WO2017134747A1 - Method and device for controlling in-cylinder direct-injection internal combustion engine - Google Patents

Method and device for controlling in-cylinder direct-injection internal combustion engine Download PDF

Info

Publication number
WO2017134747A1
WO2017134747A1 PCT/JP2016/053097 JP2016053097W WO2017134747A1 WO 2017134747 A1 WO2017134747 A1 WO 2017134747A1 JP 2016053097 W JP2016053097 W JP 2016053097W WO 2017134747 A1 WO2017134747 A1 WO 2017134747A1
Authority
WO
WIPO (PCT)
Prior art keywords
injection
fuel
timing
compression
internal combustion
Prior art date
Application number
PCT/JP2016/053097
Other languages
French (fr)
Japanese (ja)
Inventor
亮 内田
田中 大輔
祐子 志方
Original Assignee
日産自動車株式会社
ルノー エス.ア.エス.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産自動車株式会社, ルノー エス.ア.エス. filed Critical 日産自動車株式会社
Priority to PCT/JP2016/053097 priority Critical patent/WO2017134747A1/en
Publication of WO2017134747A1 publication Critical patent/WO2017134747A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals

Definitions

  • the present invention relates to control of a direct injection type internal combustion engine.
  • the air-fuel mixture transported around the spark plug is likely to flow by the in-cylinder gas flow.
  • the ignition timing is retarded as in the control described in the above document, it is difficult to cause the air-fuel mixture to stagnate around the ignition plug until the ignition timing. That is, it is difficult to perform stratified combustion by the control described in the above document, and the combustion stability is lowered.
  • an object of the present invention is to enable stable combustion even when the ignition timing is greatly retarded.
  • a fuel injection that forms a gas flow in the cylinder and injects fuel to be burned around the spark plug is performed after the compression stroke, and the mixture formed by the fuel injected by the fuel injection is formed.
  • a control method for spark ignition is provided. In this control method, pre-compression injection that changes the gas flow in a direction in which combustion is stabilized is performed during the compression stroke and before the fuel injection.
  • FIG. 1 is a schematic configuration diagram in the vicinity of a combustion chamber of a direct injection type internal combustion engine.
  • FIG. 2 is a diagram showing the relationship between the fuel injection timing and the tumble flow strength.
  • FIG. 3 is a diagram illustrating an example of the relationship between fuel spray and tumble flow.
  • FIG. 4 is a diagram illustrating another example of the relationship between fuel spray and tumble flow.
  • FIG. 5 is a timing chart of tumble flow strength.
  • FIG. 6 is a schematic view of the combustion chamber ceiling surface.
  • FIG. 7 is a diagram for explaining the spray beam.
  • FIG. 8 is a schematic configuration diagram in the vicinity of a combustion chamber of a direct injection type internal combustion engine.
  • FIG. 9 is a timing chart when the first-compression injection of the first embodiment is executed.
  • FIG. 9 is a timing chart when the first-compression injection of the first embodiment is executed.
  • FIG. 10 is a schematic configuration diagram in the vicinity of a combustion chamber of a direct injection type internal combustion engine.
  • FIG. 11 is a timing chart in the case where the compressed pre-injection in the second embodiment is executed.
  • FIG. 12 is a map showing the momentum of fuel spray.
  • FIG. 13 is a diagram for explaining the spray beam.
  • FIG. 1 is a schematic configuration diagram around a combustion chamber of a direct injection type internal combustion engine (hereinafter also referred to as “engine”) 1 to which the present embodiment is applied.
  • engine direct injection type internal combustion engine
  • FIG. 1 shows only one cylinder, this embodiment can also be applied to a multi-cylinder engine.
  • the cylinder block 1B of the engine 1 includes a cylinder 2.
  • a piston 3 is accommodated in the cylinder 2 so as to be able to reciprocate.
  • the piston 3 is connected to a crankshaft (not shown) via a connecting rod 12 and reciprocates as the crankshaft rotates.
  • the piston 3 includes a cavity 10 described later on a crown surface 3A (hereinafter also referred to as a piston crown surface 3A).
  • the cylinder head 1A of the engine 1 includes a concave combustion chamber 11, and an intake passage 4 and an exhaust passage 5 that communicate the combustion chamber 11 with the outside of the engine.
  • the combustion chamber 11 is configured as a so-called pent roof type, and a pair of intake valves 6 are disposed at the opening of the intake passage 4, and a pair of exhaust valves 7 are disposed at the opening of the exhaust passage 5.
  • An ignition plug 8 is disposed along the axis of the cylinder 2 at a substantially central position of the combustion chamber 11 surrounded by the pair of intake valves 6 and the pair of exhaust valves 7.
  • a tumble control valve 13 as a gas flow generation device is arranged in the intake passage 4.
  • the shape of the flow path of the intake passage 4 may be configured such that the intake air flowing into the combustion chamber 11 forms a tumble flow without providing the tumble control valve 13.
  • the intake passage 4 is a gas flow generation device.
  • a fuel injection valve 9 is arranged at a position between the pair of intake valves 6 in the cylinder head 1A so as to face the combustion chamber 11. The directivity of fuel spray injected from the fuel injection valve 9 will be described later.
  • the intake valve 6 and the exhaust valve 7 are driven to open and close by camshafts (not shown).
  • a variable valve mechanism may be arranged on at least one of the intake side or the exhaust side so that the valve opening timing and the valve closing timing can be variably controlled.
  • the valve opening timing is the timing for starting the valve opening operation
  • the valve closing timing is the timing for ending the valve closing operation.
  • a known mechanism such as a mechanism that changes the rotational phase of the camshaft relative to the crankshaft or a mechanism that can change not only the rotational phase but also the operating angle of each valve can be used.
  • An exhaust purification catalyst for purifying the exhaust gas of the engine 1 is interposed on the exhaust flow downstream side of the exhaust passage 5.
  • the exhaust purification catalyst is, for example, a three-way catalyst.
  • the piston 3 includes the cavity 10 in the piston crown surface 3A as described above.
  • the cavity 10 is provided at a position biased toward the intake side on the piston crown surface 3A.
  • the fuel injection valve 9 is arranged so that the fuel spray is directed to the cavity 10 when fuel is injected when the piston 3 is in the vicinity of the compression top dead center.
  • the cavity 10 has such a shape that the fuel spray (B in the figure) bounced off after colliding is directed toward the spark plug 8.
  • the cavity 10 may be located at the center of the piston crown surface 3A or other position as long as the condition that the fuel spray collides is satisfied.
  • the fuel injection amount, fuel injection timing, ignition timing, and the like of the engine 1 are controlled by the controller 100 according to the operating state of the engine 1.
  • the controller 100 includes a microcomputer that includes a central processing unit (CPU), a read-only memory (ROM), a random access memory (RAM), and an input / output interface (I / O interface). It is also possible to configure the controller 100 with a plurality of microcomputers.
  • the fuel injection timing here is the timing at which fuel injection is started.
  • the engine 1 includes various detection devices such as a crankshaft angle sensor, a cooling water temperature sensor, and an air flow meter that detects an intake air amount.
  • this embodiment demonstrates the structure which forms the stratified air-fuel mixture around the spark plug 8 using the cavity 10, it is not necessarily restricted to this. For example, even if the fuel injection valve 9 is disposed adjacent to the spark plug 8 and the fuel injected from the fuel injection valve 9 with a short drive pulse stays around the spark plug 8 to form a stratified mixture. Good.
  • the controller 100 sets the ignition timing to the first half of the expansion stroke, for example, 10-30 deg after compression top dead center. Further, the controller 100 performs so-called multi-stage injection in which the amount of fuel required per cycle is injected in a plurality of times. In the case of the two-stage injection, the controller 100 sets the first fuel injection timing in the first half of the intake stroke, and sets the second fuel injection timing in the second half of the compression stroke until the fuel spray reaches the ignition timing. It is set to the timing when it can reach the periphery of.
  • the first fuel injection amount and the second fuel injection amount (stratified injection amount) in the case of two-stage injection will be described.
  • the air-fuel ratio of the exhaust gas discharged by the above-mentioned super retarded stratified combustion is stoichiometric (theoretical air-fuel ratio).
  • the controller calculates the amount of fuel that can be completely combusted with the amount of intake air per cycle (hereinafter also referred to as the total fuel amount), as in the general fuel injection amount setting method.
  • a part of the total fuel amount, for example, 20 to 90% by weight is set as the first injection amount, and the rest is set as the second injection amount.
  • the air-fuel ratio of the exhaust gas may be leaner than stoichiometric.
  • the fuel spray injected in the first fuel injection diffuses into the cylinder 2 without colliding with the cavity 10, mixes with air, and is stoichiometric throughout the combustion chamber 11.
  • a leaner homogeneous mixture (A in the figure) is formed.
  • the fuel spray (B in the figure) injected in the second fuel injection (stratified injection) collides with the cavity 10 and is wound up to reach the vicinity of the spark plug 8 and around the spark plug 8. Concentrates the richer mixture than stoiki.
  • the air-fuel mixture in the combustion chamber 11 is in a stratified state. If a spark is ignited by the spark plug 8 in this state, combustion that is resistant to disturbance with misfire suppressed is performed.
  • the combustion mentioned above is stratified combustion, in order to distinguish from the general stratified combustion whose ignition timing is before compression top dead, it is called super retarded stratified combustion.
  • the first fuel injection described above is divided into two, and the fuel amount required per cycle is divided into a total of three injections, two for the intake stroke and one for the compression stroke. Also good.
  • the third injection is stratified injection.
  • FIG. 2 is a timing chart in which the horizontal axis is the crank angle.
  • IT1 indicates the first fuel injection timing
  • IT2 indicates the stratified injection fuel injection timing
  • solid line A indicates the strength of the tumble flow
  • solid line B indicates the fuel adhesion characteristics to the piston 3.
  • TDC means top dead center and BDC means bottom dead center.
  • tumble flow is effective in improving fuel efficiency and reducing exhaust emissions. Since the tumble flow is formed by the intake air flowing into the combustion chamber 11 after the intake valve 6 is opened, the strength of the tumble flow gradually increases during the intake stroke. However, when the volume of the combustion chamber 11 increases as the piston 3 moves down, the flow rate of the tumble flow decreases. For this reason, the intensity of the tumble flow reaches the first peak (1st peak) during the intake stroke and starts to decrease.
  • the volume of the combustion chamber 11 is reduced as the piston 3 is raised, so that the flow velocity of the tumble flow starts to rise, and the strength of the tumble flow also rises accordingly, and the second peak ( 2nd peak). Thereafter, when the piston 3 further rises, the tumble flow is crushed, so that the strength of the tumble flow gradually decreases and eventually the tumble flow disappears.
  • the fuel adhesion characteristic to the piston 3 indicates how much fuel adheres to the crown surface 3A of the piston 3 when the injected fuel collides with the piston 3. As shown in the figure, the fuel adhesion amount increases as the piston 3 approaches the top dead center. This is because the distance between the piston 3 and the fuel injection valve 9 decreases as the piston 3 approaches the top dead center, and more fuel collides with the piston 3.
  • the normal combustion mode referred to here is a combustion mode in which fuel is injected during the intake stroke or compression stroke, and spark ignition is performed at an ignition timing close to MBT (optimum ignition timing).
  • the crank angle range in which the fuel injection timing can be set is limited based on the fuel adhesion amount to the piston 3.
  • the NG range in FIG. 2 is an example of a crank angle range in which setting of the fuel injection timing is prohibited. Note that the amount of fuel admissible on the intake top dead center side is larger than that on the compression top dead center side. This is because the time to the ignition timing is longer when adhering to the piston 3 on the intake top dead center side than when adhering on the compression top dead center side, and the amount of evaporation / vaporization from the adhering to ignition Because there are many.
  • the fuel injection timing of the stratified injection is a range in which the fuel spray collides with the cavity 10 and there is a time allowance for the collided fuel spray to form a stratified mixture around the spark plug 8 by the ignition timing. Is set in consideration of the amount of fuel adhering to the piston 3.
  • the stratified mixture becomes easier to form as the fuel injection timing of the stratified injection is delayed.
  • the amount of fuel adhering to the piston 3 increases as the fuel injection timing is delayed.
  • the fuel injection timing of the stratified injection takes into account the balance between the ease of forming the stratified mixture and the amount of fuel adhering to the piston 3. It was.
  • the fuel injection control described below is executed to ensure the combustion stability of super retarded stratified combustion even when the tumble flow is enhanced to improve fuel efficiency and reduce exhaust emissions. To do. Further, according to the fuel injection control of the present embodiment, the amount of fuel adhering to the piston 3 does not increase in order to ensure the combustion stability.
  • 3 and 4 are diagrams for explaining the outline of the fuel injection control according to the present embodiment.
  • the vortex center of the main flow of the tumble flow (hereinafter also simply referred to as “the vortex center of the tumble flow” or “vortex center”) is positioned lower than the fuel spray.
  • the tumble flow vortex center may be higher than the fuel spray.
  • FIG. 4 shows a state where the piston 3 is raised from the state shown in FIG. Since the tumble flow vortex is crushed as the piston 3 moves up, the tumble flow vortex center is higher in FIG. 4 than in FIG. 3.
  • the tumble flow strength is increased by combining the fuel spray traveling direction vector and the tumble flow vortex rotation direction vector at the collision position between the fuel spray and the tumble flow vortex.
  • FIG. 5 is an enlarged view from the vicinity of the 2nd peak in FIG. 2 until the tumble flow disappears.
  • the broken line in the figure shows the tumble flow strength of FIG. 2, and the solid line shows the tumble flow strength when fuel is injected at the fuel injection timing of FIG.
  • the height of the 2nd peak is suppressed, and the timing at which the tumble flow strength decreases is also advanced.
  • fuel injection before stratified injection, fuel injection is performed to weaken the strength of the tumble flow to such an extent that a stratified mixture can be formed around the spark plug 8. That is, in the state shown in FIG. 4, stratified injection is performed after fuel injection (hereinafter also referred to as “compressed pre-injection”) for changing the tumble flow in a direction in which combustion by spark ignition is stabilized. .
  • the total fuel amount is not changed even when the first-compression injection is performed.
  • the injection amount of the first fuel injection that is performed during the intake stroke is reduced by the amount that is injected by the first-compression injection.
  • the fuel spray injected by the compression first injection is diffused and mixed by colliding with the tumble flow, so that the amount of fuel adhering to the piston 3 does not increase by performing the compression first injection.
  • the injection amount of the stratified injection may be reduced and the injection may be performed by the first-compression injection.
  • the total fuel amount may be increased by the amount corresponding to the first-compression injection without changing the injection amounts of the first fuel injection and the stratified injection.
  • FIG. 6 is a view of the ceiling surface of the combustion chamber 11 as seen from the piston side.
  • the tip of the fuel injection valve 9 (hereinafter also referred to as “injection valve tip”) is the base point, the axis passing through the base point and the bore center is the X axis, and the axis orthogonal to the X axis in FIG.
  • the Y axis is assumed. Note that an axis orthogonal to the X axis and the Y axis, that is, an axis extending from the base point along the bore axis is defined as a Z axis.
  • FIG. 7 is a view showing fuel spray injected from the fuel injection valve 9.
  • the fuel injection valve 9 is a so-called multi-hole type injection valve having a plurality of injection holes.
  • the fuel injection valve 9 has six injection holes, and six spray beams B1-B6 injected from each injection hole spread in an umbrella shape.
  • the center of the circle including the tip of each spray beam is defined as the spray beam centroid C, and a straight line passing through the injection valve tip B and the spray beam centroid C is defined as the spray beam centroid line.
  • FIG. 8 is a schematic configuration diagram in the vicinity of the combustion chamber of the engine 1.
  • the ignition plug 8, the fuel injection valve 9, the tumble control valve 13, and the like are omitted.
  • the point D in the figure is the vortex center of the tumble flow at the piston position in FIG.
  • the vortex center is defined as a position on the bore center line and higher than the crown surface 3A of the piston 3 by (combustion chamber height Hch + stroke amount S) / 2.
  • the combustion chamber height is a distance from the piston crown surface position when the piston 3 is at the top dead center to the highest position on the combustion chamber ceiling surface.
  • the stroke amount is the distance from the piston crown surface position when the piston 3 is at top dead center to the piston crown surface position at a predetermined timing.
  • the point B in the figure is the above-mentioned injection valve tip.
  • Point C in the figure is the above-mentioned spray beam gravity center.
  • the broken line arrow in the figure is the spray beam barycentric line described above.
  • the pre-compression injection is executed when the vortex center D of the tumble flow is on the piston top dead center side with respect to the spray beam barycentric line on the XZ plane. That is, from when the vortex center D rises as the piston 3 rises and is located on the piston top dead center side with respect to the intersection of the bore center line and the spray beam barycentric line, stratified injection is started.
  • the pre-compression injection is performed at any timing in the period.
  • Tumble flow is counterclockwise on the XZ plane on the piston bottom dead center side from the vortex center D. Therefore, during the above period, the spray beam acts to prevent the tumble flow from progressing and reduce the tumble flow strength at the position where the spray beam collides with the tumble flow.
  • the action of reducing the strength of the tumble flow is an action of changing the tumble flow in a direction in which stratified combustion around the spark plug is stabilized.
  • FIG. 9 is a timing chart in the case where the first-compression injection is executed at the fuel injection timing of the first embodiment.
  • FIG. 9 is the fuel injection timing of the first compression injection.
  • FIG. 9 shows the case of the advance side limit ((a) in the figure) and the case of the retard side limit ((b) in the figure).
  • the solid line indicates that the pre-compression injection is not executed
  • the broken line indicates that the fuel injection timing of the compression pre-injection is the advance limit
  • the alternate long and short dash line indicates that the fuel injection timing of the compression pre-injection is the retard limit Shows the case.
  • This chart shows a case where stratified injection is executed at the timing of the retard side limit.
  • the retard side limit of the stratified injection is determined based on the ignition timing in consideration of the period required for the fuel injected in the stratified injection to form a stratified mixture.
  • Timing t1 is the timing at which the vortex center D is located on the spray beam barycentric line. This is the advance side limit of the fuel injection timing of the pre-compression injection in the first embodiment. In FIG. 9, the timing t1 is the timing for starting the first-compression injection, but may be the timing for ending.
  • Timing t2 is the latest timing among the fuel injection timings in which the pre-compression injection can be completed before the stratified fuel injection timing. That is, the timing t2 is a retard side limit of the fuel injection timing of the first compression injection. In FIG. 9, the timing t ⁇ b> 2 is the start timing of the previous compression injection, but may be the end timing.
  • the pre-compression injection is executed at the timing t1
  • the 2nd peak of the tumble flow decreases as shown in the figure, and the strength of the tumble flow at the start of the stratified injection decreases, so that the combustion stability of the stratified combustion increases.
  • the rate of decrease in the strength of the tumble flow is increased as shown in the figure, so that the combustion stability of the stratified combustion similarly increases.
  • the combustion stability of the stratified combustion can be increased.
  • the range in which the fuel injection timing of the pre-compression injection can be set is made narrower than in the first embodiment.
  • FIG. 10 is a schematic configuration diagram showing the vicinity of the combustion chamber of the engine 1 as in FIG. In FIG. 10, the position of the piston 3 is closer to the top dead center than in FIG. Point E in the figure is the intersection of the spray beam barycentric line and the piston crown surface 3A.
  • the “collision position between the spray beam barycentric line and the piston crown surface” represents the distance in the X direction from the point B at the position where the spray beam barycentric line and the piston crown surface 3A intersect on the XZ plane.
  • FIG. 11 is a timing chart in the case where the first-compression injection is executed at the fuel injection timing of the second embodiment. Similarly to FIG. 9, the injection timing chart shows the case of the advance side limit ((a) in the figure) and the case of the retard side limit ((b) in the figure).
  • the collision position chart indicates the position on the X axis of the collision position between the spray beam barycentric line and the piston crown surface 3A.
  • the inside of the cylinder of the engine 1 is long in the bore center line direction when the piston 3 is at the bottom dead center position, and geometrically as the piston position approaches the top dead center from the bottom dead center. After approaching the isotropic direction and becoming isotropic, the piston 3 rises and becomes longer in the bore radial direction.
  • geometrically isotropic means that the sum of the stroke amount S and the combustion chamber height Hch is equal to the bore diameter (L2 ⁇ 2).
  • the tumble flow vortex is gradually shaped from an elliptical shape whose major axis is the bore center line direction into a circular shape, and when the piston 3 rises, it is compressed by the piston 3 so that it collapses.
  • the angular velocity of the vortex increases as the vortex approaches a circle. That is, when the inside of the cylinder is geometrically isotropic, the tumble flow strength has a 2nd peak.
  • the pre-compression injection is performed when the tumble flow strength reaches the 2nd peak, it is considered that the energy of the fuel spray injected in the pre-compression injection can be efficiently used to reduce the tumble flow strength.
  • the fuel injection timing of the pre-compression injection is much earlier than the 2nd peak, the tumble flow strength decreases due to the injection, but the angular velocity increases as the vortex approaches a circular shape thereafter, so the energy of the fuel spray of the pre-compression injection is increased. Cannot be used efficiently.
  • the timing is as follows.
  • the timing t ⁇ b> 1 is the end timing of the compression early injection, but may be the start timing.
  • the retard side limit t2 of the fuel injection timing of the pre-compression injection is a timing at which the collision position between the spray beam barycentric line and the piston crown surface 3A is on the bore center line. Since the spray beam is formed in an umbrella shape, when the collision position is on the intake side with respect to the bore center line, the kinetic energy of the spray beam on the lower side in the Z-axis direction with respect to the spray beam center of gravity is It is lost by collision with the surface 3A and cannot be used to reduce the tumble flow strength. Therefore, the pre-compression injection is performed before the collision position is on the intake side of the bore center line.
  • the tumble flow strength can be reduced until stratified injection as shown in the figure.
  • the advance side limit and the retard side limit of the compressed pre-injection in the first and second embodiments are merely examples.
  • the fuel injection timing of the first compression injection that provides the effect of reducing the tumble flow strength may be a timing at which the vortex center D is at the piston top dead center side with respect to the spray beam barycentric line.
  • the advance side limit of the fuel injection timing of the pre-compression injection is the timing when the piston 3 is raised to a position where the rotational direction of the vortex of the gas flow and the traveling direction of the spray beam face each other.
  • the retard side limit of the fuel injection timing of the pre-compression injection is the timing at which the piston 3 rises to a position where the spray beam barycentric line does not collide with the main flow of the tumble flow vortex.
  • the controller 100 controls the pre-compression injection so that the tumble flow strength is greatly decreased as the tumble flow strength is higher.
  • the controller 100 increases the momentum of the fuel spray that is injected in the first-compression injection as the tumble flow strength is higher.
  • FIG. 12 is a map showing the relationship between the momentum of fuel spray, the fuel injection amount, and the fuel injection pressure. As shown in the drawing, the higher the fuel injection pressure and the larger the fuel injection amount, the greater the momentum of the fuel spray. That is, as a method for increasing the momentum of fuel spray, for example, the fuel injection amount may be increased or the fuel injection pressure may be increased. Of course, the fuel injection amount may be increased and the fuel injection pressure may be increased.
  • the tumble flow strength increases as the intake air amount increases, that is, as the throttle valve opening increases.
  • the controller 100 increases at least one of the fuel injection pressure or the fuel injection amount as the throttle valve opening increases.
  • the controller 100 may increase at least one of the fuel injection pressure or the fuel injection amount as the engine speed increases.
  • stratified injection for forming gas flow in the cylinder and injecting stratified combustion around the spark plug is performed after the compression stroke, and fuel injected by stratified injection is formed.
  • a control method for spark ignition of an air-fuel mixture is provided.
  • the tumble flow gas flow
  • the tumble flow strength is reduced.
  • the fuel injected by the stratified injection can form a stratified mixture around the spark plug.
  • the combustion stability is improved.
  • stratified combustion is performed around the dotted plug has been described. However, if the fuel injected at the end of the multistage injection burns around the dotted plug, the stratified combustion may not be required.
  • the timing of the first compression injection is the timing at which the vortex center D of the tumble flow rises as the piston 3 rises and the spray beam injected by the injection hole of the fuel injection valve 9 and the first compression injection. This is any timing during a period that is on the piston top dead center side with respect to the spray beam center of gravity line connecting the center of gravity. At this timing, the tumble flow strength can be reduced by the pre-compression injection.
  • the advance side limit of the timing of performing the previous compression injection is such that the piston 3 is raised to a position where the rotational direction of the tumble flow vortex and the traveling direction of the spray beam injected by the previous compression injection are opposed. It is timing. By setting such an advance side limit, it can be used to reduce the tumble flow strength without wasting the fuel injected in the first compression injection.
  • the retard side limit of the timing of performing the pre-compression injection is the timing at which the piston 3 is raised to a position where the spray beam barycentric line does not collide with the main flow of the tumble flow vortex.
  • the throttle valve opening As the throttle valve opening is larger, at least one of the fuel injection pressure or the fuel injection amount of the first compression injection is increased. As the throttle valve opening increases, the intake air amount increases and the tumble flow strength increases. That is, in this embodiment, either the fuel injection pressure or the fuel injection amount is increased as the tumble flow strength increases. As a result, the tumble flow strength can be reliably reduced and combustion stability can be ensured.
  • the tumble flow strength can be reliably reduced and combustion stability can be ensured.
  • the fuel injection valve 9 in which the fuel amount injected from each nozzle hole is equal and a plurality of spray beams are formed at equal intervals has been described.
  • it is not limited to this.
  • the spray barycenter beam C and the spray beam barycenter line in this case are as follows.
  • FIG. 13 is a diagram in which three spray beams having different flow rates are projected on the XZ plane described above.
  • the flow rate of the spray beam is spray beam 1> spray beam 2> spray beam 3.
  • the vector in the direction along the central axis of the spray beam is the spray beam vector (vector 1-3 in the figure).
  • the magnitude of the spray beam vector is proportional to the flow rate of the spray beam.
  • the combined vector of vectors 1-3 is the spray beam barycenter vector.
  • the spray beam gravity center C and the spray beam gravity line are determined.
  • the spray beam centroid C and the spray beam centroid line are defined using the spray beam vector, it is possible to deal with a wide range of cases where the number of nozzle holes and the flow rate of each nozzle hole are different.
  • the definition of the spray beam center of gravity C is not limited to the two types described above. As long as the effects of the above-described embodiment can be achieved, the definitions may be different from the two definitions described above.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combustion Methods Of Internal-Combustion Engines (AREA)

Abstract

This method for controlling an in-cylinder direct-injection internal combustion engine forms a gas flow in a cylinder, performs fuel injection for injecting fuel to be combusted around a spark plug in or after a compression stroke, and spark ignites an air-fuel mixture formed by the fuel injected by the fuel injection. In this control method, pre-compression injection that varies gas flow in a direction that stabilizes combustion is carried out during the compression stroke and prior to fuel injection.

Description

筒内直接噴射式内燃機関の制御方法及び制御装置In-cylinder direct injection internal combustion engine control method and control apparatus
 本発明は、筒内直接噴射式内燃機関の制御に関する。 The present invention relates to control of a direct injection type internal combustion engine.
 筒内に直接燃料を噴射する内燃機関の制御として、圧縮行程中に燃料を噴射し、筒内ガス流動としてのタンブル流動を利用して点火プラグ周りに混合気を偏在させて成層燃焼を行う制御が知られている。このような成層燃焼を行うことで、筒内全体としては理論空燃比よりリーンとすることができるので、燃費改善を図ることができる。また、JP3963088Bには、排気浄化用の触媒の暖機促進等を目的として、上記の成層燃焼を行う際に点火タイミングを大幅に(例えば圧縮上死点以降まで)遅角させる制御が記載されている。 Control of an internal combustion engine that directly injects fuel into the cylinder, in which fuel is injected during the compression stroke, and the mixture is unevenly distributed around the spark plug by using the tumble flow as the in-cylinder gas flow. It has been known. By performing such stratified combustion, the entire cylinder can be made leaner than the stoichiometric air-fuel ratio, so that fuel efficiency can be improved. JP3963088B describes control for retarding ignition timing significantly (for example, after compression top dead center) when performing the above stratified combustion for the purpose of promoting warm-up of the exhaust purification catalyst. Yes.
 しかしながら、筒内ガス流動を利用して混合気を点火プラグ周りまで運ぶ構成では、点火プラグ周りに運ばれた混合気が筒内ガス流動によって流され易い。特に、上記文献に記載の制御のように点火タイミングを遅角する場合には、点火タイミングまで混合気を点火プラグ周りに停滞させておくことは難しい。つまり、上記文献に記載の制御では成層燃焼を行なうことが難しく、燃焼安定性が低下してしまう。 However, in the configuration in which the air-fuel mixture is transported to around the spark plug using the in-cylinder gas flow, the air-fuel mixture transported around the spark plug is likely to flow by the in-cylinder gas flow. In particular, when the ignition timing is retarded as in the control described in the above document, it is difficult to cause the air-fuel mixture to stagnate around the ignition plug until the ignition timing. That is, it is difficult to perform stratified combustion by the control described in the above document, and the combustion stability is lowered.
 そこで本発明では、点火タイミングを大幅に遅角させた場合にも安定した燃焼を可能にすることを目的とする。 Therefore, an object of the present invention is to enable stable combustion even when the ignition timing is greatly retarded.
 本発明のある態様によれば、筒内にガス流動を形成し、点火プラグ周りで燃焼させる燃料を噴射する燃料噴射を圧縮行程以降に行い、燃料噴射で噴射された燃料が形成する混合気に火花点火する制御方法が提供される。この制御方法では、圧縮行程中であって上記の燃料噴射の前に、ガス流動を燃焼が安定する方向に変化させる圧縮前期噴射を実行する。 According to an aspect of the present invention, a fuel injection that forms a gas flow in the cylinder and injects fuel to be burned around the spark plug is performed after the compression stroke, and the mixture formed by the fuel injected by the fuel injection is formed. A control method for spark ignition is provided. In this control method, pre-compression injection that changes the gas flow in a direction in which combustion is stabilized is performed during the compression stroke and before the fuel injection.
図1は、筒内直接噴射式内燃機関の燃焼室付近の概略構成図である。FIG. 1 is a schematic configuration diagram in the vicinity of a combustion chamber of a direct injection type internal combustion engine. 図2は、燃料噴射タイミングとタンブル流動強度との関係を示す図である。FIG. 2 is a diagram showing the relationship between the fuel injection timing and the tumble flow strength. 図3は、燃料噴霧とタンブル流動との関係の一例を示す図である。FIG. 3 is a diagram illustrating an example of the relationship between fuel spray and tumble flow. 図4は、燃料噴霧とタンブル流動との関係の他の例を示す図である。FIG. 4 is a diagram illustrating another example of the relationship between fuel spray and tumble flow. 図5は、タンブル流動強度のタイミングチャートである。FIG. 5 is a timing chart of tumble flow strength. 図6は、燃焼室天井面の概略図である。FIG. 6 is a schematic view of the combustion chamber ceiling surface. 図7は、噴霧ビームについて説明するための図である。FIG. 7 is a diagram for explaining the spray beam. 図8は、筒内直接噴射式内燃機関の燃焼室付近の概略構成図である。FIG. 8 is a schematic configuration diagram in the vicinity of a combustion chamber of a direct injection type internal combustion engine. 図9は、第1実施例の圧縮前期噴射を実行した場合のタイミングチャートである。FIG. 9 is a timing chart when the first-compression injection of the first embodiment is executed. 図10は、筒内直接噴射式内燃機関の燃焼室付近の概略構成図である。FIG. 10 is a schematic configuration diagram in the vicinity of a combustion chamber of a direct injection type internal combustion engine. 図11は、第2実施例の圧縮前期噴射を実行した場合のタイミングチャートである。FIG. 11 is a timing chart in the case where the compressed pre-injection in the second embodiment is executed. 図12は、燃料噴霧の運動量について示すマップである。FIG. 12 is a map showing the momentum of fuel spray. 図13は、噴霧ビームについて説明するための図である。FIG. 13 is a diagram for explaining the spray beam.
 以下、添付図面を参照しながら本発明の実施形態について説明する。 Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings.
 図1は、本実施形態を適用する筒内直接噴射式内燃機関(以下、「エンジン」ともいう)1の、燃焼室周辺の概略構成図である。なお、図1はひとつの気筒についてのみ示しているが、本実施形態は多気筒エンジンにも適用可能である。 FIG. 1 is a schematic configuration diagram around a combustion chamber of a direct injection type internal combustion engine (hereinafter also referred to as “engine”) 1 to which the present embodiment is applied. Although FIG. 1 shows only one cylinder, this embodiment can also be applied to a multi-cylinder engine.
 エンジン1のシリンダブロック1Bはシリンダ2を備える。シリンダ2にはピストン3が往復動可能に収められている。ピストン3はコネクティングロッド12を介して図示しないクランクシャフトと連結されており、クランクシャフトが回転することにより往復動する。また、ピストン3は冠面3A(以下、ピストン冠面3Aともいう)に後述するキャビティ10を備える。 The cylinder block 1B of the engine 1 includes a cylinder 2. A piston 3 is accommodated in the cylinder 2 so as to be able to reciprocate. The piston 3 is connected to a crankshaft (not shown) via a connecting rod 12 and reciprocates as the crankshaft rotates. The piston 3 includes a cavity 10 described later on a crown surface 3A (hereinafter also referred to as a piston crown surface 3A).
 エンジン1のシリンダヘッド1Aは凹状の燃焼室11と、燃焼室11とエンジン外部とを連通する吸気通路4及び排気通路5と、を備える。燃焼室11は、いわゆるペントルーフ型に構成されており、吸気通路4の開口部には一対の吸気バルブ6が、排気通路5の開口部には一対の排気バルブ7がそれぞれ配置されている。そして、これら一対の吸気バルブ6及び一対の排気バルブ7に囲まれた燃焼室11の略中心位置に、点火プラグ8がシリンダ2の軸線に沿うように配置されている。 The cylinder head 1A of the engine 1 includes a concave combustion chamber 11, and an intake passage 4 and an exhaust passage 5 that communicate the combustion chamber 11 with the outside of the engine. The combustion chamber 11 is configured as a so-called pent roof type, and a pair of intake valves 6 are disposed at the opening of the intake passage 4, and a pair of exhaust valves 7 are disposed at the opening of the exhaust passage 5. An ignition plug 8 is disposed along the axis of the cylinder 2 at a substantially central position of the combustion chamber 11 surrounded by the pair of intake valves 6 and the pair of exhaust valves 7.
 吸気通路4には、ガス流動生成装置としてのタンブルコントロールバルブ13が配置される。なお、タンブルコントロールバルブ13を設けずに、燃焼室11へ流入する吸気がタンブル流動を形成するように吸気通路4の流路の形状等を構成してもよい。この場合には、吸気通路4がガス流動生成装置となる。 In the intake passage 4, a tumble control valve 13 as a gas flow generation device is arranged. Note that the shape of the flow path of the intake passage 4 may be configured such that the intake air flowing into the combustion chamber 11 forms a tumble flow without providing the tumble control valve 13. In this case, the intake passage 4 is a gas flow generation device.
 また、シリンダヘッド1Aの、一対の吸気バルブ6に挟まれた位置には、燃料噴射弁9が燃焼室11に臨むように配置されている。燃料噴射弁9から噴射される燃料噴霧の指向性については後述する。 Further, a fuel injection valve 9 is arranged at a position between the pair of intake valves 6 in the cylinder head 1A so as to face the combustion chamber 11. The directivity of fuel spray injected from the fuel injection valve 9 will be described later.
 吸気バルブ6及び排気バルブ7は、それぞれ図示しないカムシャフトにより開閉駆動される。なお、吸気側または排気側の少なくとも一方に可変動弁機構を配置して、開弁タイミング及び閉弁タイミングを可変制御し得るようにしてもよい。開弁タイミングとは開弁動作を開始するタイミング、閉弁タイミングとは閉弁動作を終了するタイミングである。可変動弁機構としては、カムシャフトのクランクシャフトに対する回転位相を変化させるものや、回転位相だけでなく各バルブの作動角も変化させ得るもの等、公知の機構を用いることができる。 The intake valve 6 and the exhaust valve 7 are driven to open and close by camshafts (not shown). Note that a variable valve mechanism may be arranged on at least one of the intake side or the exhaust side so that the valve opening timing and the valve closing timing can be variably controlled. The valve opening timing is the timing for starting the valve opening operation, and the valve closing timing is the timing for ending the valve closing operation. As the variable valve mechanism, a known mechanism such as a mechanism that changes the rotational phase of the camshaft relative to the crankshaft or a mechanism that can change not only the rotational phase but also the operating angle of each valve can be used.
 排気通路5の排気流れ下流側には、エンジン1の排気ガスを浄化するための排気浄化触媒が介装されている。排気浄化触媒は、例えば三元触媒である。 An exhaust purification catalyst for purifying the exhaust gas of the engine 1 is interposed on the exhaust flow downstream side of the exhaust passage 5. The exhaust purification catalyst is, for example, a three-way catalyst.
 ピストン3は、上述したようにピストン冠面3Aにキャビティ10を備える。キャビティ10は、ピストン冠面3Aにおいて吸気側に偏った位置に設けられている。そして、燃料噴射弁9は、ピストン3が圧縮上死点近傍にあるときに燃料噴射すれば燃料噴霧がこのキャビティ10を指向するように配置されている。キャビティ10は、衝突して跳ね返った燃料噴霧(図中のB)が点火プラグ8の方向へ向かうような形状になっている。 The piston 3 includes the cavity 10 in the piston crown surface 3A as described above. The cavity 10 is provided at a position biased toward the intake side on the piston crown surface 3A. The fuel injection valve 9 is arranged so that the fuel spray is directed to the cavity 10 when fuel is injected when the piston 3 is in the vicinity of the compression top dead center. The cavity 10 has such a shape that the fuel spray (B in the figure) bounced off after colliding is directed toward the spark plug 8.
 なお、キャビティ10は、燃料噴霧が衝突するという条件を満たすのであれば、ピストン冠面3Aの中央やその他の位置にあっても構わない。 It should be noted that the cavity 10 may be located at the center of the piston crown surface 3A or other position as long as the condition that the fuel spray collides is satisfied.
 エンジン1の燃料噴射量、燃料噴射タイミング、及び点火タイミング等は、コントローラ100によりエンジン1の運転状態に応じて制御される。コントローラ100は、中央演算装置(CPU)、読み出し専用メモリ(ROM)、ランダムアクセスメモリ(RAM)及び入出力インタフェース(I/Oインタフェース)を備えたマイクロコンピュータで構成される。コントローラ100を複数のマイクロコンピュータで構成することも可能である。 The fuel injection amount, fuel injection timing, ignition timing, and the like of the engine 1 are controlled by the controller 100 according to the operating state of the engine 1. The controller 100 includes a microcomputer that includes a central processing unit (CPU), a read-only memory (ROM), a random access memory (RAM), and an input / output interface (I / O interface). It is also possible to configure the controller 100 with a plurality of microcomputers.
 また、ここでいう燃料噴射タイミングとは、燃料噴射を開始するタイミングである。また、これらの制御を実行するために、エンジン1はクランクシャフト角度センサ、冷却水温センサ、吸入空気量を検出するエアフローメータ等の各種検出装置を備える。 Also, the fuel injection timing here is the timing at which fuel injection is started. In order to execute these controls, the engine 1 includes various detection devices such as a crankshaft angle sensor, a cooling water temperature sensor, and an air flow meter that detects an intake air amount.
 なお、本実施形態ではキャビティ10を利用して点火プラグ8の周りに成層混合気を形成する構成について説明するが、これに限られるわけではない。例えば、燃料噴射弁9を点火プラグ8に隣接するよう配置し、燃料噴射弁9から短い駆動パルスで噴射された燃料が点火プラグ8の周りに留まって成層混合気を形成する構成であってもよい。 In addition, although this embodiment demonstrates the structure which forms the stratified air-fuel mixture around the spark plug 8 using the cavity 10, it is not necessarily restricted to this. For example, even if the fuel injection valve 9 is disposed adjacent to the spark plug 8 and the fuel injected from the fuel injection valve 9 with a short drive pulse stays around the spark plug 8 to form a stratified mixture. Good.
 次に、上記のような構成のエンジン1の制御について説明する。 Next, control of the engine 1 having the above configuration will be described.
 まず、従来から知られている冷間始動時における制御について説明する。 First, the conventionally known control at the cold start will be described.
 冷間始動時における制御としては、排気浄化触媒の活性化を促進させるための超リタード成層燃焼が知られている(例えば特開2008-25535号公報)。この際、冷間始動時には、低温という燃焼安定性の観点からは厳しい条件下で燃焼が行われることとなるので、燃焼安定性を確保し得るような制御が望まれる。 As a control at the time of cold start, super retarded stratified combustion for promoting the activation of the exhaust purification catalyst is known (for example, JP 2008-25535 A). At this time, at the time of cold start, since combustion is performed under severe conditions from the viewpoint of combustion stability at a low temperature, control that can ensure combustion stability is desired.
 超リタード成層燃焼では、コントローラ100は点火タイミングを膨張行程の前半の、例えば圧縮上死点後10-30degに設定する。また、コントローラ100は1サイクルあたりに必要な燃料量を複数回に分けて噴射する、いわゆる多段噴射を実行する。2段噴射の場合には、コントローラ100は1回目の燃料噴射タイミングを吸気行程の前半に設定し、2回目の燃料噴射タイミングを、圧縮行程の後半の、燃料噴霧が点火タイミングまでに点火プラグ8の周辺に到達し得るタイミングに設定する。 In super retarded stratified combustion, the controller 100 sets the ignition timing to the first half of the expansion stroke, for example, 10-30 deg after compression top dead center. Further, the controller 100 performs so-called multi-stage injection in which the amount of fuel required per cycle is injected in a plurality of times. In the case of the two-stage injection, the controller 100 sets the first fuel injection timing in the first half of the intake stroke, and sets the second fuel injection timing in the second half of the compression stroke until the fuel spray reaches the ignition timing. It is set to the timing when it can reach the periphery of.
 ここで、2段噴射の場合における1回目の燃料噴射量と2回目の燃料噴射量(成層噴射量)とについて説明する。 Here, the first fuel injection amount and the second fuel injection amount (stratified injection amount) in the case of two-stage injection will be described.
 上述した超リタード成層燃焼で排出される排気ガスの空燃比はストイキ(理論空燃比)である。コントローラは一般的な燃料噴射量設定方法と同様に、1サイクル当たりの吸入空気量で完全燃焼させ得る燃料量(以下、トータル燃料量ともいう)を算出する。このトータル燃料量のうちの一部、例えば20-90重量%を1回目の噴射量とし、残りを2回目の噴射量とする。 The air-fuel ratio of the exhaust gas discharged by the above-mentioned super retarded stratified combustion is stoichiometric (theoretical air-fuel ratio). The controller calculates the amount of fuel that can be completely combusted with the amount of intake air per cycle (hereinafter also referred to as the total fuel amount), as in the general fuel injection amount setting method. A part of the total fuel amount, for example, 20 to 90% by weight is set as the first injection amount, and the rest is set as the second injection amount.
 なお、超リタード成層燃焼において、排気ガスの空燃比はストイキよりもリーンであっても構わない。 In super retarded stratified combustion, the air-fuel ratio of the exhaust gas may be leaner than stoichiometric.
 上記のように燃料噴射量を設定すると、1回目の燃料噴射で噴射された燃料噴霧は、キャビティ10に衝突することなくシリンダ2内に拡散し、空気と混合して燃焼室11の全域にストイキよりもリーンな均質混合気(図中のA)を形成する。そして、2回目の燃料噴射(成層噴射)で噴射された燃料噴霧(図中のB)は、キャビティ10に衝突し、巻き上げられることによって点火プラグ8の近傍に到達し、点火プラグ8の周りにストイキよりもリッチな混合気を集中的に形成する。これにより燃焼室11内の混合気は成層状態となる。この状態で点火プラグ8により火花点火すれば、失火が抑制された外乱に強い燃焼が行われる。ところで、上述した燃焼は成層燃焼であるが、点火タイミングが圧縮上死前である一般的な成層燃焼と区別するために、超リタード成層燃焼と称する。 When the fuel injection amount is set as described above, the fuel spray injected in the first fuel injection diffuses into the cylinder 2 without colliding with the cavity 10, mixes with air, and is stoichiometric throughout the combustion chamber 11. A leaner homogeneous mixture (A in the figure) is formed. The fuel spray (B in the figure) injected in the second fuel injection (stratified injection) collides with the cavity 10 and is wound up to reach the vicinity of the spark plug 8 and around the spark plug 8. Concentrates the richer mixture than stoiki. Thereby, the air-fuel mixture in the combustion chamber 11 is in a stratified state. If a spark is ignited by the spark plug 8 in this state, combustion that is resistant to disturbance with misfire suppressed is performed. By the way, although the combustion mentioned above is stratified combustion, in order to distinguish from the general stratified combustion whose ignition timing is before compression top dead, it is called super retarded stratified combustion.
 なお、上述した1回目の燃料噴射を2回に分割して、1サイクルあたりに必要な燃料量を吸気行程に2回、圧縮行程に1回の合計3回に分けて噴射する3段噴射としてもよい。この場合、3回目の噴射が成層噴射となる。 The first fuel injection described above is divided into two, and the fuel amount required per cycle is divided into a total of three injections, two for the intake stroke and one for the compression stroke. Also good. In this case, the third injection is stratified injection.
 ここで、超リタード成層燃焼における燃料噴射タイミングについて図2を参照して説明する。図2は、横軸がクランク角度のタイミングチャートである。図中のIT1は1回目の燃料噴射タイミング、IT2は成層噴射の燃料噴射タイミング、実線Aはタンブル流動の強度、実線Bはピストン3への燃料付着特性、を示している。なお、図中のTDCは上死点を、BDCは下死点を意味する。 Here, the fuel injection timing in the super retarded stratified combustion will be described with reference to FIG. FIG. 2 is a timing chart in which the horizontal axis is the crank angle. In the figure, IT1 indicates the first fuel injection timing, IT2 indicates the stratified injection fuel injection timing, solid line A indicates the strength of the tumble flow, and solid line B indicates the fuel adhesion characteristics to the piston 3. In the figure, TDC means top dead center and BDC means bottom dead center.
 タンブル流動が燃費性能の向上や排気低減に有効であることは知られている。タンブル流動は吸気バルブ6の開弁後に燃焼室11に流入する吸気によって形成されるため、タンブル流動の強度は吸気行程中に徐々に高まる。しかし、ピストン3の下降に伴って燃焼室11の容積が増大すると、タンブル流動の流速は低下する。このため、タンブル流動の強度は吸気行程中に最初のピーク(1stピーク)を迎え、低下に転じる。 It is known that tumble flow is effective in improving fuel efficiency and reducing exhaust emissions. Since the tumble flow is formed by the intake air flowing into the combustion chamber 11 after the intake valve 6 is opened, the strength of the tumble flow gradually increases during the intake stroke. However, when the volume of the combustion chamber 11 increases as the piston 3 moves down, the flow rate of the tumble flow decreases. For this reason, the intensity of the tumble flow reaches the first peak (1st peak) during the intake stroke and starts to decrease.
 圧縮行程に入ると、ピストン3の上昇に伴って燃焼室11の容積が縮小することでタンブル流動の流速が上昇に転じ、これに応じてタンブル流動の強度も上昇に転じて2回目のピーク(2ndピーク)を迎える。その後、ピストン3が更に上昇するとタンブル流動は押し潰されるので、タンブル流動の強度は徐々に低下し、やがてタンブル流動は消滅する。 When entering the compression stroke, the volume of the combustion chamber 11 is reduced as the piston 3 is raised, so that the flow velocity of the tumble flow starts to rise, and the strength of the tumble flow also rises accordingly, and the second peak ( 2nd peak). Thereafter, when the piston 3 further rises, the tumble flow is crushed, so that the strength of the tumble flow gradually decreases and eventually the tumble flow disappears.
 ピストン3への燃料付着特性は、噴射された燃料がピストン3に衝突した場合に、どの程度の燃料がピストン3の冠面3Aに付着するのかを示している。図示するように、ピストン3が上死点に近くなるほど燃料付着量は多くなる。これは、ピストン3が上死点に近づくほどピストン3と燃料噴射弁9との距離が縮まり、より多くの燃料がピストン3に衝突するためである。 The fuel adhesion characteristic to the piston 3 indicates how much fuel adheres to the crown surface 3A of the piston 3 when the injected fuel collides with the piston 3. As shown in the figure, the fuel adhesion amount increases as the piston 3 approaches the top dead center. This is because the distance between the piston 3 and the fuel injection valve 9 decreases as the piston 3 approaches the top dead center, and more fuel collides with the piston 3.
 ピストン3に付着した燃料が当該サイクル中に気化や燃焼をせずに次サイクルに持ち越されることが繰り返されると、ピストン3に液状化した燃料が蓄積されることとなる。この状態で排気浄化触媒の暖機終了や加速要求等に応じて通常の燃焼モードに切り替わると、蓄積していた燃料がピストン3まで伝播してきた燃焼火炎によって燃焼し、PM排出量が増加してしまう。なお、ここでいう通常の燃焼モードとは、吸気行程または圧縮行程にて燃料噴射を行ない、MBT(最適点火タイミング)またはこれに近い点火タイミングで火花点火を行なう燃焼モードである。 When the fuel adhering to the piston 3 is repeatedly carried over to the next cycle without being vaporized or combusted during the cycle, the liquefied fuel is accumulated in the piston 3. In this state, when the exhaust purification catalyst is switched to the normal combustion mode in response to the warm-up completion or acceleration request, the accumulated fuel is burned by the combustion flame that has propagated to the piston 3 and the PM emission amount increases. End up. The normal combustion mode referred to here is a combustion mode in which fuel is injected during the intake stroke or compression stroke, and spark ignition is performed at an ignition timing close to MBT (optimum ignition timing).
 PM排出量を抑制する観点から、燃料噴射タイミングを設定可能なクランク角度範囲は、ピストン3への燃料付着量に基づいて制限される。図2のNG範囲が燃料噴射タイミングの設定が禁止されるクランク角度範囲の一例である。なお、吸気上死点側は圧縮上死点側に比べて、許容される燃料付着量が多くなっている。これは、吸気上死点側でピストン3に付着した場合は、圧縮上死点側で付着した場合に比べて、点火タイミングまでの時間が長く、付着してから点火までに蒸発・気化する量が多いからである。 From the viewpoint of suppressing the PM emission amount, the crank angle range in which the fuel injection timing can be set is limited based on the fuel adhesion amount to the piston 3. The NG range in FIG. 2 is an example of a crank angle range in which setting of the fuel injection timing is prohibited. Note that the amount of fuel admissible on the intake top dead center side is larger than that on the compression top dead center side. This is because the time to the ignition timing is longer when adhering to the piston 3 on the intake top dead center side than when adhering on the compression top dead center side, and the amount of evaporation / vaporization from the adhering to ignition Because there are many.
 上述した通り、成層噴射の燃料噴射タイミングは、燃料噴霧がキャビティ10に衝突し、かつ、衝突した燃料噴霧が点火タイミングまでに点火プラグ8の周りに成層混合気を形成する時間的余裕がある範囲内で、ピストン3への燃料付着量を考慮して設定される。 As described above, the fuel injection timing of the stratified injection is a range in which the fuel spray collides with the cavity 10 and there is a time allowance for the collided fuel spray to form a stratified mixture around the spark plug 8 by the ignition timing. Is set in consideration of the amount of fuel adhering to the piston 3.
 ところで、図2に示すように、成層噴射の燃料噴射タイミングにおいて、タンブル流動はまだ強度を保っていると、成層噴射で噴射された燃料噴霧はタンブル流動により流され、点火プラグ8の周りに成層混合気を形成することが困難となる。したがって、燃費性能の向上や排気低減のためにタンブル流動を強化するほど、成層混合気を形成することが困難となり、超リタード成層燃焼における燃焼安定度が低下してしまう。 By the way, as shown in FIG. 2, if the tumble flow is still strong at the fuel injection timing of the stratified injection, the fuel spray injected by the stratified injection is flowed by the tumble flow and stratified around the spark plug 8. It becomes difficult to form an air-fuel mixture. Therefore, as the tumble flow is enhanced to improve the fuel efficiency and reduce the exhaust gas, it becomes more difficult to form a stratified mixture, and the combustion stability in the super retarded stratified combustion decreases.
 タンブル流動は上述したように圧縮上死点に近づくほど強度が低下するので、成層噴射の燃料噴射タイミングを遅くするほど成層混合気を形成し易くなる。しかし、燃料噴射タイミングを遅くするほどピストン3への燃料付着量が増加してしまう。このため、従来から知られている一般的な燃料噴射制御においては、成層噴射の燃料噴射タイミングは、成層混合気の形成し易さとピストン3への燃料付着量とのバランスを考慮したものとなっていた。 As described above, since the strength of the tumble flow decreases as the compression top dead center is approached, the stratified mixture becomes easier to form as the fuel injection timing of the stratified injection is delayed. However, the amount of fuel adhering to the piston 3 increases as the fuel injection timing is delayed. For this reason, in the conventional fuel injection control conventionally known, the fuel injection timing of the stratified injection takes into account the balance between the ease of forming the stratified mixture and the amount of fuel adhering to the piston 3. It was.
 これに対し本実施形態では、以下に説明する燃料噴射制御を実行することにより、燃費性能の向上や排気低減のためにタンブル流動を強化した場合にも、超リタード成層燃焼の燃焼安定度を確保する。また、本実施形態の燃料噴射制御によれば、燃焼安定度を確保するためにピストン3への燃料付着量が増加することはない。 In contrast, in this embodiment, the fuel injection control described below is executed to ensure the combustion stability of super retarded stratified combustion even when the tumble flow is enhanced to improve fuel efficiency and reduce exhaust emissions. To do. Further, according to the fuel injection control of the present embodiment, the amount of fuel adhering to the piston 3 does not increase in order to ensure the combustion stability.
 図3、図4は、本実施形態にかかる燃料噴射制御の概要を説明するための図である。 3 and 4 are diagrams for explaining the outline of the fuel injection control according to the present embodiment.
 圧縮行程中に燃料噴射をする場合、図3に示すようにタンブル流動の主流の渦中心(以下、単に「タンブル流動の渦中心」または「渦中心」ともいう)が燃料噴霧よりも低い位置にある場合と、図4に示すようにタンブル流動の渦中心が燃料噴霧よりも高い位置にある場合がある。なお、図4は図3の状態からピストン3が上昇した状態である。ピストン3の上昇に伴いタンブル流動の渦は潰されるので、タンブル流動の渦中心は図3よりも図4の方が高くなっている。 When fuel is injected during the compression stroke, as shown in FIG. 3, the vortex center of the main flow of the tumble flow (hereinafter also simply referred to as “the vortex center of the tumble flow” or “vortex center”) is positioned lower than the fuel spray. In some cases, as shown in FIG. 4, the tumble flow vortex center may be higher than the fuel spray. FIG. 4 shows a state where the piston 3 is raised from the state shown in FIG. Since the tumble flow vortex is crushed as the piston 3 moves up, the tumble flow vortex center is higher in FIG. 4 than in FIG. 3.
 図3の場合には、燃料噴霧とタンブル流動の渦との衝突位置において、燃料噴霧の進行方向のベクトルとタンブル流動の渦の回転方向のベクトルとの合成によって、タンブル流動強度が高まる。 In the case of FIG. 3, the tumble flow strength is increased by combining the fuel spray traveling direction vector and the tumble flow vortex rotation direction vector at the collision position between the fuel spray and the tumble flow vortex.
 一方、図4の場合には、燃料噴霧とタンブル流動の渦との衝突位置において、燃料噴霧の進行方向のベクトルとタンブル流動の渦の回転方向のベクトルとが対向するので、タンブル流動強度は低下する。 On the other hand, in the case of FIG. 4, the fuel spray traveling direction vector and the tumble flow vortex rotational direction vector face each other at the collision position between the fuel spray and the tumble flow vortex, so the tumble flow strength decreases. To do.
 図5は、図2の2ndピーク付近からタンブル流動が消滅するまでを拡大した図である。図中の破線は図2のタンブル流動強度を示し、実線は図4の燃料噴射タイミングで燃料を噴射した場合のタンブル流動強度を示している。図示するように、図4の燃料噴射タイミングで燃料を噴射すると、2ndピークの高さが抑制され、タンブル流動強度が低下するタイミングも早まる。 FIG. 5 is an enlarged view from the vicinity of the 2nd peak in FIG. 2 until the tumble flow disappears. The broken line in the figure shows the tumble flow strength of FIG. 2, and the solid line shows the tumble flow strength when fuel is injected at the fuel injection timing of FIG. As shown in the figure, when fuel is injected at the fuel injection timing of FIG. 4, the height of the 2nd peak is suppressed, and the timing at which the tumble flow strength decreases is also advanced.
 そこで本実施形態では、成層噴射の前に、点火プラグ8の周りに成層混合気を形成可能な程度までタンブル流動の強度を弱めるための燃料噴射を行う。すなわち、図4のような状態にあるときに、火花点火による燃焼が安定する方向にタンブル流動を変化させるための燃料噴射(以下、「圧縮前期噴射」ともいう)を行なってから成層噴射を行う。 Therefore, in the present embodiment, before stratified injection, fuel injection is performed to weaken the strength of the tumble flow to such an extent that a stratified mixture can be formed around the spark plug 8. That is, in the state shown in FIG. 4, stratified injection is performed after fuel injection (hereinafter also referred to as “compressed pre-injection”) for changing the tumble flow in a direction in which combustion by spark ignition is stabilized. .
 なお、圧縮前期噴射を行なう場合も、トータル燃料量は変化させない。例えば、吸気行程中に行う1回目の燃料噴射の噴射量を、圧縮前期噴射で噴射する分だけ減量する。圧縮前期噴射で噴射された燃料噴霧は、タンブル流動と衝突することにより拡散・混合が促進されるので、圧縮前期噴射を行うことによってピストン3への燃料付着量が増加することはない。なお、成層噴射の噴射量を減少させて圧縮前期噴射で噴射するようにしても構わない。また、排出性能が許容範囲に収まるのであれば、1回目の燃料噴射及び成層噴射の噴射量は変化させずに、トータル燃料量が圧縮前期噴射の分だけ増加するようにしてもかまわない。 Note that the total fuel amount is not changed even when the first-compression injection is performed. For example, the injection amount of the first fuel injection that is performed during the intake stroke is reduced by the amount that is injected by the first-compression injection. The fuel spray injected by the compression first injection is diffused and mixed by colliding with the tumble flow, so that the amount of fuel adhering to the piston 3 does not increase by performing the compression first injection. It should be noted that the injection amount of the stratified injection may be reduced and the injection may be performed by the first-compression injection. Further, if the discharge performance is within the allowable range, the total fuel amount may be increased by the amount corresponding to the first-compression injection without changing the injection amounts of the first fuel injection and the stratified injection.
 ここで、圧縮前期噴射の燃料噴射タイミングについて説明する。 Here, the fuel injection timing of the first compression injection will be described.
 図6は、燃焼室11の天井面をピストン側から見た図である。以下の説明では、燃料噴射弁9の先端(以下、「噴射弁先端」ともいう)を基点とし、基点とボア中心とを通過する軸をX軸、図6中でX軸と直交する軸をY軸とする。なお、X軸及びY軸に直交する軸、つまり基点からボア軸線に沿って伸びる軸をZ軸とする。 FIG. 6 is a view of the ceiling surface of the combustion chamber 11 as seen from the piston side. In the following description, the tip of the fuel injection valve 9 (hereinafter also referred to as “injection valve tip”) is the base point, the axis passing through the base point and the bore center is the X axis, and the axis orthogonal to the X axis in FIG. The Y axis is assumed. Note that an axis orthogonal to the X axis and the Y axis, that is, an axis extending from the base point along the bore axis is defined as a Z axis.
 図7は、燃料噴射弁9から噴射される燃料噴霧を示す図である。燃料噴射弁9は、複数の噴孔を有する、いわゆるマルチホールタイプの噴射弁である。本実施形態では燃料噴射弁9の噴孔は6個であり、各噴孔から噴射される6本の噴霧ビームB1-B6が傘状に広がるものとする。各噴霧ビームの先端を含む円の中心を噴霧ビーム重心Cとし、噴射弁先端Bと噴霧ビーム重心Cとを通過する直線を噴霧ビーム重心線とする。 FIG. 7 is a view showing fuel spray injected from the fuel injection valve 9. The fuel injection valve 9 is a so-called multi-hole type injection valve having a plurality of injection holes. In this embodiment, the fuel injection valve 9 has six injection holes, and six spray beams B1-B6 injected from each injection hole spread in an umbrella shape. The center of the circle including the tip of each spray beam is defined as the spray beam centroid C, and a straight line passing through the injection valve tip B and the spray beam centroid C is defined as the spray beam centroid line.
 以上のことを前提として、圧縮前期噴射の噴射タイミングの実施例について説明する。 Based on the above, an example of the injection timing of the first compression injection will be described.
 (第1実施例)
 図8は、エンジン1の燃焼室付近の概略構成図である。なお、図8では点火プラグ8、燃料噴射弁9、タンブルコントロールバルブ13等は省略している。
(First embodiment)
FIG. 8 is a schematic configuration diagram in the vicinity of the combustion chamber of the engine 1. In FIG. 8, the ignition plug 8, the fuel injection valve 9, the tumble control valve 13, and the like are omitted.
 図中の点Dは、図8のピストン位置におけるタンブル流動の渦中心である。幾何学的には、渦中心をボア中心線上かつピストン3の冠面3Aから(燃焼室高さHch+ストローク量S)/2だけ高い位置と定義する。なお、燃焼室高さとは、ピストン3が上死点にあるときのピストン冠面位置から、燃焼室天井面の最も高い位置までの距離である。また、ストローク量とは、ピストン3が上死点にあるときのピストン冠面位置から、所定のタイミングにおけるピストン冠面位置までの距離である。 The point D in the figure is the vortex center of the tumble flow at the piston position in FIG. Geometrically, the vortex center is defined as a position on the bore center line and higher than the crown surface 3A of the piston 3 by (combustion chamber height Hch + stroke amount S) / 2. The combustion chamber height is a distance from the piston crown surface position when the piston 3 is at the top dead center to the highest position on the combustion chamber ceiling surface. The stroke amount is the distance from the piston crown surface position when the piston 3 is at top dead center to the piston crown surface position at a predetermined timing.
 図中の点Bは、上述した噴射弁先端である。図中の点Cは、上述した噴霧ビーム重心である。図中の破線矢印は、上述した噴霧ビーム重心線である。 The point B in the figure is the above-mentioned injection valve tip. Point C in the figure is the above-mentioned spray beam gravity center. The broken line arrow in the figure is the spray beam barycentric line described above.
 第1実施例では、X-Z平面上においてタンブル流動の渦中心Dが噴霧ビーム重心線よりもピストン上死点側にあるときに圧縮前期噴射を実行する。すなわち、渦中心Dがピストン3の上昇に伴って上昇して、ボア中心線と噴霧ビーム重心線との交点よりもピストン上死点側に位置するようになってから、成層噴射を開始するまでの期間のいずれかタイミングに圧縮前期噴射を行う。 In the first embodiment, the pre-compression injection is executed when the vortex center D of the tumble flow is on the piston top dead center side with respect to the spray beam barycentric line on the XZ plane. That is, from when the vortex center D rises as the piston 3 rises and is located on the piston top dead center side with respect to the intersection of the bore center line and the spray beam barycentric line, stratified injection is started. The pre-compression injection is performed at any timing in the period.
 タンブル流動は、渦中心Dよりピストン下死点側ではX-Z平面上で反時計周り方向となる。したがって上記の期間中であれば、噴霧ビームはタンブル流動との衝突位置において、タンブル流動の進行を妨げ、タンブル流動強度を低下させる作用を果たすこととなる。タンブル流動の強度を低下させる作用とは、タンブル流動を点火プラグ周りでの成層燃焼が安定する方向へ変化させる作用である。 Tumble flow is counterclockwise on the XZ plane on the piston bottom dead center side from the vortex center D. Therefore, during the above period, the spray beam acts to prevent the tumble flow from progressing and reduce the tumble flow strength at the position where the spray beam collides with the tumble flow. The action of reducing the strength of the tumble flow is an action of changing the tumble flow in a direction in which stratified combustion around the spark plug is stabilized.
 図9は、第1実施例の燃料噴射タイミングで圧縮前期噴射を実行した場合のタイミングチャートである。 FIG. 9 is a timing chart in the case where the first-compression injection is executed at the fuel injection timing of the first embodiment.
 図9の噴射タイミングとは、圧縮前期噴射の燃料噴射タイミングである。図9では進角側限界の場合(図中の(a))と、遅角側限界の場合(図中の(b))とを示している。 9 is the fuel injection timing of the first compression injection. FIG. 9 shows the case of the advance side limit ((a) in the figure) and the case of the retard side limit ((b) in the figure).
 タンブル流動強度のチャートは、実線が圧縮前期噴射を実行しない場合、破線が圧縮前期噴射の燃料噴射タイミングが進角側限界の場合、一点鎖線が圧縮前期噴射の燃料噴射タイミングが遅角側限界の場合を示している。 In the tumble flow strength chart, the solid line indicates that the pre-compression injection is not executed, the broken line indicates that the fuel injection timing of the compression pre-injection is the advance limit, and the alternate long and short dash line indicates that the fuel injection timing of the compression pre-injection is the retard limit Shows the case.
 本チャートでは、成層噴射を遅角側限界のタイミングで実行する場合について示している。成層噴射の遅角側限界は、成層噴射で噴射された燃料が成層混合気を形成するのに要する期間を考慮して、点火タイミングに基づいて定まる。 This chart shows a case where stratified injection is executed at the timing of the retard side limit. The retard side limit of the stratified injection is determined based on the ignition timing in consideration of the period required for the fuel injected in the stratified injection to form a stratified mixture.
 タイミングt1は、渦中心Dが噴霧ビーム重心線上に位置するタイミングである。これは、第1実施例における圧縮前期噴射の燃料噴射タイミングの進角側限界である。なお、図9ではタイミングt1は圧縮前期噴射を開始するタイミングになっているが、終了するタイミングとしてもよい。 Timing t1 is the timing at which the vortex center D is located on the spray beam barycentric line. This is the advance side limit of the fuel injection timing of the pre-compression injection in the first embodiment. In FIG. 9, the timing t1 is the timing for starting the first-compression injection, but may be the timing for ending.
 タイミングt2は、成層噴射の燃料噴射タイミングまでに圧縮前期噴射を終了できる燃料噴射タイミングのうち最も遅いタイミングである。つまり、タイミングt2は圧縮前期噴射の燃料噴射タイミングの遅角側限界である。なお、図9ではタイミングt2は圧縮前期噴射の開始タイミングになっているが、終了タイミングとしてもよい。 Timing t2 is the latest timing among the fuel injection timings in which the pre-compression injection can be completed before the stratified fuel injection timing. That is, the timing t2 is a retard side limit of the fuel injection timing of the first compression injection. In FIG. 9, the timing t <b> 2 is the start timing of the previous compression injection, but may be the end timing.
 タイミングt1で圧縮前期噴射を実行すれば、図示するようにタンブル流動の2ndピークが低下して、成層噴射開始時におけるタンブル流動の強度が低下するので、成層燃焼の燃焼安定度が高まる。また、2ndピークを過ぎたタイミングt2で圧縮前期噴射を実行した場合でも、図示するようにタンブル流動の強度の低下速度が速まるので、同様に成層燃焼の燃焼安定度が高まる。 If the pre-compression injection is executed at the timing t1, the 2nd peak of the tumble flow decreases as shown in the figure, and the strength of the tumble flow at the start of the stratified injection decreases, so that the combustion stability of the stratified combustion increases. Further, even when the pre-compression injection is executed at the timing t2 after the 2nd peak, the rate of decrease in the strength of the tumble flow is increased as shown in the figure, so that the combustion stability of the stratified combustion similarly increases.
 したがって、実施例1のように圧縮前期噴射の燃料噴射タイミングを設定すれば、成層燃焼の燃焼安定度を高めることができる。 Therefore, if the fuel injection timing of the first compression injection is set as in the first embodiment, the combustion stability of the stratified combustion can be increased.
 (第2実施例)
 第2実施例では、圧縮前期噴射の燃料噴射タイミングを設定可能な範囲を第1実施例よりも狭くする。
(Second embodiment)
In the second embodiment, the range in which the fuel injection timing of the pre-compression injection can be set is made narrower than in the first embodiment.
 図10は、図8と同様にエンジン1の燃焼室付近を示した概略構成図である。図10では、図8に比べてピストン3の位置が上死点に近づいている。図中の点Eは、噴霧ビーム重心線とピストン冠面3Aとの交点である。「噴霧ビーム重心線とピストン冠面との衝突位置」は、X-Z平面上において噴霧ビーム重心線とピストン冠面3Aとが交差する位置の、点BからのX方向距離を表している。 FIG. 10 is a schematic configuration diagram showing the vicinity of the combustion chamber of the engine 1 as in FIG. In FIG. 10, the position of the piston 3 is closer to the top dead center than in FIG. Point E in the figure is the intersection of the spray beam barycentric line and the piston crown surface 3A. The “collision position between the spray beam barycentric line and the piston crown surface” represents the distance in the X direction from the point B at the position where the spray beam barycentric line and the piston crown surface 3A intersect on the XZ plane.
 図11は、第2実施例の燃料噴射タイミングで圧縮前期噴射を実行した場合のタイミングチャートである。図9と同様に、噴射タイミングのチャートは、進角側限界の場合(図中の(a))と、遅角側限界の場合(図中の(b))とを示している。 FIG. 11 is a timing chart in the case where the first-compression injection is executed at the fuel injection timing of the second embodiment. Similarly to FIG. 9, the injection timing chart shows the case of the advance side limit ((a) in the figure) and the case of the retard side limit ((b) in the figure).
 衝突位置のチャートは、噴霧ビーム重心線とピストン冠面3Aとの衝突位置のX軸上位置を示している。 The collision position chart indicates the position on the X axis of the collision position between the spray beam barycentric line and the piston crown surface 3A.
 X-Z平面上において、エンジン1の筒内は、ピストン3が下死点位置にあるときはボア中心線方向に長く、ピストン位置が下死点から上死点に近づくにしたがって幾何学的に等方に近づき、等方になった後もピストン3が上昇することでボア径方向に長くなる。なお、ここでいう「幾何学的に等方」とは、ストローク量Sと燃焼室高さHchとの和が、ボア径(L2×2)と等しいことをいう。 On the XZ plane, the inside of the cylinder of the engine 1 is long in the bore center line direction when the piston 3 is at the bottom dead center position, and geometrically as the piston position approaches the top dead center from the bottom dead center. After approaching the isotropic direction and becoming isotropic, the piston 3 rises and becomes longer in the bore radial direction. Here, “geometrically isotropic” means that the sum of the stroke amount S and the combustion chamber height Hch is equal to the bore diameter (L2 × 2).
 タンブル流動の渦もこれにしたがい、ボア中心線方向を長軸とする楕円形から、徐々に整形されて円形となり、さらにピストン3が上昇すると、ピストン3に圧縮されることにより崩壊へ向かう。この過程において、渦の角速度は渦が円形に近づくほど高くなる。つまり、筒内が幾何学的に等方となったときに、タンブル流動強度は2ndピークとなる。 In accordance with this, the tumble flow vortex is gradually shaped from an elliptical shape whose major axis is the bore center line direction into a circular shape, and when the piston 3 rises, it is compressed by the piston 3 so that it collapses. In this process, the angular velocity of the vortex increases as the vortex approaches a circle. That is, when the inside of the cylinder is geometrically isotropic, the tumble flow strength has a 2nd peak.
 タンブル流動強度が2ndピークを迎えるあたりで圧縮前期噴射を実行すれば、圧縮前期噴射された燃料噴霧のエネルギを、タンブル流動強度を低下させるのに効率的に利用できると考えられる。一方、圧縮前期噴射の燃料噴射タイミングが2ndピークよりもあまりに早いと、噴射によりタンブル流動強度は低下するものの、その後に渦は円形に近づくことで角速度が高まるので、圧縮前期噴射の燃料噴霧のエネルギを効率的に利用できない。 If the pre-compression injection is performed when the tumble flow strength reaches the 2nd peak, it is considered that the energy of the fuel spray injected in the pre-compression injection can be efficiently used to reduce the tumble flow strength. On the other hand, if the fuel injection timing of the pre-compression injection is much earlier than the 2nd peak, the tumble flow strength decreases due to the injection, but the angular velocity increases as the vortex approaches a circular shape thereafter, so the energy of the fuel spray of the pre-compression injection is increased. Cannot be used efficiently.
 そこで第2実施例では、図11に示すように、圧縮前期噴射の燃料噴射タイミングの進角側限界t1を(ストローク量S+燃焼室高さHch):(ボア径L2×2)=1:1となるタイミングとする。なお、図11ではタイミングt1が圧縮前期噴射の終了タイミングとなっているが、開始タイミングとしてもよい。 Therefore, in the second embodiment, as shown in FIG. 11, the advance side limit t1 of the fuel injection timing of the first compression injection is set to (stroke amount S + combustion chamber height Hch) :( bore diameter L2 × 2) = 1: 1. The timing is as follows. In FIG. 11, the timing t <b> 1 is the end timing of the compression early injection, but may be the start timing.
 圧縮前期噴射の燃料噴射タイミングの遅角側限界t2は、図11に示すように、噴霧ビーム重心線とピストン冠面3Aとの衝突位置が、ボア中心線上となるタイミングとする。噴霧ビームは傘状に形成されるので、上記衝突位置がボア中心線上よりも吸気側にある場合には、噴霧ビーム重心線に対してZ軸方向下側にある噴霧ビームの運動エネルギはピストン冠面3Aとの衝突によって失われてしまい、タンブル流動強度を低下させるために使うことができない。そこで、上記衝突位置がボア中心線上よりも吸気側になる前に圧縮前期噴射を行うこととする。 As shown in FIG. 11, the retard side limit t2 of the fuel injection timing of the pre-compression injection is a timing at which the collision position between the spray beam barycentric line and the piston crown surface 3A is on the bore center line. Since the spray beam is formed in an umbrella shape, when the collision position is on the intake side with respect to the bore center line, the kinetic energy of the spray beam on the lower side in the Z-axis direction with respect to the spray beam center of gravity is It is lost by collision with the surface 3A and cannot be used to reduce the tumble flow strength. Therefore, the pre-compression injection is performed before the collision position is on the intake side of the bore center line.
 上記の進角側限界または遅角側限界で圧縮前期噴射を行なうと、図示するように成層噴射までにタンブル流動強度を低下させることができる。 When the pre-compression injection is performed at the above-mentioned advance side limit or retard side limit, the tumble flow strength can be reduced until stratified injection as shown in the figure.
 なお、第1実施例及び第2実施例の圧縮前期噴射の進角側限界及び遅角側限界は、あくまでも一例である。上述した技術的思想に基づけば、タンブル流動強度を低下させる効果が得られる圧縮前期噴射の燃料噴射タイミングは、渦中心Dが噴霧ビーム重心線よりもピストン上死点側にあるタイミングであればよいことがわかる。そして、圧縮前期噴射の燃料噴射タイミングの進角側限界は、ガス流動の渦の回転方向と噴霧ビームの進行方向とが対向する位置までピストン3が上昇したタイミングであることもわかる。さらに、圧縮前期噴射の燃料噴射タイミングの遅角側限界は、噴霧ビーム重心線がタンブル流動の渦の主流と衝突しなくなる位置までピストン3が上昇したタイミングであることもわかる。 It should be noted that the advance side limit and the retard side limit of the compressed pre-injection in the first and second embodiments are merely examples. Based on the technical idea described above, the fuel injection timing of the first compression injection that provides the effect of reducing the tumble flow strength may be a timing at which the vortex center D is at the piston top dead center side with respect to the spray beam barycentric line. I understand that. It can also be seen that the advance side limit of the fuel injection timing of the pre-compression injection is the timing when the piston 3 is raised to a position where the rotational direction of the vortex of the gas flow and the traveling direction of the spray beam face each other. Further, it can also be seen that the retard side limit of the fuel injection timing of the pre-compression injection is the timing at which the piston 3 rises to a position where the spray beam barycentric line does not collide with the main flow of the tumble flow vortex.
 次に、本実施形態における圧縮前期噴射の燃料噴射量と噴射圧力について説明する。 Next, the fuel injection amount and injection pressure of the first compression injection in this embodiment will be described.
 成層燃焼の燃焼安定度は、成層噴射を実行する際におけるタンブル流動強度が低いほど高くなる。そこで本実施形態においては、コントローラ100は、タンブル流動強度が高いほど、タンブル流動強度を大きく低下させるように圧縮前期噴射を制御する。 The combustion stability of stratified combustion increases as the tumble flow strength during stratified injection decreases. Therefore, in the present embodiment, the controller 100 controls the pre-compression injection so that the tumble flow strength is greatly decreased as the tumble flow strength is higher.
 圧縮前期噴射によりタンブル流動強度が低下するのは、タンブル流動の渦と圧縮前期噴射で噴射された燃料噴霧とが衝突することで、タンブル流動の渦の角運動量が減少するからである。したがって、タンブル流動強度が高いほど、コントローラ100は圧縮前期噴射で噴射される燃料噴霧の運動量を大きくする。 The reason why the tumble flow strength is reduced by the pre-compression injection is that the tumble flow vortex collides with the fuel spray injected by the pre-compression injection, thereby reducing the angular momentum of the tumble flow vortex. Therefore, the controller 100 increases the momentum of the fuel spray that is injected in the first-compression injection as the tumble flow strength is higher.
 図12は、燃料噴霧の運動量と、燃料噴射量及び燃料噴射圧力との関係を示すマップである。図示するように、燃料噴射圧力が高くなるほど、そして燃料噴射量が多くなるほど、燃料噴霧の運動量は大きくなる。すなわち、燃料噴霧の運動量を増大させる方法としては、例えば燃料噴射量を増量させてもよいし、燃料噴射圧力を増大させてもよい。もちろん、燃料噴射量を増量させ、かつ燃料噴射圧力を増大させてもよい。 FIG. 12 is a map showing the relationship between the momentum of fuel spray, the fuel injection amount, and the fuel injection pressure. As shown in the drawing, the higher the fuel injection pressure and the larger the fuel injection amount, the greater the momentum of the fuel spray. That is, as a method for increasing the momentum of fuel spray, for example, the fuel injection amount may be increased or the fuel injection pressure may be increased. Of course, the fuel injection amount may be increased and the fuel injection pressure may be increased.
 ところで、タンブル流動強度は、吸気量が多いほど、つまりスロットルバルブ開度が大きいほど高くなる。 Incidentally, the tumble flow strength increases as the intake air amount increases, that is, as the throttle valve opening increases.
 そこで本実施形態においては、スロットルバルブ開度が大きいほど、コントローラ100は燃料噴射圧力または燃料噴射量の少なくとも一方を増大させる。 Therefore, in this embodiment, the controller 100 increases at least one of the fuel injection pressure or the fuel injection amount as the throttle valve opening increases.
 また、スロットルバルブ開度が一定の場合には、エンジン回転速度が高いほどタンブル流動強度は高くなる。したがって、エンジン回転速度が高いほど、コントローラ100が燃料噴射圧力または燃料噴射量の少なくとも一方を増大させるようにしてもよい。 Also, when the throttle valve opening is constant, the tumble flow strength increases as the engine speed increases. Therefore, the controller 100 may increase at least one of the fuel injection pressure or the fuel injection amount as the engine speed increases.
 以上のように本実施形態によれば、筒内にガス流動を形成し、点火プラグ周りで成層燃焼させる燃料を噴射する成層噴射を圧縮行程以降に行い、成層噴射で噴射された燃料が形成する混合気に火花点火する制御方法が提供される。この制御方法では、圧縮行程中であって成層噴射の前に、タンブル流動(ガス流動)を成層燃焼が安定する方向に変化させる、つまりタンブル流動強度を低下させる、圧縮前期噴射を実行する。これにより、成層噴射で噴射された燃料が点火プラグ周りに成層混合気を形成することが可能となる。その結果、燃焼安定度が向上する。なお、本実施形態では点化プラグ周りで成層燃焼を行う場合について説明したが、多段噴射の最後に噴射された燃料が点化プラグ周りで燃焼するのであれば、成層燃焼でなくてもよい。 As described above, according to the present embodiment, stratified injection for forming gas flow in the cylinder and injecting stratified combustion around the spark plug is performed after the compression stroke, and fuel injected by stratified injection is formed. A control method for spark ignition of an air-fuel mixture is provided. In this control method, before the stratified injection is performed during the compression stroke, the tumble flow (gas flow) is changed in a direction in which the stratified combustion is stabilized, that is, the tumble flow strength is reduced. As a result, the fuel injected by the stratified injection can form a stratified mixture around the spark plug. As a result, the combustion stability is improved. In the present embodiment, the case where stratified combustion is performed around the dotted plug has been described. However, if the fuel injected at the end of the multistage injection burns around the dotted plug, the stratified combustion may not be required.
 本実施形態においては、圧縮前期噴射を行うタイミングは、タンブル流動の渦中心Dがピストン3の上昇に伴って上昇して、燃料噴射弁9の噴孔と圧縮前期噴射により噴射される噴霧ビームの重心とを結ぶ噴霧ビーム重心線よりもピストン上死点側にある期間中のいずれかのタイミングである。このタイミングであれば、圧縮前期噴射によってタンブル流動強度を低下させることができる。 In the present embodiment, the timing of the first compression injection is the timing at which the vortex center D of the tumble flow rises as the piston 3 rises and the spray beam injected by the injection hole of the fuel injection valve 9 and the first compression injection. This is any timing during a period that is on the piston top dead center side with respect to the spray beam center of gravity line connecting the center of gravity. At this timing, the tumble flow strength can be reduced by the pre-compression injection.
 本実施形態においては、圧縮前期噴射を行なうタイミングの進角側限界は、タンブル流動の渦の回転方向と圧縮前期噴射により噴射される噴霧ビームの進行方向とが対向する位置までピストン3が上昇したタイミングである。このような進角側限界を設定することで、圧縮前期噴射で噴射する燃料を無駄にすることなく、タンブル流動強度を低下させるために利用できる。 In the present embodiment, the advance side limit of the timing of performing the previous compression injection is such that the piston 3 is raised to a position where the rotational direction of the tumble flow vortex and the traveling direction of the spray beam injected by the previous compression injection are opposed. It is timing. By setting such an advance side limit, it can be used to reduce the tumble flow strength without wasting the fuel injected in the first compression injection.
 本実施形態においては、圧縮前期噴射を行うタイミングの遅角側限界は、噴霧ビーム重心線がタンブル流動の渦の主流と衝突しなくなる位置までピストン3が上昇したタイミングである。このような遅角側限界を設定することで、成層噴射を開始するタイミングまでにタンブル流動強度を低下させることができ、かつ、圧縮前期噴射で噴射する燃料を無駄にすることなくタンブル流動強度を低下させるために利用できる。 In the present embodiment, the retard side limit of the timing of performing the pre-compression injection is the timing at which the piston 3 is raised to a position where the spray beam barycentric line does not collide with the main flow of the tumble flow vortex. By setting such a retard side limit, the tumble flow strength can be reduced by the timing of starting the stratified injection, and the tumble flow strength can be increased without wasting fuel injected in the first compression injection. Available to lower.
 本実施形態では、スロットルバルブ開度が大きいほど、圧縮前期噴射の燃料噴射圧力または燃料噴射量の少なくとも一方を増大させる。スロットルバルブ開度が大きいほど吸気量が多くなり、タンブル流動強度は高くなる。つまり、本実施形態ではタンブル流動強度が高くなるほど燃料噴射圧力または燃料噴射量のいずれかを増大させる。これにより、タンブル流動強度を確実に低下させて、燃焼安定度を確保することができる。 In this embodiment, as the throttle valve opening is larger, at least one of the fuel injection pressure or the fuel injection amount of the first compression injection is increased. As the throttle valve opening increases, the intake air amount increases and the tumble flow strength increases. That is, in this embodiment, either the fuel injection pressure or the fuel injection amount is increased as the tumble flow strength increases. As a result, the tumble flow strength can be reliably reduced and combustion stability can be ensured.
 本実施形態では、エンジン回転速度が高いほど、圧縮前期噴射の燃料噴射圧力または燃料噴射量の少なくとも一方を増大させる。エンジン回転速度が高いほど吸気流速が高くなり、タンブル流動強度は高くなる。つまり、本実施形態ではタンブル流動強度が高くなるほど燃料噴射圧力または燃料噴射量のいずれかを増大させる。これにより、タンブル流動強度を確実に低下させて、燃焼安定度を確保することができる。 In this embodiment, as the engine speed increases, at least one of the fuel injection pressure or the fuel injection amount of the first compression injection is increased. The higher the engine speed, the higher the intake air flow rate and the higher the tumble flow strength. That is, in this embodiment, either the fuel injection pressure or the fuel injection amount is increased as the tumble flow strength increases. As a result, the tumble flow strength can be reliably reduced and combustion stability can be ensured.
 なお、本実施形態では、図7に示すように各噴孔から噴射される燃料量が等しく、かつ複数の噴霧ビームが均等な間隔で形成される燃料噴射弁9を使用する場合について説明したが、これに限られるわけではない。例えば、図13に示すような、各噴孔からの噴射量が異なる燃料噴射弁9を使用してもよい。この場合の噴霧重心ビームC及び噴霧ビーム重心線は、次の通りである。 In the present embodiment, as shown in FIG. 7, the fuel injection valve 9 in which the fuel amount injected from each nozzle hole is equal and a plurality of spray beams are formed at equal intervals has been described. However, it is not limited to this. For example, you may use the fuel injection valve 9 as shown in FIG. 13 from which the injection quantity from each nozzle hole differs. The spray barycenter beam C and the spray beam barycenter line in this case are as follows.
 図13は、流量が異なる3本の噴霧ビームを、上述したX-Z平面に投影した図である。噴霧ビームの流量は、噴霧ビーム1>噴霧ビーム2>噴霧ビーム3である。 FIG. 13 is a diagram in which three spray beams having different flow rates are projected on the XZ plane described above. The flow rate of the spray beam is spray beam 1> spray beam 2> spray beam 3.
 噴霧ビームの中心軸に沿う方向のベクトルを噴霧ビームベクトル(図中のベクトル1-3)とする。噴霧ビームベクトルの大きさは、噴霧ビームの流量に比例するものとする。 The vector in the direction along the central axis of the spray beam is the spray beam vector (vector 1-3 in the figure). The magnitude of the spray beam vector is proportional to the flow rate of the spray beam.
 この場合、図示するようにベクトル1-3の合成ベクトルを噴霧ビーム重心ベクトルとする。これにより、噴霧ビーム重心C及び噴霧ビーム重心線が定まる。 In this case, as shown in the figure, the combined vector of vectors 1-3 is the spray beam barycenter vector. Thereby, the spray beam gravity center C and the spray beam gravity line are determined.
 このように噴霧ビームベクトルを用いて噴霧ビーム重心C及び噴霧ビーム重心線を定義すれば、噴孔数や各噴孔の流量が異なる場合にも幅広く対応することができる。 Thus, if the spray beam centroid C and the spray beam centroid line are defined using the spray beam vector, it is possible to deal with a wide range of cases where the number of nozzle holes and the flow rate of each nozzle hole are different.
 また、噴霧ビーム重心Cの定義は、上述した2通りに限られるわけではない。上述した実施形態の作用効果を奏することができるのであれば、上述した2通りの定義とは異なる定義であってもよい。 In addition, the definition of the spray beam center of gravity C is not limited to the two types described above. As long as the effects of the above-described embodiment can be achieved, the definitions may be different from the two definitions described above.
 以上、本発明の実施形態について説明したが、上記実施形態は本発明の適用例の一部を示したに過ぎず、本発明の技術的範囲を上記実施形態の具体的構成に限定する趣旨ではない。 The embodiment of the present invention has been described above. However, the above embodiment only shows a part of application examples of the present invention, and the technical scope of the present invention is limited to the specific configuration of the above embodiment. Absent.

Claims (7)

  1.  筒内にガス流動を形成し、
     点火プラグ周りで燃焼させる燃料を噴射する燃料噴射を圧縮行程以降に行い、
     前記燃料噴射で噴射された燃料が形成する混合気に火花点火する、
    筒内直接噴射式内燃機関の制御方法において、
     圧縮行程中であって前記燃料噴射の前に、前記ガス流動を燃焼が安定する方向に変化させる圧縮前期噴射を実行することを特徴とする筒内直接噴射式内燃機関の制御方法。
    Forming a gas flow in the cylinder,
    Fuel injection for injecting fuel to be burned around the spark plug is performed after the compression stroke,
    Spark-igniting an air-fuel mixture formed by the fuel injected in the fuel injection,
    In a control method for a direct injection type internal combustion engine,
    A control method for an in-cylinder direct injection internal combustion engine, characterized in that, during the compression stroke and before the fuel injection, pre-compression injection for changing the gas flow in a direction in which combustion is stabilized is executed.
  2.  請求項1に記載の筒内直接噴射式内燃機関の制御方法において、
     前記圧縮前期噴射を行うタイミングは、前記圧縮前期噴射で噴射される燃料噴霧が前記ガス流動を弱めるように前記ガス流動と衝突することになるタイミングである筒内直接噴射式内燃機関の制御方法。
    In the control method of the direct injection type internal combustion engine according to claim 1,
    The control method for a direct injection type internal combustion engine, wherein the timing of performing the first compression injection is a timing at which the fuel spray injected in the first compression injection collides with the gas flow so as to weaken the gas flow.
  3.  請求項1または2に記載の筒内直接噴射式内燃機関の制御方法において、
     前記圧縮前期噴射を行うタイミングは、前記ガス流動の渦中心がピストンの上昇に伴って上昇して、燃料噴射弁の噴孔と前記圧縮前期噴射により噴射される噴霧ビームの重心とを結ぶ噴霧ビーム重心線よりもピストン上死点側にある期間中のいずれかのタイミングである筒内直接噴射式内燃機関の制御方法。
    In the control method of the direct injection type internal combustion engine according to claim 1 or 2,
    The timing of performing the pre-compression injection is a spray beam that connects the vortex center of the gas flow as the piston rises, and connects the nozzle hole of the fuel injection valve and the center of gravity of the spray beam injected by the pre-compression injection. A control method for an in-cylinder direct injection internal combustion engine at any timing during a period on the piston top dead center side with respect to the center of gravity line.
  4.  請求項2または3に記載の筒内直接噴射式内燃機関の制御方法において、
     前記圧縮前期噴射を行なうタイミングの進角側限界は、前記ガス流動の渦の回転方向と前記噴霧ビームの進行方向とが対向する位置まで前記ピストンが上昇したタイミングである筒内直接噴射式内燃機関の制御方法。
    In the control method of a direct injection type internal combustion engine according to claim 2 or 3,
    An in-cylinder direct injection internal combustion engine in which the advance side limit of the timing of performing the first-compression injection is a timing at which the piston is raised to a position where the rotation direction of the vortex of the gas flow and the traveling direction of the spray beam are opposed to each other Control method.
  5.  請求項2または3に記載の筒内直接噴射式内燃機関の制御方法において、
     前記圧縮前期噴射を行うタイミングの遅角側限界は、前記噴霧ビーム重心線が前記ガス流動の渦の主流と衝突しなくなる位置まで前記ピストンが上昇したタイミングである筒内直接噴射式内燃機関の制御方法。
    In the control method of a direct injection type internal combustion engine according to claim 2 or 3,
    Control of the cylinder direct injection internal combustion engine in which the retard side limit of the timing of performing the pre-compression injection is the timing at which the piston rises to a position where the spray beam barycentric line does not collide with the main flow of the gas flow vortex Method.
  6.  筒内にタンブル流動が形成されるよう配置した吸気通路と、
     筒内に燃料を噴射する燃料噴射弁と、
     前記燃料噴射弁から噴射された燃料が形成する混合気に火花点火する点火装置と、
     点火プラグ周りで燃焼させる燃料を噴射する燃料噴射を圧縮行程以降に行う制御部と、
    を備える筒内直接噴射式内燃機関の制御装置において、
     前記制御部が、圧縮行程中であって前記燃料噴射の前に、前記ガス流動を燃焼が安定する方向に変化させる圧縮前期噴射を行うことを特徴とする筒内直接噴射式内燃機関の制御装置。
    An intake passage arranged so that a tumble flow is formed in the cylinder;
    A fuel injection valve for injecting fuel into the cylinder;
    An ignition device that sparks and ignites an air-fuel mixture formed by fuel injected from the fuel injection valve;
    A control unit that performs fuel injection for injecting fuel to be burned around the spark plug after the compression stroke;
    In a cylinder direct injection internal combustion engine control device comprising:
    A control device for a direct injection type internal combustion engine, wherein the control unit performs a pre-compression injection that changes the gas flow in a direction in which combustion is stable during the compression stroke and before the fuel injection. .
  7.  請求項6に記載の筒内直接噴射式内燃機関の制御装置において、
     前記圧縮前期噴射は、ピストンの上昇に伴いタンブル流動の渦中心が前記燃料噴射弁の噴射ビーム重心線よりピストン上死点側に移動した後に行う筒内直接噴射式内燃機関の制御装置。
    In the control apparatus for a direct injection type internal combustion engine according to claim 6,
    The in-cylinder direct-injection internal combustion engine control device performs the first-compression injection after the vortex center of the tumble flow moves to the piston top dead center side from the injection beam center of gravity of the fuel injection valve as the piston rises.
PCT/JP2016/053097 2016-02-02 2016-02-02 Method and device for controlling in-cylinder direct-injection internal combustion engine WO2017134747A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/053097 WO2017134747A1 (en) 2016-02-02 2016-02-02 Method and device for controlling in-cylinder direct-injection internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/053097 WO2017134747A1 (en) 2016-02-02 2016-02-02 Method and device for controlling in-cylinder direct-injection internal combustion engine

Publications (1)

Publication Number Publication Date
WO2017134747A1 true WO2017134747A1 (en) 2017-08-10

Family

ID=59499672

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/053097 WO2017134747A1 (en) 2016-02-02 2016-02-02 Method and device for controlling in-cylinder direct-injection internal combustion engine

Country Status (1)

Country Link
WO (1) WO2017134747A1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012219628A (en) * 2011-04-04 2012-11-12 Toyota Motor Corp Internal combustion engine control device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012219628A (en) * 2011-04-04 2012-11-12 Toyota Motor Corp Internal combustion engine control device

Similar Documents

Publication Publication Date Title
US7104249B2 (en) Direct fuel injection/spark ignition engine control device
JP4736518B2 (en) In-cylinder direct injection internal combustion engine control device
JP6712363B2 (en) Control method for direct injection type internal combustion engine in cylinder
US11085393B2 (en) Control method and control device for internal combustion engine
CN105986877A (en) Internal combustion engine
JP4492399B2 (en) In-cylinder direct injection spark ignition internal combustion engine control device and control method
WO2016166818A1 (en) Engine control device and engine control method
JP6744765B2 (en) Control method and control device for in-cylinder direct injection internal combustion engine
WO2017134747A1 (en) Method and device for controlling in-cylinder direct-injection internal combustion engine
JP6921702B2 (en) Fuel injection control method and fuel injection device for spark-ignition internal combustion engine
EP3309378B1 (en) Fuel injection control device and fuel injection control method
JP5136255B2 (en) Spark ignition direct injection engine
JP6789007B2 (en) Engine control method and engine control device
JP4281647B2 (en) In-cylinder direct injection spark ignition internal combustion engine controller
JP2004162577A (en) Cylinder injection type spark ignition internal combustion engine
JP6687449B2 (en) Control device and control method for direct injection engine
US11674465B2 (en) Combustion system
JP5071284B2 (en) Spark ignition direct injection engine
JP6300186B2 (en) Engine control device
JP4311300B2 (en) In-cylinder direct injection spark ignition internal combustion engine controller
JP6308276B2 (en) Control device for premixed compression ignition engine
JP2006177181A (en) Control device for cylinder direct injection type spark ignition internal combustion engine
JP2018059431A (en) Control device for premixed compression-ignition type engine
JP2018059429A (en) Premixed compression-ignition type engine
JP2006046129A (en) Cylinder direct injection type spark ignition internal combustion engine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16889237

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 16889237

Country of ref document: EP

Kind code of ref document: A1