WO2017133254A1 - 一种氧供参数监测方法及监测装置 - Google Patents

一种氧供参数监测方法及监测装置 Download PDF

Info

Publication number
WO2017133254A1
WO2017133254A1 PCT/CN2016/099309 CN2016099309W WO2017133254A1 WO 2017133254 A1 WO2017133254 A1 WO 2017133254A1 CN 2016099309 W CN2016099309 W CN 2016099309W WO 2017133254 A1 WO2017133254 A1 WO 2017133254A1
Authority
WO
WIPO (PCT)
Prior art keywords
oxygen
infrared light
blood
change
wavelength
Prior art date
Application number
PCT/CN2016/099309
Other languages
English (en)
French (fr)
Inventor
刘进
魏蔚
彭玲
高博
Original Assignee
刘进
魏蔚
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 刘进, 魏蔚 filed Critical 刘进
Publication of WO2017133254A1 publication Critical patent/WO2017133254A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/1455Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using optical sensors, e.g. spectral photometrical oximeters
    • A61B5/1459Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using optical sensors, e.g. spectral photometrical oximeters invasive, e.g. introduced into the body by a catheter
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/1455Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using optical sensors, e.g. spectral photometrical oximeters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/1455Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using optical sensors, e.g. spectral photometrical oximeters
    • A61B5/14551Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using optical sensors, e.g. spectral photometrical oximeters for measuring blood gases

Definitions

  • the invention relates to the medical field, in particular to a method and a detection device for detecting oxygen supply parameters.
  • Oxygen supply is based on the actual cardiac output of the clinician ( CO), arterial oxygen saturation (SaO 2 ) and hemoglobin content (Hb) are estimated by three different measurements of the body's milliliters of oxygen per minute.
  • CO cardiac output
  • SaO 2 arterial oxygen saturation
  • Hb hemoglobin content
  • CO is a special monitoring, need to place a special pulmonary artery floating catheter or PiCCO catheter, there is a higher risk and cost, need sufficient time, Hb can only be obtained by blood sample analysis.
  • the present invention aims to provide a method of monitoring parameters for oxygen, can be like SpO 2 monitoring hemoglobin concentration in a patient's perioperative even for routine monitoring of oxygen, helps the patient to maintain the oxygen supply within a safe range, to avoid missing Oxygen damage greatly improves the safety of anesthesia and surgery, and also plays a role in reducing the frequency of use of complex invasive monitoring and reducing the work intensity of anesthesiologists.
  • the oxygen supply parameter monitoring method disclosed by the invention comprises the following steps:
  • Step 1 by placing sensors in the Hb-SO 2 esophagus descending aorta adjacent the optical density OD and the amount of change ⁇ OD optical density of blood through detecting the esophageal wall, the Hb-SO 2 sensor emits three beams of different wavelengths Near-infrared light;
  • Step 2 Calculate the change amount of reduced hemoglobin concentration ⁇ C HHb , oxygen and hemoglobin concentration in blood by using equations (1) and (2), respectively.
  • ⁇ 1 and ⁇ 2 are the wavelengths of the near-infrared light having different wavelengths of the two beams in the step 1, respectively.
  • the extinction coefficient of reduced hemoglobin to near-infrared light of wavelength ⁇ 2 Is the extinction coefficient of oxygen and hemoglobin for near-infrared light with a wavelength of ⁇ 1
  • the amount of change in optical density of blood to near-infrared light having a wavelength of ⁇ 1 The amount of change in optical density of blood to near-infrared light having a wavelength of ⁇ 2
  • r is a detection interval
  • DPF is a differential path factor
  • ⁇ OD ⁇ 3 is the amount of change in optical density of plasma near-infrared light having a wavelength of ⁇ 3 , It is the extinction coefficient of plasma to near-infrared light with a wavelength of ⁇ 3 , ⁇ 3 is the wavelength of the third near-infrared light in step 1, and ⁇ C Hb is the total amount of change in hemoglobin concentration, which is ⁇ C HHb and And ⁇ C H2O is the amount of change in plasma concentration, To measure the basic value of Hb, The base value of the measured plasma concentration.
  • step 1 the backlight signal cancellation is further included, and the background optical signal cancellation is performed in one of two ways:
  • the OD value on the detected optical path between the two time points is subtracted to eliminate the background light signal
  • the number of photodetectors is increased, and a specific photodetector is detected by a photodetector that is close to the light source to eliminate the specific background light signal.
  • At least one of the photodetectors when the photodetector is one, measuring the OD value at two time points, and subtracting to obtain ⁇ OD; when the photodetector is two or more, the light close to the light source
  • the detector is used for detecting the background light signal, and the ⁇ OD is obtained by subtracting the background light signal from the light detection signal far from the light source, that is, the input is measured.
  • the base value is used as the initial calibration for detecting Hb, and the input is measured.
  • the base value is used as an initial calibration for detecting plasma concentrations.
  • step 2 the method further includes:
  • Step 3 Calculate the oxygen saturation SaO 2 using equation (5).
  • ⁇ C HHb is the amount of change in reduced hemoglobin concentration, The amount of change in oxygen and hemoglobin concentration.
  • step 3 the method further includes:
  • Step 4 using the formula (6) to calculate the oxygen content CaO 2 ,
  • Step 5 Calculate oxygen for DO 2 using equation (7).
  • f is a constant amount of oxygen bound per unit weight of hemoglobin when fully oxygenated; Hb is hemoglobin concentration, SaO 2 is oxygen saturation, CaO 2 is oxygen content, CO For heart output.
  • the cardiac output CO is obtained by detecting a descending aortic blood flow data stream by an ultrasound Doppler probe inserted into the esophagus, the descending aortic blood flow data stream including velocity time integrals VTI, VAS and HR Calculated using equation (8),
  • VTI is the velocity time integral of the descending aortic Doppler blood flow spectrum
  • CSA is the descending aorta cross-sectional area
  • HR is the heart rate
  • k is the conversion coefficient from the descending aortic blood flow to CO, Is a constant.
  • the Hb-SO 2 sensor and the ultrasonic Doppler probe are placed into the esophagus through the oral cavity or the nasal cavity, and the Hb-SO 2 sensor is directly opposite to the descending aorta under the guidance of the blood flow signal.
  • the wavelengths of the three bundles of near-infrared light are: ⁇ 1 , ⁇ 2 is 600 to 1000 nm, and ⁇ 3 is 1000 to 1400 nm.
  • the invention also discloses a detecting device comprising an Hb-SO 2 sensor, a processor and a monitor, the Hb-SO 2 sensor comprising a near-infrared light source, a photodetector, a sensor wire, and the photodetector passing the sensor wire Electrically coupled to the processor, the processor is electrically coupled to the monitor.
  • the near-infrared light source comprises three near-infrared lights of different wavelengths, wherein ⁇ 1 and ⁇ 2 have wavelengths ranging from 600 to 1000 nm, and ⁇ 3 wavelengths range from 1000 to 1400 nm.
  • the photodetector comprises a dual band photodiode of 400 to 1300 nm, and the photodetector has one or more.
  • the method for obtaining accurate blood Hb depends on the effective background light absorption, and the method for eliminating the background light signal is one of the following two methods:
  • the base value is used as the initial calibration for detecting Hb, and the input is measured.
  • the base value is used as an initial calibration to detect plasma concentrations.
  • the scattered light that cannot be measured on the reflected light path is eliminated by detecting the change based on the fundamental light absorption to ensure the accuracy of the measurement.
  • the processor is configured with a filtering module and a data processing module.
  • the Hb-SO 2 sensor of the present invention can be combined with an ultrasonic Doppler probe or other descending aortic blood flow detecting sensor, and placed into the esophagus through the oral cavity or the nasal cavity, and the Hb-SO 2 device sensor is guided by the blood flow signal.
  • Real-time non-destructive measurement of Hb content, blood oxygen saturation and blood flow in descending aorta is performed on the descending aorta.
  • the real-time DO 2 is automatically calculated by the calculation module in the device based on real-time Hb, SO 2 and flow measurement values. Values such as DO 2 change values/rates that vary with the base value, such as oxygen supply parameters, are displayed in real time for clinical reference in the form of numbers and graphs.
  • the Hb-SO 2 sensor of the invention can also be placed into the esophagus through the oral cavity or the nasal cavity alone, and under the guidance of the blood flow signal, the Hb-SO 2 sensor is directly opposite to the descending aorta, and the Hb content and blood oxygen in the blood of the descending aorta can be realized.
  • the calculation parameters in the device automatically calculate the real-time DO 2 level (high, medium, low) or the oxygen supply related parameter such as the DO 2 change value/rate according to the change of the base value according to the real-time Hb, SO 2 and flow level.
  • the Hb-SO 2 sensor of the present invention can be combined with the esophagus or the esophageal temperature probe to be placed in the esophagus, and can be combined with a device such as a stomach tube or an esophageal temperature probe that can be placed into the esophagus to help Hb.
  • the -SO 2 sensor is placed in the esophagus.
  • the present invention can routinely monitor the hemoglobin concentration and even oxygen supply of perioperative patients like SpO 2 , and help maintain the patient's oxygen supply within a safe range to avoid hypoxic damage and greatly improve the safety of anesthesia and surgery. Sexuality also plays a role in reducing the frequency of use of complex invasive monitoring and reducing the intensity of anesthesiologists.
  • Figure 1 is a schematic view showing the position of the Hb-SO 2 sensor placed in the esophagus
  • Figure 2 is a partial enlarged view of the Hb-SO 2 sensor
  • Figure 3 is a schematic diagram of a PPG signal waveform
  • the oxygen supply parameter monitoring method disclosed by the invention is specifically realized as follows:
  • the oxygen supply parameter monitoring method disclosed by the invention comprises the following steps:
  • Step 1 The optical density OD and the optical density change ⁇ OD of blood in the adjacent descending aorta are detected by the Hb-SO 2 sensor placed in the esophagus through the esophageal wall, and the Hb-SO 2 sensor emits three different wavelengths.
  • Near-infrared light
  • Step 2 Calculate the change amount of reduced hemoglobin concentration ⁇ C HHb , oxygen and hemoglobin concentration in blood by using equations (1) and (2), respectively.
  • ⁇ 1 and ⁇ 2 are the wavelengths of the near-infrared light having different wavelengths of the two beams in the step 1, respectively.
  • the extinction coefficient of reduced hemoglobin to near-infrared light of wavelength ⁇ 2 Is the extinction coefficient of oxygen and hemoglobin for near-infrared light with a wavelength of ⁇ 1
  • the amount of change in optical density of blood to near-infrared light having a wavelength of ⁇ 1 The amount of change in optical density of blood to near-infrared light having a wavelength of ⁇ 2
  • r is a detection interval
  • DPF is a differential path factor
  • ⁇ OD ⁇ 3 is the amount of change in optical density of plasma near-infrared light having a wavelength of ⁇ 3 , It is the extinction coefficient of plasma to near-infrared light with a wavelength of ⁇ 3 , ⁇ 3 is the wavelength of the third near-infrared light in step 1, and ⁇ C Hb is the total hemoglobin concentration change, which is ⁇ C HHb and Sum, The amount of change in plasma concentration. To measure the basic value of Hb, The base value of the measured plasma concentration.
  • step 1 the backlight signal cancellation is further included, and the background optical signal is cancelled.
  • Method 1 Since the background light signal between the two detection time points does not change, two The OD values on the detected light paths between the time points are subtracted to eliminate the background light signal;
  • the number of photodetectors is increased, and a specific photodetector is detected by a photodetector that is close to the light source to eliminate the specific background light signal.
  • At least one of the photodetectors measures the OD value at two time points when the photodetector is one, and obtains ⁇ OD after subtraction; when the photodetector is two or more, the distance from the light source is The photodetector is used for detecting the background light signal, and the ⁇ OD is obtained by subtracting the background light signal from the light detecting signal far from the light source, that is, the input is measured.
  • the base value is used as the initial calibration for detecting Hb, and the input is measured.
  • the base value is used as an initial calibration for detecting plasma concentrations.
  • step 2 the method further includes:
  • Step 3 Calculate the oxygen saturation SaO 2 using equation (5).
  • ⁇ C HHb is the amount of change in reduced hemoglobin concentration, The amount of change in oxygen and hemoglobin concentration.
  • step 3 the method further includes:
  • Step 4 using the formula (6) to calculate the oxygen content CaO 2 ,
  • Step 5 Calculate oxygen for DO 2 using equation (7).
  • f is a constant amount of oxygen bound per unit weight of hemoglobin when fully oxygenated; Hb is hemoglobin concentration, SaO 2 is oxygen saturation, CaO 2 is oxygen content, CO For heart output.
  • the cardiac output CO is obtained by detecting a descending aortic blood flow data stream by an ultrasound Doppler probe inserted into the esophagus, the descending aortic blood flow data stream including speed time integral VTI, CAS and HR are calculated using equation (8).
  • VTI is the velocity time integral of the descending aortic Doppler blood flow spectrum
  • CSA is the descending aorta cross-sectional area
  • HR is the heart rate
  • k is the coefficient converted from the descending aortic blood flow to CO, A constant.
  • the Hb-SO 2 sensor and the ultrasonic Doppler probe are placed into the esophagus through the oral cavity or the nasal cavity, and the Hb-SO 2 sensor is directly opposite to the descending aorta under the guidance of the blood flow signal.
  • the present invention also discloses a detecting device, including an Hb-SO 2 sensor 1, a sensor wire 4, a processor, a monitor, and the Hb-SO 2 sensor 1 includes a near-infrared light source 5 and light.
  • the detector 6, the photodetector 6 is electrically connected to the processor through the sensor wire 4, and the processor is electrically connected to the monitor;
  • the photodetector 6 includes a dual-band photodiode of 400 to 1300 nm, one or more of the photodetectors 6, and the photodetectors 6 are all located on the same side of the near-infrared light source 5, and when the photodetector 6 has two or more Each photodetector 6 is different in distance from the near-infrared light source 5; the processor is solidified with a filtering module and a data processing module.
  • the Hb-SO 2 sensor 1 enters the esophagus 3 through the mouth or nostrils alone or with an esophageal ultrasound Doppler probe, gastric tube, etc., the Hb-SO 2 sensor 1 is opposite the descending aorta 7 and the Hb-SO 2 sensor 1 is attached to the side wall of the esophagus 3 near the descending aorta 7 away from the heart 2.
  • the DC component (DC) signal in the stable descending aorta NIRS signal is used as the basis for Hb and SaO 2 detection to avoid the effects of motion artifacts such as respiration and cardiac pulsation on the measurement.

Landscapes

  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biomedical Technology (AREA)
  • Medical Informatics (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Optics & Photonics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)

Abstract

一种氧供参数监测方法以及所用的检测装置,通过置于食管内的Hb-SO 2传感器(1)透过食管(3)壁检测相邻降主动脉(7)内血液的光密度OD和光密度变化量△OD,经过相应的计算获得血液的血红蛋白浓度。对围术期患者的血红蛋白浓度甚至氧供进行常规监测,有助于将患者氧供维持在安全范围内,以避免缺氧性损伤,大幅提高麻醉和手术的安全性,同时还起到减少复杂有创监测的使用频率和降低麻醉医师工作强度的事半功倍的作用。

Description

一种氧供参数监测方法及监测装置 技术领域
本发明涉及医疗领域,尤其涉及一种氧供参数的检测方法及检测装置。
背景技术
围术期失血、心肺功能障碍都会导致机体氧供的下降,实时监测与维持氧供是防止围术期发生氧债及缺氧性损伤的上策,氧供是临床医师根据患者实际心输出量(CO),动脉血氧饱和度(SaO2)及血红蛋白含量(Hb)三种不同的测量结果估算出来的机体的每分钟供氧的毫升数。除SaO2可以用常规脉搏氧饱和度监测外,CO属特殊监测,需要放置特殊肺动脉漂浮导管或PiCCO导管,存在较高的风险和费用,需要充足的时间,Hb只能抽取血样分析获得。目前还没有一种能提供连续氧供参数监测的方法和装置。
发明内容
本发明旨在提供一种氧供参数监测方法,能像监测SpO2一样对围术期患者的血红蛋白浓度甚至氧供进行常规监测,有助于将患者氧供维持在安全范围内,以避免缺氧性损伤,大幅提高麻醉和手术的安全性,同时还起到减少复杂有创监测的使用频率和降低麻醉医师工作强度的事倍功半的作用。
为达到上述目的,本发明是采用以下技术方案实现的:
本发明公开的氧供参数监测方法,包括以下步骤:
步骤1、通过置于食管内的Hb-SO2传感器透过食管壁检测相邻降主动脉 内血液的光密度OD和光密度变化量△OD,所述Hb-SO2传感器发射三束波长不同的近红外光;
步骤2、采用式(1)、式(2)分别计算血液中还原血红蛋白浓度变化量ΔCHHb、氧和血红蛋白浓度变化量
Figure PCTCN2016099309-appb-000001
Figure PCTCN2016099309-appb-000002
Figure PCTCN2016099309-appb-000003
式(1)、式(2)中:λ1、λ2分别为步骤1中两束波长不同的近红外光的波长,
Figure PCTCN2016099309-appb-000004
为还原血红蛋白对波长为λ1的近红外光的消光系数,
Figure PCTCN2016099309-appb-000005
还原血红蛋白对波长为λ2的近红外光的消光系数,
Figure PCTCN2016099309-appb-000006
为氧和血红蛋白对波长为λ1的近红外光的消光系数,
Figure PCTCN2016099309-appb-000007
为氧和血红蛋白对波长为λ2的近红外光的消光系数,
Figure PCTCN2016099309-appb-000008
为血液对波长为λ1的近红外光的光密度变化量,
Figure PCTCN2016099309-appb-000009
为血液对波长为λ2的近红外光的光密度变化量,r为检测间距,DPF为差分路径因子;
采用式(3)计算血液中血浆浓度变化量
Figure PCTCN2016099309-appb-000010
Figure PCTCN2016099309-appb-000011
采用式(4)计算血液中的血红蛋白浓度Hb,
Figure PCTCN2016099309-appb-000012
式(3)、式(4)中:ΔODλ3为血浆对波长为λ3的近红外光的光密度变化量,
Figure PCTCN2016099309-appb-000013
为血浆对波长为λ3的近红外光的消光系数,λ3为步骤1中第三束近 红外光的波长,ΔCHb是总的血红蛋白浓度变化量,为ΔCHHb
Figure PCTCN2016099309-appb-000014
之和,ΔCH2O为血浆浓度变化量,
Figure PCTCN2016099309-appb-000015
为实测Hb基础值,
Figure PCTCN2016099309-appb-000016
为实测血浆浓度基础值。
优选的,在步骤1中,还包括背景光信号消除,所述背景光信号消除采用如下两种方式之一:
方式一、通过两个时间点之间所检测光路径上的OD值相减以消除背景光信号;
方式二、增加光检测器数量,以距离光源近的光检测器检测具体的背景光信号加以消除。
所述光检测器至少一个,当光检测器为一个时,测量两个时间点的OD值,相减后得到△OD;当光检测器为两个或两个以上时,距离光源近的光检测器用于检测背景光信号,用距离光源远的光检测信号减去背景光信号得到△OD,即采用输入实测
Figure PCTCN2016099309-appb-000017
基础值作为检测Hb的初始定标,采用输入实测
Figure PCTCN2016099309-appb-000018
基础值作为检测血浆浓度的初始定标。
进一步的,在步骤2之后还包括:
步骤3、采用式(5)计算氧饱和度SaO2
Figure PCTCN2016099309-appb-000019
式(5)中:ΔCHHb为还原血红蛋白浓度变化量、
Figure PCTCN2016099309-appb-000020
为氧和血红蛋白浓度变化量。
进一步的,在步骤3之后还包括:
步骤4、采用式(6)计算氧含量CaO2
CaO2=f·(Hb×SaO2)       (6)
步骤5、采用式(7)计算氧供DO2
DO2=CaO2×CO        (7)
式(6)、式(7)中,f为单位重量的血红蛋白完全氧合时所结合的氧量,为一常数;Hb为血红蛋白浓度,SaO2为氧饱和度,CaO2为氧含量,CO为心输出量。
优选的,所述心输出量CO的获得方法如下:通过插入食道的超声多普勒探头检测降主动脉血流数据流,所述降主动脉血流数据流包括速度时间积分VTI,VAS和HR,采用式(8)计算得到,
CO=k·(VTI×CSA×HR)        (8)
式(8)中:VTI为降主动脉多普勒血流频谱的速度时间积分;CSA为降主动脉横截面积;HR为心率;k表示由降主动脉血流量转换为CO的转换系数,为一常数。
优选的,在步骤1中,所述Hb-SO2传感器与超声多普勒探头通过口腔或鼻腔置入食道,在血流信号的引导下,使Hb-SO2传感器正对降主动脉。
优选的,三束近红外光的波长分别为:λ1、λ2为600~1000nm,λ3为1000~1400nm。
本发明还公开了一种检测装置,包括Hb-SO2传感器、处理器、监视器,所述Hb-SO2传感器包括近红外光源、光检测器、传感器导线,所述光检测器通过传感器导线与处理器电连接,所述处理器与监视器电连接。
优选的,所述近红外光源包括三束波长不同的近红外光,其中λ1、λ2波长范围为600~1000nm,λ3波长范围为1000~1400nm。所述光检测器包括400~1300nm的双波段光电二极管,光检测器有一个或多个。获取准确血液Hb取决于有效背景光吸收的消除方法,所述背景光信号消除采用的方法为如下两种之一:
a、通过两个时间点之间所检测光路径上的OD值相减以消除背景光信号;
b、增加光检测器数量,以距离光源近的光检测器检测背景光信号加以消除。采用输入实测
Figure PCTCN2016099309-appb-000021
基础值作为检测Hb的初始定标,采用输入实测
Figure PCTCN2016099309-appb-000022
基础值作为检测血浆浓度的初始标定。通过检测基于基础光吸收的变化来消除反射光路径上无法测量的散射光,以保证测量的准确性。
进一步的,所述处理器固化有滤波模块和数据处理模块。
本发明的Hb-SO2传感器可与超声多普勒探头或其他降主动脉血流检测传感器相组合,通过口腔或鼻腔置入食道,在血流信号的引导下,使Hb-SO2装置传感器正对降主动脉,实现降主动脉血液中Hb含量、血氧饱和度和血流量的实时无损测量,通过装置内的计算模块根据实时Hb,SO2和流量测定值自动计算出实时的DO2数值或较基础值变化的DO2变化值/率等氧供相关参数,以数字和图形等方式实时显示供临床参考。
本发明的Hb-SO2传感器也可单独通过口腔或鼻腔置入食道,在血流信号的引导下,使Hb-SO2传感器正对降主动脉,实现降主动脉血液中Hb含量、血氧饱和度实时无损测量,以及基于交流分量(AC)变化分析的血流量高、中、低水平。通过装置内的计算模块根据实时Hb,SO2和流量水平自动计算出实时的DO2水平(高、中、低)或较基础值变化的DO2变化值/率等氧供相关参数,以数字和图形等方式实时显示供临床参考。
本发明的Hb-SO2传感器除了可单独放入食道检测、或与食道超声多普勒探头组合放入食道,还可与胃管、食道温度探头等可置入食道的装置相组合,帮助Hb-SO2传感器放入食道。
本发明能像监测SpO2一样对围术期患者的血红蛋白浓度甚至氧供进行常规监测,有助于将患者氧供维持在安全范围内,以避免缺氧性损伤,大幅提 高麻醉和手术的安全性,同时还起到减少复杂有创监测的使用频率和降低麻醉医师工作强度的事倍功半的作用。
附图说明
图1为Hb-SO2传感器放入食道内的位置示意图;
图2为Hb-SO2传感器的局部放大图;
图3为PPG信号波形示意图;
图中:1-Hb-SO2传感器、2-心脏、3-食道、4-传感器导线、5-近红外光源、6-光检测器、7-降主动脉。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图,对本发明进行进一步详细说明。
本发明公开的氧供参数监测方法,具体实现如下:
本发明公开的氧供参数监测方法,包括以下步骤:
步骤1、通过置于食管内的Hb-SO2传感器透过食管壁检测相邻降主动脉内血液的光密度OD和光密度变化量△OD,所述Hb-SO2传感器发射三束波长不同的近红外光;
步骤2、采用式(1)、式(2)分别计算血液中还原血红蛋白浓度变化量ΔCHHb、氧和血红蛋白浓度变化量
Figure PCTCN2016099309-appb-000023
Figure PCTCN2016099309-appb-000024
Figure PCTCN2016099309-appb-000025
式(1)、式(2)中:λ1、λ2分别为步骤1中两束波长不同的近红外光的波长,
Figure PCTCN2016099309-appb-000026
为还原血红蛋白对波长为λ1的近红外光的消光系数,
Figure PCTCN2016099309-appb-000027
还原血红蛋白对波长为λ2的近红外光的消光系数,
Figure PCTCN2016099309-appb-000028
为氧和血红蛋白对波长为λ1的近红外光的消光系数,
Figure PCTCN2016099309-appb-000029
为氧和血红蛋白对波长为λ2的近红外光的消光系数,
Figure PCTCN2016099309-appb-000030
为血液对波长为λ1的近红外光的光密度变化量,
Figure PCTCN2016099309-appb-000031
为血液对波长为λ2的近红外光的光密度变化量,r为检测间距,DPF为差分路径因子;
采用式(3)计算血液中血浆浓度变化量
Figure PCTCN2016099309-appb-000032
Figure PCTCN2016099309-appb-000033
采用式(4)计算血液中的血红蛋白浓度Hb,
Figure PCTCN2016099309-appb-000034
式(3)、式(4)中:ΔODλ3为血浆对波长为λ3的近红外光的光密度变化量,
Figure PCTCN2016099309-appb-000035
为血浆对波长为λ3的近红外光的消光系数,λ3为步骤1中第三束近红外光的波长,ΔCHb是总的血红蛋白浓度变化量,为ΔCHHb
Figure PCTCN2016099309-appb-000036
之和,
Figure PCTCN2016099309-appb-000037
为血浆浓度变化量。
Figure PCTCN2016099309-appb-000038
为实测Hb基础值,
Figure PCTCN2016099309-appb-000039
为实测血浆浓度基础值。
优选的,在步骤1中,还包括背景光信号消除,所述背景光信号消除采用
如下两种方式之一:
方式一、由于两个检测时间点之间的背景光信号不发生改变,可通过两 个时间点之间所检测光路径上的OD值相减以消除背景光信号;
方式二、增加光检测器数量,以距离光源近的光检测器检测具体的背景光信号加以消除。
具体的,光检测器至少一个,当光检测器为一个时,测量两个时间点的OD值,相减后得到△OD;当光检测器为两个或两个以上时,距离光源近的光检测器用于检测背景光信号,用距离光源远的光检测信号减去背景光信号得到△OD,即采用输入实测
Figure PCTCN2016099309-appb-000040
基础值作为检测Hb的初始定标,采用输入实测
Figure PCTCN2016099309-appb-000041
基础值作为检测血浆浓度的初始定标。
进一步的,在步骤2之后还包括:
步骤3、采用式(5)计算氧饱和度SaO2
Figure PCTCN2016099309-appb-000042
式(5)中:ΔCHHb为还原血红蛋白浓度变化量、
Figure PCTCN2016099309-appb-000043
为氧和血红蛋白浓度变化量。
进一步的,在步骤3之后还包括:
步骤4、采用式(6)计算氧含量CaO2
CaO2=f·(Hb×SaO2)       (6)
步骤5、采用式(7)计算氧供DO2
DO2=CaO2×CO      (7)
式(6)、式(7)中,f为单位重量的血红蛋白完全氧合时所结合的氧量,为一常数;Hb为血红蛋白浓度,SaO2为氧饱和度,CaO2为氧含量,CO为心输出量。
优选的,所述心输出量CO的获得方法如下:通过插入食道的超声多普勒探头检测降主动脉血流数据流,所述降主动脉血流数据流包括速度时间积分 VTI,CAS和HR,采用式(8)计算得到,
CO=k·(VTI×CSA×HR)       (8)
式(8)中:VTI为降主动脉多普勒血流频谱的速度时间积分;CSA为降主动脉横截面积;HR为心率;k表示由降主动脉血流量转换为CO的系数,为一常数。
优选的,在步骤1中,所述Hb-SO2传感器与超声多普勒探头通过口腔或鼻腔置入食道,在血流信号的引导下,使Hb-SO2传感器正对降主动脉。
优选的,三束近红外光的波长分别为:λ1、λ2为600~1000nm,λ3为1000~1400nm,一组实际选用的波长值为:λ1=660nmnm、λ2=940nmnm、λ3=1100nmnm。
如图1、图2所示,本发明还公开了一种检测装置,包括Hb-SO2传感器1、传感器导线4、处理器、监视器,Hb-SO2传感器1包括近红外光源5、光检测器6,光检测器6通过传感器导线4与处理器电连接,处理器与监视器电连接;近红外光源5包括三束波长不同的近红外光,其中λ1、λ2范围为600~1000nm,λ3范围为1000~1400nm,一组实际选用的波长值为:λ1=660nmnm、λ2=940nmnm、λ3=1100nmnm。
光检测器6包括400~1300nm的双波段光电二极管,光检测器6有一个或多个,光检测器6均位于近红外光源5同一侧,当光检测器6有两个或两个以上时,每个光检测器6与近红外光源5距离不同;处理器固化有滤波模块和数据处理模块。
使用时,Hb-SO2传感器1单独或与食道超声多普勒探头、胃管等装置经口腔或鼻孔进入食管3,Hb-SO2传感器1与降主动脉7正对,Hb-SO2传感器1贴于靠近降主动脉7而远离心脏2的食管3侧壁。
如图3所示,使用稳定的降主动脉NIRS信号中的直流分量(DC)信号作为Hb和SaO2检测的基础,避免呼吸、心脏大血管搏动等运动伪像对测量的影响。
使用AC分量的波形或超声多普勒血流信号帮助将位于食管内的Hb-SO2传感器1正对降主动脉7,保证检测Hb、SO2和血流量的NIRS信号主要来自降主动脉血液光吸收信号。
当然,本发明还可有其它多种实施例,在不背离本发明精神及其实质的情况下,熟悉本领域的技术人员可根据本发明作出各种相应的改变和变形,但这些相应的改变和变形都应属于本发明所附的权利要求的保护范围。

Claims (10)

  1. 一种氧供参数监测方法,其特征在于,包括以下步骤:
    步骤1、通过置于食管内的Hb-SO2传感器透过食管壁检测相邻降主动脉内血液的光密度OD和光密度变化量△OD,所述Hb-SO2传感器发射三束波长不同的近红外光;
    步骤2、采用式(1)、式(2)分别计算血液中还原血红蛋白浓度变化量ΔCHHb、氧和血红蛋白浓度变化量
    Figure PCTCN2016099309-appb-100001
    Figure PCTCN2016099309-appb-100002
    Figure PCTCN2016099309-appb-100003
    式(1)、式(2)中:λ1、λ2分别为步骤1中两束波长不同的近红外光的波长,
    Figure PCTCN2016099309-appb-100004
    为还原血红蛋白对波长为λ1的近红外光的消光系数,
    Figure PCTCN2016099309-appb-100005
    还原血红蛋白对波长为λ2的近红外光的消光系数,
    Figure PCTCN2016099309-appb-100006
    为氧和血红蛋白对波长为λ1的近红外光的消光系数,
    Figure PCTCN2016099309-appb-100007
    为氧和血红蛋白对波长为λ2的近红外光的消光系数,
    Figure PCTCN2016099309-appb-100008
    为血液对波长为λ1的近红外光的光密度变化量,
    Figure PCTCN2016099309-appb-100009
    为血液对波长为λ2的近红外光的光密度变化量,r为检测间距,DPF为差分路径因子;
    采用式(3)计算血液中血浆浓度变化量
    Figure PCTCN2016099309-appb-100010
    Figure PCTCN2016099309-appb-100011
    采用式(4)计算血液中的血红蛋白浓度Hb,
    Figure PCTCN2016099309-appb-100012
    式(3)、式(4)中:
    Figure PCTCN2016099309-appb-100013
    为血浆对波长为λ3的近红外光的光密度变化量,
    Figure PCTCN2016099309-appb-100014
    为血浆对波长为λ3的近红外光的消光系数,λ3为步骤1中第三束近红外光的波长,ΔCHb是总的血红蛋白浓度变化量,为ΔCHHb
    Figure PCTCN2016099309-appb-100015
    之和,
    Figure PCTCN2016099309-appb-100016
    为血浆浓度变化量,
    Figure PCTCN2016099309-appb-100017
    为实测Hb基础值,
    Figure PCTCN2016099309-appb-100018
    为实测血浆浓度基础值。
  2. 根据权利要求1所述的氧供参数监测方法,其特征在于,在步骤1中,还包括背景光信号消除,所述背景光信号消除采用如下两种方式之一:
    方式一、通过两个时间点之间所检测光路径上的OD值相减以消除背景光信号;
    方式二、增加光检测器数量,以距离光源近的光检测器检测背景光信号加以消除。
  3. 根据权利要求1或2所述的氧供参数监测方法,其特征在于,在步骤2之后还包括:
    步骤3、采用式(5)计算氧饱和度SaO2
    Figure PCTCN2016099309-appb-100019
    式(5)中:ΔCHHb为还原血红蛋白浓度变化量、
    Figure PCTCN2016099309-appb-100020
    为氧和血红蛋白浓度变化量。
  4. 根据权利要求3所述的氧供参数监测方法,其特征在于,在步骤3之后还包括:
    步骤4、采用式(6)计算氧含量CaO2
    CaO2=f·(Hb×SaO2)         (6)
    步骤5、采用式(7)计算氧供DO2
    DO2=CaO2×CO          (7)
    式(6)、式(7)中,f为单位重量的血红蛋白完全氧合时所结合的氧量,为一常数;Hb为血红蛋白浓度,SaO2为氧饱和度,CaO2为氧含量,CO为心输出量。
  5. 根据权利要求4所述的氧供参数监测方法,其特征在于,所述心输出量CO的获得方法如下:通过插入食道超声多普勒探头检测降主动脉血流数据流,所述降主动脉血流数据流包括速度时间积分VTI、CSA和HR,采用式(8)计算得到,
    CO=k·(VTI×CSA×HR)           (8)
    式(8)中:VTI为降主动脉多普勒血流频谱的速度时间积分;CSA为降主动脉横截面积;HR为心率;k表示由降主动脉血流量转换为CO的转换系数,为一常数。
  6. 根据权利要求5所述的氧供参数监测方法,其特征在于,在步骤1中,所述Hb-SO2传感器与超声多普勒探头相组合通过口腔或鼻腔置入食道,在多普勒血流信号的引导下,使Hb-SO2传感器正对降主动脉。
  7. 根据权利要求1所述的氧供参数监测方法,其特征在于,三束近红外光的波长分别为:λ1、λ2为600~1000nm,λ3为1000~1400nm。
  8. 适用于如权利要求1-7任一种所述的氧供参数监测方法的检测装置,其特征在于,包括Hb-SO2传感器、处理器、监视器,所述Hb-SO2传感器包括近红外光源、光检测器、传感器导线,所述光检测器通过传感器导线与处理器电连接,所述处理器与监视器电连接。
  9. 根据权利要求8所述的检测装置,其特征在于,所述近红外光源包括 三束波长不同的近红外光,其中λ1、λ2波长范围为600~1000nm,λ3波长范围为1000~1400nm,所述光检测器包括400~1300nm的双波段光电二极管,光检测器至少一个。
  10. 根据权利要求8所述的检测装置,其特征在于,所述处理器固化有滤波模块和数据处理模块。
PCT/CN2016/099309 2016-02-01 2016-09-19 一种氧供参数监测方法及监测装置 WO2017133254A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610070353.8 2016-02-01
CN201610070353.8A CN105748089B (zh) 2016-02-01 2016-02-01 一种氧供参数监测方法及监测装置

Publications (1)

Publication Number Publication Date
WO2017133254A1 true WO2017133254A1 (zh) 2017-08-10

Family

ID=56342953

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/099309 WO2017133254A1 (zh) 2016-02-01 2016-09-19 一种氧供参数监测方法及监测装置

Country Status (2)

Country Link
CN (1) CN105748089B (zh)
WO (1) WO2017133254A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105748089B (zh) * 2016-02-01 2018-10-26 刘进 一种氧供参数监测方法及监测装置
CA3047628C (en) * 2017-01-30 2023-05-16 Opco Medical Aps Device for determination of the hemoglobin amount of a patient
CN107928638B (zh) * 2017-12-12 2021-11-16 吉林大学 一种脉搏信号提取及传输电路
CN107928641B (zh) * 2017-12-12 2021-11-12 吉林大学 用于中医脉诊的脉象信号提取装置
CN107928636B (zh) * 2017-12-12 2021-11-12 吉林大学 一种具有温度补偿功能的脉诊仪
CN114271805B (zh) * 2021-12-31 2023-07-25 四川大学 一种心输出量测量方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1245407A (zh) * 1996-12-11 2000-02-23 联合药品公司 测量充氧参数的系统和方法
WO2002056760A1 (en) * 2001-01-19 2002-07-25 Tufts University Method for measuring venous oxygen saturation
CN1542434A (zh) * 2003-11-07 2004-11-03 清华大学 可修正外层组织影响的组织血氧参数检测方法
CN2655812Y (zh) * 2003-11-26 2004-11-17 四川大学华西医院 动脉血氧饱和度探测装置
CN1642472A (zh) * 2002-01-31 2005-07-20 英国技术集团国际有限公司 静脉脉搏血氧定量法
CN102512142A (zh) * 2011-12-22 2012-06-27 哈尔滨工业大学 基于多距测量方法的递归最小二乘自适应滤波近红外脑功能活动信号提取方法
WO2014011368A1 (en) * 2012-06-18 2014-01-16 Eso-Technologies, Inc. Compositions and methods for measurement of oxygen saturation in blood filled structures
CN104739425A (zh) * 2015-03-31 2015-07-01 电子科技大学 混合和中央静脉氧饱和度的光学无创检测方法
CN105748089A (zh) * 2016-02-01 2016-07-13 刘进 一种氧供参数监测方法及监测装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5934277A (en) * 1991-09-03 1999-08-10 Datex-Ohmeda, Inc. System for pulse oximetry SpO2 determination
JP2005253478A (ja) * 2002-03-18 2005-09-22 Citizen Watch Co Ltd ヘモグロビン分析装置
CN101972148B (zh) * 2010-11-19 2011-11-16 哈尔滨工业大学 基于经验模态分解的近红外脑功能检测的扰动消除方法
CN105163662A (zh) * 2013-02-13 2015-12-16 米斯比尔生命科学公司 用于测量静脉血氧的方法和装置

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1245407A (zh) * 1996-12-11 2000-02-23 联合药品公司 测量充氧参数的系统和方法
WO2002056760A1 (en) * 2001-01-19 2002-07-25 Tufts University Method for measuring venous oxygen saturation
CN1642472A (zh) * 2002-01-31 2005-07-20 英国技术集团国际有限公司 静脉脉搏血氧定量法
CN1542434A (zh) * 2003-11-07 2004-11-03 清华大学 可修正外层组织影响的组织血氧参数检测方法
CN2655812Y (zh) * 2003-11-26 2004-11-17 四川大学华西医院 动脉血氧饱和度探测装置
CN102512142A (zh) * 2011-12-22 2012-06-27 哈尔滨工业大学 基于多距测量方法的递归最小二乘自适应滤波近红外脑功能活动信号提取方法
WO2014011368A1 (en) * 2012-06-18 2014-01-16 Eso-Technologies, Inc. Compositions and methods for measurement of oxygen saturation in blood filled structures
CN104739425A (zh) * 2015-03-31 2015-07-01 电子科技大学 混合和中央静脉氧饱和度的光学无创检测方法
CN105748089A (zh) * 2016-02-01 2016-07-13 刘进 一种氧供参数监测方法及监测装置

Also Published As

Publication number Publication date
CN105748089A (zh) 2016-07-13
CN105748089B (zh) 2018-10-26

Similar Documents

Publication Publication Date Title
WO2017133254A1 (zh) 一种氧供参数监测方法及监测装置
US7047055B2 (en) Fetal pulse oximetry
Zourabian et al. Trans-abdominal monitoring of fetal arterial blood oxygenation using pulse oximetry
JP3350521B2 (ja) 患者の灌流指数を生成する装置
JP4465271B2 (ja) 対象組織内の血液酸素飽和度を非侵襲的に決定する装置
US7611470B2 (en) Measurement of cardiac output and blood volume by non-invasive detection of indicator dilution
US20080208019A1 (en) Modified Pulse Oximetry Technique For Measurement Of Oxygen Saturation In Arterial And Venous Blood
US6517496B1 (en) Airway-based cardiac output monitor and methods for using same
JPH10501141A (ja) 非侵入的にヘマトクリット値をモニタするシステム及び方法
TW201249403A (en) Concentration-measurement device and concentration-measurement method
EP1981401A2 (en) Measurement of cardiac output and blood volume by non-invasive detection of indicator dilution
WO2022237171A1 (zh) 一种基于ccd的双波长红外血氧检测系统
US20100042007A1 (en) System for repetitive measurements of cardiac output in freely moving individuals
Stubán et al. Non-invasive calibration method for pulse oximeters
US20170251961A1 (en) Biological information measurement device, mixed venous oxygen saturation estimation method, and program
KR102348184B1 (ko) 박동이 없는 체외순환회로용 혈중 산소포화도 측정장치 및 이를 이용한 측정방법
WO2007136521A2 (en) Measurement of cardiac output and blood volume by non-invasive detection of indicator dilution for hemodialysis
Kraitl et al. Optical non-invasive methods for characterization of the human health status
Nahm et al. Non-invasive in vivo measurement of blood spectrum by time-resolved near-infrared spectroscopy
Budidha In vivo investigations of photoplethysmograms and arterial oxygen saturation from the auditory canal in conditions of compromised peripheral perfusion
JP6949329B2 (ja) 脳血流量の測定装置の作動方法及び測定装置
Lotfi Comparing Pulse Oximetry and Laser Doppler Flowmetry as a Diagnostic Tool for Pulpal Vitality
Pałko Oximetric and capnometric studies—aspects of natural and artificial ventilation
Brown et al. Comparison of near-infrared spectroscopy with CT cerebral blood flow measurements in newborn piglets
Zhang et al. The Study of Transesophageal Oxygen Saturation Monitoring

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16889065

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16889065

Country of ref document: EP

Kind code of ref document: A1