example, 20% or more, 30% or more, 50% or more, 70% or more, 90% or more, 95% or more and 99%. % May be arbitrarily selected.
  • the number of atoms reaching the support increases substantially in proportion to the time for applying the voltage. Therefore, it is considered that the number of atoms reaching the support can be controlled almost accurately by changing only the voltage application time.
  • the time for applying the voltage is made longer, a dispersion of clusters in which a plurality of atoms are aggregated is formed, so that the ratio of dispersion with single atoms is reduced.
  • the proportion of the above-mentioned single atom dispersed as a single atom is 99% or more, 95% or more, 90% or more, 70% or more, 50% or more. It can be controlled to 30% or more and 20% or more.
  • the electron beam evaporation method must be performed under ultra-high vacuum. If even a slight amount of residual gas exists, atoms or molecules evaporated in a high-temperature environment react with oxygen or hydrogen, and the dispersion becomes There is a risk that the composition of the constituent molecules will change.
  • an inert gas is used as the sputtering gas, a dispersion having a higher purity composition can be obtained without reacting before the sputtered atoms reach the support. .
  • the target evaporates only from the point-like region irradiated with the electron beam, so it is difficult to fly a large number of atoms at the same time, and it is difficult to form a large number of dispersions. Then, a larger number of dispersions can be formed simultaneously.
  • the target may be a sputtering target that contains atoms constituting the dispersion to be manufactured in the vicinity of the surface.
  • the vicinity of the surface means a three-dimensional region defined in the thickness direction from the surface of the target, which can be sputtered by a sputtering gas by applying a voltage.
  • the atomic composition of the target in the vicinity of the surface only needs to include atoms constituting the dispersion to be manufactured.
  • the ratio of the atoms in the vicinity of the surface is preferably 99% or more, and more preferably 99.9% or more.
  • the shape and size of the target are not particularly limited, and can be arbitrarily determined according to the configuration of a sputtering apparatus.
  • the atoms constituting the dispersion may be atoms that can exist as a solid near the surface of the target and can be sputtered by a sputtering gas, and may be aluminum (Al), gallium (Ga), titanium (Ti ), Zinc (Zn), copper (Cu), or other metal element atoms, or silicon (Si) or other non-metal element atoms.
  • the atoms constituting the dispersion may exist as oxides or nitrides in the target.
  • the atom is preferably a metal atom of a transition metal, more preferably a metal atom of a noble metal, platinum (Pt), palladium (Pd), gold (Au), iridium (Ir), ruthenium (Ru) or silver (Ag) is more preferable.
  • the sputtering gas may be any gas that can repel single atoms from the target and has no reactivity with the atoms constituting the dispersion, and may be air, helium (He), argon (Ar). ), A known sputtering gas such as nitrogen (N 2 ) gas can be used. From the viewpoint of making the reaction between the atoms and the sputtering gas difficult to occur, the sputtering gas is preferably an inert gas containing a rare gas such as helium (He) and argon (Ar) and nitrogen (N 2 ) gas.
  • the sputtering gas preferably contains atoms having a small molecular weight, while from the viewpoint of facilitating the repelling of a sufficient amount of single atoms at a time,
  • the sputtering gas preferably contains a gas having a molecular weight that is somewhat large.
  • the sputtering gas is more preferably a gas containing 70% by volume or more of N 2 .
  • the sputtering gas containing 70% by volume or more of N 2 include air and nitrogen gas.
  • the pressure of the sputtering gas can be arbitrarily set as long as the atoms can reach the support with the predetermined proportion of atoms constituting the target being a single atom.
  • the chamber may be a chamber provided in a normal apparatus capable of performing sputtering.
  • the distance between the target and the support can be arbitrarily set as long as the atoms can reach the support with the predetermined proportion of atoms constituting the target being a single atom.
  • the temperature in the chamber can be arbitrarily set as well, but from the viewpoint of suppressing the kinetic energy of the sputtered molecules and suppressing the aggregation of atoms in flight, the temperature in the chamber is It is preferable that it is 40 degrees C or less, and it is more preferable that it is normal temperature.
  • the magnitude of the voltage may be any intensity that can repel single atoms from the target.
  • the voltage is preferably 500 V or less, more preferably 300 V or less.
  • it is 150 V or less, more preferably 50 V or less.
  • the above voltage may be continuously applied or may be repeatedly applied for a predetermined time.
  • the number of atoms that reach the support increases substantially in proportion to the time during which the voltage is applied. Further, when the number of atoms reaching the support increases, the atoms may aggregate to form a cluster. Therefore, it is preferable to obtain a relationship between the time for applying the voltage and the number of atoms reaching the support in advance, and to apply the voltage only for the time during which a desired proportion of atoms are dispersed as single atoms.
  • the total time for applying a voltage both in the case of continuing to apply continuously and in the case of repeatedly applying for a predetermined time Is preferably 1.5 seconds or less.
  • the time for applying the voltage per time is preferably 1.5 seconds or less.
  • the time for applying the voltage per time is preferably 0.5 seconds or more.
  • An anchor site capable of adsorbing the sputtered atoms is formed on the support.
  • An anchor site is a site that can adsorb a single atom without using a covalent bond. Anchor sites can adsorb atoms by electrostatic interactions such as van der Waals forces.
  • the support may be a laminate in which one or more layers made of nanographene are stacked in an island shape on graphene.
  • FIG. 1A shows an image obtained by imaging a structure in which Pt single atoms are dispersed on such a support by high-angle scattering dark field / scanning transmission electron microscopy (HAADF-STEM). As shown in FIG. 1A, in this structure, Pt shown in white in the figure is dispersed as a single atom.
  • FIG. 1B is a diagram in which the region surrounded by the dotted line in FIG. 1A is enlarged and color-coded for each region (layer made of nanographene) in which the pixel intensity is substantially the same.
  • FIG. 1A shows an image obtained by imaging a structure in which Pt single atoms are dispersed on such a support by high-angle scattering dark field / scanning transmission electron microscopy (HAADF-STEM). As shown in FIG. 1A, in this structure, Pt shown in white in the figure is disper
  • the nano graphene laminated on the graphene in an island shape is shown at different concentrations for each layer.
  • Pt exists in a region (anchor site) in contact with an end of the layer made of nanographene formed on the surface of the layer made of graphene or nanographene.
  • graphene has a six-membered ring structure consisting of carbon that is continuous in the plane direction.
  • atoms are easily adsorbed at the ends of voids in which carbon atoms are partially lost or at the ends of sheet-like graphene (these ends are also referred to as “edges”). I know that.
  • the end portion of the layer made of nanographene formed on the surface of the layer made of graphene or nanographene rather than the void or edge A single atom is more likely to be adsorbed in a region in contact with (hereinafter also simply referred to as “step edge”). This is because a void or edge does not generate enough force interaction to adsorb a single atom, but a step edge interacts with a single atom from two directions: the lower surface and the end of the layer formed above. It is thought that this is because a stronger adsorption force is generated because it can act.
  • FIGS. 2A to 2C when the single atoms of gold (Au) (FIG. 2A), iridium (Ir) (FIG. 2B) and ruthenium (Ru) (FIG. 2C) are allowed to reach the laminate. , Both were adsorbed on the step edge and dispersed on the support. As these results show, the laminate can adsorb various atoms to the step edge with a single atom and disperse them on the support.
  • the distance in the stacking direction between successive layers of the layer made of nanographene is usually 0.33 nm or more and 0.35 nm or less.
  • the number of layers is not particularly limited, and can be, for example, 2 or more and 15 or less, and preferably 2 or more and 7 or less.
  • the average of the distance between islands of the nanographene stacked in the above-mentioned island shape may be longer than the distance between atoms to be dispersed.
  • the average distance between the islands may be adjusted according to the number of atoms desired to be dispersed in the unit area. Even if the average distance between the islands is long, the single atom that has reached the support as shown below diffuses at high speed on the support and is instantly adsorbed to the anchor site. Aggregation of single atoms is considered to hardly occur.
  • the reached single atom is on the support 100 (the substrate 110 in FIG. 3).
  • the diffused monoatom reaches the anchor site 120 and is adsorbed on the anchor site 120 to be dispersed in a monoatomic state on the support.
  • the adsorption energy at which the anchor site adsorbs the atoms is much stronger than the adsorption energy at which the surface of the layer made of graphene or nanographene adsorbs the atoms. Therefore, in FIG. 3, the single atom that has reached the support 100 is adsorbed to the anchor site instantaneously, and the diffusion ends instantaneously. Therefore, even if single atoms successively reach the support 100, it is considered that the single atoms being diffused on the support 100 do not aggregate with each other and are adsorbed on the anchor site 120 as they are.
  • the support 200 is a stacked body in which the layer 230 made of nanographene is stacked in an island shape on the substrate 210 made of graphene, atoms that have reached a single atom move on the substrate 210. It diffuses and is adsorbed to the end of the layer 230 made of nanographene, which is the anchor site 220.
  • graphene has been produced so that a flat film composed of a single atomic layer spreads in a planar shape.
  • a layer made of nanographene on the graphene, many step edges as anchor sites are formed, and more single atoms can be dispersed per unit area.
  • the amount of the layer made of nanographene can be adjusted by adjusting the pressure and temperature at the time of graphene film formation, or by irradiating the formed graphene with an electron beam.
  • a material having the above laminated body such as activated carbon may be used as the support.
  • Activated carbon has many fine pores with a diameter of about 1 nm to 20 nm, and the ratio of the surface area to the volume is very high. Therefore, if activated carbon is used as a support, it is considered that the content of single atoms per unit volume can be dramatically increased.
  • graphene may be manufactured by a roll-to-roll (RTR) method.
  • RTR roll-to-roll
  • the copper foil wound around the delivery roller 510 is sequentially delivered, and the graphene film is formed on the copper foil by CVD by the chemical vapor deposition (CVD) unit 520.
  • the copper foil on which the graphene film is formed is taken up by the take-up roller 530.
  • the CVD unit 520 is preferably a plasma generating apparatus capable of forming graphene using surface wave excited microwave plasma because CVD at low temperature is possible and industrial applicability is high.
  • the graphene production apparatus 500 using the RTR method can include a single atom sputtering unit 540 downstream of the CVD unit 520 and upstream of the winding unit 530.
  • the single-atom sputtering unit 540 performs sputtering under the above-described conditions, causes the atoms that can be sputtered to reach the graphene formed by the CVD unit 320, and allows the atoms to be formed on the formed graphene. At least a part is dispersed with a single atom.
  • the graphene production apparatus 500 ′ transfers the formed graphene to another sheet (polypropylene sheet or the like) downstream of the CVD unit 520 and upstream of the single atom sputtering unit 540.
  • the transfer section 550 may be provided.
  • the structure in which single atoms are dispersed on the above-described support can be manufactured by the sputtering apparatus 600 illustrated in FIG.
  • the sputtering apparatus 600 includes a chamber 610, a target placement unit 620, a support placement unit 630, a sputtering gas introduction unit 640, a voltage application unit 650, and a control unit 660.
  • the chamber 610 may be a chamber whose inside can be sealed.
  • the target placement unit 620 is provided in the chamber 610 and holds the target T described above.
  • positioning part 630 is provided in the chamber 610, and hold
  • the target placement unit 620 and the support placement unit 630 are provided in the chamber 610 so that the surface on which the target T is sputtered and the surface on which the anchor site of the support S is formed face each other. It is done.
  • the sputtering gas introduction unit 640 introduces the above-described sputtering gas into the chamber 610.
  • the sputtering gas introduction unit 640 may adjust the pressure inside the chamber 610 to a predetermined pressure.
  • the voltage application unit 650 applies a voltage between the target T and the support S.
  • the control unit 660 controls the sputtering gas introduction unit 640 and the voltage application unit 650 to disperse the above-described at least a part of the atoms that can be sputtered on the support S as single atoms.
  • a voltage is applied between the target T and the support S under the possible sputtering conditions.
  • the control unit 660 sets a voltage and a time determined according to the type of atoms, the type of anchor site, the sputtering gas, and the like included in the target T, and the target T, the support S, A voltage is applied during When a voltage is applied, the molecules Mg of the sputtering gas collide with the target T, the molecules Mt contained in the target T are repelled, and reach the support S.
  • the molecules Mt that reach the support S diffuse on the support S and are adsorbed on the anchor sites to form a monoatomic dispersion.
  • Example 1 (Support) A 1 cm square copper foil was immersed in acetic acid for one night or longer to remove the natural oxide film on the surface of the copper foil, and the copper foil from which the natural oxide film was removed was rinsed with pure water several times and then introduced into the CVD apparatus. Graphene was grown at 60 kPa and 1000 ° C., and methane gas diluted with argon was used as a carbon source. The pressure in the apparatus was controlled by an electronic controller with an error of 0.1% or less from the set value. After graphene growth, the copper foil was moved away from the heater coil, and the sample was rapidly cooled.
  • the grown graphene was transferred onto the upper surface of a transmission electron microscope TEM grid having a cylindrical shape with a diameter of 3 mm to obtain a support.
  • the back surface of the copper foil was immersed in a mixed solution of sulfuric acid and hydrogen peroxide solution. Thereafter, only the back surface of the copper foil was immersed in a 100 mM ammonium persulfate aqueous solution to dissolve the copper foil.
  • the ammonium persulfate aqueous solution is replaced with pure water, and the graphene floating on the water surface is scooped up with a cylindrical TEM grid having a diameter of 3 mm, and the graphene is placed on the upper surface of the TEM grid. Transcribed.
  • the transferred graphene was observed by high-angle scattering dark field / scanning transmission electron microscopy (HAADF-STEM) at an acceleration voltage of 80 kV using an aberration correction electron microscope (manufactured by FEI, Titan3 G2, 60-300). The image obtained at this time is shown in FIG. 7A.
  • HAADF-STEM high-angle scattering dark field / scanning transmission electron microscopy
  • FIG. 7B shows a graph in which the distance from the starting point is plotted on the horizontal axis and the intensity for each pixel is plotted on the vertical axis for the region set in the image shown in FIG. 7A (indicated by a dotted line in FIG. 7A).
  • the strength is divided into three different regions, labeled 0, 1, 2 and analyzed to be a hole without graphene, a region where nanographene is stacked in one layer, and a region where nanographene is stacked in two layers, respectively. It was done.
  • FIG. 7C is a diagram in which FIG. 7A is color-coded for each region where the pixel intensities are substantially the same. As shown in FIG. 7C, it was found that the obtained graphene was entirely composed of island-shaped nano-sized regions. Detailed analysis reveals that there is a single-layer graphene at the bottom and a structure in which nano-sized graphene is stacked on top of it, and up to seven layers are stacked in the largest region.
  • the Pt target and the support are placed in a chamber of a sputtering apparatus (JFC-1600, manufactured by JEOL Ltd.) so that the Pt target and the transferred graphene face each other, and the Pt target and the support A voltage was applied between the body and the body under the following conditions to pass a direct current.
  • a sputtering apparatus JFC-1600, manufactured by JEOL Ltd.
  • Atmospheric gas Atmospheric pressure: 4.5Pa Temperature: Room temperature (Current condition) Voltage: 100V Current: 10mA
  • the above voltage was applied for 1 second and sputtering was performed for 1 second.
  • the sputtering for 1 second was repeated with an interval of 10 seconds.
  • the number of times of repeating the sputtering for 1 second was adjusted so that a value obtained by integrating the sputtering time became a target time.
  • Sputtering was performed under the above conditions with a sputtering time of 1 second, 2 seconds, 3 seconds, 4 seconds, 5 seconds, 7 seconds, 10 seconds, or 30 seconds.
  • a sputtering time 1 second, 2 seconds, 3 seconds, 4 seconds, 5 seconds, 7 seconds, 10 seconds, or 30 seconds.
  • JEM-ARM200F an aberration-corrected transmission electron microscope
  • four regions arbitrarily set on the support surface (each about 50 nm ⁇ about 50 nm) ) was imaged by high angle scattering dark field / scanning transmission electron microscopy (HAADF-STEM) and energy dispersive X-ray analysis (EDX).
  • HAADF-STEM high angle scattering dark field / scanning transmission electron microscopy
  • EDX energy dispersive X-ray analysis
  • 8A to 8E are each one of images taken by HAADF-STEM of the region set on the support surface after sputtering.
  • 8A is an image when the sputtering time is 1 second
  • FIG. 8B is a sputtering time of 2 seconds
  • FIG. 8C is a sputtering time of 5 seconds
  • FIG. 8D is a sputtering time of 10 seconds
  • FIG. 8E is an image when the sputtering time is 30 seconds. is there. From FIG. 8A to FIG. 8E, it was found that when the sputtering time is short (for example, 1 second or 2 seconds), an isolated point dispersion is formed on the support surface. Further, it was found that when the sputtering time was made longer, a cluster-like dispersion in which dots were aggregated was formed.
  • FIG. 9A shows one of images obtained by HAADF-STEM imaging the above-described region set on the support surface (however, a region different from FIG. 8D) when the sputtering time is 10 seconds.
  • FIG. 9B is an image obtained by imaging the same region as FIG. 9A with characteristic X-rays having a wavelength corresponding to Pt by energy dispersive X-ray analysis (EDX). Since the dispersion state in FIG. 9A coincides with the dispersion state in FIG. 9B, it was found that the point existing in the image captured by the HAADF-STEM is Pt atoms.
  • EDX energy dispersive X-ray analysis
  • the relative value of the number of Pt atoms present on the support surface was measured.
  • the integrated intensity of M rays is considered to be proportional to the number of Pt atoms present in the region. Therefore, the above four areas are imaged by EDX, and the integrated intensities of the M-rays are obtained, and the obtained integrated intensity is set as a relative value of the number of Pt atoms existing in the area.
  • FIG. 10 is a graph in which the sputtering time (unit: seconds) is plotted on the horizontal axis, and the relative value of the number of Pt atoms existing on the surface of the support at each sputtering time is plotted on the vertical axis. It can be seen that the relative value of the number of Pt atoms increases linearly as the sputtering time increases. From this, it was found that the number of Pt atoms attached to the support surface can be controlled by changing the sputtering time.
  • FIG. 11A is one of the images obtained by HAADF-STEM imaging the above-described region set on the support surface (however, a region different from FIG. 8A) when the sputtering time is 1 second.
  • FIG. 11A an enlarged image of two points showing particularly strong intensity is shown.
  • the diameter of each dispersion was 2 mm or less, which was almost the same as the atomic radius of Pt (about 1.4 mm). This suggested that the point dispersion was a single atom.
  • FIGS. 8A and 8B it was found that sputtered Pt atoms adhered to the support as single atoms under the above conditions.
  • FIG. 11B is an image obtained by performing noise processing on FIG. 11A using a low-pass filter and threshold processing. Each point shown in FIG. 11B is assumed to be a single atom of Pt. The number of points (number of Pt atoms) in this region (2690 nm 2 ) was 710.
  • the distance from each point to the closest point was obtained.
  • the interatomic distance (bonding distance) of Pt atoms is 2.7 mm or less
  • a plurality of points where the distance between the closest contacts is 2.7 mm or less are bonded together and aggregated, and the distance between the closest contacts is A point of 2.7 mm or more is considered to exist in isolation.
  • the value obtained by rounding the first decimal place of the distance between the closest points is 3 or more is isolated and the points 2 or less are aggregated.
  • FIG. 12 shows the number of points where the distance between the closest points is the value for each value obtained by rounding off the first decimal place of the distance between the closest points, and the result is represented as a histogram.
  • 704 among the 710 points, 704 have a distance between the nearest contacts of 3 mm or more (exist in isolation). Recently, there were only 6 points (3 pairs of 2 points) where the distance between contact points was 2 mm or less (coagulated).
  • FIG. 13 shows that a point where the distance between closest points is 3 mm or more (is present in isolation) forms a dispersion with one point, and a set of points where the distance between closest points is 2 mm or less is aggregated. Assuming that a dispersion is formed, the number of points constituting each dispersion is obtained, and for each number of points constituting each dispersion, the number of dispersions having the value of the number of points is obtained. The result is represented as a histogram. As is clear from FIG. 13, 704 out of 710 points (about 99.2%) formed a dispersion at one point.
  • FIG. 1 shows the above-mentioned region set on the support surface when the sputtering time is 1 second (however, a region different from FIG. 8A) at an acceleration voltage of 80 kV and HAADF- It is the image imaged by STEM. Note that FIG. 1 corrects the image so that the intensity difference between the pixels becomes clearer.
  • FIG. 1B is an enlarged view of a region surrounded by a dotted line in FIG. 1A and is color-coded for each region (layer) where the pixel intensities are substantially the same. As shown in FIG.
  • Pt does not exist in voids (voids: black portions in the figure) in which carbon is partially lost, but on graphene or the surface of a layer made of nanographene (gray portions in the figure). Existed.
  • FIG. 1B Pt atoms (white circles) existed in a region (step edge) in contact with the end of the layer made of nanographene.
  • Example 2 A cylindrical Au target having a diameter of 57 mm and a thickness of 0.2 mm was prepared as a sputtering target. The purity of this Au target was 99.99%.
  • Example 2 Using the above target, sputtering was performed in the same manner as in Example 1 except that the sputtering conditions were changed as follows.
  • Atmospheric gas Atmospheric pressure: 5.0Pa Temperature: Room temperature (Current condition) Voltage: 200V Current: 10mA
  • FIG. 2A shows an image obtained by imaging a region arbitrarily set on the support surface with HAADF-STEM after the sputtering for 5 seconds under the above conditions is completed.
  • the same region as in FIG. 2A is imaged by characteristic X-rays with a wavelength corresponding to Au by energy dispersive X-ray analysis (EDX), and is present in FIG. 2A because it matches the dispersion state of FIG. 2A.
  • EDX energy dispersive X-ray analysis
  • Example 3 As a sputtering target, a cylindrical Ir target having a diameter of 57 mm and a thickness of 0.2 mm was prepared. The purity of this Ir target was 99.99%.
  • Example 2 Using the above target, sputtering was performed in the same manner as in Example 1 except that the sputtering conditions were changed as follows.
  • Atmospheric gas He Pressure: 5.0Pa Temperature: Room temperature (Current condition) Voltage: 200V Current: 10mA
  • FIG. 2B shows an image of a region arbitrarily set on the surface of the support by HAADF-STEM after completion of sputtering for 5 seconds under the above conditions.
  • the same region as FIG. 2B is imaged by characteristic X-rays with a wavelength corresponding to Ir by energy dispersive X-ray analysis (EDX), and is present in FIG. 2B because it matches the dispersion state of FIG. 2B. It was found that the point to do was an Ir atom.
  • EDX energy dispersive X-ray analysis
  • Example 4 As a sputtering target, a columnar Ru target having a diameter of 57 mm and a thickness of 0.2 mm was prepared. The purity of this Ru target was 99.99%.
  • Example 2 Using the above target, sputtering was performed in the same manner as in Example 1 except that the sputtering conditions were changed as follows.
  • Atmospheric gas He Pressure: 5.0Pa Temperature: Room temperature (Current condition) Voltage: 200V Current: 10mA
  • FIG. 2C shows an image obtained by imaging a region arbitrarily set on the support surface with HAADF-STEM after the sputtering for 5 seconds under the above conditions is completed.
  • the same region as FIG. 2C is imaged by characteristic X-rays with a wavelength corresponding to Ru by energy dispersive X-ray analysis (EDX), and is present in FIG. 2C because it matches the dispersion state of FIG. 2C. It was found that the point to do was a Ru atom.
  • EDX energy dispersive X-ray analysis
  • Example 5 Sputtering was performed in the same manner as in Example 1 except that the atmospheric gas inside the chamber during sputtering was changed to He. Sputtering was performed again in the same manner as in Example 1 except that the atmosphere gas inside the chamber was changed to air.
  • FIGS. 14A to 14D show images obtained by HAADF-STEM of regions arbitrarily set on the support surface after the sputtering for 1 second under the above conditions is completed.
  • FIG. 14A and FIG. 14B in which the magnification is changed are images when the atmospheric gas is He
  • FIG. 14C and FIG. 14D in which the magnification is changed are images when the atmospheric gas is the atmosphere.
  • a structure in which single atoms are dispersed on a support according to the present invention and a method for producing a structure in which single atoms are dispersed on a support according to the present invention are used to form a thinner film and to produce a more efficient catalyst. Expected to be able to.

Abstract

The present invention relates to a structure in which single atoms are dispersed on a support. The structure comprises: a support on which an anchor site capable of adsorbing atoms which can be used in sputtering is formed; and the atoms which can be used in sputtering and which are adsorbed by the anchor site and dispersed as single atoms on the support. The structure enables atoms of more varied types to be dispersed as single atoms.

Description

支持体上に単原子が分散した構造体、支持体上に単原子が分散した構造体を製造する方法およびスパッタ装置Structure with monoatomic dispersion on support, method for producing structure with monoatomic dispersion on support, and sputtering apparatus
 本発明は、支持体上に単原子が分散した構造体、支持体上に単原子が分散した構造体を製造する方法およびスパッタ装置に関する。 The present invention relates to a structure in which single atoms are dispersed on a support, a method for producing a structure in which single atoms are dispersed on a support, and a sputtering apparatus.
 微小サイズの粒子は、バルク状の物質とは異なる性質を有することがある。たとえば、白金(Pt)や金(Au)などの遷移金属は、ナノ粒子にすると様々な触媒能を発現することが知られている。非特許文献1には、上記ナノ粒子の粒径が小さくなるほど、金属原子が有する配位不飽和サイトの数が増加し、その結果として、粒子の触媒能が大きくなると記載されている。 微小 Small size particles may have different properties from bulk materials. For example, transition metals such as platinum (Pt) and gold (Au) are known to exhibit various catalytic capabilities when made into nanoparticles. Non-Patent Document 1 describes that the smaller the particle size of the nanoparticle, the greater the number of coordination unsaturated sites of the metal atom, resulting in an increase in the catalytic ability of the particle.
 このような観点からは、粒子の粒径を小さくしていけば、上記触媒能がより高まると期待される。実際に、究極的に小さい粒径を有する粒子である単原子の分散体を作製し、その触媒能を測定する研究が行われている。非特許文献1、非特許文献2および非特許文献3は、単原子で分散させたPt原子やパラジウム(Pd)原子が様々な反応を選択的かつ高効率に触媒することを報告している。 From this point of view, it is expected that the catalytic ability will be further enhanced if the particle size of the particles is reduced. In fact, studies have been conducted to produce a monoatomic dispersion, which is a particle having an ultimately small particle size, and to measure its catalytic ability. Non-Patent Document 1, Non-Patent Document 2 and Non-Patent Document 3 report that Pt atoms and palladium (Pd) atoms dispersed by single atoms selectively and efficiently catalyze various reactions.
 また、より平均粒径が小さい粒子の分散体、特には単原子の分散体、を製造することができれば、高機能な触媒への応用のみならず、膜厚がより小さい薄膜の形成や、化学的または物理的な反応の分子レベルでの研究が可能となるなど、様々な分野への応用が期待される。 If a dispersion of particles with a smaller average particle size, particularly a monoatomic dispersion, can be produced, not only can it be applied to highly functional catalysts, It is expected to be applied in various fields, such as enabling research at the molecular level of physical or physical reactions.
 しかし、非特許文献1および非特許文献2にも記載されているように、粒子サイズが小さくなると、分子の表面自由エネルギーがより高くなり、粒子同士はより凝集しやすくなる。そのため、平均粒径が小さい粒子の分散体(特には単原子の分散体)を製造することは容易ではなく、特別の方法が必要である。たとえば、非特許文献1および非特許文献2では、PtまたはPdを分子内に有する前駆体化合物と表面処理によって炭素原子を部分的に欠損させたグラフェンからなる基板とを化学結合させる方法(原子層堆積法など)によって、基板の表面に単原子のPtまたはPdを分散させている。また、非特許文献3では、成膜速度を1分間あたり0.02層に制御した電子ビーム蒸着法によって、銅(Cu)からなる基板の表面に単原子のPtを分散させている。 However, as described in Non-Patent Document 1 and Non-Patent Document 2, when the particle size is reduced, the surface free energy of the molecule is higher and the particles are more likely to aggregate. Therefore, it is not easy to produce a dispersion of particles having a small average particle diameter (particularly, a monoatomic dispersion), and a special method is required. For example, in Non-Patent Document 1 and Non-Patent Document 2, a method of chemically bonding a precursor compound having Pt or Pd in a molecule and a substrate made of graphene partially depleted of carbon atoms by surface treatment (atomic layer) Monoatomic Pt or Pd is dispersed on the surface of the substrate by a deposition method or the like. In Non-Patent Document 3, monoatomic Pt is dispersed on the surface of a substrate made of copper (Cu) by an electron beam evaporation method in which the film formation rate is controlled to 0.02 layers per minute.
 なお、非特許文献3で採用されている電子ビーム蒸着法は、物理気相成長法の一種であるが、物理気相成長法としては、超高真空下で行われる蒸着法の他に、スパッタガスの存在下で行われるスパッタリングが知られている。ただし、非特許文献4および非特許文献5に記載されているように、スパッタリングでは、ターゲットからはじき飛ばされた原子が、スパッタガスと衝突して電荷を帯びたり、逆にスパッタガスの分子によって軌道を変更させられて原子同士で凝集したりしやすいと考えられていた。 Note that the electron beam vapor deposition method employed in Non-Patent Document 3 is a kind of physical vapor deposition method. As the physical vapor deposition method, in addition to the vapor deposition method performed in an ultrahigh vacuum, sputtering is performed. Sputtering performed in the presence of gas is known. However, as described in Non-Patent Document 4 and Non-Patent Document 5, in sputtering, atoms repelled from the target collide with the sputtering gas and become charged, or conversely, trajectories are formed by the molecules of the sputtering gas. It was thought that it was easily changed and agglomerated between atoms.
 しかし、非特許文献1および非特許文献2に記載の方法では、用いることができる前駆体化合物の種類が限られており、限られた種類の分子しか用いることができない。また、前駆体化合物を系内に入れて反応させる処理には時間がかかるため、分散体の製造効率が高めにくい。 However, in the methods described in Non-Patent Document 1 and Non-Patent Document 2, the types of precursor compounds that can be used are limited, and only limited types of molecules can be used. In addition, since it takes time to react the precursor compound in the system, it is difficult to increase the production efficiency of the dispersion.
 一方で、非特許文献3に記載のような蒸着法は高温環境下で行われるため、蒸発した分子の運動エネルギーが大きくなり、基板に付着する前に凝集しやすい。そのため、特に単原子の分散体を安定して作製することができない。 On the other hand, since the vapor deposition method as described in Non-Patent Document 3 is performed in a high-temperature environment, the kinetic energy of the evaporated molecules increases, and tends to aggregate before adhering to the substrate. Therefore, a monoatomic dispersion cannot be produced particularly stably.
 本発明は上記課題に鑑みてなされたものであり、より多様な種類の原子を単原子で分散させることが可能な、支持体上に原子が分散した構造体、そのような構造体を製造する方法、およびそのような構造体を製造できるスパッタ装置を提供することを、その目的とする。 The present invention has been made in view of the above problems, and a structure in which atoms of various types are dispersed on a support capable of dispersing various types of atoms with a single atom, and such a structure are manufactured. It is an object of the present invention to provide a method and a sputtering apparatus capable of manufacturing such a structure.
 本発明は、以下の支持体上に単原子が分散した構造体、支持体上に単原子が分散した構造体を製造する方法およびスパッタ装置に関する。
 [1]スパッタリングが可能な原子を吸着可能なアンカーサイトが形成された支持体と、前記アンカーサイトに吸着されて、前記支持体上に単原子で分散した、前記スパッタリングが可能な原子と、を含む、支持体上に単原子が分散した構造体。
 [2]前記支持体は、ナノグラフェンからなる1または複数の層がグラフェン上に島状に積層した積層体であり、前記アンカーサイトは、グラフェン上またはナノグラフェンからなる層の表面のうち、その上に形成された前記ナノグラフェンからなる層の端部と接する領域である、[1]に記載の構造体。
 [3]前記支持体は、活性炭である、[1]または[2]に記載の構造体。
 [4]前記原子の90%以上が単原子で分散した分散体である、[1]~[3]のいずれかに記載の構造体。
 [5]前記スパッタリングが可能な原子は、遷移金属の原子である、[1]~[4]のいずれかに記載の構造体。
 [6]前記スパッタリングが可能な原子は、白金(Pt)、金(Au)、イリジウム(Ir)またはルテニウム(Ru)である、[1]~[5]のいずれかに記載の構造体。
 [7]スパッタリングが可能な原子を含むターゲットと、スパッタリングが可能な原子を吸着可能なアンカーサイトが形成された支持体と、が配置され、かつ、スパッタガスが導入されたチャンバー内で、予め求められた、少なくとも前記スパッタリングが可能な原子の一部を単原子で前記支持体上に分散させることが可能なスパッタリング条件で、前記ターゲットと前記支持体との間に電圧を印加して、ターゲットをスパッタする工程を含む、支持体上に単原子が分散した構造体を製造する方法。
 [8]前記支持体は、ナノグラフェンからなる1または複数の層がグラフェン上に島状に積層した支持体であり、前記アンカーサイトは、グラフェン上またはナノグラフェンからなる層の表面のうち、その上に形成された前記ナノグラフェンからなる層の端部と接する領域である、[7]に記載の方法。
 [9]前記支持体は、活性炭である、[7]または[8]に記載の方法。
 [10]前記電圧は、150V以下である、[7]~[9]のいずれかに記載の方法。
 [11]前記電圧は、1.5秒以下印加される、[7]~[10]のいずれかに記載の方法。
 [12]前記スパッタガスは、70体積%以上の窒素(N)を含むガスである、[7]~[11]のいずれかに記載の方法。
 [13]前記ターゲットは、遷移金属を含む、[7]~[12]のいずれかに記載の方法。
 [14]前記ターゲットは、白金(Pt)、金(Au)、イリジウム(Ir)またはルテニウム(Ru)である、[7]~[13]のいずれかに記載の方法。
 [15]さらに、前記ターゲットをスパッタする工程の前に、送り出しローラに巻かれた銅箔を順次送り出す工程と、化学気相蒸着法(CVD)によって前記銅箔上にグラフェンを成膜して前記支持体とする工程とを含む、[7]~[14]のいずれかに記載の方法。
 [16]密閉可能なチャンバーと、前記チャンバー内に設けられた、スパッタリングが可能な原子を含むターゲットが配置されるターゲット配置部と、前記チャンバー内に設けられた、スパッタリングが可能な原子を吸着可能なアンカーサイトが形成された支持体が配置される支持体配置部と、前記チャンバー内にスパッタガスを導入するスパッタガス導入部と、前記ターゲットと前記支持体との間に電圧を印加する、電圧印加部と、前記スパッタガス導入部および電圧印加部を制御して、予め求められた、少なくとも前記スパッタリングが可能な原子の一部を単原子で前記支持体上に分散させることが可能なスパッタリング条件で、前記ターゲットと前記支持体との間に電圧を印加させる、制御部と、を備えるスパッタ装置。
The present invention relates to a structure in which single atoms are dispersed on the following support, a method for producing a structure in which single atoms are dispersed on a support, and a sputtering apparatus.
[1] A support on which an anchor site capable of adsorbing atoms capable of sputtering is formed, and an atom capable of being sputtered and adsorbed on the anchor site and dispersed as single atoms on the support. A structure in which single atoms are dispersed on a support.
[2] The support is a laminate in which one or more layers made of nanographene are stacked in an island shape on graphene, and the anchor site is on the surface of the layer made of graphene or nanographene. The structure according to [1], which is a region in contact with an end of the formed nanographene layer.
[3] The structure according to [1] or [2], wherein the support is activated carbon.
[4] The structure according to any one of [1] to [3], which is a dispersion in which 90% or more of the atoms are dispersed as single atoms.
[5] The structure according to any one of [1] to [4], wherein the atoms that can be sputtered are transition metal atoms.
[6] The structure according to any one of [1] to [5], wherein the atoms that can be sputtered are platinum (Pt), gold (Au), iridium (Ir), and ruthenium (Ru).
[7] A target including a sputtering-capable atom and a support on which an anchor site capable of adsorbing a sputterable atom is disposed and obtained in advance in a chamber into which a sputtering gas is introduced. And applying a voltage between the target and the support under sputtering conditions that allow at least a part of the atoms that can be sputtered to be dispersed on the support as single atoms. A method for producing a structure in which single atoms are dispersed on a support, including a step of sputtering.
[8] The support is a support in which one or more layers made of nanographene are stacked in an island shape on graphene, and the anchor site is on the surface of the layer made of graphene or nanographene. The method according to [7], which is a region in contact with an end of the formed layer of nanographene.
[9] The method according to [7] or [8], wherein the support is activated carbon.
[10] The method according to any one of [7] to [9], wherein the voltage is 150 V or less.
[11] The method according to any one of [7] to [10], wherein the voltage is applied for 1.5 seconds or less.
[12] The method according to any one of [7] to [11], wherein the sputtering gas is a gas containing 70% by volume or more of nitrogen (N 2 ).
[13] The method according to any one of [7] to [12], wherein the target includes a transition metal.
[14] The method according to any one of [7] to [13], wherein the target is platinum (Pt), gold (Au), iridium (Ir), or ruthenium (Ru).
[15] Further, before the step of sputtering the target, a step of sequentially feeding the copper foil wound around the feed roller, and a graphene film is formed on the copper foil by chemical vapor deposition (CVD), The method according to any one of [7] to [14], comprising a step of forming a support.
[16] A chamber that can be sealed, a target placement portion in which a target containing atoms that can be sputtered is placed, and an atom that can be sputtered in the chamber can be adsorbed A voltage is applied between the target and the support, and a support arrangement part where a support on which a simple anchor site is formed is arranged; a sputtering gas introduction part for introducing a sputtering gas into the chamber; A sputtering condition in which at least a part of the atoms that can be sputtered is dispersed in a single atom on the support by controlling the application unit, the sputtering gas introduction unit, and the voltage application unit in advance. And a controller that applies a voltage between the target and the support.
 本発明によれば、より多様な種類の原子を単原子で分散させることが可能な、支持体上に単原子が分散した構造体、そのような構造体を製造する方法、およびそのような構造体を製造できるスパッタ装置が提供される。 According to the present invention, it is possible to disperse more various kinds of atoms with a single atom, a structure in which single atoms are dispersed on a support, a method for producing such a structure, and such a structure. A sputtering apparatus capable of producing a body is provided.
図1Aは、ナノグラフェンからなる1または複数の層がグラフェン上に島状に積層した積層体である支持体にPtの単原子を分散させた構造体を高角度散乱暗視野・走査透過電子顕微鏡法(HAADF-STEM)によって撮像した画像である。FIG. 1A is a high-angle scattering dark field / scanning transmission electron microscope showing a structure in which Pt single atoms are dispersed on a support that is a laminate in which one or more layers of nanographene are stacked in an island shape on graphene. It is the image imaged by (HAADF-STEM). 図1Bは、図1Aの点線で囲んだ領域を拡大し、ピクセルの強度が略同一である領域ごとに色分けした図である。FIG. 1B is a diagram in which the region surrounded by the dotted line in FIG. 1A is enlarged and color-coded for each region where the pixel intensities are substantially the same. 図2Aは、ナノグラフェンからなる1または複数の層がグラフェン上に島状に積層した積層体である支持体に金(Au)を分散させた構造体をHAADF-STEMによって撮像した画像である。FIG. 2A is an image of a structure in which gold (Au) is dispersed on a support that is a stacked body in which one or a plurality of layers made of nanographene are stacked in an island shape on graphene, using HAADF-STEM. 図2Bは、ナノグラフェンからなる1または複数の層がグラフェン上に島状に積層した積層体である支持体にイリジウム(Ir)を分散させた構造体をHAADF-STEMによって撮像した画像である。FIG. 2B is an image of a structure in which iridium (Ir) is dispersed in a support that is a stacked body in which one or a plurality of layers made of nanographene is stacked in an island shape on graphene, which is captured by HAADF-STEM. 図2Cは、ナノグラフェンからなる1または複数の層がグラフェン上に島状に積層した積層体である支持体にルテニウム(Ru)を分散させた構造体をHAADF-STEMによって撮像した画像である。FIG. 2C is an image of a structure in which ruthenium (Ru) is dispersed in a support, which is a stacked body in which one or a plurality of layers made of nanographene are stacked in an island shape on graphene, captured by HAADF-STEM. 図3は、スパッタされた原子が単原子の状態で支持体上に到達し、支持体上を拡散してアンカーサイトに吸着される様子を示す模式図である。FIG. 3 is a schematic view showing a state in which sputtered atoms reach the support in a single atom state, diffuse on the support, and are adsorbed on the anchor site. 図4は、支持体がナノグラフェンからなる層がグラフェンからなる基板上に島状に積層した積層体である場合に、スパッタされた原子が単原子の状態で到達し、支持体上を拡散してアンカーサイトに吸着される様子を示す模式図である。FIG. 4 shows that when the support is a laminate in which a layer made of nanographene is stacked in an island shape on a graphene substrate, the sputtered atoms arrive in a single atom state and diffuse on the support It is a schematic diagram which shows a mode that it adsorb | sucks to an anchor site. 図5Aは、ロール・ツー・ロール(RTR)法による、銅箔上に成膜したグラフェンである支持体上に単原子が分散した構造体を製造する方法を示す模式図である。FIG. 5A is a schematic view showing a method for producing a structure in which single atoms are dispersed on a support, which is graphene formed on a copper foil, by a roll-to-roll (RTR) method. 図5Bは、銅箔上に成膜した後に他のシートに転写したグラフェン上に上記構造体を製造する方法を示す模式図である。FIG. 5B is a schematic diagram showing a method of manufacturing the structure on graphene transferred to another sheet after being formed on a copper foil. 図6は、本発明の一実施形態におけるスパッタ装置を示す模式図である。FIG. 6 is a schematic view showing a sputtering apparatus according to an embodiment of the present invention. 図7Aは、実施例1において作製した支持体をHAADF-STEMによって撮像した画像である。FIG. 7A is an image obtained by capturing the support manufactured in Example 1 with HAADF-STEM. 図7Bは、図7Aに示した画像中に設定した領域について、始点からの距離を横軸に、ピクセルごとの強度を縦軸にプロットしたグラフである。FIG. 7B is a graph in which the distance from the start point is plotted on the horizontal axis and the intensity for each pixel is plotted on the vertical axis for the region set in the image shown in FIG. 7A. 図7Cは、図7Aを、ピクセルの強度が略同一である領域ごとに色分けした図である。FIG. 7C is a diagram in which FIG. 7A is color-coded for each region where the pixel intensities are substantially the same. 図8Aは、実施例1において、スパッタリング時間を1秒としたスパッタリング後に、基板表面に設定した領域をHAADF-STEMによって撮像した画像である。FIG. 8A is an image obtained by imaging a region set on the substrate surface with HAADF-STEM after sputtering with a sputtering time of 1 second in Example 1. 図8Bは、実施例1において、スパッタリング時間を2秒としたスパッタリング後に、基板表面に設定した領域をHAADF-STEMによって撮像した画像である。FIG. 8B is an image obtained by imaging a region set on the substrate surface with HAADF-STEM after sputtering with a sputtering time of 2 seconds in Example 1. FIG. 図8Cは、実施例1において、スパッタリング時間を5秒としたスパッタリング後に、基板表面に設定した領域をHAADF-STEMによって撮像した画像である。FIG. 8C is an image obtained by imaging a region set on the substrate surface with HAADF-STEM after sputtering with a sputtering time of 5 seconds in Example 1. 図8Dは、実施例1において、スパッタリング時間を10秒としたスパッタリング後に、基板表面に設定した領域をHAADF-STEMによって撮像した画像である。FIG. 8D is an image obtained by imaging a region set on the substrate surface with HAADF-STEM after sputtering with a sputtering time of 10 seconds in Example 1. 図8Eは、実施例1において、スパッタリング時間を30秒としたスパッタリング後に、基板表面に設定した領域をHAADF-STEMによって撮像した画像である。FIG. 8E is an image obtained by imaging a region set on the substrate surface with HAADF-STEM after sputtering with a sputtering time of 30 seconds in Example 1. FIG. 図9Aは、スパッタリング時間を10秒としたときの、基板表面に設定した領域をHAADF-STEMによって撮像した画像である。FIG. 9A is an image obtained by imaging a region set on the substrate surface with HAADF-STEM when the sputtering time is 10 seconds. 図9Bは、図9Aと同じ領域をエネルギー分散型X線分析法(EDX)で、Ptに対応する波長の特性X線によって撮像した画像である。FIG. 9B is an image obtained by capturing the same region as FIG. 9A with characteristic X-rays having a wavelength corresponding to Pt by energy dispersive X-ray analysis (EDX). 図10は、スパッタリング時間(単位は秒)を横軸にプロットし、それぞれのスパッタリング時間における基板表面に存在するPt原子の数の相対値を縦軸にプロットしたグラフである。FIG. 10 is a graph in which the sputtering time (unit: seconds) is plotted on the horizontal axis, and the relative value of the number of Pt atoms present on the substrate surface at each sputtering time is plotted on the vertical axis. 図11Aは、スパッタリング時間を1秒としたときの、基板表面に設定した領域をHAADF-STEMによって撮像した画像である。FIG. 11A is an image obtained by imaging a region set on the substrate surface with HAADF-STEM when the sputtering time is 1 second. 図11Bは、図11Aをローパスフィルタおよび閾値処理によってノイズ処理して得た画像である。FIG. 11B is an image obtained by performing noise processing on FIG. 11A using a low-pass filter and threshold processing. 図12は、図11Bにおける各点の最近接点間距離の小数点第一位を四捨五入した値ごとに、最近接点間距離がその値である点の個数を求めて、その結果をヒストグラムとして表したものである。FIG. 12 shows the number of points where the distance between the closest points is rounded to the nearest decimal point for each point in FIG. 11B, and the result is represented as a histogram. It is. 図13は、図11Bにおける各分散体を構成する点の数ごとに、点の数がその値である分散体の個数を求めて、その結果をヒストグラムとして表したものである。FIG. 13 shows, for each number of points constituting each dispersion in FIG. 11B, the number of dispersions having the value of the number of points, and the result is represented as a histogram. 図14Aは、実施例5において、雰囲気ガスをHeとしたスパッタリング後に、基板表面に設定した領域をHAADF-STEMによって撮像した画像である。FIG. 14A is an image obtained by imaging a region set on the substrate surface with HAADF-STEM after sputtering using He atmosphere as the atmosphere gas in Example 5. 図14Bは、図14Aの倍率を変更した画像である。FIG. 14B is an image obtained by changing the magnification of FIG. 14A. 図14Cは、実施例5において、雰囲気ガスを大気としたスパッタリング後に、基板表面に設定した領域をHAADF-STEMによって撮像した画像である。FIG. 14C is an image obtained by imaging a region set on the substrate surface with HAADF-STEM after sputtering using atmospheric gas as the atmosphere in Example 5. 図14Dは、図14Cの倍率を変更した画像である。FIG. 14D is an image obtained by changing the magnification of FIG. 14C.
 本発明の一実施形態は、支持体上に単原子が分散した構造体に関する。上記支持体には、スパッタリングが可能な原子を吸着可能なアンカーサイトが形成されており、上記アンカーサイトには、上記スパッタリングが可能な原子が、少なくともその一部が単原子で吸着されている。 One embodiment of the present invention relates to a structure in which single atoms are dispersed on a support. An anchor site capable of adsorbing atoms that can be sputtered is formed on the support, and at least a part of the atoms that can be sputtered is adsorbed to the anchor sites as single atoms.
 また、本発明の別の実施形態は、上記支持体上に単原子が分散した構造体を製造する方法に関する。上記支持体上に単原子が分散した構造体は、スパッタリングが可能な原子を含むターゲットと、スパッタリングが可能な原子を吸着可能なアンカーサイトが形成された支持体と、が配置され、かつ、スパッタガスが導入されたチャンバー内で、少なくとも前記スパッタリングが可能な原子の一部を単原子で前記支持体上に分散させることが可能なスパッタリング条件で、前記ターゲットと前記支持体との間に電圧を印加して、ターゲットをスパッタすることで、製造することができる。 Further, another embodiment of the present invention relates to a method for producing a structure in which single atoms are dispersed on the support. In the structure in which single atoms are dispersed on the support, a target including an atom that can be sputtered and a support on which an anchor site capable of adsorbing an atom that can be sputtered is disposed, and sputtering is performed. A voltage is applied between the target and the support under sputtering conditions in which at least a part of the atoms that can be sputtered can be dispersed on the support as single atoms in a gas-introduced chamber. It can be manufactured by applying and sputtering the target.
 なお、単原子で分散しているとは、隣り合う単原子間の距離が、その原子同士が結合しているときの原子間距離(結合距離)よりも大きいことを意味する。たとえば、あるPt原子が単原子で分散しているとは、そのPt原子と、そのPt原子から最短距離にある他のPt原子と、の間の距離が、Pt-Pt間の原子間距離である2.7Åよりも大きいことを意味する。複数種類の原子が単原子で分散しているときは、上記原子間距離は、分散体を構成する原子のすべての組みあわせについて求められる原子間距離のうち最小のものとすることができる。 In addition, being dispersed by single atoms means that the distance between adjacent single atoms is larger than the distance between atoms (bonding distance) when the atoms are bonded to each other. For example, a Pt atom is dispersed as a single atom means that the distance between the Pt atom and another Pt atom that is the shortest distance from the Pt atom is the interatomic distance between Pt and Pt. It means that it is larger than a certain 2.7cm. When a plurality of types of atoms are dispersed as single atoms, the interatomic distance can be the smallest among the interatomic distances required for all combinations of atoms constituting the dispersion.
 上記スパッタリング条件は、単原子が分散した構造体が製造できる条件として、分散させる原子との組みあわせごとに、予め求めておくことができる。このようにして求めた条件で次回からスパッタリングを行えば、上記構造体を容易に製造することができる。 The sputtering conditions can be determined in advance for each combination with atoms to be dispersed as a condition for producing a structure in which single atoms are dispersed. If sputtering is performed from the next time under the conditions thus obtained, the structure can be easily manufactured.
 なお、スパッタリングは薄膜を形成する技術であり、スパッタリングで単原子の分散体を形成することは今までに想起すらされていなかった。また、非特許文献4および非特許文献5などに記載されている技術常識に鑑みると、仮にスパッタリングで単原子の分散体を形成しようとしても、安定した分散体(特には単原子の分散体)の形成は、困難であると考えることが通常である。これに対し、本発明者らは、スパッタリングでも、条件を適切に制御することで、スパッタされた原子を単原子の状態で上記支持体に到達させ得ることを見出した。また、本発明者らは、上記アンカーサイトが形成された支持体にスパッタされた原子を到達させることで、上記単原子の状態で支持体に到達した原子を単原子のまま分散させ得ることを見出した。本発明者らは、これらの知見に基づき、さらに検討を加えることで、本発明を完成させた。 Sputtering is a technique for forming a thin film, and formation of a monoatomic dispersion by sputtering has not been conceived until now. Further, in view of the common technical knowledge described in Non-Patent Document 4 and Non-Patent Document 5, even if an attempt is made to form a monoatomic dispersion by sputtering, a stable dispersion (in particular, a monoatomic dispersion). The formation of is usually considered difficult. On the other hand, the present inventors have found that, even in sputtering, the sputtered atoms can reach the support in a single atom state by appropriately controlling the conditions. In addition, the present inventors have made it possible to disperse atoms that have reached the support in the state of the single atom as a single atom by allowing the sputtered atoms to reach the support on which the anchor site is formed. I found it. The inventors of the present invention have completed the present invention through further studies based on these findings.
 スパッタされた原子を単原子の状態で支持体に到達させるためのスパッタリングの条件は、原子の種類や、アンカーサイト間の距離、単位時間に支持体に到達する単原子の量、支持体に到達した単原子が支持体上を拡散する速度などによって異なると考えられる。そのため、適切なスパッタリングの条件も、これらの組み合わせに応じて多数存在すると考えられる。しかし、適切な条件を探索して一度見つければ、次回の処理からは条件を変更せずに同様の処理を行えばよいので、過度の負担なく本発明を実施することができる。なお、本発明者らの知見によれば、上記スパッタリングの条件は、電圧を印加する時間がより短い点を除けば、薄膜を形成するために行う通常のスパッタリングの条件から大きくかけ離れることはない。そのため、各原子に適切な上記スパッタリングの条件は、比較的容易に探し出すことができると考えられる。 The sputtering conditions for allowing the sputtered atoms to reach the support in a single atom state are the type of atoms, the distance between anchor sites, the amount of single atoms that reach the support per unit time, and the support. It is thought that it depends on the rate at which the single atom diffuses on the support. Therefore, it is considered that there are many appropriate sputtering conditions depending on these combinations. However, once an appropriate condition is searched and found, the same process can be performed without changing the condition from the next process, and the present invention can be implemented without excessive burden. According to the knowledge of the present inventors, the sputtering conditions are not greatly different from the normal sputtering conditions for forming a thin film except that the time for applying a voltage is shorter. . Therefore, it is considered that the sputtering conditions suitable for each atom can be found relatively easily.
 スパッタされた原子を単原子の状態で支持体に到達させるための条件は、たとえば、以下の方法で求めることができる。条件を変更しながらスパッタリングを行ってターゲットを構成する原子を支持体表面に付着させ、それぞれの条件について、支持体表面に付着した原子をエネルギー分散型X線分析法(EDX)などで撮像する。条件ごとに撮像された画像のうち、粒径が数Å程度の粒子が支持体表面にまばらに分散する画像を仮に選択する。選択された画像内で観察される粒子について、粒子の大きさ(粒径)がスパッタした原子の原子半径(通常、数Å程度)と同じ程度であり、かつ、隣り合う粒子との距離が上記原子の原子間距離(結合距離:通常、数Å程度)よりも大きければ、その粒子は単原子であると判断できる。一定の領域(たとえば、50nm×50nmの領域)を観察して、その領域に存在するすべての原子のうち、所定の割合が単原子であれば、その画像が得られた条件では、スパッタされた原子のうち上記所定の割合を単原子の状態で支持体に到達させることができると判断できる。 The conditions for causing the sputtered atoms to reach the support in the state of a single atom can be obtained by the following method, for example. Sputtering is performed while changing the conditions to attach atoms constituting the target to the support surface, and for each condition, the atoms attached to the support surface are imaged by energy dispersive X-ray analysis (EDX) or the like. Temporarily selecting an image in which particles having a particle size of several sparsely sparsely disperse on the surface of the support among images taken for each condition. For the particles observed in the selected image, the size (particle size) of the particles is the same as the atomic radius of the sputtered atoms (usually about several microns), and the distance between adjacent particles is the above If the distance is greater than the interatomic distance (bonding distance: usually several tens of kilometers), it can be determined that the particle is a single atom. When a certain region (for example, a region of 50 nm × 50 nm) was observed, and a predetermined ratio of all atoms present in the region was a single atom, sputtering was performed under the condition that the image was obtained. It can be determined that the predetermined proportion of atoms can reach the support in a single atom state.
 上記所定の割合は、製造しようとする構造体の用途等に応じて定めることができるが、たとえば20%以上、30%以上、50%以上、70%以上、90%以上、95%以上および99%以上などから任意に選択すればよい。 The predetermined ratio can be determined according to the use of the structure to be manufactured, and is, for example, 20% or more, 30% or more, 50% or more, 70% or more, 90% or more, 95% or more and 99%. % May be arbitrarily selected.
 また、上記スパッタリングの条件を変更せずに処理を行えば、支持体に到達する原子の数は、電圧を印加する時間に略比例して増加していく。そのため、電圧を印加する時間のみを変更すれば、支持体に到達する原子の数を略正確に制御することができると考えられる。このとき、電圧を印加する時間をより長くすれば、複数の原子が凝集したクラスタの分散体ができてしまうため、単原子で分散している割合が減る事になるが、これにより構造体における単原子として分散している上記単原子の割合を、99%以上、95%以上、90%以上、70%以上、50%以上威。30%以上および20%以上のように制御することができる。 Further, if the treatment is performed without changing the sputtering conditions, the number of atoms reaching the support increases substantially in proportion to the time for applying the voltage. Therefore, it is considered that the number of atoms reaching the support can be controlled almost accurately by changing only the voltage application time. At this time, if the time for applying the voltage is made longer, a dispersion of clusters in which a plurality of atoms are aggregated is formed, so that the ratio of dispersion with single atoms is reduced. The proportion of the above-mentioned single atom dispersed as a single atom is 99% or more, 95% or more, 90% or more, 70% or more, 50% or more. It can be controlled to 30% or more and 20% or more.
 なお、電子ビーム蒸着法は超高真空下で行わなければならず、わずかにでも残留ガスが存在すると、高温環境下で蒸発した原子または分子と酸素や水素とが反応してしまい、分散体を構成する分子の組成が変化してしまうおそれがある。これに対し、本発明では、スパッタガスとして不活性ガスを用いれば、スパッタされた原子が支持体に到達する前に反応することもなく、より純度の高い組成を有する分散体を得ることができる。 Note that the electron beam evaporation method must be performed under ultra-high vacuum. If even a slight amount of residual gas exists, atoms or molecules evaporated in a high-temperature environment react with oxygen or hydrogen, and the dispersion becomes There is a risk that the composition of the constituent molecules will change. On the other hand, in the present invention, when an inert gas is used as the sputtering gas, a dispersion having a higher purity composition can be obtained without reacting before the sputtered atoms reach the support. .
 さらには、電子ビーム蒸着法では電子ビームが照射された点状の領域のみからターゲットが蒸発するため、多数の原子を同時に飛行させることが難しく、多数の分散体を形成することが難しいが、スパッタリングではより多数の分散体を同時に形成することが可能になる。 Furthermore, in the electron beam evaporation method, the target evaporates only from the point-like region irradiated with the electron beam, so it is difficult to fly a large number of atoms at the same time, and it is difficult to form a large number of dispersions. Then, a larger number of dispersions can be formed simultaneously.
 (スパッタリングの条件)
 上記ターゲットは、製造しようとする分散体を構成する原子を表面近傍に含む、スパッタリング用のターゲットであればよい。なお、表面近傍とは、電圧の印加によってスパッタガスによってスパッタされ得る、ターゲットの表面から厚み方向に規定された三次元の領域を意味する。
(Sputtering conditions)
The target may be a sputtering target that contains atoms constituting the dispersion to be manufactured in the vicinity of the surface. Note that the vicinity of the surface means a three-dimensional region defined in the thickness direction from the surface of the target, which can be sputtered by a sputtering gas by applying a voltage.
 上記表面近傍におけるターゲットの原子組成は、製造しようとする分散体を構成する原子を含むものであればよい。たとえば、単一種の原子からなる分散体を得ようとする場合は、上記表面近傍における上記原子の割合は99%以上であることが好ましく、99.9%以上であることがより好ましい。一方で、複数種の原子をそれぞれ一定の割合で含む分散体を得ようとする場合は、それぞれの原子を、分散させようとする割合と同じ割合で含むことが好ましい。 The atomic composition of the target in the vicinity of the surface only needs to include atoms constituting the dispersion to be manufactured. For example, when a dispersion composed of a single kind of atom is to be obtained, the ratio of the atoms in the vicinity of the surface is preferably 99% or more, and more preferably 99.9% or more. On the other hand, when it is intended to obtain a dispersion containing a plurality of types of atoms at a certain ratio, it is preferable to include each atom at the same ratio as the ratio at which the atoms are to be dispersed.
 上記ターゲットの形状や大きさは特に限定されず、スパッタリングを行う装置の構成などに応じて任意に定めることができる。 The shape and size of the target are not particularly limited, and can be arbitrarily determined according to the configuration of a sputtering apparatus.
 上記分散体を構成する原子は、ターゲットの表面近傍に固体として存在しうる原子であり、かつ、スパッタガスによってスパッタされ得る原子であればよく、アルミニウム(Al)、ガリウム(Ga)、チタン(Ti)、亜鉛(Zn)および銅(Cu)などを含む金属元素の原子でも、ケイ素(Si)などを含む非金属元素の原子であってもよい。上記分散体を構成する原子は、ターゲットにおいて、酸化物や窒化物として存在してもよい。たとえば、触媒として用いられる分散体を製造する場合は、上記原子は遷移金属の金属原子であることが好ましく、貴金属の金属原子であることがより好ましく、白金(Pt)、パラジウム(Pd)、金(Au)、イリジウム(Ir)、ルテニウム(Ru)または銀(Ag)であることがさらに好ましい。 The atoms constituting the dispersion may be atoms that can exist as a solid near the surface of the target and can be sputtered by a sputtering gas, and may be aluminum (Al), gallium (Ga), titanium (Ti ), Zinc (Zn), copper (Cu), or other metal element atoms, or silicon (Si) or other non-metal element atoms. The atoms constituting the dispersion may exist as oxides or nitrides in the target. For example, when producing a dispersion used as a catalyst, the atom is preferably a metal atom of a transition metal, more preferably a metal atom of a noble metal, platinum (Pt), palladium (Pd), gold (Au), iridium (Ir), ruthenium (Ru) or silver (Ag) is more preferable.
 上記スパッタガスは、上記ターゲットから単原子をはじき飛ばすことができ、かつ、上記分散体を構成する原子との反応性を有さないものであればよく、大気、ヘリウム(He)、アルゴン(Ar)、窒素(N)ガスなどの公知のスパッタガスを用いることができる。上記原子とスパッタガスとの反応を生じにくくする観点からは、スパッタガスは、ヘリウム(He)およびアルゴン(Ar)などの希ガスならびに窒素(N)ガスなどを含む不活性ガスが好ましい。また、ターゲットから単原子をはじき飛ばしやすくする観点からは、上記スパッタガスは、分子量が小さい原子を含むものであることが好ましく、一方で、十分な量の単原子を一度にはじき飛ばしやすくする観点からは、上記スパッタガスは、分子量がある程度大きいものを含むものであることが好ましい。このような観点からは、上記スパッタガスは、70体積%以上のNを含むガスであることがより好ましい。70体積%以上のNを含むスパッタガスの例には、大気および窒素ガスが含まれる。 The sputtering gas may be any gas that can repel single atoms from the target and has no reactivity with the atoms constituting the dispersion, and may be air, helium (He), argon (Ar). ), A known sputtering gas such as nitrogen (N 2 ) gas can be used. From the viewpoint of making the reaction between the atoms and the sputtering gas difficult to occur, the sputtering gas is preferably an inert gas containing a rare gas such as helium (He) and argon (Ar) and nitrogen (N 2 ) gas. Further, from the viewpoint of facilitating the repelling of single atoms from the target, the sputtering gas preferably contains atoms having a small molecular weight, while from the viewpoint of facilitating the repelling of a sufficient amount of single atoms at a time, The sputtering gas preferably contains a gas having a molecular weight that is somewhat large. From such a viewpoint, the sputtering gas is more preferably a gas containing 70% by volume or more of N 2 . Examples of the sputtering gas containing 70% by volume or more of N 2 include air and nitrogen gas.
 上記スパッタガスの圧力は、ターゲットを構成する原子のうち前記所定の割合が単原子の状態で上記原子を支持体に到達させることができる限りにおいて、任意に設定することができる。 The pressure of the sputtering gas can be arbitrarily set as long as the atoms can reach the support with the predetermined proportion of atoms constituting the target being a single atom.
 上記チャンバーは、スパッタリングを行える通常の装置が備えるチャンバーであればよい。たとえば、ターゲットと支持体との距離は、ターゲットを構成する原子のうち前記所定の割合が単原子の状態で上記原子を支持体に到達させることができる限りにおいて、任意に設定することができる。また、チャンバー内の温度も同様に任意に設定することができるが、スパッタされた分子の運動エネルギーを小さくして、飛行中の原子が凝集することを抑制する観点からは、チャンバー内の温度は40℃以下であることが好ましく、常温であることがより好ましい。 The chamber may be a chamber provided in a normal apparatus capable of performing sputtering. For example, the distance between the target and the support can be arbitrarily set as long as the atoms can reach the support with the predetermined proportion of atoms constituting the target being a single atom. Also, the temperature in the chamber can be arbitrarily set as well, but from the viewpoint of suppressing the kinetic energy of the sputtered molecules and suppressing the aggregation of atoms in flight, the temperature in the chamber is It is preferable that it is 40 degrees C or less, and it is more preferable that it is normal temperature.
 上記電圧の大きさは、上記ターゲットから単原子をはじき飛ばすことができる強度であればよい。スパッタガスの衝突によりターゲットに付与されるエネルギー量を小さくして、ターゲットからより多くの単分子をはじき飛ばしやすくする観点からは、上記電圧は500V以下であることが好ましく、300V以下であることがより好ましく、150V以下であることがさらに好ましく、50V以下であることがさらに好ましい。 The magnitude of the voltage may be any intensity that can repel single atoms from the target. From the viewpoint of reducing the amount of energy applied to the target by the collision of the sputtering gas and facilitating the repelling of more single molecules from the target, the voltage is preferably 500 V or less, more preferably 300 V or less. Preferably, it is 150 V or less, more preferably 50 V or less.
 上記電圧は、連続して印加し続けてもよいし、所定の時間の印加を繰り返し行ってもよい。なお、上記したように、支持体に到達する原子の数は、電圧を印加する時間に略比例して増加していく。また、支持体に到達する原子の数が増えると、原子同士が凝集してクラスタを形成することがある。そのため、電圧を印加する時間と、支持体に到達する原子の数と、の関係を予め求めておき、所望の割合の原子が単原子として分散する時間だけ、電圧を印加することが好ましい。 The above voltage may be continuously applied or may be repeatedly applied for a predetermined time. As described above, the number of atoms that reach the support increases substantially in proportion to the time during which the voltage is applied. Further, when the number of atoms reaching the support increases, the atoms may aggregate to form a cluster. Therefore, it is preferable to obtain a relationship between the time for applying the voltage and the number of atoms reaching the support in advance, and to apply the voltage only for the time during which a desired proportion of atoms are dispersed as single atoms.
 本発明者らの知見によれば、単原子の分散体を製造するときは、連続して印加し続ける場合および所定の時間の印加を繰り返し行う場合のいずれにおいても、電圧を印加する時間の合計は1.5秒以下であることが好ましい。 According to the knowledge of the present inventors, when producing a monoatomic dispersion, the total time for applying a voltage, both in the case of continuing to apply continuously and in the case of repeatedly applying for a predetermined time Is preferably 1.5 seconds or less.
 また、所定の時間の電圧印加を繰り返し行うときは、1回の電圧印加によって支持体に到達する原子の数を少なくしたほうが、単原子の分散体をより製造しやすい。上記観点からは、1回あたりの電圧を印加する時間は、1.5秒以下であることが好ましい。一方で、短時間で分散体を製造する観点からは、1回あたりの電圧を印加する時間は、0.5秒以上であることが好ましい。 In addition, when voltage application for a predetermined time is repeatedly performed, it is easier to produce a monoatomic dispersion by reducing the number of atoms reaching the support by one voltage application. From the above viewpoint, the time for applying the voltage per time is preferably 1.5 seconds or less. On the other hand, from the viewpoint of producing the dispersion in a short time, the time for applying the voltage per time is preferably 0.5 seconds or more.
 (支持体)
 支持体には、上記スパッタされた原子を吸着可能なアンカーサイトが形成されている。アンカーサイトは、単原子を共有結合によらずに吸着可能なサイトである。アンカーサイトは、ファンデルワールス力などの静電的な相互作用によって原子を吸着できる。
(Support)
An anchor site capable of adsorbing the sputtered atoms is formed on the support. An anchor site is a site that can adsorb a single atom without using a covalent bond. Anchor sites can adsorb atoms by electrostatic interactions such as van der Waals forces.
 たとえば、上記支持体は、ナノグラフェンからなる1または複数の層がグラフェン上に島状に積層した積層体とすることができる。このような支持体にPtの単原子を分散させた構造体を高角度散乱暗視野・走査透過電子顕微鏡法(HAADF-STEM)によって撮像した画像を図1Aに示す。図1Aに示すように、この構造体には、図中白色で示されるPtが単原子で分散している。図1Aの点線で囲んだ領域を拡大し、ピクセルの強度が略同一である領域(ナノグラフェンからなる層)ごとに色分けした図を図1Bに示す。図1Bでは、グラフェン上に島状に積層したナノグラフェンを、層ごとに異なる濃度で示している。図1Bから明らかなように、Ptは、グラフェン上またはナノグラフェンからなる層の表面のうち、その上に形成された前記ナノグラフェンからなる層の端部と接する領域(アンカーサイト)に存在している。 For example, the support may be a laminate in which one or more layers made of nanographene are stacked in an island shape on graphene. FIG. 1A shows an image obtained by imaging a structure in which Pt single atoms are dispersed on such a support by high-angle scattering dark field / scanning transmission electron microscopy (HAADF-STEM). As shown in FIG. 1A, in this structure, Pt shown in white in the figure is dispersed as a single atom. FIG. 1B is a diagram in which the region surrounded by the dotted line in FIG. 1A is enlarged and color-coded for each region (layer made of nanographene) in which the pixel intensity is substantially the same. In FIG. 1B, the nano graphene laminated on the graphene in an island shape is shown at different concentrations for each layer. As is clear from FIG. 1B, Pt exists in a region (anchor site) in contact with an end of the layer made of nanographene formed on the surface of the layer made of graphene or nanographene.
 なお、グラフェンは炭素からなる6員環の構造が平面方向に連続して構成される。グラフェンのうち、炭素原子が部分的に欠損した空穴(ボイド)の端部や、シート状のグラフェンの端部(これらの端部を、「エッジ」ともいう。)では、原子が吸着しやすいことがわかっている。 Note that graphene has a six-membered ring structure consisting of carbon that is continuous in the plane direction. Among graphene, atoms are easily adsorbed at the ends of voids in which carbon atoms are partially lost or at the ends of sheet-like graphene (these ends are also referred to as “edges”). I know that.
 しかし、本発明者らの知見によれば、上記積層体において、上記ボイドやエッジよりも、グラフェン上またはナノグラフェンからなる層の表面のうち、その上に形成された前記ナノグラフェンからなる層の端部と接する領域(以下、単に「ステップエッジ」ともいう。)に、単原子はより吸着されやすい。これは、ボイドやエッジでは単原子を吸着するために十分な力の相互作用が生じないが、ステップエッジでは下の表面と上に形成された層の端部との2方向から単原子と相互作用できるため、より強い吸着力が生じることによると考えられる。また、ナノグラフェンからなる1または複数の層が島状に積層された積層体では、ステップエッジが多数形成されており、支持体に到達した単原子は上記ステップエッジに吸着されて支持体上に分散すると考えられる。 However, according to the knowledge of the present inventors, in the laminate, the end portion of the layer made of nanographene formed on the surface of the layer made of graphene or nanographene rather than the void or edge A single atom is more likely to be adsorbed in a region in contact with (hereinafter also simply referred to as “step edge”). This is because a void or edge does not generate enough force interaction to adsorb a single atom, but a step edge interacts with a single atom from two directions: the lower surface and the end of the layer formed above. It is thought that this is because a stronger adsorption force is generated because it can act. In addition, in a stacked body in which one or more layers made of nanographene are stacked in an island shape, a large number of step edges are formed, and single atoms that have reached the support are adsorbed by the step edges and dispersed on the support. It is thought that.
 また、図2A~図2Cに示すように、上記積層体に金(Au)(図2A)、イリジウム(Ir)(図2B)およびルテニウム(Ru)(図2C)の単原子を到達させたところ、いずれもステップエッジに吸着されて支持体上に分散した。これらの結果が示すように、上記積層体は、様々な原子をステップエッジに単原子で吸着して支持体上に分散させることができる。 Also, as shown in FIGS. 2A to 2C, when the single atoms of gold (Au) (FIG. 2A), iridium (Ir) (FIG. 2B) and ruthenium (Ru) (FIG. 2C) are allowed to reach the laminate. , Both were adsorbed on the step edge and dispersed on the support. As these results show, the laminate can adsorb various atoms to the step edge with a single atom and disperse them on the support.
 上記ナノグラフェンからなる層の、連続する層間の積層方向の距離は、通常、0.33nm以上0.35nm以下である。層の数は特に限定されず、たとえば、2層以上15層以下とすることができ、2層以上7層以下とすることが好ましい。 The distance in the stacking direction between successive layers of the layer made of nanographene is usually 0.33 nm or more and 0.35 nm or less. The number of layers is not particularly limited, and can be, for example, 2 or more and 15 or less, and preferably 2 or more and 7 or less.
 また、上記島状に積層したナノグラフェンの、島間の距離の平均は、分散させる原子の原子間距離よりも長ければよい。ただし、上記島間の距離の平均が短いほど、単位面積中のステップエッジ数が増加し、より多数の単原子を単位面積中に吸着させて分散させることができる。そのため、単位面積中に分散させたい原子の個数に応じて、島間の距離の平均を調整すればよい。なお、上記島間の距離の平均が長くても、以下に示すように支持体上に到達した単原子は支持体上を高速で拡散して瞬時にアンカーサイトに吸着されるので、支持体上での単原子同士の凝集は生じにくいと考えられる。 In addition, the average of the distance between islands of the nanographene stacked in the above-mentioned island shape may be longer than the distance between atoms to be dispersed. However, as the average distance between the islands is shorter, the number of step edges in the unit area increases, and a larger number of single atoms can be adsorbed and dispersed in the unit area. Therefore, the average distance between islands may be adjusted according to the number of atoms desired to be dispersed in the unit area. Even if the average distance between the islands is long, the single atom that has reached the support as shown below diffuses at high speed on the support and is instantly adsorbed to the anchor site. Aggregation of single atoms is considered to hardly occur.
 上記アンカーサイトが形成された支持体上に、スパッタされた原子が単原子の状態で到達すると、図3に記載のように、到達した単原子は、支持体100(図3では基板110)上を拡散する。拡散した単原子は、アンカーサイト120に到達して、上記アンカーサイト120に吸着されることにより、上記支持体上に単原子の状態で分散した状態になると考えられる。 When the sputtered atoms arrive in a single atom state on the support on which the anchor site is formed, as shown in FIG. 3, the reached single atom is on the support 100 (the substrate 110 in FIG. 3). To diffuse. It is considered that the diffused monoatom reaches the anchor site 120 and is adsorbed on the anchor site 120 to be dispersed in a monoatomic state on the support.
 本発明者らの知見によれば、アンカーサイトが上記原子を吸着する吸着エネルギーは、グラフェンまたはナノグラフェンからなる層の表面が上記原子を吸着する吸着エネルギーよりも格段に強い。そのため、図3において支持体100に到達した上記単原子は瞬時にアンカーサイトに吸着され、上記拡散は瞬時に終了する。そのため、次々に単原子が支持体100上に到達しても、支持体100上で拡散中の単原子同士が凝集することなく、単原子のままでアンカーサイト120に吸着されると考えられる。 According to the knowledge of the present inventors, the adsorption energy at which the anchor site adsorbs the atoms is much stronger than the adsorption energy at which the surface of the layer made of graphene or nanographene adsorbs the atoms. Therefore, in FIG. 3, the single atom that has reached the support 100 is adsorbed to the anchor site instantaneously, and the diffusion ends instantaneously. Therefore, even if single atoms successively reach the support 100, it is considered that the single atoms being diffused on the support 100 do not aggregate with each other and are adsorbed on the anchor site 120 as they are.
 たとえば、図4に示すように、支持体200が、上記ナノグラフェンからなる層230がグラフェンからなる基板210上に島状に積層した積層体である場合、単原子で到達した原子は基板210上を拡散し、アンカーサイト220である上記ナノグラフェンからなる層230の端部に吸着される。 For example, as shown in FIG. 4, in the case where the support 200 is a stacked body in which the layer 230 made of nanographene is stacked in an island shape on the substrate 210 made of graphene, atoms that have reached a single atom move on the substrate 210. It diffuses and is adsorbed to the end of the layer 230 made of nanographene, which is the anchor site 220.
 従来、グラフェンは、単一の原子層からなる平膜が平面状に広がるように作製されてきた。これに対し、あえてナノグラフェンからなる層をグラフェン上に形成することで、アンカーサイトである上記ステップエッジが多く形成され、単位面積あたりにより多くの単原子を分散させることができる。ナノグラフェンからなる層の量は、グラフェン成膜時の圧力や温度を調整するほか、成膜したグラフェンに電子ビームを照射するなどの方法によって、調整することができる。 Conventionally, graphene has been produced so that a flat film composed of a single atomic layer spreads in a planar shape. On the other hand, by forming a layer made of nanographene on the graphene, many step edges as anchor sites are formed, and more single atoms can be dispersed per unit area. The amount of the layer made of nanographene can be adjusted by adjusting the pressure and temperature at the time of graphene film formation, or by irradiating the formed graphene with an electron beam.
 また、活性炭などの、上記積層体を有する材料を支持体としてもよい。活性炭は、直径が1nm以上20nm程度の微細孔を多数有し、体積に対する表面積の割合が非常に高い。そのため、活性炭を支持体として用いれば、単位体積あたりの単原子の含有率を飛躍的に増大させることができると考えられる。 Further, a material having the above laminated body such as activated carbon may be used as the support. Activated carbon has many fine pores with a diameter of about 1 nm to 20 nm, and the ratio of the surface area to the volume is very high. Therefore, if activated carbon is used as a support, it is considered that the content of single atoms per unit volume can be dramatically increased.
 なお、グラフェンは、ロール・ツー・ロール(RTR)法によって製造されることがある。RTR法とは、図5Aに記載のように、送り出しローラ510に巻かれた銅箔を順次送り出し、化学気相蒸着(CVD)部520によるCVDによってグラフェンを上記銅箔上に成膜し、上記グラフェンが成膜された銅箔を巻き取りローラ530で巻き取る方法である。RTR法によれば、広い面積を有するグラフェンを、連続的に、かつ、大量に製造することができる。なお、CVD部520は、低温でのCVDが可能であり工業的な利用可能性が高いことから、表面波励起マイクロ波プラズマによるグラフェンの成膜が可能なプラズマ発生装置であることが好ましい。 In addition, graphene may be manufactured by a roll-to-roll (RTR) method. With the RTR method, as shown in FIG. 5A, the copper foil wound around the delivery roller 510 is sequentially delivered, and the graphene film is formed on the copper foil by CVD by the chemical vapor deposition (CVD) unit 520. In this method, the copper foil on which the graphene film is formed is taken up by the take-up roller 530. According to the RTR method, graphene having a large area can be produced continuously and in large quantities. Note that the CVD unit 520 is preferably a plasma generating apparatus capable of forming graphene using surface wave excited microwave plasma because CVD at low temperature is possible and industrial applicability is high.
 このとき、上記RTR法によるグラフェン製造装置500は、CVD部520の下流、かつ、巻き取り部530の上流に、単原子スパッタ部540を設けることができる。 At this time, the graphene production apparatus 500 using the RTR method can include a single atom sputtering unit 540 downstream of the CVD unit 520 and upstream of the winding unit 530.
 単原子スパッタ部540は、上述した予め求めた条件でスパッタリングを行い、CVD部320によって形成されたグラフェン上に上記スパッタリングが可能な原子を到達させて、成膜されたグラフェン上に、上記原子の少なくとも一部を単原子で分散させる。 The single-atom sputtering unit 540 performs sputtering under the above-described conditions, causes the atoms that can be sputtered to reach the graphene formed by the CVD unit 320, and allows the atoms to be formed on the formed graphene. At least a part is dispersed with a single atom.
 なお、図5Bに記載のように、グラフェン製造装置500’は、CVD部520の下流、かつ、単原子スパッタ部540の上流に、成膜されたグラフェンを他のシート(ポリプロピレンシートなど)に転写する転写部550を有していてもよい。 As shown in FIG. 5B, the graphene production apparatus 500 ′ transfers the formed graphene to another sheet (polypropylene sheet or the like) downstream of the CVD unit 520 and upstream of the single atom sputtering unit 540. The transfer section 550 may be provided.
 このような構成とすることで、グラフェンからなる支持体上に単原子が分散した構造体を、連続的に、かつ、大量に製造することができる。 With such a configuration, a structure in which single atoms are dispersed on a support made of graphene can be manufactured continuously and in large quantities.
 (スパッタ装置)
 上述した支持体上に単原子が分散した構造体は、図6に例示するスパッタ装置600で製造することができる。
(Sputtering equipment)
The structure in which single atoms are dispersed on the above-described support can be manufactured by the sputtering apparatus 600 illustrated in FIG.
 スパッタ装置600は、チャンバー610と、ターゲット配置部620と、支持体配置部630と、スパッタガス導入部640と、電圧印加部650と、制御部660と、を備える。 The sputtering apparatus 600 includes a chamber 610, a target placement unit 620, a support placement unit 630, a sputtering gas introduction unit 640, a voltage application unit 650, and a control unit 660.
 チャンバー610は、内部を密閉状態とすることが可能なチャンバーであればよい。ターゲット配置部620は、チャンバー610に備えられ、上述したターゲットTを保持する。支持体配置部630は、チャンバー610に備えられ、上述した支持体Sを保持する。このとき、ターゲット配置部620および支持体配置部630は、ターゲットTのスパッタされる面と支持体Sのアンカーサイトが形成された面とが対向して配置されるように、チャンバー610内に備えられる。スパッタガス導入部640は、チャンバー610内に上述したスパッタガスを導入する。スパッタガス導入部640は、チャンバー610内部の圧力を、予め定められた圧力に調整してもよい。電圧印加部650は、ターゲットTと前記支持体Sとの間に電圧を印加する、 The chamber 610 may be a chamber whose inside can be sealed. The target placement unit 620 is provided in the chamber 610 and holds the target T described above. The support body arrangement | positioning part 630 is provided in the chamber 610, and hold | maintains the support body S mentioned above. At this time, the target placement unit 620 and the support placement unit 630 are provided in the chamber 610 so that the surface on which the target T is sputtered and the surface on which the anchor site of the support S is formed face each other. It is done. The sputtering gas introduction unit 640 introduces the above-described sputtering gas into the chamber 610. The sputtering gas introduction unit 640 may adjust the pressure inside the chamber 610 to a predetermined pressure. The voltage application unit 650 applies a voltage between the target T and the support S.
 制御部660は、スパッタガス導入部640および電圧印加部650を制御して、上述した、予め求められた、少なくとも前記スパッタリングが可能な原子の一部を単原子で前記支持体S上に分散させることが可能なスパッタリング条件で、ターゲットTと支持体Sとの間に電圧を印加させる。たとえば、制御部660は、ターゲットTが含む原子の種類、アンカーサイトの種類、スパッタガスなどに応じて定められた電圧および時間を設定して、電圧印加部650に、ターゲットTと支持体Sとの間に電圧を印加させる。電圧が印加されると、スパッタガスの分子MgがターゲットTに衝突して、ターゲットTに含まれる分子Mtがはじき飛ばされ、支持体Sに到達する。支持体Sに到達した分子Mtは、支持体S上を拡散してアンカーサイトに吸着され、単原子の分散体を構成する。 The control unit 660 controls the sputtering gas introduction unit 640 and the voltage application unit 650 to disperse the above-described at least a part of the atoms that can be sputtered on the support S as single atoms. A voltage is applied between the target T and the support S under the possible sputtering conditions. For example, the control unit 660 sets a voltage and a time determined according to the type of atoms, the type of anchor site, the sputtering gas, and the like included in the target T, and the target T, the support S, A voltage is applied during When a voltage is applied, the molecules Mg of the sputtering gas collide with the target T, the molecules Mt contained in the target T are repelled, and reach the support S. The molecules Mt that reach the support S diffuse on the support S and are adsorbed on the anchor sites to form a monoatomic dispersion.
 以下、実施例を参照して本発明を詳細に説明するが、本発明はこれらの実施例により限定されない。 Hereinafter, the present invention will be described in detail with reference to examples, but the present invention is not limited to these examples.
 [実施例1]
 (支持体)
 1cm角の銅箔を1晩以上酢酸に浸漬させて銅箔表面の自然酸化膜を除去し、自然酸化膜が除去された銅箔を純水で複数回リンスした後CVD装置内へ導入した。グラフェンの成長は60kPa、1000℃で行い、炭素源としてアルゴン希釈のメタンガスを使用した。装置内の圧力は電子制御コントローラで設定値から0.1%以下の誤差で制御し、グラフェン成長後はヒーターコイルから銅箔を遠ざけ、サンプルを急冷した。
[Example 1]
(Support)
A 1 cm square copper foil was immersed in acetic acid for one night or longer to remove the natural oxide film on the surface of the copper foil, and the copper foil from which the natural oxide film was removed was rinsed with pure water several times and then introduced into the CVD apparatus. Graphene was grown at 60 kPa and 1000 ° C., and methane gas diluted with argon was used as a carbon source. The pressure in the apparatus was controlled by an electronic controller with an error of 0.1% or less from the set value. After graphene growth, the copper foil was moved away from the heater coil, and the sample was rapidly cooled.
 成長したグラフェンを、直径3mmの円柱状をした透過電子顕微鏡用TEMグリッドの上面に転写して、支持体とした。このとき、裏面に成長したグラフェンの転写による多層化を防ぐため、硫酸と過酸化水素水の混合溶液に上記銅箔の裏面を浸漬させた。その後、上記銅箔の裏面だけを100mM過硫酸アンモニウム水溶液に浸漬させ、銅箔を溶解した。銅箔の溶解後、過硫酸アンモニウム水溶液を純水に置換して、直径3mmの円柱状をした透過電子顕微鏡用TEMグリッドで水面に浮かんだグラフェンをすくい取って、上記TEMグリッドの上面に上記グラフェンを転写した。 The grown graphene was transferred onto the upper surface of a transmission electron microscope TEM grid having a cylindrical shape with a diameter of 3 mm to obtain a support. At this time, in order to prevent multilayering due to transfer of graphene grown on the back surface, the back surface of the copper foil was immersed in a mixed solution of sulfuric acid and hydrogen peroxide solution. Thereafter, only the back surface of the copper foil was immersed in a 100 mM ammonium persulfate aqueous solution to dissolve the copper foil. After the copper foil is dissolved, the ammonium persulfate aqueous solution is replaced with pure water, and the graphene floating on the water surface is scooped up with a cylindrical TEM grid having a diameter of 3 mm, and the graphene is placed on the upper surface of the TEM grid. Transcribed.
 上記転写したグラフェンを、収差補正電子顕微鏡(FEI社製、Titan3 G2 60-300)を用いて、加速電圧80kVで、高角度散乱暗視野・走査透過電子顕微鏡法(HAADF-STEM)で観察した。このとき得られた画像を図7Aに示す。 The transferred graphene was observed by high-angle scattering dark field / scanning transmission electron microscopy (HAADF-STEM) at an acceleration voltage of 80 kV using an aberration correction electron microscope (manufactured by FEI, Titan3 G2, 60-300). The image obtained at this time is shown in FIG. 7A.
 図7Aに示すように、画像中には、白黒の異なるコントラストの領域が存在していた。図7Aに示した画像中に設定した領域(図7A中、点線で示す。)について、始点からの距離を横軸に、ピクセルごとの強度を縦軸にプロットしたグラフを図7Bに示す。強度は0、1、2と記した3つの異なる領域に分かれており、それぞれ、グラフェンが存在しない穴、ナノグラフェンが1層に積層した領域、およびナノグラフェンが2層に積層した領域であることが解析された。 As shown in FIG. 7A, black and white contrast regions existed in the image. FIG. 7B shows a graph in which the distance from the starting point is plotted on the horizontal axis and the intensity for each pixel is plotted on the vertical axis for the region set in the image shown in FIG. 7A (indicated by a dotted line in FIG. 7A). The strength is divided into three different regions, labeled 0, 1, 2 and analyzed to be a hole without graphene, a region where nanographene is stacked in one layer, and a region where nanographene is stacked in two layers, respectively. It was done.
 図7Aを、ピクセルの強度が略同一である領域ごとに色分けした図を図7Cに示す。図7Cに示すように、上記得られたグラフェンは、島状のナノサイズの領域から全体が構成されていることが分かった。詳細な解析により、一番下に単層のグラフェンがあり、その上にナノサイズのグラフェンが積層した構造をしており、一番多い領域では7層まで積み重なっていることが明らかとなった。 FIG. 7C is a diagram in which FIG. 7A is color-coded for each region where the pixel intensities are substantially the same. As shown in FIG. 7C, it was found that the obtained graphene was entirely composed of island-shaped nano-sized regions. Detailed analysis reveals that there is a single-layer graphene at the bottom and a structure in which nano-sized graphene is stacked on top of it, and up to seven layers are stacked in the largest region.
 (スパッタリング)
 スパッタリングターゲットとして、直径57mm、厚さ0.2mmの円柱状をしたPtターゲットを用意した。このPtターゲットの純度は99.99%だった。
(Sputtering)
As a sputtering target, a cylindrical Pt target having a diameter of 57 mm and a thickness of 0.2 mm was prepared. The purity of this Pt target was 99.99%.
 上記Ptターゲットと上記支持体とを、Ptターゲットと転写されたグラフェンとが対向するように、スパッタリング装置(日本電子株式会社製、JFC-1600)が備えるチャンバーに設置し、上記Ptターゲットと上記支持体との間に以下の条件で電圧を印加して、直流電流を流した。 The Pt target and the support are placed in a chamber of a sputtering apparatus (JFC-1600, manufactured by JEOL Ltd.) so that the Pt target and the transferred graphene face each other, and the Pt target and the support A voltage was applied between the body and the body under the following conditions to pass a direct current.
 (チャンバー内部の条件)
 雰囲気ガス: 大気
 圧力: 4.5Pa
 温度: 常温
 (電流の条件)
 電圧: 100V
 電流: 10mA
(Condition inside chamber)
Atmospheric gas: Atmospheric pressure: 4.5Pa
Temperature: Room temperature (Current condition)
Voltage: 100V
Current: 10mA
 上記電圧を1秒間印加して、1秒間のスパッタリングを行ったものとした。2秒間以上のスパッタリングを行うときは、10秒の間隔を空けて上記1秒間のスパッタリングを繰り返した。このとき、スパッタリング時間を積算した値が目標となる時間となるよう、上記1秒間のスパッタリングを繰り返す回数を調整した。 The above voltage was applied for 1 second and sputtering was performed for 1 second. When performing sputtering for 2 seconds or more, the sputtering for 1 second was repeated with an interval of 10 seconds. At this time, the number of times of repeating the sputtering for 1 second was adjusted so that a value obtained by integrating the sputtering time became a target time.
 上記条件で、スパッタリング時間を1秒、2秒、3秒、4秒、5秒、7秒、10秒、または30秒としてスパッタリングを行った。それぞれの時間のスパッタリングが終了した後、収差補正透過電子顕微鏡(日本電子株式会社製、JEM-ARM200F)を用いて、支持体表面に任意に設定した4か所の領域(それぞれ約50nm×約50nm)を、高角度散乱暗視野・走査透過電子顕微鏡法(HAADF-STEM)およびエネルギー分散型X線分析法(EDX)で撮像した。なお、以下に示す画像について、特に機器名を示さない場合は、日本電子株式会社製、JEM-ARM200Fを用いて撮像した画像を意味する。 Sputtering was performed under the above conditions with a sputtering time of 1 second, 2 seconds, 3 seconds, 4 seconds, 5 seconds, 7 seconds, 10 seconds, or 30 seconds. After each time of sputtering, using an aberration-corrected transmission electron microscope (JEM-ARM200F, manufactured by JEOL Ltd.), four regions arbitrarily set on the support surface (each about 50 nm × about 50 nm) ) Was imaged by high angle scattering dark field / scanning transmission electron microscopy (HAADF-STEM) and energy dispersive X-ray analysis (EDX). In the following images, when the device name is not indicated, it means an image captured using JEM-ARM200F manufactured by JEOL Ltd.
 図8A~図8Eは、いずれも、スパッタリング後に、支持体表面に設定した上記領域をHAADF-STEMによって撮像した画像のうちの1枚である。図8Aはスパッタリング時間を1秒、図8Bはスパッタリング時間を2秒、図8Cはスパッタリング時間を5秒、図8Dはスパッタリング時間を10秒、図8Eはスパッタリング時間を30秒としたときの画像である。図8A~図8Eから、スパッタリング時間が短い(たとえば、1秒または2秒)ときは、孤立した点状の分散体が支持体表面に形成されることがわかった。また、スパッタリング時間をより長くすると、点が凝集したクラスタ状の分散体が形成されることがわかった。 8A to 8E are each one of images taken by HAADF-STEM of the region set on the support surface after sputtering. 8A is an image when the sputtering time is 1 second, FIG. 8B is a sputtering time of 2 seconds, FIG. 8C is a sputtering time of 5 seconds, FIG. 8D is a sputtering time of 10 seconds, and FIG. 8E is an image when the sputtering time is 30 seconds. is there. From FIG. 8A to FIG. 8E, it was found that when the sputtering time is short (for example, 1 second or 2 seconds), an isolated point dispersion is formed on the support surface. Further, it was found that when the sputtering time was made longer, a cluster-like dispersion in which dots were aggregated was formed.
 図9Aは、スパッタリング時間を10秒としたときの、支持体表面に設定した上記領域(ただし、図8Dとは別の領域)をHAADF-STEMによって撮像した画像のうちの1枚である。図9Bは、図9Aと同じ領域を、エネルギー分散型X線分析法(EDX)で、Ptに対応する波長の特性X線によって撮像した画像である。図9Aの分散状態と図9Bの分散状態が一致していることから、HAADF-STEMによって撮像した画像に存在する点はPt原子であることがわかった。 FIG. 9A shows one of images obtained by HAADF-STEM imaging the above-described region set on the support surface (however, a region different from FIG. 8D) when the sputtering time is 10 seconds. FIG. 9B is an image obtained by imaging the same region as FIG. 9A with characteristic X-rays having a wavelength corresponding to Pt by energy dispersive X-ray analysis (EDX). Since the dispersion state in FIG. 9A coincides with the dispersion state in FIG. 9B, it was found that the point existing in the image captured by the HAADF-STEM is Pt atoms.
 それぞれの時間のスパッタリングを行った後、支持体表面に存在するPt原子の数の相対値を測定した。なお、上記領域から得られたPtに対応する特性X線のうち、M線の積算強度が、上記領域に存在するPt原子の数に比例すると考えられる。そのため、上記4か所の領域をEDXによって撮像して、M線の積算強度をそれぞれ求め、得られた積算強度を、その領域に存在するPt原子の数の相対値とした。図10は、スパッタリング時間(単位は秒)を横軸にプロットし、それぞれのスパッタリング時間における上記支持体表面に存在するPt原子の数の相対値を縦軸にプロットしたグラフである。スパッタリング時間が長くなるにつれて、上記Pt原子の数の相対値は直線的に増加することがわかる。このことから、スパッタリング時間を変更することで、支持体表面に付着するPt原子の数を制御できることがわかった。なお、このことから、Pt原子数と特性X線によって撮像したときのM線の積算強度との関係を予め調べておけば、特性X線によって撮像した領域内に存在するPt原子の総数を求めることができることもわかる。さらに、スパッタリング時間が長くなると、原子が凝集して大きなクラスタを形成するため、スパッタリングされた総原子数に対する単原子として分散している割合が減少することになる。この結果を用いて、単原子として分散している原子の割合を制御することが可能である。 After performing sputtering for each time, the relative value of the number of Pt atoms present on the support surface was measured. Of the characteristic X-rays corresponding to Pt obtained from the above region, the integrated intensity of M rays is considered to be proportional to the number of Pt atoms present in the region. Therefore, the above four areas are imaged by EDX, and the integrated intensities of the M-rays are obtained, and the obtained integrated intensity is set as a relative value of the number of Pt atoms existing in the area. FIG. 10 is a graph in which the sputtering time (unit: seconds) is plotted on the horizontal axis, and the relative value of the number of Pt atoms existing on the surface of the support at each sputtering time is plotted on the vertical axis. It can be seen that the relative value of the number of Pt atoms increases linearly as the sputtering time increases. From this, it was found that the number of Pt atoms attached to the support surface can be controlled by changing the sputtering time. From this, if the relationship between the number of Pt atoms and the integrated intensity of M rays when imaged with characteristic X-rays is examined in advance, the total number of Pt atoms existing in the region imaged with characteristic X-rays is obtained. You can also see that you can. In addition, when the sputtering time is increased, the atoms aggregate to form a large cluster, so that the proportion dispersed as a single atom with respect to the total number of sputtered atoms decreases. Using this result, it is possible to control the proportion of atoms dispersed as single atoms.
 図11Aは、スパッタリング時間を1秒としたときの、支持体表面に設定した上記領域(ただし、図8Aとは別の領域)をHAADF-STEMによって撮像した画像のうちの1枚である。図11Aの右上に、特に強い強度を示す2つの点を拡大した画像を示している。図11Aの右上に示す拡大図から明らかなように、それぞれの分散体の直径は2Å以下であり、Ptの原子半径(1.4Å程度)とほぼ同じだった。このことから、点状の分散体は単原子であることが示唆された。また、図8Aおよび図8Bでは孤立した点が多数存在することから、上記条件ではスパッタされたPt原子が単原子で支持体に付着したことがわかった。 FIG. 11A is one of the images obtained by HAADF-STEM imaging the above-described region set on the support surface (however, a region different from FIG. 8A) when the sputtering time is 1 second. In the upper right of FIG. 11A, an enlarged image of two points showing particularly strong intensity is shown. As is clear from the enlarged view shown in the upper right of FIG. 11A, the diameter of each dispersion was 2 mm or less, which was almost the same as the atomic radius of Pt (about 1.4 mm). This suggested that the point dispersion was a single atom. Further, since there are many isolated points in FIGS. 8A and 8B, it was found that sputtered Pt atoms adhered to the support as single atoms under the above conditions.
 図11Bは、図11Aをローパスフィルタおよび閾値処理によってノイズ処理して得た画像である。図11Bに示されるそれぞれの点は、Ptの単原子であると推測される。この領域(2690nm)における点の数(Pt原子の数)は、710個だった。 FIG. 11B is an image obtained by performing noise processing on FIG. 11A using a low-pass filter and threshold processing. Each point shown in FIG. 11B is assumed to be a single atom of Pt. The number of points (number of Pt atoms) in this region (2690 nm 2 ) was 710.
 さらに、図11Bにおいて、それぞれの点から最も近い位置にある点までの距離(最近接点間距離:単位はÅ)を求めた。なお、Pt原子の原子間距離(結合距離)は2.7Å以下であるため、最近接点間距離が2.7Å以下となる複数の点は互いに結合して凝集しており、最近接点間距離が2.7Å以上の点は孤立して存在すると考えられる。なお、以下では、集計を容易にするため、上記最近接点間距離の小数点第一位を四捨五入した値が3以上の点は孤立しており、2以下の点は凝集しているものとした。 Further, in FIG. 11B, the distance from each point to the closest point (distance between nearest contacts: unit is Å) was obtained. In addition, since the interatomic distance (bonding distance) of Pt atoms is 2.7 mm or less, a plurality of points where the distance between the closest contacts is 2.7 mm or less are bonded together and aggregated, and the distance between the closest contacts is A point of 2.7 mm or more is considered to exist in isolation. In the following description, in order to facilitate the aggregation, it is assumed that the value obtained by rounding the first decimal place of the distance between the closest points is 3 or more is isolated and the points 2 or less are aggregated.
 図12は、上記最近接点間距離の小数点第一位を四捨五入した値ごとに、最近接点間距離がその値である点の個数を求めて、その結果をヒストグラムとして表したものである。図12から明らかなように、710個の点のうち、704個は最近接点間距離が3Å以上(孤立して存在している)となっていた。最近接点間距離が2Å以下(凝集している)の点は、6個(2個の点からなる組が3つ)のみだった。 FIG. 12 shows the number of points where the distance between the closest points is the value for each value obtained by rounding off the first decimal place of the distance between the closest points, and the result is represented as a histogram. As is apparent from FIG. 12, among the 710 points, 704 have a distance between the nearest contacts of 3 mm or more (exist in isolation). Recently, there were only 6 points (3 pairs of 2 points) where the distance between contact points was 2 mm or less (coagulated).
 図13は、最近接点間距離が3Å以上(孤立して存在している)である点は1個の点で分散体を形成し、最近接点間距離が2Å以下の点の組は凝集して分散体を形成しているとして、それぞれの分散体を構成する点の数を求めて、各分散体を構成する点の数ごとに、点の数がその値である分散体の個数を求めて、その結果をヒストグラムとして表したものである。図13から明らかなように、710個の点のうち、704個(約99.2%)は1個の点で分散体を形成していた。 FIG. 13 shows that a point where the distance between closest points is 3 mm or more (is present in isolation) forms a dispersion with one point, and a set of points where the distance between closest points is 2 mm or less is aggregated. Assuming that a dispersion is formed, the number of points constituting each dispersion is obtained, and for each number of points constituting each dispersion, the number of dispersions having the value of the number of points is obtained. The result is represented as a histogram. As is clear from FIG. 13, 704 out of 710 points (about 99.2%) formed a dispersion at one point.
 図1は、スパッタリング時間を1秒としたときの、支持体表面に設定した上記領域(ただし、図8Aとは別の領域)を、収差補正電子顕微鏡を用いて、加速電圧80kVで、HAADF-STEMによって撮像した画像である。なお、図1は、ピクセルの強度差がより明瞭になるように画像を補正している。図1Bは、図1Aの点線で囲んだ領域を拡大し、ピクセルの強度が略同一である領域(層)ごとに色分けした図である。図1Aに示すように、Ptは、炭素が部分的に欠損した空穴(ボイド:図中黒色部分)には存在せず、グラフェン上またはナノグラフェンからなる層の表面(図中灰色部分)上に存在していた。図1Bから明らかなように、Pt原子(白丸)は、ナノグラフェンからなる層の端部に接する領域(ステップエッジ)に存在していた。 FIG. 1 shows the above-mentioned region set on the support surface when the sputtering time is 1 second (however, a region different from FIG. 8A) at an acceleration voltage of 80 kV and HAADF- It is the image imaged by STEM. Note that FIG. 1 corrects the image so that the intensity difference between the pixels becomes clearer. FIG. 1B is an enlarged view of a region surrounded by a dotted line in FIG. 1A and is color-coded for each region (layer) where the pixel intensities are substantially the same. As shown in FIG. 1A, Pt does not exist in voids (voids: black portions in the figure) in which carbon is partially lost, but on graphene or the surface of a layer made of nanographene (gray portions in the figure). Existed. As is clear from FIG. 1B, Pt atoms (white circles) existed in a region (step edge) in contact with the end of the layer made of nanographene.
 [実施例2]
 スパッタリングターゲットとして、直径57mm、厚さ0.2mmの円柱状をしたAuターゲットを用意した。このAuターゲットの純度は99.99%だった。
[Example 2]
A cylindrical Au target having a diameter of 57 mm and a thickness of 0.2 mm was prepared as a sputtering target. The purity of this Au target was 99.99%.
 上記ターゲットを用い、スパッタリングの条件を以下のように変更した以外は実施例1と同様にして、スパッタリングを行った。 Using the above target, sputtering was performed in the same manner as in Example 1 except that the sputtering conditions were changed as follows.
 (チャンバー内部の条件)
 雰囲気ガス: 大気
 圧力: 5.0Pa
 温度: 常温
 (電流の条件)
 電圧: 200V
 電流: 10mA
(Condition inside chamber)
Atmospheric gas: Atmospheric pressure: 5.0Pa
Temperature: Room temperature (Current condition)
Voltage: 200V
Current: 10mA
 上記条件での5秒間のスパッタリングが終了した後、支持体表面に任意に設定した領域を、HAADF-STEMによって撮像した画像を図2Aに示す。図2Aと同じ領域を、エネルギー分散型X線分析法(EDX)で、Auに対応する波長の特性X線によって撮像したところ、図2Aの分散状態と一致していることから、図2Aに存在する点はAu原子であることがわかった。 FIG. 2A shows an image obtained by imaging a region arbitrarily set on the support surface with HAADF-STEM after the sputtering for 5 seconds under the above conditions is completed. The same region as in FIG. 2A is imaged by characteristic X-rays with a wavelength corresponding to Au by energy dispersive X-ray analysis (EDX), and is present in FIG. 2A because it matches the dispersion state of FIG. 2A. The point to do was found to be Au atoms.
 [実施例3]
 スパッタリングターゲットとして、直径57mm、厚さ0.2mmの円柱状をしたIrターゲットを用意した。このIrターゲットの純度は99.99%だった。
[Example 3]
As a sputtering target, a cylindrical Ir target having a diameter of 57 mm and a thickness of 0.2 mm was prepared. The purity of this Ir target was 99.99%.
 上記ターゲットを用い、スパッタリングの条件を以下のように変更した以外は実施例1と同様にして、スパッタリングを行った。 Using the above target, sputtering was performed in the same manner as in Example 1 except that the sputtering conditions were changed as follows.
 (チャンバー内部の条件)
 雰囲気ガス: He
 圧力: 5.0Pa
 温度: 常温
 (電流の条件)
 電圧: 200V
 電流: 10mA
(Condition inside chamber)
Atmospheric gas: He
Pressure: 5.0Pa
Temperature: Room temperature (Current condition)
Voltage: 200V
Current: 10mA
 上記条件での5秒間のスパッタリングが終了した後、支持体表面に任意に設定した領域を、HAADF-STEMによって撮像した画像を図2Bに示す。図2Bと同じ領域を、エネルギー分散型X線分析法(EDX)で、Irに対応する波長の特性X線によって撮像したところ、図2Bの分散状態と一致していることから、図2Bに存在する点はIr原子であることがわかった。 FIG. 2B shows an image of a region arbitrarily set on the surface of the support by HAADF-STEM after completion of sputtering for 5 seconds under the above conditions. The same region as FIG. 2B is imaged by characteristic X-rays with a wavelength corresponding to Ir by energy dispersive X-ray analysis (EDX), and is present in FIG. 2B because it matches the dispersion state of FIG. 2B. It was found that the point to do was an Ir atom.
 [実施例4]
 スパッタリングターゲットとして、直径57mm、厚さ0.2mmの円柱状をしたRuターゲットを用意した。このRuターゲットの純度は99.99%だった。
[Example 4]
As a sputtering target, a columnar Ru target having a diameter of 57 mm and a thickness of 0.2 mm was prepared. The purity of this Ru target was 99.99%.
 上記ターゲットを用い、スパッタリングの条件を以下のように変更した以外は実施例1と同様にして、スパッタリングを行った。 Using the above target, sputtering was performed in the same manner as in Example 1 except that the sputtering conditions were changed as follows.
 (チャンバー内部の条件)
 雰囲気ガス: He
 圧力: 5.0Pa
 温度: 常温
 (電流の条件)
 電圧: 200V
 電流: 10mA
(Condition inside chamber)
Atmospheric gas: He
Pressure: 5.0Pa
Temperature: Room temperature (Current condition)
Voltage: 200V
Current: 10mA
 上記条件での5秒間のスパッタリングが終了した後、支持体表面に任意に設定した領域を、HAADF-STEMによって撮像した画像を図2Cに示す。図2Cと同じ領域を、エネルギー分散型X線分析法(EDX)で、Ruに対応する波長の特性X線によって撮像したところ、図2Cの分散状態と一致していることから、図2Cに存在する点はRu原子であることがわかった。 FIG. 2C shows an image obtained by imaging a region arbitrarily set on the support surface with HAADF-STEM after the sputtering for 5 seconds under the above conditions is completed. The same region as FIG. 2C is imaged by characteristic X-rays with a wavelength corresponding to Ru by energy dispersive X-ray analysis (EDX), and is present in FIG. 2C because it matches the dispersion state of FIG. 2C. It was found that the point to do was a Ru atom.
 [実施例5]
 スパッタリング時のチャンバー内部の雰囲気ガスをHeに変更した以外は実施例1と同様にして、スパッタリングを行った。チャンバー内部の雰囲気ガスを大気にして、実施例1と同様にして、再度、スパッタリングを行った。
[Example 5]
Sputtering was performed in the same manner as in Example 1 except that the atmospheric gas inside the chamber during sputtering was changed to He. Sputtering was performed again in the same manner as in Example 1 except that the atmosphere gas inside the chamber was changed to air.
 上記条件での1秒間のスパッタリングが終了した後、支持体表面に任意に設定した領域を、HAADF-STEMによって撮像した画像を図14A~図14Dに示す。図14Aおよびその倍率を変更した図14Bは、雰囲気ガスがHeであるときの画像であり、図14Cおよびその倍率を変更した図14Dは、雰囲気ガスが大気であるときの画像である。 FIGS. 14A to 14D show images obtained by HAADF-STEM of regions arbitrarily set on the support surface after the sputtering for 1 second under the above conditions is completed. FIG. 14A and FIG. 14B in which the magnification is changed are images when the atmospheric gas is He, and FIG. 14C and FIG. 14D in which the magnification is changed are images when the atmospheric gas is the atmosphere.
 図14より、雰囲気ガスによらずに、スパッタリングによって支持体上に単原子が分散した構造体を作製できることがわかった。また、分子量が大きい(N:28)雰囲気ガスでスパッタリングを行うほうが、分子量が小さい(He:2)雰囲気ガスでスパッタリングを行うよりも多量の単原子を一度にはじき飛ばして、単原子の分散密度がより高い構造体を製造できることがわかった。 From FIG. 14, it was found that a structure in which single atoms are dispersed on a support by sputtering can be manufactured without depending on the atmospheric gas. Sputtering with an atmospheric gas having a high molecular weight (N 2 : 28) causes a larger amount of single atoms to be ejected at a time than when sputtering with an atmospheric gas having a low molecular weight (He: 2). It has been found that higher structures can be produced.
 以上の結果から、スパッタリングの条件を適切に設定することで、単原子の分散体を作製することができ、かつ、スパッタリングの時間を調整することで、支持体に付着する原子の数を略正確に制御できることがわかった。
 本出願は、2016年2月1日出願の日本国出願番号2016-016872号および2016年9月9日出願の日本国出願番号2016-176829号に基づく優先権を主張する出願であり、当該出願の明細書、特許請求の範囲および図面に記載された内容は本出願に援用される。
From the above results, it is possible to produce a monoatomic dispersion by appropriately setting the sputtering conditions, and to adjust the sputtering time, so that the number of atoms attached to the support can be substantially accurately determined. It was found that it can be controlled.
This application claims priority based on the Japanese application No. 2016-016872 filed on February 1, 2016 and the Japanese application No. 2016-176829 filed on September 9, 2016. The contents described in the specification, claims and drawings are incorporated into the present application.
 本発明による支持体上に単原子が分散した構造体および本発明による支持体上に単原子が分散した構造体の製造方法は、より薄い膜の形成や、より効率の高い触媒の製造に用いることができると期待される。 A structure in which single atoms are dispersed on a support according to the present invention and a method for producing a structure in which single atoms are dispersed on a support according to the present invention are used to form a thinner film and to produce a more efficient catalyst. Expected to be able to.
 500、500’ グラフェン製造装置
 510 送り出しローラ
 520 化学気相蒸着(CVD)部
 530 巻き取り部
 540 単原子スパッタ部
 550 転写部
 600 スパッタ装置
 610 チャンバー
 620 ターゲット配置部
 630 支持体配置部
 640 スパッタガス導入部
 650 電圧印加部
 660 制御部
500, 500 ′ Graphene production apparatus 510 Delivery roller 520 Chemical vapor deposition (CVD) section 530 Winding section 540 Single atom sputtering section 550 Transfer section 600 Sputtering apparatus 610 Chamber 620 Target arrangement section 630 Support arrangement section 640 Sputter gas introduction section 650 Voltage application unit 660 control unit

Claims (16)

  1.  スパッタリングが可能な原子を吸着可能なアンカーサイトが形成された支持体と、
     前記アンカーサイトに吸着されて、前記支持体上に単原子で分散した、前記スパッタリングが可能な原子と、を含む、
     支持体上に単原子が分散した構造体。
    A support on which an anchor site capable of adsorbing atoms capable of sputtering is formed;
    The sputterable atoms adsorbed to the anchor sites and dispersed as single atoms on the support,
    A structure in which single atoms are dispersed on a support.
  2.  前記支持体は、ナノグラフェンからなる1または複数の層がグラフェン上に島状に積層した積層体であり、
     前記アンカーサイトは、グラフェン上またはナノグラフェンからなる層の表面のうち、その上に形成された前記ナノグラフェンからなる層の端部と接する領域である、
     請求項1に記載の構造体。
    The support is a laminate in which one or more layers made of nanographene are stacked in an island shape on graphene,
    The anchor site is a region in contact with an end portion of the layer made of nanographene formed on the graphene or the surface of the layer made of nanographene,
    The structure according to claim 1.
  3.  前記支持体は、活性炭である、請求項1または2に記載の構造体。 The structure according to claim 1 or 2, wherein the support is activated carbon.
  4.  前記原子の90%以上が単原子で分散した分散体である、請求項1~3のいずれか1項に記載の構造体。 The structure according to any one of claims 1 to 3, which is a dispersion in which 90% or more of the atoms are dispersed as single atoms.
  5.  前記スパッタリングが可能な原子は、遷移金属の原子である、請求項1~4のいずれか1項に記載の構造体。 The structure according to any one of claims 1 to 4, wherein the atoms that can be sputtered are atoms of a transition metal.
  6.  前記スパッタリングが可能な原子は、白金(Pt)、金(Au)、イリジウム(Ir)またはルテニウム(Ru)である、請求項1~5のいずれか1項に記載の構造体。 6. The structure according to claim 1, wherein the atoms that can be sputtered are platinum (Pt), gold (Au), iridium (Ir), or ruthenium (Ru).
  7.  スパッタリングが可能な原子を含むターゲットと、スパッタリングが可能な原子を吸着可能なアンカーサイトが形成された支持体と、が配置され、かつ、スパッタガスが導入されたチャンバー内で、
     予め求められた、少なくとも前記スパッタリングが可能な原子の一部を単原子で前記支持体上に分散させることが可能なスパッタリング条件で、前記ターゲットと前記支持体との間に電圧を印加して、ターゲットをスパッタする工程を含む、支持体上に単原子が分散した構造体を製造する方法。
    In a chamber in which a target including an atom capable of sputtering and a support on which an anchor site capable of adsorbing an atom capable of sputtering is formed and a sputtering gas is introduced,
    Applying a voltage between the target and the support under a sputtering condition that is obtained in advance and allows at least a part of the atoms that can be sputtered to be dispersed on the support as single atoms. A method for producing a structure in which single atoms are dispersed on a support, including a step of sputtering a target.
  8.  前記支持体は、ナノグラフェンからなる1または複数の層がグラフェン上に島状に積層した支持体であり、
     前記アンカーサイトは、グラフェン上またはナノグラフェンからなる層の表面のうち、その上に形成された前記ナノグラフェンからなる層の端部と接する領域である、
     請求項7に記載の方法。
    The support is a support in which one or more layers made of nanographene are stacked in an island shape on graphene,
    The anchor site is a region in contact with an end portion of the layer made of nanographene formed on the graphene or the surface of the layer made of nanographene,
    The method of claim 7.
  9.  前記支持体は、活性炭である、請求項7または8に記載の方法。 The method according to claim 7 or 8, wherein the support is activated carbon.
  10.  前記電圧は、150V以下である、請求項7~9のいずれか1項に記載の方法。 The method according to any one of claims 7 to 9, wherein the voltage is 150 V or less.
  11.  前記電圧は、1.5秒以下印加される、請求項7~10のいずれか1項に記載の方法。 The method according to any one of claims 7 to 10, wherein the voltage is applied for 1.5 seconds or less.
  12.  前記スパッタガスは、70体積%以上の窒素(N)を含むガスである、請求項7~11のいずれか1項に記載の方法。 The method according to any one of claims 7 to 11, wherein the sputtering gas is a gas containing 70% by volume or more of nitrogen (N 2 ).
  13.  前記ターゲットは、遷移金属を含む、請求項7~12のいずれか1項に記載の方法。 The method according to any one of claims 7 to 12, wherein the target includes a transition metal.
  14.  前記ターゲットは、白金(Pt)、金(Au)、イリジウム(Ir)またはルテニウム(Ru)である、請求項7~13のいずれか1項に記載の方法。 The method according to any one of claims 7 to 13, wherein the target is platinum (Pt), gold (Au), iridium (Ir), or ruthenium (Ru).
  15.  さらに、前記ターゲットをスパッタする工程の前に、
     送り出しローラに巻かれた銅箔を順次送り出す工程と、
     化学気相蒸着法(CVD)によって前記銅箔上にグラフェンを成膜して前記支持体とする工程とを含む、
     請求項7~14のいずれか1項に記載の方法。
    Furthermore, before the step of sputtering the target,
    A step of sequentially feeding the copper foil wound around the feed roller;
    Including forming a graphene film on the copper foil by chemical vapor deposition (CVD) to form the support.
    The method according to any one of claims 7 to 14.
  16.  密閉可能なチャンバーと、
     前記チャンバー内に設けられた、スパッタリングが可能な原子を含むターゲットが配置されるターゲット配置部と、
     前記チャンバー内に設けられた、スパッタリングが可能な原子を吸着可能なアンカーサイトが形成された支持体が配置される支持体配置部と、
     前記チャンバー内にスパッタガスを導入するスパッタガス導入部と、
     前記ターゲットと前記支持体との間に電圧を印加する、電圧印加部と、
     前記スパッタガス導入部および電圧印加部を制御して、予め求められた、少なくとも前記スパッタリングが可能な原子の一部を単原子で前記支持体上に分散させることが可能なスパッタリング条件で、前記ターゲットと前記支持体との間に電圧を印加させる、制御部と、
     を備えるスパッタ装置。
    A sealable chamber;
    A target placement part in which a target including atoms capable of sputtering provided in the chamber is placed;
    A support body placement portion in which a support body provided with an anchor site capable of adsorbing atoms that can be sputtered is provided in the chamber;
    A sputtering gas introduction section for introducing a sputtering gas into the chamber;
    A voltage application unit that applies a voltage between the target and the support;
    By controlling the sputtering gas introduction part and the voltage application part, the target is obtained under sputtering conditions that can be obtained in advance and can disperse at least a part of the atoms that can be sputtered as single atoms on the support. A controller for applying a voltage between the support and the support;
    A sputtering apparatus comprising:
PCT/JP2017/002670 2016-02-01 2017-01-26 Structure in which single atoms are dispersed on support, method for manufacturing structure in which single atoms are dispersed on support, and sputtering device WO2017135136A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017565507A JP6957022B2 (en) 2016-02-01 2017-01-26 A method for producing a structure in which a single atom is dispersed on a support, a structure in which a single atom is dispersed on a support, and a sputtering apparatus.

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2016016872 2016-02-01
JP2016-016872 2016-02-01
JP2016-176829 2016-09-09
JP2016176829 2016-09-09

Publications (1)

Publication Number Publication Date
WO2017135136A1 true WO2017135136A1 (en) 2017-08-10

Family

ID=59500711

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/002670 WO2017135136A1 (en) 2016-02-01 2017-01-26 Structure in which single atoms are dispersed on support, method for manufacturing structure in which single atoms are dispersed on support, and sputtering device

Country Status (2)

Country Link
JP (1) JP6957022B2 (en)
WO (1) WO2017135136A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020015034A (en) * 2018-07-11 2020-01-30 トヨタ紡織株式会社 Carrier, and manufacturing method of carrier
CN111013579A (en) * 2019-11-20 2020-04-17 珠海复旦创新研究院 Limited-area carbon material loaded with palladium single atom or palladium nano-particles and preparation method thereof
CN111974391A (en) * 2020-08-21 2020-11-24 西安建筑科技大学 Monoatomic copper catalyst, gram-scale preparation method thereof and application of selective reduction functional organic molecules
CN112717924A (en) * 2021-01-07 2021-04-30 北京工业大学 Method for rapidly synthesizing monatomic catalyst by plasma sputtering method and application thereof
CN113828312A (en) * 2021-10-28 2021-12-24 梧州学院 Preparation method of foam metal/graphene/monoatomic composite catalytic material
WO2023007192A1 (en) * 2021-07-29 2023-02-02 The University Of Nottingham Atomically dispersed metal catalyst
CN116474793A (en) * 2023-06-14 2023-07-25 广东工业大学 Island type single-atom catalytic material and preparation method and application thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115074694B (en) * 2022-07-01 2023-06-20 常州第六元素半导体有限公司 Preparation method of graphene film

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5084486A (en) * 1972-11-30 1975-07-08
JP2007021354A (en) * 2005-07-15 2007-02-01 Nikon Corp Photo-catalyst and its manufacturing method
JP2007506548A (en) * 2003-09-26 2007-03-22 スリーエム イノベイティブ プロパティズ カンパニー Nanoscale gold catalysts, activators, carrier media, and related methods useful for producing such catalyst systems by depositing gold on the carrier media using physical vapor deposition, in particular
JP2013249505A (en) * 2012-05-31 2013-12-12 Sony Corp Film-forming apparatus and film-forming method
JP2014144892A (en) * 2013-01-29 2014-08-14 Okayama Univ Flaky graphite oxide carrying metal and manufacturing method thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5084486A (en) * 1972-11-30 1975-07-08
JP2007506548A (en) * 2003-09-26 2007-03-22 スリーエム イノベイティブ プロパティズ カンパニー Nanoscale gold catalysts, activators, carrier media, and related methods useful for producing such catalyst systems by depositing gold on the carrier media using physical vapor deposition, in particular
JP2007021354A (en) * 2005-07-15 2007-02-01 Nikon Corp Photo-catalyst and its manufacturing method
JP2013249505A (en) * 2012-05-31 2013-12-12 Sony Corp Film-forming apparatus and film-forming method
JP2014144892A (en) * 2013-01-29 2014-08-14 Okayama Univ Flaky graphite oxide carrying metal and manufacturing method thereof

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
MUKHERJEE, SOMIK ET AL.: "Stability of Sub-2 nm Pt Nanoparticles on Different Support Surfaces", JOURNAL OF THE ELECTROCHEMICAL SOCIETY, vol. 161, no. 4, 2014, pages F493 - F499, ISSN: 0013-4651 *
VEITH GABRIEL M. ET AL.: "The use of Magnetron Sputtering for the Production of Heterogeneous Catalysts", STUDIES IN SURFACE SCIENCE AND CATALYSIS, vol. 162, 2006, pages 71 - 78, ISSN: 0167-2991 *
VEITH, GABRIEL M. ET AL.: "Magnetron sputtering of gold nanoparticles onto WO 3 and activated carbon", CATALYSIS TODAY, vol. 122, 2007, pages 248 - 253, XP022068739, ISSN: 0920-5861, DOI: doi:10.1016/j.cattod.2007.01.010 *
YAMAZAKI, KENJI ET AL.: "Graphene-jo eno PT Tangenshi Bunsantai no Sakusei to Hyoka", DAI 77 KAI JSAP AUTUMN MEETING KOEN YOKOSHU, 1 September 2016 (2016-09-01), pages 15p-A33-17 *
YANG, XIAO-FENG ET AL.: "Single-Atom Catalysts: A New Frontier in Heterogeneous Catalysis", ACCOUNTS OF CHEMICAL RESEARCH, vol. 46, no. 8, 2013, pages 1740 - 1748, ISSN: 0001-4842 *

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020015034A (en) * 2018-07-11 2020-01-30 トヨタ紡織株式会社 Carrier, and manufacturing method of carrier
JP7469857B2 (en) 2018-07-11 2024-04-17 トヨタ紡織株式会社 Cathode electrode catalyst support and method for manufacturing the cathode electrode catalyst support
CN111013579A (en) * 2019-11-20 2020-04-17 珠海复旦创新研究院 Limited-area carbon material loaded with palladium single atom or palladium nano-particles and preparation method thereof
CN111013579B (en) * 2019-11-20 2022-07-05 珠海复旦创新研究院 Limited-area carbon material loaded with palladium single atom or palladium nano-particles and preparation method thereof
CN111974391B (en) * 2020-08-21 2022-09-27 西安建筑科技大学 Monoatomic copper catalyst, gram-scale preparation method thereof and application of selective reduction functional organic molecules
CN111974391A (en) * 2020-08-21 2020-11-24 西安建筑科技大学 Monoatomic copper catalyst, gram-scale preparation method thereof and application of selective reduction functional organic molecules
CN112717924A (en) * 2021-01-07 2021-04-30 北京工业大学 Method for rapidly synthesizing monatomic catalyst by plasma sputtering method and application thereof
CN112717924B (en) * 2021-01-07 2023-09-26 北京工业大学 Method for rapidly synthesizing monoatomic catalyst by plasma sputtering method and application thereof
WO2023007192A1 (en) * 2021-07-29 2023-02-02 The University Of Nottingham Atomically dispersed metal catalyst
CN113828312B (en) * 2021-10-28 2023-11-03 梧州学院 Preparation method of foam metal/graphene/monoatomic composite catalytic material
CN113828312A (en) * 2021-10-28 2021-12-24 梧州学院 Preparation method of foam metal/graphene/monoatomic composite catalytic material
CN116474793A (en) * 2023-06-14 2023-07-25 广东工业大学 Island type single-atom catalytic material and preparation method and application thereof
CN116474793B (en) * 2023-06-14 2023-09-15 广东工业大学 Island type single-atom catalytic material and preparation method and application thereof

Also Published As

Publication number Publication date
JP6957022B2 (en) 2021-11-02
JPWO2017135136A1 (en) 2018-12-13

Similar Documents

Publication Publication Date Title
WO2017135136A1 (en) Structure in which single atoms are dispersed on support, method for manufacturing structure in which single atoms are dispersed on support, and sputtering device
Gomez et al. Zinc oxide nanostructures: from growth to application
KR100831069B1 (en) Nanocrater in metal nanoparticle shells and method for preparing the same
US7053021B1 (en) Core-shell synthesis of carbon-supported alloy nanoparticle catalysts
CA2564421C (en) Method of producing carbon nanostructure
EP2611948A2 (en) Method for depositing nanoparticles on substrates
EP2778129A1 (en) Method for preparing graphene and graphene nanoparticle
Yang et al. Synthesis of cubic and spherical Pd nanoparticles on graphene and their electrocatalytic performance in the oxidation of formic acid
KR20070001281A (en) Method for producing carbon nanostructure
CN1532142A (en) Method for growing carbon nano tube
Guo et al. Metal-layer-assisted coalescence of Au nanoparticles and its effect on diameter control in vapor-liquid-solid growth of oxide nanowires
WO2003078687A1 (en) Porous material and process for producing the same
JP4434658B2 (en) Structure and manufacturing method thereof
JP5412848B2 (en) Manufacturing method of microstructure material
JP2004193525A (en) Columnar structure and its manufacturing method
US8148820B2 (en) Formed product of line-structured substance composed of carbon element, and method of forming the same
Esterina et al. Synthesis of silicon oxide nanowires and nanotubes with cobalt-palladium or palladium catalysts
JP2007070158A (en) Carbon nanotube assembly and method for producing the same
CN107614101A (en) The porous shell nanocatalyst of high-performance palladium core magnesia is constructed via heterogeneous vapor- phase synthesis
JP5154801B2 (en) Method for producing a material layer on a support
JP2006315881A (en) High density carbon nanotube assembly and method for producing the same
Bouravleuv et al. New method for MBE growth of GaAs nanowires on silicon using colloidal Au nanoparticles
US7344753B2 (en) Nanostructures including a metal
US20150147525A1 (en) Method for enhancing growth of carbon nanotubes on substrates
Matsuda et al. Behavior of oxidized platinum nanoparticles on an aligned carbon nanotube forest

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17747294

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
ENP Entry into the national phase

Ref document number: 2017565507

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17747294

Country of ref document: EP

Kind code of ref document: A1