WO2017132829A1 - 数据传输的方法、用户设备和基站 - Google Patents

数据传输的方法、用户设备和基站 Download PDF

Info

Publication number
WO2017132829A1
WO2017132829A1 PCT/CN2016/073176 CN2016073176W WO2017132829A1 WO 2017132829 A1 WO2017132829 A1 WO 2017132829A1 CN 2016073176 W CN2016073176 W CN 2016073176W WO 2017132829 A1 WO2017132829 A1 WO 2017132829A1
Authority
WO
WIPO (PCT)
Prior art keywords
base station
cod
pilot signal
timer
data
Prior art date
Application number
PCT/CN2016/073176
Other languages
English (en)
French (fr)
Inventor
张涛
张武荣
于光炜
于峰
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CN201680071608.0A priority Critical patent/CN108370584B/zh
Priority to PCT/CN2016/073176 priority patent/WO2017132829A1/zh
Priority to EP16888654.7A priority patent/EP3402290B1/en
Publication of WO2017132829A1 publication Critical patent/WO2017132829A1/zh
Priority to US16/052,174 priority patent/US10764926B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0808Non-scheduled access, e.g. ALOHA using carrier sensing, e.g. carrier sense multiple access [CSMA]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0808Non-scheduled access, e.g. ALOHA using carrier sensing, e.g. carrier sense multiple access [CSMA]
    • H04W74/0816Non-scheduled access, e.g. ALOHA using carrier sensing, e.g. carrier sense multiple access [CSMA] with collision avoidance
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/14Spectrum sharing arrangements between different networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/002Transmission of channel access control information
    • H04W74/006Transmission of channel access control information in the downlink, i.e. towards the terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/30Connection release
    • H04W76/38Connection release triggered by timers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/002Transmission of channel access control information

Definitions

  • Embodiments of the present invention relate to the field of communications, and, more particularly, to a method, a user equipment, and a base station for data transmission.
  • Wireless communication between communication devices requires the use of a certain spectrum. If the transmitting device transmits a wireless signal over a spectrum, the receiving device receives the wireless signal on the corresponding spectrum.
  • the spectrum can be roughly divided into two categories, one is the licensed spectrum and the other is the un-licensed spectrum.
  • a communication device using a licensed spectrum can always occupy the spectrum as long as it has communication requirements, but a communication device using an unlicensed spectrum needs to first listen to whether the unlicensed spectrum is idle before starting communication, that is, whether it is being occupied by other communication devices.
  • the communication device can use the unlicensed spectrum to start communication only when it is confirmed that the unlicensed spectrum is idle.
  • the process of listening to the unlicensed spectrum here is generally referred to as the Listen Before Talk (LBT) process.
  • LBT Listen Before Talk
  • a communication device cannot always occupy the unlicensed spectrum. When it uses the unlicensed spectrum for a certain period of time, it needs to stop occupying the spectrum, so that other communication devices can also obtain the opportunity to use the spectrum.
  • the time required for each LBT is random.
  • the time required for the LBT is very short.
  • some A particular communication device may have to wait a long time to start using the spectrum again, ie it will take longer to use on the LBT.
  • LTE Long Term Evolution
  • UE User Equipment
  • the embodiment of the invention provides a data transmission method, which can improve the success rate of the UE access process, thereby improving the utilization of system resources.
  • a method of data transmission comprising:
  • the COD includes LP and DATA
  • the DATA includes n frames, each of the n frames includes p subframes and a first SP that corresponds one-to-one with the p subframes
  • the LP includes m Second SP; wherein m, n and p are positive integers greater than or equal to one.
  • sending the data packet to the base station includes: sending the data packet to the base station in a DATA area during a current COD of the base station.
  • the determining the first end time of the current COD includes: receiving a first short pilot signal sent by the base station at a first SP, where the first short pilot signal includes the first SP a sequence number of the frame in which it is located and a sequence number of the subframe corresponding to the first SP; determining the first end time according to the first short pilot signal.
  • determining a second end time of the LP in the next COD of the base station including: receiving a second short pilot signal sent by the base station in the second SP, where the second short pilot signal includes the a sequence number of the second SP; determining the second end time according to the second short pilot signal.
  • a method of data transmission comprising:
  • the base station performs an LBT process after the current COD
  • the base station sends a response message to the UE in a DATA area of a next COD subsequent to the LBT process.
  • the COD includes LP and DATA
  • the DATA includes n frames, each of the n frames includes p subframes and a first SP that corresponds one-to-one with the p subframes
  • the LP includes m Second SP; wherein m, n and p are positive integers greater than or equal to one.
  • the method further includes: the base station transmitting, by the first SP, a first short pilot signal to the UE, where the first short pilot signal includes a sequence number of a frame where the first SP is located And a sequence number of the subframe corresponding to the first SP.
  • the method further includes: the base station sending, by the second SP of the next COD, a second short pilot signal to the UE, where the second short pilot signal includes the second SP Serial number.
  • a user equipment including:
  • a sending module configured to send a data packet to the base station during a current COD of the base station
  • a timer module configured to enable a timer
  • a determining module configured to determine a first end time of the current COD
  • the timer module is further configured to suspend the timer at the first end time determined by the determining module;
  • the determining module is further configured to determine a second end time of the LP in the next COD of the base station;
  • the timer module is further configured to resume the timer at the second end time determined by the determining module;
  • a receiving module configured to receive a response message sent by the base station before the resumed timer that is restored by the timer module expires.
  • the user equipment can be used to perform the various processes performed by the user equipment in the method of the first aspect described above and its implementation.
  • a user equipment including: a transmitter, a receiver, a processor, and a memory.
  • the transmitter is configured to transmit a data packet to the base station during a current COD of the base station.
  • the processor is configured to start a timer, determine a first end time of the current COD, and pause the timer at the first end time; determine a second end time of the LP in the next COD of the base station, and The second end time restores the timer.
  • the receiver is configured to receive a response message sent by the base station before the resumed timer expires.
  • the memory is used to store the timing of the timer and is used to store code executed by the processor and the like.
  • the user equipment can be used to perform the various processes performed by the user equipment in the method of the first aspect described above and its implementation.
  • a computer readable storage medium storing a program causing a user equipment to perform the first aspect described above, and any one of the various implementations of the data transmission Methods.
  • a base station where the base station includes:
  • a receiving module configured to receive a data packet sent by the UE in a DATA area during a current COD
  • a processing module configured to perform an LBT process after the current COD
  • the base station can be used to perform the various processes performed by the base station in the method of the second aspect and its implementation described above.
  • a base station comprising: a transmitter, a receiver, a processor, and a memory.
  • the receiver is configured to receive a data packet sent by the UE in a DATA area during a current COD.
  • the processor is configured to perform an LBT process after the current COD.
  • the transmitter is configured to send a response message to the DATA area of the next COD after the LBT process.
  • the base station can be used to perform the various processes performed by the base station in the method of the second aspect and its implementation described above.
  • a computer readable storage medium storing a program causing a base station to perform the data transmission of any of the above second aspects, and various implementations thereof method.
  • the above timer is T300 or T400.
  • the response message is for a response to the packet.
  • the data packet includes an access request message, and the response message includes an access response message.
  • the data packet includes uplink data, and the response message includes an ACK message.
  • the UE suspends the timer at the end time of the previous COD, and resumes at the end of the LP of the next COD, that is, the UE pauses the timer during the LBT of the base station, which can improve
  • the success rate of the UE access process reduces the probability of retransmission of data packets, thereby improving the utilization of system resources.
  • FIG. 1 is a schematic flowchart of a UE using a timer in the prior art.
  • FIG. 2 is a possible schematic flow diagram of applying the prior art case using a timer to an unlicensed spectrum system.
  • FIG. 3 is a schematic flowchart of using a timer according to an embodiment of the present invention.
  • FIG. 4 is a schematic diagram of a COD of an embodiment of the present invention.
  • FIG. 5 is another schematic diagram of a COD in accordance with an embodiment of the present invention.
  • FIG. 6 is a structural block diagram of a user equipment according to an embodiment of the present invention.
  • FIG. 7 is another structural block diagram of a user equipment according to an embodiment of the present invention.
  • FIG. 8 is a structural block diagram of a base station according to an embodiment of the present invention.
  • FIG. 9 is another structural block diagram of a base station according to an embodiment of the present invention.
  • the communication device may include a UE and a base station.
  • the transmitting device is a base station
  • the corresponding receiving device may be a UE.
  • the base station may be a Global System for Mobile communication (GSM) system or a Base Transceiver Station (BTS) in a Code Division Multiple Access (CDMA) system, or may be A base station (NodeB) in a Wideband Code Division Multiple Access (WCDMA) system, which may also be an evolved Node B (eNB or eNodeB) in an LTE system, or a base station in a future 5G network.
  • GSM Global System for Mobile communication
  • BTS Base Transceiver Station
  • CDMA Code Division Multiple Access
  • NodeB Wideband Code Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access
  • eNB evolved Node B
  • AP access point
  • the UE may communicate with one or more core networks through a Radio Access Network (RAN), and the UE may be referred to as an access terminal, a terminal device, a subscriber unit, and a subscriber station. , mobile station, mobile station, remote station, remote terminal, mobile device, user terminal, terminal, wireless communication device, user agent or user device.
  • the UE may be a cellular phone, a cordless phone, a Session Initiation Protocol (SIP) phone, a Wireless Local Loop (WLL) station, a Personal Digital Assistant (PDA), or a wireless communication function.
  • FIG. 1 is a schematic flowchart of a UE using a timer in the prior art.
  • the UE 10 and the base station 20 are shown in FIG.
  • the UE 10 After the UE 10 starts the timer in S101, it transmits an access request message to the base station 20 in S102. Correspondingly, after receiving the access request message, the base station 20 may send the message to the UE 10 at S103. Send an access response message. It can be understood that the UE 10 receives the access response message sent by the base station 20 after S103 before the timer expires, then the timer can be stopped at the subsequent S104.
  • the UE 10 determines that the access procedure has failed when the timer expires.
  • the access procedure of the LTE system assumes that the base station can continuously occupy the spectrum. However, in a system using the unlicensed spectrum, the base station 20 cannot always occupy the spectrum. After using the spectrum for a period of time, LBT needs to be performed, and the spectrum is idle by the LBT. Occupying this spectrum, other devices can occupy the spectrum during the LBT.
  • the base station 20 may be connected because the spectrum cannot be continuously occupied. After the transmission of the incoming response message is pushed back, this makes the possibility that the UE does not receive the access response before the S105 timer expires, that is, since the base station 20 performs the LBT, the base station 20 transmits the access response message at S106. The time expires after the S105 timer expires, which in turn causes the access procedure to fail.
  • FIG. 3 is a schematic flowchart of using a timer according to an embodiment of the present invention.
  • the UE 10 and the base station 20 are shown in Figure 3, and the UE 10 communicates with the base station 20 over an unlicensed spectrum.
  • the time period in which the base station continuously occupies the spectrum is called a Channel Occupation Duration (COD), and the base station needs to perform LBT between two adjacent CODs.
  • COD Channel Occupation Duration
  • Each COD includes Long Preamble (LP) and Data (DATA), that is, the COD consists of two parts, LP and DATA, as shown in FIG.
  • the base station may send a pilot to the UE, in which the base station may perform data interaction with the UE, that is, the base station may transmit data to the UE or the base station may receive data from the UE.
  • the LP and DATA of each COD may have a further subdivision structure in time, and the LP may include m second short pilots (SPs), such as SP 0 , SP 1 ... SP m in FIG. 4 . -1 .
  • SPs may include n frames, such as F 0 , F 1 ... F n-1 in FIG. DATA in each frame can comprise p subframes (SF 0 in FIG. 4, SF 1 ... SF p-1 ) a first SP and a p-one correspondence subframes (SP in FIG. 4).
  • a first SP corresponding to one subframe is located before the subframe.
  • m, n, and p are all positive integers.
  • the length of time each frame continues may be fixed, and the length of time each subframe continues may also be fixed.
  • the length of time for each first SP may be fixed, and each second SP continues.
  • the length of time may also be fixed, and the length of time that the first SP and the second SP may continue may be equal or unequal.
  • the base station 20 may send a first short pilot signal to the UE 10 in each of the first SPs, and the first short pilot signal sent in each first SP carries the sequence number of the subframe corresponding to the first SP and the subframe.
  • the first short pilot signal transmitted by the base station 20 to the UE 10 in the SP corresponding to the subframe SF 1 in the frame F 0 carries a frame number of 0 and a subframe number of 1.
  • the base station 20 may send a second short pilot signal to the UE 10 in each second SP, and the second short pilot signal sent in each second SP carries the sequence number of the second SP.
  • the second short pilot signal transmitted by the base station 20 to the UE 10 at the SP1 carries a sequence number of 1.
  • each frame includes one subframe.
  • the DADA includes n frames and n first SPs corresponding to each frame one by one, as shown in FIG. 5.
  • the base station 20 may send the first short pilot signal to the UE 10 in each of the first SPs, and the first short pilot signal sent in each first SP carries the sequence number of the frame corresponding to the first SP.
  • the first short pilot signal transmitted by the base station 20 to the UE 10 in the SP corresponding to the frame F 0 carries a frame number of 0.
  • the method shown in Figure 3 includes:
  • the UE 10 starts a timer.
  • the UE 10 sends a data packet to the base station 20.
  • the timer can be T300 or T400.
  • the UE 10 transmits the data packet to the base station 20 and starts a timer in the DATA area of the current COD of the base station 20.
  • the base station 20 receives the data packet transmitted by the UE 10 during the DATA area during the current COD.
  • the data packet may be an access request message.
  • the data packet may be Uplink Data.
  • S201 and S202 are not limited in the embodiment of the present invention.
  • S201 and S202 may be performed simultaneously, or S201 may be performed after executing S202.
  • the embodiment of the present invention assumes that the timer is set to a duration of 5 s. Then, after S201, the timer can be clocked in the positive direction, that is, from 0 to 5 s; or the timer can also count down, that is, from 5 s to 0.
  • the UE 10 determines a first end time of the current COD.
  • the first end moment of the current COD is the first knot of the DATA area of the current COD. Beam moment.
  • the UE 10 may receive the first pilot signal sent by the base station 20 at the first SP of the DATA, and further determine the first end time according to the first pilot signal.
  • the UE 10 can obtain the sequence number of the subframe and the sequence number of the frame carried by the first pilot signal by reading the first pilot signal, so that the remaining frames and subframes of the current COD can be learned. The number, so the UE 10 can calculate the remaining time of the current COD, that is, know the first end time of the current COD.
  • the UE 10 can obtain the sequence number of the frame carried by the first pilot signal by reading the first pilot signal, so that the number of frames remaining in the current COD can be obtained, so the UE 10 can Calculate what is the remaining time of the current COD, that is, know the first end time of the current COD.
  • the UE 10 pauses the timer at the first end time.
  • the UE 10 suspends the timer at the end of the current COD.
  • the timer is now 3s (forward timing) or 2s (countdown). Then, the timer is suspended at S204, and the timing of the timer stays at 3s (forward timing) or 2s (countdown).
  • the UE 10 pauses the timer at the first end time. That is, the base station 20 performs an LBT process after the current COD. And in the process of the base station 20 performing the LBT, the timer at the UE 10 is in a suspended state.
  • the UE 10 determines a second end time of the LP in the next COD of the base station 20.
  • the base station 20 occupies spectrum resources during the next COD after the time of the LBT.
  • the UE 10 detects, after the first end time, whether the base station 20 starts transmitting the second pilot signal, that is, whether the LP of the next COD has started. If the UE 10 detects the second pilot signal sent by the base station 20 in one of the LPs of the next COD, the UE 10 may determine the sequence number of the second SP by using the second pilot signal, thereby the UE 10 It can be determined how many second SPs the LP still has, ie, when the LP ends.
  • the UE 10 resumes the timer at the second end time.
  • the UE 10 resumes the timer at the LP end time of the next COD.
  • recovery timer refers to starting the suspended timer and continuing to time.
  • the timer is continued from the position where S204 is paused: 3s (forward timing) or 2s (countdown). In other words, after S206, the timer continues to count for 2s. It will stop automatically.
  • the UE 10 receives the response message sent by the base station 20 before the timer expires.
  • the base station 20 may send a response message to the UE 10 in the DATA area of the next COD after the LBT process. That is, before the resumed timer expires, the UE 10 may receive a response message sent by the base station 20 in the DATA area of the next COD.
  • the response message in S207 may be an access response message.
  • the response message in S207 may be an Acknowledge (ACK) message or a non-acknowledge (NACK) message.
  • ACK Acknowledge
  • NACK non-acknowledge
  • the UE 10 can stop the timer.
  • the UE 10 needs to perform packet retransmission after the timer expires.
  • the UE suspends the timer at the end time of the previous COD, and resumes at the end of the LP of the next COD, that is, the UE pauses the timer during the LBT of the base station, which can improve
  • the success rate of the UE access process reduces the probability of retransmission of data packets, thereby improving the utilization of system resources.
  • FIG. 6 is a structural block diagram of a user equipment according to an embodiment of the present invention.
  • the user equipment 60 shown in FIG. 6 communicates with the base station in an unlicensed spectrum.
  • the user equipment 60 includes a sending module 601, a timer module 602, a determining module 603, and a receiving module 604.
  • the sending module 601 is configured to send a data packet to the base station during a current channel occupation time COD of the base station.
  • the determining module 603 is configured to determine a first end time of the current COD.
  • the timer module 602 is further configured to suspend the timer at the first end time determined by the determining module 603.
  • the determining module 603 is further configured to determine a second end time of the long pilot LP of the next COD of the base station.
  • the timer module 602 is further configured to resume the timer at the second end time determined by the determining module 603.
  • the receiving module 604 is configured to time out the recovered timer that is restored by the timer module Previously, the response message sent by the base station is received.
  • COD includes LP and DATA.
  • the DATA includes n frames, each of the n frames includes p subframes and a first short SP corresponding to the p subframes one by one; the LP includes m second short SPs.
  • n, m, and p are positive integers greater than or equal to one.
  • the sending module 601 is specifically configured to: send the data packet to the base station in a DATA area during a current COD of the base station.
  • the receiving module 604 is further configured to receive a first short pilot signal that is sent by the base station at the first SP, where the first short pilot signal includes a sequence number of a frame where the first SP is located;
  • the determining module 603 is specifically configured to: determine the first end time according to the first short pilot signal.
  • the first short pilot signal may further include a sequence number of a subframe corresponding to the first SP.
  • the receiving module 604 is further configured to receive a second short pilot signal that is sent by the base station in the second SP, where the second short pilot signal includes a sequence number of the second SP; further, the determining module 603 is specifically configured to: determine the second end time according to the second short pilot signal.
  • the UE suspends the timer at the end time of the previous COD, and resumes at the end of the LP of the next COD, that is, the UE pauses the timer during the LBT of the base station, which can improve
  • the success rate of the UE access process reduces the probability of retransmission of data packets, thereby improving the utilization of system resources.
  • the sending module 601 may be implemented by a transmitter
  • the timer module 602 and the determining module 603 may be implemented by a processor
  • the receiving module 604 may be implemented by a receiver.
  • user device 70 can include a processor 710, a receiver 720, a transmitter 730, and a memory 740.
  • the memory 740 can be used to store timing, a first end time, a second end time, etc., and can also be used to store code and the like executed by the processor 710.
  • bus system 750 which in addition to the data bus includes a power bus, a control bus, and a status signal bus.
  • the user equipment 60 shown in FIG. 6 or the user equipment 70 shown in FIG. 7 can implement the various processes implemented by the UE in the foregoing method embodiment of FIG. 3. To avoid repetition, details are not described herein again.
  • FIG. 8 is a structural block diagram of a base station according to an embodiment of the present invention.
  • the base station 80 shown in FIG. 8 includes a receiving module 801, a processing module 802, and a transmitting module 803.
  • the receiving module 801 is configured to receive, by using the DATA area during the current COD, the UE to send Packet.
  • the processing module 802 is configured to perform an LBT process after the current COD.
  • the sending module 803 is configured to send a response message to the DATA area of the next COD after the LBT process.
  • the sending module 803 is further configured to send, by the first SP, the first short pilot signal to the UE.
  • the sending module 803 is further configured to send, by the second SP of the next COD, a second short pilot signal to the UE.
  • the second short pilot signal includes a sequence number of the second SP.
  • the sending module 803 can be implemented by a transmitter
  • the processing module 802 can be implemented by a processor
  • the receiving module 801 can be implemented by a receiver.
  • base station 90 can include a processor 910, a receiver 920, a transmitter 930, and a memory 940.
  • the memory 940 can be used to store the first pilot signal, the second pilot signal, and the like, and can also be used to store codes and the like executed by the processor 910.
  • bus system 950 which in addition to the data bus includes a power bus, a control bus, and a status signal bus.
  • the base station 80 shown in FIG. 8 or the base station 90 shown in FIG. 9 can implement the various processes implemented by the base station in the foregoing method embodiment of FIG. 3. To avoid repetition, details are not described herein again.
  • the processor may be an integrated circuit chip with signal processing capabilities.
  • each step of the foregoing method embodiment may be completed by an integrated logic circuit of hardware in a processor or an instruction in a form of software.
  • the processor may be a general-purpose processor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), a Field Programmable Gate Array (FPGA), or the like. Programming logic devices, discrete gates or transistor logic devices, discrete hardware components.
  • the methods, steps, and logical block diagrams disclosed in the embodiments of the present invention may be implemented or carried out.
  • the general purpose processor may be a microprocessor or the processor or any conventional processor or the like.
  • the steps of the method disclosed in the embodiments of the present invention may be directly implemented by the hardware decoding processor, or may be performed by a combination of hardware and software modules in the decoding processor.
  • the software module can be located in a conventional storage medium such as random access memory, flash memory, read only memory, programmable read only memory or electrically erasable programmable memory, registers, and the like.
  • the storage medium is located in the memory, and the processor reads the information in the memory and combines the hardware to complete the steps of the above method.
  • the memory in the embodiments of the present invention may be a volatile memory or a non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory may be a read-only memory (ROM), a programmable read only memory (PROM), an erasable programmable read only memory (Erasable PROM, EPROM), or an electric Erase programmable read only memory (EEPROM) or flash memory.
  • the volatile memory can be a Random Access Memory (RAM) that acts as an external cache.
  • RAM Random Access Memory
  • many forms of RAM are available, such as static random access memory (SRAM), dynamic random access memory (DRAM), synchronous dynamic random access memory (Synchronous DRAM).
  • SDRAM Double Data Rate SDRAM
  • DDR SDRAM Double Data Rate SDRAM
  • ESDRAM Enhanced Synchronous Dynamic Random Access Memory
  • SLDRAM Synchronous Connection Dynamic Random Access Memory
  • DR RAM direct memory bus random access memory
  • the disclosed systems, devices, and methods may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division, and may be implemented in actual implementation.
  • multiple units or components may be combined or integrated into another system, or some features may be omitted or not performed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in each embodiment of the present invention may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the functions may be stored in a computer readable storage medium if implemented in the form of a software functional unit and sold or used as a standalone product.
  • the technical solution of the present invention which is essential or contributes to the prior art, or a part of the technical solution, may be embodied in the form of a software product, which is stored in a storage medium, including
  • the instructions are used to cause a computer device (which may be a personal computer, server, or network device, etc.) to perform all or part of the steps of the methods described in various embodiments of the present invention.
  • the foregoing storage medium includes: a U disk, a mobile hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk, and the like, which can store program codes. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明实施例提出了一种数据传输的方法,UE与基站在非授权频谱进行通信,包括:在基站的当前COD期间,UE向基站发送数据包并开启定时器;确定所述当前COD的第一结束时刻;在所述第一结束时刻暂停所述定时器;确定所述基站的下一个COD中LP的第二结束时刻;在所述第二结束时刻恢复所述定时器;在所述恢复后的定时器超时之前,接收所述基站发送的响应消息。在本发明实施例中,UE将定时器在前一个COD的结束时刻挂起,在后一个COD的LP的结束时候恢复,即UE将定时器在基站的LBT期间暂停计时,这样能够提升UE接入过程的成功率,减少数据包的重传概率,进而能够提高系统资源的利用率。

Description

数据传输的方法、用户设备和基站 技术领域
本发明实施例涉及通信领域,并且更具体地,涉及一种数据传输的方法、用户设备和基站。
背景技术
通讯设备之间进行无线通信需要使用一定的频谱,若发送设备在一段频谱上发送无线信号,那么接收设备会在相应的频谱上接收该无线信号。频谱大致可以分为两类,一类为授权(Licensed)频谱,另一类为非授权(Un-licensed)频谱。
使用授权频谱的通讯设备只要有通信需求就可以一直占用该频谱,但是使用非授权频谱的通讯设备在开始通信之前需要先侦听该非授权频谱是否空闲,即是否正被其它的通讯设备所占用,只有在确认该非授权频谱空闲的时候该通讯设备才可以使用该非授权频谱开始通信。这里侦听非授权频谱是否空闲的过程一般被称为先听后说(Listen Before Talk,LBT)过程。并且,某一通讯设备也不能一直占用非授权频谱,当它使用该非授权频谱达到一定的时间后,其需要停止占用该频谱,以使得其他通讯设备也可以获得使用该频谱的机会。然而,每次LBT所需的时间是随机的,当周边使用该频谱的设备数量很少的时候,LBT所需的时间是很短的,当周边使用该频谱的设备数量很多的时候,某一特定通信设备可能需要等待很长一段时间才能再次开始使用该频谱,即其用在LBT上的时间会比较长。
长期演进(Long Term Evolution,LTE)系统中有很多过程使用定时器来控制用户设备(User Equipment,UE)的行为。然而现有技术中,均假设基站可以连续占用频谱,如果基站实际上使用的是非授权频谱,那么UE在定时器超时之前收不到响应的可能性就增大了,进而会导致系统资源的浪费。
发明内容
本发明实施例提供了一种数据传输的方法,能够提升UE接入过程的成功率,进而能够提高系统资源的利用率。
第一方面,提供了一种数据传输的方法,所述方法包括:
在基站的当前COD期间,向所述基站发送数据包并开启定时器;
确定所述当前COD的第一结束时刻;
在所述第一结束时刻暂停所述定时器;
确定所述基站的下一个COD中LP的第二结束时刻;
在所述第二结束时刻恢复所述定时器;
在所述恢复后的定时器超时之前,接收所述基站发送的响应消息。
所述COD包括LP和DATA,所述DATA包括n个帧,所述n个帧中的每个帧包括p个子帧以及与所述p个子帧一一对应的第一SP;所述LP包括m个第二SP;其中,m,n和p为大于或等于1的正整数。
可选地,所述在所述基站的当前COD期间,向所述基站发送数据包,包括:在所述基站的当前COD期间的DATA区域,向所述基站发送所述数据包。
可选地,所述确定所述当前COD的第一结束时刻,包括:接收所述基站在第一SP发送的第一短导频信号,所述第一短导频信号包括所述第一SP所在的帧的序号以及与所述第一SP对应的子帧的序号;根据所述第一短导频信号确定所述第一结束时刻。
可选地,确定所述基站的下一个COD中LP的第二结束时刻,包括:接收所述基站在第二SP发送的第二短导频信号,所述第二短导频信号包括所述第二SP的序号;根据所述第二短导频信号确定所述第二结束时刻。
第二方面,提供了一种数据传输的方法,所述方法包括:
所述基站在当前COD期间的DATA区域,接收UE发送的数据包;
所述基站在所述当前COD之后,进行LBT进程;
所述基站在所述LBT进程之后的下一个COD的DATA区域,向所述UE发送响应消息。
所述COD包括LP和DATA,所述DATA包括n个帧,所述n个帧中的每个帧包括p个子帧以及与所述p个子帧一一对应的第一SP;所述LP包括m个第二SP;其中,m,n和p为大于或等于1的正整数。
可选地,所述方法还包括:所述基站在所述第一SP向所述UE发送第一短导频信号,所述第一短导频信号包括所述第一SP所在的帧的序号以及与所述第一SP对应的子帧的序号。
可选地,所述方法还包括:所述基站在所述下一个COD的第二SP向所述UE发送第二短导频信号,所述第二短导频信号包括所述第二SP的序号。
第三方面,提供了一种用户设备,包括:
发送模块,用于在基站的当前COD期间,向所述基站发送数据包;
定时器模块,用于开启定时器;
确定模块,用于确定所述当前COD的第一结束时刻;
所述定时器模块,还用于在所述确定模块确定的所述第一结束时刻暂停所述定时器;
所述确定模块,还用于确定所述基站的下一个COD中LP的第二结束时刻;
所述定时器模块,还用于在所述确定模块确定的所述第二结束时刻恢复所述定时器;
接收模块,用于在所述定时器模块恢复的所述恢复后的定时器超时之前,接收所述基站发送的响应消息。该用户设备可以用于执行上述第一方面及其实现方式的方法中由用户设备执行的各个过程。
第四方面,提供了一种用户设备,包括:发送器、接收器、处理器和存储器。发送器用于在基站的当前COD期间,向所述基站发送数据包。处理器用于开启定时器,确定所述当前COD的第一结束时刻,并在所述第一结束时刻暂停所述定时器;确定所述基站的下一个COD中LP的第二结束时刻,并在所述第二结束时刻恢复所述定时器。接收器用于在所述恢复后的定时器超时之前,接收所述基站发送的响应消息。存储器用于存储定时器的计时,并用于存储处理器所执行的代码等。该用户设备可以用于执行上述第一方面及其实现方式的方法中由用户设备执行的各个过程。
第五方面,提供了一种计算机可读存储介质,所述计算机可读存储介质存储有程序,所述程序使得用户设备执行上述第一方面,及其各种实现方式中的任一种数据传输的方法。
第六方面,提供了一种基站,所述基站包括:
接收模块,用于在当前COD期间的DATA区域,接收UE发送的数据包;
处理模块,用于在所述当前COD之后,进行LBT进程;
发送模块,用于在所述处理模块进行的所述LBT进程之后的下一个 COD的DATA区域,向所述UE发送响应消息。该基站可以用于执行上述第二方面及其实现方式的方法中由基站执行的各个过程。
第七方面,提供了一种基站,包括:发送器、接收器、处理器和存储器。接收器用于在当前COD期间的DATA区域,接收UE发送的数据包。处理器用于在所述当前COD之后,进行LBT进程。发送器用于在所述LBT进程之后的下一个COD的DATA区域,向所述UE发送响应消息。该基站可以用于执行上述第二方面及其实现方式的方法中由基站执行的各个过程。
第八方面,提供了一种计算机可读存储介质,所述计算机可读存储介质存储有程序,所述程序使得基站执行上述第二方面,及其各种实现方式中的任一种数据传输的方法。
其中,上述定时器为T300或T400。
可理解,响应消息是针对与数据包的响应。作为一例,所述数据包包括接入请求消息,所述响应消息包括接入响应消息。作为另一例,所述数据包包括上行数据,所述响应消息包括ACK消息。
可见,在本发明实施例中,UE将定时器在前一个COD的结束时刻挂起,在后一个COD的LP的结束时候恢复,即UE将定时器在基站的LBT期间暂停计时,这样能够提升UE接入过程的成功率,减少数据包的重传概率,进而能够提高系统资源的利用率。
附图说明
为了更清楚地说明本发明实施例的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1是现有技术中UE使用定时器的一个示意性流程图。
图2是将现有技术使用定时器的情形应用于非授权频谱系统的可能示意性流程图。
图3是本发明实施例的使用定时器的示意性流程图。
图4是本发明实施例的COD的一个示意图。
图5是本发明实施例的COD的另一个示意图。
图6是本发明实施例的用户设备的一个结构框图。
图7是本发明实施例的用户设备的另一个结构框图。
图8是本发明实施例的基站的一个结构框图。
图9是本发明实施例的基站的另一个结构框图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动的前提下所获得的所有其他实施例,都属于本发明保护的范围。
本发明实施例中,通讯设备可以包括UE和基站。例如,若发送设备为基站,那么相应的接收设备可以为UE。
本发明实施例中,基站可以是全球移动通信(Global System for Mobile communication,GSM)系统或码分多址(Code Division Multiple Access,CDMA)系统中的基站(Base Transceiver Station,BTS),也可以是宽带码分多址(Wideband Code Division Multiple Access,WCDMA)系统中的基站(NodeB),还可以是LTE系统中的演进型基站(Evolutional Node B,eNB或eNodeB),或者是未来5G网络中的基站设备、小基站设备,或者是wifi中的接入点(Access Point,AP)等,本发明对此并不限定。
本发明实施例中,UE可以经无线接入网(Radio Access Network,RAN)与一个或多个核心网(Core Network)进行通信,UE可称为接入终端、终端设备、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。UE可以是蜂窝电话、无绳电话、会话启动协议(Session Initiation Protocol,SIP)电话、无线本地环路(Wireless Local Loop,WLL)站、个人数字处理(Personal Digital Assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备以及未来5G网络中的终端设备等。
图1是现有技术中UE使用定时器的一个示意性流程图。图1中示出了UE 10和基站20。
UE 10在S101中开启定时器之后,在S102中向基站20发送接入请求消息。相应地,基站20在收到接入请求消息之后,可以在S103向UE 10发 送接入响应消息。可理解,UE 10在定时器超时之前在S103之后接收到基站20发送的接入响应消息,那么,可以在随后的S104将定时器停止。
相反,如果UE 10在S102之后且在定时器超时之前,没有接收到接入响应消息,则在定时器超时时,UE 10确定该接入过程失败。
LTE系统的接入过程假设基站可以连续占用频谱,然而在使用非授权频谱的系统中,基站20不能总是占用频谱,在使用了频谱一段时间后需要进行LBT,通过LBT判定频谱空闲了才能再次占用该频谱,在LBT的这段时间内其他的设备可以占用该频谱。
这样,如图2所示,当把LTE的接入过程应用到非授权频谱系统上之后,基站20在S102接收到UE 10发送的接入请求消息之后,有可能因为不能继续占用频谱而将接入响应消息的发送推后,这使得UE在S105定时器超时之前收不到接入响应的可能性增大了,也就是说,由于基站20进行LBT使得基站20在S106发送接入响应消息的时间在S105定时器超时之后,进而使得该接入过程失败。
图3是本发明实施例的使用定时器的示意性流程图。图3中示出了UE 10和基站20,并且UE 10与基站20在非授权频谱进行通信。
在非授权频谱上,每次基站连续占用频谱的时间段称为一个信道占用时间(Channel Occupation Duration,COD),基站需要在两个相邻的COD之间进行LBT。
每个COD包括长导频(Long Preamble,LP)和数据(DATA),也就是说,COD由LP和DATA两部分组成,如图4所示。在LP中基站可以向UE发送导频,在DATA中基站可以与UE进行数据交互,即基站可以向UE发送数据或者基站可以从UE接收数据。
其中,每个COD的LP和DATA在时间上可以有进一步的细分结构,LP可包括m个第二短导频(Short Preamble,SP),如图4中的SP0、SP1…SPm-1。DATA可包括n个帧,如图4中的F0、F1…Fn-1。DATA中的每个帧可以包括p个子帧(如图4中的SF0、SF1…SFp-1)以及与p个子帧一一对应的第一SP(如图4中的SP)。与一个子帧对应的第一SP位于该子帧之前。这里,m、n和p均为正整数。
每个帧延续的时间长度可以是固定的,每个子帧延续的时间长度也可以是固定的。每个第一SP延续的时间长度可以是固定的,每个第二SP延续的 时间长度也可以是固定的,并且第一SP与第二SP延续的时间长度可以相等或者不相等。
基站20可以在每个第一SP中向UE 10发送第一短导频信号,每个第一SP中发送的第一短导频信号携带该第一SP对应的子帧的序号以及该子帧所在的帧的序号。例如基站20在帧F0中的子帧SF1所对应的SP中向UE 10发送的第一短导频信号携带的帧号为0,子帧号为1。
基站20可以在每个第二SP中向UE 10发送第二短导频信号,每个第二SP中发送的第二短导频信号携带该第二SP的序号。例如,基站20在SP1向UE 10发送的第二短导频信号携带的序号为1。
可选地,作为一个实施例,p=1。即每个帧包括一个子帧。此时,可以理解为,DADA包括n个帧以及与每个帧一一对应的n个第一SP,如图5所示。并且,基站20可以在每个第一SP中向UE 10发送第一短导频信号,每个第一SP中发送的第一短导频信号携带该第一SP对应的帧的序号。例如基站20在帧F0所对应的SP中向UE 10发送的第一短导频信号携带的帧号为0。
图3所示的方法包括:
S201,UE 10开启定时器。
S202,UE 10向基站20发送数据包。
可选地,定时器可以是T300或者T400。
具体地,UE 10在基站20的当前COD期间的DATA区域中,向基站20发送该数据包并开启定时器。换句话说,基站20在当前COD期间的DATA区域,接收UE 10发送的数据包。
作为一个实施例,该数据包可以为接入请求消息。
作为另一个实施例,该数据包可以为上行数据(Uplink Data)。
应注意,本发明实施例对S201和S202的执行顺序不作限定。例如,S201和S202可以同时执行,或者也可以在执行S202之后再执行S201。
举例来说,本发明实施例假设定时器设定的时长为5s。那么,在S201之后,定时器可以正向计时,即从0开始计时直至5s;或者定时器也可以倒计时,即从5s开始计时直至0。
S203,UE 10确定当前COD的第一结束时刻。
这里,当前COD的第一结束时刻即当前COD的DATA区域的第一结 束时刻。
具体地,UE 10可以接收基站20在DATA的第一SP发送的第一导频信号,并进一步根据第一导频信号确定第一结束时刻。
例如,对于图4所示的情形,UE 10可以通过读取第一导频信号,获取该第一导频信号携带的子帧的序号和帧的序号,从而可以获知当前COD剩余的帧和子帧的数量,所以UE 10可以计算得到当前COD的剩余时间是多少,即获知当前COD的第一结束时刻。
例如,对于图5所示的情形,UE 10可以通过读取第一导频信号,获取该第一导频信号携带的帧的序号,从而可以获知当前COD剩余的帧的数量,所以UE 10可以计算得到当前COD的剩余时间是多少,即获知当前COD的第一结束时刻。
S204,UE 10在第一结束时刻暂停定时器。
也就是说,UE 10在当前COD的结束时刻将定时器挂起。
举例来说,如果从S201至S204前已经经过了3s,此时定时器计时为3s(正向计时)或2s(倒计时)。那么,在S204暂停定时器,是该定时器的计时停留在3s(正向计时)或2s(倒计时)。
由于基站20在当前COD结束之后会进行LBT,UE 10在第一结束时刻将定时器暂停。也就是说,基站20在当前COD之后,进行LBT进程。并且在基站20进行LBT的过程中,UE 10处的定时器处于挂起的状态。
S205,UE 10确定基站20的下一个COD中LP的第二结束时刻。
基站20在LBT的时间之后,在下一个COD期间占用频谱资源。
具体地,UE 10在第一结束时刻之后检测基站20是否开始发送第二导频信号,即下一个COD的LP是否已经开始。若UE 10检测到了基站20在下一个COD的LP中的某一个第二SP发送的第二导频信号,则UE 10可以通过该第二导频信号确定该第二SP的序号,由此UE 10可以确定该LP还剩余多少第二SP,即确定该LP在何时结束。
S206,UE 10在第二结束时刻恢复定时器。
也就是说,UE 10在下一个COD的LP结束时刻将定时器恢复。
可理解,恢复定时器是指启动挂起的定时器并继续计时。
举例来说,在S206中,将定时器从S204暂停的位置:3s(正向计时)或2s(倒计时)处继续计时。也就是说,在S206之后,定时器继续计时2s 后便会自动停止。
S207,在定时器超时之前,UE 10接收基站20发送的响应消息。
具体地,基站20在LBT进程之后的下一个COD的DATA区域,可以向UE 10发送响应消息。即在恢复的定时器超时之前,UE 10可以在下一个COD的DATA区域,接收基站20发送的响应消息。
作为一个实施例,若S202中的数据包为接入请求消息,那么,S207中的响应消息可以为接入响应消息。
作为另一个实施例,若S202中的数据包为上行数据,那么,S207中的响应消息可以为确认(Acknowledge,ACK)消息或否定确认(non-acknowledge,NACK)消息。
这样,在S207之后,UE 10可以将定时器停止。
相反,如果在S206之后且恢复的定时器超时之前,没有接收到基站20发送的响应消息,则在定时器超时之后,UE 10需进行数据包重发。
可见,在本发明实施例中,UE将定时器在前一个COD的结束时刻挂起,在后一个COD的LP的结束时候恢复,即UE将定时器在基站的LBT期间暂停计时,这样能够提升UE接入过程的成功率,减少数据包的重传概率,进而能够提高系统资源的利用率。
图6是本发明实施例的用户设备的一个结构框图。图6所示的用户设备60与基站在非授权频谱进行通信,用户设备60包括发送模块601、定时器模块602、确定模块603和接收模块604。
发送模块601,用于在所述基站的当前信道占用时间COD期间,向所述基站发送数据包。
定时器模块602,用于开启定时器;
确定模块603,用于确定所述当前COD的第一结束时刻。
定时器模块602,还用于在确定模块603确定的所述第一结束时刻暂停所述定时器。
确定模块603,还用于确定所述基站的下一个COD中长导频LP的第二结束时刻。
定时器模块602,还用于在确定模块603确定的所述第二结束时刻恢复所述定时器。
接收模块604,用于在所述定时器模块恢复的所述恢复后的定时器超时 之前,接收所述基站发送的响应消息。
其中,COD包括LP和DATA。所述DATA包括n个帧,所述n个帧中的每个帧包括p个子帧以及与所述p个子帧一一对应的第一短SP;所述LP包括m个第二短SP。n、m和p为大于或等于1的正整数。
可选地,发送模块601具体用于:在所述基站的当前COD期间的DATA区域,向所述基站发送所述数据包。
可选地,接收模块604,还用于接收所述基站在第一SP发送的第一短导频信号,所述第一短导频信号包括所述第一SP所在的帧的序号;进一步地,确定模块603具体用于:根据所述第一短导频信号确定所述第一结束时刻。
p为大于1的正整数时,所述第一短导频信号还可以包括与所述第一SP对应的子帧的序号。
可选地,接收模块604,还用于接收所述基站在第二SP发送的第二短导频信号,所述第二短导频信号包括所述第二SP的序号;进一步地,确定模块603具体用于:根据所述第二短导频信号确定所述第二结束时刻。
可见,在本发明实施例中,UE将定时器在前一个COD的结束时刻挂起,在后一个COD的LP的结束时候恢复,即UE将定时器在基站的LBT期间暂停计时,这样能够提升UE接入过程的成功率,减少数据包的重传概率,进而能够提高系统资源的利用率。
应注意,本发明实施例中,发送模块601可以由发送器实现,定时器模块602和确定模块603可以由处理器实现,接收模块604可以由接收器实现。如图7所示,用户设备70可以包括处理器710、接收器720、发送器730和存储器740。其中,存储器740可以用于存储定时,第一结束时刻,第二结束时刻等,还可以用于存储处理器710执行的代码等。
用户设备70中的各个组件通过总线系统750耦合在一起,其中总线系统750除包括数据总线之外,还包括电源总线、控制总线和状态信号总线。
图6所示的用户设备60或图7所示的用户设备70能够实现前述图3的方法实施例中由UE所实现的各个过程,为避免重复,这里不再赘述。
图8是本发明实施例的基站的一个结构框图。图8所示的基站80包括接收模块801、处理模块802和发送模块803。
接收模块801用于在当前COD期间的DATA区域,接收所述UE发送 的数据包。
处理模块802用于在所述当前COD之后,进行LBT进程。
发送模块803用于在所述LBT进程之后的下一个COD的DATA区域,向所述UE发送响应消息。
其中,关于COD的结构可以参见前述图4至图5部分的相关描述,为避免重复,这里不再赘述。
可选地,发送模块803还可用于在所述第一SP向所述UE发送第一短导频信号。发送模块803还可用于在所述下一个COD的第二SP向所述UE发送第二短导频信号。
其中,第一短导频信号可包括第一SP所在的帧的序号以及与所述第一SP对应的子帧的序号。若p=1,则第一短导频信号包括第一SP所在的帧的序号。
其中,所述第二短导频信号包括所述第二SP的序号。
应注意,本发明实施例中,发送模块803可以由发送器实现,处理模块802可以由处理器实现,接收模块801可以由接收器实现。如图9所示,基站90可以包括处理器910、接收器920、发送器930和存储器940。其中,存储器940可以用于存储第一导频信号、第二导频信号等,还可以用于存储处理器910执行的代码等。
基站90中的各个组件通过总线系统950耦合在一起,其中总线系统950除包括数据总线之外,还包括电源总线、控制总线和状态信号总线。
图8所示的基站80或图9所示的基站90能够实现前述图3的方法实施例中由基站所实现的各个过程,为避免重复,这里不再赘述。
应注意,本发明上述方法实施例可以应用于处理器中,或者由处理器实现。处理器可能是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器可以是通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现成可编程门阵列(Field Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本发明实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结 合本发明实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。
可以理解,本发明实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(Synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)。应注意,本文描述的系统和方法的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本发明的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可 以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本发明各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本发明各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以权利要求的保护范围为准。

Claims (26)

  1. 一种数据传输的方法,其特征在于,所述方法包括:
    在基站的当前信道占用时间COD期间,向所述基站发送数据包并开启定时器;
    确定所述当前COD的第一结束时刻;
    在所述第一结束时刻暂停所述定时器;
    确定所述基站的下一个COD中长导频LP的第二结束时刻;
    在所述第二结束时刻恢复所述定时器;
    在所述恢复后的定时器超时之前,接收所述基站发送的响应消息。
  2. 根据权利要求1所述的方法,其特征在于,所述COD包括LP和数据DATA,所述DATA包括n个帧,所述n个帧中的每个帧包括p个子帧以及与所述p个子帧一一对应的第一短导频SP;
    所述在所述基站的当前COD期间,向所述基站发送数据包,包括:
    在所述基站的当前COD期间的DATA区域,向所述基站发送所述数据包;
    所述确定所述当前COD的第一结束时刻,包括:
    接收所述基站在第一SP发送的第一短导频信号,所述第一短导频信号包括所述第一SP所在的帧的序号;
    根据所述第一短导频信号确定所述第一结束时刻;
    其中,n和p为大于或等于1的正整数。
  3. 根据权利要求2所述的方法,其特征在于,p为大于1的正整数,所述第一短导频信号还包括与所述第一SP对应的子帧的序号。
  4. 根据权利要求1至3任一项所述的方法,其特征在于,所述LP包括m个第二短导频SP;
    确定所述基站的下一个COD中LP的第二结束时刻,包括:
    接收所述基站在第二SP发送的第二短导频信号,所述第二短导频信号包括所述第二SP的序号;
    根据所述第二短导频信号确定所述第二结束时刻;
    其中,m为大于或等于1的正整数。
  5. 根据权利要求1至4任一项所述的方法,其特征在于,所述数据包包括接入请求消息,所述响应消息包括接入响应消息。
  6. 根据权利要求1至4任一项所述的方法,其特征在于,所述数据包包括上行数据,所述响应消息包括确认ACK消息。
  7. 根据权利要求1至6任一项所述的方法,其特征在于,所述计时器为T300或T400。
  8. 一种数据传输的方法,其特征在于,所述方法包括:
    基站在当前信道占用时间COD期间的数据DATA区域,接收用户设备UE发送的数据包;
    所述基站在所述当前COD之后,进行先听后说LBT进程;
    所述基站在所述LBT进程之后的下一个COD的DATA区域,向所述UE发送响应消息。
  9. 根据权利要求8所述的方法,其特征在于,所述COD包括DATA,所述DATA包括n个帧,所述n个帧中的每个帧包括p个子帧以及与所述p个子帧一一对应的第一短导频SP,所述方法还包括:
    所述基站在所述第一SP向所述UE发送第一短导频信号,所述第一短导频信号包括所述第一SP所在的帧的序号;
    其中,n和p为大于或等于1的正整数。
  10. 根据权利要求9所述的方法,其特征在于,p为大于1的正整数,所述第一短导频信号还包括与所述第一SP对应的子帧的序号。
  11. 根据权利要求8至10任一项所述的方法,其特征在于,所述COD还包括LP,所述LP包括m个第二短导频SP,所述方法还包括:
    所述基站在所述下一个COD的第二SP向所述UE发送第二短导频信号,所述第二短导频信号包括所述第二SP的序号;
    其中,m为大于或等于1的正整数。
  12. 根据权利要求8至11任一项所述的方法,其特征在于,所述数据包包括接入请求消息,所述响应消息包括接入响应消息。
  13. 根据权利要求8至11任一项所述的方法,其特征在于,所述数据包包括上行数据,所述响应消息包括确认ACK消息。
  14. 一种用户设备,其特征在于,包括:
    发送模块,用于在基站的当前信道占用时间COD期间,向所述基站发送数据包;
    定时器模块,用于开启定时器;
    确定模块,用于确定所述当前COD的第一结束时刻;
    所述定时器模块,还用于在所述确定模块确定的所述第一结束时刻暂停所述定时器;
    所述确定模块,还用于确定所述基站的下一个COD中长导频LP的第二结束时刻;
    所述定时器模块,还用于在所述确定模块确定的所述第二结束时刻恢复所述定时器;
    接收模块,用于在所述定时器模块恢复的所述恢复后的定时器超时之前,接收所述基站发送的响应消息。
  15. 根据权利要求14所述的用户设备,其特征在于,
    所述发送模块,具体用于:在所述基站的当前COD期间的DATA区域,向所述基站发送所述数据包;
    所述接收模块,还用于接收所述基站在第一短导频SP发送的第一短导频信号,所述第一短导频信号包括所述第一SP所在的帧的序号;
    所述确定模块,具体用于:根据所述接收模块接收的所述第一短导频信号确定所述第一结束时刻;
    其中,所述COD包括LP和数据DATA,所述DATA包括n个帧,所述n个帧中的每个帧包括p个子帧以及与所述p个子帧一一对应的第一SP,n和p为大于或等于1的正整数。
  16. 根据权利要求15所述的用户设备,其特征在于,p为大于1的正整数,所述第一短导频信号还包括与所述第一SP对应的子帧的序号。
  17. 根据权利要求14至16任一项所述的用户设备,其特征在于,
    所述接收模块,还用于:接收所述基站在第二短导频SP发送的第二短导频信号,所述第二短导频信号包括所述第二SP的序号;
    所述确定模块,具体用于根据所述接收模块接收的所述第二短导频信号确定所述第二结束时刻;
    其中,所述LP包括m个第二SP,m为大于或等于1的正整数。
  18. 根据权利要求14至17任一项所述的用户设备,其特征在于,所述数据包包括接入请求消息,所述响应消息包括接入响应消息。
  19. 根据权利要求14至17任一项所述的用户设备,其特征在于,所述数据包包括上行数据,所述响应消息包括确认ACK消息。
  20. 根据权利要求14至19任一项所述的用户设备,其特征在于,所述计时器为T300或T400。
  21. 一种基站,其特征在于,包括:
    接收模块,用于在当前信道占用时间COD期间的数据DATA区域,接收用户设备UE发送的数据包;
    处理模块,用于在所述当前COD之后,进行先听后说LBT进程;
    发送模块,用于在所述处理模块进行的所述LBT进程之后的下一个COD的DATA区域,向所述UE发送响应消息。
  22. 根据权利要求21所述的基站,其特征在于,
    所述发送模块,还用于在第一短导频SP向所述UE发送第一短导频信号,所述第一短导频信号包括所述第一SP所在的帧的序号;
    其中,所述COD包括DATA,所述DATA包括n个帧,所述n个帧中的每个帧包括p个子帧以及与所述p个子帧一一对应的第一SP,n和p为大于或等于1的正整数。
  23. 根据权利要求22所述的基站,其特征在于,p为大于1的正整数,所述第一短导频信号还包括与所述第一SP对应的子帧的序号。
  24. 根据权利要求21至23任一项所述的基站,其特征在于,
    所述发送模块,还用于在所述下一个COD的第二短导频SP向所述UE发送第二短导频信号,所述第二短导频信号包括所述第二SP的序号;
    其中,所述COD还包括LP,所述LP包括m个第二SP,m为大于或等于1的正整数。
  25. 根据权利要求21至24任一项所述的基站,其特征在于,所述数据包包括接入请求消息,所述响应消息包括接入响应消息。
  26. 根据权利要求21至24任一项所述的基站,其特征在于,所述数据包包括上行数据,所述响应消息包括确认ACK消息。
PCT/CN2016/073176 2016-02-02 2016-02-02 数据传输的方法、用户设备和基站 WO2017132829A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201680071608.0A CN108370584B (zh) 2016-02-02 2016-02-02 数据传输的方法、用户设备和基站
PCT/CN2016/073176 WO2017132829A1 (zh) 2016-02-02 2016-02-02 数据传输的方法、用户设备和基站
EP16888654.7A EP3402290B1 (en) 2016-02-02 2016-02-02 Data transmission method, user equipment, and system
US16/052,174 US10764926B2 (en) 2016-02-02 2018-08-01 Data transmission method, user equipment, and base station

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/073176 WO2017132829A1 (zh) 2016-02-02 2016-02-02 数据传输的方法、用户设备和基站

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/052,174 Continuation US10764926B2 (en) 2016-02-02 2018-08-01 Data transmission method, user equipment, and base station

Publications (1)

Publication Number Publication Date
WO2017132829A1 true WO2017132829A1 (zh) 2017-08-10

Family

ID=59499278

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/073176 WO2017132829A1 (zh) 2016-02-02 2016-02-02 数据传输的方法、用户设备和基站

Country Status (4)

Country Link
US (1) US10764926B2 (zh)
EP (1) EP3402290B1 (zh)
CN (1) CN108370584B (zh)
WO (1) WO2017132829A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11451432B2 (en) * 2019-01-28 2022-09-20 Qualcomm Incorporated Timer configuration for new radio-unlicensed and new radio-shared spectrum

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130163575A1 (en) * 2011-12-26 2013-06-27 Electronics And Telecommunications Research Institute Contention based channel occupying method in wireless network using a plurality of channels
CN104486013A (zh) * 2014-12-19 2015-04-01 宇龙计算机通信科技(深圳)有限公司 信道检测方法、信道检测系统、终端和基站
CN104812032A (zh) * 2015-04-10 2015-07-29 宇龙计算机通信科技(深圳)有限公司 一种在非授权频段应用drx的方法及装置
WO2015131686A1 (zh) * 2014-08-22 2015-09-11 中兴通讯股份有限公司 一种在非授权载波上发送发现信号的方法、装置及接入点

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101299732B1 (ko) 2006-07-14 2013-09-16 삼성전자주식회사 고주파 무선 대역에서의 무선 통신 방법 및 장치
US9717071B2 (en) * 2013-08-16 2017-07-25 Qualcomm Incorporated Uplink procedures for LTE/LTE-A communication systems with unlicensed spectrum
CN105101446B (zh) * 2015-06-30 2017-12-15 宇龙计算机通信科技(深圳)有限公司 一种用于非授权频段的冲突避免方法及装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130163575A1 (en) * 2011-12-26 2013-06-27 Electronics And Telecommunications Research Institute Contention based channel occupying method in wireless network using a plurality of channels
WO2015131686A1 (zh) * 2014-08-22 2015-09-11 中兴通讯股份有限公司 一种在非授权载波上发送发现信号的方法、装置及接入点
CN104486013A (zh) * 2014-12-19 2015-04-01 宇龙计算机通信科技(深圳)有限公司 信道检测方法、信道检测系统、终端和基站
CN104812032A (zh) * 2015-04-10 2015-07-29 宇龙计算机通信科技(深圳)有限公司 一种在非授权频段应用drx的方法及装置

Also Published As

Publication number Publication date
EP3402290B1 (en) 2019-11-13
EP3402290A4 (en) 2018-12-05
EP3402290A1 (en) 2018-11-14
US20180343678A1 (en) 2018-11-29
CN108370584B (zh) 2020-08-14
US10764926B2 (en) 2020-09-01
CN108370584A (zh) 2018-08-03

Similar Documents

Publication Publication Date Title
TWI725139B (zh) 數據傳輸的方法、終端設備及網絡設備
US11937306B2 (en) System information transmission method, terminal and network device
US11489648B2 (en) Timer-based bandwidth part switching method, terminal device, and network device
WO2019213845A1 (zh) 无线通信方法、通信设备、芯片和系统
US11026107B2 (en) Data transmission method and terminal device
TW201728146A (zh) 傳輸數據的方法和終端
CN111418223B (zh) 管理定时器的方法和终端设备
WO2019095294A1 (zh) 用于侦听pdcch的方法和终端设备
WO2018157295A1 (zh) 混合自动重传请求反馈方法和设备
US10912102B2 (en) Method and terminal device for managing timer and transmitting information
JP2020504947A (ja) 通信方法、端末装置及びネットワーク装置
WO2019157675A1 (zh) 无线通信方法和设备
TWI771519B (zh) 傳輸數據的方法和設備
TW201935879A (zh) 傳輸訊息的方法、接收訊息的方法、終端設備和網路設備
WO2018120107A1 (zh) 通信方法、网络设备和终端设备
WO2019028887A1 (zh) 资源配置方法、装置以及存储介质
WO2017132829A1 (zh) 数据传输的方法、用户设备和基站
WO2017084095A1 (zh) 传输数据的方法、终端和基站
WO2019153353A1 (zh) 传输数据的方法和设备
WO2021068224A1 (zh) 无线通信方法、终端设备和网络设备
CN110326325B (zh) 数据传输的方法、终端设备和网络设备
WO2019136699A1 (zh) 信息传输的方法和设备
CN115038190A (zh) 一种数据传输方法及装置
WO2019071589A1 (zh) 一种传输方法、终端设备和网络设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16888654

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2016888654

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2016888654

Country of ref document: EP

Effective date: 20180809