WO2017135053A1 - Robot, robot control method, control program, and recording medium - Google Patents

Robot, robot control method, control program, and recording medium Download PDF

Info

Publication number
WO2017135053A1
WO2017135053A1 PCT/JP2017/001745 JP2017001745W WO2017135053A1 WO 2017135053 A1 WO2017135053 A1 WO 2017135053A1 JP 2017001745 W JP2017001745 W JP 2017001745W WO 2017135053 A1 WO2017135053 A1 WO 2017135053A1
Authority
WO
WIPO (PCT)
Prior art keywords
robot
posture
unit
movable
function
Prior art date
Application number
PCT/JP2017/001745
Other languages
French (fr)
Japanese (ja)
Inventor
貴裕 井上
暁 本村
智隆 高橋
Original Assignee
シャープ株式会社
株式会社ロボ・ガレージ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社, 株式会社ロボ・ガレージ filed Critical シャープ株式会社
Priority to JP2017565471A priority Critical patent/JP6513232B2/en
Publication of WO2017135053A1 publication Critical patent/WO2017135053A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J5/00Manipulators mounted on wheels or on carriages
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J13/00Controls for manipulators

Definitions

  • the present invention relates to a robot having a plurality of movable parts, a robot control method, a control program, and a recording medium.
  • JP 2005-59186 A (published on March 10, 2005) International Patent Publication “WO2015 / 174155A1 Publication” (International publication on November 19, 2015) Japanese Patent Publication “JP 2002-079480” (published March 19, 2002)
  • the conventional technology as described above has a problem that the robot cannot be stably stopped in a specific posture and the robot tilts.
  • the robot must maintain a specific posture in order to achieve a specific function.
  • a specific posture is unstable, it is conceivable to transmit a force to the movable part and fix it so that the robot does not tilt no matter what posture it takes.
  • the drive unit consumes a lot of electric power in some cases and transmits the force to the movable unit or applies an electric brake, thereby moving the movable unit. Must be fixed at a specific rotational position.
  • the amount of power consumed for this is not negligible considering the convenience of a battery-powered robot.
  • the robot stably takes a specific posture regardless of the presence or absence of the drive unit.
  • the demand is further increased from the viewpoint of power saving and circuit protection.
  • the present invention has been made in view of the above-mentioned problems, and the object thereof is a robot capable of maintaining a specific posture even when transmission of force to the movable part is stopped, a robot control method, And to provide a program.
  • a robot includes a plurality of movable parts and can shift to a second posture different from the first posture when executing a predetermined function.
  • the first posture is a posture in which the robot is stabilized when only the first movable portion is in contact with the floor surface among the plurality of movable portions
  • the second posture is the first posture.
  • the robot is in a posture where the robot is not stabilized when only one movable portion comes into contact with the floor surface, and the second posture is a second movable different from the first movable portion among the plurality of movable portions.
  • the robot is in a posture in which the robot is stabilized by contacting another object.
  • the robot can maintain its posture and execute a predetermined function even if no force is transmitted to the movable part.
  • FIG. 1 It is a block diagram which shows the principal part structure of the robot which concerns on this invention.
  • (A) is a figure which shows the external appearance of the robot which concerns on this invention
  • (b) is a figure which shows the skeleton of this robot.
  • (A)-(d) is a figure which shows the specific example of the 2nd attitude
  • It is a flowchart which shows the flow of the process which the robot which concerns on this invention performs.
  • Embodiment 1 Embodiment 1 according to the present invention will be described below with reference to FIGS.
  • a case where the shape of the robot 1 according to the present invention has an appearance like a human body (that is, a humanoid robot) will be described as an example. That is, the robot 1 performs one or a plurality of posture (pose) changes and gestures (communication operation) to the user by individually moving movable parts such as the head, arms, hands, and feet.
  • the shape of the robot 1 is not limited to a human type, and may be an animal type such as a cat type or a dog type, or may be an insect type, a cocoon type, a centipede type, a snake type, or the like. .
  • FIG. 2A is a front view showing an example of the appearance of the robot 1 according to this embodiment.
  • the robot 1 includes a head 2 (movable part), a trunk part 3, a right arm part 4 (movable part), a left arm part 5 (movable part), a right leg part 6 (movable part), and a left leg part. 7 (movable part).
  • the face corresponding to the face in the head 2 of the robot 1 and the face corresponding to the abdomen in the trunk 3 are referred to as “front”, and the side corresponding to the back of the head 2 and the back in the trunk 3.
  • the side corresponding to is referred to as the “back”.
  • the head 2 is provided with a microphone 20, a projector 21 (projection unit), an LED (Light Emitting Diode) 22, a speaker 23, and a camera 24. These devices only need to be selectively provided according to what function the robot 1 is to execute, and can be omitted as appropriate.
  • the projector 21 and the camera 24 are provided in the center of the forehead of the robot 1.
  • the LEDs 22 are provided around both eyes of the robot 1.
  • the microphone 20 and the LED 22 are provided as a pair on the left and right, corresponding to the ears and eyes of the robot.
  • the right arm portion 4 includes an upper right arm portion 41, a right forearm portion 42, and a right hand portion 43. From the one end (base side) to the other end (tip side) of the right arm portion 4, the upper right arm portion 41, the right forearm portion 42, and the right hand portion 43 are arranged in this order. One end of the right arm 4 is connected to a location corresponding to the right shoulder side of the trunk 3.
  • the left arm part 5 includes a left upper arm part 51, a left forearm part 52, and a left hand part 53. The left upper arm 51, the left forearm 52, and the left hand 53 are arranged in this order from one end (base side) to the other end (tip side) of the left arm unit 5. One end of the left arm 5 is connected to a place corresponding to the left shoulder side of the trunk 3.
  • the right leg 6 is composed of a right thigh 61 and a right foot 62.
  • One end (base side) of the right thigh 61 is connected to a place corresponding to the waist side of the trunk 3, and the right foot 62 is connected to the other end (tip side) of the right thigh 61.
  • the left leg 7 is composed of a left thigh 71 and a left foot 72.
  • One end (base side) of the left thigh 71 is connected to a place corresponding to the waist side of the trunk 3, and the left foot 72 is connected to the other end (tip side) of the left upper arm 51.
  • the means for accepting input of user instructions is not limited to voice, but may be a light receiving unit such as a keyboard, a touch panel, or infrared rays.
  • FIG. 2B is a diagram illustrating a skeleton configuration of the robot 1 according to the present embodiment.
  • the robot 1 further includes a neck roll 11a, a neck pitch 11b, a neck yaw 11c, a right shoulder pitch 12, as a drive unit 40 (see FIG. 1),
  • a left shoulder pitch 13, a right elbow roll 14, a left elbow roll 15, a right crotch pitch 16, a left crotch pitch 17, a right ankle pitch 18b, a right ankle roll 18a, a left ankle pitch 19b, and a left ankle roll 19a are provided.
  • the neck roll 11a to the left ankle roll 19a are all servomotors in this embodiment, and may be provided at each joint portion as shown.
  • the term neck roll 11a is intended to enable the servomotor to rotate and move the movable part in the roll direction. The same applies to other members such as the neck pitch 11b.
  • each drive unit 40 By instructing each drive unit 40 from the control unit 10 (see FIG. 1), which will be described later, control is performed such that the drive unit 40 is rotated to a specified angle or torque is turned on / off. As a result, the robot 1 can maintain or change the posture, perform an operation such as walking, or perform a gesture such as raising a hand. Below, what can adjust an angle among the drive parts 40 is described as a joint part especially.
  • the neck roll 11a, the neck pitch 11b, and the neck yaw 11c are arranged at a location corresponding to the neck in the robot 1.
  • the control unit 10 can control the movement of the head 2 in the robot 1 by controlling these.
  • the right shoulder pitch 12 is arranged at a position corresponding to the right shoulder in the robot 1.
  • the control unit 10 can control the movement of the entire right arm unit 4 in the robot 1 by controlling this.
  • the left shoulder pitch 13 is disposed on the left shoulder of the robot 1.
  • the control unit 10 can control the movement of the entire left arm unit 5 in the robot 1 by controlling this.
  • the right elbow roll 14 is disposed at a location corresponding to the right elbow in the robot 1.
  • the control unit 10 can control the movement of the right forearm unit 42 and the right hand unit 43 in the robot 1 by controlling this.
  • the left elbow roll 15 is disposed at a location corresponding to the left elbow in the robot 1.
  • the control unit 10 can control the movement of the left forearm unit 52 and the left hand unit 53 in the robot 1 by controlling this.
  • the right crotch pitch 16 is disposed at a location corresponding to the right crotch in the robot 1.
  • the control unit 10 can control the movement of the entire right leg 6 in the robot 1 by controlling this.
  • the left crotch pitch 17 is disposed at a location corresponding to the left crotch in the robot 1.
  • the control unit 10 can control the movement of the entire left leg 7 in the robot 1 by controlling this.
  • the right ankle pitch 18b and the right ankle roll 18a are arranged at a location corresponding to the right ankle in the robot 1.
  • the control unit 10 can control the movement of the right foot 62 in the robot 1 by controlling these.
  • the left ankle pitch 19 b and the left ankle roll 19 a are disposed at a location corresponding to the left ankle in the robot 1.
  • the control unit 10 can control the movement of the left foot 72 in the robot 1 by controlling these.
  • control unit 10 can cause the robot 1 to take the forward tilt posture or the backward tilt posture by simultaneously controlling the right crotch pitch 16, the left crotch pitch 17, the right ankle pitch 18b, and the left ankle pitch 19b.
  • the robot 1 may be provided with one drive unit 40 for driving the movable unit with respect to one movable unit (for example, the right leg 6 with respect to the right side).
  • Crotch pitch 16 may be provided).
  • a plurality of driving units 40 for driving the movable unit may be provided for one movable unit (for example, the neck roll 11a, the neck pitch 11b, and the neck with respect to the head 2).
  • Yaw 11c may be provided).
  • Each drive unit 40 can notify the control unit 10 of a status such as an angle at a predetermined interval.
  • the status notification is performed even when the torque of the servo motor is off, and the operation of the movable part by the user can be detected.
  • the control unit 10 can recognize the angle of the servo motor by receiving the status notification.
  • the waist portion of the trunk 3 may be configured to be rotatable left and right.
  • a jaw-like member (not shown) is provided at a portion corresponding to the mouth of the head 2 so as to be movable according to the sound from the speaker 23, or a bowl-like member (not shown) is provided on the LED 22.
  • it may be configured to be able to move like blinking.
  • the trunk 3 and the head 2 can also be movable parts.
  • the right arm part 4, the left arm part 5, the right leg part 6, and the left leg part 7 may be configured to expand and contract in addition to rotating and bending and stretching.
  • FIG. 1 is a block diagram showing the configuration of the robot 1.
  • the robot 1 includes a plurality of movable parts, and the control of the individual movable parts can be made different from each other.
  • the robot 1 includes a control unit 10, a microphone 20, a storage unit 30, and a drive unit 40.
  • the drive unit 40 is as described above with reference to FIG.
  • the robot 1 of this embodiment includes a projector 21 as an example. Further, the robot 1 may include a camera 24. In addition to the projector 21 and the camera 24, the robot 1 may include various devices that perform a specific function, but the illustration is omitted here.
  • the control unit 10 controls the operation and processing of the robot 1 in an integrated manner. A specific configuration of the control unit 10 will be described later.
  • the microphone 20 is a device for acquiring voice input by the user to the control unit 10.
  • the projector 21 is a device that outputs a signal related to a still image or a moving image (hereinafter collectively referred to as an image) processed by the control unit 10 and projects the image onto a projection destination.
  • the camera 24 is a device that captures a subject and inputs an image.
  • the camera 24 may be a digital camera or a digital video capable of capturing surrounding objects and user movements.
  • the storage unit 30 is a storage medium that stores various types of information for the control unit 10 to perform processing. Specific examples of the storage unit 30 include a hard disk or a flash memory.
  • the storage unit 30 defines a plurality of patterns of postures to be taken by the robot 1, and stores a posture definition table 31 that defines whether or not to turn off the torque of the joints of the robot 1 for each posture.
  • the posture definition table 31 will be described later with a specific example.
  • the storage unit 30 stores a voice table (not shown) that is referred to in order to interpret a voice instruction when a voice instruction from the user is input. ing.
  • the control unit 10 includes a voice recognition unit 81, a function specifying unit 82, a drive control unit 83, and a function execution unit 8 as functional blocks.
  • the function execution unit 8 is, for example, a projection execution unit 84, a shooting execution unit 85, or the like, but is not limited thereto.
  • the voice recognition unit 81 recognizes (interprets) the voice input to the microphone 20.
  • the voice recognition unit 81 determines whether or not the input voice is a predetermined voice included in the voice table of the storage unit 30. For example, it is assumed that the sound input from the microphone 20 is “show this album in a slide show”. In this case, the voice recognition unit 81 refers to the voice table in the storage unit 30 and recognizes that a slide show projection has been instructed. Then, the recognition result is output to the function specifying unit 82.
  • the function specifying unit 82 specifies a function to be executed in accordance with the recognition result supplied from the voice recognition unit 81, and instructs the main body that executes the function to execute the function. For example, when it is determined by voice recognition that projection of a slide show has been instructed, the function specifying unit 82 specifies that the projection function realized by the projector 21 is to be executed, and the projection executing unit 84 that controls the projector 21 It instructs the execution of the projection function.
  • the drive control part 83 controls the drive part 40, respectively.
  • the drive control unit 83 determines the posture to be taken by the robot 1 during the execution of the function, and controls each drive unit 40 so that the determined posture is obtained. To do. More specifically, the drive control unit 83 reads the posture definition corresponding to the function determined by the function specifying unit 82 from the posture definition table 31. Then, according to the read definition, the transmission of force from the specific drive unit 40 to the corresponding movable unit is permitted (torque is turned on), or the transmission of force from another drive unit 40 to the corresponding movable unit is stopped. (Torque off).
  • the drive control unit 83 can turn off the torque for all the drive units 40, or can turn off the torque for some of the drive units 40. In this way, under the control of the drive control unit 83, the drive unit 40 moves to a predetermined rotation position or stops at the rotation position, so that each movable unit shown in FIG. The robot 1 can move to a predetermined position and take a specific posture.
  • the drive control unit 83 refers to the posture definition table 31 and determines whether or not torque off is possible for a specific posture to be taken by the robot 1. When the torque can be turned off for the specific posture, the drive control unit 83 turns off the torque of all the drive units 40 (joint portions) after causing the robot 1 to take the specific posture. .
  • the function execution unit 8 controls various devices mounted on the robot 1 to execute various functions provided in the robot 1.
  • the function of the robot 1 include a projection function for projecting a video signal onto an external projection destination and a photographing function for photographing a subject as described above.
  • the above functions are realized by the projection execution unit 84 controlling the projector 21 and the imaging execution unit 85 controlling the camera 24, respectively.
  • the robot 1 may have various functions such as a voice call function and a schedule management function (for example, functions provided in a mobile terminal such as a smartphone).
  • the function execution unit 8 may include an execution unit for controlling a device that is an execution subject of these functions.
  • the robot 1 may incorporate a computer including a control unit 10 that is a CPU (central processing unit) and a storage unit 30.
  • each unit shown as the functional block can be realized by the CPU reading a program stored in a storage device such as a ROM (read only memory) (not shown) to a RAM (random access memory) or the like and executing it. .
  • the robot 1 (About the posture of the robot 1) As described above, the robot 1 according to the present invention includes a plurality of movable units, and when the function execution unit 8 of the robot 1 executes a predetermined function, the function is changed from the basic posture (first posture). It is possible to shift to a specific posture (second posture) for execution.
  • the predetermined function may be, for example, a projection function realized by the projection execution unit 84 controlling the projector 21, or a shooting function realized by the shooting execution unit 85 controlling the camera 24. Or any other function.
  • the basic posture is a posture that the robot 1 takes while the robot 1 is being charged or while the robot 1 is not performing a function and is waiting for a user instruction input.
  • the basic posture may be, for example, a posture in which the robot 1 is upright as shown in FIG.
  • the basic posture is a posture in which the robot 1 is sitting.
  • the legs (the right leg 6 and the left leg 7) are perpendicular to the trunk 3 that is vertical to the floor surface.
  • the posture may be such that the waist is bent so that the back of the leg is in contact with the floor surface.
  • the basic posture means that only the leg (first movable part) is in contact with the floor surface, so that the robot 1 is supported by the leg and the floor surface, and the other movable parts are not in contact with the object.
  • the posture is not inclined.
  • the posture in which the robot 1 is not tilted even when the torque of the driving unit 40 is turned off and is stationary is expressed as a posture in which the robot 1 is stable.
  • the specific posture (second posture) is a posture different from the basic posture to be taken when the robot 1 executes a specific function.
  • the specific posture is a posture in which the robot 1 is not stable (without transmission of force to the movable portion) when only the leg portion (first movable portion) is in contact with the floor surface (for example, FIG. 8).
  • the specific posture is a posture in which the robot 1 is stabilized when a movable portion other than the leg portion comes into contact with and is supported by the other object.
  • the specific posture may be, for example, a forward tilt posture that the robot 1 takes when projecting an image on the floor as the projection function.
  • the specific posture is determined when the projector 21 is provided on the back surface (back head) of the head 2 or when the arm portions (the left arm portion 5 and the right leg portion 6) of the robot 1 are longer than a predetermined length.
  • the rearward posture may be used.
  • the robot 1 makes the specific posture the stable posture by bringing at least one movable portion different from the leg portion as the first movable portion into contact with another object as the second movable portion. As realized.
  • the robot 1 realizes a stable specific posture by bringing the second movable part other than the first movable part (such as the leg part) in contact with the floor surface into contact with another object. .
  • the other object is fixed so as not to move at least in the direction of the load received via the second movable part
  • the second object A reaction force that balances the load acts on the object at the contact point between the movable part and the object. Therefore, the robot 1 cannot stand still when a force (load) for tilting the robot 1 is applied only by the leg contacting the floor surface in a specific posture.
  • a reaction force is obtained, and the object can stand still without being tilted by the load.
  • the robot 1 can maintain a specific posture and can execute a predetermined function.
  • FIGS. 3A to 3D are side views when the robot 1 taking a specific posture is viewed from the left side of the robot 1.
  • the positions of both arms (right arm 4 and left arm 5) and both legs (right leg 6 and left leg 7) are placed symmetrically.
  • the right arm portion 4 and the right leg portion 6 are placed at positions symmetrical to the left arm portion 5 and the left leg portion 7, respectively.
  • the robot 1 of the present invention is not limited to this, and the robot 1 may take a left-right asymmetric specific posture.
  • the robot 1 when executing a projection function for projecting an image onto a floor surface, the robot 1 takes a forward tilt posture (second posture) as shown in FIGS. 3A to 3C as a specific posture.
  • the specific posture of the robot 1 means that the bottom surface of the left foot portion 72 of the left leg portion 7 as the first movable portion is in contact with the floor surface B. In this posture, the left hand portion 53 of the left arm portion 5 is in contact with another object as the second movable portion.
  • the robot 1 tilts when only the leg portions (the right leg portion 6 and the left leg portion 7) are in contact with the floor surface in a specific posture, but the arm portion (the right arm portion 4). Since the left arm 5) is in contact with another object, the robot 1 can be supported by receiving a reaction force from the object via the arm. Therefore, the robot 1 can be stationary without tilting in the specific posture.
  • FIG. 3D shows a configuration in which the leg includes a knee joint, and the thigh and the lower knee connected to the knee joint can be individually driven, and the arm is sufficiently long.
  • the posture is realized by a robot having at least one of the configurations.
  • the other object that the left hand part 53 contacts may specifically be the floor surface B, as shown in (c) and (d) of FIG. According to the above configuration, even when the trunk portion 3 is inclined at an arbitrary angle (for example, substantially horizontally) by bringing the arm portion into contact with the floor B as the other object described above in addition to the leg portion. The posture of the robot 1 can be stabilized.
  • the other object which the left hand part 53 contacts may be the left leg part 7, as shown to the other movable part of the robot 1, specifically, (a) and (b) of FIG. .
  • an arm part is made to contact the leg part currently supported by the floor surface B.
  • the arm part supports the trunk part 3 by contacting the leg part as the other object described above.
  • This specific posture is suitable for the robot 1 in which the arm portion is relatively short and the arm portion does not reach the floor surface B unless the trunk portion 3 is tilted by a corresponding angle (horizontal or forward). It is.
  • the specific posture at the time of executing the projection function is that at least a part of the left arm portion 5 (such as the left hand portion 53)
  • the posture is in contact with the front surface.
  • the front surface of the leg is a surface on the same side as the projection direction (front) of the projector 21.
  • the front surface of the leg is, for example, the front surface of the left thigh 71 (including a surface corresponding to a human knee or shin) and the front surface of the left foot 72 (corresponding to the back or toe of a human foot). Including the surface to be used).
  • the arm is attached to the front side of the leg.
  • a posture forward tilt posture
  • the projection direction of the projector 21 provided on the head 2 can be directed to the front floor surface B.
  • the projection direction can be made perpendicular to the floor surface B, and the trapezoidal distortion of the projection image P projected from the projector 21 can be suppressed accordingly.
  • the specific posture is a posture in which the bottom surface of the left foot portion 72 is in contact with the floor surface B and the left hand portion 53 is in contact with the back of the left foot portion 72. It is.
  • the trunk 3 is tilted forward by attaching the tip of the arm (the hand, that is, the right hand 43 and the left hand 53) to the back of the foot (the right foot 62 and the left foot 72).
  • the forward tilting posture of the robot 1 can be maintained.
  • the posture is more stable.
  • the specific posture is a posture suitable for a robot whose arm portion is short and the trunk portion 3 does not reach the floor surface B unless the trunk portion 3 is tilted forward or parallel to the floor surface B. Furthermore, in the specific posture, the inclination of the trunk 3 can be made as close as possible to the floor B as much as possible (compared to the case where a hand is placed on the knee or thigh). Thereby, when the projection direction of the projector 21 provided in front of the head 2 is directed to the front floor surface B, the projection direction is made perpendicular to the floor surface B by the amount of the trunk 3 tilted forward. be able to. Accordingly, it is possible to suppress the distortion of the trapezoid of the projection image P projected from the projector 21 correspondingly.
  • the trunk 3 is configured such that the inclination ⁇ 1 of the trunk 3 with respect to the floor surface B is equal to or less than a predetermined value (so as to approach the horizontal). Tilted forward. Specifically, the inclination ⁇ 1 of the trunk 3 is determined such that the inclination ⁇ 2 of the projection direction of the projector 21 with respect to the floor surface B is equal to or greater than a predetermined value (approaching the vertical direction).
  • the inclination ⁇ 2 of the projection direction is an angle formed by the projection direction D and the floor B where the distortion of the projection image P projected by the projector 21 is the strongest. The smaller the inclination ⁇ 2, the smaller the projection image P.
  • the inclination ⁇ 2 is determined according to how much the distortion of the projection image P is allowed according to the performance of the image processing function for correcting the distortion mounted on the robot 1.
  • the image processing function is a function of correcting a projection image P projected on the floor and distorted into a trapezoid into a rectangle by image processing (hereinafter referred to as a trapezoid correction function). From the above, in the specific posture, the trunk 3 tilts so that the distortion of the projection image P projected by the projector 21 is within a range that can be corrected by the trapezoid correction function (image processing function) of the robot 1. It is preferable.
  • FIG. 4 is a flowchart showing a flow of processing executed by the control unit 10 of the robot 1.
  • the voice recognition unit 81 compares the input voice with the voice of the sample stored in the voice table, and recognizes the meaning content of the input voice (S101).
  • the function specifying unit 82 determines whether or not an instruction to execute a predetermined function provided in the robot 1 is instructed based on the recognition result by the voice recognition unit 81 (S102).
  • the control unit 10 of the robot 1 may execute a process according to the meaning content of the input voice (S110).
  • the function specifying unit 82 specifies the function instructed to execute (S103: function specifying step).
  • S103 function specifying step
  • the function specifying unit 82 recognizes that it has been instructed to project a slide show of images stored in the robot 1 onto the floor surface.
  • the drive control unit 83 determines a posture to be taken by the robot 1 when executing the function specified by the function specifying unit 82 (S104). For example, the drive control unit 83 refers to the posture definition table 31 and determines a specific posture associated with a function for projecting an image on the floor surface (hereinafter, function name “floor projection”). Then, the drive control unit 83 reads the determined definition of the specific posture from the posture definition table 31. The drive control unit 83 determines whether or not the current posture of the robot 1 corresponds to the determined specific posture (S105).
  • the drive control unit 83 controls the drive unit 40 of each joint according to the definition of the specific posture so as to shift to the specific posture (S106). : Drive control step). In other words, the drive control unit 83 controls the drive unit 40 of each joint so that the servo motor corresponding to each joint maintains the holding angle defined for the servo motor.
  • the drive control unit 83 refers to the posture definition table 31 and determines whether or not the specific posture determined in S104 is a posture in which the robot 1 is stable even if torque is removed.
  • the drive control unit 83 sets the posture of the robot 1 determined in S105. After the transition, the transmission of force from each drive unit 40 to the corresponding movable unit is stopped. Stopping the transmission of force includes, for example, turning off the power of all the driving units 40 that drive each movable unit. Specifically, the drive control unit 83 turns off the torque of the servo motor corresponding to each joint of the robot 1 (S108: drive stop step).
  • the determination step of S107 may be performed at any timing after the step of S104 is executed and before the step of S108 is executed.
  • the function execution unit 8 The function specified by the unit 82 is executed (S109).
  • the projection execution unit 84 executes a floor projection function.
  • the drive control unit 83 stops the current to the drive unit 40. Therefore, the posture of the robot 1 can be stabilized without tilting, and the execution of the floor projection function can be continued. In addition, the drive unit 40 does not consume power, and as a result, power saving and circuit protection by avoiding heat generation can be realized.
  • FIG. 5 is a diagram illustrating a specific example of the posture definition table 31 referred to by the control unit 10 of the robot 1.
  • the posture definition information is shown in a table format data structure, and is not intended to limit the definition information data structure to the table format.
  • one posture definition information includes three pieces of information: holding angle information, function information, and torque-off flag. More specifically, in the holding angle column of the posture definition table 31, for each posture, the holding angle of each servo motor when the posture is taken by the robot 1 is a servo motor (drive unit) corresponding to each joint portion. 40). In the function column, predetermined functions that can be executed by the robot 1 are stored in association with postures. As a result, it becomes clear which function is the posture taken when the posture is executed. More specifically, in S104, the drive control unit 83 refers to the posture definition table 31 illustrated in FIG. 5, and sets the posture of “02_forward tilt” as the specific posture corresponding to the function name “floor projection”. Can be determined. In the example illustrated in FIG. 5, a plurality of functions are associated with one posture, but the correspondence between the posture and the function may be one-to-one.
  • the torque off flag column there is information indicating whether or not the robot 1 is in a stable posture even if the torque of all servo motors corresponding to the joints is turned off when the robot 1 takes the posture.
  • “OK” in the torque-off flag indicates that the posture does not tilt even when the torque is turned off, that is, a stable posture.
  • “impossible” of the torque-off flag indicates that the posture may be tilted when the torque is turned off, that is, the posture is not stable.
  • the drive control unit 83 refers to the posture definition table 31 shown in FIG. 5, and the torque-off flag associated with the determined specific posture “02_forward lean” is “possible”. It is determined whether it is present or not.
  • the drive control unit 83 causes the robot 1 to take the specific posture “02_forward lean” and then the robot 1 Turn off the torque of all servo motors corresponding to the joints.
  • the posture definition table 31 shown in one table as shown in FIG. 5 is merely an example, and the posture definition table 31 may include a plurality of tables. For example, a first table that associates the posture to be taken for executing the function for each function, a second table that associates holding angle information for each posture, and a torque off flag associated with each posture.
  • the posture definition table 31 may be configured by the three tables.
  • the drive control unit 83 may determine whether or not torque off is possible for the posture based on the holding angle for each servo motor defined for one posture without referring to the torque-off flag.
  • the robot 1 may take a bridge posture (second posture) as shown in FIG. 6 as a specific posture, for example, when executing a function of projecting an image on a ceiling surface (function name “ceiling projection”).
  • the bridge posture is such that the bottom surface of the left foot portion 72 as the first movable portion is in contact with the floor surface B, and the left hand portion 53 as the second movable portion is another object (here, The posture is in contact with the floor surface B).
  • the left arm 5 supports the head 2 and the trunk 3 of the robot 1 using the reaction force from the floor B, so that the posture of the robot 1 is stabilized.
  • each of the following joint portions, right shoulder pitch 12, left shoulder pitch 13, right crotch pitch 16, left crotch pitch 17, right ankle pitch 18b, and left ankle pitch 19b, the corresponding movable portion is the robot 1
  • the movable part is held at an angle so as to face rearward.
  • the robot 1 can take a stable posture in a state where the front surfaces of the head 2 and the trunk 3 (that is, the heel and the belly of the robot 1) are directed toward the ceiling surface C.
  • the projector 21 provided in the front can project an image toward the ceiling surface C.
  • the robot 1 uses at least a part of the second movable portion (for example, the left hand portion 53 of the left arm portion 5) as another object in order to make the specific posture stable. It was the structure made to contact the other movable part of the robot 1, or the floor B.
  • the robot 1 attaches, for example, the left hand portion 53 to a stationary object such as a wall surface, a handrail, a handle, a tension rod, a pillar, or a pole as the other object (second The movable part may be in contact with each other.
  • a stationary object such as a wall surface, a handrail, a handle, a tension rod, a pillar, or a pole as the other object (second The movable part may be in contact with each other.
  • the specific posture of the robot 1 according to the present invention is such that the left hand portion 53 is attached to the wall surface W (other object), and the left arm portion 5 and the left leg portion 7
  • the robot 1 may be in a stable posture by supporting the robot 1.
  • the robot 1 may be configured such that, for example, the left hand portion 53 is attached to an object such as a strap, a ball, a figurine, or furniture as the other object.
  • the robot 1 in order to make the specific posture stable, the robot 1 is fixed so that it does not move in the direction in which the load of the robot 1 acts on the “other object” with which the second movable part is brought into contact.
  • It is an object.
  • a strap, a ball, and the like are objects that may move if a load is applied from another direction, but are fixed so as not to move in a direction in which a force (load) to which the robot 1 tries to tilt is applied.
  • the specific posture of the robot 1 according to the present invention is such that the left hand portion 53 is attached to the desk F (another object), and the left arm portion 5 and the left leg portion 7
  • the robot 1 may be in a stable posture by supporting the robot 1.
  • the drive control unit 83 of the robot 1 is configured to turn off and stop all the drive units 40 after the robot 1 has shifted to a stable posture. This is because according to the above configuration, the most effective results can be obtained from the viewpoint of power saving and circuit protection by avoiding heat generation.
  • the configuration in which the drive control unit 83 partially stops the drive unit 40 is not excluded.
  • the drive control unit 83 may be configured to turn off the power for some of the drive units 40 (for example, the right ankle pitch 18b and the left ankle pitch 19b having the largest amount of power consumption).
  • the specific posture of the robot 1 according to the present invention is also suitably used when the robot 1 executes various predetermined functions other than the projection function.
  • the forward tilting posture according to the present invention in which the robot 1 is stable is when the robot 1 takes a picture using the camera 24, more specifically, when reading a QR code (registered trademark) or the like installed on the floor surface. Applicable.
  • the projector 21 and the camera 24 are not limited to the head 2 (between eyebrows) of the robot 1 and may be provided on the front side (abdomen side) of the trunk 3. Also in this case, the robot 1 can take a specific posture as shown in FIGS. 3A to 3D or FIG. Thereby, the robot 1 can execute a function of projecting an image forward or a function of photographing the front in a stable posture even when the drive unit 40 is stopped.
  • the robot 1 is configured to bring the left hand portion 53 into contact with another object as at least a part of the second movable portion when taking a specific posture.
  • the robot 1 is not limited to this configuration, and the robot 1 is a portion corresponding to the elbow of the left arm portion 5 (a connection portion between the left upper arm portion 51 and the left forearm portion 52) or the upper right arm portion 41 of the right arm portion 4 and the right side. You may make the connection part with the forearm part 42 contact another object.
  • the robot 1 when the robot 1 includes a wing part, a tail part or the like as a movable part on the back surface of the trunk part 3, or when the robot 1 includes a corner part or a feeler part as a movable part on the head 2.
  • the robot 1 may bring these movable parts into contact with other objects as the second movable part. According to the above configuration, the robot 1 is stabilized in the specific posture.
  • the servomotor for example, the left shoulder pitch 13 and the left elbow roll 15
  • the second movable unit for example, the left arm unit 5
  • the load applied to the servo motor is preferably equal to or less than the friction load of the servo motor.
  • the load the force that tilts the robot 1
  • the servomotor can maintain the rotational position in the forward leaning posture even in the absence of torque, so that the forward leaning posture is not lost.
  • the direction of the load applied to the servo motor that drives the movable part via the second movable part is preferably different from the rotation direction of the servo motor. .
  • a load is applied in the direction of rotation of the servo motor, that is, the direction deviating from the direction in which the joint portion of the movable portion is bent.
  • the joint part is not bent and the movable part does not move.
  • the holding angle of the servo motor that drives each movable part is determined so that the rotation direction of the servo motor deviates from the load direction.
  • control blocks (particularly, the function specifying unit 82, the drive control unit 83, the projection execution unit 84, and the imaging execution unit 85) of the robot 1 are realized by a logic circuit (hardware) formed in an integrated circuit (IC chip) or the like. Alternatively, it may be realized by software using a CPU (Central Processing Unit).
  • a logic circuit hardware
  • IC chip integrated circuit
  • CPU Central Processing Unit
  • the robot 1 includes a CPU that executes instructions of a program that is software that realizes each function, a ROM (Read Only Memory) in which the program and various data are recorded so as to be readable by a computer (or CPU), or a memory.
  • a device (these are referred to as “recording media”), a RAM (Random Access Memory) for expanding the program, and the like are provided.
  • the objective of this invention is achieved when a computer (or CPU) reads the said program from the said recording medium and runs it.
  • a “non-temporary tangible medium” such as a tape, a disk, a card, a semiconductor memory, a programmable logic circuit, or the like can be used.
  • the program may be supplied to the computer via an arbitrary transmission medium (such as a communication network or a broadcast wave) that can transmit the program.
  • a transmission medium such as a communication network or a broadcast wave
  • the present invention can also be realized in the form of a data signal embedded in a carrier wave in which the program is embodied by electronic transmission.
  • a robot (1) according to an aspect 1 of the present invention includes a plurality of movable parts (a head 2, a trunk 3, a right arm 4, a left arm 5, a right leg 6, and a left leg 7), and has a predetermined function.
  • the first posture is: Of the plurality of movable parts, only the first movable part (the right leg part 6 and the left leg part 7) is in a posture in which the robot is stabilized by contacting the floor surface, and the second posture is the above
  • the posture in which the robot is not stabilized only by the first movable portion coming into contact with the floor surface is the second posture different from the first movable portion among the plurality of movable portions.
  • the robot achieves a stable second posture by bringing the second movable part other than the first movable part in contact with the floor surface into contact with another object.
  • a predetermined condition such as the other object being fixed
  • the contact point between the second movable part and the object A reaction force that balances the load is applied. Therefore, the robot cannot stand still when a force (load) for tilting the robot is applied only by the first movable part contacting the floor surface in the second posture.
  • the second movable part comes into contact with the object, it can be kept stationary without being tilted by the load. As a result, the robot can maintain the second posture and execute a predetermined function without transmitting force to the movable part.
  • the robot according to Aspect 2 of the present invention is the robot according to Aspect 1, wherein the one or more legs (the right leg 6 and the left leg 7), the trunk (3) connected to the legs, and the body One or a plurality of arms (right arm 4 and left arm 5) connected to the trunk, and the second posture is at least a part of the leg (right foot 62, The left foot portion 72) is in contact with the floor surface, and at least a part of the arm portion (the right hand portion 43, the left hand portion 53) is in contact with the object as the second movable portion.
  • the robot in the second posture, the robot is tilted when only the leg portion is in contact with the floor surface, and the arm is in contact with the object.
  • the robot can be supported by the reaction force received from the object via the. Therefore, the robot can stand still without tilting.
  • the second posture is a posture in which at least a part of the arm portion is in contact with the floor surface.
  • the second posture is a posture in which at least a part of the arm portion is in contact with the leg portion.
  • the leg and the arm support the robot and stabilize the posture.
  • This posture is suitable for a robot whose arms are short and the trunk does not reach the floor unless the trunk is tilted horizontally or above.
  • a robot includes the projection unit (projector 21) that projects a still image or a moving image on a projection destination and the head (2) connected to the trunk, in the above aspect 4.
  • the projection unit is provided on the head, and in the second posture, at least a part of the arm unit is in contact with the same surface (front surface) of the leg unit as the projection direction of the projection unit. It is a posture.
  • the projection direction of the projection unit when the projection direction of the projection unit is the front of the robot and the surface seen when the robot is viewed from the projection destination is the front of the robot, by attaching the arm part to the front side of the leg, The trunk can be tilted forward to maintain a forward leaning posture. Therefore, the projection direction of the projection unit provided in the head can be directed to the front floor surface. Since the forward leaning posture can be maintained, the trapezoidal distortion of the projected image can be suppressed when the image is projected onto the floor surface.
  • the leg is in contact with the thighs (right thigh 61, left thigh 71) connected to the trunk and the floor surface.
  • the second posture is a posture in which the bottom of the foot is in contact with the floor and the hand is in contact with the back of the foot.
  • the trunk can be tilted forward to maintain a forward leaning posture.
  • the posture will be more stable.
  • this posture is suitable for a robot in which the arm portion is short and the trunk does not reach the floor unless the trunk portion is tilted further forward than horizontal.
  • the inclination of the trunk can be made as close to horizontal as possible (compared to putting hands on the knees and thighs), and the projection direction of the projection unit provided in front of the head can be directed to the front floor surface. It becomes possible. Thereby, when projecting an image on the floor, the trapezoidal distortion of the projected image can be further suppressed.
  • the second posture is a posture when the projection unit executes a projection function
  • the second posture is more preferably determined by the projection unit.
  • the posture in which the distortion of the projected image is within a range that can be corrected by image processing. This makes it possible to properly execute the projection function.
  • a robot includes a projection unit that projects a still image or a moving image onto a projection destination in the above-described aspects 1 to 4, and the second posture is when the projection unit executes a projection function.
  • This is an attitude in which the distortion of the image projected by the projection unit falls within a range that can be corrected by image processing.
  • the robot can appropriately execute the projection function while maintaining the second posture such that the trapezoidal distortion is within a correctable range when the projection function is executed.
  • the robot according to Aspect 8 of the present invention is the robot according to Aspects 1 to 7, wherein one or more drive units (40) that individually drive each movable unit by transmitting a force to each of the plurality of movable units. ), And the driving unit drives each movable unit so that the second movable unit contacts the object, thereby realizing the second posture.
  • a robot can be automatically changed to a 2nd attitude
  • the robot can remain stationary without being tilted. Taking the attitude of 2 is particularly effective from the viewpoint of power saving and circuit protection.
  • the robot according to aspect 9 of the present invention includes the drive control unit (83) that permits or stops transmission of force from the drive unit (40) to the movable unit in the above-described aspect 8, and the drive control unit includes: After the robot moves to the second posture, transmission of force to some or all of the movable parts is stopped.
  • the drive unit is a servo motor
  • the drive control unit drives the movable unit after the robot moves to the second posture. Turn off the torque of some or all of the drives.
  • the load applied to the servo motor that drives the movable part via the second movable part in the second posture is a friction of the servo motor.
  • / or the direction of the load applied to the servo motor that drives the movable part via the second movable part is different from the rotational direction of the servo motor.
  • the servo motor does not rotate unless the force exceeds the friction load of the servo motor. Therefore, even if the torque is removed, the second movable part does not move. Absent.
  • the servo motor even if a force is applied to the second movable part, if the direction in which the force is applied is not the rotational direction of the servo motor, the servo motor will not rotate. It does n’t move. Therefore, the robot can be stationary if the second posture satisfies at least one of the conditions.
  • the robot according to aspect 12 of the present invention includes the function specifying unit (82) that specifies a function to be executed by the robot according to the instruction input to the robot according to the aspect 9, and includes the drive control unit ( 83) controls the driving unit (40) so that the robot takes a posture corresponding to the function specified by the function specifying unit, and the posture is a force from the driving unit to the movable unit.
  • the driving unit is stopped after the robot has shifted to the posture.
  • the drive control unit controls each drive unit so that the robot takes a posture for executing the specified function. . If the posture after the transition is a posture in which the robot is stable, the drive control unit stops the driving unit after the transition to the posture is completed. Thus, since the current to the drive unit is stopped after the transition to the stable second posture, the posture of the robot can be maintained in the second posture without tilting. That is, while the robot is executing a predetermined function (while taking the second posture), the drive unit does not consume power, and circuit protection is achieved by saving power and avoiding heat generation.
  • the robot control method is a robot control method that includes a plurality of movable parts and can shift to a second posture different from the first posture when executing a predetermined function.
  • the robot includes one or more drive units that individually drive each movable unit by transmitting a force to each of the plurality of movable units, and the control method is input to the robot.
  • a function specifying step S103 for specifying a function to be executed by the robot and controlling the drive unit so that the robot takes a posture corresponding to the function specified by the function specifying step.
  • the robot according to each aspect of the present invention may be realized by a computer.
  • the robot is controlled by the computer by causing the computer to operate as each unit (software element) included in the robot.
  • a program and a computer-readable recording medium on which the program is recorded also fall within the scope of the present invention.

Abstract

The present invention realizes a robot that can maintain a second posture even without transmission of force to a movable part. A robot (1) is provided with a plurality of movable parts (2, 3, 4, 5, 6, 7) and shifts from a first to a second posture when executing a predetermined function, wherein the first posture is a posture in which the robot is stable when, among the movable parts, only first movable parts (6, 7) are in contact with a floor surface, the second posture is a posture in which the robot is not stable when only the first movable parts are in contact with the floor surface, and the second posture is a posture in which the robot is stable when, among the movable parts, second movable parts (4, 5) are in contact with another object.

Description

ロボット、ロボットの制御方法、制御プログラムおよび記録媒体Robot, robot control method, control program, and recording medium
 本発明は、複数の可動部を有するロボット、ロボットの制御方法、制御プログラムおよび記録媒体に関する。 The present invention relates to a robot having a plurality of movable parts, a robot control method, a control program, and a recording medium.
 従来、頭部、腕部、および脚部などの複数の可動部を有するロボットが、多数、開発されている。このようなロボットは、複数の可動部を有することにより、さまざまなジェスチャをしたり、姿勢をとったりすることができる。また、これに加えて、上記ロボットは、自機に搭載されたさまざまな機器(プロジェクタ、カメラ、マイク、スピーカ、ディスプレイなど)を稼働させてさまざまな機能を実行することができる(例えば、特許文献1)。 Conventionally, many robots having a plurality of movable parts such as a head, arms, and legs have been developed. Such a robot has a plurality of movable parts, and thus can make various gestures and take postures. In addition to this, the robot can execute various functions by operating various devices (projector, camera, microphone, speaker, display, etc.) mounted on the robot (for example, Patent Documents). 1).
日本国公開特許公報「特開2005-59186号公報」(2005年3月10日公開)Japanese Patent Publication “JP 2005-59186 A” (published on March 10, 2005) 国際公開特許公報「WO2015/174155A1号公報」(2015年11月19日国際公開)International Patent Publication “WO2015 / 174155A1 Publication” (International publication on November 19, 2015) 日本国公開特許公報「特開2002-079480号公報」(2002年3月19日公開)Japanese Patent Publication “JP 2002-079480” (published March 19, 2002)
 しかしながら、上述のような従来技術は、特定の姿勢にてロボットを安定して静止させることができずにロボットが傾倒するという問題がある。例えば、ロボットは特定の機能を達成するために、特定の姿勢を維持しなければならないケースが想定される。そのような特定の姿勢が、不安定である場合、ロボットがどのような姿勢をとっても傾倒しないようにするために、可動部に力を伝達し固定することが考えられる。一例として、可動部を駆動する駆動部を採用することが挙げられる。しかしながら、ロボットがある特定の姿勢を維持するために、駆動部は、場合によっては、多くの電力を消費して、可動部に力を伝達したり、電気的ブレーキをかけたりして、可動部を特定の回転位置に固定させなければならない。このために消費される電力量は、電池駆動のロボットの利便性を考えると無視できないものである。また、省電力、回路保護の観点からも消費電力量を極力抑えることが望まれる。以上のとおり、駆動部の有無にかかわらず、ロボットが、安定して特定の姿勢をとることが望まれている。とりわけ、駆動部を備えるロボットにおいては、省電力および回路保護の観点からその要求はより一層高まる。 However, the conventional technology as described above has a problem that the robot cannot be stably stopped in a specific posture and the robot tilts. For example, it is assumed that the robot must maintain a specific posture in order to achieve a specific function. When such a specific posture is unstable, it is conceivable to transmit a force to the movable part and fix it so that the robot does not tilt no matter what posture it takes. As an example, it is possible to employ a drive unit that drives the movable unit. However, in order to maintain a certain posture of the robot, the drive unit consumes a lot of electric power in some cases and transmits the force to the movable unit or applies an electric brake, thereby moving the movable unit. Must be fixed at a specific rotational position. The amount of power consumed for this is not negligible considering the convenience of a battery-powered robot. In addition, it is desirable to suppress the power consumption as much as possible from the viewpoint of power saving and circuit protection. As described above, it is desired that the robot stably takes a specific posture regardless of the presence or absence of the drive unit. In particular, in a robot including a drive unit, the demand is further increased from the viewpoint of power saving and circuit protection.
 本発明は、上記の問題点に鑑みてなされたものであり、その目的は、可動部への力の伝達を停止しても特定の姿勢を維持することが可能なロボット、ロボットの制御方法、およびプログラムを提供することにある。 The present invention has been made in view of the above-mentioned problems, and the object thereof is a robot capable of maintaining a specific posture even when transmission of force to the movable part is stopped, a robot control method, And to provide a program.
 上記の課題を解決するために、本発明の一態様に係るロボットは、複数の可動部を備え、所定の機能を実行するときに、第1の姿勢とは異なる第2の姿勢に移行可能なロボットにおいて、上記第1の姿勢は、上記複数の可動部のうち、第1の可動部のみが床面に接触することにより当該ロボットが安定する姿勢であり、上記第2の姿勢は、上記第1の可動部のみが床面に接触するだけでは当該ロボットが安定しない姿勢であり、上記第2の姿勢は、上記複数の可動部のうち、上記第1の可動部とは異なる第2の可動部が、他の物体に接触することにより、当該ロボットが安定する姿勢である。 In order to solve the above-described problem, a robot according to one embodiment of the present invention includes a plurality of movable parts and can shift to a second posture different from the first posture when executing a predetermined function. In the robot, the first posture is a posture in which the robot is stabilized when only the first movable portion is in contact with the floor surface among the plurality of movable portions, and the second posture is the first posture. The robot is in a posture where the robot is not stabilized when only one movable portion comes into contact with the floor surface, and the second posture is a second movable different from the first movable portion among the plurality of movable portions. The robot is in a posture in which the robot is stabilized by contacting another object.
 本発明の一態様によれば、ロボットは、可動部に対して力が伝達されなくても、姿勢を保ち、所定の機能を実行することが可能となるという効果を奏する。 According to one aspect of the present invention, the robot can maintain its posture and execute a predetermined function even if no force is transmitted to the movable part.
本発明に係るロボットの要部構成を示すブロック図である。It is a block diagram which shows the principal part structure of the robot which concerns on this invention. (a)は、本発明に係るロボットの外観を示す図であり、(b)は、該ロボットの骨格を示す図である。(A) is a figure which shows the external appearance of the robot which concerns on this invention, (b) is a figure which shows the skeleton of this robot. (a)~(d)は、本発明に係るロボットがとりうる第2の姿勢の具体例を示す図である。(A)-(d) is a figure which shows the specific example of the 2nd attitude | position which the robot which concerns on this invention can take. 本発明に係るロボットが実行する処理の流れを示すフローチャートである。It is a flowchart which shows the flow of the process which the robot which concerns on this invention performs. 本発明に係るロボットの記憶部に保持される姿勢定義テーブルの具体例を示す図である。It is a figure which shows the specific example of the attitude | position definition table hold | maintained at the memory | storage part of the robot which concerns on this invention. 本発明に係るロボットがとりうる第2の姿勢の他の具体例を示す図である。It is a figure which shows the other specific example of the 2nd attitude | position which the robot which concerns on this invention can take. 本発明に係るロボットがとりうる第2の姿勢の他の具体例を示す図である。It is a figure which shows the other specific example of the 2nd attitude | position which the robot which concerns on this invention can take. 脚部のみが接地するだけでは、ロボットが安定しない姿勢の一具体例を示す図である。It is a figure which shows an example of the attitude | position where a robot is not stabilized only by a leg part touching down.
 〔実施形態1〕
 図1~図5を参照して、本発明に係る実施形態1について以下に説明する。なお、ここでは、本発明に係るロボット1の形状が人間の身体のような外観を有する場合(すなわち、人間型ロボット)を例に挙げて説明する。すなわち、ロボット1は、頭、腕、手、および足などの可動部をそれぞれ個別に動かすことにより、ユーザに対して1または複数の姿勢(ポーズ)の変更およびジェスチャ(コミュニケーション動作)などを行うことが可能である。なお、ロボット1の形状は、人間型に限定されず、猫型、犬型などの動物型であってもよいし、昆虫型、蜘蛛型、ムカデ型、およびヘビ型、などであってもよい。
Embodiment 1
Embodiment 1 according to the present invention will be described below with reference to FIGS. Here, a case where the shape of the robot 1 according to the present invention has an appearance like a human body (that is, a humanoid robot) will be described as an example. That is, the robot 1 performs one or a plurality of posture (pose) changes and gestures (communication operation) to the user by individually moving movable parts such as the head, arms, hands, and feet. Is possible. The shape of the robot 1 is not limited to a human type, and may be an animal type such as a cat type or a dog type, or may be an insect type, a cocoon type, a centipede type, a snake type, or the like. .
 (ロボット1の外部構成)
 まず、本発明に係るロボット1の外観について、図2を用いて説明する。
(External configuration of robot 1)
First, the appearance of the robot 1 according to the present invention will be described with reference to FIG.
 図2の(a)は、本実施形態に係るロボット1の外観の一例を示す正面図である。図示のように、ロボット1は、頭部2(可動部)、体幹部3、右腕部4(可動部)、左腕部5(可動部)、右脚部6(可動部)、および左脚部7(可動部)を備えている。なお、ロボット1の頭部2における顔に相当する側、および体幹部3における腹に相当する側の面を「正面」と呼び、頭部2における後頭部に相当する側、および体幹部3における背中に相当する側の面を「背面」と呼ぶことにする。 FIG. 2A is a front view showing an example of the appearance of the robot 1 according to this embodiment. As shown, the robot 1 includes a head 2 (movable part), a trunk part 3, a right arm part 4 (movable part), a left arm part 5 (movable part), a right leg part 6 (movable part), and a left leg part. 7 (movable part). The face corresponding to the face in the head 2 of the robot 1 and the face corresponding to the abdomen in the trunk 3 are referred to as “front”, and the side corresponding to the back of the head 2 and the back in the trunk 3. The side corresponding to is referred to as the “back”.
 頭部2には、マイク20と、プロジェクタ21(投影部)と、LED(Light EmittingDiode)22と、スピーカ23と、カメラ24とが設けられている。これらの機器は、ロボット1にどのような機能を実行させるのかに応じて選択的に設けられていればよく、適宜省略可能である。本実施形態では、一例として、プロジェクタ21およびカメラ24は、ロボット1の額中央に設けられている。LED22は、ロボット1の両目の周囲に設けられている。マイク20およびLED22については、ロボットの耳および目にそれぞれ対応して、左右一対ずつ設けられている。 The head 2 is provided with a microphone 20, a projector 21 (projection unit), an LED (Light Emitting Diode) 22, a speaker 23, and a camera 24. These devices only need to be selectively provided according to what function the robot 1 is to execute, and can be omitted as appropriate. In the present embodiment, as an example, the projector 21 and the camera 24 are provided in the center of the forehead of the robot 1. The LEDs 22 are provided around both eyes of the robot 1. The microphone 20 and the LED 22 are provided as a pair on the left and right, corresponding to the ears and eyes of the robot.
 右腕部4は、右上腕部41、右前腕部42、および右手部43によって構成されている。右腕部4における一端(付け根側)から他端(先端側)に向けて、右上腕部41、右前腕部42、および右手部43がこの順番で配置されている。右腕部4の一端が、体幹部3における右肩側に相当する場所に接続されている。左腕部5は、左上腕部51、左前腕部52、および左手部53によって構成されている。左腕部5における一端(付け根側)から他端(先端側)に向けて、左上腕部51、左前腕部52、および左手部53がこの順番で配置されている。左腕部5の一端が、体幹部3における左肩側に相当する場所に接続されている。 The right arm portion 4 includes an upper right arm portion 41, a right forearm portion 42, and a right hand portion 43. From the one end (base side) to the other end (tip side) of the right arm portion 4, the upper right arm portion 41, the right forearm portion 42, and the right hand portion 43 are arranged in this order. One end of the right arm 4 is connected to a location corresponding to the right shoulder side of the trunk 3. The left arm part 5 includes a left upper arm part 51, a left forearm part 52, and a left hand part 53. The left upper arm 51, the left forearm 52, and the left hand 53 are arranged in this order from one end (base side) to the other end (tip side) of the left arm unit 5. One end of the left arm 5 is connected to a place corresponding to the left shoulder side of the trunk 3.
 右脚部6は、右腿部61および右足部62によって構成されている。右腿部61の一端(付け根側)が体幹部3の腰側に相当する場所に接続されており、右腿部61の他端(先端側)に右足部62が接続されている。左脚部7は、左腿部71および左足部72によって構成されている。左腿部71の一端(付け根側)が体幹部3の腰側に相当する場所に接続されており、左上腕部51の他端(先端側)に左足部72が接続されている。 The right leg 6 is composed of a right thigh 61 and a right foot 62. One end (base side) of the right thigh 61 is connected to a place corresponding to the waist side of the trunk 3, and the right foot 62 is connected to the other end (tip side) of the right thigh 61. The left leg 7 is composed of a left thigh 71 and a left foot 72. One end (base side) of the left thigh 71 is connected to a place corresponding to the waist side of the trunk 3, and the left foot 72 is connected to the other end (tip side) of the left upper arm 51.
 ユーザの指示(外部からの所定の指示)の入力を受け付ける手段としては、音声に限定されず、キーボード、タッチパネル、赤外線などの受光部、であってもよい。 The means for accepting input of user instructions (predetermined instructions from the outside) is not limited to voice, but may be a light receiving unit such as a keyboard, a touch panel, or infrared rays.
 (ロボット1の骨格構成)
 図2の(b)は、本実施形態に係るロボット1の骨格構成を示す図である。この図に示すように、ロボット1は、図1に示す各部材に加えて、さらに、駆動部40(図1参照)としての首ロール11a、首ピッチ11b、首ヨー11c、右肩ピッチ12、左肩ピッチ13、右肘ロール14、左肘ロール15、右股ピッチ16、左股ピッチ17、右足首ピッチ18b、右足首ロール18a、左足首ピッチ19b、および左足首ロール19aを備えている。首ロール11a~左足首ロール19aは、本実施形態ではいずれもサーボモータであり、図示のように各関節部分に設けられていてもよい。首ロール11aという文言は、このサーボモータがロール方向に可動部を回転移動させることができることを意図している。首ピッチ11b等のその他の部材についてもこれに準ずる。
(Skeleton structure of robot 1)
FIG. 2B is a diagram illustrating a skeleton configuration of the robot 1 according to the present embodiment. As shown in this figure, in addition to the members shown in FIG. 1, the robot 1 further includes a neck roll 11a, a neck pitch 11b, a neck yaw 11c, a right shoulder pitch 12, as a drive unit 40 (see FIG. 1), A left shoulder pitch 13, a right elbow roll 14, a left elbow roll 15, a right crotch pitch 16, a left crotch pitch 17, a right ankle pitch 18b, a right ankle roll 18a, a left ankle pitch 19b, and a left ankle roll 19a are provided. The neck roll 11a to the left ankle roll 19a are all servomotors in this embodiment, and may be provided at each joint portion as shown. The term neck roll 11a is intended to enable the servomotor to rotate and move the movable part in the roll direction. The same applies to other members such as the neck pitch 11b.
 後述する制御部10(図1参照)から各駆動部40に指示することより、当該駆動部40を指定の角度へ回転させる、またはトルクのオン/オフを切り換えるといった制御がされる。これにより、ロボット1は、姿勢を維持または変更したり、歩行等の動作を行ったり、手を挙げるなどのジェスチャを行ったりすることが可能となる。以下では、駆動部40のうち、角度の調整が可能なものについて、特に関節部と記す。 By instructing each drive unit 40 from the control unit 10 (see FIG. 1), which will be described later, control is performed such that the drive unit 40 is rotated to a specified angle or torque is turned on / off. As a result, the robot 1 can maintain or change the posture, perform an operation such as walking, or perform a gesture such as raising a hand. Below, what can adjust an angle among the drive parts 40 is described as a joint part especially.
 首ロール11a、首ピッチ11b、および首ヨー11cは、ロボット1における首に相当する場所に配置されている。制御部10は、これらを制御することによって、ロボット1における頭部2の動きを制御することができる。 The neck roll 11a, the neck pitch 11b, and the neck yaw 11c are arranged at a location corresponding to the neck in the robot 1. The control unit 10 can control the movement of the head 2 in the robot 1 by controlling these.
 右肩ピッチ12は、ロボット1における右肩に相当する場所に配置されている。制御部10は、これを制御することによって、ロボット1における右腕部4全体の動きを制御することができる。左肩ピッチ13は、ロボット1における左肩に配置されている。制御部10は、これを制御することによって、ロボット1における左腕部5全体の動きを制御することができる。 The right shoulder pitch 12 is arranged at a position corresponding to the right shoulder in the robot 1. The control unit 10 can control the movement of the entire right arm unit 4 in the robot 1 by controlling this. The left shoulder pitch 13 is disposed on the left shoulder of the robot 1. The control unit 10 can control the movement of the entire left arm unit 5 in the robot 1 by controlling this.
 右肘ロール14は、ロボット1における右肘に相当する場所に配置されている。制御部10は、これを制御することによって、ロボット1における右前腕部42および右手部43の動きを制御することができる。左肘ロール15は、ロボット1における左肘に相当する場所に配置されている。制御部10は、これを制御することによって、ロボット1における左前腕部52および左手部53の動きを制御することができる。 The right elbow roll 14 is disposed at a location corresponding to the right elbow in the robot 1. The control unit 10 can control the movement of the right forearm unit 42 and the right hand unit 43 in the robot 1 by controlling this. The left elbow roll 15 is disposed at a location corresponding to the left elbow in the robot 1. The control unit 10 can control the movement of the left forearm unit 52 and the left hand unit 53 in the robot 1 by controlling this.
 右股ピッチ16は、ロボット1における右股に相当する場所に配置されている。制御部10は、これを制御することによって、ロボット1における右脚部6全体の動きを制御することができる。左股ピッチ17は、ロボット1における左股に相当する場所に配置されている。制御部10は、これを制御することによって、ロボット1における左脚部7全体の動きを制御することができる。 The right crotch pitch 16 is disposed at a location corresponding to the right crotch in the robot 1. The control unit 10 can control the movement of the entire right leg 6 in the robot 1 by controlling this. The left crotch pitch 17 is disposed at a location corresponding to the left crotch in the robot 1. The control unit 10 can control the movement of the entire left leg 7 in the robot 1 by controlling this.
 右足首ピッチ18bおよび右足首ロール18aは、ロボット1における右足首に相当する場所に配置されている。制御部10は、これらを制御することによって、ロボット1における右足部62の動きを制御することができる。左足首ピッチ19bおよび左足首ロール19aは、ロボット1における左足首に相当する場所に配置されている。制御部10は、これらを制御することによって、ロボット1における左足部72の動きを制御することができる。 The right ankle pitch 18b and the right ankle roll 18a are arranged at a location corresponding to the right ankle in the robot 1. The control unit 10 can control the movement of the right foot 62 in the robot 1 by controlling these. The left ankle pitch 19 b and the left ankle roll 19 a are disposed at a location corresponding to the left ankle in the robot 1. The control unit 10 can control the movement of the left foot 72 in the robot 1 by controlling these.
 さらに、制御部10は、右股ピッチ16、左股ピッチ17、右足首ピッチ18bおよび左足首ピッチ19bを同時に制御することによって、ロボット1に前傾姿勢または後傾姿勢をとらせることができる。 Furthermore, the control unit 10 can cause the robot 1 to take the forward tilt posture or the backward tilt posture by simultaneously controlling the right crotch pitch 16, the left crotch pitch 17, the right ankle pitch 18b, and the left ankle pitch 19b.
 以上のように、ロボット1には、1つの可動部に対して、該可動部を駆動するための一つの駆動部40が設けられていてもよい(例えば、右脚部6に対して、右股ピッチ16が設けられていてもよい)。または、1つの可動部に対して、該可動部を駆動するための複数の駆動部40が設けられていてもよい(例えば、頭部2に対して、首ロール11a、首ピッチ11b、および首ヨー11cが設けられていてもよい)。 As described above, the robot 1 may be provided with one drive unit 40 for driving the movable unit with respect to one movable unit (for example, the right leg 6 with respect to the right side). Crotch pitch 16 may be provided). Alternatively, a plurality of driving units 40 for driving the movable unit may be provided for one movable unit (for example, the neck roll 11a, the neck pitch 11b, and the neck with respect to the head 2). Yaw 11c may be provided).
 各駆動部40は、制御部10に対し、角度などのステータスを所定の間隔で通知することが可能である。ステータスの通知は、サーボモータのトルクがオフである場合でも行われ、ユーザによる可動部の動作を検出することができる。制御部10は、ステータスの通知を受けることで、サーボモータの角度を認識することができる。 Each drive unit 40 can notify the control unit 10 of a status such as an angle at a predetermined interval. The status notification is performed even when the torque of the servo motor is off, and the operation of the movable part by the user can be detected. The control unit 10 can recognize the angle of the servo motor by receiving the status notification.
 なお、図示のロボット1は体幹部3に可動部を有さない例を挙げて説明したが、体幹部3の腰の部分が左右に回転可能なように構成してもよい。また頭部2の口に相当する部分に顎状の部材(図示せず)を設け、スピーカ23からの音声に合わせて可動に構成したり、LED22に瞼状の部材(図示せず)を設けて、まばたきをしているような動きが可能なように構成したりしてもよい。このような場合、体幹部3、頭部2も可動部であり得る。また、各可動部が図示した例とは異なる態様で動くように構成してもよい。例えば、右腕部4、左腕部5、右脚部6、および左脚部7が回転したり屈伸したりする以外に、伸縮するように構成してもよい。 Although the illustrated robot 1 has been described with an example in which the trunk 3 does not have a movable part, the waist portion of the trunk 3 may be configured to be rotatable left and right. In addition, a jaw-like member (not shown) is provided at a portion corresponding to the mouth of the head 2 so as to be movable according to the sound from the speaker 23, or a bowl-like member (not shown) is provided on the LED 22. In addition, it may be configured to be able to move like blinking. In such a case, the trunk 3 and the head 2 can also be movable parts. Moreover, you may comprise so that each movable part may move in the aspect different from the example shown in figure. For example, the right arm part 4, the left arm part 5, the right leg part 6, and the left leg part 7 may be configured to expand and contract in addition to rotating and bending and stretching.
 (ロボット1の構成)
 続いて、ロボット1の構成について図1を用いて説明する。図1は、ロボット1の構成を示すブロック図である。ロボット1は、複数の可動部を備えており、個々の可動部の制御を互いに異ならせることができる。
(Configuration of robot 1)
Next, the configuration of the robot 1 will be described with reference to FIG. FIG. 1 is a block diagram showing the configuration of the robot 1. The robot 1 includes a plurality of movable parts, and the control of the individual movable parts can be made different from each other.
 図1に示すように、ロボット1は、制御部10、マイク20、記憶部30、および駆動部40を備える。駆動部40については、図2の(b)を参照して上述した通りである。本実施形態のロボット1は、一例として、プロジェクタ21を備える。さらに、ロボット1は、カメラ24を備えてもよい。ロボット1は、プロジェクタ21およびカメラ24の他にも、特定の機能を実行する主体となる各種機器を備えてもよいが、ここでは、図示を省略した。 As shown in FIG. 1, the robot 1 includes a control unit 10, a microphone 20, a storage unit 30, and a drive unit 40. The drive unit 40 is as described above with reference to FIG. The robot 1 of this embodiment includes a projector 21 as an example. Further, the robot 1 may include a camera 24. In addition to the projector 21 and the camera 24, the robot 1 may include various devices that perform a specific function, but the illustration is omitted here.
 制御部10は、ロボット1の動作および処理を統括的に制御するものである。制御部10の具体的な構成については後述する。マイク20は、ユーザが制御部10に対して入力する音声を取得するための機器である。プロジェクタ21は、制御部10が処理した静止画または動画(以下、画像と総称する)に係る信号を出力して、当該画像を投影先に投影する機器である。カメラ24は、被写体を撮影して画像を入力する機器である。カメラ24は、デジタルカメラであってもよいし、周囲の物体およびユーザの動きを撮像することが可能なデジタルビデオであってもよい。記憶部30は、制御部10が処理を行うための各種情報を記憶する記憶媒体である。記憶部30の具体例としては、ハードディスクまたはフラッシュメモリなどが挙げられる。記憶部30は、ロボット1にとらせる姿勢を複数パターン定義し、その姿勢ごとにロボット1の関節部のトルクをオフにするか否かを規定する姿勢定義テーブル31などを格納している。姿勢定義テーブル31については、後に具体例を挙げて説明する。また、記憶部30は、姿勢定義テーブル31の他に、ユーザからの音声による指示が入力された場合に、該音声指示を解釈するために参照される音声テーブル(図示せず)などを格納している。 The control unit 10 controls the operation and processing of the robot 1 in an integrated manner. A specific configuration of the control unit 10 will be described later. The microphone 20 is a device for acquiring voice input by the user to the control unit 10. The projector 21 is a device that outputs a signal related to a still image or a moving image (hereinafter collectively referred to as an image) processed by the control unit 10 and projects the image onto a projection destination. The camera 24 is a device that captures a subject and inputs an image. The camera 24 may be a digital camera or a digital video capable of capturing surrounding objects and user movements. The storage unit 30 is a storage medium that stores various types of information for the control unit 10 to perform processing. Specific examples of the storage unit 30 include a hard disk or a flash memory. The storage unit 30 defines a plurality of patterns of postures to be taken by the robot 1, and stores a posture definition table 31 that defines whether or not to turn off the torque of the joints of the robot 1 for each posture. The posture definition table 31 will be described later with a specific example. In addition to the posture definition table 31, the storage unit 30 stores a voice table (not shown) that is referred to in order to interpret a voice instruction when a voice instruction from the user is input. ing.
 (制御部10の構成)
 制御部10は、機能ブロックとして、音声認識部81、機能特定部82、駆動制御部83、および機能実行部8を備える。機能実行部8は、具体的には、例えば、投影実行部84、撮影実行部85などであるがこれに限定されない。
(Configuration of control unit 10)
The control unit 10 includes a voice recognition unit 81, a function specifying unit 82, a drive control unit 83, and a function execution unit 8 as functional blocks. Specifically, the function execution unit 8 is, for example, a projection execution unit 84, a shooting execution unit 85, or the like, but is not limited thereto.
 音声認識部81は、マイク20へ入力された音声を認識(解釈)する。音声認識部81は、入力された音声が、記憶部30の音声テーブルに含まれる所定の音声であるか否かを判定する。例えば、マイク20から入力された音声が、「このアルバムをスライドショーで映して」などであるとする。この場合、音声認識部81は、記憶部30の音声テーブルを参照して、スライドショーの投影が指示されたことを認識する。そして、認識結果を、機能特定部82に出力する。 The voice recognition unit 81 recognizes (interprets) the voice input to the microphone 20. The voice recognition unit 81 determines whether or not the input voice is a predetermined voice included in the voice table of the storage unit 30. For example, it is assumed that the sound input from the microphone 20 is “show this album in a slide show”. In this case, the voice recognition unit 81 refers to the voice table in the storage unit 30 and recognizes that a slide show projection has been instructed. Then, the recognition result is output to the function specifying unit 82.
 機能特定部82は、音声認識部81から供給された認識結果に応じて、実行すべき機能を特定し、当該機能を実行する主体に対して当該機能の実行を指示する。例えば、音声認識によってスライドショーの投影が指示されたと判明した場合、機能特定部82は、実行すべきは、プロジェクタ21が実現する投影機能であると特定し、プロジェクタ21を制御する投影実行部84に対して投影機能の実行を指示する。 The function specifying unit 82 specifies a function to be executed in accordance with the recognition result supplied from the voice recognition unit 81, and instructs the main body that executes the function to execute the function. For example, when it is determined by voice recognition that projection of a slide show has been instructed, the function specifying unit 82 specifies that the projection function realized by the projector 21 is to be executed, and the projection executing unit 84 that controls the projector 21 It instructs the execution of the projection function.
 駆動制御部83は、駆動部40をそれぞれ制御する。特に、駆動制御部83は、ロボット1が特定の機能を実行する場合に、その機能実行中にロボット1にとらせる姿勢を決定して、決定した姿勢になるように、各駆動部40を制御する。より具体的には、駆動制御部83は、機能特定部82によって決定された機能に対応する姿勢の定義を姿勢定義テーブル31から読み出す。そして、読み出した定義にしたがって、特定の駆動部40から対応する可動部への力の伝達を許可(トルクをオン)したり、別の駆動部40から対応する可動部への力の伝達を停止(トルクをオフ)したりする。駆動制御部83は、すべての駆動部40に対してトルクをオフにすることもできるし、一部の駆動部40に対してトルクをオフにすることもできる。このようにして、駆動制御部83の制御下で、駆動部40が所定の回転位置に移動したり、その回転位置で静止したりすることにより、図2の(a)に示す各可動部が所定の位置に動いて、ロボット1が特定の姿勢をとることができる。 The drive control part 83 controls the drive part 40, respectively. In particular, when the robot 1 executes a specific function, the drive control unit 83 determines the posture to be taken by the robot 1 during the execution of the function, and controls each drive unit 40 so that the determined posture is obtained. To do. More specifically, the drive control unit 83 reads the posture definition corresponding to the function determined by the function specifying unit 82 from the posture definition table 31. Then, according to the read definition, the transmission of force from the specific drive unit 40 to the corresponding movable unit is permitted (torque is turned on), or the transmission of force from another drive unit 40 to the corresponding movable unit is stopped. (Torque off). The drive control unit 83 can turn off the torque for all the drive units 40, or can turn off the torque for some of the drive units 40. In this way, under the control of the drive control unit 83, the drive unit 40 moves to a predetermined rotation position or stops at the rotation position, so that each movable unit shown in FIG. The robot 1 can move to a predetermined position and take a specific posture.
 さらに、駆動制御部83は、姿勢定義テーブル31を参照し、ロボット1にとらせる特定の姿勢についてトルクオフの可否を判定する。そして、上記特定の姿勢についてトルクオフが可能である場合には、駆動制御部83は、ロボット1に上記特定の姿勢をとらせたあと、すべての駆動部40(関節部)のトルクをオフにする。 Furthermore, the drive control unit 83 refers to the posture definition table 31 and determines whether or not torque off is possible for a specific posture to be taken by the robot 1. When the torque can be turned off for the specific posture, the drive control unit 83 turns off the torque of all the drive units 40 (joint portions) after causing the robot 1 to take the specific posture. .
 機能実行部8は、ロボット1に搭載された各種機器を制御して、ロボット1に備えられた各種機能を実行させる。ロボット1の機能の具体例としては、上述のとおり、映像信号を外部の投影先に投影する投影機能、および、被写体を撮影する撮影機能などがある。上記機能は、それぞれ、投影実行部84がプロジェクタ21を制御することにより、および、撮影実行部85がカメラ24を制御することにより、実現される。上記の他にも、ロボット1は音声通話機能およびスケジュール管理機能などの各種機能(例えば、スマートフォンなどの携帯端末が備えている機能)を備えていてもよい。この場合、これらの機能の実行主体となる機器を制御するための実行部が機能実行部8に含まれていてもよい。 The function execution unit 8 controls various devices mounted on the robot 1 to execute various functions provided in the robot 1. Specific examples of the function of the robot 1 include a projection function for projecting a video signal onto an external projection destination and a photographing function for photographing a subject as described above. The above functions are realized by the projection execution unit 84 controlling the projector 21 and the imaging execution unit 85 controlling the camera 24, respectively. In addition to the above, the robot 1 may have various functions such as a voice call function and a schedule management function (for example, functions provided in a mobile terminal such as a smartphone). In this case, the function execution unit 8 may include an execution unit for controlling a device that is an execution subject of these functions.
 なお、本実施形態に係るロボット1には、CPU(central processing unit)である制御部10と記憶部30とを備えるコンピュータが組み込まれていてもよい。この場合、上記機能ブロックとして示される各部は、CPUが不図示のROM(read only memory)等の記憶装置に記憶されているプログラムをRAM(random access memory)等に読み出して実行することで実現できる。 Note that the robot 1 according to the present embodiment may incorporate a computer including a control unit 10 that is a CPU (central processing unit) and a storage unit 30. In this case, each unit shown as the functional block can be realized by the CPU reading a program stored in a storage device such as a ROM (read only memory) (not shown) to a RAM (random access memory) or the like and executing it. .
 (ロボット1の姿勢について)
 本発明に係るロボット1は、上述のとおり、複数の可動部を備えており、ロボット1の機能実行部8が所定の機能を実行するときに、基本姿勢(第1の姿勢)から当該機能を実行するための特定姿勢(第2の姿勢)に移行することができる。
(About the posture of the robot 1)
As described above, the robot 1 according to the present invention includes a plurality of movable units, and when the function execution unit 8 of the robot 1 executes a predetermined function, the function is changed from the basic posture (first posture). It is possible to shift to a specific posture (second posture) for execution.
 上記所定の機能は、例えば、投影実行部84がプロジェクタ21を制御することにより実現する投影機能であってもよいし、撮影実行部85がカメラ24を制御することにより実現する撮影機能であってもよいし、その他の任意の機能であってもよい。 The predetermined function may be, for example, a projection function realized by the projection execution unit 84 controlling the projector 21, or a shooting function realized by the shooting execution unit 85 controlling the camera 24. Or any other function.
 ここで、基本姿勢は、ロボット1の充電中、または、ロボット1が機能を実行せずにユーザの指示入力を待機している間にロボット1がとる姿勢である。基本姿勢は、例えば、図2の(a)に示すように、ロボット1が直立している姿勢であってもよい。あるいは、基本姿勢は、ロボット1が座っている姿勢、詳細には、床面に対して垂直に起きている体幹部3に対して、脚部(右脚部6および左脚部7)が直角になるように腰を曲げ、脚部背面を床面に接触させる姿勢であってもよい。すなわち、基本姿勢とは、脚部(第1の可動部)のみが床面に接触することにより、脚部と床面とによってロボット1が支持され、その他の可動部が物体に接触せずとも傾倒しない姿勢である。なお、以下では、駆動部40のトルクをオフにしてもロボット1が傾倒しないで静止していられる姿勢を、ロボット1が安定する姿勢と表現する。 Here, the basic posture is a posture that the robot 1 takes while the robot 1 is being charged or while the robot 1 is not performing a function and is waiting for a user instruction input. The basic posture may be, for example, a posture in which the robot 1 is upright as shown in FIG. Alternatively, the basic posture is a posture in which the robot 1 is sitting. Specifically, the legs (the right leg 6 and the left leg 7) are perpendicular to the trunk 3 that is vertical to the floor surface. The posture may be such that the waist is bent so that the back of the leg is in contact with the floor surface. That is, the basic posture means that only the leg (first movable part) is in contact with the floor surface, so that the robot 1 is supported by the leg and the floor surface, and the other movable parts are not in contact with the object. The posture is not inclined. In the following, the posture in which the robot 1 is not tilted even when the torque of the driving unit 40 is turned off and is stationary is expressed as a posture in which the robot 1 is stable.
 一方、特定姿勢(第2の姿勢)は、ロボット1が特定の機能を実行する際にとるべき、基本姿勢とは別の姿勢である。特定姿勢は、脚部(第1の可動部)のみが床面に接触するだけ(例えば、図8)では、(可動部への力の伝達なくしては、)ロボット1が安定しない姿勢である。なおかつ、上記特定姿勢は、脚部以外の可動部が他の物体に接触して該他の物体に支持されることによって、ロボット1が安定する姿勢である。特定姿勢は、例えば、ロボット1が上記投影機能として床面に映像を投影するときにとる前傾姿勢であってもよい。あるいは、上記特定姿勢は、プロジェクタ21が頭部2の背面(後頭部)に設けられている場合、または、ロボット1の腕部(左腕部5および右脚部6)が所定以上に長い場合には、後傾姿勢であってもよい。ロボット1は、第1の可動部としての脚部とは別の、少なくともいずれか1つの可動部を第2の可動部として他の物体に接触させることによって、上記特定姿勢を、上記安定する姿勢として実現する。 On the other hand, the specific posture (second posture) is a posture different from the basic posture to be taken when the robot 1 executes a specific function. The specific posture is a posture in which the robot 1 is not stable (without transmission of force to the movable portion) when only the leg portion (first movable portion) is in contact with the floor surface (for example, FIG. 8). . In addition, the specific posture is a posture in which the robot 1 is stabilized when a movable portion other than the leg portion comes into contact with and is supported by the other object. The specific posture may be, for example, a forward tilt posture that the robot 1 takes when projecting an image on the floor as the projection function. Alternatively, the specific posture is determined when the projector 21 is provided on the back surface (back head) of the head 2 or when the arm portions (the left arm portion 5 and the right leg portion 6) of the robot 1 are longer than a predetermined length. The rearward posture may be used. The robot 1 makes the specific posture the stable posture by bringing at least one movable portion different from the leg portion as the first movable portion into contact with another object as the second movable portion. As realized.
 上記構成によれば、ロボット1は、床面に接触する第1の可動部(脚部など)以外の第2の可動部を、他の物体に接触させることにより、安定した特定姿勢を実現する。上記他の物体が、少なくとも、第2の可動部を介して受ける負荷の方向には動かないように固定されてさえいれば、ロボットに対する荷重が第2の可動部に働いたとき、上記第2の可動部と、上記物体との接触点にて、上記荷重に釣り合う反力が上記物体において働く。したがって、ロボット1は、特定姿勢にて、上記脚部が床面に接触するのみでは、ロボット1を傾倒させる力(荷重)が働いた場合に静止していられないところ、第2の可動部が物体に接触することによって、反力を得て、荷重によって傾倒することなく静止していられる。結果として、ロボット1は、特定姿勢を保つことができ、所定の機能を実行することが可能となる。 According to the above configuration, the robot 1 realizes a stable specific posture by bringing the second movable part other than the first movable part (such as the leg part) in contact with the floor surface into contact with another object. . As long as the other object is fixed so as not to move at least in the direction of the load received via the second movable part, when the load on the robot acts on the second movable part, the second object A reaction force that balances the load acts on the object at the contact point between the movable part and the object. Therefore, the robot 1 cannot stand still when a force (load) for tilting the robot 1 is applied only by the leg contacting the floor surface in a specific posture. By contacting the object, a reaction force is obtained, and the object can stand still without being tilted by the load. As a result, the robot 1 can maintain a specific posture and can execute a predetermined function.
 以下に、図3の(a)~(d)を参照して、ロボット1が安定する姿勢としての特定姿勢の具体例を説明する。図3の(a)~(d)は、ロボット1の左側から、特定姿勢をとるロボット1を見たときの側面図である。本実施形態では、ロボット1は、特定姿勢をとるとき、両腕部(右腕部4および左腕部5)、および、両脚部(右脚部6および左脚部7)の位置を左右対称に置くものとする。したがって、ロボット1が特定姿勢をとるとき、本実施形態では、同図に図示されない右腕部4および右脚部6は、それぞれ、左腕部5および左脚部7と左右対称の位置に置かれるものとし、以下では、右腕部4および右脚部6の位置についての説明を省略する。その他の実施形態でも同様である。しかし、本発明のロボット1はこれに限定されず、ロボット1は、左右非対称の特定姿勢をとってもよい。 Hereinafter, a specific example of a specific posture as a posture in which the robot 1 is stable will be described with reference to (a) to (d) of FIG. FIGS. 3A to 3D are side views when the robot 1 taking a specific posture is viewed from the left side of the robot 1. In this embodiment, when the robot 1 takes a specific posture, the positions of both arms (right arm 4 and left arm 5) and both legs (right leg 6 and left leg 7) are placed symmetrically. Shall. Therefore, when the robot 1 takes a specific posture, in this embodiment, the right arm portion 4 and the right leg portion 6 (not shown in the figure) are placed at positions symmetrical to the left arm portion 5 and the left leg portion 7, respectively. In the following, description of the positions of the right arm portion 4 and the right leg portion 6 is omitted. The same applies to other embodiments. However, the robot 1 of the present invention is not limited to this, and the robot 1 may take a left-right asymmetric specific posture.
 ロボット1は、例えば、画像を床面に投影する投影機能を実行するとき、特定姿勢として、図3の(a)~(c)に示すような、前傾姿勢(第2の姿勢)をとってもよいし、図3の(d)に示すような、後傾姿勢(第2の姿勢)をとってもよい。図3の(a)~(d)によれば、ロボット1の特定姿勢とは、上記第1の可動部として左脚部7の左足部72の底面が、床面Bに接触しているとともに、上記第2の可動部として左腕部5の左手部53が、他の物体に接触している姿勢である。上記構成によれば、ロボット1は、特定姿勢にて、脚部(右脚部6および左脚部7)のみが床面に接触するだけでは、傾倒してしまうところ、腕部(右腕部4および左腕部5)が他の物体に接触しているため、当該腕部を介して、該物体から反力を受けることによってロボット1を支持することができる。したがって、ロボット1を、上記特定姿勢にて、傾倒せずに静止させることができる。なお、図3の(d)は、脚部に膝関節が含まれていて、該膝関節に接続される腿部と膝下部とを個別に駆動できる構成、および、腕部が十分に長い構成の少なくともいずれか一方の構成を備えるロボットによって実現される姿勢である。 For example, when executing a projection function for projecting an image onto a floor surface, the robot 1 takes a forward tilt posture (second posture) as shown in FIGS. 3A to 3C as a specific posture. Alternatively, a rearward tilting posture (second posture) as shown in FIG. According to FIGS. 3A to 3D, the specific posture of the robot 1 means that the bottom surface of the left foot portion 72 of the left leg portion 7 as the first movable portion is in contact with the floor surface B. In this posture, the left hand portion 53 of the left arm portion 5 is in contact with another object as the second movable portion. According to the above configuration, the robot 1 tilts when only the leg portions (the right leg portion 6 and the left leg portion 7) are in contact with the floor surface in a specific posture, but the arm portion (the right arm portion 4). Since the left arm 5) is in contact with another object, the robot 1 can be supported by receiving a reaction force from the object via the arm. Therefore, the robot 1 can be stationary without tilting in the specific posture. FIG. 3D shows a configuration in which the leg includes a knee joint, and the thigh and the lower knee connected to the knee joint can be individually driven, and the arm is sufficiently long. The posture is realized by a robot having at least one of the configurations.
 なお、左手部53が接触する他の物体は、具体的には、図3の(c)および(d)に示すように、床面Bであってもよい。上記構成によれば、脚部に加えて、腕部を、上述の他の物体としての床面Bに接触させることにより、体幹部3が任意の角度に(例えば、ほぼ水平まで)傾いても、ロボット1の姿勢を安定させることができる。 It should be noted that the other object that the left hand part 53 contacts may specifically be the floor surface B, as shown in (c) and (d) of FIG. According to the above configuration, even when the trunk portion 3 is inclined at an arbitrary angle (for example, substantially horizontally) by bringing the arm portion into contact with the floor B as the other object described above in addition to the leg portion. The posture of the robot 1 can be stabilized.
 あるいは、左手部53が接触する他の物体は、ロボット1の他の可動部、具体的には、図3の(a)および(b)に示すように、左脚部7であってもよい。上記構成によれば、床面Bに支持されている脚部に腕部を接触させる。すなわち、腕部が、上述の他の物体としての脚部に接触することにより、体幹部3を支持する。この特定姿勢は、腕部の長さが比較的短く、体幹部3を相当角度(水平もしくはそれ以上に前に)傾けないと床面Bに腕部が届かないようなロボット1に好適な姿勢である。 Or the other object which the left hand part 53 contacts may be the left leg part 7, as shown to the other movable part of the robot 1, specifically, (a) and (b) of FIG. . According to the said structure, an arm part is made to contact the leg part currently supported by the floor surface B. FIG. That is, the arm part supports the trunk part 3 by contacting the leg part as the other object described above. This specific posture is suitable for the robot 1 in which the arm portion is relatively short and the arm portion does not reach the floor surface B unless the trunk portion 3 is tilted by a corresponding angle (horizontal or forward). It is.
 より詳細には、プロジェクタ21が頭部2の正面側に設けられている場合、投影機能実行時の特定姿勢は、左腕部5の少なくとも一部(左手部53など)が、左脚部7の前面に接触している姿勢である。脚部の前面とは、すなわち、プロジェクタ21の投影方向(前方)と同じ側の面である。具体的には、脚部の前面は、例えば、左腿部71の前面(人の膝またはすねに相当する面も含む)、および、左足部72の前面(人の足の甲またはつま先に相当する面も含む)などである。上記構成によれば、プロジェクタ21の投影方向がロボット1の前方であり、投影先からロボット1を見たときに見えるロボット1の面を正面としたとき、脚部の正面側に腕部をつくことで、体幹部3を投影方向(前方)に傾けた姿勢(前傾姿勢)を保つことができる。よって、頭部2に設けられたプロジェクタ21の投影方向を前方床面Bに向けることが可能となる。そして、体幹部3を前方に傾けた分、投影方向を床面Bに対して垂直に近づけることが可能となり、プロジェクタ21から投影された投影画像Pの台形のゆがみをその分抑えることが可能となる。 More specifically, when the projector 21 is provided on the front side of the head 2, the specific posture at the time of executing the projection function is that at least a part of the left arm portion 5 (such as the left hand portion 53) The posture is in contact with the front surface. The front surface of the leg is a surface on the same side as the projection direction (front) of the projector 21. Specifically, the front surface of the leg is, for example, the front surface of the left thigh 71 (including a surface corresponding to a human knee or shin) and the front surface of the left foot 72 (corresponding to the back or toe of a human foot). Including the surface to be used). According to the above configuration, when the projection direction of the projector 21 is the front of the robot 1 and the surface of the robot 1 seen when the robot 1 is viewed from the projection destination is the front, the arm is attached to the front side of the leg. Thus, it is possible to maintain a posture (forward tilt posture) in which the trunk 3 is tilted in the projection direction (forward). Therefore, the projection direction of the projector 21 provided on the head 2 can be directed to the front floor surface B. As the trunk 3 is tilted forward, the projection direction can be made perpendicular to the floor surface B, and the trapezoidal distortion of the projection image P projected from the projector 21 can be suppressed accordingly. Become.
 好ましくは、上記特定姿勢は、図3の(a)に示すように、左足部72に底面が床面Bに接触しているとともに、左手部53が左足部72の甲に接触している姿勢である。上記構成によれば、足部(右足部62および左足部72)の甲に腕部の先端(手部、すなわち、右手部43および左手部53)をつくことで、体幹部3を前に傾けて、ロボット1の前傾姿勢を保つことができる。脚部のうち、床面Bに直接触れている可動部(すなわち足)の甲に手をつくことにより、(間接的に膝または腿に手をつく場合と比較して)より安定した物体に支持されることになり、姿勢がより安定する。当該特定姿勢は、腕部が短く体幹部3を床面Bに平行またはそれ以上に前傾させないと床面Bに腕部が届かないようなロボットに好適な姿勢である。さらに、当該特定姿勢では、(膝または腿に手をつく場合と比較して)体幹部3の傾きを可能な限り床面Bに平行に近づけることができる。これにより、頭部2の正面に設けられたプロジェクタ21の投影方向を前方床面Bに向けるときに、体幹部3を前傾させた分、該投影方向を床面Bに対して垂直にすることができる。したがって、その分、プロジェクタ21から投影された投影画像Pの台形のゆがみを抑えることが可能となる。 Preferably, as shown in FIG. 3A, the specific posture is a posture in which the bottom surface of the left foot portion 72 is in contact with the floor surface B and the left hand portion 53 is in contact with the back of the left foot portion 72. It is. According to the above configuration, the trunk 3 is tilted forward by attaching the tip of the arm (the hand, that is, the right hand 43 and the left hand 53) to the back of the foot (the right foot 62 and the left foot 72). Thus, the forward tilting posture of the robot 1 can be maintained. By placing a hand on the back of the movable part (ie, the foot) that directly touches the floor B of the legs, the object becomes more stable (compared to hands on the knee or thigh indirectly). Being supported, the posture is more stable. The specific posture is a posture suitable for a robot whose arm portion is short and the trunk portion 3 does not reach the floor surface B unless the trunk portion 3 is tilted forward or parallel to the floor surface B. Furthermore, in the specific posture, the inclination of the trunk 3 can be made as close as possible to the floor B as much as possible (compared to the case where a hand is placed on the knee or thigh). Thereby, when the projection direction of the projector 21 provided in front of the head 2 is directed to the front floor surface B, the projection direction is made perpendicular to the floor surface B by the amount of the trunk 3 tilted forward. be able to. Accordingly, it is possible to suppress the distortion of the trapezoid of the projection image P projected from the projector 21 correspondingly.
 図3の(a)を参照して、より好ましくは、上記特定姿勢において、体幹部3は、床面Bに対する体幹部3の傾きθ1が所定値以下になるように(水平に近づくように)、前に傾けられる。具体的には、体幹部3の傾きθ1は、プロジェクタ21の投影方向の床面Bに対する傾きθ2が所定値以上になるように(垂直に近づくように)決定される。ここで、投影方向の傾きθ2は、プロジェクタ21により投影された投影画像Pのひずみが最も強くなる投影方向Dと床面Bとが成す角度であって、この傾きθ2が小さくなるほど、投影画像Pのひずみが強くなる。このため、傾きθ2は、ロボット1に搭載されている、上記ひずみを補正するための画像処理機能の性能に応じて、投影画像Pのひずみがどれほどまで許容されるのかに応じて決定される。上記画像処理機能とは、具体的には、床に投影されて台形に歪んだ投影画像Pを画像処理によって長方形に補正する機能(以下、台形補正機能)である。以上のことから、上記特定姿勢において、体幹部3は、プロジェクタ21によって投影される投影画像Pのひずみが、ロボット1の台形補正機能(画像処理機能)によって補正可能な範囲となるように、傾いていることが好ましい。 With reference to (a) of FIG. 3, more preferably, in the specific posture, the trunk 3 is configured such that the inclination θ1 of the trunk 3 with respect to the floor surface B is equal to or less than a predetermined value (so as to approach the horizontal). Tilted forward. Specifically, the inclination θ1 of the trunk 3 is determined such that the inclination θ2 of the projection direction of the projector 21 with respect to the floor surface B is equal to or greater than a predetermined value (approaching the vertical direction). Here, the inclination θ2 of the projection direction is an angle formed by the projection direction D and the floor B where the distortion of the projection image P projected by the projector 21 is the strongest. The smaller the inclination θ2, the smaller the projection image P. The distortion becomes stronger. Therefore, the inclination θ2 is determined according to how much the distortion of the projection image P is allowed according to the performance of the image processing function for correcting the distortion mounted on the robot 1. Specifically, the image processing function is a function of correcting a projection image P projected on the floor and distorted into a trapezoid into a rectangle by image processing (hereinafter referred to as a trapezoid correction function). From the above, in the specific posture, the trunk 3 tilts so that the distortion of the projection image P projected by the projector 21 is within a range that can be corrected by the trapezoid correction function (image processing function) of the robot 1. It is preferable.
 (ロボット1による処理の流れ)
 図4は、ロボット1の制御部10が実行する処理の流れを示すフローチャートである。音声認識部81は、マイク20に音声が入力されると、入力された音声を音声テーブルに記憶された標本の音声と比較して、入力された音声の意味内容を認識する(S101)。機能特定部82は、音声認識部81による認識結果に基づいて、ロボット1が備えている所定の機能の実行が指示された否かを判定する(S102)。ここで、入力された音声が機能実行指示に該当しない場合は(S102でNO)、ロボット1の制御部10は、入力された音声の意味内容に応じた処理を実行すればよい(S110)。
(Processing flow by robot 1)
FIG. 4 is a flowchart showing a flow of processing executed by the control unit 10 of the robot 1. When the voice is input to the microphone 20, the voice recognition unit 81 compares the input voice with the voice of the sample stored in the voice table, and recognizes the meaning content of the input voice (S101). The function specifying unit 82 determines whether or not an instruction to execute a predetermined function provided in the robot 1 is instructed based on the recognition result by the voice recognition unit 81 (S102). Here, when the input voice does not correspond to the function execution instruction (NO in S102), the control unit 10 of the robot 1 may execute a process according to the meaning content of the input voice (S110).
 一方、所定の機能の実行が指示された場合(S102でYES)、機能特定部82は、実行が指示された機能を特定する(S103:機能特定ステップ)。ここでは、例えば、機能特定部82は、ロボット1が記憶する画像のスライドショーを床面に投影することが指示されたのだと認識したものとする。 On the other hand, when execution of a predetermined function is instructed (YES in S102), the function specifying unit 82 specifies the function instructed to execute (S103: function specifying step). Here, for example, it is assumed that the function specifying unit 82 recognizes that it has been instructed to project a slide show of images stored in the robot 1 onto the floor surface.
 続いて、駆動制御部83は、機能特定部82が特定した機能を実行するときに、ロボット1がとるべき姿勢を決定する(S104)。例えば、駆動制御部83は、姿勢定義テーブル31を参照して、床面に画像を投影する機能(以下、機能名「床投影」)に対応付けられた特定姿勢を決定する。そして、駆動制御部83は、決定した該特定姿勢の定義を、姿勢定義テーブル31から読み出す。駆動制御部83は、ロボット1の現在の姿勢が、決定した特定姿勢に該当するか否かを判定する(S105)。駆動制御部83は、現在の姿勢が特定姿勢でなければ(S105でNO)、当該特定姿勢に移行するように、上記特定姿勢の定義にしたがって、各関節部の駆動部40を制御する(S106:駆動制御ステップ)。すなわち、駆動制御部83は、各関節部に対応するサーボモータが、該サーボモータについて規定されている保持角度を維持するように、各関節部の駆動部40を制御する。ここで、駆動制御部83は、姿勢定義テーブル31を参照して、S104で決定した特定姿勢が、トルクを抜いてもロボット1が安定する姿勢であるか否かを判定する。決定した特定姿勢が、トルクを抜いてもロボット1が傾倒しないで安定する姿勢である場合には(S107でYES)、駆動制御部83は、S105にてロボット1の姿勢を決定した特定姿勢に移行させた後に、各駆動部40から対応する可動部への力の伝達を停止する。力の伝達の停止としては、例えば、各可動部を駆動するすべての駆動部40の電源をオフにすることなどが含まれる。駆動制御部83は、具体的には、ロボット1の各関節部に対応するサーボモータのトルクをオフにする(S108:駆動停止ステップ)。なお、S107の判定のステップは、S104のステップが実行された後、S108のステップが実行されるまでの間の任意のタイミングが実行されればよい。 Subsequently, the drive control unit 83 determines a posture to be taken by the robot 1 when executing the function specified by the function specifying unit 82 (S104). For example, the drive control unit 83 refers to the posture definition table 31 and determines a specific posture associated with a function for projecting an image on the floor surface (hereinafter, function name “floor projection”). Then, the drive control unit 83 reads the determined definition of the specific posture from the posture definition table 31. The drive control unit 83 determines whether or not the current posture of the robot 1 corresponds to the determined specific posture (S105). If the current posture is not a specific posture (NO in S105), the drive control unit 83 controls the drive unit 40 of each joint according to the definition of the specific posture so as to shift to the specific posture (S106). : Drive control step). In other words, the drive control unit 83 controls the drive unit 40 of each joint so that the servo motor corresponding to each joint maintains the holding angle defined for the servo motor. Here, the drive control unit 83 refers to the posture definition table 31 and determines whether or not the specific posture determined in S104 is a posture in which the robot 1 is stable even if torque is removed. If the determined specific posture is a posture in which the robot 1 does not tilt even if torque is removed (YES in S107), the drive control unit 83 sets the posture of the robot 1 determined in S105. After the transition, the transmission of force from each drive unit 40 to the corresponding movable unit is stopped. Stopping the transmission of force includes, for example, turning off the power of all the driving units 40 that drive each movable unit. Specifically, the drive control unit 83 turns off the torque of the servo motor corresponding to each joint of the robot 1 (S108: drive stop step). The determination step of S107 may be performed at any timing after the step of S104 is executed and before the step of S108 is executed.
 駆動制御部83によってロボット1が上記特定姿勢をとるように制御されている間、あるいは、駆動制御部83の制御によって、ロボット1が上記特定姿勢に移行した後、機能実行部8は、機能特定部82によって特定された機能を実行する(S109)。ここでは、例えば、投影実行部84は、床投影の機能を実行する。 While the robot 1 is controlled to take the specific posture by the drive control unit 83 or after the robot 1 shifts to the specific posture by the control of the drive control unit 83, the function execution unit 8 The function specified by the unit 82 is executed (S109). Here, for example, the projection execution unit 84 executes a floor projection function.
 上記方法によれば、ロボット1が、床投影機能を実行するための特定姿勢に移行した後に、駆動制御部83は、駆動部40への電流を停止する。そのため、傾倒することなくロボット1の姿勢が安定して、上記床投影機能の実行を継続できる。その上、駆動部40が電力を消費することがなくなり、結果として、省電力、および、発熱回避による回路保護を実現することが可能となる。 According to the above method, after the robot 1 shifts to the specific posture for executing the floor projection function, the drive control unit 83 stops the current to the drive unit 40. Therefore, the posture of the robot 1 can be stabilized without tilting, and the execution of the floor projection function can be continued. In addition, the drive unit 40 does not consume power, and as a result, power saving and circuit protection by avoiding heat generation can be realized.
 (姿勢定義テーブル31)
 図5は、ロボット1の制御部10が参照する姿勢定義テーブル31の一具体例を示す図である。なお、図5において、姿勢の定義情報をテーブル形式のデータ構造にて示したことは一例であって、定義情報のデータ構造を、テーブル形式に限定する意図はない。
(Attitude definition table 31)
FIG. 5 is a diagram illustrating a specific example of the posture definition table 31 referred to by the control unit 10 of the robot 1. In FIG. 5, the posture definition information is shown in a table format data structure, and is not intended to limit the definition information data structure to the table format.
 本実施形態では、図5に示すとおり、姿勢定義テーブル31において、1つの姿勢の定義情報は、保持角度の情報と、機能の情報と、トルクオフフラグとの3つの情報を含む。より詳細には、姿勢定義テーブル31の保持角度のカラムにおいて、1つの姿勢につき、当該姿勢をロボット1にとらせるときの各サーボモータの保持角度が、各関節部に対応するサーボモータ(駆動部40)ごとに規定されている。機能のカラムにおいて、ロボット1が実行可能な所定の機能が、姿勢に関連付けて格納されている。これにより、当該姿勢が、どの機能を実行するときにとられる姿勢であるのかが判明する。より具体的には、S104において、駆動制御部83は、図5に示す姿勢定義テーブル31を参照することにより、機能名「床投影」に対応する特定姿勢として、「02_前傾」の姿勢を決定することができる。なお、図5に示す例では、1つの姿勢には、複数の機能が関連付けられているが、姿勢と機能との対応関係は1対1であってもよい。 In the present embodiment, as shown in FIG. 5, in the posture definition table 31, one posture definition information includes three pieces of information: holding angle information, function information, and torque-off flag. More specifically, in the holding angle column of the posture definition table 31, for each posture, the holding angle of each servo motor when the posture is taken by the robot 1 is a servo motor (drive unit) corresponding to each joint portion. 40). In the function column, predetermined functions that can be executed by the robot 1 are stored in association with postures. As a result, it becomes clear which function is the posture taken when the posture is executed. More specifically, in S104, the drive control unit 83 refers to the posture definition table 31 illustrated in FIG. 5, and sets the posture of “02_forward tilt” as the specific posture corresponding to the function name “floor projection”. Can be determined. In the example illustrated in FIG. 5, a plurality of functions are associated with one posture, but the correspondence between the posture and the function may be one-to-one.
 トルクオフフラグのカラムにおいて、ロボット1が当該姿勢をとった場合に、関節部に対応するすべてのサーボモータのトルクをオフしても、ロボット1が安定する姿勢であるか否かを示す情報が格納されている。ここでは、トルクオフフラグの「可」は、当該姿勢が、トルクをオフにしてもロボット1が傾倒しない、すなわち、安定する姿勢であることを示す。反対に、トルクオフフラグの「不可」は、当該姿勢が、トルクをオフにするとロボット1が傾倒する可能性がある、すなわち、安定しない姿勢であることを示す。姿勢に関連付けられた上記トルクオフフラグが、「可」であるのか「不可」であるのかを判定することにより、駆動制御部83は、決定した特定姿勢をロボット1がとった後に、各サーボモータのトルクをオフにできるか否かを判断する。具体的には、S107において、駆動制御部83は、図5に示す姿勢定義テーブル31を参照することにより、決定した特定姿勢「02_前傾」に関連付けられているトルクオフフラグが「可」であるか「不可」であるかを判定する。ここで、決定した特定姿勢「02_前傾」のトルクオフフラグは、「可」であるので、駆動制御部83は、ロボット1に特定姿勢「02_前傾」をとらせた後、ロボット1の関節部に対応するすべてのサーボモータのトルクをオフにする。 In the torque off flag column, there is information indicating whether or not the robot 1 is in a stable posture even if the torque of all servo motors corresponding to the joints is turned off when the robot 1 takes the posture. Stored. Here, “OK” in the torque-off flag indicates that the posture does not tilt even when the torque is turned off, that is, a stable posture. Conversely, “impossible” of the torque-off flag indicates that the posture may be tilted when the torque is turned off, that is, the posture is not stable. By determining whether the torque-off flag associated with the posture is “possible” or “impossible”, the drive control unit 83 allows each servo motor to move after the robot 1 takes the determined specific posture. It is determined whether or not the torque can be turned off. Specifically, in S107, the drive control unit 83 refers to the posture definition table 31 shown in FIG. 5, and the torque-off flag associated with the determined specific posture “02_forward lean” is “possible”. It is determined whether it is present or not. Here, since the torque off flag of the determined specific posture “02_forward lean” is “possible”, the drive control unit 83 causes the robot 1 to take the specific posture “02_forward lean” and then the robot 1 Turn off the torque of all servo motors corresponding to the joints.
 なお、姿勢定義テーブル31を、図5に示すように1つのテーブルにて示したことは一例に過ぎず、姿勢定義テーブル31は、複数のテーブルから成ってもよい。例えば、機能ごとに当該機能を実行するためにとるべき姿勢を関連付けた第1のテーブルと、姿勢ごとに保持角度の情報を関連付けた第2のテーブルと、姿勢ごとにトルクオフフラグを関連付けた第3のテーブルとによって、姿勢定義テーブル31が構成されてもよい。 Note that the posture definition table 31 shown in one table as shown in FIG. 5 is merely an example, and the posture definition table 31 may include a plurality of tables. For example, a first table that associates the posture to be taken for executing the function for each function, a second table that associates holding angle information for each posture, and a torque off flag associated with each posture. The posture definition table 31 may be configured by the three tables.
 また、特定姿勢のそれぞれが、安定する姿勢であるか否か(トルクオフの可否)を判定する方法は、上記に限定されない。駆動制御部83は、トルクオフフラグを参照せずとも、1つの姿勢につき定義されたサーボモータごとの保持角度に基づいて、当該姿勢のトルクオフ可否を判定してもよい。 Further, the method for determining whether or not each of the specific postures is a stable posture (whether or not torque can be turned off) is not limited to the above. The drive control unit 83 may determine whether or not torque off is possible for the posture based on the holding angle for each servo motor defined for one posture without referring to the torque-off flag.
 〔実施形態2〕
 本発明の他の実施形態について、図6に基づいて説明すれば、以下のとおりである。なお、説明の便宜上、実施形態1にて説明した部材と同じ機能を有する部材については、同じ符号を付記し、その説明を省略する。実施形態1では、ロボット1が前方の床面に画像を投影する機能を実行するためにとる前傾姿勢に関して、安定する姿勢の具体例を説明する。本実施形態では、ロボット1が天井に画像を投影する機能を実行するためにとる特定姿勢に関して、図6を参照して、安定する姿勢の具体例を説明する。
[Embodiment 2]
The following will describe another embodiment of the present invention with reference to FIG. For convenience of explanation, members having the same functions as those described in the first embodiment are denoted by the same reference numerals and description thereof is omitted. In the first embodiment, a specific example of a stable posture will be described with respect to a forward tilt posture that the robot 1 takes to execute a function of projecting an image onto a front floor surface. In the present embodiment, a specific example of a stable posture will be described with reference to FIG. 6 regarding a specific posture that the robot 1 takes to execute the function of projecting an image on the ceiling.
 ロボット1は、例えば、画像を天井面に投影する機能(機能名「天井投影」)を実行するとき、特定姿勢として、図6に示すような、ブリッジ姿勢(第2の姿勢)をとってもよい。図6によれば、ブリッジ姿勢は、第1の可動部として左足部72の底面が、床面Bに接触しているとともに、第2の可動部として左手部53が、他の物体(ここでは、床面B)に接触している姿勢である。これにより、左脚部7に加えて左腕部5が、床面Bからの反力を利用して、ロボット1の頭部2および体幹部3を支持するため、ロボット1の姿勢が安定する。ここで、ブリッジ姿勢において、以下の各関節部、右肩ピッチ12、左肩ピッチ13、右股ピッチ16、左股ピッチ17、右足首ピッチ18bおよび左足首ピッチ19bは、対応する可動部がロボット1の後方に向くような角度で該可動部を保持する。これにより、ロボット1は、頭部2および体幹部3の正面(すなわち、ロボット1の顏および腹)が、天井面Cの方向に向いた状態で安定する姿勢をとることができ、頭部2正面に設けられたプロジェクタ21が、天井面Cに向かって画像を投影することが可能となる。 The robot 1 may take a bridge posture (second posture) as shown in FIG. 6 as a specific posture, for example, when executing a function of projecting an image on a ceiling surface (function name “ceiling projection”). According to FIG. 6, the bridge posture is such that the bottom surface of the left foot portion 72 as the first movable portion is in contact with the floor surface B, and the left hand portion 53 as the second movable portion is another object (here, The posture is in contact with the floor surface B). Thereby, in addition to the left leg 7, the left arm 5 supports the head 2 and the trunk 3 of the robot 1 using the reaction force from the floor B, so that the posture of the robot 1 is stabilized. Here, in the bridge posture, each of the following joint portions, right shoulder pitch 12, left shoulder pitch 13, right crotch pitch 16, left crotch pitch 17, right ankle pitch 18b, and left ankle pitch 19b, the corresponding movable portion is the robot 1 The movable part is held at an angle so as to face rearward. Thereby, the robot 1 can take a stable posture in a state where the front surfaces of the head 2 and the trunk 3 (that is, the heel and the belly of the robot 1) are directed toward the ceiling surface C. The projector 21 provided in the front can project an image toward the ceiling surface C.
 〔実施形態3〕
 本発明の他の実施形態について、図7に基づいて説明すれば、以下のとおりである。なお、説明の便宜上、実施形態1および実施形態2にて説明した部材と同じ機能を有する部材については、同じ符号を付記し、その説明を省略する。
[Embodiment 3]
The following will describe another embodiment of the present invention with reference to FIG. For convenience of explanation, members having the same functions as those described in the first and second embodiments are denoted by the same reference numerals and description thereof is omitted.
 実施形態1および2では、ロボット1は、特定姿勢を安定する姿勢とするために、第2の可動部の少なくとも一部(例えば、左腕部5の左手部53)を、他の物体としての、ロボット1の他の可動部、または、床面Bに接触させる構成であった。 In the first and second embodiments, the robot 1 uses at least a part of the second movable portion (for example, the left hand portion 53 of the left arm portion 5) as another object in order to make the specific posture stable. It was the structure made to contact the other movable part of the robot 1, or the floor B.
 しかし、ロボット1が第2の可動部を接触させる他の物体は、上記に限定されない。ロボット1は、特定姿勢を安定する姿勢とするために、上記他の物体として、壁面、手すり、取っ手、突っ張り棒、柱、ポールなどの不動の物体に、例えば、左手部53をつく(第2の可動部を接触させる)構成であってもよい。具体的には、本発明に係るロボット1の特定姿勢は、図7の(a)に示すとおり、壁面W(他の物体)に左手部53をつき、左腕部5と左脚部7とでロボット1を支持することにより、ロボット1が安定する姿勢であってもよい。 However, other objects with which the robot 1 contacts the second movable part are not limited to the above. In order to make the specific posture stable, for example, the robot 1 attaches, for example, the left hand portion 53 to a stationary object such as a wall surface, a handrail, a handle, a tension rod, a pillar, or a pole as the other object (second The movable part may be in contact with each other. Specifically, as shown in FIG. 7A, the specific posture of the robot 1 according to the present invention is such that the left hand portion 53 is attached to the wall surface W (other object), and the left arm portion 5 and the left leg portion 7 The robot 1 may be in a stable posture by supporting the robot 1.
 あるいは、ロボット1は、上記他の物体として、つり革、ボール、置物、家具などの物体に、例えば、左手部53をつく構成であってもよい。すなわち、ロボット1が、特定姿勢を安定する姿勢とするために、第2の可動部を接触させる「他の物体」とは、ロボット1の荷重が作用する方向には動かないように固定された物体である。例えば、つり革、ボールなどは、別方向から負荷がかかれば動くかもしれないが、ロボット1が傾倒しようとする力(荷重)が作用する方向には動かないように固定された物体である。これらの物体は、荷重方向に対して固定されているため、条件が整えば、荷重と釣り合う反力をロボット1の第2の可動部に対して供給することができる。ロボット1は、このように固定された物体であれば、任意の物体に第2の可動部を接触させることができ、これにより、安定する姿勢を実現することが可能である。具体的には、本発明に係るロボット1の特定姿勢は、図7の(b)に示すとおり、机F(他の物体)に左手部53をつき、左腕部5と左脚部7とでロボット1を支持することにより、ロボット1が安定する姿勢であってもよい。 Alternatively, the robot 1 may be configured such that, for example, the left hand portion 53 is attached to an object such as a strap, a ball, a figurine, or furniture as the other object. In other words, in order to make the specific posture stable, the robot 1 is fixed so that it does not move in the direction in which the load of the robot 1 acts on the “other object” with which the second movable part is brought into contact. It is an object. For example, a strap, a ball, and the like are objects that may move if a load is applied from another direction, but are fixed so as not to move in a direction in which a force (load) to which the robot 1 tries to tilt is applied. Since these objects are fixed with respect to the load direction, a reaction force that balances the load can be supplied to the second movable portion of the robot 1 if conditions are adjusted. As long as the robot 1 is an object fixed in this way, the second movable part can be brought into contact with an arbitrary object, whereby a stable posture can be realized. Specifically, as shown in FIG. 7B, the specific posture of the robot 1 according to the present invention is such that the left hand portion 53 is attached to the desk F (another object), and the left arm portion 5 and the left leg portion 7 The robot 1 may be in a stable posture by supporting the robot 1.
 〔変形例〕
 上述の各実施形態において、ロボット1の駆動制御部83は、ロボット1が安定する姿勢に移行した後、すべての駆動部40の電源をオフにして停止させる構成である。上記構成によれば、省電力、および、発熱回避による回路保護の観点から最も効果的な結果が得られるからである。しかしながら、本発明において、駆動制御部83が駆動部40を部分的に停止する構成が排除されないことを理解されたい。例えば、駆動制御部83は、一部の駆動部40(例えば、消費電力量が最も多い右足首ピッチ18bおよび左足首ピッチ19b)について電源をオフにする構成であってもよい。
[Modification]
In each of the above-described embodiments, the drive control unit 83 of the robot 1 is configured to turn off and stop all the drive units 40 after the robot 1 has shifted to a stable posture. This is because according to the above configuration, the most effective results can be obtained from the viewpoint of power saving and circuit protection by avoiding heat generation. However, in the present invention, it should be understood that the configuration in which the drive control unit 83 partially stops the drive unit 40 is not excluded. For example, the drive control unit 83 may be configured to turn off the power for some of the drive units 40 (for example, the right ankle pitch 18b and the left ankle pitch 19b having the largest amount of power consumption).
 本発明に係るロボット1の特定姿勢は、ロボット1が投影機能以外のさまざまな所定の機能を実行するときにも好適に用いられる。例えば、ロボット1が安定する本発明に係る前傾姿勢は、ロボット1がカメラ24を用いて撮影するとき、より詳細には、床面に設置されたQRコード(登録商標)などを読み取るときに適用可能である。 The specific posture of the robot 1 according to the present invention is also suitably used when the robot 1 executes various predetermined functions other than the projection function. For example, the forward tilting posture according to the present invention in which the robot 1 is stable is when the robot 1 takes a picture using the camera 24, more specifically, when reading a QR code (registered trademark) or the like installed on the floor surface. Applicable.
 プロジェクタ21およびカメラ24は、ロボット1の頭部2(眉間)に限定されず、体幹部3の正面側(腹側)に設けられていてもよい。この場合にも、ロボット1は、図3の(a)~(d)または図6に示すような特定姿勢をとることができる。これにより、ロボット1は、前方に画像を投影する機能、または、前方を撮影する機能を、駆動部40が停止されても、安定した姿勢で実行することができる。 The projector 21 and the camera 24 are not limited to the head 2 (between eyebrows) of the robot 1 and may be provided on the front side (abdomen side) of the trunk 3. Also in this case, the robot 1 can take a specific posture as shown in FIGS. 3A to 3D or FIG. Thereby, the robot 1 can execute a function of projecting an image forward or a function of photographing the front in a stable posture even when the drive unit 40 is stopped.
 ロボット1は、特定姿勢をとるときに、第2の可動部の少なくとも一部として、左手部53を他の物体に接触させる構成である。しかし、この構成に限定されず、ロボット1は、左腕部5の肘に相当する部分(左上腕部51と左前腕部52との接続部分)、または、右腕部4の右上腕部41と右前腕部42との接続部分を、他の物体に接触させてもよい。 The robot 1 is configured to bring the left hand portion 53 into contact with another object as at least a part of the second movable portion when taking a specific posture. However, the robot 1 is not limited to this configuration, and the robot 1 is a portion corresponding to the elbow of the left arm portion 5 (a connection portion between the left upper arm portion 51 and the left forearm portion 52) or the upper right arm portion 41 of the right arm portion 4 and the right side. You may make the connection part with the forearm part 42 contact another object.
 さらに、ロボット1が、体幹部3の背面に、羽部、尾部などを可動部として備える場合、あるいは、ロボット1が、頭部2に、角部、触角部などを可動部として備える場合には、ロボット1は、これらの可動部を第2の可動部として他の物体に接触させてもよい。上記構成によれば、該特定姿勢にて、ロボット1が安定する。 Furthermore, when the robot 1 includes a wing part, a tail part or the like as a movable part on the back surface of the trunk part 3, or when the robot 1 includes a corner part or a feeler part as a movable part on the head 2. The robot 1 may bring these movable parts into contact with other objects as the second movable part. According to the above configuration, the robot 1 is stabilized in the specific posture.
 駆動部40がサーボモータで実現される場合、前傾姿勢などの特定姿勢において、第2の可動部(例えば、左腕部5)を介して、サーボモータ(例えば、左肩ピッチ13および左肘ロール15)にかかる荷重が、該サーボモータの摩擦負荷以下であることが好ましい。この条件が満たされると、荷重(ロボット1を傾倒させる力)が、サーボモータの摩擦負荷を超えることはない。これにより、サーボモータは、トルクが無い状態であっても、前傾姿勢時の回転位置を保持することができるので、当該前傾姿勢がくずれない。したがって、サーボモータとしての駆動部40には、ギア比の高いモータを採用することが好ましい。ギア比が高い程、サーボモータの摩擦負荷が大きくなり、その分より大きな荷重に耐えられる。これにより、特定姿勢を安定させるための姿勢のバリエーションが広がる。上記の条件に加えて、あるいは、代えて、第2の可動部を介して、該可動部を駆動するサーボモータに対してかかる荷重の方向が、該サーボモータの回転方向とは異なることが好ましい。この条件が満たされると、サーボモータの回転方向、すなわち、可動部の関節部が曲がる方向とはずれた方向に荷重がかかる。そのため、関節部は曲がらず可動部も動かない。好ましくは、図5に示す姿勢の定義情報において、各可動部を駆動するサーボモータの保持角度は、サーボモータの回転方向が荷重の方向とずれるように決定されている。 When the drive unit 40 is realized by a servomotor, the servomotor (for example, the left shoulder pitch 13 and the left elbow roll 15) is passed through the second movable unit (for example, the left arm unit 5) in a specific posture such as a forward tilted posture. The load applied to the servo motor is preferably equal to or less than the friction load of the servo motor. When this condition is satisfied, the load (the force that tilts the robot 1) does not exceed the friction load of the servo motor. As a result, the servomotor can maintain the rotational position in the forward leaning posture even in the absence of torque, so that the forward leaning posture is not lost. Therefore, it is preferable to employ a motor having a high gear ratio for the drive unit 40 as a servo motor. The higher the gear ratio, the greater the friction load of the servo motor, and it can withstand a larger load. Thereby, the variation of the attitude | position for stabilizing a specific attitude | position spreads. In addition to or instead of the above condition, the direction of the load applied to the servo motor that drives the movable part via the second movable part is preferably different from the rotation direction of the servo motor. . When this condition is satisfied, a load is applied in the direction of rotation of the servo motor, that is, the direction deviating from the direction in which the joint portion of the movable portion is bent. Therefore, the joint part is not bent and the movable part does not move. Preferably, in the posture definition information shown in FIG. 5, the holding angle of the servo motor that drives each movable part is determined so that the rotation direction of the servo motor deviates from the load direction.
 〔ソフトウェアによる実現例〕
 ロボット1の制御ブロック(特に、機能特定部82、駆動制御部83、投影実行部84および撮影実行部85)は、集積回路(ICチップ)等に形成された論理回路(ハードウェア)によって実現してもよいし、CPU(Central Processing Unit)を用いてソフトウェアによって実現してもよい。
[Example of software implementation]
The control blocks (particularly, the function specifying unit 82, the drive control unit 83, the projection execution unit 84, and the imaging execution unit 85) of the robot 1 are realized by a logic circuit (hardware) formed in an integrated circuit (IC chip) or the like. Alternatively, it may be realized by software using a CPU (Central Processing Unit).
 後者の場合、ロボット1は、各機能を実現するソフトウェアであるプログラムの命令を実行するCPU、上記プログラムおよび各種データがコンピュータ(またはCPU)で読み取り可能に記録されたROM(Read Only Memory)または記憶装置(これらを「記録媒体」と称する)、上記プログラムを展開するRAM(Random Access Memory)などを備えている。そして、コンピュータ(またはCPU)が上記プログラムを上記記録媒体から読み取って実行することにより、本発明の目的が達成される。上記記録媒体としては、「一時的でない有形の媒体」、例えば、テープ、ディスク、カード、半導体メモリ、プログラマブルな論理回路などを用いることができる。また、上記プログラムは、該プログラムを伝送可能な任意の伝送媒体(通信ネットワークや放送波等)を介して上記コンピュータに供給されてもよい。なお、本発明は、上記プログラムが電子的な伝送によって具現化された、搬送波に埋め込まれたデータ信号の形態でも実現され得る。 In the latter case, the robot 1 includes a CPU that executes instructions of a program that is software that realizes each function, a ROM (Read Only Memory) in which the program and various data are recorded so as to be readable by a computer (or CPU), or a memory. A device (these are referred to as “recording media”), a RAM (Random Access Memory) for expanding the program, and the like are provided. And the objective of this invention is achieved when a computer (or CPU) reads the said program from the said recording medium and runs it. As the recording medium, a “non-temporary tangible medium” such as a tape, a disk, a card, a semiconductor memory, a programmable logic circuit, or the like can be used. The program may be supplied to the computer via an arbitrary transmission medium (such as a communication network or a broadcast wave) that can transmit the program. The present invention can also be realized in the form of a data signal embedded in a carrier wave in which the program is embodied by electronic transmission.
 〔まとめ〕
 本発明の態様1に係るロボット(1)は、複数の可動部(頭部2、体幹部3、右腕部4、左腕部5、右脚部6および左脚部7)を備え、所定の機能(床投影、天井投影など)を実行するときに、第1の姿勢(直立姿勢など)とは異なる第2の姿勢(前傾姿勢など)に移行可能なロボットにおいて、上記第1の姿勢は、上記複数の可動部のうち、第1の可動部(右脚部6、左脚部7)のみが床面に接触することにより当該ロボットが安定する姿勢であり、上記第2の姿勢は、上記第1の可動部のみが床面に接触するだけでは当該ロボットが安定しない姿勢であり、上記第2の姿勢は、上記複数の可動部のうち、上記第1の可動部とは異なる第2の可動部(右腕部4、左腕部5)が、他の物体(他の可動部、床面Bなど)に接触することにより、当該ロボットが安定する姿勢である。
[Summary]
A robot (1) according to an aspect 1 of the present invention includes a plurality of movable parts (a head 2, a trunk 3, a right arm 4, a left arm 5, a right leg 6, and a left leg 7), and has a predetermined function. In a robot that can move to a second posture (such as a forward tilt posture) different from the first posture (such as an upright posture) when executing (floor projection, ceiling projection, etc.), the first posture is: Of the plurality of movable parts, only the first movable part (the right leg part 6 and the left leg part 7) is in a posture in which the robot is stabilized by contacting the floor surface, and the second posture is the above The posture in which the robot is not stabilized only by the first movable portion coming into contact with the floor surface is the second posture different from the first movable portion among the plurality of movable portions. When the movable parts (the right arm part 4 and the left arm part 5) are in contact with other objects (other movable parts, floor surface B, etc.), The robot is a commitment to stability.
 上記の構成によれば、ロボットは、床面に接触する第1の可動部以外の第2の可動部を、他の物体に接触させることにより、安定した第2の姿勢を実現する。上記他の物体が固定されているなどの所定の条件を満たしている場合、ロボットに対する荷重が第2の可動部に働いても、上記第2の可動部と、上記物体との接触点にて、上記荷重に釣り合う反力が働く。したがって、ロボットは、第2の姿勢にて、上記第1の可動部が床面に接触するのみでは、ロボットを傾倒させる力(荷重)が働いた場合に、当該ロボットが静止していられないところ、第2の可動部が物体に接触することによって、荷重によって傾倒することなく静止していられる。結果として、ロボットは、可動部に対して力を伝達しなくても、第2の姿勢を保ち、所定の機能を実行することが可能となる。 According to the above configuration, the robot achieves a stable second posture by bringing the second movable part other than the first movable part in contact with the floor surface into contact with another object. When a predetermined condition such as the other object being fixed is satisfied, even if a load on the robot acts on the second movable part, the contact point between the second movable part and the object A reaction force that balances the load is applied. Therefore, the robot cannot stand still when a force (load) for tilting the robot is applied only by the first movable part contacting the floor surface in the second posture. When the second movable part comes into contact with the object, it can be kept stationary without being tilted by the load. As a result, the robot can maintain the second posture and execute a predetermined function without transmitting force to the movable part.
 本発明の態様2に係るロボットは、上記態様1において、1または複数の脚部(右脚部6、左脚部7)と、該脚部に接続された体幹部(3)と、該体幹部に接続された1または複数の腕部(右腕部4、左腕部5)とを備え、上記第2の姿勢は、上記第1の可動部として上記脚部の少なくとも一部(右足部62、左足部72)が床面に接触しているとともに、上記第2の可動部として上記腕部の少なくとも一部(右手部43、左手部53)が上記物体に接触している姿勢である。 The robot according to Aspect 2 of the present invention is the robot according to Aspect 1, wherein the one or more legs (the right leg 6 and the left leg 7), the trunk (3) connected to the legs, and the body One or a plurality of arms (right arm 4 and left arm 5) connected to the trunk, and the second posture is at least a part of the leg (right foot 62, The left foot portion 72) is in contact with the floor surface, and at least a part of the arm portion (the right hand portion 43, the left hand portion 53) is in contact with the object as the second movable portion.
 上記の構成によれば、ロボットは、第2の姿勢にて、脚部のみが床面に接触するだけでは、当該ロボットが傾倒してしまうところ、腕が物体に接触しているため、当該腕を介して、該物体から受ける反力によってロボットを支持することができる。したがって、ロボットは傾倒することなく静止していられる。 According to the above configuration, in the second posture, the robot is tilted when only the leg portion is in contact with the floor surface, and the arm is in contact with the object. The robot can be supported by the reaction force received from the object via the. Therefore, the robot can stand still without tilting.
 本発明の態様3に係るロボットでは、上記態様2において、上記第2の姿勢は、上記腕部の少なくとも一部が上記床面に接触している姿勢である。上記の構成によれば、脚部に加えて、腕部を、上記他の物体としての床面につくことで、(体幹部が水平近く傾いても、)第2の姿勢を安定させることができる。 In the robot according to aspect 3 of the present invention, in the aspect 2, the second posture is a posture in which at least a part of the arm portion is in contact with the floor surface. According to said structure, in addition to a leg part, by attaching an arm part to the floor surface as said other object, even if a trunk part inclines near horizontal, a 2nd attitude | position can be stabilized. it can.
 本発明の態様4に係るロボットでは、上記態様2において、上記第2の姿勢は、上記腕部の少なくとも一部が上記脚部に接触している姿勢である。上記の構成によれば、床に支持されている脚に腕をつく(腕が他の物体としての脚に接触する)ことにより、脚部と腕部とでロボットを支持し、姿勢を安定させる。腕が短く体幹部を水平もしくはそれ以上に傾けないと床面に腕が届かないようなロボットに好適な姿勢である。 In the robot according to aspect 4 of the present invention, in the aspect 2, the second posture is a posture in which at least a part of the arm portion is in contact with the leg portion. According to the above configuration, by attaching an arm to a leg supported on the floor (an arm contacts a leg as another object), the leg and the arm support the robot and stabilize the posture. . This posture is suitable for a robot whose arms are short and the trunk does not reach the floor unless the trunk is tilted horizontally or above.
 本発明の態様5に係るロボットは、上記態様4において、静止画または動画を投影先に投影する投影部(プロジェクタ21)と、上記体幹部に接続された頭部(2)とを備え、上記投影部は、上記頭部に設けられており、上記第2の姿勢は、上記腕部の少なくとも一部が、上記脚部の、上記投影部の投影方向と同じ面(正面)に接触している姿勢である。 A robot according to an aspect 5 of the present invention includes the projection unit (projector 21) that projects a still image or a moving image on a projection destination and the head (2) connected to the trunk, in the above aspect 4. The projection unit is provided on the head, and in the second posture, at least a part of the arm unit is in contact with the same surface (front surface) of the leg unit as the projection direction of the projection unit. It is a posture.
 上記の構成によれば、投影部の投影方向をロボットの前方とし、投影先からロボットを見たときに見える面をロボットの正面とした場合、脚部の正面側に腕部をつくことで、体幹部を前に傾けて前傾姿勢を保つことができる。よって、頭部に備えた投影部の投影方向を前方床面に向けることが可能となる。前傾姿勢を維持することができるため、床面に画像を投影する時、投影画像の台形のゆがみを抑えることができる。 According to the above configuration, when the projection direction of the projection unit is the front of the robot and the surface seen when the robot is viewed from the projection destination is the front of the robot, by attaching the arm part to the front side of the leg, The trunk can be tilted forward to maintain a forward leaning posture. Therefore, the projection direction of the projection unit provided in the head can be directed to the front floor surface. Since the forward leaning posture can be maintained, the trapezoidal distortion of the projected image can be suppressed when the image is projected onto the floor surface.
 本発明の態様6に係るロボットでは、上記態様5において、上記脚部は、上記体幹部に接続される腿部(右腿部61、左腿部71)と、上記床面に接触して該腿部を支持する足部(右足部62、左足部72)とを含み、上記腕部は、上記体幹部と接続されていない一端に手部(右手部43、左手部53)を含み、上記第2の姿勢は、上記足部の底面が床面に接触しているとともに、上記手部が上記足部の甲に接触している姿勢である。 In the robot according to aspect 6 of the present invention, in the aspect 5, the leg is in contact with the thighs (right thigh 61, left thigh 71) connected to the trunk and the floor surface. Including a foot part (right foot part 62, left foot part 72) that supports the thigh part, and the arm part includes a hand part (right hand part 43, left hand part 53) at one end not connected to the trunk. The second posture is a posture in which the bottom of the foot is in contact with the floor and the hand is in contact with the back of the foot.
 上記の構成によれば、足部の甲に腕部の先端(すなわち手部)をつくことで、体幹部を前に傾けて前傾姿勢を保つことができる。脚部のうち、床面に直接触れている部分(すなわち、足部)の甲に手をつくことで、(膝や腿に手をつく場合と比較して)より安定的に固定された物体に支持されることになり、姿勢がより安定する。また、腕部の長さが短く体幹部を水平よりさらに前傾させないと床面に腕が届かないようなロボットに好適な姿勢である。さらに、(膝や腿に手をつく場合と比較して)体幹部の傾きを可能な限り水平に近づけることができ、頭部正面に備えた投影部の投影方向を前方床面に向けることが可能となる。これにより、床面に画像を投影する時、投影画像の台形のゆがみをより抑えることができる。なお、上記態様5または6に係るロボットにおいて、上記第2の姿勢が、上記投影部が投影機能を実行するときの姿勢である場合、該第2の姿勢は、より好ましくは、上記投影部によって投影される画像のひずみが、画像処理によって補正可能な範囲となる姿勢である。これにより、投影機能を適正に実行することが可能となる。 According to the above configuration, by attaching the tip of the arm (ie, the hand) to the back of the foot, the trunk can be tilted forward to maintain a forward leaning posture. An object that has been fixed more stably (as compared to a hand on the knee or thigh) by placing a hand on the instep of the part of the leg that directly touches the floor (ie, the foot). The posture will be more stable. In addition, this posture is suitable for a robot in which the arm portion is short and the trunk does not reach the floor unless the trunk portion is tilted further forward than horizontal. Furthermore, the inclination of the trunk can be made as close to horizontal as possible (compared to putting hands on the knees and thighs), and the projection direction of the projection unit provided in front of the head can be directed to the front floor surface. It becomes possible. Thereby, when projecting an image on the floor, the trapezoidal distortion of the projected image can be further suppressed. In the robot according to aspect 5 or 6, when the second posture is a posture when the projection unit executes a projection function, the second posture is more preferably determined by the projection unit. The posture in which the distortion of the projected image is within a range that can be corrected by image processing. This makes it possible to properly execute the projection function.
 本発明の態様7に係るロボットは、上記態様1から4において、静止画または動画を投影先に投影する投影部を備え、上記第2の姿勢は、上記投影部が投影機能を実行するときの姿勢であり、上記投影部によって投影される画像のひずみが、画像処理によって補正可能な範囲となる姿勢である。上記の構成によれば、ロボットは、投影機能実行時に、台形のゆがみが補正可能な範囲に収まるような、第2の姿勢を保ち、投影機能を適正に実行することが可能となる。 A robot according to an aspect 7 of the present invention includes a projection unit that projects a still image or a moving image onto a projection destination in the above-described aspects 1 to 4, and the second posture is when the projection unit executes a projection function. This is an attitude in which the distortion of the image projected by the projection unit falls within a range that can be corrected by image processing. According to the above configuration, the robot can appropriately execute the projection function while maintaining the second posture such that the trapezoidal distortion is within a correctable range when the projection function is executed.
 本発明の態様8に係るロボットは、上記態様1から7において、上記複数の可動部のそれぞれに対して力を伝達することにより、各可動部を個別に駆動する1または複数の駆動部(40)を備え、上記駆動部は、上記第2の可動部が上記物体に接触するように、各可動部を駆動して、上記第2の姿勢を実現する。上記の構成によれば、駆動部の制御によって、ロボットを自動で第2の姿勢に移行させることができる。また、安定した第2の姿勢に移行した後は、駆動部への電源供給を停止させたとしても、ロボットは傾倒せずに静止していられるため、駆動部を備えているロボットに安定した第2の姿勢をとらせることは、省電力および回路保護の観点から特に効果が大きい。 The robot according to Aspect 8 of the present invention is the robot according to Aspects 1 to 7, wherein one or more drive units (40) that individually drive each movable unit by transmitting a force to each of the plurality of movable units. ), And the driving unit drives each movable unit so that the second movable unit contacts the object, thereby realizing the second posture. According to said structure, a robot can be automatically changed to a 2nd attitude | position by control of a drive part. In addition, after the transition to the stable second posture, even if the power supply to the drive unit is stopped, the robot can remain stationary without being tilted. Taking the attitude of 2 is particularly effective from the viewpoint of power saving and circuit protection.
 本発明の態様9に係るロボットは、上記態様8において、上記駆動部(40)から上記可動部への力の伝達を許可または停止する駆動制御部(83)を備え、上記駆動制御部は、上記ロボットが上記第2の姿勢に移行した後、一部またはすべての上記可動部への力の伝達を停止する。 The robot according to aspect 9 of the present invention includes the drive control unit (83) that permits or stops transmission of force from the drive unit (40) to the movable unit in the above-described aspect 8, and the drive control unit includes: After the robot moves to the second posture, transmission of force to some or all of the movable parts is stopped.
 また、本発明の態様10に係るロボットでは、上記態様9において、上記駆動部はサーボモータであり、上記駆動制御部は、上記ロボットが上記第2の姿勢に移行した後、上記可動部を駆動する一部またはすべての駆動部のトルクをオフにする。これらの構成によれば、安定した第2の姿勢に移行後、駆動部への電流を停止するので、傾倒することなくロボットの姿勢を保つことができる。つまり、ロボットが所定の機能を実行している間、駆動部が電力を消費せずに済み、省電力および発熱回避による回路保護が達成される。 In the robot according to aspect 10 of the present invention, in the aspect 9, the drive unit is a servo motor, and the drive control unit drives the movable unit after the robot moves to the second posture. Turn off the torque of some or all of the drives. According to these configurations, since the current to the drive unit is stopped after shifting to the stable second posture, the posture of the robot can be maintained without tilting. That is, while the robot is performing a predetermined function, the drive unit does not consume power, and circuit protection is achieved by saving power and avoiding heat generation.
 本発明の態様11に係るロボットでは、上記態様10において、上記第2の姿勢において、上記第2の可動部を介して該可動部を駆動する上記サーボモータにかかる荷重が、該サーボモータの摩擦負荷以下であること、および、上記第2の可動部を介して該可動部を駆動する上記サーボモータに対してかかる荷重の方向が、該サーボモータの回転方向とは異なること、の少なくともいずれか一方が満たされる。 In the robot according to Aspect 11 of the present invention, in the Aspect 10, the load applied to the servo motor that drives the movable part via the second movable part in the second posture is a friction of the servo motor. And / or the direction of the load applied to the servo motor that drives the movable part via the second movable part is different from the rotational direction of the servo motor. One is satisfied.
 上記の構成によれば、第2の可動部に力が加わってもその力がサーボモータの摩擦負荷を超えなければサーボモータが回転しないので、トルクを抜いても該第2の可動部は動かない。一方で、第2の可動部に力が加わってもその力が加わった方向が、サーボモータの回転方向でなければ、サーボモータが回転しないので、トルクを抜いても該第2の可動部は動かない。したがって、少なくともいずれか一方の条件を満たす第2の姿勢であれば、ロボットを静止させることができる。 According to the above configuration, even if a force is applied to the second movable part, the servo motor does not rotate unless the force exceeds the friction load of the servo motor. Therefore, even if the torque is removed, the second movable part does not move. Absent. On the other hand, even if a force is applied to the second movable part, if the direction in which the force is applied is not the rotational direction of the servo motor, the servo motor will not rotate. It does n’t move. Therefore, the robot can be stationary if the second posture satisfies at least one of the conditions.
 本発明の態様12に係るロボットでは、上記態様9において、上記ロボットに入力された指示に応じて、該ロボットが実行すべき機能を特定する機能特定部(82)を備え、上記駆動制御部(83)は、上記機能特定部によって特定された機能に対応する姿勢を当該ロボットがとるように、上記駆動部(40)を制御するとともに、該姿勢が、上記駆動部から上記可動部への力の伝達を停止しても当該ロボットが安定する姿勢である場合に、当該ロボットが上記姿勢に移行した後、上記駆動部を停止させる。 The robot according to aspect 12 of the present invention includes the function specifying unit (82) that specifies a function to be executed by the robot according to the instruction input to the robot according to the aspect 9, and includes the drive control unit ( 83) controls the driving unit (40) so that the robot takes a posture corresponding to the function specified by the function specifying unit, and the posture is a force from the driving unit to the movable unit. In the case where the robot is in a stable posture even if the transmission is stopped, the driving unit is stopped after the robot has shifted to the posture.
 上記の構成によれば、機能特定部によって実行すべき機能が特定されると、駆動制御部は、その特定された機能を実行するための姿勢をロボットがとるように、各駆動部を制御する。そして、移行後の姿勢が、ロボットが安定する姿勢である場合には、駆動制御部は、当該姿勢への移行が完了した後、上記駆動部を停止させる。このように、安定した第2の姿勢に移行後、駆動部への電流が停止されるので、傾倒することなくロボットの姿勢を上記第2の姿勢にて保つことができる。つまり、ロボットが所定の機能を実行している間(第2の姿勢をとっている間)、駆動部が電力を消費せずに済み、省電力および発熱回避による回路保護が達成される。 According to the above configuration, when a function to be executed is specified by the function specifying unit, the drive control unit controls each drive unit so that the robot takes a posture for executing the specified function. . If the posture after the transition is a posture in which the robot is stable, the drive control unit stops the driving unit after the transition to the posture is completed. Thus, since the current to the drive unit is stopped after the transition to the stable second posture, the posture of the robot can be maintained in the second posture without tilting. That is, while the robot is executing a predetermined function (while taking the second posture), the drive unit does not consume power, and circuit protection is achieved by saving power and avoiding heat generation.
 本発明の態様13に係るロボットの制御方法は、複数の可動部を備え、所定の機能を実行するときに、第1の姿勢とは異なる第2の姿勢に移行可能なロボットの制御方法であって、上記ロボットは、上記複数の可動部のそれぞれに対して力を伝達することにより、各可動部を個別に駆動する1または複数の駆動部を備え、上記制御方法は、上記ロボットに入力された指示に応じて、該ロボットが実行すべき機能を特定する機能特定ステップ(S103)と、上記機能特定ステップによって特定された機能に対応する姿勢を当該ロボットがとるように、上記駆動部を制御する駆動制御ステップ(S106)と、該姿勢が、上記駆動部から上記可動部への力の伝達を停止しても当該ロボットが安定する姿勢である場合に、当該ロボットが上記姿勢に移行した後、上記駆動部を停止させる駆動停止ステップ(S108)とを含む。上記の方法によれば、上記態様12と同様の効果を奏する。 The robot control method according to the thirteenth aspect of the present invention is a robot control method that includes a plurality of movable parts and can shift to a second posture different from the first posture when executing a predetermined function. The robot includes one or more drive units that individually drive each movable unit by transmitting a force to each of the plurality of movable units, and the control method is input to the robot. In response to the received instruction, a function specifying step (S103) for specifying a function to be executed by the robot and controlling the drive unit so that the robot takes a posture corresponding to the function specified by the function specifying step. The drive control step (S106), and when the posture is a posture in which the robot is stable even when transmission of force from the drive unit to the movable unit is stopped, the robot is After the transition to, and a drive stop step (S108) for stopping the drive unit. According to said method, there exists an effect similar to the said aspect 12.
 本発明の各態様に係るロボットは、コンピュータによって実現してもよく、この場合には、コンピュータを上記ロボットが備える各部(ソフトウェア要素)として動作させることにより上記ロボットをコンピュータにて実現させるロボットの制御プログラム、およびそれを記録したコンピュータ読み取り可能な記録媒体も、本発明の範疇に入る。 The robot according to each aspect of the present invention may be realized by a computer. In this case, the robot is controlled by the computer by causing the computer to operate as each unit (software element) included in the robot. A program and a computer-readable recording medium on which the program is recorded also fall within the scope of the present invention.
 本発明は上述した各実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。さらに、各実施形態にそれぞれ開示された技術的手段を組み合わせることにより、新しい技術的特徴を形成することができる。 The present invention is not limited to the above-described embodiments, and various modifications can be made within the scope of the claims, and embodiments obtained by appropriately combining technical means disclosed in different embodiments. Is also included in the technical scope of the present invention. Furthermore, a new technical feature can be formed by combining the technical means disclosed in each embodiment.
1 ロボット、2 頭部(可動部)、3 体幹部(可動部)、4 右腕部(可動部/腕部)、5 左腕部(可動部/腕部)、6 右脚部(可動部/脚部)、7 左脚部(可動部/脚部)、8 機能実行部、10 制御部、20 マイク、21 プロジェクタ(投影部)、24 カメラ(撮影部)、30 記憶部、31 姿勢定義テーブル、40 駆動部、43 右手部(手部)、53 左手部(手部)、81 音声認識部、82 機能特定部、83 駆動制御部、84 投影実行部、85 撮影実行部 1 Robot 2 Head (movable part) 3 Trunk part (movable part) 4 Right arm part (movable part / arm part) 5 Left arm part (movable part / arm part) 6 Right leg part (movable part / leg) Part), 7 left leg part (movable part / leg part), 8 function execution part, 10 control part, 20 microphone, 21 projector (projection part), 24 camera (shooting part), 30 storage part, 31 posture definition table, 40 drive part, 43 right hand part (hand part), 53 left hand part (hand part), 81 voice recognition part, 82 function identification part, 83 drive control part, 84 projection execution part, 85 shooting execution part

Claims (15)

  1.  複数の可動部を備え、所定の機能を実行するときに、第1の姿勢とは異なる第2の姿勢に移行可能なロボットにおいて、
     上記第1の姿勢は、上記複数の可動部のうち、第1の可動部のみが床面に接触することにより当該ロボットが安定する姿勢であり、上記第2の姿勢は、上記第1の可動部のみが床面に接触するだけでは当該ロボットが安定しない姿勢であり、
     上記第2の姿勢は、上記複数の可動部のうち、上記第1の可動部とは異なる第2の可動部が、他の物体に接触することにより、当該ロボットが安定する姿勢であることを特徴とするロボット。
    In a robot having a plurality of movable parts and capable of shifting to a second posture different from the first posture when executing a predetermined function,
    The first posture is a posture in which the robot is stabilized when only the first movable portion is in contact with the floor surface among the plurality of movable portions, and the second posture is the first movable portion. The robot is in an unstable posture if only the part touches the floor,
    The second posture is a posture in which the robot is stabilized when a second movable portion different from the first movable portion among the plurality of movable portions comes into contact with another object. Characteristic robot.
  2.  1または複数の脚部と、該脚部に接続された体幹部と、該体幹部に接続された1または複数の腕部とを備え、
     上記第2の姿勢は、上記第1の可動部として上記脚部の少なくとも一部が床面に接触しているとともに、上記第2の可動部として上記腕部の少なくとも一部が上記物体に接触している姿勢であることを特徴とする請求項1に記載のロボット。
    One or more legs, a trunk connected to the legs, and one or more arms connected to the trunk,
    In the second posture, at least a part of the leg part is in contact with the floor as the first movable part, and at least a part of the arm part is in contact with the object as the second movable part. The robot according to claim 1, wherein the robot is in a posture.
  3.  上記第2の姿勢は、上記腕部の少なくとも一部が上記床面に接触している姿勢であることを特徴とする請求項2に記載のロボット。 The robot according to claim 2, wherein the second posture is a posture in which at least a part of the arm portion is in contact with the floor surface.
  4.  上記第2の姿勢は、上記腕部の少なくとも一部が上記脚部に接触している姿勢であることを特徴とする請求項2に記載のロボット。 The robot according to claim 2, wherein the second posture is a posture in which at least a part of the arm portion is in contact with the leg portion.
  5.  静止画または動画を投影先に投影する投影部と、
     上記体幹部に接続された頭部とを備え、
     上記投影部は、上記頭部に設けられており、
     上記第2の姿勢は、上記腕部の少なくとも一部が、上記脚部の、上記投影部の投影方向と同じ面に接触している姿勢であることを特徴とする請求項4に記載のロボット。
    A projection unit that projects a still image or a moving image onto a projection destination;
    A head connected to the trunk,
    The projection unit is provided on the head,
    5. The robot according to claim 4, wherein the second posture is a posture in which at least a part of the arm portion is in contact with the same surface of the leg portion as the projection direction of the projection portion. .
  6.  上記脚部は、上記体幹部に接続される腿部と、上記床面に接触して該腿部を支持する足部とを含み、上記腕部は、上記体幹部と接続されていない一端に手部を含み、
     上記第2の姿勢は、上記足部の底面が床面に接触しているとともに、上記手部が上記足部の甲に接触している姿勢であることを特徴とする請求項5に記載のロボット。
    The leg includes a thigh connected to the trunk and a foot that contacts the floor and supports the thigh, and the arm is attached to one end not connected to the trunk. Including the hand,
    The said 2nd attitude | position is an attitude | position which the said hand part is contacting the back of the said foot part while the bottom face of the said foot part is contacting the floor surface. robot.
  7.  静止画または動画を投影先に投影する投影部を備え、
     上記第2の姿勢は、上記投影部が投影機能を実行するときの姿勢であり、上記投影部によって投影される画像のひずみが、画像処理によって補正可能な範囲となる姿勢であることを特徴とする請求項1から4のいずれか1項に記載のロボット。
    Providing a projection unit that projects a still image or video to the projection destination,
    The second attitude is an attitude when the projection unit executes a projection function, and the distortion of an image projected by the projection unit is an attitude that can be corrected by image processing. The robot according to any one of claims 1 to 4.
  8.  上記複数の可動部のそれぞれに対して力を伝達することにより、各可動部を個別に駆動する1または複数の駆動部を備え、
     上記駆動部は、上記第2の可動部が上記物体に接触するように、各可動部を駆動して、上記第2の姿勢を実現することを特徴とする請求項1から7のいずれか1項に記載のロボット。
    Including one or a plurality of drive units for individually driving each movable unit by transmitting a force to each of the plurality of movable units;
    8. The drive unit according to claim 1, wherein the drive unit drives each movable unit so that the second movable unit is in contact with the object, thereby realizing the second posture. 9. The robot according to item.
  9.  上記駆動部から上記可動部への力の伝達を許可または停止する駆動制御部を備え、
     上記駆動制御部は、上記ロボットが上記第2の姿勢に移行した後、一部またはすべての上記可動部への力の伝達を停止することを特徴とする請求項8に記載のロボット。
    A drive control unit for permitting or stopping transmission of force from the drive unit to the movable unit;
    The robot according to claim 8, wherein the drive control unit stops transmission of force to a part or all of the movable units after the robot shifts to the second posture.
  10.  上記駆動部はサーボモータであり、
     上記駆動制御部は、上記ロボットが上記第2の姿勢に移行した後、上記可動部を駆動する一部またはすべての駆動部のトルクをオフにすることを特徴とする請求項9に記載のロボット。
    The drive unit is a servo motor,
    The robot according to claim 9, wherein the drive control unit turns off a torque of a part or all of the drive units that drive the movable unit after the robot shifts to the second posture. .
  11.  上記第2の姿勢において、
      上記第2の可動部を介して該可動部を駆動する上記サーボモータにかかる荷重が、該サーボモータの摩擦負荷以下であること、および、
      上記第2の可動部を介して該可動部を駆動する上記サーボモータに対してかかる荷重の方向が、該サーボモータの回転方向とは異なること、
    の少なくともいずれか一方が満たされることを特徴とする請求項10に記載のロボット。
    In the second posture,
    A load applied to the servo motor that drives the movable part via the second movable part is equal to or less than a friction load of the servo motor; and
    The direction of the load applied to the servo motor that drives the movable part via the second movable part is different from the rotational direction of the servo motor;
    The robot according to claim 10, wherein at least one of the conditions is satisfied.
  12.  上記ロボットに入力された指示に応じて、該ロボットが実行すべき機能を特定する機能特定部を備え、
     上記駆動制御部は、
      上記機能特定部によって特定された機能に対応する姿勢を当該ロボットがとるように、上記駆動部を制御するとともに、
      該姿勢が、上記駆動部から上記可動部への力の伝達を停止しても当該ロボットが安定する姿勢である場合に、当該ロボットが上記姿勢に移行した後、上記駆動部を停止させることを特徴とする請求項9に記載のロボット。
    In accordance with an instruction input to the robot, a function specifying unit that specifies a function to be executed by the robot is provided.
    The drive control unit
    While controlling the drive unit so that the robot takes a posture corresponding to the function specified by the function specifying unit,
    When the posture is a posture in which the robot is stable even if transmission of force from the driving unit to the movable unit is stopped, the driving unit is stopped after the robot has shifted to the posture. The robot according to claim 9, wherein
  13.  複数の可動部を備え、所定の機能を実行するときに、第1の姿勢とは異なる第2の姿勢に移行可能なロボットの制御方法であって、
     上記ロボットは、上記複数の可動部のそれぞれに対して力を伝達することにより、各可動部を個別に駆動する1または複数の駆動部を備え、
     上記制御方法は、
      上記ロボットに入力された指示に応じて、該ロボットが実行すべき機能を特定する機能特定ステップと、
      上記機能特定ステップによって特定された機能に対応する姿勢を当該ロボットがとるように、上記駆動部を制御する駆動制御ステップと、
      該姿勢が、上記駆動部から上記可動部への力の伝達を停止しても当該ロボットが安定する姿勢である場合に、当該ロボットが上記姿勢に移行した後、上記駆動部を停止させる駆動停止ステップとを含むことを特徴とするロボットの制御方法。
    A robot control method comprising a plurality of movable parts and capable of shifting to a second posture different from the first posture when executing a predetermined function,
    The robot includes one or more drive units that individually drive each movable unit by transmitting a force to each of the plurality of movable units,
    The above control method is
    A function specifying step for specifying a function to be executed by the robot in response to an instruction input to the robot;
    A drive control step for controlling the drive unit so that the robot takes a posture corresponding to the function specified by the function specifying step;
    When the posture is a posture in which the robot is stable even when transmission of force from the driving unit to the movable unit is stopped, the driving stop that stops the driving unit after the robot has shifted to the posture. And a robot control method.
  14.  請求項12に記載のロボットとしてコンピュータを機能させるための制御プログラムであって、上記機能特定部および上記駆動制御部としてコンピュータを機能させるための制御プログラム。 A control program for causing a computer to function as the robot according to claim 12, wherein the control function causes the computer to function as the function specifying unit and the drive control unit.
  15.  請求項14に記載の制御プログラムを記録したコンピュータ読み取り可能な記録媒体。 A computer-readable recording medium on which the control program according to claim 14 is recorded.
PCT/JP2017/001745 2016-02-04 2017-01-19 Robot, robot control method, control program, and recording medium WO2017135053A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017565471A JP6513232B2 (en) 2016-02-04 2017-01-19 Robot, and control method of robot

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016020234 2016-02-04
JP2016-020234 2016-02-04

Publications (1)

Publication Number Publication Date
WO2017135053A1 true WO2017135053A1 (en) 2017-08-10

Family

ID=59499527

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/001745 WO2017135053A1 (en) 2016-02-04 2017-01-19 Robot, robot control method, control program, and recording medium

Country Status (2)

Country Link
JP (1) JP6513232B2 (en)
WO (1) WO2017135053A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001341092A (en) * 2000-06-02 2001-12-11 Sharp Corp Articulated robot and position teaching method for articulated robot
JP2004066381A (en) * 2002-08-05 2004-03-04 Sony Corp Robot device
JP2004167627A (en) * 2002-11-20 2004-06-17 Plus Vision Corp Robot having image projecting function, and information exchange system using the same
JP2004314216A (en) * 2003-04-14 2004-11-11 Mitsubishi Electric Corp Walking robot and method for controlling walking robot
JP2005059186A (en) * 2003-08-19 2005-03-10 Sony Corp Robot device and method of controlling the same
JP2005313291A (en) * 2004-04-30 2005-11-10 Mitsubishi Heavy Ind Ltd Image display method linked with robot action, and device thereof
JP2007175831A (en) * 2005-12-28 2007-07-12 Kawada Kogyo Kk Walking robot

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4776903B2 (en) * 2004-09-01 2011-09-21 本田技研工業株式会社 Biped walking robot charging system
JP5398592B2 (en) * 2010-03-01 2014-01-29 本田技研工業株式会社 Motion evaluation system for legged mobile robots
JP5910647B2 (en) * 2014-02-19 2016-04-27 トヨタ自動車株式会社 Mobile robot movement control method

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001341092A (en) * 2000-06-02 2001-12-11 Sharp Corp Articulated robot and position teaching method for articulated robot
JP2004066381A (en) * 2002-08-05 2004-03-04 Sony Corp Robot device
JP2004167627A (en) * 2002-11-20 2004-06-17 Plus Vision Corp Robot having image projecting function, and information exchange system using the same
JP2004314216A (en) * 2003-04-14 2004-11-11 Mitsubishi Electric Corp Walking robot and method for controlling walking robot
JP2005059186A (en) * 2003-08-19 2005-03-10 Sony Corp Robot device and method of controlling the same
JP2005313291A (en) * 2004-04-30 2005-11-10 Mitsubishi Heavy Ind Ltd Image display method linked with robot action, and device thereof
JP2007175831A (en) * 2005-12-28 2007-07-12 Kawada Kogyo Kk Walking robot

Also Published As

Publication number Publication date
JP6513232B2 (en) 2019-05-15
JPWO2017135053A1 (en) 2018-08-09

Similar Documents

Publication Publication Date Title
US9849378B2 (en) Methods, apparatuses, and systems for remote play
US20160346705A1 (en) Information processing system, information processing device, output device, and information processing method
US20200324198A1 (en) Gaming device and gaming controller
JP2008044069A (en) Charging device
US20190146579A1 (en) Method of suppressing vr sickness, system for executing the method, and information processing device
WO2021026752A1 (en) Tripod head control method, tripod head, and computer-readable storage medium
JP2020177607A (en) Head-mounted display system switchable between first-person perspective mode and third-person perspective mode, related method, program, and non-transitory computer-readable storage medium
US10004328B2 (en) Movable table
US9873060B2 (en) Toy
US20220054347A1 (en) System and method for controlling a massage apparatus
JP2022184958A (en) animation production system
WO2017135053A1 (en) Robot, robot control method, control program, and recording medium
CN110000791A (en) A kind of motion control device and method of desktop machine people
JP2007152472A (en) Charging system, charging station and robot guidance system
JP6610609B2 (en) Voice dialogue robot and voice dialogue system
WO2015122219A1 (en) Antenna device
KR20180079943A (en) Apparatus and method for room control based on wearable device and spatial augmented reality
CN110556030A (en) reading control method, device, equipment and computer readable storage medium
JP6568601B2 (en) Robot, robot control method, and program
US20170228930A1 (en) Method and apparatus for creating video based virtual reality
JP7115697B2 (en) animation production system
JPWO2017056622A1 (en) Robot, robot control method, and program
JP2013250407A (en) Irradiation control device and irradiation control method
JP2015171737A (en) Robot and robot control method
WO2024021806A1 (en) Method and apparatus for swing-up movement of robot, robot, storage medium, and product

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17747212

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017565471

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17747212

Country of ref document: EP

Kind code of ref document: A1