WO2017131317A1 - Antistatic tray and manufacturing method therefor - Google Patents

Antistatic tray and manufacturing method therefor Download PDF

Info

Publication number
WO2017131317A1
WO2017131317A1 PCT/KR2016/011642 KR2016011642W WO2017131317A1 WO 2017131317 A1 WO2017131317 A1 WO 2017131317A1 KR 2016011642 W KR2016011642 W KR 2016011642W WO 2017131317 A1 WO2017131317 A1 WO 2017131317A1
Authority
WO
WIPO (PCT)
Prior art keywords
antistatic tray
antistatic
tray
carbon nanotubes
manufacturing
Prior art date
Application number
PCT/KR2016/011642
Other languages
French (fr)
Korean (ko)
Inventor
김태형
김석원
김세현
김평기
최석조
조동현
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Publication of WO2017131317A1 publication Critical patent/WO2017131317A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/02Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising combinations of reinforcements, e.g. non-specified reinforcements, fibrous reinforcing inserts and fillers, e.g. particulate fillers, incorporated in matrix material, forming one or more layers and with or without non-reinforced or non-filled layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D99/00Subject matter not provided for in other groups of this subclass
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D1/00Containers having bodies formed in one piece, e.g. by casting metallic material, by moulding plastics, by blowing vitreous material, by throwing ceramic material, by moulding pulped fibrous material, by deep-drawing operations performed on sheet material
    • B65D1/34Trays or like shallow containers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D85/00Containers, packaging elements or packages, specially adapted for particular articles or materials
    • B65D85/30Containers, packaging elements or packages, specially adapted for particular articles or materials for articles particularly sensitive to damage by shock or pressure
    • B65D85/38Containers, packaging elements or packages, specially adapted for particular articles or materials for articles particularly sensitive to damage by shock or pressure for delicate optical, measuring, calculating or control apparatus
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • C08K7/04Fibres or whiskers inorganic
    • C08K7/14Glass
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L69/00Compositions of polycarbonates; Compositions of derivatives of polycarbonates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/26Deposition of carbon only

Definitions

  • the present invention relates to an antistatic tray having improved moldability and mechanical properties and a method of manufacturing the same.
  • IC trays are used for the above uses, and they are used for transfer between manufacturing processes of semiconductor chips and packaging after manufacturing.
  • the IC tray determines the size and shape of the tray according to the type and type of the semiconductor chip, and may play a role of preventing damage such as electric shock due to dust, moisture, and the like on a component on which a circuit or the like is printed.
  • a material using carbon fiber is mainly applied to an electronic component tray.
  • Another object of the present invention is to provide a method of manufacturing the antistatic tray.
  • an antistatic tray made of a composite comprising 40 to 95 weight percent polycarbonate, 0.1 to 10 weight percent carbon nanotubes, and 1 to 50 weight percent glass fibers, based on the total weight of the composition.
  • the average length of the carbon nanotubes may be 1 to 500 ⁇ m.
  • the maximum length of the carbon nanotubes may be 500 ⁇ m.
  • the aspect ratio of the carbon nanotubes may be 10 to 1,000,
  • the aspect ratio is calculated according to the following formula (1).
  • the average length of the glass fiber may be 4mm.
  • the maximum length of the glass fiber may be 20mm.
  • the tensile strength of the antistatic tray may be greater than or equal to 1,000kg / cm 2.
  • the bending strength of the antistatic tray may be 1,600kg / cm 2 or more.
  • the impact strength of the antistatic tray may be 8kg ⁇ cm / cm or more.
  • Preparing a composite by mixing 40 to 95 wt% polycarbonate, 0.1 to 10 wt% carbon nanotubes, and 1 to 50 wt% glass fibers based on the total weight of the composition;
  • Molding the composite may provide an antistatic tray manufacturing method comprising the step of manufacturing an antistatic tray.
  • the carbon nanotubes may be prepared by catalytic chemical vapor deposition (CCVD).
  • CCVD catalytic chemical vapor deposition
  • the composite material is antibacterial, release agent, thermal stabilizer, antioxidant, light stabilizer, compatibilizer, dye, inorganic additive, surfactant, nucleating agent, coupling agent, filler, plasticizer, impact modifier, admixture, coloring agent It may further comprise at least one selected from the group consisting of lubricants, antistatic agents, pigments, flame retardants and mixtures of one or more thereof.
  • the antistatic tray and the manufacturing method according to the present invention it is possible to improve the mechanical properties such as tensile strength, flexural strength and impact strength while maintaining the electrostatic dispersion characteristics, that is, the surface resistance characteristics. It can be usefully used as an antistatic tray requiring moldability.
  • composite may be used interchangeably with “composite material” within this specification, and may be understood to mean a material formed by gathering two or more materials.
  • carbon nanotube as used herein may mean singular or plural sets including one or more entities.
  • molding may be used interchangeably with “processing” within the present specification, and may be understood to form a target shape by applying heat or pressure.
  • Charging refers to a phenomenon in which a neutral substance having the same positive and negative charges exhibits a negative or positive charge while the balance of charge is broken by external force. Due to the charging phenomenon as described above, static electricity may be generated, and when the static electricity is discharged, electronic parts such as semiconductors may be damaged by electric shock, and conditions such as dust such as dust may be formed.
  • the present invention to prevent the charging phenomenon as described above,
  • an antistatic tray made of a composite comprising 40 to 95 weight percent polycarbonate, 0.1 to 10 weight percent carbon nanotubes, and 1 to 50 weight percent glass fibers, based on the total weight of the composition.
  • the antistatic tray according to the present invention can improve physical properties such as tensile strength and impact strength while maintaining surface resistance while using carbon nanotubes instead of carbon fibers as carbon materials.
  • the polycarbonate resin may be prepared by reacting diphenols with phosgene, halogen formate, carbonate ester or a combination thereof.
  • diphenols include hydroquinone, resorcinol, 4,4'-dihydroxydiphenyl, 2,2-bis (4-hydroxyphenyl) propane (also called 'bisphenol-A'), 2, 4-bis (4-hydroxyphenyl) -2-methylbutane, bis (4-hydroxyphenyl) methane, 1,1-bis (4-hydroxyphenyl) cyclohexane, 2,2-bis (3-chloro 4-hydroxyphenyl) propane, 2,2-bis (3,5-dimethyl-4-hydroxyphenyl) propane, 2,2-bis (3,5-dichloro-4-hydroxyphenyl) propane, 2 , 2-bis (3,5-dibromo-4-hydroxyphenyl) propane, bis (4-hydroxyphenyl) sulfoxide, bis (4-hydroxyphenyl) ketone, bis (4-hydroxyphenyl) Ether and
  • 2,2-bis (4-hydroxyphenyl) propane 2,2-bis (3,5-dichloro-4-hydroxyphenyl) propane or 1,1-bis (4-hydroxyphenyl) Cyclohexane can be used, more preferably 2,2-bis (4-hydroxyphenyl) propane.
  • the polycarbonate resin may be a mixture of copolymers prepared from two or more diphenols. Also, the polycarbonate resin may be a linear polycarbonate resin, a branched polycarbonate resin, a polyester carbonate copolymer resin, or the like.
  • group polycarbonate resin etc. are mentioned as said linear polycarbonate resin.
  • the branched polycarbonate resins include those produced by reacting polyfunctional aromatic compounds such as trimellitic anhydride, trimellitic acid, and the like with diphenols and carbonates.
  • the polyfunctional aromatic compound may be included in an amount of 0.05 to 2 mol% based on the total amount of the branched polycarbonate resin.
  • said polyester carbonate copolymer resin what was manufactured by making bifunctional carboxylic acid react with diphenols and a carbonate is mentioned. In this case, as the carbonate, diaryl carbonate such as diphenyl carbonate, ethylene carbonate, or the like may be used.
  • the content of the polycarbonate may be 40 to 95% by weight, preferably 60 to 90% by weight or 70 to 90% by weight based on the total weight of the composition.
  • various resins may be used in the composite composition or may be added together as necessary.
  • polystyrene resins examples include, but are not limited to, polypropylene, polyethylene, polybutylene, and poly (4-methyl-1-pentene), and combinations thereof.
  • the polyolefin may be a polypropylene homopolymer (e.g., atactic polypropylene, isotactic polypropylene, and syndiotactic polypropylene), polypropylene copolymer (e.g., Polypropylene random copolymers), and mixtures thereof.
  • Suitable polypropylene copolymers include, but are not limited to, the presence of comonomers selected from the group consisting of ethylene, but-1-ene (ie 1-butene), and hex-1-ene (ie 1-hexene). And random copolymers prepared from the polymerization of propylene under.
  • comonomers may be present in any suitable amount, but typically in amounts of about 10 wt% or less (eg, about 1 to about 7 wt%, or about 1 to about 4.5 wt%) May exist.
  • polyester resin the homopolyester and copolyester which are polycondensates of a dicarboxylic acid component skeleton and a diol component skeleton are mentioned.
  • the homo polyester for example, polyethylene terephthalate, polypropylene terephthalate, polybutylene terephthalate, polyethylene-2,6-naphthalate, poly-1,4-cyclohexanedimethylene terephthalate, polyethylene diphenylate Etc. are typical.
  • polyethylene terephthalate is inexpensive, it can be used for a very wide range of applications, which is preferable.
  • the said copolyester is defined as the polycondensate which consists of at least 3 or more components chosen from the component which has a dicarboxylic acid skeleton and the component which have a diol skeleton which are illustrated next.
  • Examples of the component having a dicarboxylic acid skeleton include terephthalic acid, isophthalic acid, phthalic acid, 1,4-naphthalenedicarboxylic acid, 1,5-naphthalenedicarboxylic acid, 2,6-naphthalenedicarboxylic acid, 4,4 ' -Diphenyl dicarboxylic acid, 4,4'- diphenyl sulfone dicarboxylic acid, adipic acid, sebacic acid, dimer acid, cyclohexanedicarboxylic acid, ester derivatives thereof, and the like.
  • Examples of the component having a glycol skeleton include ethylene glycol, 1,2-propanediol, 1,3-butanediol, 1,4-butanediol, 1,5-pentadiol, diethylene glycol, polyalkylene glycol, 2,2-bis ( 4 '-(beta) -hydroxyethoxyphenyl) propane, isosorbate, 1, 4- cyclohexane dimethanol, spiroglycol, etc. are mentioned.
  • cycloolefin type polymer a norbornene type polymer, a monocyclic cyclic olefin type polymer, a cyclic conjugated diene type polymer, a vinyl alicyclic hydrocarbon polymer, and these hydrides are mentioned.
  • Specific examples thereof include Apel (ethylene-cycloolefin copolymer manufactured by Mitsui Chemical Co., Ltd.), aton (norbornene-based polymer manufactured by JSR Corporation), zeonoa (norbornene-based polymer manufactured by Nippon Xeon Corporation), and the like.
  • the polyphenylene oxide resin is also referred to as polyphenylene ether, and has a structure in which -O- is bonded to a phenylene group as a repeating unit.
  • the phenylene group may have various substituents, for example, methyl group, ethyl group, halogen group, hydroxy group and the like.
  • Composites for producing an antistatic tray according to the present invention when the content of the carbon nanotube is less than 0.1% by weight based on the total weight of the composition, physical properties such as surface resistance and strength may be lowered, exceeding 10% by weight In this case, the heat or physical force required during molding may increase. Preferably from 0.5 to 8% by weight or from 1 to 5% by weight.
  • the content of the glass fiber is less than 1% by weight based on the total weight of the composition, physical properties such as tensile strength, flexural strength, and impact strength may decrease, and when the content exceeds 50% by weight, the viscosity may be improved. . Preferably from 5 to 30% by weight or 10 to 20% by weight.
  • the average length of the carbon nanotubes may be 1 to 500 ⁇ m, for example, 1 to 300 ⁇ m, for example 1 to 100 ⁇ m, and the maximum length of the carbon nanotubes is 500 May be ⁇ m.
  • an aspect ratio of the carbon nanotubes may be, for example, 10 to 1,000, for example, 50 to 500, for example, 100 to 200, and according to Equation 1 below. Can be calculated.
  • the carbon nanotubes may be, for example, arc discharge, laser ablation, pyrolysis, flame synthesis, chemical vapor deposition, and gas phase growth. It may be prepared from a method such as vapor phase growth.
  • the arc discharge method may be, for example, a method of generating an arc by using two carbon rods having different diameters, and multi-wall carbon nano according to variables such as pressure and current of an inert gas inside the reactor.
  • a metal catalyst is required.
  • the laser ablation method may generate SWNTs and MWNTs according to the type of graphite mixture and the reaction gas used, for example, by laser cutting graphite particles into an oven at a high temperature of 1200 ° C.
  • the chemical vapor deposition (CVD) has an advantage that it can be produced evenly in a large area, can be vertically aligned, can be synthesized at a low temperature, and can easily control the structure.
  • the chemical vapor deposition (CVD) is, for example, catalytic carbon vapor deposition (CCVD), thermal CVD method, direct current (DC) plasma CVD method, radio frequency (RF) plasma CVD method And microwave plasma CVD.
  • the vapor phase growth method is a method of synthesizing carbon nanotubes in a gas phase in a reactor by simultaneously supplying a catalyst metal reactant and a carbonization gas into a reactor without using a substrate, and can be applied to mass synthesis. .
  • the glass fiber may have an average length of 4mm, the maximum length may be 20mm, when the length is short, the improvement of tensile strength and impact strength characteristics may not be sufficient, the length is long In this case, the molding may not be easy due to the high viscosity.
  • the antistatic tray according to the present invention can implement mechanical properties of tensile strength of 1,000kg / cm 2 or more, flexural strength of 1,600kg / cm 2 or more and impact strength of 8kg ⁇ cm / cm or more.
  • Antistatic tray according to the present invention based on the total weight of the composition to prepare a composite material by mixing 40 to 95% by weight of polycarbonate, 0.1 to 10% by weight of carbon nanotubes and 1 to 50% by weight of glass fibers ;
  • Molding the composite may be produced by a method comprising the step of producing an antistatic tray.
  • the carbon nanotubes may be prepared by catalytic chemical vapor deposition (CCVD).
  • CCVD catalytic chemical vapor deposition method
  • the catalytic chemical vapor deposition method (CCVD) is a method of directly synthesizing carbon nanotubes from a gas phase by directly supplying a reaction gas and an organic metal catalyst into a reactor without using a substrate. It may be suitable for mass synthesis of tubes relatively economically.
  • it is easy to control the diameter, length, density, structure, crystallinity, etc. of the carbon nanotubes it is possible to produce high-purity carbon nanotubes, for example, thermal decomposition of organic compounds, catalytic decomposition of hydrocarbons, etc. Can be.
  • the pyrolysis of the organic compound may be performed at a relatively high decomposition temperature and a relatively low pressure, and an organometallic precursor such as metallocene, iron pentacarbonyl, or the like may be used.
  • Catalytic cracking of the hydrocarbon may include a metal compound as a catalyst support.
  • a metal compound as a catalyst support.
  • Fe (CO) 5 or ferrocene (ferrocene) is injected into the reactor, the metal atoms decomposed by the heating furnace to form a bundle in the gas phase, Forming a nucleus for the growth of carbon nanotubes can initiate the synthesis of carbon nanotubes.
  • the antistatic tray according to the present invention is an antibacterial agent, a release agent, a heat stabilizer, an antioxidant, a light stabilizer, a compatibilizer, a dye, an inorganic additive, a surfactant, a nucleating agent, a coupling agent, a filler, a plasticizer, an impact modifier, It may further comprise an additive selected from the group consisting of admixtures, colorants, lubricants, antistatic agents, pigments, flame retardants and mixtures of one or more thereof.
  • Such additives may be included within a range that does not affect the physical properties such as tensile strength, impact strength, surface resistance of the antistatic tray according to the present invention, 0.1 to 5 parts by weight, based on 100 parts by weight of the polycarbonate, For example, it may be included in an amount of 0.1 to 3 parts by weight.
  • the antistatic tray according to the present invention may be molded by extrusion, injection or extrusion and injection, but the manufacturing method of the molded article may be suitably used as long as it is a conventional method used in the art, but is not limited to the above description. .
  • the prepared pellet was injected into a flat profile at an injection temperature of 280 ° C. in the injection machine to prepare a specimen having a thickness of 3.2 mm, a length of 12.7 mm, and a dog-bone shape.
  • Table 1 The components used in Table 1 are as follows, and each content unit is in weight percent based on the total weight of the composition.
  • Polycarbonate was used as LUPOY 1300-30 of LG Chem.
  • a chopped fiber having a diameter of 1 to 30 ⁇ m and a length of 6 mm or more was used.
  • Carbon nanotubes having an average diameter of 10 nm and a length of 1.5 ⁇ m prepared by catalytic chemical vapor deposition (CCVD) were used.
  • the glass fiber used was 10-13 micrometers in diameter, and 4mm in length by Owenscorning.
  • Ester wax Hywax EP-184, heat stabilizer Ciba Irganox 1076, Irgafos 168 were used as heat stabilizers and lubricants.
  • Example 2 Carbon nanotubes 2.0 18 4 79.1 0.9
  • Comparative Example 1 Carbon fiber 7.0 - - 92.1 0.9
  • Comparative Example 2 Carbon fiber 8.0 - - 91.1 0.9
  • Comparative Example 3 Carbon fiber 9.0 - - 90.1 0.9
  • the tensile strength was measured by the method according to ASTM D638.
  • the flexural strength was measured by a method according to ASTM D790.
  • the flexural modulus was measured by a method according to ASTM D790.
  • the impact strength was measured by a method according to ASTM D256.
  • the surface resistance was measured by the method according to ASTM D257.
  • the heat deflection temperature was measured by a method according to ASTM D648.
  • the spiral flow length was measured at 300 ° C. under a thickness of 1.5 mm and a holding pressure of 2000 kg / cm 2 .
  • both the heat distortion temperature is 130 °C or more can be applied to a high temperature process, such as baking process, it can be seen that the electrical properties such as surface resistance can be maintained.
  • the spiral flow values that the examples including the glass fibers and the carbon nanotubes maintain the formability equivalent to those of the comparative examples including the carbon fibers.
  • the strength value it can be seen that the Example has a higher mechanical strength than the Comparative Example.
  • the antistatic tray according to the present invention it can be confirmed that the mechanical strength can be improved and the electrical properties and the moldability can be maintained.

Abstract

The present invention relates to an antistatic tray manufactured by using a composite material, which has an optimal composition improving mechanical strength and, simultaneously, is capable of maintaining electrical characteristics and formability, thereby having excellent material properties such as strength and an antistatic property.

Description

대전방지 트레이 및 그 제조방법Antistatic tray and its manufacturing method
본 출원은 2016.01.26.자 한국 특허출원 제10-2016-0009645호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.This application claims the benefit of priority based on Korean Patent Application No. 10-2016-0009645 filed on January 26, 2016, and all contents disclosed in the literature of that Korean patent application are incorporated as part of this specification.
본 발명은 성형성 및 기계적 특성을 향상시킨 대전방지 트레이 및 그 제조방법에 관한 것이다.The present invention relates to an antistatic tray having improved moldability and mechanical properties and a method of manufacturing the same.
최근에는 전자제품 기술의 발달로 전자제품의 소형화와 고집적화, 고성능화가 이루어지고 있으며, 이에 따라 전자제품 및 부품 등 소재의 이송과 보관 중에 발생할 수 있는 전기적 손상을 방지하기 위하여, 전기 전도성 소재가 사용되고 있다.Recently, due to the development of electronic technology, miniaturization, high integration, and high performance of electronic products have been achieved. Accordingly, in order to prevent electrical damage that may occur during the transport and storage of materials such as electronic products and components, electrically conductive materials are used. .
상기와 같은 용도로 사용되는 것으로는 예를 들어, IC 트레이(IC Tray)가 있으며, 반도체 칩의 제조공정 간 이송 및 제조 후 포장 등에 사용되고 있다. 상기 IC 트레이는 반도체 칩의 유형 및 종류에 따라, 트레이의 크기 및 형태가 정해지고, 회로 등이 인쇄되어 있는 부품에 대하여 분진, 수분 등에 의한 전기적 쇼크 등의 손상을 방지하는 역할을 할 수 있다. 부품의 제조 공정 중에는 수분의 제거를 위하여, 부품이 담긴 트레이를 베이킹(baking) 하는 단계를 포함할 수 있으므로, 상기 트레이는 내열성 및 베이킹 전, 후의 안정성과 저왜곡성, 정전분산, 표면저항, 전기전도성 등의 물성이 요구된다.For example, IC trays are used for the above uses, and they are used for transfer between manufacturing processes of semiconductor chips and packaging after manufacturing. The IC tray determines the size and shape of the tray according to the type and type of the semiconductor chip, and may play a role of preventing damage such as electric shock due to dust, moisture, and the like on a component on which a circuit or the like is printed. Baking the tray containing the component during the manufacturing process of the component, in order to remove moisture, the tray is heat-resistant and stability before and after baking, low distortion, electrostatic dispersion, surface resistance, electrical Physical properties such as conductivity are required.
종래에는 상기와 같은 물성을 만족시키기 위하여, 전자부품용 트레이에 탄소섬유를 사용하는 소재가 주로 적용되고 있다.Conventionally, in order to satisfy the above properties, a material using carbon fiber is mainly applied to an electronic component tray.
하지만, 탄소섬유를 포함하고 있는 트레이의 경우, 성형성과 기계적 특성을 향상시키는 데에 한계가 있다. 구체적으로, 인장강도 및 굴곡강도의 향상이 충분하지 않으며, 충격강도가 낮아 성형이 용이하지 않을 수 있는 문제점이 있다.However, in the case of the tray containing the carbon fiber, there is a limit in improving the formability and mechanical properties. Specifically, there is a problem that the improvement of tensile strength and flexural strength is not sufficient, and the impact strength may be low, and molding may not be easy.
따라서, 전자부품용 대전방지 트레이에 대하여, 표면저항 특성을 유지하는 동시에, 인장강도, 굴곡강도, 충격강도 등의 물성을 향상시키기 위한 최적의 조성에 대한 연구가 요구된다.Therefore, research on the optimum composition for improving the physical properties such as tensile strength, flexural strength, impact strength and the like while maintaining the surface resistance characteristics of the antistatic tray for electronic parts is required.
본 발명의 목적은 성형성 및 기계적 특성을 향상시킨 대전방지 트레이를 제공하는 것이다.It is an object of the present invention to provide an antistatic tray having improved moldability and mechanical properties.
또한, 본 발명의 다른 목적은 상기 대전방지 트레이를 제조하는 방법을 제공하는 것이다.Another object of the present invention is to provide a method of manufacturing the antistatic tray.
상기 과제를 해결하기 위하여, 본 발명은In order to solve the above problems, the present invention
조성물 총 중량을 기준으로 40 내지 95중량%의 폴리카보네이트, 0.1 내지 10중량%의 탄소나노튜브 및 1 내지 50중량%의 유리섬유를 포함하는 복합재로 제조된 대전방지 트레이를 제공한다.Provided is an antistatic tray made of a composite comprising 40 to 95 weight percent polycarbonate, 0.1 to 10 weight percent carbon nanotubes, and 1 to 50 weight percent glass fibers, based on the total weight of the composition.
일 구현예에 따르면, 상기 탄소나노튜브의 평균 길이는 1 내지 500㎛일 수 있다.According to one embodiment, the average length of the carbon nanotubes may be 1 to 500㎛.
또한, 상기 탄소나노튜브의 최대 길이는 500㎛일 수 있다.In addition, the maximum length of the carbon nanotubes may be 500㎛.
일구현예에 따르면, 상기 탄소나노튜브의 종횡비는 10 내지 1,000일 수 있으며,According to one embodiment, the aspect ratio of the carbon nanotubes may be 10 to 1,000,
상기 종횡비는 하기 식 1에 따라 계산된 것이다.The aspect ratio is calculated according to the following formula (1).
[수학식 1][Equation 1]
종횡비(Aspect Ratio) = 길이(L) / 직경(D)Aspect Ratio = Length (L) / Diameter (D)
일구현예에 따르면, 상기 유리섬유의 평균 길이는 4mm일 수 있다.According to one embodiment, the average length of the glass fiber may be 4mm.
또한, 상기 유리섬유의 최대 길이는 20mm일 수 있다.In addition, the maximum length of the glass fiber may be 20mm.
일구현예에 따르면, 상기 대전방지 트레이의 인장강도는 1,000kg/cm2 이상일 수 있다.According to one embodiment, the tensile strength of the antistatic tray may be greater than or equal to 1,000kg / cm 2.
또한, 상기 대전방지 트레이의 굴곡강도는 1,600kg/cm2 이상일 수 있다.In addition, the bending strength of the antistatic tray may be 1,600kg / cm 2 or more.
또한, 상기 대전방지 트레이의 충격강도는 8kg·cm/cm 이상일 수 있다.In addition, the impact strength of the antistatic tray may be 8kg · cm / cm or more.
본 발명의 다른 구현예에 따르면,According to another embodiment of the invention,
조성물 총 중량을 기준으로 40 내지 95중량%의 폴리카보네이트, 0.1 내지 10중량%의 탄소나노튜브 및 1 내지 50중량%의 유리섬유를 혼합하여 복합재를 제조하는 단계; 및Preparing a composite by mixing 40 to 95 wt% polycarbonate, 0.1 to 10 wt% carbon nanotubes, and 1 to 50 wt% glass fibers based on the total weight of the composition; And
상기 복합재를 성형하여 대전방지 트레이를 제조하는 단계를 포함하는 대전방지 트레이 제조방법을 제공할 수 있다.Molding the composite may provide an antistatic tray manufacturing method comprising the step of manufacturing an antistatic tray.
일구현예에 따르면, 상기 탄소나노튜브는 촉매화학증기증착법(CCVD)에 따라 제조된 것일 수 있다.According to one embodiment, the carbon nanotubes may be prepared by catalytic chemical vapor deposition (CCVD).
또한, 일구현예에 따르면, 상기 복합재는 항균제, 이형제, 열안정제, 산화방지제, 광안정제, 상용화제, 염료, 무기물 첨가제, 계면활성제, 핵제, 커플링제, 충전제, 가소제, 충격보강제, 혼화제, 착색제, 활제, 정전기방지제, 안료, 방염제 및 이들의 하나 이상의 혼합물로 이루어진 군으로부터 선택된 첨가제로부터 선택되는 하나 이상을 더 포함할 수 있다.In addition, according to one embodiment, the composite material is antibacterial, release agent, thermal stabilizer, antioxidant, light stabilizer, compatibilizer, dye, inorganic additive, surfactant, nucleating agent, coupling agent, filler, plasticizer, impact modifier, admixture, coloring agent It may further comprise at least one selected from the group consisting of lubricants, antistatic agents, pigments, flame retardants and mixtures of one or more thereof.
기타 본 발명의 구현예들의 구체적인 사항은 이하의 상세한 설명에 포함되어 있다.Other specific details of embodiments of the present invention are included in the following detailed description.
본 발명에 따른 대전방지 트레이 및 그 제조방법에 의하면, 정전분산 특성, 즉, 표면저항 특성을 유지하면서, 동시에 인장강도, 굴곡강도 및 충격강도 등의 기계적 물성을 향상시킬 수 있으므로, 내열성, 내구성 및 성형성이 요구되는 대전방지 트레이로서 유용하게 사용될 수 있다.According to the antistatic tray and the manufacturing method according to the present invention, it is possible to improve the mechanical properties such as tensile strength, flexural strength and impact strength while maintaining the electrostatic dispersion characteristics, that is, the surface resistance characteristics. It can be usefully used as an antistatic tray requiring moldability.
본 발명은 다양한 변환을 가할 수 있고 여러 가지 실시예를 가질 수 있는 바, 특정 실시예를 도면에 예시하고 상세한 설명에 상세하게 설명하고자 한다. 그러나, 이는 본 발명을 특정한 실시 형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변환, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다. 본 발명을 설명함에 있어서 관련된 공지 기술에 대한 구체적인 설명이 본 발명의 요지를 흐릴 수 있다고 판단되는 경우 그 상세한 설명을 생략한다.As the present invention allows for various changes and numerous embodiments, particular embodiments will be illustrated in the drawings and described in detail in the written description. However, this is not intended to limit the present invention to specific embodiments, it should be understood to include all transformations, equivalents, and substitutes included in the spirit and scope of the present invention. In the following description of the present invention, if it is determined that the detailed description of the related known technology may obscure the gist of the present invention, the detailed description thereof will be omitted.
본 명세서에 사용된 "복합재"의 용어는 본 명세서 내에서 "복합 소재"와 함께 혼용하여 기재될 수 있으며, 두 가지 이상의 소재가 모여서 형성된 소재를 의미하는 것으로 이해될 수 있다.As used herein, the term “composite” may be used interchangeably with “composite material” within this specification, and may be understood to mean a material formed by gathering two or more materials.
본 명세서에 사용된 "탄소나노튜브"의 용어는 단수 또는 하나 이상의 개체를 포함하는 복수의 집합을 의미할 수 있다고 이해되어야 한다.It is to be understood that the term "carbon nanotube" as used herein may mean singular or plural sets including one or more entities.
또한, "성형"이라는 용어는 본 명세서 내에서 "가공"과 함께 혼용하여 기재될 수 있으며, 열이나 압력 등을 가하여 목적으로 하는 형태를 형성하는 것으로 이해될 수 있다.In addition, the term "molding" may be used interchangeably with "processing" within the present specification, and may be understood to form a target shape by applying heat or pressure.
이하, 본 발명의 구현예에 따른 대전방지 트레이 및 그 제조방법에 대하여 보다 상세하게 설명한다.Hereinafter, an antistatic tray according to an embodiment of the present invention and a manufacturing method thereof will be described in more detail.
대전이란, 양전하와 음전하 양이 같은 중성상태의 물질이 외부의 힘에 의해 전하량의 평형이 깨지면서 음전기 또는 양전기를 띄는 현상을 의미한다. 상기와 같은 대전 현상에 의하여, 정전기가 발생할 수 있으며, 정전기가 방전할 때 반도체 등의 전자부품이 전기적 쇼크에 의하여 손상될 수 있고, 티끌과 같은 먼지가 부착되기 쉬운 조건이 형성될 수 있다.Charging refers to a phenomenon in which a neutral substance having the same positive and negative charges exhibits a negative or positive charge while the balance of charge is broken by external force. Due to the charging phenomenon as described above, static electricity may be generated, and when the static electricity is discharged, electronic parts such as semiconductors may be damaged by electric shock, and conditions such as dust such as dust may be formed.
이러한 현상을 방지하기 위해서는, 전하의 분리가 일어나지 않도록 하는 방법, 전하 분리에 의한 국부적 전기장을 축소시키기 위하여, 유전율이 높은 물질을 사용하는 방법, 분리 전하의 누출 속도를 증가시키기 위하여, 유전체 근처의 공기를 이온화하는 방법 등이 적용될 수 있다.In order to prevent this phenomenon, there is a method of preventing the separation of charges, a method of using a high dielectric constant material to reduce the local electric field caused by the charge separation, the air near the dielectric to increase the rate of leakage of the separation charge And ionization method may be applied.
상기와 같은 대전현상을 방지하기 위하여 본 발명은,The present invention to prevent the charging phenomenon as described above,
조성물 총 중량을 기준으로 40 내지 95중량%의 폴리카보네이트, 0.1 내지 10중량%의 탄소나노튜브 및 1 내지 50중량%의 유리섬유를 포함하는 복합재로 제조된 대전방지 트레이를 제공한다.Provided is an antistatic tray made of a composite comprising 40 to 95 weight percent polycarbonate, 0.1 to 10 weight percent carbon nanotubes, and 1 to 50 weight percent glass fibers, based on the total weight of the composition.
본 발명에 따른 대전방지 트레이는, 탄소소재로 탄소섬유 대신 탄소나노튜브를 사용함으로써, 표면저항을 유지시키면서도 동시에 인장강도 및 충격강도 등의 물성을 향상시킬 수 있다.The antistatic tray according to the present invention can improve physical properties such as tensile strength and impact strength while maintaining surface resistance while using carbon nanotubes instead of carbon fibers as carbon materials.
상기 폴리카보네이트 수지는 디페놀류와 포스겐, 할로겐 포르메이트, 탄산 에스테르 또는 이들의 조합과 반응시켜 제조될 수 있다. 상기 디페놀류의 구체적인 예로는, 히드로퀴논, 레조시놀, 4,4'-디히드록시디페닐, 2,2-비스(4-히드록시페닐)프로판('비스페놀-A'라고도 함), 2,4-비스(4-히드록시페닐)-2-메틸부탄, 비스(4-히드록시페닐)메탄, 1,1-비스(4-히드록시페닐)사이클로헥산, 2,2-비스(3-클로로-4-히드록시페닐)프로판, 2,2-비스(3,5-디메틸-4-히드록시페닐)프로판, 2,2-비스(3,5-디클로로-4-히드록시페닐)프로판, 2,2-비스(3,5-디브로모-4-히드록시페닐)프로판, 비스(4-히드록시페닐)술폭사이드, 비스(4-히드록시페닐)케톤, 비스(4-히드록시페닐)에테르 등을 들 수 있다. 이들 중에서 좋게는 2,2-비스(4-히드록시페닐)프로판, 2,2-비스(3,5-디클로로-4-히드록시페닐)프로판 또는 1,1-비스(4-히드록시페닐)사이클로헥산을 사용할 수 있으며, 더 좋게는 2,2-비스(4-히드록시페닐)프로판을 사용할 수 있다.The polycarbonate resin may be prepared by reacting diphenols with phosgene, halogen formate, carbonate ester or a combination thereof. Specific examples of the diphenols include hydroquinone, resorcinol, 4,4'-dihydroxydiphenyl, 2,2-bis (4-hydroxyphenyl) propane (also called 'bisphenol-A'), 2, 4-bis (4-hydroxyphenyl) -2-methylbutane, bis (4-hydroxyphenyl) methane, 1,1-bis (4-hydroxyphenyl) cyclohexane, 2,2-bis (3-chloro 4-hydroxyphenyl) propane, 2,2-bis (3,5-dimethyl-4-hydroxyphenyl) propane, 2,2-bis (3,5-dichloro-4-hydroxyphenyl) propane, 2 , 2-bis (3,5-dibromo-4-hydroxyphenyl) propane, bis (4-hydroxyphenyl) sulfoxide, bis (4-hydroxyphenyl) ketone, bis (4-hydroxyphenyl) Ether and the like. Among these, 2,2-bis (4-hydroxyphenyl) propane, 2,2-bis (3,5-dichloro-4-hydroxyphenyl) propane or 1,1-bis (4-hydroxyphenyl) Cyclohexane can be used, more preferably 2,2-bis (4-hydroxyphenyl) propane.
상기 폴리카보네이트 수지는 2종 이상의 디페놀류로부터 제조된 공중합체의 혼합물일 수도 있다. 또한, 상기 폴리카보네이트 수지는 선형 폴리카보네이트 수지, 분지형(branched) 폴리카보네이트 수지, 폴리에스테르카보네이트 공중합체 수지 등을 사용할 수 있다.The polycarbonate resin may be a mixture of copolymers prepared from two or more diphenols. Also, the polycarbonate resin may be a linear polycarbonate resin, a branched polycarbonate resin, a polyester carbonate copolymer resin, or the like.
상기 선형 폴리카보네이트 수지로는 비스페놀-A계 폴리카보네이트 수지 등을 들 수 있다. 상기 분지형 폴리카보네이트 수지로는 트리멜리틱 무수물, 트리멜리틱산 등과 같은 다관능성 방향족 화합물을 디페놀류 및 카보네이트와 반응시켜 제조한 것을 들 수 있다. 상기 다관능성 방향족 화합물은 분지형 폴리카보네이트 수지 총량에 대하여 0.05 내지 2몰%로 포함될 수 있다. 상기 폴리에스테르카보네이트 공중합체 수지로는 이관능성 카르복실산을 디페놀류 및 카보네이트와 반응시켜 제조한 것을 들 수 있다. 이때, 상기 카보네이트로는 디페닐카보네이트 등과 같은 디아릴카보네이트, 에틸렌 카보네이트 등을 사용할 수 있다.Bisphenol-A type | system | group polycarbonate resin etc. are mentioned as said linear polycarbonate resin. Examples of the branched polycarbonate resins include those produced by reacting polyfunctional aromatic compounds such as trimellitic anhydride, trimellitic acid, and the like with diphenols and carbonates. The polyfunctional aromatic compound may be included in an amount of 0.05 to 2 mol% based on the total amount of the branched polycarbonate resin. As said polyester carbonate copolymer resin, what was manufactured by making bifunctional carboxylic acid react with diphenols and a carbonate is mentioned. In this case, as the carbonate, diaryl carbonate such as diphenyl carbonate, ethylene carbonate, or the like may be used.
상기 폴리카보네이트의 함량은 조성물 총 중량을 기준으로 40 내지 95중량%, 바람직하게는 60 내지 90중량% 또는 70 내지 90중량% 일 수 있다. The content of the polycarbonate may be 40 to 95% by weight, preferably 60 to 90% by weight or 70 to 90% by weight based on the total weight of the composition.
상기 복합재 조성물에는 폴리카보네이트 외에도 다양한 수지가 사용되거나 필요에 따라 함께 첨가될 수 있다. 예를 들어, 폴리프로필렌 수지, 아라미드수지, 방향족 폴리에스테르 수지, 폴리올레핀 수지, 폴리에스테르카보네이트 수지, 폴리페닐렌 옥사이드 수지, 폴리설폰 수지, 폴리에테르설폰 수지, 폴리아릴렌 수지, 시클로올레핀계 수지, 폴리에테르이미드 수지, 폴리아세탈 수지, 폴리비닐아세탈 수지, 폴리케톤 수지, 폴리에테르케톤 수지, 폴리에테르에테르케톤 수지, 폴리아릴케톤 수지, 폴리에테르니트릴 수지, 액정 수지, 폴리벤즈이미다졸 수지, 폴리파라반산 수지, 방향족 알케닐 화합물, 메타크릴산에스테르, 아크릴산에스테르, 및 시안화비닐 화합물로 이루어지는 군에서 선택되는 1종 이상의 비닐 단량체를, 중합 혹은 공중합시켜서 얻어지는 비닐계 중합체 혹은 공중합체 수지, 디엔-방향족 알케닐 화합물 공중합체 수지, 시안화비닐-디엔-방향족 알케닐 화합물 공중합체 수지, 방향족 알케닐 화합물-디엔-시안화비닐-N-페닐말레이미드 공중합체 수지, 시안화비닐-(에틸렌-디엔-프로필렌(EPDM))-방향족 알케닐 화합물 공중합체 수지, 폴리올레핀, 염화비닐 수지, 염소화 염화비닐 수지로 이루어진 군으로부터 선택되는 적어도 하나 이상을 사용할 수 있다. 이들 수지의 구체적인 종류는 당업계에 잘 알려져 있으며, 본 발명의 조성물에 사용될 수 있는 예는 당업자들에 의해 적절히 선택될 수 있다.In addition to the polycarbonate, various resins may be used in the composite composition or may be added together as necessary. For example, polypropylene resin, aramid resin, aromatic polyester resin, polyolefin resin, polyester carbonate resin, polyphenylene oxide resin, polysulfone resin, polyethersulfone resin, polyarylene resin, cycloolefin resin, poly Etherimide resin, polyacetal resin, polyvinyl acetal resin, polyketone resin, polyetherketone resin, polyetheretherketone resin, polyarylketone resin, polyethernitrile resin, liquid crystal resin, polybenzimidazole resin, polyparabanic acid Vinyl polymer or copolymer resin obtained by superposing | polymerizing or copolymerizing 1 or more types of vinyl monomers chosen from the group which consists of resin, aromatic alkenyl compound, methacrylic acid ester, acrylic acid ester, and a vinyl cyanide compound, diene-aromatic alkenyl Compound copolymer resin, vinyl cyanide-diene-aromatic Kenyl compound copolymer resin, aromatic alkenyl compound-diene-vinyl cyanide-N-phenylmaleimide copolymer resin, vinyl cyanide- (ethylene-diene-propylene (EPDM))-aromatic alkenyl compound copolymer resin, polyolefin, chloride At least one selected from the group consisting of vinyl resins and chlorinated vinyl chloride resins can be used. Specific kinds of these resins are well known in the art, and examples which can be used in the composition of the present invention may be appropriately selected by those skilled in the art.
상기 폴리올레핀 수지로서는, 예를 들어 폴리프로필렌, 폴리에틸렌, 폴리부틸렌, 및 폴리(4-메틸-1-펜텐), 및 이들의 조합물이 될 수 있으나 이들에 한정되는 것은 아니다. 일구현예에서, 상기 폴리올레핀으로서는 폴리프로필렌 동종 중합체(예를 들어, 혼성배열(atactic) 폴리프로필렌, 동일배열(isotactic) 폴리프로필렌, 및 규칙배열(syndiotactic) 폴리프로필렌), 폴리프로필렌 공중합체(예를 들어, 폴리프로필렌 랜덤 공중합체), 및 이들의 혼합물로 이루어진 군으로부터 선택되는 것을 포함할 수 있다. 적절한 폴리프로필렌 공중합체는, 이에 한정되지는 않지만, 에틸렌, 부트-1-엔(즉, 1-부텐), 및 헥스-1-엔(즉, 1-헥센)으로 이루어진 군으로부터 선택된 공단량체의 존재하에서 프로필렌의 중합으로부터 제조된 랜덤 공중합체를 포함할 수 있다. 이러한 폴리프로필렌 랜덤 공중합체에서, 공단량체는 임의의 적정한 양으로 존재할 수 있지만, 전형적으로 약 10wt% 이하(예를 들어, 약 1 내지 약 7wt%, 또는 약 1 내지 약 4.5wt%)의 양으로 존재할 수 있다.Examples of the polyolefin resins include, but are not limited to, polypropylene, polyethylene, polybutylene, and poly (4-methyl-1-pentene), and combinations thereof. In one embodiment, the polyolefin may be a polypropylene homopolymer (e.g., atactic polypropylene, isotactic polypropylene, and syndiotactic polypropylene), polypropylene copolymer (e.g., Polypropylene random copolymers), and mixtures thereof. Suitable polypropylene copolymers include, but are not limited to, the presence of comonomers selected from the group consisting of ethylene, but-1-ene (ie 1-butene), and hex-1-ene (ie 1-hexene). And random copolymers prepared from the polymerization of propylene under. In such polypropylene random copolymers, comonomers may be present in any suitable amount, but typically in amounts of about 10 wt% or less (eg, about 1 to about 7 wt%, or about 1 to about 4.5 wt%) May exist.
상기 폴리에스테르 수지로서는, 디카르복실산 성분 골격과 디올 성분 골격의 중축합체인 호모 폴리에스테르나 공중합 폴리에스테르를 말한다. 여기서 호모 폴리에스테르로서는, 예를 들면 폴리에틸렌테레프탈레이트, 폴리프로필렌테레프탈레이트, 폴리부틸렌테레프탈레이트, 폴리에틸렌-2,6-나프탈레이트, 폴리-1,4-시클로헥산디메틸렌테레프탈레이트, 폴리에틸렌디페닐레이트 등이 대표적인 것이다. 특히 폴리에틸렌테레프탈레이트는 저렴하므로 매우 다방면에 걸치는 용도로 사용할 수 있어 바람직하다. 또한, 상기 공중합 폴리에스테르란 다음에 예시하는 디카르복실산 골격을 갖는 성분과 디올 골격을 갖는 성분으로부터 선택되는 적어도 3개 이상의 성분으로 이루어지는 중축합체로 정의된다. 디카르복실산 골격을 갖는 성분으로서는 테레프탈산, 이소프탈산, 프탈산, 1,4-나프탈렌디카르복실산, 1,5-나프탈렌디카르복실산, 2,6-나프탈렌디카르복실산, 4,4'-디페닐디카르복실산, 4,4'-디페닐술폰디카르복실산, 아디핀산, 세바신산, 다이머산, 시클로헥산디카르복실산과 그들의 에스테르 유도체 등을 들 수 있다. 글리콜 골격을 갖는 성분으로서는 에틸렌글리콜, 1,2-프로판디올, 1,3-부탄디올, 1,4-부탄디올, 1,5-펜타디올, 디에틸렌글리콜, 폴리알킬렌글리콜, 2,2-비스(4'-β-히드록시에톡시페닐)프로판, 이소소르베이트, 1,4-시클로헥산디메탄올, 스피로글리콜 등을 들 수 있다.As said polyester resin, the homopolyester and copolyester which are polycondensates of a dicarboxylic acid component skeleton and a diol component skeleton are mentioned. As the homo polyester, for example, polyethylene terephthalate, polypropylene terephthalate, polybutylene terephthalate, polyethylene-2,6-naphthalate, poly-1,4-cyclohexanedimethylene terephthalate, polyethylene diphenylate Etc. are typical. In particular, since polyethylene terephthalate is inexpensive, it can be used for a very wide range of applications, which is preferable. In addition, the said copolyester is defined as the polycondensate which consists of at least 3 or more components chosen from the component which has a dicarboxylic acid skeleton and the component which have a diol skeleton which are illustrated next. Examples of the component having a dicarboxylic acid skeleton include terephthalic acid, isophthalic acid, phthalic acid, 1,4-naphthalenedicarboxylic acid, 1,5-naphthalenedicarboxylic acid, 2,6-naphthalenedicarboxylic acid, 4,4 ' -Diphenyl dicarboxylic acid, 4,4'- diphenyl sulfone dicarboxylic acid, adipic acid, sebacic acid, dimer acid, cyclohexanedicarboxylic acid, ester derivatives thereof, and the like. Examples of the component having a glycol skeleton include ethylene glycol, 1,2-propanediol, 1,3-butanediol, 1,4-butanediol, 1,5-pentadiol, diethylene glycol, polyalkylene glycol, 2,2-bis ( 4 '-(beta) -hydroxyethoxyphenyl) propane, isosorbate, 1, 4- cyclohexane dimethanol, spiroglycol, etc. are mentioned.
상기 시클로올레핀계 폴리머로서는, 노르보르넨계 중합체, 단고리의 고리형 올레핀계 중합체, 고리형 공액 디엔계 중합체, 비닐 지환식 탄화수소 중합체, 및 이들의 수소화물을 들 수 있다. 그 구체 예로서는, 아펠 (미츠이 화학사 제조의 에틸렌-시클로올레핀 공중합체), 아톤 (JSR 사 제조의 노르보르넨계 중합체), 제오노아 (닛폰 제온사 제조의 노르보르넨계 중합체) 등을 들 수 있다.As said cycloolefin type polymer, a norbornene type polymer, a monocyclic cyclic olefin type polymer, a cyclic conjugated diene type polymer, a vinyl alicyclic hydrocarbon polymer, and these hydrides are mentioned. Specific examples thereof include Apel (ethylene-cycloolefin copolymer manufactured by Mitsui Chemical Co., Ltd.), aton (norbornene-based polymer manufactured by JSR Corporation), zeonoa (norbornene-based polymer manufactured by Nippon Xeon Corporation), and the like.
상기 폴리페닐렌 옥사이드 수지는 폴리페닐렌 에테르로도 칭해지며, 반복단위로서 페닐렌기에 -O-가 결합된 구조를 갖는다. 상기 페닐렌기는 다양한 치환기, 예를 들어 메틸기, 에틸기, 할로겐기, 히드록시기 등을 가질 수 있다.The polyphenylene oxide resin is also referred to as polyphenylene ether, and has a structure in which -O- is bonded to a phenylene group as a repeating unit. The phenylene group may have various substituents, for example, methyl group, ethyl group, halogen group, hydroxy group and the like.
본 발명에 따른 대전방지 트레이를 제조하기 위한 복합재는 탄소나노튜브의 함량이 조성물 총 중량을 기준으로 0.1중량% 미만인 경우, 표면저항 및 강도 등의 물성이 저하될 수 있으며, 10중량%를 초과하는 경우, 성형시 필요한 열 또는 물리적 힘이 증가할 수 있다. 바람직하게는 0.5 내지 8 중량% 또는 1 내지 5중량% 일 수 있다. Composites for producing an antistatic tray according to the present invention, when the content of the carbon nanotube is less than 0.1% by weight based on the total weight of the composition, physical properties such as surface resistance and strength may be lowered, exceeding 10% by weight In this case, the heat or physical force required during molding may increase. Preferably from 0.5 to 8% by weight or from 1 to 5% by weight.
상기 유리섬유의 함량은 조성물 총 중량을 기준으로 1중량% 미만인 경우, 인장강도, 굴곡강도 및 충격강도 등의 물성이 저하될 수 있고, 50중량%를 초과하는 경우에는, 점도가 향상될 수 있다. 바람직하게는 5 내지 30중량% 또는 10 내지 20 중량%일 수 있다. When the content of the glass fiber is less than 1% by weight based on the total weight of the composition, physical properties such as tensile strength, flexural strength, and impact strength may decrease, and when the content exceeds 50% by weight, the viscosity may be improved. . Preferably from 5 to 30% by weight or 10 to 20% by weight.
일구현예에 따르면, 상기 탄소나노튜브의 평균 길이는 1 내지 500㎛일 수 있으며, 예를 들어 1 내지 300㎛, 예를 들어 1 내지 100㎛일 수 있고, 상기 탄소나노튜브의 최대 길이는 500㎛일 수 있다.According to one embodiment, the average length of the carbon nanotubes may be 1 to 500 μm, for example, 1 to 300 μm, for example 1 to 100 μm, and the maximum length of the carbon nanotubes is 500 May be μm.
또한, 상기 탄소나노튜브의 종횡비(aspect ratio)는 예를 들어, 10 내지 1,000일 수 있으며, 예를 들어 50 내지 500일 수 있으며, 예를 들어 100 내지 200일 수 있고, 하기 수학식 1에 따라 계산될 수 있다.In addition, an aspect ratio of the carbon nanotubes may be, for example, 10 to 1,000, for example, 50 to 500, for example, 100 to 200, and according to Equation 1 below. Can be calculated.
[수학식 1][Equation 1]
종횡비(Aspect Ratio) = 길이(L) / 직경(D)Aspect Ratio = Length (L) / Diameter (D)
상기 탄소나노튜브는, 예를 들어 아크방전법(arc Discharge), 레이저 증착법(laser Ablation), 열분해법(pyrolysis), 불꽃반응(flame)합성법, 화학기상 증착법(chemical vapor deposition:CVD), 기상 성장법(vapor phase growth) 등의 방법으로부터 제조될 수 있다.The carbon nanotubes may be, for example, arc discharge, laser ablation, pyrolysis, flame synthesis, chemical vapor deposition, and gas phase growth. It may be prepared from a method such as vapor phase growth.
상기 아크방전법(arc Discharge)은 예를 들어, 직경이 다른 두 개의 탄소봉을 사용하여 아크를 발생시키는 방법일 수 있으며, 반응기 내부에 있는 불활성 기체의 압력과 전류와 같은 변수에 따라 다중벽 탄소나노튜브를 합성할 수 있고, 단일벽 탄소나노튜브를 성장시키기 위해서는 금속촉매가 필요하다.The arc discharge method may be, for example, a method of generating an arc by using two carbon rods having different diameters, and multi-wall carbon nano according to variables such as pressure and current of an inert gas inside the reactor. In order to synthesize a tube and grow single-walled carbon nanotubes, a metal catalyst is required.
상기 레이저 증착법(Laser Ablation)은 예를 들어, 1200℃의 고온에서 오븐 안에 흑연 덩어리를 레이저로 쪼여서 흑연 혼합물과 사용하는 반응 가스의 종류에 따라 SWNT와 MWNT를 만들 수 있다.The laser ablation method may generate SWNTs and MWNTs according to the type of graphite mixture and the reaction gas used, for example, by laser cutting graphite particles into an oven at a high temperature of 1200 ° C.
상기 화학기상 증착법(chemical vapor deposition: CVD)은 대면적에 고르게 제작할 수 있는 장점이 있고 수직 배향이 가능하며, 또한 저온에서 합성이 가능하고, 구조의 제어를 용이하게 할 수 있다. 상기 화학기상 증착법(CVD)은 예를 들어, 촉매 화학증기 증착법(catalytic carbon vapor deposition: CCVD), 열 CVD법, 직류(direct current: DC) 플라즈마 CVD법, 고주파(radio frequency: RF) 플라즈마 CVD법, 마이크로파 플라즈마 CVD법으로 구분할 수 있다.The chemical vapor deposition (CVD) has an advantage that it can be produced evenly in a large area, can be vertically aligned, can be synthesized at a low temperature, and can easily control the structure. The chemical vapor deposition (CVD) is, for example, catalytic carbon vapor deposition (CCVD), thermal CVD method, direct current (DC) plasma CVD method, radio frequency (RF) plasma CVD method And microwave plasma CVD.
상기 기상 성장법(vapor phase growth)은 기판을 사용하지 않고 반응로 내부로 촉매금속 반응물과 탄화가스를 동시에 공급하여 반응로 안에서 기상으로 탄소나노튜브를 합성하는 방법이며, 대량 합성에 적용할 수 있다.The vapor phase growth method is a method of synthesizing carbon nanotubes in a gas phase in a reactor by simultaneously supplying a catalyst metal reactant and a carbonization gas into a reactor without using a substrate, and can be applied to mass synthesis. .
일구현예에 따르면, 상기 유리섬유는 평균 길이가 4mm일 수 있고, 최대 길이는 20mm일 수 있으며, 상기 길이가 짧은 경우, 인장강도 및 충격강도 특성의 향상이 충분하지 않을 수 있고, 길이가 긴 경우, 점도가 높아 성형이 용이하지 않을 수 있다.According to one embodiment, the glass fiber may have an average length of 4mm, the maximum length may be 20mm, when the length is short, the improvement of tensile strength and impact strength characteristics may not be sufficient, the length is long In this case, the molding may not be easy due to the high viscosity.
일구현예에 따르면, 본 발명에 따른 대전방지 트레이는 인장강도 1,000kg/cm2 이상, 굴곡강도 1,600kg/cm2 이상 및 충격강도 8kg·cm/cm 이상의 기계적 특성을 구현할 수 있다.According to one embodiment, the antistatic tray according to the present invention can implement mechanical properties of tensile strength of 1,000kg / cm 2 or more, flexural strength of 1,600kg / cm 2 or more and impact strength of 8kg · cm / cm or more.
본 발명에 따른 대전 방지 트레이는, 조성물 총 중량을 기준으로 40 내지 95중량%의 폴리카보네이트, 0.1 내지 10중량%의 탄소나노튜브 및 1 내지 50중량%의 유리섬유를 혼합하여 복합재를 제조하는 단계; 및Antistatic tray according to the present invention, based on the total weight of the composition to prepare a composite material by mixing 40 to 95% by weight of polycarbonate, 0.1 to 10% by weight of carbon nanotubes and 1 to 50% by weight of glass fibers ; And
상기 복합재를 성형하여 대전방지 트레이를 제조하는 단계를 포함하는 방법으로 제조될 수 있다.Molding the composite may be produced by a method comprising the step of producing an antistatic tray.
일구현예에 따르면, 상기 탄소나노튜브는 촉매화학증기증착법(CCVD)에 따라 제조된 것일 수 있다. 상기 촉매화학증기증착법(CCVD)은 기판을 사용하지 않고, 반응로 안에 반응가스와 유기 금속촉매를 직접 공급하여, 기상으로부터 탄소나노튜브를 직접 합성하는 방법으로, 단일벽, 이중벽 또는 다중벽 탄소나노튜브를 비교적 경제적으로 대량 합성하는 데 적합할 수 있다. 또한, 탄소나노튜브의 직경, 길이, 밀도, 구조, 결정성 등을 제어하기가 쉽고, 고순도의 탄소나노튜브를 생산할 수 있으며, 예를 들어, 유기화합물의 열분해법, 탄화수소의 촉매 분해법 등으로 구분될 수 있다.According to one embodiment, the carbon nanotubes may be prepared by catalytic chemical vapor deposition (CCVD). The catalytic chemical vapor deposition method (CCVD) is a method of directly synthesizing carbon nanotubes from a gas phase by directly supplying a reaction gas and an organic metal catalyst into a reactor without using a substrate. It may be suitable for mass synthesis of tubes relatively economically. In addition, it is easy to control the diameter, length, density, structure, crystallinity, etc. of the carbon nanotubes, it is possible to produce high-purity carbon nanotubes, for example, thermal decomposition of organic compounds, catalytic decomposition of hydrocarbons, etc. Can be.
상기 유기 화합물의 열분해법은 비교적 높은 분해 온도와 비교적 낮은 압력하에서 진행될 수 있으며, 메탈로센, 철펜타카보닐 등과 같은 유기금속 전구체를 사용할 수 있다.The pyrolysis of the organic compound may be performed at a relatively high decomposition temperature and a relatively low pressure, and an organometallic precursor such as metallocene, iron pentacarbonyl, or the like may be used.
상기 탄화수소의 촉매 분해법은 금속 화합물을 촉매 지지체로서 포함할 수 있다. 상기 탄화수소 물질과 함께 전이금속 촉매를 함유하는 유기금속화합물로서, Fe(CO)5 또는 페로센(ferrocene) 등을 반응로에 주입하고, 가열로에 의해 분해된 금속 원자는 기상에서 다발을 형성하며, 탄소나노튜브의 성장을 위한 핵을 형성하며 탄소나노튜브의 합성을 개시할 수 있다.Catalytic cracking of the hydrocarbon may include a metal compound as a catalyst support. As the organometallic compound containing a transition metal catalyst together with the hydrocarbon material, Fe (CO) 5 or ferrocene (ferrocene) is injected into the reactor, the metal atoms decomposed by the heating furnace to form a bundle in the gas phase, Forming a nucleus for the growth of carbon nanotubes can initiate the synthesis of carbon nanotubes.
일구현예에 따르면, 본 발명에 따른 대전방지 트레이는 항균제, 이형제, 열안정제, 산화방지제, 광안정제, 상용화제, 염료, 무기물 첨가제, 계면활성제, 핵제, 커플링제, 충전제, 가소제, 충격보강제, 혼화제, 착색제, 활제, 정전기방지제, 안료, 방염제 및 이들의 하나 이상의 혼합물로 이루어진 군으로부터 선택된 첨가제를 더 포함할 수 있다.According to one embodiment, the antistatic tray according to the present invention is an antibacterial agent, a release agent, a heat stabilizer, an antioxidant, a light stabilizer, a compatibilizer, a dye, an inorganic additive, a surfactant, a nucleating agent, a coupling agent, a filler, a plasticizer, an impact modifier, It may further comprise an additive selected from the group consisting of admixtures, colorants, lubricants, antistatic agents, pigments, flame retardants and mixtures of one or more thereof.
이와 같은 첨가물은 본 발명에 따른 대전방지 트레이의 인장강도, 충격강도, 표면저항 등의 물성에 영향을 주지 않는 범위 내에서 포함될 수 있으며, 상기 폴리카보네이트 100중량부를 기준으로 0.1 내지 5중량부, 예를 들어 0.1 내지 3중량부의 함량으로 포함될 수 있다.Such additives may be included within a range that does not affect the physical properties such as tensile strength, impact strength, surface resistance of the antistatic tray according to the present invention, 0.1 to 5 parts by weight, based on 100 parts by weight of the polycarbonate, For example, it may be included in an amount of 0.1 to 3 parts by weight.
본 발명에 따른 대전방지 트레이는 압출, 사출 또는 압출 및 사출하여 성형되는 것일 수 있으나, 상기 성형품의 제조 방법은 당 업계에 사용되는 통상의 방법이면 적절하게 사용될 수 있으며, 상기 기재에 한정되지는 않는다.The antistatic tray according to the present invention may be molded by extrusion, injection or extrusion and injection, but the manufacturing method of the molded article may be suitably used as long as it is a conventional method used in the art, but is not limited to the above description. .
이하, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 본 발명의 실시예에 대하여 상세히 설명한다. 그러나 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다.Hereinafter, embodiments of the present invention will be described in detail so that those skilled in the art can easily practice the present invention. As those skilled in the art would realize, the described embodiments may be modified in various different ways, all without departing from the spirit or scope of the present invention.
실시예 1 내지 2 및 비교예 1 내지 3: 대전방지 트레이의 제조Examples 1-2 and Comparative Examples 1-3: Preparation of Antistatic Tray
표 1에 나타낸 바와 같은 함량의 성분들을 이축압출기(L/D=42, Φ=40mm) 에 첨가하고 온도 프로파일을 280℃까지 올리면서 용융 압출하여 0.2mm X 0.3mm X 0.4mm의 크기를 갖는 펠렛을 제조하였다. 제조된 펠렛을 사출기에서 사출온도 280℃의 플랫 프로파일의 조건으로 사출하여 두께 3.2mm, 길이 12.7mm 및 도그-본(dog-bone) 형태의 시편을 제조하였다. Pellets having a size of 0.2 mm X 0.3 mm X 0.4 mm were added to the twin screw extruder (L / D = 42, Φ = 40 mm) and melt-extruded while raising the temperature profile to 280 ° C. Was prepared. The prepared pellet was injected into a flat profile at an injection temperature of 280 ° C. in the injection machine to prepare a specimen having a thickness of 3.2 mm, a length of 12.7 mm, and a dog-bone shape.
표 1에서 사용된 성분들은 다음과 같고, 각 함량의 단위는 조성물 총 중량을 기준으로 하는 중량%이다.The components used in Table 1 are as follows, and each content unit is in weight percent based on the total weight of the composition.
폴리카보네이트는 ㈜LG화학의 LUPOY 1300-30을 사용하였다.Polycarbonate was used as LUPOY 1300-30 of LG Chem.
탄소섬유는 단섬유(chopped fiber. Zoltek) 직경 1 내지 30㎛, 길이 6㎜이상의 것을 사용하였다.As the carbon fiber, a chopped fiber (Zoltek) having a diameter of 1 to 30 µm and a length of 6 mm or more was used.
탄소나노튜브는 촉매화학증기증착법(CCVD)에 따라 제조된 평균직경 10㎚, 길이 1.5㎛의 것을 사용하였다.Carbon nanotubes having an average diameter of 10 nm and a length of 1.5 μm prepared by catalytic chemical vapor deposition (CCVD) were used.
유리섬유는 Owenscorning사의 직경 10~13㎛, 길이 4㎜의 것을 사용하였다.The glass fiber used was 10-13 micrometers in diameter, and 4mm in length by Owenscorning.
열안정제 및 활제로는 에스터계 왁스 Hywax EP-184, 열안정제 Ciba Irganox 1076, Irgafos 168을 사용하였다.Ester wax Hywax EP-184, heat stabilizer Ciba Irganox 1076, Irgafos 168 were used as heat stabilizers and lubricants.
구분division 탄소소재 종류Carbon material type 탄소소재 함량Carbon material content 유리소재 함량Glass material content 유리소재 길이(mm)Glass material length (mm) 폴리카보네이트 함량Polycarbonate content 열안정제 및 활제Heat stabilizers and lubricants
실시예 1Example 1 탄소나노튜브Carbon nanotubes 1.51.5 1616 44 81.681.6 0.90.9
실시예 2Example 2 탄소나노튜브Carbon nanotubes 2.02.0 1818 44 79.179.1 0.90.9
비교예 1Comparative Example 1 탄소섬유Carbon fiber 7.07.0 -- -- 92.192.1 0.90.9
비교예 2Comparative Example 2 탄소섬유Carbon fiber 8.08.0 -- -- 91.191.1 0.90.9
비교예 3Comparative Example 3 탄소섬유Carbon fiber 9.09.0 -- -- 90.190.1 0.90.9
실험예 : 트레이의 특성 평가Experimental Example: Evaluation of the Characteristics of the Tray
실험예 1Experimental Example 1
상기 실시예 및 비교예에 따른 각 대전방지 트레이 시편에 대하여, ASTM D638에 준하는 방법으로 인장강도를 측정하였다.For each of the antistatic tray specimens according to the above Examples and Comparative Examples, the tensile strength was measured by the method according to ASTM D638.
실험예 2Experimental Example 2
상기 실시예 및 비교예에 따른 각 대전방지 트레이 시편에 대하여, ASTM D790에 준하는 방법으로 굴곡강도를 측정하였다.For each antistatic tray specimen according to the Examples and Comparative Examples, the flexural strength was measured by a method according to ASTM D790.
실험예 3Experimental Example 3
상기 실시예 및 비교예에 따른 각 대전방지 트레이 시편에 대하여, ASTM D790에 준하는 방법으로 굴곡탄성을 측정하였다.For each of the antistatic tray specimens according to the Examples and Comparative Examples, the flexural modulus was measured by a method according to ASTM D790.
실험예 4Experimental Example 4
상기 실시예 및 비교예에 따른 각 대전방지 트레이 시편에 대하여, ASTM D256에 준하는 방법으로 충격강도를 측정하였다.For each antistatic tray specimen according to the Examples and Comparative Examples, the impact strength was measured by a method according to ASTM D256.
실험예 5Experimental Example 5
상기 실시예 및 비교예에 따른 각 대전방지 트레이 시편에 대하여, ASTM D257에 준하는 방법으로 표면저항을 측정하였다.For each of the antistatic tray specimens according to the Examples and Comparative Examples, the surface resistance was measured by the method according to ASTM D257.
실험예 6Experimental Example 6
상기 실시예 및 비교예에 따른 각 대전방지 트레이 시편에 대하여, ASTM D648에 준하는 방법으로 열변형온도를 측정하였다.For each antistatic tray specimen according to the Examples and Comparative Examples, the heat deflection temperature was measured by a method according to ASTM D648.
실험예 7Experimental Example 7
상기 실시예 및 비교예에 따른 각 대전방지 트레이 시편에 대하여, 300℃에서 두께 1.5㎜, 보압 2000kg/cm2 조건으로 스파이럴 플로우 길이(spiral flow length)를 측정하였다.For each of the antistatic tray specimens according to the above Examples and Comparative Examples, the spiral flow length was measured at 300 ° C. under a thickness of 1.5 mm and a holding pressure of 2000 kg / cm 2 .
상기 실험예의 결과를 하기 표 2에 나타내었다.The results of the experimental example are shown in Table 2 below.
구분division 인장강도(kg/cm2)Tensile Strength (kg / cm 2 ) 굴곡강도(kg/cm2)Flexural Strength (kg / cm 2 ) 굴곡탄성(kg/cm2)Flexural modulus (kg / cm 2 ) 충격강도(kg·cm/cm)Impact strength (kgcm / cm) 표면저항(ohm/sq)Surface resistance (ohm / sq) Spiral flow length(cm)Spiral flow length (cm) 열변형온도(℃)Heat deflection temperature (℃)
실시예 1Example 1 1,0311,031 1,6841,684 54,77254,772 10.310.3 105 10 5 25.525.5 131.8131.8
실시예 2Example 2 1,1131,113 1,7621,762 59,77259,772 11.911.9 105 10 5 24.324.3 131.8131.8
비교예 1Comparative Example 1 915915 1,4791,479 57,74757,747 5.45.4 105-1010 10 5 -10 10 24.324.3 133.5133.5
비교예 2Comparative Example 2 958958 1,5051,505 59,62459,624 5.45.4 105 10 5 24.124.1 135.0135.0
비교예 3Comparative Example 3 998998 1,5731,573 67,58067,580 5.55.5 104-105 10 4 -10 5 24.024.0 134.6134.6
표 2에 나타난 바와 같이, 실시예 및 비교예 모두 열 변형 온도가 130℃ 이상이므로 베이킹 공정과 같은 고온 공정을 적용할 수 있으며, 표면저항과 같은 전기적 특성을 유지할 수 있음을 알 수 있다. 또한, 스파이럴 플로우 값으로부터 유리섬유 및 탄소나노튜브를 포함하고 있는 실시예가, 탄소섬유를 포함하는 비교예와 동등한 수준의 성형성을 유지함을 확인할 수 있고, 인장강도 값, 굴곡강도 값과 특히, 충격강도 값으로부터 확인할 수 있는 바와 같이, 실시예가 비교예보다 우수한 기계적 강도를 가지는 것을 알 수 있다.As shown in Table 2, since both the heat distortion temperature is 130 ℃ or more can be applied to a high temperature process, such as baking process, it can be seen that the electrical properties such as surface resistance can be maintained. In addition, it can be seen from the spiral flow values that the examples including the glass fibers and the carbon nanotubes maintain the formability equivalent to those of the comparative examples including the carbon fibers. As can be seen from the strength value, it can be seen that the Example has a higher mechanical strength than the Comparative Example.
그러므로 상기에서 확인할 수 있는 바와 같이, 본 발명에 따른 대전방지 트레이에 의하면, 기계적 강도를 향상시킬 수 있음과 동시에, 전기적 특성 및 성형성을 유지할 수 있음을 확인할 수 있다.Therefore, as can be seen above, according to the antistatic tray according to the present invention, it can be confirmed that the mechanical strength can be improved and the electrical properties and the moldability can be maintained.
이상으로 본 발명 내용의 특정한 부분을 상세히 기술한 바, 당업계의 통상의 지식을 가진 자에게 있어서, 이러한 구체적 기술은 단지 바람직한 실시 양태일 뿐이며, 이에 의해 본 발명의 범위가 제한되는 것이 아닌 점은 명백할 것이다. 따라서 본 발명의 실질적인 범위는 첨부된 청구항들과 그것들의 등가물에 의하여 정의된다고 할 것이다.As described above in detail specific parts of the present invention, it is apparent to those skilled in the art that such specific descriptions are merely preferred embodiments, and thus the scope of the present invention is not limited thereto. something to do. Thus, the substantial scope of the present invention will be defined by the appended claims and their equivalents.

Claims (12)

  1. 조성물 충 중량을 기준으로 40 내지 95중량%의 폴리카보네이트, 0.1 내지 10중량%의 탄소나노튜브 및 1 내지 50중량%의 유리섬유를 포함하는 대전방지 트레이.An antistatic tray comprising 40 to 95 weight percent polycarbonate, 0.1 to 10 weight percent carbon nanotubes and 1 to 50 weight percent glass fibers, based on the weight of the composition.
  2. 제1항에 있어서,The method of claim 1,
    상기 탄소나노튜브의 평균 길이가 1 내지 500㎛인 것인 대전방지 트레이.An antistatic tray having an average length of the carbon nanotubes of 1 to 500㎛.
  3. 제1항에 있어서,The method of claim 1,
    상기 탄소나노튜브의 최대 길이가 500㎛ 것인 대전방지 트레이.Antistatic tray of which the maximum length of the carbon nanotubes is 500㎛.
  4. 제1항에 있어서,The method of claim 1,
    상기 탄소나노튜브의 종횡비가 10 내지 1,000이며,An aspect ratio of the carbon nanotubes is 10 to 1,000,
    상기 종횡비가 하기 식 1에 따라 계산된 것인 대전방지 트레이:An antistatic tray wherein the aspect ratio is calculated according to the following Equation 1:
    [수학식 1][Equation 1]
    종횡비(Aspect Ratio) = 길이(L) / 직경(D).Aspect Ratio = Length (L) / Diameter (D).
  5. 제1항에 있어서,The method of claim 1,
    상기 유리섬유의 평균 길이가 4mm인 것인 대전방지 트레이.Antistatic tray of which the average length of the glass fiber is 4mm.
  6. 제1항에 있어서,The method of claim 1,
    상기 유리섬유의 최대 길이가 20mm인 것인 대전방지 트레이.Antistatic tray of which the maximum length of the glass fiber is 20mm.
  7. 제1항에 있어서,The method of claim 1,
    상기 복합재의 인장강도가 1,000kg/cm2 이상인 것인 대전방지 트레이.Antistatic tray of which the tensile strength of the composite material is 1,000kg / cm 2 or more.
  8. 제1항에 있어서,The method of claim 1,
    상기 복합재의 굴곡강도가 1,600kg/cm2 이상인 것인 대전방지 트레이.Antistatic tray that the flexural strength of the composite material is 1,600kg / cm 2 or more.
  9. 제1항에 있어서,The method of claim 1,
    상기 복합재의 충격강도가 8kg·cm/cm 이상인 것인 대전방지 트레이.The antistatic tray of which the impact strength of the composite material is 8kg · cm / cm or more.
  10. 조성물 총 중량을 기준으로 40 내지 95중량%의 폴리카보네이트, 0.1 내지 10중량%의 탄소나노튜브 및 1 내지 50중량%의 유리섬유를 혼합하여 복합재를 제조하는 단계; 및Preparing a composite by mixing 40 to 95 wt% polycarbonate, 0.1 to 10 wt% carbon nanotubes, and 1 to 50 wt% glass fibers based on the total weight of the composition; And
    상기 복합재를 성형하여 대전방지 트레이를 제조하는 단계를 포함하는 대전방지 트레이 제조방법.An antistatic tray manufacturing method comprising the step of manufacturing the antistatic tray by molding the composite.
  11. 제10항에 있어서,The method of claim 10,
    상기 탄소나노튜브가 촉매화학증기증착법(CCVD)에 따라 제조된 것인 대전방지 트레이 제조방법.The carbon nanotubes are prepared by the catalytic chemical vapor deposition method (CCVD) antistatic tray manufacturing method.
  12. 제10항에 있어서, The method of claim 10,
    상기 복합재가 항균제, 이형제, 열안정제, 산화방지제, 광안정제, 상용화제, 염료, 무기물 첨가제, 계면활성제, 핵제, 커플링제, 충전제, 가소제, 충격보강제, 혼화제, 착색제, 활제, 정전기방지제, 안료, 방염제 및 이들의 하나 이상의 혼합물로 이루어진 군으로부터 선택된 첨가제를 더 포함하는 것인 대전방지 트레이 제조방법.The composite material is an antibacterial agent, a mold release agent, a heat stabilizer, an antioxidant, a light stabilizer, a compatibilizer, a dye, an inorganic additive, a surfactant, a nucleating agent, a coupling agent, a filler, a plasticizer, an impact modifier, a admixture, a colorant, a lubricant, an antistatic agent, a pigment, An antistatic tray manufacturing method further comprising an additive selected from the group consisting of flame retardants and mixtures of one or more thereof.
PCT/KR2016/011642 2016-01-26 2016-10-17 Antistatic tray and manufacturing method therefor WO2017131317A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2016-0009645 2016-01-26
KR1020160009645A KR102043314B1 (en) 2016-01-26 2016-01-26 Antistatic tray and manufacturing method thereof

Publications (1)

Publication Number Publication Date
WO2017131317A1 true WO2017131317A1 (en) 2017-08-03

Family

ID=59398740

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/011642 WO2017131317A1 (en) 2016-01-26 2016-10-17 Antistatic tray and manufacturing method therefor

Country Status (2)

Country Link
KR (1) KR102043314B1 (en)
WO (1) WO2017131317A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115785640A (en) * 2022-12-08 2023-03-14 无锡赢同新材料科技有限公司 Special composite material for high-temperature-resistant antistatic tray and preparation method thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112920586A (en) * 2019-12-06 2021-06-08 汉达精密电子(昆山)有限公司 Antistatic PC material and product thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080009576A1 (en) * 2006-06-30 2008-01-10 Alexander Charles W Process for manufacturing of thermoplastic composites with improved properties
KR100839173B1 (en) * 2007-03-21 2008-06-17 신일화학공업(주) Modified polyphenylene oxide resin composition comprising carbon nano tube
KR20090019354A (en) * 2007-08-20 2009-02-25 주식회사 삼양사 Antistatic resin composition containing carbon nanotube
KR20090026534A (en) * 2007-09-10 2009-03-13 제일모직주식회사 Multilayered film having antistatic property and method for manufacturing the same
CN104672850A (en) * 2013-11-28 2015-06-03 上海杰事杰新材料(集团)股份有限公司 Antistatic reinforced polycarbonate composite material and preparation method thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080009576A1 (en) * 2006-06-30 2008-01-10 Alexander Charles W Process for manufacturing of thermoplastic composites with improved properties
KR100839173B1 (en) * 2007-03-21 2008-06-17 신일화학공업(주) Modified polyphenylene oxide resin composition comprising carbon nano tube
KR20090019354A (en) * 2007-08-20 2009-02-25 주식회사 삼양사 Antistatic resin composition containing carbon nanotube
KR20090026534A (en) * 2007-09-10 2009-03-13 제일모직주식회사 Multilayered film having antistatic property and method for manufacturing the same
CN104672850A (en) * 2013-11-28 2015-06-03 上海杰事杰新材料(集团)股份有限公司 Antistatic reinforced polycarbonate composite material and preparation method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115785640A (en) * 2022-12-08 2023-03-14 无锡赢同新材料科技有限公司 Special composite material for high-temperature-resistant antistatic tray and preparation method thereof

Also Published As

Publication number Publication date
KR102043314B1 (en) 2019-11-12
KR20170089349A (en) 2017-08-03

Similar Documents

Publication Publication Date Title
TWI790305B (en) Liquid crystal polyester resin composition and injection molded article
US10626252B2 (en) Composite with improved mechanical properties and molded article including the same
KR100706651B1 (en) Electroconductive thermoplastic resin composition and plastic article
WO2015084067A1 (en) Composite material having improved electrical conductivity and molded part containing same
WO2015084065A1 (en) Composite material with improved mechanical properties and molded article containing same
WO2017188524A1 (en) Antistatic carbon composite, molded product, and preparation method therefor
JP2009197056A (en) Conductive resin molding material
WO2017131317A1 (en) Antistatic tray and manufacturing method therefor
WO2016159510A1 (en) Highly thermally conductive composite material
WO2015083893A1 (en) Composite material having improved electrical conductivity and molded part containing same
US20170298214A1 (en) Thinwall moldable coductive compositions with improved physical properties and uses thereof
JP3470730B2 (en) Thermoplastic resin composition
WO2017146340A1 (en) Carbon composite material and method for producing same
WO2016032307A1 (en) Composite with improved mechanical properties and molded product containing same
JP2011026584A (en) Electroconductive thermoplastic resin film or electroconductive thermoplastic resin sheet
CN107075262B (en) Composite materials with enhanced electrical conductivity and methods of making the same
WO2018124482A2 (en) Resin composition and molded article produced therefrom
KR20090026534A (en) Multilayered film having antistatic property and method for manufacturing the same
WO2022035142A1 (en) Low-density carbon nanotubes and composite comprising same
JP2002256153A (en) Electroconductive molded product and its manufacturing method
WO2019107919A1 (en) Resin composition and molded product manufactured therefrom
WO2024047618A2 (en) Thermoplastic resin composition and molded article manufactured therefrom
WO2023054909A1 (en) Thermoplastic resin composition and molded product manufactured therefrom
TW202208534A (en) High-performance halogen-free flame retarding pc/cnt conductive material and products thereof
WO2015170803A1 (en) Polycarbonate resin composition and molded articles prepared therefrom

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16888293

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16888293

Country of ref document: EP

Kind code of ref document: A1