WO2017134782A1 - Solar cell manufacturing method, solar cell, and solar cell manufacturing apparatus - Google Patents

Solar cell manufacturing method, solar cell, and solar cell manufacturing apparatus Download PDF

Info

Publication number
WO2017134782A1
WO2017134782A1 PCT/JP2016/053271 JP2016053271W WO2017134782A1 WO 2017134782 A1 WO2017134782 A1 WO 2017134782A1 JP 2016053271 W JP2016053271 W JP 2016053271W WO 2017134782 A1 WO2017134782 A1 WO 2017134782A1
Authority
WO
WIPO (PCT)
Prior art keywords
solar cell
electrode
paste
substrate
bus electrode
Prior art date
Application number
PCT/JP2016/053271
Other languages
French (fr)
Japanese (ja)
Inventor
土井 誠
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2016/053271 priority Critical patent/WO2017134782A1/en
Priority to JP2017565339A priority patent/JP6541805B2/en
Publication of WO2017134782A1 publication Critical patent/WO2017134782A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes

Definitions

  • the present invention relates to a method for manufacturing a solar cell, a solar cell, and a solar cell manufacturing apparatus, and more particularly to formation of an electrode for a solar cell.
  • Patent Document 1 adopts the following procedure. First, an uneven structure called a texture for changing the reflection angle of sunlight on the surface of a substrate material such as silicon and taking reflected light into the substrate is formed by a technique such as etching. Next, a pn junction is formed by a technique such as diffusion, and an antireflection film made of a high refractive index thin film such as a silicon nitride film is formed on at least one surface of the substrate material in order to reduce reflection of sunlight by the light interference effect. To do.
  • a conductive paste such as a metal paste is applied on the antireflection film so as to have a desired pattern, and the paste is heated to melt the antireflection film with the glass contained in the paste, so that electrical connection with the substrate is achieved. Firing is performed for bonding, and an electrode is formed. Further, the substrate material is immersed in an etching solution for dissolving the glass component, and the glass component contained in the electrode is dissolved to reduce the electrical resistance of the electrode.
  • Patent Document 2 and Patent Document 3 disclose similar solar cell manufacturing methods.
  • the electrode material is generally called a paste, and is mainly composed of a conductive material made of metal powder, an inorganic material that is a glass component, an organic material that is a resin component, and an organic solvent.
  • the paste is formed into a desired electrode shape by various printing methods such as a screen printing method, and the antireflection film is melted by a glass component contained in a heating process called baking to electrically connect the substrate material and the Bonding is performed to form an electrode.
  • the conductive material silver is usually used, but it is also a noble metal, is easily influenced by the market price, and is not cheap in price.
  • the performance of solar cells is largely dependent on the electrode made of silver paste, and electrodes made of other materials are not the mainstream in the world. Therefore, manufacturers that develop, manufacture, and sell this paste are competing every day to determine how efficient solar cells can be manufactured with a small amount of paste, a small amount of silver, and so on.
  • a thin grid electrode for collecting the generated current and a thick bus electrode for inter-substrate connection are arranged so as to be perpendicular to the grid electrode. Molding techniques are the mainstream.
  • the high performance of the paste is the molding of a thin and high grid electrode, which is different from the molding required to reduce the thickness of the bus electrode, that is, to suppress the coating amount. Techniques for molding are being studied.
  • the cost of the electrode paste to be used is expensive. Even when the electrode paste suitable for each of the grid electrode and the bus electrode is adopted, the same equipment is used. It was disadvantageous in terms of profitability to manufacture each of them together. Therefore, as long as the conventional screen printing method is used, it is extremely difficult to reduce the total manufacturing cost, and the price of the solar cell cannot be reduced.
  • the present invention has been made in view of the above, and an object thereof is to realize low-cost electrode formation without deteriorating the characteristics of a solar cell.
  • the present invention provides a process for forming a pn junction on a semiconductor substrate to form a solar cell substrate, and a paste containing a conductive material as an electrode material. And an electrode forming step including a coating step of coating the electrode forming surface of the substrate for use and a firing step of firing the applied paste.
  • the application step includes a step of applying the paste to the electrode formation surface while controlling the application amount with the discharge amount per time from the discharge nozzle using a liquid application apparatus having a discharge nozzle for discharging the paste. It is characterized by.
  • FIG. 1 is a diagram illustrating a surface that is a light-receiving surface of a solar cell including electrodes formed by the solar cell electrode forming method according to the first embodiment of the present invention.
  • FIG. 2 is a diagram showing a back surface opposite to the light receiving surface of the solar cell shown in FIG. 3 is a sectional view taken along the line III-III in FIGS. 1 and 2, and
  • FIG. 4 is a sectional view taken along the line IV-IV in FIGS.
  • the light receiving surface 1A of the solar battery cell 10 is provided with a light receiving surface electrode 4 as a first current collecting electrode including a light receiving surface grid electrode 4G and a light receiving surface bus electrode 4B.
  • the light receiving surface grid electrode 4G and the light receiving surface bus electrode 4B are orthogonal to each other.
  • the back surface 1B of the solar battery cell 10 is provided with a back electrode 4 as a second collector electrode composed of a back surface aluminum electrode 5A and a back surface bus electrode 5B.
  • the horizontal direction indicated by the arrow X in FIGS. 1 and 2 is the longitudinal direction of the light receiving surface grid electrode 4G
  • the vertical direction indicated by the arrow Y in FIGS. 1 and 2 is the light receiving surface bus electrode 4B and the back surface bus electrode 4B. It is the longitudinal direction.
  • the present embodiment is characterized in that when the light-receiving surface bus electrode is formed, a paste including a conductive material as an electrode material is applied to the electrode forming surface of the substrate material without using a printing mask.
  • the paste is applied using a liquid ejection device while controlling the amount of coating per hour while maintaining a constant pressure detected by a pressure sensor installed on the stage on which the substrate material is placed.
  • FIG. 3 is a cross-sectional view of the main part of the solar battery cell 10 according to the first embodiment of the present invention, and is a cross-sectional view taken along the line III-III in FIGS.
  • FIG. 4 is a cross-sectional view of a main part of the solar battery cell 10 according to the first embodiment of the present invention, and is a cross-sectional view taken along the line IV-IV in FIGS.
  • FIG. 3 is a cross section where the light receiving surface grid electrode 4G is not present
  • FIG. 4 is a view illustrating a cross section where the light receiving surface grid electrode 4G is present.
  • the upper side is the light receiving surface 1A.
  • the n-type impurity diffusion layer 2 is formed on the upper surface of the p-type single crystal silicon substrate 1 by phosphorus diffusion to form a photoelectric conversion unit having a pn junction.
  • An antireflection film 3 is formed on the upper side of the n-type impurity diffusion layer 2.
  • a light receiving surface bus electrode 4B is provided on the antireflection film 3.
  • the antireflection film 3 under the light receiving surface bus electrode 4B is melted by baking, and the light receiving surface bus electrode 4B is in electrical contact with the n-type impurity diffusion layer 2.
  • a back aluminum electrode 5A and a back bus electrode 5B are provided on the back surface 1B side of the p-type single crystal silicon substrate 1.
  • 3 shows a cross section along the longitudinal direction of the light receiving surface grid electrode 4G in the region between the adjacent light receiving surface grid electrodes 4G, the light receiving surface grid electrode 4G is not shown.
  • the p-type single crystal silicon substrate 1 is immersed in a heated aqueous solution of sodium hydroxide. As a result, the surface of the p-type single crystal silicon substrate 1 is etched, and a minute uneven structure is formed on the surface layer of the p-type single crystal silicon substrate 1.
  • the p-type single crystal silicon substrate 1 is put into a thermal oxidation furnace and heated in the presence of phosphorus oxychloride (POCl 3 ) vapor.
  • phosphorus glass is formed on the surface of the p-type single crystal silicon substrate 1
  • phosphorus is diffused into the p-type single crystal silicon substrate 1
  • an n-type impurity diffusion layer 2 is formed on the surface layer of the p-type single crystal silicon substrate 1. It is formed.
  • a silicon nitride film (SiN film) is formed on the n-type impurity diffusion layer 2 as the antireflection film 3 by, for example, plasma CVD. Form.
  • the film thickness and refractive index of the antireflection film 3 are set to values that most suppress light reflection. Note that two or more layers having different refractive indexes may be stacked.
  • the antireflection film 3 may be formed by a different film forming method such as a sputtering method.
  • a paste mixed with aluminum is printed on the entire back surface 1B of the p-type single crystal silicon substrate 1 by screen printing.
  • a paste mixed with silver is printed on the light-receiving surface 1A of the p-type single crystal silicon substrate 1 by comb-screen printing to form a light-receiving surface grid electrode 4G, and then the coating apparatus shown in FIGS. 5 and 6
  • the light-receiving surface bus electrode 4B is applied using After the light-receiving surface bus electrode 4B is applied, the light-receiving surface electrode 4 and the back electrode 5 are formed by performing a baking process.
  • the antireflection film 3 under the light-receiving surface electrode 4 is melted by baking, and the light-receiving surface electrode 4 is in electrical contact with the n-type impurity diffusion layer 2.
  • the solar cell shown in FIGS. 1 to 4 is manufactured.
  • FIG. 5 is a schematic diagram illustrating a printing machine used in the electrode forming method of the present embodiment, and is used in a printing process for forming electrodes without using a printing mask.
  • FIG. 6 is a schematic cross-sectional view of the stage portion.
  • FIG. 7 is a schematic plan view of a stage portion of the printing machine, and
  • FIGS. 8A and 8B are a top view and a side view showing a pressure sensor.
  • the paste 4P is applied to the electrode forming surface of the substrate material without using a printing mask.
  • the pressure sensor 109 used in the present embodiment is a small pressure transducer that uses a strain gauge that has a bridge formed therein and has a small thin wall structure, and is a small device that detects a change in capacitance caused by strain.
  • These pressure sensors 109 have a diaphragm-like shape in which pressure-sensitive portions 109a arranged at regular intervals are fixed to a diaphragm-like plate provided so as to face a cavity provided in a stage using a conductive adhesive. The output can be taken out through the wiring pattern 109b provided on the plate.
  • a diaphragm-like plate is formed of a single crystal silicon substrate, and each pressure-sensitive portion of the pressure sensor and the wiring pattern are integrated on the silicon substrate using a thin film process. You may use what was formed.
  • FIG. 9 and 10 are plan views showing examples of substrate materials for forming electrodes by the method of the present embodiment.
  • the substrate material for example, a square shape shown in FIG. 9 or a rounded quadrangular shape in which the four corners of the square are arc shapes as shown in FIG. 10 is used.
  • the one side M of the square shape shown in FIG. 9 and the one side equivalent width M of the rounded square shape shown in FIG. 10 are, for example, 156 mm.
  • the substrate material for example, a silicon wafer that is a thin plate-like silicon is used.
  • the substrate material may be any material as long as the electrode can be formed by a usual screen printing process, and the substrate material used in the usual method. There is no difference between
  • the printing machine includes a print head 101 including a liquid ejection unit 102 that ejects paste 4 ⁇ / b> P constituting an electrode material, and a pn junction that is a substrate material, that is, a solar cell substrate. And a stage 104 on which the formed p-type single crystal silicon substrate 1 is placed.
  • a discharge nozzle 103 is provided at the tip of the liquid discharge unit 102, and the paste 4P adjusted to a desired viscosity is discharged from the discharge nozzle 103.
  • the stage 104 is a so-called XY table, and coordinates can be designated by a signal from the control unit 105 and can be continuously scanned.
  • the printing machine also includes a print head 101 for disposing the liquid discharge unit 102 above the stage 104.
  • the print head 101 can also be scanned by a signal from the control unit 105.
  • the printing machine scans the stage 104 on which the liquid discharge unit 102 filled with the paste 4P arranged in the print head 101 and the solar cell substrate 1S are placed in accordance with a pre-programmed print pattern, and thereby for solar cells.
  • the paste 4P is applied to the electrode forming surface of the substrate 1S.
  • the substrate 1S for solar cells refers to a substrate in which a pn junction is formed on the p-type single crystal silicon substrate 1 and an antireflection film 3 is formed.
  • FIG. 6 is an enlarged schematic cross-sectional view of the stage portion of the printing press.
  • a case where the light receiving surface bus electrode 4B is formed on the solar cell substrate 1S is taken as an example.
  • the light receiving surface grid electrode 4G is formed in advance, or the light receiving surface grid electrode 4G is formed after the light receiving surface bus electrode 4B is formed.
  • it may be formed by a screen printing method which is a conventional method conventionally used, or the electrode forming method of the present embodiment may be used.
  • the solar cell substrate 1 ⁇ / b> S is placed on the stage 104.
  • the stage 104 is provided with a suction unit 108 that constitutes a suction mechanism 107 that performs air suction, and the solar cell substrate 1S is fixed to the stage 104 by exhausting the suction holes with a vacuum pump. Further, the stage 104 is provided with a plurality of pressure sensors 109 corresponding to the positions along the light receiving surface bus electrode 4B of the solar battery cell 10.
  • the liquid discharge portion 102 disposed in the print head 101 is filled with the paste 4P, and the paste 4P provided at the tip of the liquid discharge portion 102 is pushed out from the discharge nozzle 103, whereby the electrode forming surface of the solar cell substrate 1S.
  • a pattern of the light receiving surface bus electrode 4B programmed in advance is drawn on the light receiving surface 1A.
  • the liquid discharge unit 102 can control the application amount per hour by the control unit 105 of the printing press, and can apply uniformly and uniformly.
  • the pressure sensed by the pressure sensor 109 provided in the stage 104 is fed back to the liquid ejection unit 102 through the control unit 105, and the coating amount is controlled so that drawing can be performed while always maintaining a constant pressure.
  • the material, size, and shape of the discharge nozzle 103 mounted on the liquid discharge unit 102 are properly selected depending on the line to be drawn.
  • Typical materials used for the discharge nozzle 103 include metals such as stainless steel and resins such as polyethylene.
  • the nozzle diameter is selected according to the line width to be drawn, and the nozzle shape is selected from a normal round shape, a square shape, a branch nozzle, a multiple nozzle, a flat nozzle, and the like.
  • the light-receiving surface grid electrode 4G is formed in advance by a screen printing method, and the solar cell substrate 1S subjected to the drying process is placed on the stage 104 and fixed by the suction unit 108.
  • the light receiving surface bus electrode 4B is drawn on the light receiving surface 1A of the solar cell substrate 1S so as to be orthogonal to the light receiving surface grid electrode 4G in accordance with a pre-programmed print pattern.
  • the width of the light-receiving surface bus electrode 4B is 1 mm
  • the light-receiving surface grid electrode 4G is formed in advance, so that the applied nozzle has a high-density polyethylene tapered nozzle 0.8 ⁇ diameter.
  • the light-receiving surface bus electrode 4B can be formed by supplying the paste 4P directly from the ejection nozzle 103 without using a printing mask.
  • FIG. 7 is a schematic view showing the surface of the stage 104 on which the pressure sensors 109 are arranged, and FIG. 6 corresponds to a CC section of FIG.
  • twelve pressure sensors 109 are provided along the light receiving surface bus electrode 4B formation region R 4B, and suction portions 108 each including a suction hole are provided.
  • the solar cell substrate 1S is fixed horizontally by the suction unit 108, and a plurality of pressure sensors 109 are arranged at regular intervals. Therefore, by measuring the output of the pressure sensor 109, the pressure resulting from the supply amount of the paste 4P for forming the light receiving surface bus electrode 4B is detected. The output of the pressure sensor 109 is fed back to the control unit 105, and the supply amount of the paste 4P from the discharge nozzle 103 is controlled.
  • FIG. 11 is a schematic cross-sectional view of a portion where the light-receiving surface bus electrode 4B is drawn and its periphery in the printer of the first embodiment.
  • the paste 4P is discharged from the discharge nozzle 103 of the liquid discharge unit 102 while controlling the discharge amount per time, and the light receiving surface bus electrode 4B is drawn.
  • the height of the discharge nozzle 103 of the liquid discharge unit 102 is controlled so as to be always constant at a pressure detected by the pressure sensor 109 installed on the stage 104 along the drawing position, for example, 0.9 kg / cm 2. By doing so, it is possible to perform drawing while finely changing the discharge amount.
  • FIG. 12 is a schematic cross-sectional view of the stage portion of the screen printer used for forming the light-receiving surface grid electrode 4G in the present embodiment.
  • the paste 4GP is applied to the electrode forming surface of the solar cell electrode 1S through the printing mask 202.
  • FIG. 13 is an enlarged view of FIG. 12 and 13 includes a stage 104 on which the solar cell substrate 1S is placed, and the stage 104 includes a suction unit 108 for fixing the solar cell substrate 1S.
  • the suction unit 108 fixes the solar cell substrate 1 ⁇ / b> S to the stage 104 by sucking air at the stage 104.
  • the printing mask 202 includes a mask frame 203, warp yarns 200A, and weft yarns 200B, and includes a screen mesh 200 attached to the printing surface side of the mask frame 203 and a photosensitive emulsion 200S.
  • the stage 104 and the mask frame 203 are omitted.
  • the printing machine applies the paste 4GP to the electrode formation surface of the solar cell substrate 1S through the printing mask 202 by scanning the squeegee 201 on the printing mask 202 on which the paste 4GP is placed.
  • the paste 4GP is not allowed to pass, and the portion where the screen mesh 200 is exposed is allowed to pass the paste 4GP.
  • the light receiving surface grid electrode 4G is formed by transferring onto the electrode forming surface.
  • the paste 4GP includes a conductive material that is an electrode material.
  • Typical conductive materials used for the paste 4GP include metal materials such as gold, silver, copper, platinum and palladium.
  • the paste includes one or more of these conductive materials.
  • the electrode forming method of the first embodiment it is possible to select the optimum pastes 4GP and 4P for the light receiving surface grid electrode 4G and the light receiving surface bus electrode 4B. In the present embodiment, it is possible to reduce the amount of coating required for the light-receiving surface bus electrode 4B.
  • the weight of the paste applied to the light receiving surface bus electrode 4B through the printing mask 202 is determined by the weight of the light receiving surface grid. It is determined by a mask specification for expressing the performance of the electrode 4G.
  • optimization can be achieved by forming each independently.
  • the optimum paste for the light receiving surface bus electrode 4B it is possible to express its function with a smaller amount of conductive material than the paste used in the light receiving surface grid electrode 4G because of the required performance. is there. That is, this is nothing but reducing the total price of the pastes 4GP and 4P. Therefore, by separately forming the light receiving surface grid electrode 4G and the light receiving surface bus electrode 4B, it is possible to reduce the cost from both sides in terms of coating amount and price.
  • the specifications of the print mask 202 and the paste are set uniformly.
  • the performance required for the light receiving surface grid electrode 4G and the light receiving surface bus electrode 4B is not the same.
  • the former is to collect the current generated in the solar cell substrate 1S, and the latter is to flow the collected current through the tab wire. For this reason, it is excessive quality to use a paste adjusted to maximize the performance of the light receiving surface grid electrode 4G for the light receiving surface bus electrode 4B, which is expensive.
  • FIG. 14 is a table comparing the performance of the solar battery cell produced by the method of the comparative example and the performance of the solar battery of the first embodiment.
  • the voltage (Voc) was improved by 2 mV
  • the current (Jsc) was improved by 0.2 mA / cm 2
  • the fill factor (FF) was reduced by 3/1000.
  • the efficiency (Eff) was 0.1 %improves.
  • FIG. 15 is a comparative diagram comparing the weight of the paste applied to the light-receiving surface bus electrode 4B of the solar battery cell produced by the method of the comparative example and the applied weight of the first embodiment.
  • the amount of the conductive material contained is 30% of the amount of the conductive material contained in the paste for the light-receiving surface bus electrode 4B of the comparative example. Reduced.
  • the coating amount was 0.05 g, but in the method of the present embodiment, the coating amount was 0.012 to 0.034 g. In any case, the coating amount could be reduced as compared with the method of the comparative example. is there.
  • the performance of the solar cell thus produced was lower than the method of the comparative example under condition 1 in FIG. 15, the results were equivalent to or higher than the method of the comparative example under conditions 2 and 3, and in FIG. Even in the condition 3 according to the present embodiment shown, the amount of paste applied in the method of the comparative example is reduced by 30%, and this is achieved by the paste 4P obtained by reducing the conductive material by 30%.
  • FIG. 16 shows the relative value of the manufacturing cost by the method of the first embodiment when the manufacturing cost in the method of the comparative example is divided into three items of paste, printing mask, and printing machine and each is set to 1.
  • the electrode manufacturing method of the present embodiment is applied to the light-receiving surface bus electrode 4B, and the conventional method is applied to the light-receiving surface grid electrode 4G.
  • the paste is reduced in cost, and the printing mask is changed. None, printing presses are costly. However, under certain conditions, the introduction cost is recovered in about one year even when the printing press according to the present embodiment is additionally introduced by improving the output of the solar battery cell and reducing the cost and amount of use of the paste. After that, it will be profitable.
  • the terminology is omitted such that the light receiving surface bus electrode paste is a light receiving surface bus paste, and the light receiving surface bus electrode printer is a light receiving surface bus printer.
  • the paste applied to the solar cell substrate 1S becomes an electrode by a process generally called firing.
  • heat treatment is performed so that the peak temperature is 800 ° C. or lower, desirably 720 ° C. to 770 ° C.
  • the heat treatment time in the firing furnace is generally within 2 minutes.
  • FIG. 17 and 18 are schematic cross-sectional views for explaining the procedure of the method for manufacturing the solar cell module according to the present embodiment.
  • a plurality of solar cells 10 having current collecting electrodes formed on the light receiving surface side and the back surface side are connected by tab wires 20.
  • the solar cell 10 with wiring is sandwiched between the translucent substrate 22 and the back sheet 23 via the translucent resin members 21A and 21B, and these members are pressure-bonded.
  • the translucent resin member 21 in which the solar cell 10 with wiring is sealed, the translucent substrate 22, and the back sheet 23 are integrated.
  • a solar cell module is produced.
  • a solar battery module having high power generation efficiency can be obtained by using the solar battery cell 10 including the electrode formed by the above electrode forming method.
  • a translucent resin member 21B is installed on the translucent substrate 22.
  • the solar cell 10 with wiring is installed.
  • the predetermined number of solar cells 10 shown in FIG. 1 are arranged in parallel, and the adjacent solar cells 10 are connected to each other by a tab wire 20 made of a conductive wire such as a soldered copper wire.
  • the solar cell 10 with wiring is installed on the translucent resin member 21B with the back surface of each solar cell 10 facing upward.
  • FIG. 18 shows a state in which the light-transmitting substrate 22, the light-transmitting resin member 21, the solar cell 10 with wiring, the light-transmitting resin member 21, and the back sheet 23 are stacked in order from the bottom of the figure. Yes.
  • a vacuum thermocompression bonding device called a laminator for the heating and pressure bonding treatment in the production of the solar cell module.
  • the laminator heats and deforms the translucent resin member 21 or the back sheet 23 and further thermosets them so as to integrate the solar cells in the translucent resin member 21.
  • the vacuum thermocompression bonding apparatus heats and crimps each member in a reduced pressure environment. Thereby, between the translucent board
  • the heating and pressure-bonding treatment in the vacuum thermocompression bonding apparatus is performed at a temperature of 200 ° C. or lower, preferably 150 ° C. to 200 ° C. It is assumed that the temperature in the heating and pressure bonding processes can be changed as appropriate depending on the material of the translucent resin member 21 and the like.
  • the translucent substrate 22 for example, a glass substrate is used.
  • substrate 22 should just be what can permeate
  • the translucent resin member 31 is one of resins such as ethylene vinyl acetate, polyvinyl butyral, epoxy, acrylic, urethane, olefin, polyester, silicon, polystyrene, polycarbonate, and rubber. Contains one or more. As long as the translucent resin member 21 can transmit sunlight, any material other than those listed here may be used.
  • the back sheet 23 a sheet made of one or a plurality of resins such as polyester, polyvinyl, polycarbonate, and polyimide is used.
  • the back sheet 23 may be made of any material other than those listed here as long as it has sufficient strength, moisture resistance and weather resistance for protecting the solar cell module.
  • the back sheet 23 may be made of not only a resin material but also a composite material obtained by bonding metal foil materials in order to improve strength, moisture resistance, and weather resistance. Further, the back sheet 23 may be formed by laminating a metal material having a high reflectance or a translucent member having a high refractive index on the surface of the resin material by a film forming method such as vapor deposition. .
  • the end face of the solar cell module may be protected with a tape made of a resin material such as a rubber-based resin member in order to improve the adhesion of the laminating process and prevent intrusion of moisture and the like from the outside.
  • a resin material such as a rubber-based resin member
  • the rubber-based resin member for example, a rubber material such as butyl rubber is used.
  • the solar cell module may be provided with a frame surrounding the outer periphery in view of ease of handling as a structure.
  • the frame is configured using a metal member such as aluminum or an aluminum alloy, for example.
  • This embodiment is very useful industrially because high-performance solar cells and solar cell modules can be obtained by a simple method without requiring expensive equipment.
  • the cost for the printing mask becomes unnecessary by not using the printing mask.
  • a desired electrode can be formed by a system cheaper than a screen printer.
  • the paste can be applied while controlling the amount of application per time, so that the necessary amount of paste can be discharged to the electrode formation position. This makes it possible to supply the necessary and sufficient paste to improve the characteristics and reduce the amount of paste to be supplied as a result. In other words, it is possible to form solar cell electrodes that combine cost reduction and efficiency improvement.
  • the electrode forming method of the first embodiment is a simple and inexpensive method, and the design change can be made to the arrangement of the electrode pattern or the line width and thickness by replacing the conventional method or adding to the conventional method. Even if there is, it can be carried out immediately and a reliable electrode can be easily formed.
  • the light receiving surface bus electrode 4B and the light receiving surface grid electrode 4G are not in contact with each other but are in contact with each other.
  • the light receiving surface grid electrode 4G is formed by screen printing, and only the light receiving surface bus electrode 4B is formed while controlling the discharge amount using the liquid discharge unit 102 without using a screen. Also, the liquid discharge unit 102 may be used to control the discharge amount.
  • the application amount is controlled while measuring the weight after application using a pressure sensor
  • the pressure sensor is not essential if the discharge amount of the liquid discharge unit 102 can be controlled.
  • the supply amount can be controlled by adjusting the scanning speed of the stage so that the supply amount can be adjusted and the supply amount can be controlled with higher accuracy. is there.
  • the control unit can efficiently draw the bus electrode while maintaining a highly accurate line width and position by controlling the supply amount of the paste from the discharge nozzle from 0.1 ml to 1 ml per minute. .
  • the supply amount of the paste from the discharge nozzle is desirably controlled within a range of 0.1 ml to 0.3 ml per minute, and the bus electrode is drawn, thereby forming a highly accurate bus electrode without using a pressure sensor. Is realized.
  • it is possible to draw a highly accurate bus electrode pattern by controlling the supply amount with high accuracy from 0.1 ml to 1 ml per minute.
  • the supply amount of the bus electrode can be reduced by 30% of the conventional application amount.
  • a pattern can be drawn. Therefore, it is possible to provide an electrode with high accuracy and a small amount of paste.
  • the coating amount of 0.012 g corresponds to that applied at about 0.1 ml / min
  • the coating amount of 0.034 g corresponds to that applied at about 0.3 ml / min.
  • the discharge amount can be finely adjusted by adjusting the height of the discharge nozzle. Even when a pressure sensor is used, more accurate control is possible by drawing the pattern of the bus electrode while controlling the discharge amount of paste from the discharge nozzle at a rate of 0.1 to 0.3 ml per minute. .
  • the plurality of pressure sensors are arranged at regular intervals along the center line of the bus electrode formation region, thereby detecting the paste supply amount to the bus electrode with high accuracy. And reliable control becomes possible.
  • FIG. 19 is a cross-sectional view showing a solar battery cell formed by the method of the second embodiment. About a light-receiving surface and a back surface, it is the same as that of a solar cell provided with the electrode formed by the electrode formation method of the solar cell concerning Embodiment 1 of this invention shown in FIG.1 and FIG.2. 19 is a cross-sectional view corresponding to the III-III cross-sectional view of FIGS.
  • the paste 4P is supplied and applied so as to fill the through grooves V formed on the electrode forming surface of the substrate material without using a printing mask.
  • the subsequent process is the same as that in the first embodiment. Also in the present embodiment, the light-receiving surface bus electrode 4B and the light-receiving surface grid electrode 4G filled in the through groove V are in contact with each other without climbing on each other.
  • FIG. 20 is a schematic plan view of a stage portion of a printing machine used in the electrode forming method of the third embodiment.
  • the pressure sensors 109 are arranged at regular intervals along the light receiving surface bus electrode formation region R 4B .
  • the pressure sensor 109 is disposed so as to be positioned in the light receiving surface bus electrode formation region R 4B , and the detection value of the pressure sensor 109 that changes when the paste for forming the light receiving surface bus electrode 4B is supplied from the discharge nozzle is constant.
  • the discharge amount is controlled so that The control of the discharge amount from the discharge nozzle 103 is performed by the control unit 105 of the coating apparatus as in the first embodiment shown in FIG.
  • suction portion 108 and the pressure sensor 109 each consisting of a suction hole, is different from the stage portion of the printing press of the first embodiment shown in FIG. 7, and the other portions are the same as those of the first embodiment. Therefore, the description is omitted here.
  • the pressure sensors 109 are arranged at equal intervals along the center line of the light receiving surface bus electrode formation region R 4B , the supply amount can be controlled more reliably. It becomes.
  • the configuration described in the above embodiment shows an example of the contents of the present invention, and can be combined with another known technique, and can be combined with other configurations without departing from the gist of the present invention. It is also possible to omit or change the part.

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Photovoltaic Devices (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

The purpose of the present invention is to form a low-cost electrode without deteriorating the characteristics of a solar cell. The present invention is provided with: a step for forming a pn junction on a semiconductor substrate, and forming a solar cell substrate 1S; and an electrode-forming step that includes an application step for applying a paste 4P to an electrode-forming surface of the solar cell substrate 1S, said paste containing a conductive material, i.e., an electrode material, and a firing step for firing the paste 4P thus applied. The present invention is characterized in that the application step includes a step for applying the paste 4P to the electrode-forming surface using a liquid applying apparatus, while controlling the discharge amount per hour from a discharge nozzle 103 that discharges the paste 4P, said liquid applying apparatus being provided with the discharge nozzle 103.

Description

太陽電池の製造方法、太陽電池および太陽電池製造装置Solar cell manufacturing method, solar cell and solar cell manufacturing apparatus
 本発明は、太陽電池の製造方法、太陽電池および太陽電池製造装置に係り、特に太陽電池の電極形成に関する。 The present invention relates to a method for manufacturing a solar cell, a solar cell, and a solar cell manufacturing apparatus, and more particularly to formation of an electrode for a solar cell.
 政府のエネルギー政策の後押しによって、再生可能エネルギーの普及が著しい。中でも太陽光発電は、発電した電力を固定価格で買い取る固定価格買取制度(FiT:Feed-in Tariff)に則った買取政策によって爆発的な普及を遂げ、大規模な太陽光発電所、いわゆるメガソーラーが数多く出現した。 ”Renewable energy has been popularized by the government's energy policy. In particular, solar power generation has become explosively popular due to the purchase policy in accordance with the Feed-in Tariff (FiT), which purchases the generated power at a fixed price. Appeared a lot.
 しかしながら、この買取金額は国民が商用電源を利用する際の料金に上乗せされており、負担額を抑制するために毎年買取価格は下方に見直され、この制度の抜本的な見直しもいずれ来るものと考えられる。とは言え、太陽光発電は二酸化炭素を排出しない発電方法であり、今後も技術革新によって発電に掛かるコストが低減され、特に高性能でかつ安価な太陽電池であれば、普及することは間違いない。 However, this purchase amount is added to the charge when the public uses commercial power, and the purchase price is reviewed every year to reduce the burden, and a fundamental review of this system will eventually come. Conceivable. Nonetheless, solar power generation is a power generation method that does not emit carbon dioxide, and the cost of power generation will continue to be reduced by technological innovation, and there is no doubt that it will become popular especially if it is a high-performance and inexpensive solar cell. .
 従来の太陽電池の製造に関し、特許文献1では以下のような手順を採用している。先ず、シリコン等の基板材料の表面に、太陽光の基板表面での反射角を変化させ、反射光を基板内に取り込むためのテクスチャと呼ばれる凹凸構造を、エッチング等の手法により形成する。次に、拡散等の手法によってpn接合を形成し、太陽光の反射を光干渉効果によって低減するため、当該基板材料の少なくとも一面に窒化シリコン膜等の高屈折率薄膜からなる反射防止膜を形成する。次に、金属ペースト等の導電性のペーストを反射防止膜上に所望のパターンになるよう塗布し、ペーストを加熱して当該ペーストに含まれるガラスにより反射防止膜を溶融させ、基板との電気的接合を取るための焼成を実施し、電極を形成する。更に、ガラス成分を溶解させるエッチング液に基板材料を浸漬し、電極に含まれるガラス成分を溶解させて電極の電気抵抗を低減する。 Regarding the production of a conventional solar cell, Patent Document 1 adopts the following procedure. First, an uneven structure called a texture for changing the reflection angle of sunlight on the surface of a substrate material such as silicon and taking reflected light into the substrate is formed by a technique such as etching. Next, a pn junction is formed by a technique such as diffusion, and an antireflection film made of a high refractive index thin film such as a silicon nitride film is formed on at least one surface of the substrate material in order to reduce reflection of sunlight by the light interference effect. To do. Next, a conductive paste such as a metal paste is applied on the antireflection film so as to have a desired pattern, and the paste is heated to melt the antireflection film with the glass contained in the paste, so that electrical connection with the substrate is achieved. Firing is performed for bonding, and an electrode is formed. Further, the substrate material is immersed in an etching solution for dissolving the glass component, and the glass component contained in the electrode is dissolved to reduce the electrical resistance of the electrode.
 また、例えば特許文献2および特許文献3にも、同様の太陽電池の製造方法が開示されている。 Also, for example, Patent Document 2 and Patent Document 3 disclose similar solar cell manufacturing methods.
 太陽電池セルおよび太陽電池モジュールのコスト削減には、価格面で大きな割合を占める太陽電池の構成材料のコスト削減抜きには、実現は極めて困難である。例えば、基材であるシリコン等の基板材料に始まって、各工程で用いる材料や消耗器具備品類等に至るまで、全ての見直しが必要となる。中でもコストの大きな部分を占める電極材料の相対的な価格を下げるため、様々な取り組みが行われている。 It is extremely difficult to reduce the cost of solar cells and solar cell modules without reducing the cost of the constituent materials of solar cells, which occupy a large percentage in price. For example, it is necessary to review everything from the substrate material such as silicon as the base material to the materials used in each process, consumables, and the like. In particular, various efforts are being made to reduce the relative prices of electrode materials that occupy a large part of the cost.
 電極材料は一般的にペーストと呼称され、主に金属粉からなる導電性材料、ガラス成分である無機材料、樹脂成分である有機材料および有機溶剤の組合せから成る。先に述べたように、ペーストはスクリーン印刷法等の各種印刷法によって所望の電極形状に成型され、焼成と呼ばれる加熱工程によって含有されるガラス成分で反射防止膜を溶融させ、基板材料と電気的接合を取って電極を形成する。 The electrode material is generally called a paste, and is mainly composed of a conductive material made of metal powder, an inorganic material that is a glass component, an organic material that is a resin component, and an organic solvent. As described above, the paste is formed into a desired electrode shape by various printing methods such as a screen printing method, and the antireflection film is melted by a glass component contained in a heating process called baking to electrically connect the substrate material and the Bonding is performed to form an electrode.
 導電性材料として、通常は銀が使用されるが、貴金属でもあり、相場にも左右されやすく、価格的にも安価ではない。しかしながら、太陽電池の性能はこの銀ペーストからなる電極に負うところが大きく、他材料での電極は世の中の主流ではない。そこでこのペーストを開発、製造、販売しているメーカー間では、如何に少ないペースト量で、如何に少ない銀量で、如何に効率の高い太陽電池を製造するかを、日々競争しているのが現状である。 As the conductive material, silver is usually used, but it is also a noble metal, is easily influenced by the market price, and is not cheap in price. However, the performance of solar cells is largely dependent on the electrode made of silver paste, and electrodes made of other materials are not the mainstream in the world. Therefore, manufacturers that develop, manufacture, and sell this paste are competing every day to determine how efficient solar cells can be manufactured with a small amount of paste, a small amount of silver, and so on. Currently.
 通常、太陽電池の表面には、発電された電流を集電するための細いグリッド電極と、それに直行するように基板間接続用の太いバス電極が配置され、これらをスクリーン印刷法により、一括して成型する手法が主流である。ペーストの高性能化は、すなわち細く高いグリッド電極の成型であり、バス電極に求められる厚みの薄い、つまり塗布量を抑える成型とは異なるため、近年、グリッド電極とバス電極とを各々独立して成型する手法が検討されつつある。 Usually, on the surface of a solar cell, a thin grid electrode for collecting the generated current and a thick bus electrode for inter-substrate connection are arranged so as to be perpendicular to the grid electrode. Molding techniques are the mainstream. The high performance of the paste is the molding of a thin and high grid electrode, which is different from the molding required to reduce the thickness of the bus electrode, that is, to suppress the coating amount. Techniques for molding are being studied.
 しかしながら、従来法でグリッド電極とバス電極とを各々独立して成型するには、さらに1台分のスクリーン印刷設備に投資をしなければならず、年々太陽電池の高性能化と製品価格の下落が続く中、使用する電極ペーストが非常に安価でない限りその投資が回収できず、先述の通り、現状では採算上有利になるほど電極ペーストは安価でない。 However, in order to form the grid electrode and the bus electrode independently by the conventional method, it is necessary to invest in a screen printing facility for one more unit. However, as long as the electrode paste to be used is not very inexpensive, the investment cannot be recovered. As described above, the electrode paste is not so inexpensive as to be profitable as described above.
 このように、従来の太陽電池用電極の形成方法では、使用する電極ペーストの価格が高価なため、グリッド電極とバス電極に分割して各々に適した電極ペーストを採用した場合でも、同様な設備を各々揃えて製造するには、採算上不利であった。従って、従来のスクリーン印刷法を使用している限りにおいては、トータルの製造コストを削減することは極めて困難であり、太陽電池の価格を下げることが出来ない。 As described above, in the conventional method for forming an electrode for a solar cell, the cost of the electrode paste to be used is expensive. Even when the electrode paste suitable for each of the grid electrode and the bus electrode is adopted, the same equipment is used. It was disadvantageous in terms of profitability to manufacture each of them together. Therefore, as long as the conventional screen printing method is used, it is extremely difficult to reduce the total manufacturing cost, and the price of the solar cell cannot be reduced.
特許第4486622号公報Japanese Patent No. 4486622 特許第4319006号公報Japanese Patent No. 4319006 特許第4481869号公報Japanese Patent No. 4481869
 太陽電池の製造コスト削減のため、バス電極、グリッド電極各々に適した電極ペーストを採用しても、同じスクリーン印刷法を用いていては初期投資の額が大きくなり、回収がより難しくなると言う課題があった。また、従来の電極形成方法のままで更に高性能な電極ペーストを使用すると、ペースト全体の使用量を削減した場合でも単価が上昇するため、電極ペーストの材料費が削減できないと言う課題もあった。 Even if an electrode paste suitable for each of the bus electrode and the grid electrode is adopted to reduce the manufacturing cost of the solar cell, the amount of initial investment becomes large and the recovery becomes more difficult if the same screen printing method is used. was there. In addition, if a higher performance electrode paste is used with the conventional electrode forming method, the unit cost will increase even if the total amount of paste used is reduced, resulting in a problem that the material cost of the electrode paste cannot be reduced. .
 本発明は、上記に鑑みてなされたものであり、太陽電池の特性を低下させることなく、低コストの電極形成を実現することを目的とする。 The present invention has been made in view of the above, and an object thereof is to realize low-cost electrode formation without deteriorating the characteristics of a solar cell.
 上述した課題を解決し、目的を達成するために、本発明は、半導体基板上にpn接合を形成し太陽電池用基板を形成する工程と、電極材料である導電性材料を含むペーストを太陽電池用基板の電極形成面に塗布する塗布工程と、塗布されたペーストを焼成する焼成工程とを含む電極形成工程とを備える。塗布工程は、ペーストを吐出する吐出ノズルを備えた液体塗布装置を使用して、吐出ノズルからの時間当たりの吐出量で塗布量を制御しながらペーストを前記電極形成面に塗布する工程を含むことを特徴とする。 In order to solve the above-described problems and achieve the object, the present invention provides a process for forming a pn junction on a semiconductor substrate to form a solar cell substrate, and a paste containing a conductive material as an electrode material. And an electrode forming step including a coating step of coating the electrode forming surface of the substrate for use and a firing step of firing the applied paste. The application step includes a step of applying the paste to the electrode formation surface while controlling the application amount with the discharge amount per time from the discharge nozzle using a liquid application apparatus having a discharge nozzle for discharging the paste. It is characterized by.
 本発明によれば、太陽電池の特性を低下させることなく、低コストの電極形成を実現することが可能となる。 According to the present invention, it is possible to realize low-cost electrode formation without deteriorating the characteristics of the solar cell.
実施の形態1にかかる太陽電池の電極形成方法によって形成された電極を備える太陽電池の受光面である表面を示す図The figure which shows the surface which is a light-receiving surface of a solar cell provided with the electrode formed by the electrode formation method of the solar cell concerning Embodiment 1 図1に示す太陽電池について、受光面とは反対側の裏面を示す図The figure which shows the back surface on the opposite side to a light-receiving surface about the solar cell shown in FIG. 図1および図2のIII-III断面図III-III sectional view of FIGS. 1 and 2 図1および図2のIV-IV断面図IV-IV sectional view of FIGS. 1 and 2 実施の形態1の電極形成方法に使用する印刷機を説明する模式図Schematic explaining the printing machine used for the electrode forming method of Embodiment 1 実施の形態1の電極形成方法に使用する印刷機のステージ部分の模式断面図Schematic cross-sectional view of the stage portion of the printing press used in the electrode forming method of the first embodiment 実施の形態1の電極形成方法に使用する印刷機のステージ部分の模式平面図Schematic plan view of the stage portion of the printing press used in the electrode forming method of Embodiment 1 (a)および(b)は、圧力センサーを示す上面図および側面図(A) And (b) is the top view and side view which show a pressure sensor 実施の形態1の方法により電極を形成する基板材料の例を示す平面図The top view which shows the example of the board | substrate material which forms an electrode with the method of Embodiment 1 実施の形態1の方法により電極を形成する基板材料の他の例を示す平面図The top view which shows the other example of the board | substrate material which forms an electrode with the method of Embodiment 1 実施の形態1の印刷機のうち、受光面バス電極を描画している部分および周辺の模式断面図The schematic cross-sectional view of the portion where the light-receiving surface bus electrode is drawn and the surrounding area in the printer of the first embodiment 実施の形態1における受光面グリッド電極の形成に用いられるスクリーン印刷機のステージ部分の模式断面図Schematic cross-sectional view of the stage portion of the screen printer used for forming the light receiving surface grid electrode in the first embodiment 図12の拡大図Enlarged view of FIG. 比較例の方法で作製した太陽電池セルの性能と実施の形態1の太陽電池の性能を比較した表図Table comparing the performance of the solar battery cell produced by the method of the comparative example and the performance of the solar battery of the first embodiment 比較例の方法で作製した太陽電池セルの受光面バス電極に塗布されたペーストの重量と実施の形態1の塗布重量を比較した比較図Comparison diagram comparing the weight of the paste applied to the light-receiving surface bus electrode of the solar battery cell produced by the method of the comparative example and the coating weight of the first embodiment. 比較例の方法での製造コストを、ペースト、印刷マスク、印刷機の3項目に分けて、各々を1とした時の実施の形態1での相対値を表した比較図Comparative diagram showing relative values in the first embodiment when the manufacturing cost by the method of the comparative example is divided into three items of paste, printing mask, and printing machine and each is set to 1. 実施の形態1による太陽電池モジュールの製造方法の手順を説明する模式断面図Model sectional drawing explaining the procedure of the manufacturing method of the solar cell module by Embodiment 1 実施の形態1による太陽電池モジュールの製造方法の手順を説明する模式断面図Model sectional drawing explaining the procedure of the manufacturing method of the solar cell module by Embodiment 1 実施の形態2の方法によって形成された太陽電池セルを示す断面図Sectional drawing which shows the photovoltaic cell formed by the method of Embodiment 2. 実施の形態3の電極形成方法に使用する印刷機のステージ部分の模式平面図Schematic plan view of a stage portion of a printing press used in the electrode forming method of Embodiment 3
 以下に、本発明にかかる太陽電池の実施の形態を図面に基づいて詳細に説明する。なお、この実施の形態によりこの発明が限定されるものではなく、本発明の要旨を逸脱しない範囲において適宜変更可能である。また、以下に示す図面においては、理解の容易のため、各部材の縮尺が実際とは異なる場合がある。各図面間においても同様である。 Hereinafter, embodiments of a solar cell according to the present invention will be described in detail with reference to the drawings. In addition, this invention is not limited by this embodiment, In the range which does not deviate from the summary of this invention, it can change suitably. In the drawings shown below, the scale of each member may be different from the actual scale for easy understanding. The same applies between the drawings.
実施の形態1.
 図1は、本発明の実施の形態1にかかる太陽電池の電極形成方法によって形成された電極を備える太陽電池の受光面である表面を示す図である。図2は、図1に示す太陽電池について、受光面とは反対側の裏面を示す図である。図3は、図1および図2のIII-III断面図、図4は、図1および図2のIV-IV断面図である。
Embodiment 1 FIG.
FIG. 1 is a diagram illustrating a surface that is a light-receiving surface of a solar cell including electrodes formed by the solar cell electrode forming method according to the first embodiment of the present invention. FIG. 2 is a diagram showing a back surface opposite to the light receiving surface of the solar cell shown in FIG. 3 is a sectional view taken along the line III-III in FIGS. 1 and 2, and FIG. 4 is a sectional view taken along the line IV-IV in FIGS.
 太陽電池セル10の受光面1Aには、受光面グリッド電極4Gおよび受光面バス電極4Bからなる第1の集電電極としての受光面電極4が設けられている。受光面グリッド電極4Gおよび受光面バス電極4Bは互いに直交している。また、太陽電池セル10の裏面1Bには、裏面アルミニウム電極5Aおよび裏面バス電極5Bからなる第2の集電電極としての裏面電極4が設けられている。図1、図2の矢印Xで示した水平方向が受光面グリッド電極4Gの長手方向であり、図1、図2の矢印Yで示した垂直方向が受光面バス電極4Bおよび裏面バス電極4Bの長手方向である。 The light receiving surface 1A of the solar battery cell 10 is provided with a light receiving surface electrode 4 as a first current collecting electrode including a light receiving surface grid electrode 4G and a light receiving surface bus electrode 4B. The light receiving surface grid electrode 4G and the light receiving surface bus electrode 4B are orthogonal to each other. Further, the back surface 1B of the solar battery cell 10 is provided with a back electrode 4 as a second collector electrode composed of a back surface aluminum electrode 5A and a back surface bus electrode 5B. The horizontal direction indicated by the arrow X in FIGS. 1 and 2 is the longitudinal direction of the light receiving surface grid electrode 4G, and the vertical direction indicated by the arrow Y in FIGS. 1 and 2 is the light receiving surface bus electrode 4B and the back surface bus electrode 4B. It is the longitudinal direction.
 本実施の形態では、受光面バス電極形成に際し、印刷マスクを介さずに、電極材料である導電性材料を含むペーストを基板材料の電極形成面に塗布する工程を含むことを特徴とする。塗布工程では液体吐出装置を使用して、時間当たりの塗布量を制御しながら、基板材料を載置するステージに設置された圧力センサーが感知する圧力を一定にして、ペーストを塗布する。 The present embodiment is characterized in that when the light-receiving surface bus electrode is formed, a paste including a conductive material as an electrode material is applied to the electrode forming surface of the substrate material without using a printing mask. In the coating process, the paste is applied using a liquid ejection device while controlling the amount of coating per hour while maintaining a constant pressure detected by a pressure sensor installed on the stage on which the substrate material is placed.
 図3は、本発明の実施の形態1にかかる太陽電池セル10の要部断面図であり、図1および図2におけるIII-III断面図である。図4は、本発明の実施の形態1にかかる太陽電池セル10の要部断面図であり、図1および図2におけるIV-IV断面図である。図3は受光面グリッド電極4Gの存在しない断面、図4は受光面グリッド電極4Gの存在する断面を示す図である。図中、上側が受光面1Aである。太陽電池セル10においては、p型単結晶シリコン基板1の上面にリン拡散によりn型不純物拡散層2が形成されて、pn接合を有する光電変換部が形成されている。n型不純物拡散層2の上側には、反射防止膜3が成膜されている。反射防止膜3上には受光面バス電極4Bが設けられている。受光面バス電極4Bの下の反射防止膜3は焼成によって溶融され、受光面バス電極4Bはn型不純物拡散層2と電気的に接触している。p型単結晶シリコン基板1の裏面1B側には、裏アルミニウム電極5Aおよび裏バス電極5Bが設けられている。なお、図3は、隣接する受光面グリッド電極4G間の領域における受光面グリッド電極4Gの長手方向に沿った断面を示しているため、受光面グリッド電極4Gは示されていない。 FIG. 3 is a cross-sectional view of the main part of the solar battery cell 10 according to the first embodiment of the present invention, and is a cross-sectional view taken along the line III-III in FIGS. FIG. 4 is a cross-sectional view of a main part of the solar battery cell 10 according to the first embodiment of the present invention, and is a cross-sectional view taken along the line IV-IV in FIGS. FIG. 3 is a cross section where the light receiving surface grid electrode 4G is not present, and FIG. 4 is a view illustrating a cross section where the light receiving surface grid electrode 4G is present. In the figure, the upper side is the light receiving surface 1A. In the solar cell 10, the n-type impurity diffusion layer 2 is formed on the upper surface of the p-type single crystal silicon substrate 1 by phosphorus diffusion to form a photoelectric conversion unit having a pn junction. An antireflection film 3 is formed on the upper side of the n-type impurity diffusion layer 2. On the antireflection film 3, a light receiving surface bus electrode 4B is provided. The antireflection film 3 under the light receiving surface bus electrode 4B is melted by baking, and the light receiving surface bus electrode 4B is in electrical contact with the n-type impurity diffusion layer 2. On the back surface 1B side of the p-type single crystal silicon substrate 1, a back aluminum electrode 5A and a back bus electrode 5B are provided. 3 shows a cross section along the longitudinal direction of the light receiving surface grid electrode 4G in the region between the adjacent light receiving surface grid electrodes 4G, the light receiving surface grid electrode 4G is not shown.
 次に、図1から図4に示す太陽電池セル10を製造するための工程を説明する。なお、ここで説明する工程は、シリコン基板を用いた一般的な太陽電池セルの製造工程と同様であるため、特に図示しない。 Next, a process for manufacturing the solar battery cell 10 shown in FIGS. 1 to 4 will be described. In addition, since the process demonstrated here is the same as the manufacturing process of the general photovoltaic cell using a silicon substrate, it does not show in particular in figure.
 まず、p型単結晶シリコン基板1を、加温した水酸化ナトリウムの水溶液中に浸漬する。これにより、p型単結晶シリコン基板1の表面がエッチングされて、p型単結晶シリコン基板1の表層に微小な凹凸構造が形成される。 First, the p-type single crystal silicon substrate 1 is immersed in a heated aqueous solution of sodium hydroxide. As a result, the surface of the p-type single crystal silicon substrate 1 is etched, and a minute uneven structure is formed on the surface layer of the p-type single crystal silicon substrate 1.
 次いで、p型単結晶シリコン基板1を熱酸化炉へ投入し、オキシ塩化リン(POCl)蒸気の存在下で加熱する。これにより、p型単結晶シリコン基板1の表面にリンガラスが形成されてp型単結晶シリコン基板1中にリンが拡散され、p型単結晶シリコン基板1の表層にn型不純物拡散層2が形成される。 Next, the p-type single crystal silicon substrate 1 is put into a thermal oxidation furnace and heated in the presence of phosphorus oxychloride (POCl 3 ) vapor. As a result, phosphorus glass is formed on the surface of the p-type single crystal silicon substrate 1, phosphorus is diffused into the p-type single crystal silicon substrate 1, and an n-type impurity diffusion layer 2 is formed on the surface layer of the p-type single crystal silicon substrate 1. It is formed.
 次に、フッ酸溶液中でp型単結晶シリコン基板1のリンガラス層を除去した後、反射防止膜3としてたとえばプラズマCVD法により窒化シリコン膜(SiN膜)をn型不純物拡散層2上に形成する。反射防止膜3の膜厚および屈折率は、光反射を最も抑制する値に設定する。なお、屈折率の異なる2層以上の膜を積層してもよい。また、反射防止膜3は、スパッタリング法など、異なる成膜方法により形成してもよい。 Next, after removing the phosphorus glass layer of the p-type single crystal silicon substrate 1 in a hydrofluoric acid solution, a silicon nitride film (SiN film) is formed on the n-type impurity diffusion layer 2 as the antireflection film 3 by, for example, plasma CVD. Form. The film thickness and refractive index of the antireflection film 3 are set to values that most suppress light reflection. Note that two or more layers having different refractive indexes may be stacked. The antireflection film 3 may be formed by a different film forming method such as a sputtering method.
 次に、p型単結晶シリコン基板1の裏面1Bにアルミニウムの混入したペーストを全面にスクリーン印刷にて印刷する。 Next, a paste mixed with aluminum is printed on the entire back surface 1B of the p-type single crystal silicon substrate 1 by screen printing.
 そしてさらに、p型単結晶シリコン基板1の受光面1Aに銀の混入したペーストを櫛形にスクリーン印刷にて印刷し、受光面グリッド電極4Gを形成したのち、図5および図6に示す、塗布装置を用いて受光面バス電極4Bを塗布する。受光面バス電極4Bを塗布した後、焼成処理を実施して受光面電極4と裏面電極5とを形成する。p型単結晶シリコン基板1の受光面1Aでは、受光面電極4の下の反射防止膜3は焼成によって溶融され、受光面電極4はn型不純物拡散層2と電気的に接触する。以上のようにして、図1から図4に示す太陽電池が作製される。 Further, a paste mixed with silver is printed on the light-receiving surface 1A of the p-type single crystal silicon substrate 1 by comb-screen printing to form a light-receiving surface grid electrode 4G, and then the coating apparatus shown in FIGS. 5 and 6 The light-receiving surface bus electrode 4B is applied using After the light-receiving surface bus electrode 4B is applied, the light-receiving surface electrode 4 and the back electrode 5 are formed by performing a baking process. On the light-receiving surface 1A of the p-type single crystal silicon substrate 1, the antireflection film 3 under the light-receiving surface electrode 4 is melted by baking, and the light-receiving surface electrode 4 is in electrical contact with the n-type impurity diffusion layer 2. As described above, the solar cell shown in FIGS. 1 to 4 is manufactured.
 次に、本実施の形態にかかる太陽電池セルの電極形成方法のうち受光面バス電極の形成方法について説明する。図5は、本実施の形態の電極形成方法に使用する印刷機を説明する模式図であり、印刷マスクを介さずに電極を形成するための印刷工程にて使用する。図6は、ステージ部分の模式断面図である。図7は同印刷機のステージ部分の模式平面図、図8(a)および(b)は圧力センサーを示す上面図および側面図である。本印刷工程では、印刷マスクを介さずに基板材料の電極形成面にペースト4Pを塗布する。 Next, a method for forming the light-receiving surface bus electrode among the electrode forming methods for solar battery cells according to the present embodiment will be described. FIG. 5 is a schematic diagram illustrating a printing machine used in the electrode forming method of the present embodiment, and is used in a printing process for forming electrodes without using a printing mask. FIG. 6 is a schematic cross-sectional view of the stage portion. FIG. 7 is a schematic plan view of a stage portion of the printing machine, and FIGS. 8A and 8B are a top view and a side view showing a pressure sensor. In this printing process, the paste 4P is applied to the electrode forming surface of the substrate material without using a printing mask.
 本実施の形態で用いられる圧力センサー109は、内部でブリッジを構成し小型薄肉構造としたひずみゲージを用いた小型の圧力変換器であり、歪に起因する容量変化を検出する小型デバイスである。これらの圧力センサー109は、ステージに設けられた空洞に対向するように設けられたダイヤフラム状の板に一定間隔で配設された感圧部109aが導電性接着剤を用いて固定され、ダイヤフラム状の板に設けられた配線パターン109bを介して出力の外部取り出しができるように構成されている。なお、圧力センサー109を個別に配置するのではなく、ダイヤフラム状の板を単結晶シリコン基板で形成し、薄膜プロセスを用いて圧力センサーの各感圧部と配線パターンとをシリコン基板上に集積化して形成したものを用いても良い。 The pressure sensor 109 used in the present embodiment is a small pressure transducer that uses a strain gauge that has a bridge formed therein and has a small thin wall structure, and is a small device that detects a change in capacitance caused by strain. These pressure sensors 109 have a diaphragm-like shape in which pressure-sensitive portions 109a arranged at regular intervals are fixed to a diaphragm-like plate provided so as to face a cavity provided in a stage using a conductive adhesive. The output can be taken out through the wiring pattern 109b provided on the plate. Rather than disposing the pressure sensors 109 individually, a diaphragm-like plate is formed of a single crystal silicon substrate, and each pressure-sensitive portion of the pressure sensor and the wiring pattern are integrated on the silicon substrate using a thin film process. You may use what was formed.
 図9および図10は、本実施の形態の方法により電極を形成する基板材料の例を示す平面図である。基板材料としては、例えば、図9に示す正方形形状のもの、図10に示すように、正方形の四隅を円弧状とした角丸四角形形状のものを使用する。図9に示す正方形形状の一辺M、図10に示す角丸四角形形状の一辺相当幅Mは、例えば156mmとする。 9 and 10 are plan views showing examples of substrate materials for forming electrodes by the method of the present embodiment. As the substrate material, for example, a square shape shown in FIG. 9 or a rounded quadrangular shape in which the four corners of the square are arc shapes as shown in FIG. 10 is used. The one side M of the square shape shown in FIG. 9 and the one side equivalent width M of the rounded square shape shown in FIG. 10 are, for example, 156 mm.
 基板材料としては、例えば、薄板状のシリコンであるシリコンウェハを使用する。なお、基板材料は、通例のスクリーン印刷工程によって電極を形成することが可能な材料であれば、いずれの材質のものであっても使用することが可能であり、通例の方法で用いられる基板材料との間に相違はない。 As the substrate material, for example, a silicon wafer that is a thin plate-like silicon is used. The substrate material may be any material as long as the electrode can be formed by a usual screen printing process, and the substrate material used in the usual method. There is no difference between
 本実施の形態の印刷機は、図5に示すように、電極材料を構成するペースト4Pを吐出する液体吐出部102を備えた印刷ヘッド101と、基板材料すなわち太陽電池用基板であるpn接合の形成されたp型単結晶シリコン基板1を載置するためのステージ104とを備える。液体吐出部102の先端には吐出ノズル103が設けられ、吐出ノズル103から所望の粘度に調整されたペースト4Pが吐出される。ステージ104はいわゆるX-Yテーブルであり、制御部105からの信号によって座標を指定し、連続的に走査させることが可能である。また、本印刷機は、ステージ104の上方部に液体吐出部102を配置するための印刷ヘッド101を備える。印刷ヘッド101も制御部105からの信号によって走査させることが可能である。 As shown in FIG. 5, the printing machine according to the present embodiment includes a print head 101 including a liquid ejection unit 102 that ejects paste 4 </ b> P constituting an electrode material, and a pn junction that is a substrate material, that is, a solar cell substrate. And a stage 104 on which the formed p-type single crystal silicon substrate 1 is placed. A discharge nozzle 103 is provided at the tip of the liquid discharge unit 102, and the paste 4P adjusted to a desired viscosity is discharged from the discharge nozzle 103. The stage 104 is a so-called XY table, and coordinates can be designated by a signal from the control unit 105 and can be continuously scanned. The printing machine also includes a print head 101 for disposing the liquid discharge unit 102 above the stage 104. The print head 101 can also be scanned by a signal from the control unit 105.
 印刷機は、予めプログラムされた印刷パターンに従い、印刷ヘッド101に配置されたペースト4Pを充てん済の液体吐出部102および太陽電池用基板1Sを載置したステージ104を走査させることで、太陽電池用基板1Sの電極形成面にペースト4Pを塗布する。ここで太陽電池用基板1Sとは、p型単結晶シリコン基板1にpn接合を形成し、反射防止膜3を形成したものを示すものとする。 The printing machine scans the stage 104 on which the liquid discharge unit 102 filled with the paste 4P arranged in the print head 101 and the solar cell substrate 1S are placed in accordance with a pre-programmed print pattern, and thereby for solar cells. The paste 4P is applied to the electrode forming surface of the substrate 1S. Here, the substrate 1S for solar cells refers to a substrate in which a pn junction is formed on the p-type single crystal silicon substrate 1 and an antireflection film 3 is formed.
 図6は、印刷機のステージ部分を拡大した模式断面図である。ここでは、太陽電池用基板1Sに受光面バス電極4Bを形成する場合を例とする。受光面バス電極4Bの形成に本実施の形態を適用する場合、予め受光面グリッド電極4Gを形成しておくか、もしくは受光面バス電極4Bを形成した後に受光面グリッド電極4Gを形成する。また、受光面グリッド電極4Gの形成に際しては、従来より用いられている通例の方法であるスクリーン印刷法で形成しても良いし、本実施の形態の電極形成方法を用いても良い。 FIG. 6 is an enlarged schematic cross-sectional view of the stage portion of the printing press. Here, a case where the light receiving surface bus electrode 4B is formed on the solar cell substrate 1S is taken as an example. When this embodiment is applied to the formation of the light receiving surface bus electrode 4B, the light receiving surface grid electrode 4G is formed in advance, or the light receiving surface grid electrode 4G is formed after the light receiving surface bus electrode 4B is formed. Further, when forming the light receiving surface grid electrode 4G, it may be formed by a screen printing method which is a conventional method conventionally used, or the electrode forming method of the present embodiment may be used.
 図6では、ステージ104に太陽電池用基板1Sが載置される。ステージ104にはエアー吸引を行う吸引機構107を構成する吸引部108が備えられ、吸引穴を真空ポンプで排気することで太陽電池用基板1Sはステージ104に固定される。また、ステージ104には太陽電池セル10の受光面バス電極4Bに沿った位置に対応して、複数の圧力センサー109を具備している。印刷ヘッド101に配置された液体吐出部102にはペースト4Pが充てんされ、液体吐出部102の先端に設けられたペースト4Pが吐出ノズル103より押し出されることにより、太陽電池用基板1Sの電極形成面である受光面1Aに予めプログラムされた受光面バス電極4Bのパターンを描画する。 In FIG. 6, the solar cell substrate 1 </ b> S is placed on the stage 104. The stage 104 is provided with a suction unit 108 that constitutes a suction mechanism 107 that performs air suction, and the solar cell substrate 1S is fixed to the stage 104 by exhausting the suction holes with a vacuum pump. Further, the stage 104 is provided with a plurality of pressure sensors 109 corresponding to the positions along the light receiving surface bus electrode 4B of the solar battery cell 10. The liquid discharge portion 102 disposed in the print head 101 is filled with the paste 4P, and the paste 4P provided at the tip of the liquid discharge portion 102 is pushed out from the discharge nozzle 103, whereby the electrode forming surface of the solar cell substrate 1S. A pattern of the light receiving surface bus electrode 4B programmed in advance is drawn on the light receiving surface 1A.
 液体吐出部102は、印刷機の制御部105によって時間当たりの塗布量を制御することができ、均一で均質な塗布が可能である。また、ステージ104に備えられた圧力センサー109にて感知された圧力は、同制御部105を通して液体吐出部102にフィードバックされ、常に一定の圧力を保ちながら描画が出来るよう、塗布量を制御する。 The liquid discharge unit 102 can control the application amount per hour by the control unit 105 of the printing press, and can apply uniformly and uniformly. The pressure sensed by the pressure sensor 109 provided in the stage 104 is fed back to the liquid ejection unit 102 through the control unit 105, and the coating amount is controlled so that drawing can be performed while always maintaining a constant pressure.
 液体吐出部102に装着される吐出ノズル103は、描画するラインによって材質や大きさ、形状を使い分ける。吐出ノズル103に用いられる代表的な材料としては、ステンレス等の金属、ポリエチレン等の樹脂が挙げられる。また、描くライン幅によってノズル径を選択し、ノズル形状も通常の丸形、方形、分岐ノズル、多連ノズル、平ノズル等から選択する。 The material, size, and shape of the discharge nozzle 103 mounted on the liquid discharge unit 102 are properly selected depending on the line to be drawn. Typical materials used for the discharge nozzle 103 include metals such as stainless steel and resins such as polyethylene. Further, the nozzle diameter is selected according to the line width to be drawn, and the nozzle shape is selected from a normal round shape, a square shape, a branch nozzle, a multiple nozzle, a flat nozzle, and the like.
 本実施の形態によれば、予めスクリーン印刷法によって受光面グリッド電極4Gを形成し、乾燥処理を施した太陽電池用基板1Sをステージ104に載置し、吸引部108によって固定する。次に、予めプログラムされた印刷パターンに従って、受光面バス電極4Bを受光面グリッド電極4Gと直交するように太陽電池用基板1Sの受光面1Aに描画する。なお、本実施の形態では、受光面バス電極4Bの幅が1mmで、予め受光面グリッド電極4Gを形成していることにより、適用したノズルは高密度ポリエチレン製テーパーノズル0.8φ径である。このようにして印刷マスクを使用することなく、吐出ノズル103から直接ペースト4Pを供給することで、受光面バス電極4Bを形成することが出来る。 According to the present embodiment, the light-receiving surface grid electrode 4G is formed in advance by a screen printing method, and the solar cell substrate 1S subjected to the drying process is placed on the stage 104 and fixed by the suction unit 108. Next, the light receiving surface bus electrode 4B is drawn on the light receiving surface 1A of the solar cell substrate 1S so as to be orthogonal to the light receiving surface grid electrode 4G in accordance with a pre-programmed print pattern. In this embodiment, the width of the light-receiving surface bus electrode 4B is 1 mm, and the light-receiving surface grid electrode 4G is formed in advance, so that the applied nozzle has a high-density polyethylene tapered nozzle 0.8φ diameter. Thus, the light-receiving surface bus electrode 4B can be formed by supplying the paste 4P directly from the ejection nozzle 103 without using a printing mask.
 図7は圧力センサー109の配列されたステージ104の表面を示す模式図であり、図6は図7のC-C断面に相当する。本実施の形態では、圧力センサー109が受光面バス電極4B形成領域R4Bに沿って12個設けられ、3個毎に吸引穴からなる吸引部108が設けられている。吸引部108によって、太陽電池用基板1Sは水平に固定され、複数の圧力センサー109が一定の間隔で配列されている。従って圧力センサー109の出力を測定することで、受光面バス電極4Bを形成するためのペースト4Pの供給量に起因する圧力が検出される。圧力センサー109の出力は制御部105にフィードバックされ、吐出ノズル103からのペースト4Pの供給量が制御される。 FIG. 7 is a schematic view showing the surface of the stage 104 on which the pressure sensors 109 are arranged, and FIG. 6 corresponds to a CC section of FIG. In the present embodiment, twelve pressure sensors 109 are provided along the light receiving surface bus electrode 4B formation region R 4B, and suction portions 108 each including a suction hole are provided. The solar cell substrate 1S is fixed horizontally by the suction unit 108, and a plurality of pressure sensors 109 are arranged at regular intervals. Therefore, by measuring the output of the pressure sensor 109, the pressure resulting from the supply amount of the paste 4P for forming the light receiving surface bus electrode 4B is detected. The output of the pressure sensor 109 is fed back to the control unit 105, and the supply amount of the paste 4P from the discharge nozzle 103 is controlled.
 図11は、実施の形態1の印刷機のうち、受光面バス電極4Bを描画している部分およびその周辺の模式断面図である。液体吐出部102の吐出ノズル103より、ペースト4Pが時間当たりの吐出量を制御しながら吐出され、受光面バス電極4Bを描画する。その際、描画する位置に沿ってステージ104に設置された圧力センサー109で感知された圧力、例えば0.9kg/cm2で常に一定となるよう液体吐出部102の吐出ノズル103の高さを制御することにより、吐出量を微細に変化させながら描画することが可能となる。 FIG. 11 is a schematic cross-sectional view of a portion where the light-receiving surface bus electrode 4B is drawn and its periphery in the printer of the first embodiment. The paste 4P is discharged from the discharge nozzle 103 of the liquid discharge unit 102 while controlling the discharge amount per time, and the light receiving surface bus electrode 4B is drawn. At that time, the height of the discharge nozzle 103 of the liquid discharge unit 102 is controlled so as to be always constant at a pressure detected by the pressure sensor 109 installed on the stage 104 along the drawing position, for example, 0.9 kg / cm 2. By doing so, it is possible to perform drawing while finely changing the discharge amount.
 図12は、本実施の形態における受光面グリッド電極4Gの形成に用いられるスクリーン印刷機のステージ部分の模式断面図である。スクリーン印刷工程では、印刷マスク202を介して太陽電池用電極1Sの電極形成面にペースト4GPを塗布する。図13は図12の拡大図である。図12および図13に示す印刷機は太陽電池用基板1Sを載置するステージ104を備え、ステージ104には太陽電池用基板1Sを固定するための吸引部108を備える。吸引部108はステージ104におけるエアーの吸引によって、太陽電池用基板1Sをステージ104に固定する。印刷マスク202は、マスクフレーム203と縦糸200Aと横糸200Bを有し、マスクフレーム203の印刷面側に貼り付けられたスクリーンメッシュ200と、感光性乳剤200Sとを備える。図13では、ステージ104およびマスクフレーム203を省略している。 FIG. 12 is a schematic cross-sectional view of the stage portion of the screen printer used for forming the light-receiving surface grid electrode 4G in the present embodiment. In the screen printing process, the paste 4GP is applied to the electrode forming surface of the solar cell electrode 1S through the printing mask 202. FIG. 13 is an enlarged view of FIG. 12 and 13 includes a stage 104 on which the solar cell substrate 1S is placed, and the stage 104 includes a suction unit 108 for fixing the solar cell substrate 1S. The suction unit 108 fixes the solar cell substrate 1 </ b> S to the stage 104 by sucking air at the stage 104. The printing mask 202 includes a mask frame 203, warp yarns 200A, and weft yarns 200B, and includes a screen mesh 200 attached to the printing surface side of the mask frame 203 and a photosensitive emulsion 200S. In FIG. 13, the stage 104 and the mask frame 203 are omitted.
 印刷機は、ペースト4GPが載せられた状態の印刷マスク202上にてスキージ201を走査させることで、印刷マスク202を介して、太陽電池用基板1Sの電極形成面にペースト4GPを塗布する。印刷マスク202のうち感光性乳剤200Sでカバーされた部分ではペースト4GPを通過させず、スクリーンメッシュ200を露出させた部分でペースト4GPを通過させることで、印刷機は、印刷マスク202の印刷パターンを電極形成面上に転写し、受光面グリッド電極4Gを形成する。 The printing machine applies the paste 4GP to the electrode formation surface of the solar cell substrate 1S through the printing mask 202 by scanning the squeegee 201 on the printing mask 202 on which the paste 4GP is placed. In the portion of the printing mask 202 covered with the photosensitive emulsion 200S, the paste 4GP is not allowed to pass, and the portion where the screen mesh 200 is exposed is allowed to pass the paste 4GP. The light receiving surface grid electrode 4G is formed by transferring onto the electrode forming surface.
 ペースト4GPは、電極材料である導電性材料を含む。ペースト4GPに使用される代表的な導電性材料としては、金、銀、銅、白金およびパラジウム等の金属材料があげられる。ペーストは、これらの導電性材料の一つあるいは複数を含む。 The paste 4GP includes a conductive material that is an electrode material. Typical conductive materials used for the paste 4GP include metal materials such as gold, silver, copper, platinum and palladium. The paste includes one or more of these conductive materials.
 実施の形態1の電極形成方法では、受光面グリッド電極4Gおよび受光面バス電極4Bに対して最適なペースト4GP,4Pを選択することが可能である。また、本実施の形態では受光面バス電極4Bに必要な塗布量の削減も併せて可能である。ちなみに、通例の方法では、受光面グリッド電極4Gおよび受光面バス電極4Bに対して一括形成が行われるため、受光面バス電極4B部分に印刷マスク202を通して塗布されるペーストの重量が、受光面グリッド電極4Gの性能を発現させるためのマスク仕様によって決められている。これに対し、本実施の形態では、各々独立して形成することにより、最適化を図ることが可能である。 In the electrode forming method of the first embodiment, it is possible to select the optimum pastes 4GP and 4P for the light receiving surface grid electrode 4G and the light receiving surface bus electrode 4B. In the present embodiment, it is possible to reduce the amount of coating required for the light-receiving surface bus electrode 4B. Incidentally, in the usual method, since the light receiving surface grid electrode 4G and the light receiving surface bus electrode 4B are collectively formed, the weight of the paste applied to the light receiving surface bus electrode 4B through the printing mask 202 is determined by the weight of the light receiving surface grid. It is determined by a mask specification for expressing the performance of the electrode 4G. On the other hand, in this embodiment, optimization can be achieved by forming each independently.
 また、受光面バス電極4Bに最適なペーストの仕様においては、求められる性能の為、受光面グリッド電極4Gで用いられるペーストに比べて少ない量の導電性材料でその機能を発現することが可能である。すなわちこれは、ペースト4GP,4Pの合計価格を下げることに他ならない。従って、受光面グリッド電極4Gおよび受光面バス電極4Bを各々独立して形成することにより、塗布量的にも価格的にも両面から併せてコストダウンが可能となる。 In addition, in the specification of the optimum paste for the light receiving surface bus electrode 4B, it is possible to express its function with a smaller amount of conductive material than the paste used in the light receiving surface grid electrode 4G because of the required performance. is there. That is, this is nothing but reducing the total price of the pastes 4GP and 4P. Therefore, by separately forming the light receiving surface grid electrode 4G and the light receiving surface bus electrode 4B, it is possible to reduce the cost from both sides in terms of coating amount and price.
 これに対して、比較例では、通常一括で受光面グリッド電極4Gおよび受光面バス電極4Bを形成するため、印刷マスク202およびペーストの仕様は一様に設定される。しかしながら、受光面グリッド電極4Gと受光面バス電極4Bに求められる性能は同じではない。前者は太陽電池用基板1S内で発生した電流を集電することであり、後者はその集電した電流をタブ線を通して流すことである。そのため、受光面グリッド電極4Gの性能を最大限発現するよう調整されているペーストを、受光面バス電極4Bに用いることは過剰品質であり、価格的にも割高なものを使用している。 On the other hand, in the comparative example, since the light receiving surface grid electrode 4G and the light receiving surface bus electrode 4B are normally formed in a lump, the specifications of the print mask 202 and the paste are set uniformly. However, the performance required for the light receiving surface grid electrode 4G and the light receiving surface bus electrode 4B is not the same. The former is to collect the current generated in the solar cell substrate 1S, and the latter is to flow the collected current through the tab wire. For this reason, it is excessive quality to use a paste adjusted to maximize the performance of the light receiving surface grid electrode 4G for the light receiving surface bus electrode 4B, which is expensive.
 図14は、比較例の方法で作製した太陽電池セルの性能と実施の形態1の太陽電池の性能を比較した表図である。比較例の方法に比べて、電圧(Voc)は2mV、電流(Jsc)は0.2mA/cm2向上し、曲線因子(FF)は3/1000低下した結果、効率(Eff)は0.1%向上する。 FIG. 14 is a table comparing the performance of the solar battery cell produced by the method of the comparative example and the performance of the solar battery of the first embodiment. Compared with the method of the comparative example, the voltage (Voc) was improved by 2 mV, the current (Jsc) was improved by 0.2 mA / cm 2, and the fill factor (FF) was reduced by 3/1000. As a result, the efficiency (Eff) was 0.1 %improves.
 図15は、比較例の方法で作製した太陽電池セルの受光面バス電極4Bに塗布されたペーストの重量と実施の形態1の塗布重量を比較した比較図である。本実施の形態で用いた受光面バス電極4B用のペースト4Pは、含まれる導電性材料の量が比較例の受光面バス電極4B用のペーストに含まれる導電性材料の量と比べて3割低減したものである。 FIG. 15 is a comparative diagram comparing the weight of the paste applied to the light-receiving surface bus electrode 4B of the solar battery cell produced by the method of the comparative example and the applied weight of the first embodiment. In the paste 4P for the light-receiving surface bus electrode 4B used in the present embodiment, the amount of the conductive material contained is 30% of the amount of the conductive material contained in the paste for the light-receiving surface bus electrode 4B of the comparative example. Reduced.
 比較例の方法では0.05gの塗布量であったものが、本実施の形態の方法では0.012から0.034gと、いずれの場合も比較例の方法よりも塗布量の低減が可能である。これによって作製された太陽電池セルの性能は、図15の条件1では比較例の方法を下回ったものの、条件2、条件3では比較例の方法と同等もしくはそれ以上と言う結果となり、図11で示した本実施の形態である条件3であっても、比較例の方法におけるペーストの塗布量より3割低減されており、これが導電性材料を3割減じたペースト4Pで達成されている。 In the method of the comparative example, the coating amount was 0.05 g, but in the method of the present embodiment, the coating amount was 0.012 to 0.034 g. In any case, the coating amount could be reduced as compared with the method of the comparative example. is there. Although the performance of the solar cell thus produced was lower than the method of the comparative example under condition 1 in FIG. 15, the results were equivalent to or higher than the method of the comparative example under conditions 2 and 3, and in FIG. Even in the condition 3 according to the present embodiment shown, the amount of paste applied in the method of the comparative example is reduced by 30%, and this is achieved by the paste 4P obtained by reducing the conductive material by 30%.
 図16は、比較例の方法での製造コストを、ペースト、印刷マスク、印刷機の3項目に分けて、各々を1とした時の実施の形態1の方法で製造コストの相対値を表した表図である。本実施の形態では、受光面バス電極4Bに対して本実施の形態の電極製造方法を適用し、受光面グリッド電極4Gには従来法を適用しており、ペーストはコスト低減、印刷マスクは変化なし、印刷機はコスト増となる。しかしながら、一定の条件の下、太陽電池セルの出力向上とペーストのコストおよび使用量低減により、本実施の形態にかかる印刷機を追加で導入した場合でも、約1年で導入コストが回収され、その後は利益を生むこととなる。なお、図16では、受光面バス電極用ペーストは受光面バスペースト、受光面バス電極用印刷機は受光面バス印刷機とするなど、用語の省略をしている。 FIG. 16 shows the relative value of the manufacturing cost by the method of the first embodiment when the manufacturing cost in the method of the comparative example is divided into three items of paste, printing mask, and printing machine and each is set to 1. FIG. In the present embodiment, the electrode manufacturing method of the present embodiment is applied to the light-receiving surface bus electrode 4B, and the conventional method is applied to the light-receiving surface grid electrode 4G. The paste is reduced in cost, and the printing mask is changed. None, printing presses are costly. However, under certain conditions, the introduction cost is recovered in about one year even when the printing press according to the present embodiment is additionally introduced by improving the output of the solar battery cell and reducing the cost and amount of use of the paste. After that, it will be profitable. In FIG. 16, the terminology is omitted such that the light receiving surface bus electrode paste is a light receiving surface bus paste, and the light receiving surface bus electrode printer is a light receiving surface bus printer.
 太陽電池用基板1Sに塗布されたペーストは、一般に焼成と称される処理によって電極となる。焼成工程では、ピーク温度を800℃以下、望ましくは720℃から770℃とする加熱処理を実施する。焼成炉での加熱処理の時間は、概ね2分以内とする。 The paste applied to the solar cell substrate 1S becomes an electrode by a process generally called firing. In the baking step, heat treatment is performed so that the peak temperature is 800 ° C. or lower, desirably 720 ° C. to 770 ° C. The heat treatment time in the firing furnace is generally within 2 minutes.
 図17および図18は、本実施の形態による太陽電池モジュールの製造方法の手順を説明する模式断面図である。まず、受光面側および裏面側に集電電極の形成された複数の太陽電池セル10を、タブ線20によって接続する。この配線付きの太陽電池セル10を、図17に示すように、透光性樹脂部材21Aおよび21Bを介して透光性基板22および裏面シート23との間に挟み込みこれらの部材を圧着させた状態で加熱処理を施すことにより、図18に示すように、配線付きの太陽電池セル10が封止された透光性樹脂部材21と、透光性基板22と、裏面シート23とが一体化された太陽電池モジュールが作製される。上記の電極形成方法により形成された電極を備える太陽電池セル10を用いることで、高い発電効率を持つ太陽電池モジュールを得ることができる。 17 and 18 are schematic cross-sectional views for explaining the procedure of the method for manufacturing the solar cell module according to the present embodiment. First, a plurality of solar cells 10 having current collecting electrodes formed on the light receiving surface side and the back surface side are connected by tab wires 20. As shown in FIG. 17, the solar cell 10 with wiring is sandwiched between the translucent substrate 22 and the back sheet 23 via the translucent resin members 21A and 21B, and these members are pressure-bonded. As shown in FIG. 18, the translucent resin member 21 in which the solar cell 10 with wiring is sealed, the translucent substrate 22, and the back sheet 23 are integrated. A solar cell module is produced. A solar battery module having high power generation efficiency can be obtained by using the solar battery cell 10 including the electrode formed by the above electrode forming method.
 本実施の形態では、透光性基板22の上に透光性樹脂部材21Bを設置する。その透光性樹脂部材21B上には、配線付きの太陽電池セル10を設置する。配線付きの太陽電池セル10は、図1に示した所定の枚数の太陽電池セル10を並列させて、隣り合う太陽電池セル10同士を半田付き銅線等の導線からなるタブ線20により接続することにより作製する。配線付きの太陽電池セル10は、各太陽電池セル10の裏面を上にして、透光性樹脂部材21Bに設置する。 In this embodiment, a translucent resin member 21B is installed on the translucent substrate 22. On the translucent resin member 21B, the solar cell 10 with wiring is installed. In the solar cell 10 with wiring, the predetermined number of solar cells 10 shown in FIG. 1 are arranged in parallel, and the adjacent solar cells 10 are connected to each other by a tab wire 20 made of a conductive wire such as a soldered copper wire. To make. The solar cell 10 with wiring is installed on the translucent resin member 21B with the back surface of each solar cell 10 facing upward.
 配線付きの太陽電池セル10の上には、さらに透光性樹脂部材21Aおよび裏面シート23を設置する。図18には、図の下部から順に、透光性基板22、透光性樹脂部材21、配線付きの太陽電池セル10、透光性樹脂部材21および裏面シート23を重ね合わせた状態を示している。 On the solar cell 10 with wiring, a translucent resin member 21A and a back sheet 23 are further installed. FIG. 18 shows a state in which the light-transmitting substrate 22, the light-transmitting resin member 21, the solar cell 10 with wiring, the light-transmitting resin member 21, and the back sheet 23 are stacked in order from the bottom of the figure. Yes.
 太陽電池モジュールの作製における加熱および圧着の処理には、ラミネータと称される真空加熱圧着装置を使用することが望ましい。ラミネータは、透光性樹脂部材21あるいは裏面シート23を加熱変形させ、さらにこれらを熱硬化させることにより一体化させるとともに透光性樹脂部材21に太陽電池セルを封止する。 It is desirable to use a vacuum thermocompression bonding device called a laminator for the heating and pressure bonding treatment in the production of the solar cell module. The laminator heats and deforms the translucent resin member 21 or the back sheet 23 and further thermosets them so as to integrate the solar cells in the translucent resin member 21.
 真空加熱圧着装置は、減圧環境下において、各部材を加熱および圧着させる。これにより、透光性基板22および透光性樹脂部材21間、透光性樹脂部材21および配線付きの太陽電池セル10間、配線付きの太陽電池セル10および透光性樹脂部材21間、透光性樹脂部材21および裏面シート23間のいずれについても、空隙や気泡の残留を防ぎ、各部材を均一な圧力で圧着させることができる。 The vacuum thermocompression bonding apparatus heats and crimps each member in a reduced pressure environment. Thereby, between the translucent board | substrate 22 and the translucent resin member 21, between the translucent resin member 21 and the photovoltaic cell 10 with wiring, between the photovoltaic cell 10 with wiring and the translucent resin member 21, With respect to any of the space between the light-sensitive resin member 21 and the back sheet 23, it is possible to prevent voids and bubbles from remaining and to press-bond each member with a uniform pressure.
 真空加熱圧着装置での加熱および圧着の処理は、200℃以下、望ましくは150℃から200℃の温度下で実施する。加熱および圧着の処理における温度は、透光性樹脂部材21の材質等により適宜変更可能であるものとする。 The heating and pressure-bonding treatment in the vacuum thermocompression bonding apparatus is performed at a temperature of 200 ° C. or lower, preferably 150 ° C. to 200 ° C. It is assumed that the temperature in the heating and pressure bonding processes can be changed as appropriate depending on the material of the translucent resin member 21 and the like.
 透光性基板22としては、例えばガラス基板を使用する。透光性基板22は、太陽光を透過可能であれば良く、ガラス以外の材質からなるものとしても良い。透光性樹脂部材31は、エチレンビニルアセテート系、ポリビニルブチラール系、エポキシ系、アクリル系、ウレタン系、オレフィン系、ポリエステル系、シリコン系、ポリスチレン系、ポリカーボネート系およびゴム系等の樹脂のうちの一つあるいは複数を含む。透光性樹脂部材21は、太陽光を透過可能であれば、ここで挙げる以外のいずれの材質を使用するものであっても良い。 As the translucent substrate 22, for example, a glass substrate is used. The translucent board | substrate 22 should just be what can permeate | transmit sunlight, and is good also as what consists of materials other than glass. The translucent resin member 31 is one of resins such as ethylene vinyl acetate, polyvinyl butyral, epoxy, acrylic, urethane, olefin, polyester, silicon, polystyrene, polycarbonate, and rubber. Contains one or more. As long as the translucent resin member 21 can transmit sunlight, any material other than those listed here may be used.
 裏面シート23としては、ポリエステル系、ポリビニル系、ポリカーボネート系およびポリイミド系等の樹脂のうちの一つあるいは複数からなるシートを使用する。裏面シート23は、太陽電池モジュールの保護に十分な強度、耐湿性および耐候性を有するものであれば、ここで挙げる以外のいずれの材質からなるものであっても良い。裏面シート23は、強度、耐湿性および耐候性を向上させるために、樹脂材料のみならず、金属箔材料を貼り合わせた複合材料からなるものとしても良い。また、裏面シート23は、高い反射率を持つ金属材料あるいは、高い屈折率を持つ透光性部材を、蒸着等の成膜方法により樹脂材料の表面に成膜したり貼り合わせたものとしても良い。 As the back sheet 23, a sheet made of one or a plurality of resins such as polyester, polyvinyl, polycarbonate, and polyimide is used. The back sheet 23 may be made of any material other than those listed here as long as it has sufficient strength, moisture resistance and weather resistance for protecting the solar cell module. The back sheet 23 may be made of not only a resin material but also a composite material obtained by bonding metal foil materials in order to improve strength, moisture resistance, and weather resistance. Further, the back sheet 23 may be formed by laminating a metal material having a high reflectance or a translucent member having a high refractive index on the surface of the resin material by a film forming method such as vapor deposition. .
 太陽電池モジュールの端面は、ラミネート加工の密着性を向上させ、外部からの水分等の浸入を防ぐために、ゴム系樹脂部材等の樹脂材料からなるテープにより保護することとしても良い。ゴム系樹脂部材としては、例えば、ブチルゴム等のゴム材を使用する。さらに、太陽電池モジュールは、構造体としての取り扱い易さに鑑み、外周を囲うフレームを設けることとしても良い。フレームは、例えば、アルミニウム、アルミニウム合金等の金属部材を用いて構成する。 The end face of the solar cell module may be protected with a tape made of a resin material such as a rubber-based resin member in order to improve the adhesion of the laminating process and prevent intrusion of moisture and the like from the outside. As the rubber-based resin member, for example, a rubber material such as butyl rubber is used. Furthermore, the solar cell module may be provided with a frame surrounding the outer periphery in view of ease of handling as a structure. The frame is configured using a metal member such as aluminum or an aluminum alloy, for example.
 本実施の形態では、高額の装置設備を要することなく、簡便な手法により高性能な太陽電池セルおよび太陽電池モジュールを得ることができるため、工業上非常に有用である。 This embodiment is very useful industrially because high-performance solar cells and solar cell modules can be obtained by a simple method without requiring expensive equipment.
 実施の形態1によれば、印刷マスクを使用しないことで、印刷マスクのためのコストが不要になる。また、スクリーン印刷機よりも安価なシステムによって所望の電極を形成することができる。電極形成においては、時間当たりの塗布量を制御しながらペーストを塗布することが可能なため、本来必要な量のペーストを電極形成位置に吐出させることが出来る。これにより、特性を向上させるに必要十分なペーストを供給し、その結果として供給するペースト量を従来に比較して削減する、つまり、コスト削減と効率向上を合わせ持つ太陽電池用電極の形成を可能とする。また、実施の形態1の電極形成方法は簡便で安価な方法であり、従来の手法と置き換える、若しくは従来の手法に追加することにより、電極パターンの配置あるいは線幅、厚さなどに設計変更があった場合にも、即時に実施可能であり、信頼性のある電極形成が容易に可能となる。 According to the first embodiment, the cost for the printing mask becomes unnecessary by not using the printing mask. Moreover, a desired electrode can be formed by a system cheaper than a screen printer. In the electrode formation, the paste can be applied while controlling the amount of application per time, so that the necessary amount of paste can be discharged to the electrode formation position. This makes it possible to supply the necessary and sufficient paste to improve the characteristics and reduce the amount of paste to be supplied as a result. In other words, it is possible to form solar cell electrodes that combine cost reduction and efficiency improvement. And Further, the electrode forming method of the first embodiment is a simple and inexpensive method, and the design change can be made to the arrangement of the electrode pattern or the line width and thickness by replacing the conventional method or adding to the conventional method. Even if there is, it can be carried out immediately and a reliable electrode can be easily formed.
 本実施の形態によれば、図4からも明らかなように、受光面バス電極4Bと受光面グリッド電極4Gは互いの上に乗り上げることなく、側面で当接しているため、電極材料の無駄もなく、遮光領域を増大することなく、電池面積を確保することができ、かつ集電性に優れた受光面電極を形成することが可能となる。 According to the present embodiment, as is clear from FIG. 4, the light receiving surface bus electrode 4B and the light receiving surface grid electrode 4G are not in contact with each other but are in contact with each other. In addition, it is possible to secure a battery area without increasing the light shielding region and to form a light receiving surface electrode excellent in current collection.
 なお、受光面グリッド電極4Gはスクリーン印刷によって形成し、受光面バス電極4Bのみを、スクリーンを用いることなく、液体吐出部102を用いて吐出量を制御しながら形成したが、受光面グリッド電極4Gについても、液体吐出部102を用いて吐出量を制御しながら形成するようにしてもよい。 The light receiving surface grid electrode 4G is formed by screen printing, and only the light receiving surface bus electrode 4B is formed while controlling the discharge amount using the liquid discharge unit 102 without using a screen. Also, the liquid discharge unit 102 may be used to control the discharge amount.
 また、圧力センサーを用いて塗布後の重量を測定しながら塗布量を制御したが、液体吐出部102の吐出量を制御することができれば、圧力センサーは必須ではない。圧力センサーに代えて、ステージの走査速度を調整することにより、供給量を調整したり、供給量をより高精度に制御できるようにすることによっても、供給量の制御を実現することが可能である。 In addition, although the application amount is controlled while measuring the weight after application using a pressure sensor, the pressure sensor is not essential if the discharge amount of the liquid discharge unit 102 can be controlled. Instead of the pressure sensor, the supply amount can be controlled by adjusting the scanning speed of the stage so that the supply amount can be adjusted and the supply amount can be controlled with higher accuracy. is there.
 なお、制御部は、吐出ノズルからのペーストの供給量を、毎分0.1mlから1mlに制御することで、高精度の線幅および位置を維持しつつ効率よくバス電極を描画することができる。特に、吐出ノズルからのペーストの供給量は、望ましくは毎分0.1mlから0.3mlの範囲で制御しながらバス電極を描画することで、圧力センサーを用いることなく、高精度のバス電極形成が実現される。圧力センサーを使用することなくペースト供給を行う場合において、供給量を毎分0.1mlから1mlで高精度に制御することによって高精度のバス電極のパターンを描画することが可能となる。中でも毎分0.1mlから0.3mlで吐出ノズルからのペーストの供給量すなわち吐出量を制御しながらバス電極のパターンを描画することで、従来塗布量の3割減の供給量でバス電極のパターンを描画することが出来る。従って、高精度でペースト使用量の少ない電極を提供することが可能となる。因みに、ある一定条件下において、塗布量0.012gは約0.1ml/minで塗布したもの、塗布量0.034gは約0.3ml/minで塗布したものに相当する。さらにまた、前述したように、吐出ノズルの高さを調整することによっても吐出量を微調整することができる。また、圧力センサーを用いる場合にも、毎分0.1mlから0.3mlで吐出ノズルからのペーストの吐出量を制御しながらバス電極のパターンを描画することでより高精度の制御が可能となる。 The control unit can efficiently draw the bus electrode while maintaining a highly accurate line width and position by controlling the supply amount of the paste from the discharge nozzle from 0.1 ml to 1 ml per minute. . In particular, the supply amount of the paste from the discharge nozzle is desirably controlled within a range of 0.1 ml to 0.3 ml per minute, and the bus electrode is drawn, thereby forming a highly accurate bus electrode without using a pressure sensor. Is realized. In the case of supplying paste without using a pressure sensor, it is possible to draw a highly accurate bus electrode pattern by controlling the supply amount with high accuracy from 0.1 ml to 1 ml per minute. In particular, by drawing the bus electrode pattern while controlling the supply amount of paste from the discharge nozzle, that is, the discharge amount, from 0.1 ml to 0.3 ml per minute, the supply amount of the bus electrode can be reduced by 30% of the conventional application amount. A pattern can be drawn. Therefore, it is possible to provide an electrode with high accuracy and a small amount of paste. Incidentally, under a certain condition, the coating amount of 0.012 g corresponds to that applied at about 0.1 ml / min, and the coating amount of 0.034 g corresponds to that applied at about 0.3 ml / min. Furthermore, as described above, the discharge amount can be finely adjusted by adjusting the height of the discharge nozzle. Even when a pressure sensor is used, more accurate control is possible by drawing the pattern of the bus electrode while controlling the discharge amount of paste from the discharge nozzle at a rate of 0.1 to 0.3 ml per minute. .
 また、複数の圧力センサーは、図7に示したように、バス電極形成領域の中心線に沿って一定間隔で配列されていることで、高精度にバス電極へのペースト供給量を検知することができ、信頼性の高い制御が可能となる。 In addition, as shown in FIG. 7, the plurality of pressure sensors are arranged at regular intervals along the center line of the bus electrode formation region, thereby detecting the paste supply amount to the bus electrode with high accuracy. And reliable control becomes possible.
実施の形態2.
 次に、実施の形態2にかかる太陽電池セルの電極形成方法のうち受光面バス電極の形成方法について説明する。図19は、実施の形態2の方法によって形成された太陽電池セルを示す断面図である。受光面および裏面については、図1および図2に示した、本発明の実施の形態1にかかる太陽電池の電極形成方法によって形成された電極を備える太陽電池と同様である。図19は、図1および図2のIII-III断面図に相当する断面図である。
Embodiment 2. FIG.
Next, a method for forming a light-receiving surface bus electrode among the electrode forming methods for solar battery cells according to the second embodiment will be described. FIG. 19 is a cross-sectional view showing a solar battery cell formed by the method of the second embodiment. About a light-receiving surface and a back surface, it is the same as that of a solar cell provided with the electrode formed by the electrode formation method of the solar cell concerning Embodiment 1 of this invention shown in FIG.1 and FIG.2. 19 is a cross-sectional view corresponding to the III-III cross-sectional view of FIGS.
 太陽電池セルの受光面1Aには、バス電極形成領域に互いに平行な4本の貫通溝Vが設けられ、この貫通溝Vに受光面バス電極4Bが設けられたことを特徴とする。他の構成については、前記実施の形態1の太陽電池と同様であるため、ここでは説明を省略する。本印刷工程では、印刷マスクを介さずに基板材料の電極形成面に形成された貫通溝V内に充填するようにペースト4Pを供給し塗布する。 In the light receiving surface 1A of the solar battery cell, four through grooves V parallel to each other are provided in the bus electrode formation region, and the light receiving surface bus electrode 4B is provided in the through groove V. Since other configurations are the same as those of the solar cell of the first embodiment, description thereof is omitted here. In this printing process, the paste 4P is supplied and applied so as to fill the through grooves V formed on the electrode forming surface of the substrate material without using a printing mask.
 後続工程についても、前記実施の形態1と同様である。本実施の形態においても貫通溝V内に充填された受光面バス電極4Bと受光面グリッド電極4Gは互いの上に乗り上げることなく、側面で当接している。 The subsequent process is the same as that in the first embodiment. Also in the present embodiment, the light-receiving surface bus electrode 4B and the light-receiving surface grid electrode 4G filled in the through groove V are in contact with each other without climbing on each other.
 かかる構成により、実施の形態1よりもさらに、電極材料の無駄もなく、遮光領域を増大することなく、電池面積を確保することができ、かつ集電性に優れた受光面電極を形成することが可能となる。 With this configuration, it is possible to form a light-receiving surface electrode that can secure a battery area without waste of electrode material and increase the light-shielding area and has excellent current collecting performance, as compared with the first embodiment. Is possible.
実施の形態3.
 次に、実施の形態3にかかる太陽電池セルの電極形成方法のうち受光面バス電極の形成方法で用いられる印刷機について説明する。図20は、実施の形態3の電極形成方法に使用する印刷機のステージ部分の模式平面図である。本実施の形態では、受光面バス電極形成領域R4Bに沿って一定間隔で圧力センサー109が配列されている。圧力センサー109は受光面バス電極形成領域R4Bに位置するように配されており、受光面バス電極4B形成用のペーストが吐出ノズルから供給されることにより変化する圧力センサー109の検出値が一定となるように、吐出量を制御する。吐出ノズル103からの吐出量の制御は実施の形態1で図5に示したのと同様、塗布装置の制御部105で実施する。
Embodiment 3 FIG.
Next, a printing machine used in the method for forming the light-receiving surface bus electrode among the electrode forming methods for solar battery cells according to the third embodiment will be described. FIG. 20 is a schematic plan view of a stage portion of a printing machine used in the electrode forming method of the third embodiment. In the present embodiment, the pressure sensors 109 are arranged at regular intervals along the light receiving surface bus electrode formation region R 4B . The pressure sensor 109 is disposed so as to be positioned in the light receiving surface bus electrode formation region R 4B , and the detection value of the pressure sensor 109 that changes when the paste for forming the light receiving surface bus electrode 4B is supplied from the discharge nozzle is constant. The discharge amount is controlled so that The control of the discharge amount from the discharge nozzle 103 is performed by the control unit 105 of the coating apparatus as in the first embodiment shown in FIG.
 図7で示した実施の形態1の印刷機のステージ部分に比べて吸引穴からなる吸引部108と圧力センサー109の配置が異なるもので、他の部分については前記実施の形態1と同様であるためここでは説明を省略する。 The arrangement of the suction portion 108 and the pressure sensor 109, each consisting of a suction hole, is different from the stage portion of the printing press of the first embodiment shown in FIG. 7, and the other portions are the same as those of the first embodiment. Therefore, the description is omitted here.
 実施の形態3の印刷機によれば、受光面バス電極形成領域R4Bの中心線に沿って等間隔で圧力センサー109が配列されているため、より確実に供給量の制御をすることが可能となる。 According to the printer of the third embodiment, since the pressure sensors 109 are arranged at equal intervals along the center line of the light receiving surface bus electrode formation region R 4B , the supply amount can be controlled more reliably. It becomes.
 以上の実施の形態に示した構成は、本発明の内容の一例を示すものであり、別の公知の技術と組み合わせることも可能であるし、本発明の要旨を逸脱しない範囲で、構成の一部を省略、変更することも可能である。 The configuration described in the above embodiment shows an example of the contents of the present invention, and can be combined with another known technique, and can be combined with other configurations without departing from the gist of the present invention. It is also possible to omit or change the part.
 1 p型単結晶シリコン基板、1S 太陽電池用基板、2 n型不純物拡散層、3 反射防止膜、4 受光面電極、4G 受光面グリッド電極、4B 受光面バス電極、5 裏面電極、5A 裏面アルミニウム電極、5B 裏面バス電極、10 太陽電池セル、20 タブ線、21,21A,21B 透光性樹脂部材、22 透光性基板、23 裏面シート、101 印刷ヘッド、102 液体吐出部、103 吐出ノズル、104 ステージ、105 制御部、107 吸引機構、108 吸引部、109 圧力センサ、4P ペースト、203 マスクフレーム、200 スクリーンメッシュ、200S 感光性乳剤、201 スキージ、200A 縦糸、200B 横糸、202 印刷マスク。 1 p-type single crystal silicon substrate, 1S substrate for solar cell, 2 n-type impurity diffusion layer, 3 antireflection film, 4 light receiving surface electrode, 4G light receiving surface grid electrode, 4B light receiving surface bus electrode, 5 back electrode, 5A back aluminum Electrode, 5B Back bus electrode, 10 Solar cell, 20 Tab line, 21, 21A, 21B Translucent resin member, 22 Translucent substrate, 23 Back sheet, 101 Print head, 102 Liquid ejector, 103 Discharge nozzle, 104 stage, 105 control unit, 107 suction mechanism, 108 suction unit, 109 pressure sensor, 4P paste, 203 mask frame, 200 screen mesh, 200S photosensitive emulsion, 201 squeegee, 200A warp, 200B weft, 202 printing mask.

Claims (12)

  1.  半導体基板上にpn接合を形成し太陽電池用基板を形成する工程と、
     電極材料である導電性材料を含むペーストを前記太陽電池用基板の電極形成面に塗布する塗布工程と、前記塗布されたペーストを焼成する焼成工程とを含む電極形成工程とを備えた太陽電池の製造方法であって、
     前記塗布工程は、前記ペーストを吐出する吐出ノズルを備えた液体塗布装置を使用して、前記吐出ノズルからの時間当たりの吐出量で塗布量を制御しながら前記ペーストを前記電極形成面に塗布する工程を含むことを特徴とする太陽電池の製造方法。
    Forming a pn junction on a semiconductor substrate to form a solar cell substrate;
    A solar cell comprising: an application step of applying a paste containing a conductive material that is an electrode material to an electrode formation surface of the solar cell substrate; and an electrode formation step including a firing step of firing the applied paste. A manufacturing method comprising:
    In the application step, the paste is applied to the electrode formation surface while controlling the application amount by the discharge amount per time from the discharge nozzle using a liquid application apparatus having a discharge nozzle for discharging the paste. The manufacturing method of the solar cell characterized by including a process.
  2.  前記電極形成工程は、
     前記電極形成面に分布されるグリッド電極を形成する工程と、
     前記グリッド電極で集電された電荷をまとめて集電するバス電極を形成する工程とを含み、
     前記バス電極を形成する工程が、前記液体塗布装置を使用して前記ペーストを塗布する工程を含むことを特徴とする請求項1に記載の太陽電池の製造方法。
    The electrode forming step includes
    Forming grid electrodes distributed on the electrode forming surface;
    Forming a bus electrode that collects and collects the charges collected by the grid electrode,
    The method of manufacturing a solar cell according to claim 1, wherein the step of forming the bus electrode includes a step of applying the paste using the liquid application device.
  3.  前記バス電極を形成する工程は、前記太陽電池用基板を載置するためのステージの、前記バス電極を形成するバス電極形成領域に沿って設けられた圧力センサーによって、前記圧力センサーが前記ペーストを塗布する際に感知する圧力を測定する工程と、
     前記圧力センサーで測定される測定値が、一定となるまで、前記吐出ノズルからの前記吐出量を制御する制御工程とを含むことを特徴とする請求項2に記載の太陽電池の製造方法。
    The step of forming the bus electrode includes the step of placing the paste on the solar cell substrate by a pressure sensor provided along a bus electrode formation region for forming the bus electrode of the stage for mounting the solar cell substrate. Measuring the pressure sensed during application;
    The method for manufacturing a solar cell according to claim 2, further comprising: a control step of controlling the discharge amount from the discharge nozzle until a measurement value measured by the pressure sensor becomes constant.
  4.  前記塗布工程は、前記吐出ノズルからの前記吐出量を、毎分0.1mlから0.3mlの間で制御する工程を含むことを特徴とする請求項1から3のいずれか1項に記載の太陽電池の製造方法。 The said application | coating process includes the process of controlling the said discharge amount from the said discharge nozzle between 0.1 ml per minute and 0.3 ml, The any one of Claim 1 to 3 characterized by the above-mentioned. A method for manufacturing a solar cell.
  5.  pn接合を有する太陽電池用基板と、
     前記太陽電池用基板の第1主面に形成された第1の集電電極と、
     前記太陽電池用基板の前記第1主面または第2主面に形成された第2の集電電極とを備えた太陽電池であって、
     前記第1および第2の集電電極のうち受光面側に形成される集電電極が、
     前記第1主面または第2主面に分布されるグリッド電極と、
     前記グリッド電極で集電された電荷をまとめて集電し、前記グリッド電極よりも厚さの大きいバス電極とを含み、
     前記グリッド電極は、厚み方向で側面が前記バス電極の側面に当接することを特徴とする太陽電池。
    a solar cell substrate having a pn junction;
    A first current collecting electrode formed on the first main surface of the solar cell substrate;
    A solar cell comprising a second current collecting electrode formed on the first main surface or the second main surface of the solar cell substrate;
    Of the first and second collector electrodes, a collector electrode formed on the light receiving surface side,
    Grid electrodes distributed on the first main surface or the second main surface;
    Collecting the charges collected by the grid electrode together, including a bus electrode having a thickness larger than the grid electrode,
    The solar cell, wherein the grid electrode has a side surface in contact with a side surface of the bus electrode in a thickness direction.
  6.  前記グリッド電極は、前記バス電極とは異なる材料で形成されたことを特徴とする請求項5に記載の太陽電池。 The solar cell according to claim 5, wherein the grid electrode is formed of a material different from that of the bus electrode.
  7.  前記バス電極は、前記太陽電池用基板の前記第1または第2主面に形成された凹部に形成されたことを特徴とする請求項5または6に記載の太陽電池。 The solar cell according to claim 5 or 6, wherein the bus electrode is formed in a recess formed in the first or second main surface of the solar cell substrate.
  8.  pn接合を有する太陽電池用基板の電極形成面に、電極材料である導電性材料を含むペーストを基板材料の電極形成面に塗布する液体塗布装置を備えた太陽電池製造装置であって、
     前記液体塗布装置は、
     前記太陽電池用基板を載置するためのステージと、
     前記ペーストを吐出する吐出ノズルと、
     前記吐出ノズルからの前記ペーストの時間当たりの塗布量を制御する吐出制御部とを有することを特徴とする太陽電池製造装置。
    A solar cell manufacturing apparatus provided with a liquid application device that applies a paste containing a conductive material as an electrode material to an electrode formation surface of a substrate material on an electrode formation surface of a solar cell substrate having a pn junction,
    The liquid coating apparatus is
    A stage for mounting the solar cell substrate;
    A discharge nozzle for discharging the paste;
    A solar cell manufacturing apparatus, comprising: a discharge control unit that controls a coating amount of the paste from the discharge nozzle per unit time.
  9.  前記ステージは、バス電極を形成するバス電極形成領域に沿って配置された複数の圧力センサーを備え、
     前記吐出制御部は、前記塗布量を制御することで、前記圧力センサーが前記ペーストを塗布する際に感知する圧力が一定となるように制御することを特徴とする請求項8に記載の太陽電池製造装置。
    The stage includes a plurality of pressure sensors arranged along a bus electrode formation region for forming a bus electrode,
    The solar cell according to claim 8, wherein the discharge control unit controls the application amount so that a pressure detected when the pressure sensor applies the paste is constant. Manufacturing equipment.
  10.  前記ステージは、前記太陽電池用基板を支持するための吸着穴からなる吸着部と、
     前記吸着部を避けて配置された、前記複数の圧力センサーとを備えたことを特徴とする請求項8または9に記載の太陽電池製造装置。
    The stage includes a suction portion including a suction hole for supporting the solar cell substrate;
    The solar cell manufacturing apparatus according to claim 8 or 9, further comprising the plurality of pressure sensors arranged so as to avoid the adsorption portion.
  11.  前記複数の圧力センサーは、前記バス電極形成領域の中心線に沿って一定間隔で配列されたことを特徴とする請求項10に記載の太陽電池製造装置。 The solar cell manufacturing apparatus according to claim 10, wherein the plurality of pressure sensors are arranged at regular intervals along a center line of the bus electrode formation region.
  12.  前記吐出制御部は、前記吐出ノズルからの前記吐出量を、毎分0.1mlから0.3mlの間で制御することを特徴とする請求項8から11のいずれか1項に記載の太陽電池製造装置。 12. The solar cell according to claim 8, wherein the discharge control unit controls the discharge amount from the discharge nozzle between 0.1 ml and 0.3 ml per minute. Manufacturing equipment.
PCT/JP2016/053271 2016-02-03 2016-02-03 Solar cell manufacturing method, solar cell, and solar cell manufacturing apparatus WO2017134782A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2016/053271 WO2017134782A1 (en) 2016-02-03 2016-02-03 Solar cell manufacturing method, solar cell, and solar cell manufacturing apparatus
JP2017565339A JP6541805B2 (en) 2016-02-03 2016-02-03 Method of manufacturing solar cell, solar cell and solar cell manufacturing apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/053271 WO2017134782A1 (en) 2016-02-03 2016-02-03 Solar cell manufacturing method, solar cell, and solar cell manufacturing apparatus

Publications (1)

Publication Number Publication Date
WO2017134782A1 true WO2017134782A1 (en) 2017-08-10

Family

ID=59499611

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/053271 WO2017134782A1 (en) 2016-02-03 2016-02-03 Solar cell manufacturing method, solar cell, and solar cell manufacturing apparatus

Country Status (2)

Country Link
JP (1) JP6541805B2 (en)
WO (1) WO2017134782A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021532587A (en) * 2018-07-24 2021-11-25 浙江愛旭太陽能科技有限公司Zhejiang Aiko Solar Energy Technology Co., Ltd. Crystalline silicon solar cell screen printing plate for positive electrode hollow molding

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102127136B1 (en) * 2019-08-08 2020-06-26 제너셈(주) Apparatus and method for discharging joint material for singled solar cell junction
KR102539382B1 (en) * 2020-03-25 2023-06-05 엘에스엠앤엠 주식회사 Paste For Solar Cell's Electrode And Solar Cell using the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004153005A (en) * 2002-10-30 2004-05-27 Matsushita Electric Ind Co Ltd Resist pattern forming method and solar cell manufacturing method using the same, and resist pattern forming apparatus
JP2014107457A (en) * 2012-11-28 2014-06-09 Hitachi High-Technologies Corp Solar cell module and process of manufacturing the same
JP2015082512A (en) * 2013-10-21 2015-04-27 株式会社日立ハイテクノロジーズ Method of manufacturing solar cell, solar cell and conductive paste for forming bus bar electrode

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003133565A (en) * 2001-10-22 2003-05-09 Sanyo Electric Co Ltd Method of manufacturing photovoltaic device and processing device
US7884432B2 (en) * 2005-03-22 2011-02-08 Ametek, Inc. Apparatus and methods for shielding integrated circuitry

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004153005A (en) * 2002-10-30 2004-05-27 Matsushita Electric Ind Co Ltd Resist pattern forming method and solar cell manufacturing method using the same, and resist pattern forming apparatus
JP2014107457A (en) * 2012-11-28 2014-06-09 Hitachi High-Technologies Corp Solar cell module and process of manufacturing the same
JP2015082512A (en) * 2013-10-21 2015-04-27 株式会社日立ハイテクノロジーズ Method of manufacturing solar cell, solar cell and conductive paste for forming bus bar electrode

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021532587A (en) * 2018-07-24 2021-11-25 浙江愛旭太陽能科技有限公司Zhejiang Aiko Solar Energy Technology Co., Ltd. Crystalline silicon solar cell screen printing plate for positive electrode hollow molding
JP7210696B2 (en) 2018-07-24 2023-01-23 浙江愛旭太陽能科技有限公司 Crystalline silicon solar cell screen printing plate for positive electrode hollow molding

Also Published As

Publication number Publication date
JP6541805B2 (en) 2019-07-10
JPWO2017134782A1 (en) 2018-05-24

Similar Documents

Publication Publication Date Title
JP4646558B2 (en) Solar cell module
JP5174817B2 (en) Solar cell module
WO2009099418A2 (en) Manufacturing processes for light concentrating solar module
US20150349156A1 (en) Solar battery cell and method of manufacturing the same
EP2738816B1 (en) Solar cell, solar cell module, and method for producing solar cell
US20190123221A1 (en) Solar cell and production method therefor, and solar cell module
WO2017134782A1 (en) Solar cell manufacturing method, solar cell, and solar cell manufacturing apparatus
JP2011044750A (en) Solar cell module
US10566469B2 (en) Method of manufacturing solar cell module
US20120240984A1 (en) Solar cell module and method for manufacturing the same
JP2009238959A (en) Press-bonding device, and manufacturing method of solar cell module
US20180294367A1 (en) Back contact solar cell substrate, method of manufacturing the same and back contact solar cell
JP2015230985A (en) Solar battery cell, manufacturing method for the same and solar battery panel
JP2006278695A (en) Solar cell module
JP4467466B2 (en) Manufacturing method of solar cell module
JP5904881B2 (en) Solar cell manufacturing method and printing mask
US20190319144A1 (en) Solar cells having junctions retracted from cleaved edges
JP6735894B2 (en) Solar cell manufacturing method and solar cell
JP2010272897A (en) Solar cell module
JP2011054660A (en) Solar-cell string and solar-cell module using the same
US11038071B2 (en) Solar cell, solar cell module, and method for manufacturing solar cell
CN102386334A (en) Solar cell photovoltaic building component and manufacturing method thereof
JP2011044751A (en) Solar cell module
US20180122966A1 (en) Solar cell module
JP2006278696A (en) Process for manufacturing solar cell module

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16889269

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017565339

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16889269

Country of ref document: EP

Kind code of ref document: A1