WO2017134325A1 - Wind flow concentrator - Google Patents

Wind flow concentrator Download PDF

Info

Publication number
WO2017134325A1
WO2017134325A1 PCT/ES2017/070060 ES2017070060W WO2017134325A1 WO 2017134325 A1 WO2017134325 A1 WO 2017134325A1 ES 2017070060 W ES2017070060 W ES 2017070060W WO 2017134325 A1 WO2017134325 A1 WO 2017134325A1
Authority
WO
WIPO (PCT)
Prior art keywords
wind
concentrator
wind flow
blades
wind turbine
Prior art date
Application number
PCT/ES2017/070060
Other languages
Spanish (es)
French (fr)
Inventor
Francisco Javier Ferrandez Pastor
Juan Manuel GARCÍA CHAMIZO
Sergio GÓMEZ TRILLO
Original Assignee
Universidad De Alicante
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Universidad De Alicante filed Critical Universidad De Alicante
Publication of WO2017134325A1 publication Critical patent/WO2017134325A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D3/00Wind motors with rotation axis substantially perpendicular to the air flow entering the rotor 
    • F03D3/005Wind motors with rotation axis substantially perpendicular to the air flow entering the rotor  the axis being vertical
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D3/00Wind motors with rotation axis substantially perpendicular to the air flow entering the rotor 
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D3/00Wind motors with rotation axis substantially perpendicular to the air flow entering the rotor 
    • F03D3/04Wind motors with rotation axis substantially perpendicular to the air flow entering the rotor  having stationary wind-guiding means, e.g. with shrouds or channels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D3/00Wind motors with rotation axis substantially perpendicular to the air flow entering the rotor 
    • F03D3/04Wind motors with rotation axis substantially perpendicular to the air flow entering the rotor  having stationary wind-guiding means, e.g. with shrouds or channels
    • F03D3/0409Wind motors with rotation axis substantially perpendicular to the air flow entering the rotor  having stationary wind-guiding means, e.g. with shrouds or channels surrounding the rotor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D3/00Wind motors with rotation axis substantially perpendicular to the air flow entering the rotor 
    • F03D3/04Wind motors with rotation axis substantially perpendicular to the air flow entering the rotor  having stationary wind-guiding means, e.g. with shrouds or channels
    • F03D3/0409Wind motors with rotation axis substantially perpendicular to the air flow entering the rotor  having stationary wind-guiding means, e.g. with shrouds or channels surrounding the rotor
    • F03D3/0418Wind motors with rotation axis substantially perpendicular to the air flow entering the rotor  having stationary wind-guiding means, e.g. with shrouds or channels surrounding the rotor comprising controllable elements
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/74Wind turbines with rotation axis perpendicular to the wind direction

Definitions

  • the present invention relates to the use of circulating wind breezes on the earth's surface for the generation of electricity for domestic and industrial use.
  • the wind flow concentrator is configured to optimize the use of currents regardless of their direction.
  • wind energy has been configured as one of the fastest growing renewable energy sources in recent years.
  • the wind concentration system has great potential thanks to the improvement that occurs in the performance of the turbine on which it is incorporated. This potential is based on the cubic function that governs the wind speed in relation to when determining the available wind power.
  • Energy microgeneration systems provide energy accessibility to regions lacking this basic service, while in territories with consolidated electricity networks, these types of systems are useful when it comes to self-supplying buildings of all kinds.
  • the incorporation of the wind concentration system increases the potential performance and operating time compared to the free exercise of small wind turbines. This result expands the scope of geographic implementation of these energy production systems.
  • US 1595578 refers to an annular housing wind concentrating device having radial ducts with side, upper and lower walls converging towards the central axis of the housing. In the center of the housing is the rotor provided with blades.
  • WO / 2013/038215 refers to a double turbine wind power plant arranged on a vertical axis, which has a machine housing built on a solid base, a roof structure suitable for its height, an internal rotor and a rotor external composed of a series of blades.
  • the wind power plant is characterized in that the external rotor, which rotates in a direction opposite to that of the internal rotor, is arranged in a vertical axis that shares with the internal rotor.
  • the ends of the lower shaft of the two rotors are connected to first and second electric machines producing electricity, either directly, or with the help of first and second transmission devices.
  • the characterization method of the invention allows a wind flow concentrator to be realized from certain characteristics of the vertical axis wind turbine, the structural conditions and the energy requirements of the architectural volume on which the implementation is carried out.
  • the result of the method is the generation of the geometry of the wind flow concentrator and the blades that make up said concentrator.
  • the advantages of the method translate into optimizing the design and manufacturing process of the concentrator, by reducing the manufacturing time of prototypes, models and tests with different models until reaching the satisfactory concentrator structure.
  • the application of the method has an immediate industrial application.
  • the result is a wind flow concentrator characterized by an architecture capable of sectorizing the entry of wind in different sections by injecting the wind flow strategically.
  • the incorporation of the wind flow concentrator on the rotor increases the wind uptake surface (S), facilitating its entry through the different openings and carrying out its concentration as it progresses through the circulation sections.
  • S wind uptake surface
  • the result of the sectorized injection is the development of a vortex interior circulation that permanently affects the characteristic lift range of the aerodynamic profile that defines the geometry of the rotation blade. This causes the nominal operation of the turbine to be achieved with low speed breezes.
  • the wind flow concentrator adapts its architecture in order to regulate the flow input, delaying the activation of the wind turbine's own regulatory devices. In the presence of significant winds, the wind flow concentrator has the necessary mechanisms to proceed to the closing of the openings proceeding to stop the rotor.
  • Figure 1A shows an aerodynamic profile with null lift, where the angle of attack has a null value ( ⁇ 0 ).
  • Figure 1 B shows an aerodynamic profile with maximum lift, where the angle of attack has maximum value ⁇ max ).
  • Figure 1C shows an aerodynamic profile where the boundary layer has been detached and the lift force generated when the value of the angle of attack exceeds the maximum lift value ⁇ max ).
  • Figures 2A, 2B, 2C show different longitudinal sections of type sections where you can see three values of the parameter ⁇ that defines the angular range of the type section from the distance between injection and collection sections.
  • Figure 3 Descriptive flowchart of the wind flow concentrator characterization method.
  • Figure 4A Plan section of the interior architecture of the wind flow concentrator with a vertical axis wind turbine along line A-A 'of Figure 5.
  • Figure 4B Figure 4A depicting the direction of the surrounding wind breezes and the channeling of said breezes through the concentrator.
  • the method of calculating a wind-flow concentrator (202) for vertical axis wind turbine (201) is detailed in Figure 1.
  • the structure of the wind flow concentrator (202) is given by the resolution of a plurality of fundamental objectives, providing the assembly (201, 202) comprising a concentrator (202) and a wind turbine (201), with particular benefits in relation to to its architecture and operability. These objectives are as follows:
  • the interior architecture modeling is based on the continuity equation for ideal fluids.
  • the expression relates the speed of a given flow to the passage section in its circulation through a section of impermeable walls.
  • the section converges, gradually reducing the passage section, which results in an increase in its speed, in a subsonic regime.
  • a structure composed of a certain number of convergent sections (104) is modeled, in which the wind current progressively increases its speed until its injection into the wind turbine (201).
  • Efficient injection (105) on the blades of the wind turbine (201) The incorporation of the concentrator (202) on the wind turbine (201) produces two differentiated behaviors in relation to the flow course: the first is determined by the complete passage of the flow through of the concentrator (202), while the second covers from the injection of the flow to its incidence in the wind turbine rotation blades (201). o In the first case, an efficient design is considered to be one that minimizes the formation of the boundary layer, facilitating as uniform an advance as possible towards the wind turbine (201).
  • an efficient design is considered to be the one that injects the flow into the range of the most characteristic lift of the blade, minimizing the formation of possible turbulent effects and boundary layer detachments.
  • a homogeneous interior architecture consisting of a certain number of convergent sections responsible for the capture of wind flow, concentration and multiple injection is sought within the terms of the lift range.
  • the geometry of these sections is identical in order to materialize a homogeneous architecture and independent of the course of the breezes.
  • the method includes the following steps for internal modeling: o Determination of the maximum lift range (106): The determination and subsequent reproduction of this range along the rotation allows convergent type sections that inject specifically accelerated wind flow to be modeled. in that region.
  • the angle of attack ( ⁇ ) measures the incidence of wind flow in relation to the aerodynamic profile rope.
  • This maximum lift range comprises from the point corresponding to a null value ( ⁇ 0 ), illustrated in Figure 1A, to the point at which the maximum lift occurs ⁇ max ) illustrated in Figure 1 B. This last value is associated to the previous instant of the detachment of the boundary layer and the consequent decrease of the generated force, illustrated in Figure 1 C.
  • a wind direction is defined for the dimensioning of the type section, object of modeling and subsequent reproduction in the architecture of the concentrator (202).
  • Parameter N Y defines the number of sections in which the concentrator is divided.
  • the angle ⁇ determines the resulting unit range by the following expression,
  • This portion comprises enough space for the wind flow injection to be complete in the defined lift range. That is, the angle ⁇ covers the space defined from the aerodynamic profile in position ⁇ 0 until reaching the max position, including the space necessary to make the injection effective in the entire range included. This action is achieved by iterating the value of the profile string, where the profile is the aerodynamic section (213).
  • the injection section of the type section is given by the straight section to the defined portion and limited by the maximum angle of attack in relation to the aerodynamic profile in position ⁇ TM
  • the parameter ⁇ defines the angular range of the type section from the distance between sections of injection (S ⁇ ) and uptake (S c ). With the purpose of knowing the most effective geometry, different section gradients are projected according to said parameter ⁇ for later analysis.
  • Falkner-Skan originates from the Blasius equation that allows to know the development of the boundary layer generated on flat material surfaces. In the case of the expression of Falkner-Skan, it is possible to specify this phenomenon on surfaces with a certain degree of inclination with respect to the direction of the predominant breezes.
  • step (11 1) we proceed to evaluate which configuration offers better performance.
  • the blades (215) are the result of "joining" a side face ( ⁇ - ⁇ ', y-y') of a section, with the side face (y-y ', x-x') adjacent or opposite the section adjacent. That is, the sections have two side walls ( ⁇ - ⁇ ', y-y').
  • the blade assembly is carried out with a wall ( ⁇ - ⁇ ', y-y') of a section and with the side face (y-y ', x-x') adjacent or opposite of the adjacent section .
  • the blade (215) is executed respecting the established tolerances in terms of the minimum thickness of the piece, and the space between the rotation of the rotor (212, 213) of the wind turbine (201) and the surface of said blades (215) .
  • the union of the outer end of the blade (215) is carried out by means of a curved turning to favor the wind flow entrance independently of the direction, while the union of the inner end has been modeled with an aerodynamic geometry favoring the encounter between the injected flow through the concentrator (202) and the one that circulates internally.
  • Modeling (1 13) of the architecture of the concentrator (202) that crosses the wind flow through the reproduction of the type section Defined the blade (215) characteristic of the concentrator (202), it proceeds to its perimeter reproduction to complete the architecture of greater efficiency in relation to the number of traffic sections.
  • Numerical simulation (1 14) of the modeled prototype Through numerical simulation (1 14), the evaluation of the base prototype is carried out to carry out its analysis in relation to the benefits achieved, as well as the identification of possible specific improvements to be made in your design
  • Optimum operability (115): The incorporation of the concentrator (202) achieves a nominal operation of the wind turbine (201) with lower speed breezes than those required by a wind turbine without a concentrator (202). This causes a rapid activation of the power regulation mechanisms and, if necessary, the wind turbine stop mechanism (201).
  • the performance of the structure is related to the rotation frequency of the wind turbine (201).
  • the activation of the wind turbine mechanisms (201) can be anticipated ), regulating (1 19-120) the entry of wind flow to the concentrator (202), thus decreasing the internal circulation speed.
  • the stop (123) of the wind turbine (201) will happen in cases of high winds, where even if the mechanisms to regulate (121, 122, 124, 125) the wind speed of the wind turbine (201) are activated, the speed cannot be reduced of rotation of the wind turbine (201).
  • the last three objectives, structural stability (5), compatibility with installations of the architectural volume (6) and overall control of the system performance (7), are directly related to the integration in the architectural volume.
  • the benefits that respond to such precepts are the following
  • Devices for monitoring (130) the behavior of the assembly (201, 202).
  • the concentrator (202) comprises an upper disk
  • the lower disk (216) is the element of the concentrator (202) between the wind turbine (201) and the building volume.
  • the modeling (127) of the lower disk (216) has in It has to meet the basic levels in terms of the level of noise originated, transmission of efforts to the structure and compatibility with other types of service facilities.
  • a lower disk (216) has been modeled, which can comprise a double sandwich panel, with an insulating core based on rock wool or similar, and an aluminum, fiberglass or similar finish sheet, and an inner chamber.
  • the inclusion of an air chamber causes an elastic mass-spring-mass device that attenuates the transmission of noise to the adjacent rooms, improving said performance with the inclusion of an acoustic insulator type rock wool or similar.
  • the main function to take into account in the modeling (129) of the upper disk (301), is to serve as a surface for the support of the components of the regulator and closing device of the concentrator (202).
  • the structure of the upper disk (301) is similar to that of the lower disk (216), based on a double sandwich panel with intermediate chamber, with the purpose of inserting inside it the necessary devices and mechanisms for the correct functioning of the concentrator (202 ).
  • the inclusion of a surface as a cover of the concentrator (202) generates a useful space that can be used for installation of solar systems or collection and use of rainwater, for example, for domestic use.
  • the devices for monitoring (130) the behavior of the assembly (201, 202) are configured to measure an operating parameter of the assembly (201, 202) selected from: structural stability parameters (131); habitability parameters (132); generated noise parameters (133); potential performance parameters (134); and combinations thereof.
  • the architecture of the concentrator (202) has an impeller-like geometry or circumscribed crown crown on the vertical axis wind turbine (201) (210).
  • the concentrator (202) comprises a plurality of blades (215), which can be perpendicular to a lower disk (216) and an upper disk (301).
  • Figure 4A shows a section in plan of a wind microgeneration system for use electricity generation domestic, illustrating: a) a wind turbine (201) responsible for the transformation of wind kinetic energy into electrical energy;
  • a concentrator (202) responsible for the concentration, direction and injection of wind flow over the wind turbine (201).
  • the wind turbine (201) comprises its own regulation devices (214) of the generated power, a vertical axis (210) supported on a base platform (211), a clamping structure (212) and rotation blades defined by an aerodynamic section (213).
  • FIGS. 4A and 4B show an embodiment where the concentrator (202) comprises 13 blades (215), responsible for the concentration and injection of the wind flow to the rotor (212, 213) of the wind turbine (201), regardless of the direction of the circulating breezes
  • the incorporation of the concentrator (202) facilitates reaching the nominal power of the wind turbine (201) at lower speeds, resulting in a longer time in nominal operation.
  • the flow regulating devices facilitate that the architecture of the concentrator (202) can be adapted to the current velocity requirements.
  • a first aspect of the invention relates to a wind flow concentrator (202) comprising:
  • the blades (215) can be:
  • the concentrator (202) may comprise:
  • a closing element (216, 301) selected from a lower disk (216), an upper disk (301) and combinations thereof, where the vanes (215) and the closing element (216, 301) form a plurality of circulation sections to concentrate and inject wind flow into the wind turbine;
  • a lower disk (216) configured as a base for a vertical arrangement of the blades (215);
  • a lower disk (216) comprising a plurality of sound insulation panels (216A).

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Wind Motors (AREA)

Abstract

The invention relates to a wind flow concentrator (202) that has vanes (215) in the manner of a guide ring circumscribed about a rotor (212, 213) of a wind turbine (201) having a vertical shaft (210).

Description

CONCENTRADOR DE FLUJO EÓLICO Objeto de la invención  WIND FLOW CONCENTRATOR Object of the invention
La presente invención está referida al aprovechamiento de las brisas eólicas circulantes sobre la superficie terrestre para la generación de electricidad de uso doméstico e industrial.  The present invention relates to the use of circulating wind breezes on the earth's surface for the generation of electricity for domestic and industrial use.
Es objeto de la presente invención es formalizar el método para la caracterización de un concentrador de flujo eólico incorporada sobre un aerogenerador de eje vertical. Su propósito es suplir la baja densidad energética de las brisas circulantes sobre la superficie terrestre mediante su captación y concentración, consiguiendo un incremento significativo de la velocidad antes de ser inyectada de manera eficiente sobre la superficie de barrido de la turbina. El concentrador de flujo eólico está configurado para optimizar el aprovechamiento de las corrientes con independencia de la dirección de éstas. It is the object of the present invention to formalize the method for the characterization of a wind flow concentrator incorporated on a vertical axis wind turbine. Its purpose is to supply the low energy density of the circulating breezes on the earth's surface through its capture and concentration, achieving a significant increase in speed before being injected efficiently on the turbine's sweeping surface. The wind flow concentrator is configured to optimize the use of currents regardless of their direction.
Los contextos de aplicación de la invención son numerosos, tales como viviendas aisladas, edificaciones agropecuarias, instalaciones industriales, construcciones de servicio, auxiliares, de control técnico, mantenimiento, etc. así cualquier volumen arquitectónico ubicado en un entorno similar y que precise electricidad para su correcta operatividad. The contexts of application of the invention are numerous, such as isolated dwellings, agricultural buildings, industrial facilities, service constructions, auxiliaries, technical control, maintenance, etc. thus any architectural volume located in a similar environment and that requires electricity for its correct operation.
Estado de la técnica anterior Prior art
En los últimos años, los sistemas que utilizan como fuente recursos renovables se han posicionado como una interesante alternativa para la producción de energía. In recent years, systems that use renewable resources as a source have positioned themselves as an interesting alternative for energy production.
Entre las fuentes disponibles, la energía eólica viene configurándose como una de las fuentes de energía renovable con mayor crecimiento en los últimos años. Among the available sources, wind energy has been configured as one of the fastest growing renewable energy sources in recent years.
El sistema de concentración eólica posee un gran potencial gracias a la mejora que se produce en el rendimiento de la turbina sobre la cual se incorpora. Este potencial se fundamenta en la función cúbica que rige en la velocidad eólica en relación a la hora de determinar de la potencia eólica disponible. The wind concentration system has great potential thanks to the improvement that occurs in the performance of the turbine on which it is incorporated. This potential is based on the cubic function that governs the wind speed in relation to when determining the available wind power.
1one
P = PSv (a) P = P Sv ( a )
Siendo, P: Potencia eólica disponible Being, P: Available wind power
p: Densidad  p: Density
S: Superficie de captación de la turbina  S: Turbine pickup surface
v: Velocidad de las brisas eólicas  v: Wind breeze speed
Los sistemas de microgeneración energética proporcionan accesibilidad energética a regiones carentes de este servicio básico, mientras en territorios con redes eléctricas consolidadas, este tipo de sistemas son útiles a la hora de autoabastecer a edificios de toda índole. La incorporación del sistema de concentración eólica aumenta el rendimiento potencial y el tiempo de funcionamiento en comparación al ejercicio libre de las pequeñas turbinas eólicas. Este resultado amplía el alcance de implantación geográfica de estos sistemas de producción energética. Energy microgeneration systems provide energy accessibility to regions lacking this basic service, while in territories with consolidated electricity networks, these types of systems are useful when it comes to self-supplying buildings of all kinds. The incorporation of the wind concentration system increases the potential performance and operating time compared to the free exercise of small wind turbines. This result expands the scope of geographic implementation of these energy production systems.
El estado de la técnica más cercano lo conforma diseños de concentradores para aerogeneradores de eje verticales con varios tramos de circulación descritos en US 1595578 A y WO/2013/038215. The closest state of the art is made up of designs of concentrators for vertical axis wind turbines with several sections of circulation described in US 1595578 A and WO / 2013/038215.
US 1595578 se refiere a un dispositivo concentrador de viento de carcasa anular que tiene unos conductos radiales con paredes laterales, superior e inferior convergentes hacia el eje central de la carcasa. En el centro de la carcasa está el rotor provisto de álabes. US 1595578 refers to an annular housing wind concentrating device having radial ducts with side, upper and lower walls converging towards the central axis of the housing. In the center of the housing is the rotor provided with blades.
WO/2013/038215 se refiere a una central de energía eólica de doble turbina dispuesta en un eje vertical, que tiene una carcasa de la máquina construida sobre una base sólida, una estructura de tejado adecuada para su altura, un rotor interno y un rotor externo compuestos de una serie de álabes. La central de energía eólica se caracteriza porque el rotor externo, que gira en una dirección opuesta a la del rotor interno, está dispuesto en un eje vertical que comparte con el rotor interno. Los extremos del eje inferior de los dos rotores están conectados a primeras y segundas máquinas eléctricas de producción de energía eléctrica, ya sea directamente, o con la ayuda de primeros y segundos dispositivos de transmisión. WO / 2013/038215 refers to a double turbine wind power plant arranged on a vertical axis, which has a machine housing built on a solid base, a roof structure suitable for its height, an internal rotor and a rotor external composed of a series of blades. The wind power plant is characterized in that the external rotor, which rotates in a direction opposite to that of the internal rotor, is arranged in a vertical axis that shares with the internal rotor. The ends of the lower shaft of the two rotors are connected to first and second electric machines producing electricity, either directly, or with the help of first and second transmission devices.
Descripción de la invención Description of the invention
El método de caracterización de la invención permite materializar un concentrador de flujo eólico a partir de determinadas características del aerogenerador de eje vertical, las condiciones estructurales y los requisitos energéticos del volumen arquitectónico sobre el cual se realiza la implantación. The characterization method of the invention allows a wind flow concentrator to be realized from certain characteristics of the vertical axis wind turbine, the structural conditions and the energy requirements of the architectural volume on which the implementation is carried out.
El resultado del método es la generación de la geometría del concentrador de flujo eólico y de los álabes que conforman dicho concentrador. Las ventajas del método se traducen en optimizar el proceso de diseño y fabricación del concentrador, al disminuir el tiempo de fabricación de prototipos, modelos y ensayos con diferentes modelos hasta conseguir llegar a la estructura de concentrador satisfactoria. Como puede verse, la aplicación del método tiene una aplicación industrial inmediata. The result of the method is the generation of the geometry of the wind flow concentrator and the blades that make up said concentrator. The advantages of the method translate into optimizing the design and manufacturing process of the concentrator, by reducing the manufacturing time of prototypes, models and tests with different models until reaching the satisfactory concentrator structure. As can be seen, the application of the method has an immediate industrial application.
El resultado es un concentrador de flujo eólico caracterizada por una arquitectura capaz de sectorizar la entrada de viento en diferentes tramos inyectando el flujo eólico estratégicamente. La incorporación del concentrador de flujo eólico sobre el rotor aumenta la superficie de captación eólica (S), facilitando su entrada a través de las diferentes aberturas y llevando a cabo su concentración según avanza por los tramos de circulación. El resultado de la inyección sectorizada es el desarrollo de una circulación interior vorticial que incide permanentemente en el rango de sustentación característico del perfil aerodinámico que define la geometría de la pala de rotación. Ello provoca que se alcance un funcionamiento nominal de la turbina con brisas de velocidades reducidas. The result is a wind flow concentrator characterized by an architecture capable of sectorizing the entry of wind in different sections by injecting the wind flow strategically. The incorporation of the wind flow concentrator on the rotor increases the wind uptake surface (S), facilitating its entry through the different openings and carrying out its concentration as it progresses through the circulation sections. The result of the sectorized injection is the development of a vortex interior circulation that permanently affects the characteristic lift range of the aerodynamic profile that defines the geometry of the rotation blade. This causes the nominal operation of the turbine to be achieved with low speed breezes.
En presencia de velocidades de relativa importancia, el concentrador de flujo eólico adapta su arquitectura con el fin de regular la entrada de flujo, retrasando la activación de los dispositivos reguladores propios de la turbina eólica. En presencia de vientos importantes, el concentrador de flujo eólico dispone de los mecanismos necesarios para proceder al cierre de las aberturas procediendo a la parada del rotor. In the presence of speeds of relative importance, the wind flow concentrator adapts its architecture in order to regulate the flow input, delaying the activation of the wind turbine's own regulatory devices. In the presence of significant winds, the wind flow concentrator has the necessary mechanisms to proceed to the closing of the openings proceeding to stop the rotor.
A lo largo de la descripción y las reivindicaciones la palabra "comprende" y sus variantes no pretenden excluir otras características técnicas, componentes o pasos.Throughout the description and claims the word "comprises" and its variants are not intended to exclude other technical characteristics, components or steps.
Los siguientes ejemplos y dibujos se proporcionan a modo de ilustración, y no se pretende que sean limitativos de la presente invención. Además, la presente invención cubre todas las posibles combinaciones de realizaciones particulares y preferidas aquí indicadas. Breve descripción de las figuras The following examples and drawings are provided by way of illustration, and are not intended to be limiting of the present invention. In addition, the present invention covers all possible combinations of particular and preferred embodiments indicated herein. Brief description of the figures
Figura 1A: muestra un perfil aerodinámico con sustentación nula, donde el ángulo de ataque tiene valor nulo (β0). Figure 1A: shows an aerodynamic profile with null lift, where the angle of attack has a null value (β 0 ).
Figura 1 B: muestra un perfil aerodinámico con máxima sustentación, donde el ángulo de ataque tiene valor máximo ^max). Figure 1 B: shows an aerodynamic profile with maximum lift, where the angle of attack has maximum value ^ max ).
Figura 1C: muestra un perfil aerodinámico donde se ha desprendido la capa límite y se ha disminuido la fuerza de sustentación generada cuando el valor del ángulo de ataque supera el valor de máxima sustentación ^max). Figure 1C: shows an aerodynamic profile where the boundary layer has been detached and the lift force generated when the value of the angle of attack exceeds the maximum lift value ^ max ).
Figuras 2A, 2B, 2C: muestran diferentes secciones longitudinales de tramos tipo donde pueden verse tres valores del parámetro ε que define el rango angular del tramo tipo a partir de la distancia entre secciones de inyección y captación.  Figures 2A, 2B, 2C: show different longitudinal sections of type sections where you can see three values of the parameter ε that defines the angular range of the type section from the distance between injection and collection sections.
Figura 3: Flujograma descriptivo del método de caracterización del concentrador de flujo eólico. Figure 3: Descriptive flowchart of the wind flow concentrator characterization method.
Figura 4A: Sección en planta de la arquitectura interior del concentrador de flujo eólico con un aerogenerador de eje vertical según la línea A-A' de la figura 5.  Figure 4A: Plan section of the interior architecture of the wind flow concentrator with a vertical axis wind turbine along line A-A 'of Figure 5.
Figura 4B: Figura 4A representando la dirección de las brisas eólicas circundantes y la canalización de dichas brisas por el concentrador.  Figure 4B: Figure 4A depicting the direction of the surrounding wind breezes and the channeling of said breezes through the concentrator.
Figura 5: Alzado del concentrador de flujo eólico. Descripción detallada de la invención Figure 5: Elevation of the wind flow concentrator. Detailed description of the invention
En la figura 1 se detalla el método de cálculo de un concentrador (202) de flujo eólico para aerogenerador (201) de eje vertical. La estructura del concentrador (202) de flujo eólico viene dada por la resolución de una pluralidad de objetivos fundamentales, dotando al conjunto (201 , 202) que comprende un concentrador (202) y un aerogenerador (201), de unas prestaciones particulares en relación a su arquitectura y operatividad. Estos objetivos son los siguientes:  The method of calculating a wind-flow concentrator (202) for vertical axis wind turbine (201) is detailed in Figure 1. The structure of the wind flow concentrator (202) is given by the resolution of a plurality of fundamental objectives, providing the assembly (201, 202) comprising a concentrator (202) and a wind turbine (201), with particular benefits in relation to to its architecture and operability. These objectives are as follows:
- Operatividad ante cualquier dirección eólica adoptada (1);  - Operation before any wind direction adopted (1);
- Incremento del rendimiento (2) del aerogenerador (201) de eje vertical;  - Increase in efficiency (2) of the vertical axis wind turbine (201);
- Minimizar el desarrollo de efectos turbulentos (3) alrededor del conjunto (201 , 202);  - Minimize the development of turbulent effects (3) around the whole (201, 202);
- Capacidad resolutiva ante la presencia de fuertes vientos (4);  - Resolution capacity in the presence of strong winds (4);
- Estabilidad estructural (5);  - Structural stability (5);
- Compatibilidad ante instalaciones propias del volumen arquitectónico donde el conjunto (201 , 202) puede ser instalado (6);  - Compatibility before installations of the architectural volume where the set (201, 202) can be installed (6);
- Control global del rendimiento (7) del conjunto (201 , 202). Las siguientes prestaciones son las encargadas de dar respuesta a tales objetos, modelando la arquitectura del concentrador (202) a partir de la resolución de distintas acciones específicas incluidas en el flujograma ilustrado en la figura"! : - Global performance control (7) of the set (201, 202). The following features are responsible for responding to such objects, modeling the architecture of the hub (202) from the resolution of different specific actions included in the flowchart illustrated in the figure "!:
Diseño estructural independiente frente a la dirección eólica (101): La naturaleza turbulenta de las brisas sobre la superficie terrestre deriva en la ausencia de un sentido predominante. Ante el objeto de su captación y aprovechamiento energético, se ha previsto una geometría del concentrador (202) que otorgue idéntica relevancia a cualquier sentido adoptado por la corriente. Este criterio se traduce en una estructura perimetral circunscrita (102) sobre el aerogenerador (201), consiguiendo un diseño válido frente al cualquier curso eólico adoptado. Independent structural design against the wind direction (101): The turbulent nature of the breezes on the earth's surface derives in the absence of a predominant sense. Given the purpose of its capture and energy use, a geometry of the concentrator (202) is provided that gives identical relevance to any direction adopted by the current. This criterion is translated into a circumscribed perimeter structure (102) on the wind turbine (201), achieving a valid design against any wind course adopted.
- Aceleración de la circulación eólica (103): El modelado de la arquitectura interior se fundamenta en la ecuación de continuidad para fluidos ideales. La expresión relaciona la velocidad de un flujo determinado con la sección de paso en su circulación a través de un tramo de paredes impermeables. En el caso de que la sección de entrada tenga mayor superficie en comparación a la sección de salida, el tramo converge, reduciéndose paulatinamente la sección de paso, lo que deriva en un incremento de su velocidad, en un régimen subsónico. Teniendo en cuenta dicha ecuación, se modela una estructura compuesta por un número determinado de tramos convergentes (104), en los cuales la corriente eólica avance incrementando progresivamente su velocidad hasta su inyección en el aerogenerador (201).
Figure imgf000006_0001
- Acceleration of wind circulation (103): The interior architecture modeling is based on the continuity equation for ideal fluids. The expression relates the speed of a given flow to the passage section in its circulation through a section of impermeable walls. In the case that the entrance section has a greater surface compared to the exit section, the section converges, gradually reducing the passage section, which results in an increase in its speed, in a subsonic regime. Taking this equation into account, a structure composed of a certain number of convergent sections (104) is modeled, in which the wind current progressively increases its speed until its injection into the wind turbine (201).
Figure imgf000006_0001
Inyección eficiente (105) sobre las palas del aerogenerador (201): La incorporación del concentrador (202) sobre el aerogenerador (201) produce dos comportamientos diferenciados en relación al curso del flujo: el primero está determinado por el paso íntegro del flujo a través del concentrador (202), mientras que el segundo abarca desde la inyección del flujo hasta su incidencia en las palas de rotación del aerogenerador (201). o En el primer caso, se considera un diseño eficiente aquel que minimice la formación de capa límite, facilitando un avance lo más uniforme posible hacia el aerogenerador (201). Efficient injection (105) on the blades of the wind turbine (201): The incorporation of the concentrator (202) on the wind turbine (201) produces two differentiated behaviors in relation to the flow course: the first is determined by the complete passage of the flow through of the concentrator (202), while the second covers from the injection of the flow to its incidence in the wind turbine rotation blades (201). o In the first case, an efficient design is considered to be one that minimizes the formation of the boundary layer, facilitating as uniform an advance as possible towards the wind turbine (201).
o En el segundo caso, se considera un diseño eficiente aquel que inyecta el flujo dentro del rango de mayor sustentación característico de la pala, minimizando la formación de posibles efectos turbulentos y desprendimientos de capa límite. Teniendo en cuenta estas consideraciones, se busca una arquitectura interior homogénea compuesta de un número determinado tramos convergentes encargados de la captación del flujo eólico, concentración y múltiple inyección dentro de los términos del rango de sustentación. La geometría de estos tramos es idéntica en el propósito de materializar una arquitectura homogénea e independiente del curso de las brisas. o In the second case, an efficient design is considered to be the one that injects the flow into the range of the most characteristic lift of the blade, minimizing the formation of possible turbulent effects and boundary layer detachments. Taking these considerations into account, a homogeneous interior architecture consisting of a certain number of convergent sections responsible for the capture of wind flow, concentration and multiple injection is sought within the terms of the lift range. The geometry of these sections is identical in order to materialize a homogeneous architecture and independent of the course of the breezes.
El método incluye los siguientes pasos para el modelado interior: o Determinación del rango de máxima sustentación (106): La determinación y posterior reproducción de este rango a lo largo de la rotación permite que se puedan modelar tramos tipo convergentes que inyecten flujo eólico acelerado específicamente en dicha región. El ángulo de ataque ( β ) mide la incidencia del flujo eólico en relación a la cuerda del perfil aerodinámico. Este rango de máxima sustentación comprende desde el punto correspondiente a un valor nulo (β0), ilustrado en la figura 1A, hasta el punto en el cual se produce la máxima sustentación ^max) ilustrado en la figura 1 B. Este último valor está asociado al instante anterior del desprendimiento de la capa límite y la consiguiente disminución de la fuerza generada, ilustrado en la figura 1 C. o Cálculo (107) de la sección de inyección (S¡) de flujo eólico: The method includes the following steps for internal modeling: o Determination of the maximum lift range (106): The determination and subsequent reproduction of this range along the rotation allows convergent type sections that inject specifically accelerated wind flow to be modeled. in that region. The angle of attack (β) measures the incidence of wind flow in relation to the aerodynamic profile rope. This maximum lift range comprises from the point corresponding to a null value (β 0 ), illustrated in Figure 1A, to the point at which the maximum lift occurs ^ max ) illustrated in Figure 1 B. This last value is associated to the previous instant of the detachment of the boundary layer and the consequent decrease of the generated force, illustrated in Figure 1 C. o Calculation (107) of the wind flow injection section (S¡):
Inicialmente se define una dirección eólica para el dimensionado del tramo tipo, objeto de modelado y posterior reproducción en la arquitectura del concentrador (202). El parámetro NY define el número de tramos en los que se divide el concentrador. El ángulo γ determina el rango unitario resultante mediante la siguiente expresión,
Figure imgf000008_0001
Initially a wind direction is defined for the dimensioning of the type section, object of modeling and subsequent reproduction in the architecture of the concentrator (202). Parameter N Y defines the number of sections in which the concentrator is divided. The angle γ determines the resulting unit range by the following expression,
Figure imgf000008_0001
Esta porción comprende el espacio suficiente para que la inyección de flujo eólico sea completa en el rango de sustentación definido. Es decir, el ángulo γ abarca el espacio definido desde el perfil aerodinámico en posición β0 hasta alcanzar la posición max, incluyendo el espacio necesario para hacer efectiva la inyección en la totalidad del rango comprendido. Esta acción se alcanza mediante la iteración del valor de la cuerda del perfil, donde el perfil es la sección aerodinámica (213). La sección de inyección del tramo tipo viene dada por la sección recta a la porción definida y limitada por el ángulo máximo de ataque en relación al perfil aerodinámico en posición β™ This portion comprises enough space for the wind flow injection to be complete in the defined lift range. That is, the angle γ covers the space defined from the aerodynamic profile in position β 0 until reaching the max position, including the space necessary to make the injection effective in the entire range included. This action is achieved by iterating the value of the profile string, where the profile is the aerodynamic section (213). The injection section of the type section is given by the straight section to the defined portion and limited by the maximum angle of attack in relation to the aerodynamic profile in position β ™
Cálculo (108) de la sección de captación (Sc) del tramo tipo: La sección de captación se resuelve mediante la aplicación de la ecuación de continuidad, de forma que los parámetros quedan definidos de la siguiente manera:
Figure imgf000008_0002
Calculation (108) of the collection section (S c ) of the type segment: The collection section is solved by applying the continuity equation, so that the parameters are defined as follows:
Figure imgf000008_0002
Siendo,  Being,
vt: Velocidad promedio de las brisas eólicas v t : Average speed of wind breezes
pt: Densidad del aire p t : Air density
Sc: Superficie de captación S c : Collection area
vn: Velocidad del viento en funcionamiento nominal de la turbina v n : Wind speed in nominal operation of the turbine
p2 : Densidad del aire p 2 : Air density
5¿ : Superficie de inyección 5 ¿ : Injection surface
Modelado (109) de tramos tipo con diferentes gradientes de secciones en función a su captación de flujo eólico: El parámetro ε define el rango angular del tramo tipo a partir de la distancia entre secciones de inyección (S¡) y captación (Sc). Con el propósito de conocer la geometría más efectiva se proyectan distintos gradientes de secciones en función a dicho parámetro ε para su posterior análisis. Modeling (109) of type sections with different section gradients according to their wind flow uptake: The parameter ε defines the angular range of the type section from the distance between sections of injection (S¡) and uptake (S c ). With the purpose of knowing the most effective geometry, different section gradients are projected according to said parameter ε for later analysis.
Modelado (1 10) de las paredes laterales para cada tramo tipo: Con la ayuda de un mallado rectangular se discretiza el espacio de trabajo para poder definir las posibles soluciones. Las distintas soluciones se componen de una concatenación de segmentos con origen en uno de los extremos de la sección de captación (Sc), bien sea el punto "x" o "y", con final en el punto "χ'" o "y"' respectivamente, pertenecientes a la sección de inyección (S¡). Con el propósito de tener una estimación de la capa límite a desarrollar para cada posible solución, se realiza el cálculo del espesor de desplazamiento (5*) derivado de la expresión de Falkner-Skan, mediante la siguiente expresión: Modeling (1 10) of the side walls for each type section: With the help of a rectangular mesh the work space is discretized to define the possible solutions. The different solutions are made up of a concatenation of segments originating at one of the ends of the collection section (S c ), either point "x" or "y", ending at point "χ '" or " and "'respectively, belonging to the injection section (S¡). In order to have an estimate of the boundary layer to be developed for each possible solution, the calculation of the displacement thickness (5 * ) derived from the Falkner-Skan expression is performed, using the following expression:
Figure imgf000009_0001
Figure imgf000009_0001
Siendo,  Being,
x: Longitud de la superficie material x: Material surface length
a: Ángulo de inclinación de la superficie con respecto a la horizontal Rex: Número de Reynolds
Figure imgf000009_0002
a: Tilt angle of the surface with respect to the horizontal Re x : Reynolds number
Figure imgf000009_0002
Siendo,  Being,
y: coordenada  y: coordinate
ue(X Velocidad de deslizamiento eu ( X sliding speed
v: Viscosidad cinemática v: Kinematic viscosity
Figure imgf000009_0003
la ecuación diferencial de Falkner-Skan,
Figure imgf000009_0004
Figure imgf000009_0003
the differential equation of Falkner-Skan,
Figure imgf000009_0004
Siendo,  Being,
/(O) = Γ(0) = 0 , ' (∞) = ! La expresión de Falkner- Skan tiene como origen la ecuación de Blasius que permite conocer el desarrollo de la capa límite generada en superficies materiales planas. En el caso de la expresión de Falkner-Skan, es posible precisar dicho fenómeno en superficies con cierto grado de inclinación con respecto a la dirección de las brisas predominantes. / (O) = Γ (0) = 0, '(∞) =! The expression of Falkner-Skan originates from the Blasius equation that allows to know the development of the boundary layer generated on flat material surfaces. In the case of the expression of Falkner-Skan, it is possible to specify this phenomenon on surfaces with a certain degree of inclination with respect to the direction of the predominant breezes.
La aplicación del algoritmo de Dijkstra sobre las posibles soluciones define aquella concatenación que menor espesor global genera, y sobre la cual se puede definir su función curva. El resultado son cuatro posibilidades en función de la curvatura de sus curvas.  The application of the Dijkstra algorithm on the possible solutions defines the concatenation that generates the lowest overall thickness, and on which its curved function can be defined. The result is four possibilities depending on the curvature of its curves.
Análisis (11 1) del comportamiento de flujo circulante a través de diferentes tramos tipo: Mediante herramienta informática de simulación numérica se procede a la evaluación de las secciones modeladas anteriormente (109) y sus curvas correspondientes (1 10), resolviendo aquella configuración que ofrezca mejores prestaciones en relación a la velocidad de inyección alcanzada y a la posibilidad de ensamblaje con la cara adyacente. Analysis (11 1) of the behavior of circulating flow through different type sections: By means of a numerical simulation computer tool, the evaluation of the sections previously modeled (109) and their corresponding curves (1 10) is carried out, solving that configuration that offers better performance in relation to the injection speed achieved and the possibility of assembly with the adjacent face.
En primer lugar, en la etapa de modelado (109) de tramos tipo con diferentes gradientes de secciones, se modelan diferentes tramos tipo en función a ε, cumpliendo que todos los tramos tipo tengan la misma superficie de captación (Sc) y la misma superficie de inyección (S¡). Posteriormente en la etapa de modelado (110) de las paredes laterales (χ-χ', y-y'), se realiza el modelado de las caras laterales que proceden al cierre del tramo tipo, identificando qué curvas son las más idóneas según su concavidad o convexidad. De ahí, las cuatro posibles soluciones en particular para cada tramo modelado en la etapa de modelado (109) de tramos tipo con diferentes gradientes de secciones: dos curvas convexas, una curva convexa-una curva cóncava, una curva cóncava-una curva convexa, dos curvas cóncavas. En la etapa (11 1) se procede a evaluar qué configuración ofrece mejores prestaciones. First, in the modeling stage (109) of type sections with different section gradients, different type sections are modeled according to ε, complying that all type sections have the same catchment surface (S c ) and the same injection surface (S¡). Later in the modeling stage (110) of the side walls (χ-χ ', y-y'), the modeling of the lateral faces that proceed to the closure of the type section is carried out, identifying which curves are the most suitable according to their concavity or convexity Hence, the four possible solutions in particular for each section modeled in the modeling stage (109) of type sections with different section gradients: two convex curves, a convex curve-a concave curve, a concave curve-a convex curve, Two concave curves. In step (11 1) we proceed to evaluate which configuration offers better performance.
Una vez realizado el cálculo del tramo tipo, se procede a extrapolarlo a lo largo de la circunferencia del aerogenerador (201), completando la estructura homogénea como se puede apreciar en la figura 4A. Los álabes (215) son el resultado de "unir" una cara lateral (χ-χ', y-y') de un tramo, con la cara lateral (y-y', x-x') adyacente u opuesta del tramo contiguo. Es decir, los tramos tienen dos paredes laterales (χ-χ', y-y'). o Ensamblaje (1 12) del álabe (215) resultante: Se define como álabe (215) la pieza resultado del ensamblaje de dos caras inmediatamente opuestas o adyacentes partícipes en dos tramos contiguos de circulación eólica. Como se ha señalado, el ensamblaje del álabe se realiza con una pared (χ-χ', y-y') de un tramo y con la cara lateral (y-y', x-x') adyacente u opuesta del tramo contiguo. El álabe (215) está ejecutado respetando las tolerancias prestablecidas en lo referido al espesor mínimo de la pieza, y al espacio de paso entre la rotación del rotor (212, 213) del aerogenerador (201) y la superficie de dichos álabes (215). La unión del extremo exterior del álabe (215) se realiza mediante un torneado curvo para favorecer la entrada de flujo eólico con independencia de la dirección, mientras que la unión del extremo interior se ha modelado con una geometría aerodinámica favoreciendo el encuentro entre el flujo inyectado a través del concentrador (202) y el que circula interiormente. Modelado (1 13) de la arquitectura del concentrador (202) que atraviesa el flujo eólico mediante la reproducción del tramo tipo: Definido el álabe (215) característico del concentrador (202), se procede a su reproducción perimetral para completar la arquitectura de mayor eficiencia en relación al número de tramos de circulación. o Simulación (1 14) numérica del prototipo modelado: Mediante simulación (1 14) numérica, se procede a la evaluación del prototipo base para llevar a cabo su análisis en relación a las prestaciones alcanzadas, así como la identificación de posibles mejoras específicas a realizar en su diseño. Once the calculation of the type section has been carried out, it is extrapolated along the circumference of the wind turbine (201), completing the homogeneous structure as can be seen in Figure 4A. The blades (215) are the result of "joining" a side face (χ-χ ', y-y') of a section, with the side face (y-y ', x-x') adjacent or opposite the section adjacent. That is, the sections have two side walls (χ-χ ', y-y'). o Assembly (1 12) of the resulting blade (215): The blade resulting from the assembly of two immediately opposite or adjacent faces participating in two adjacent sections of wind circulation is defined as a blade (215). As noted, the blade assembly is carried out with a wall (χ-χ ', y-y') of a section and with the side face (y-y ', x-x') adjacent or opposite of the adjacent section . The blade (215) is executed respecting the established tolerances in terms of the minimum thickness of the piece, and the space between the rotation of the rotor (212, 213) of the wind turbine (201) and the surface of said blades (215) . The union of the outer end of the blade (215) is carried out by means of a curved turning to favor the wind flow entrance independently of the direction, while the union of the inner end has been modeled with an aerodynamic geometry favoring the encounter between the injected flow through the concentrator (202) and the one that circulates internally. Modeling (1 13) of the architecture of the concentrator (202) that crosses the wind flow through the reproduction of the type section: Defined the blade (215) characteristic of the concentrator (202), it proceeds to its perimeter reproduction to complete the architecture of greater efficiency in relation to the number of traffic sections. o Numerical simulation (1 14) of the modeled prototype: Through numerical simulation (1 14), the evaluation of the base prototype is carried out to carry out its analysis in relation to the benefits achieved, as well as the identification of possible specific improvements to be made in your design
Óptima operatividad (115): La incorporación del concentrador (202) logra un funcionamiento nominal del aerogenerador (201) con brisas de menor velocidad que las requeridas por un aerogenerador sin concentrador (202). Ello causa una pronta activación de los mecanismos de regulación de potencia y llegados al caso, el mecanismo de parada del aerogenerador (201). El rendimiento de la estructura está relacionado con la frecuencia de rotación del aerogenerador (201). Mediante el preestablecimiento (1 17) de una serie de hitos de control y la monitorización (118) tanto de la velocidad de las brisas circulantes, como del comportamiento del aerogenerador (201), se puede anticipar la activación de los mecanismos del aerogenerador (201), regulando (1 19-120) la entrada de flujo eólico al concentrador (202), disminuyendo así la velocidad de circulación interior. La parada (123) del aerogenerador (201) sucederá en casos de fuertes vientos, donde aun estando activados los mecanismos para regular (121 , 122, 124, 125) la velocidad de giro del aerogenerador (201), no se consiga disminuir la velocidad de rotación del aerogenerador (201). Los últimos tres objetivos, estabilidad estructural (5), compatibilidad ante instalaciones propias del volumen arquitectónico (6) y control global del rendimiento del sistema (7), tienen relación directa con la integración en el volumen arquitectónico. Las prestaciones que dan respuesta a tales preceptos son las siguientes Optimum operability (115): The incorporation of the concentrator (202) achieves a nominal operation of the wind turbine (201) with lower speed breezes than those required by a wind turbine without a concentrator (202). This causes a rapid activation of the power regulation mechanisms and, if necessary, the wind turbine stop mechanism (201). The performance of the structure is related to the rotation frequency of the wind turbine (201). By presetting (1 17) a series of control milestones and monitoring (118) both the speed of the circulating breezes, and the wind turbine behavior (201), the activation of the wind turbine mechanisms (201) can be anticipated ), regulating (1 19-120) the entry of wind flow to the concentrator (202), thus decreasing the internal circulation speed. The stop (123) of the wind turbine (201) will happen in cases of high winds, where even if the mechanisms to regulate (121, 122, 124, 125) the wind speed of the wind turbine (201) are activated, the speed cannot be reduced of rotation of the wind turbine (201). The last three objectives, structural stability (5), compatibility with installations of the architectural volume (6) and overall control of the system performance (7), are directly related to the integration in the architectural volume. The benefits that respond to such precepts are the following
Configuración (126) material a base de materiales ligeros de elevada resistencia estructural y exposición al exterior. Configuration (126) material based on lightweight materials with high structural resistance and outdoor exposure.
Espacios (128) habilitados de uso técnico.  Spaces (128) enabled for technical use.
Dispositivos para monitorizar (130) el comportamiento del conjunto (201 , 202).  Devices for monitoring (130) the behavior of the assembly (201, 202).
La posibilidad de integración entre estos elementos está relacionada con eliminar posibles interferencias y molestias ocasionadas por la acción mecánica sobre la estructura arquitectónica consolidada y las actividades desarrolladas en el interior. Para resolver tales prestaciones, el concentrador (202) comprende un disco superiorThe possibility of integration between these elements is related to eliminating possible interference and inconvenience caused by the mechanical action on the consolidated architectural structure and the activities carried out inside. To resolve such benefits, the concentrator (202) comprises an upper disk
(301) y un disco inferior (216), conformando los álabes (215), el disco superior y el disco inferior (216) los tramos de paso de flujo eólico. (301) and a lower disk (216), the blades (215), the upper disk and the lower disk (216) forming the wind flow passage sections.
El disco inferior (216) es el elemento del concentrador (202) entre el aerogenerador (201) y el volumen edificatorio. El modelado (127) del disco inferior (216) tiene en cuenta satisfacer los niveles básicos en lo referido al nivel de ruido originado, transmisión de esfuerzos a la estructura y compatibilidad con otro tipo de instalaciones de servicio. Para ello se ha modelado un disco inferior (216) que puede comprender un doble panel sándwich, con un núcleo aislante a base de lana de roca o similar, y lámina de acabado de aluminio, fibra de vidrio o similar, y cámara interior. La inclusión de una cámara de aire origina un dispositivo elástico masa-muelle-masa que atenúa la transmisión de ruido a las estancias colindantes, mejorándose dichas prestaciones con la inclusión de una aislante acústico tipo lana de roca o similar. La función principal a tener en cuenta en el modelado (129) del disco superior (301), se concreta en servir de superficie para el apoyo de los componentes del dispositivo de regulación y cierre del concentrador (202). La estructura del disco superior (301) es similar a la del disco inferior (216), a base de doble panel sándwich con cámara intermedia, con el propósito de insertar en su interior los dispositivos y mecanismos necesarios para el correcto funcionamiento del concentrador (202). La inclusión de una superficie a modo de cubierta del concentrador (202) genera un espacio útil que puede ser aprovechado para instalación de sistemas solares o de recogida y aprovechamiento de aguas pluviales, por ejemplo, para su uso doméstico. Los dispositivos para monitorizar (130) el comportamiento del conjunto (201 , 202) están configurados para medir un parámetro de funcionamiento del conjunto (201 , 202) seleccionado entre: parámetros de estabilidad estructural (131); parámetros de habitabilidad (132); parámetros del ruido generado (133); parámetros de rendimiento potencial (134); y combinaciones de los mismos. The lower disk (216) is the element of the concentrator (202) between the wind turbine (201) and the building volume. The modeling (127) of the lower disk (216) has in It has to meet the basic levels in terms of the level of noise originated, transmission of efforts to the structure and compatibility with other types of service facilities. For this, a lower disk (216) has been modeled, which can comprise a double sandwich panel, with an insulating core based on rock wool or similar, and an aluminum, fiberglass or similar finish sheet, and an inner chamber. The inclusion of an air chamber causes an elastic mass-spring-mass device that attenuates the transmission of noise to the adjacent rooms, improving said performance with the inclusion of an acoustic insulator type rock wool or similar. The main function to take into account in the modeling (129) of the upper disk (301), is to serve as a surface for the support of the components of the regulator and closing device of the concentrator (202). The structure of the upper disk (301) is similar to that of the lower disk (216), based on a double sandwich panel with intermediate chamber, with the purpose of inserting inside it the necessary devices and mechanisms for the correct functioning of the concentrator (202 ). The inclusion of a surface as a cover of the concentrator (202) generates a useful space that can be used for installation of solar systems or collection and use of rainwater, for example, for domestic use. The devices for monitoring (130) the behavior of the assembly (201, 202) are configured to measure an operating parameter of the assembly (201, 202) selected from: structural stability parameters (131); habitability parameters (132); generated noise parameters (133); potential performance parameters (134); and combinations thereof.
Estos dispositivos miden los parámetros de funcionamiento del conjunto (201 , 202); si están dentro de los rangos aceptables, el concentrador (202) calculado es válido, si no, se comienza de nuevo el proceso de cálculo. En la realización ilustrada en las figuras, la arquitectura del concentrador (202) tiene una geometría a modo de rodete o corona directriz circunscrita sobre el aerogenerador (201) de eje vertical (210). El concentrador (202) comprende una pluralidad de álabes (215), que pueden ser perpendiculares a un disco inferior (216) y a un disco superior (301). La figura 4A muestra una sección en planta de un sistema de microgeneración eólica para generación de electricidad de uso doméstico, ilustrando: a) un aerogenerador (201) encargado de la transformación de energía cinética eólica en energía eléctrica; These devices measure the operating parameters of the assembly (201, 202); if they are within the acceptable ranges, the calculated concentrator (202) is valid, if not, the calculation process is started again. In the embodiment illustrated in the figures, the architecture of the concentrator (202) has an impeller-like geometry or circumscribed crown crown on the vertical axis wind turbine (201) (210). The concentrator (202) comprises a plurality of blades (215), which can be perpendicular to a lower disk (216) and an upper disk (301). Figure 4A shows a section in plan of a wind microgeneration system for use electricity generation domestic, illustrating: a) a wind turbine (201) responsible for the transformation of wind kinetic energy into electrical energy;
b) un concentrador (202) encargado de la concentración, dirección e inyección del flujo eólico sobre el aerogenerador (201). b) a concentrator (202) responsible for the concentration, direction and injection of wind flow over the wind turbine (201).
El aerogenerador (201) comprende dispositivos propios de regulación (214) de la potencia generada, un eje vertical (210) sustentado sobre una plataforma base (211), una estructura de sujeción (212) y unas palas de rotación definidas mediante una sección aerodinámica (213). The wind turbine (201) comprises its own regulation devices (214) of the generated power, a vertical axis (210) supported on a base platform (211), a clamping structure (212) and rotation blades defined by an aerodynamic section (213).
Las figuras 4A y 4B muestran una realización donde el concentrador (202) comprende 13 álabes (215), encargados de la concentración e inyección del flujo eólico al rotor (212, 213) del aerogenerador (201), con independencia de la dirección de las brisas circulantes. Figures 4A and 4B show an embodiment where the concentrator (202) comprises 13 blades (215), responsible for the concentration and injection of the wind flow to the rotor (212, 213) of the wind turbine (201), regardless of the direction of the circulating breezes
Algunas de las ventajas del concentrador (202) de la invención pueden resumirse en:Some of the advantages of the concentrator (202) of the invention can be summarized in:
- Aumento de la potencia eléctrica generada. La incorporación del concentrador (202) facilita alcanzar la potencia nominal del aerogenerador (201) a velocidades más reducidas, derivando en un mayor tiempo en funcionamiento nominal. - Increase of the electric power generated. The incorporation of the concentrator (202) facilitates reaching the nominal power of the wind turbine (201) at lower speeds, resulting in a longer time in nominal operation.
- Aumento rango operativo de actuación. Los dispositivos de regulación de flujo facilitan que se pueda adaptar la arquitectura del concentrador (202) a los requerimientos de velocidad de la corriente.  - Increase operating range of performance. The flow regulating devices facilitate that the architecture of the concentrator (202) can be adapted to the current velocity requirements.
- Adaptación a la naturaleza turbulenta de las brisas: El diseño de los álabes (215) y la sectorización practicada permite la captación e inyección continua en presencia de brisas de naturaleza turbulenta sin que ello afecte al rendimiento. Compatibilidad de uso con otros sistemas de microgeneración y equipamiento técnico: La configuración del concentrador (202) posibilita la incorporación de otros sistemas de microgeneración como los sistemas de aprovechamiento solar, así como soluciones pasivas, equipamiento técnico, cubiertas ajardinadas, etc. Facilidad de instalación: Su incorporación es factible para la mayoría de volúmenes arquitectónicos catalogados como rurales, así como la inmensa mayoría instalaciones industriales, técnicas, de servicio, auxiliares, agropecuarias, militares, etc. y cualquier otro volumen ubicado en entornos similares que demande energía eléctrica para su óptima operatividad. - Adaptation to the turbulent nature of the breezes: The design of the blades (215) and the sectorization practiced allows continuous collection and injection in the presence of breezes of a turbulent nature without affecting performance. Compatibility of use with other microgeneration systems and technical equipment: The configuration of the concentrator (202) allows the incorporation of other microgeneration systems such as solar utilization systems, as well as passive solutions, technical equipment, landscaped roofs, etc. Ease of installation: Its incorporation is feasible for the majority of architectural volumes classified as rural, as well as the vast majority of industrial, technical, service, auxiliary, agricultural, military, etc. installations. and any other volume located in environments similar that requires electrical energy for optimum operation.
Sus dimensiones son adaptables para su integración en cualquier tipo de estructura, siendo además escalable vertical mente, añadiéndose nuevos módulos.  Its dimensions are adaptable for integration into any type of structure, being also scalable vertically, adding new modules.
Teniendo en cuenta lo descrito, un primer aspecto de la invención se refiere a un concentrador (202) de flujo eólico que comprende: Taking into account what has been described, a first aspect of the invention relates to a wind flow concentrator (202) comprising:
1 a) una pluralidad de álabes (215) configurados a modo de corona directriz circunscrita sobre un rotor (212, 213) de un aerogenerador (201) de eje vertical (210).  1 a) a plurality of blades (215) configured as a circumscribed guidewire on a rotor (212, 213) of a vertical axis wind turbine (201) (210).
Conforme a otras características del concentrador (202) de la invención: According to other characteristics of the concentrator (202) of the invention:
Los álabes (215) pueden estar: The blades (215) can be:
2. configurados para definir tramos de circulación convergentes hacia el rotor (212, 213); 2. configured to define converging traffic sections towards the rotor (212, 213);
3. configurados para concentrar e inyectar el flujo eólico al rotor (212, 213), con independencia de direcciones de brisas circulantes al estar distribuidos angularmente de forma regular.  3. configured to concentrate and inject wind flow into the rotor (212, 213), regardless of circulating breeze directions as they are distributed angularly on a regular basis.
El concentrador (202) puede comprender: The concentrator (202) may comprise:
4. trece álabes (215);  4. thirteen blades (215);
5. un elemento de cierre (216, 301) seleccionado entre un disco inferior (216), un disco superior (301) y combinaciones de los mismos, donde los álabes (215) y el elemento de cierre (216, 301) conforman una pluralidad de tramos de circulación para concentrar e inyectar flujo eólico al aerogenerador;  5. a closing element (216, 301) selected from a lower disk (216), an upper disk (301) and combinations thereof, where the vanes (215) and the closing element (216, 301) form a plurality of circulation sections to concentrate and inject wind flow into the wind turbine;
6. un disco inferior (216) configurado como una base para una disposición vertical de los álabes (215);  6. a lower disk (216) configured as a base for a vertical arrangement of the blades (215);
7. un disco inferior (216) que comprende una pluralidad de paneles de aislamiento acústico (216A).  7. a lower disk (216) comprising a plurality of sound insulation panels (216A).

Claims

REIVINDICACIONES
1. Concentrador (202) de flujo eólico caracterizado por que comprende: 1. Wind flow concentrator (202) characterized in that it comprises:
1a) una pluralidad de álabes (215) configurados a modo de corona directriz circunscrita sobre un rotor (212, 213) de un aerogenerador (201) de eje vertical 1a) a plurality of blades (215) configured as a circumscribed guidewire on a rotor (212, 213) of a vertical axis wind turbine (201)
(210). (210).
2. Concentrador (202) de flujo eólico según la reivindicación 1 caracterizado por que los álabes (215) están configurados para definir tramos de circulación convergentes hacia el rotor (212, 213). 2. Wind flow concentrator (202) according to claim 1 characterized in that the vanes (215) are configured to define convergent circulation sections towards the rotor (212, 213).
3. Concentrador (202) de flujo eólico según la reivindicación 1 caracterizado por que los álabes (215) están configurados para concentrar e inyectar el flujo eólico al rotor (212, 213), con independencia de direcciones de brisas circulantes al estar distribuidos angularmente de forma regular. 3. Wind flow concentrator (202) according to claim 1 characterized in that the vanes (215) are configured to concentrate and inject the wind flow into the rotor (212, 213), regardless of circulating breeze directions as they are angularly distributed from regular form
4. Concentrador (202) de flujo eólico según la reivindicación 1 caracterizado por que comprende trece álabes (215). 4. Wind flow concentrator (202) according to claim 1 characterized in that it comprises thirteen blades (215).
5. Concentrador (202) de flujo eólico según la reivindicación 1 caracterizado por que comprende un elemento de cierre (216, 301) seleccionado entre un disco inferior (216), un disco superior (301) o ambos, donde los álabes (215) y el elemento de cierre (216, 301) conforman una pluralidad de tramos de circulación para concentrar e inyectar flujo eólico al aerogenerador. 5. Wind flow concentrator (202) according to claim 1 characterized in that it comprises a closing element (216, 301) selected from a lower disk (216), an upper disk (301) or both, where the blades (215) and the closing element (216, 301) form a plurality of circulation sections to concentrate and inject wind flow into the wind turbine.
6. Concentrador (202) de flujo eólico según la reivindicación 1 caracterizado por que comprende un disco inferior (216) configurado como una base para una disposición vertical de los álabes (215). 6. Wind flow concentrator (202) according to claim 1 characterized in that it comprises a lower disk (216) configured as a base for a vertical arrangement of the blades (215).
7. Concentrador (202) de flujo eólico según la reivindicación 1 caracterizado por que comprende un disco inferior (216) que comprende una pluralidad de paneles de aislamiento acústico (216A). 7. Wind flow concentrator (202) according to claim 1 characterized in that it comprises a lower disk (216) comprising a plurality of sound insulation panels (216A).
PCT/ES2017/070060 2016-02-04 2017-02-03 Wind flow concentrator WO2017134325A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ES201630128A ES2595481B1 (en) 2016-02-04 2016-02-04 WIND FLOW CONCENTRATOR
ESP201630128 2016-02-04

Publications (1)

Publication Number Publication Date
WO2017134325A1 true WO2017134325A1 (en) 2017-08-10

Family

ID=57616591

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2017/070060 WO2017134325A1 (en) 2016-02-04 2017-02-03 Wind flow concentrator

Country Status (2)

Country Link
ES (1) ES2595481B1 (en)
WO (1) WO2017134325A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030209911A1 (en) * 2002-05-08 2003-11-13 Pechler Elcho R. Vertical-axis wind turbine
WO2011061558A1 (en) * 2009-11-18 2011-05-26 Vimal Perera Omnidirectional wind turbine for power generation
US20130156581A1 (en) * 2011-12-16 2013-06-20 Fung Gin Da Energy Science And Technology Co., Ltd Apparatus for generating electric power from wind energy
US20140356157A1 (en) * 2013-05-30 2014-12-04 Universal Wind Power, Llc Wind turbine device with diverter panels and related systems and methods

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030209911A1 (en) * 2002-05-08 2003-11-13 Pechler Elcho R. Vertical-axis wind turbine
WO2011061558A1 (en) * 2009-11-18 2011-05-26 Vimal Perera Omnidirectional wind turbine for power generation
US20130156581A1 (en) * 2011-12-16 2013-06-20 Fung Gin Da Energy Science And Technology Co., Ltd Apparatus for generating electric power from wind energy
US20140356157A1 (en) * 2013-05-30 2014-12-04 Universal Wind Power, Llc Wind turbine device with diverter panels and related systems and methods

Also Published As

Publication number Publication date
ES2595481A1 (en) 2016-12-30
ES2595481B1 (en) 2017-12-22

Similar Documents

Publication Publication Date Title
US6765309B2 (en) System and building for generating electricity using wind power
ES2664896T3 (en) A pressure controlled wind turbine improvement system
KR20180116418A (en) Wind power generator combined with building
US8546971B2 (en) Apparatus for generating electricity from wind power
DK176999B1 (en) Combined blade and turbine design for improved utilization of fluid flow energy
BRPI0715047B1 (en) FLOW DEFLECTION DEVICE, SYSTEMS, BLADES, METHODS AND RELATED VEHICLES
WO2006066502A1 (en) Natural-air-power generating system
BR112014006657B1 (en) omnidirectional combined flow turbine
ES2746119T3 (en) Rotor blade profile for a wind turbine
EP3597900B1 (en) Wind turbine
ES2595481B1 (en) WIND FLOW CONCENTRATOR
KR20110129249A (en) Wind power generating appratus using high-rise building
JP2007211656A (en) Circular tube type wind turbine power generator
KR101557697B1 (en) Photovoltaic panel for wind induction from wind power generator
KR101328188B1 (en) Wind-induced wind and solar power generation devices
JP5801938B1 (en) Wind power generator
RU2015148377A (en) WIND HEAT TRANSMITTER-STORAGE
WO2023276016A1 (en) Power generating device, ascending air current generating device, power generating method, and ascending air current acceleration method
JP7488584B2 (en) Omnidirectional Generator Unit
JP2011174447A (en) Power generation system for super-high rise building
RU2737412C1 (en) Wind-catching and wind-producing helio-aerodynamic multifunctional device (wwhmd)
Frunzulica et al. New Urban Vertical Axis Wind Turbine Design
RU2455523C2 (en) Stepanchuk wind-driven motor
Obuchowicz USE OF WIND ENERGY OF THE GROUND ZONE IN LOW INDIVIDUAL BUILDINGS.
Palero et al. Thorough study of a proposal to improve the thermal behaviour of a bioclimatic building

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17747044

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17747044

Country of ref document: EP

Kind code of ref document: A1