WO2017131190A1 - Polymer and method for producing same - Google Patents

Polymer and method for producing same Download PDF

Info

Publication number
WO2017131190A1
WO2017131190A1 PCT/JP2017/003037 JP2017003037W WO2017131190A1 WO 2017131190 A1 WO2017131190 A1 WO 2017131190A1 JP 2017003037 W JP2017003037 W JP 2017003037W WO 2017131190 A1 WO2017131190 A1 WO 2017131190A1
Authority
WO
WIPO (PCT)
Prior art keywords
compound
polycyclic aromatic
aromatic compound
region
polymer
Prior art date
Application number
PCT/JP2017/003037
Other languages
French (fr)
Japanese (ja)
Inventor
健一郎 伊丹
英人 伊藤
裕太 矢野
雄平 宮内
伸彦 三苫
Original Assignee
国立大学法人名古屋大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人名古屋大学 filed Critical 国立大学法人名古屋大学
Priority to JP2017563871A priority Critical patent/JP6664710B2/en
Publication of WO2017131190A1 publication Critical patent/WO2017131190A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/18Nanoonions; Nanoscrolls; Nanohorns; Nanocones; Nanowalls
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/182Graphene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/02Macromolecular compounds containing only carbon atoms in the main chain of the macromolecule, e.g. polyxylylenes
    • C08G61/10Macromolecular compounds containing only carbon atoms in the main chain of the macromolecule, e.g. polyxylylenes only aromatic carbon atoms, e.g. polyphenylenes

Definitions

  • the present invention relates to a polymer and a method for producing the same.
  • GNR Graphene nanoribbon
  • GNR Since the physical properties of GNR depend on its width, length, and edge structure, precise synthesis with controlled width, length, and edge structure on the order of nm is indispensable for the development of the desired properties. is there.
  • GNR synthesis methods There are roughly two types of GNR synthesis methods: top-down method and bottom-up method. In particular, the latter is attractive in that GNR can be synthesized in large quantities by precisely controlling the edge structure and width.
  • GNR with a short length has poor solubility, it is not possible to employ a method in which a short GNR is synthesized and then used as an intermediate for further reaction. Therefore, a method for synthesizing a long GNR by causing a polymerization reaction from a highly soluble substrate compound with a short number of steps is required.
  • Non-Patent Document 1 since the method of Non-Patent Document 1 is a multistage reaction, the yield is low, and a side reaction occurs, so that it is not necessarily a highly versatile method.
  • an object of the present invention is to provide a method for synthesizing a polymer constituting GNR having a controlled width and length by a method with few steps and suppressing side reactions.
  • a polycyclic aromatic compound having a K region and a silole skeleton in the presence of a silver compound and o-chloranil and, if necessary, a palladium compound. It was found that by reacting, a polymer constituting a GNR having a controlled width, length and edge structure can be synthesized in one step without causing side reactions. In this reaction, when a polycyclic aromatic compound having a K region and a polycyclic aromatic compound having a silole skeleton are used as a substrate, a polymer constituting GNR can be synthesized in the same manner.
  • This polymer is a polymer in which a polycyclic aromatic structure having a plurality of K regions is used as a repeating unit, and the K regions of the repeating unit are condensed. Based on such knowledge, the present inventors have further studied and completed the present invention. That is, the present invention includes the following configurations.
  • Item 2. The polycyclic aromatic compound having a K region and a silole skeleton, or the (co) polymerization using a polycyclic aromatic compound having a K region and a polycyclic aromatic compound having a silole skeleton as raw materials. polymer.
  • m represents an integer of 1 or more.
  • A represents an aromatic ring having a K region.
  • R 1 and R 3 represent a hydrogen atom.
  • R 2 and R 4 are the same or different and are a branched alkyl group, or general formula (2):
  • R 2a represents a branched alkyl group. At least one of R 1 and R 2a , R 1 and A, and R 3 and A One may be bonded to each other to form a ring.) The group represented by these is shown. At least one of R 1 and R 2 , R 3 and R 4 , R 1 and A, and R 3 and A may be bonded to each other to form a ring.
  • the polymer of claim item 1 or 2 which has a repeating unit represented by these.
  • the repeating unit is represented by the general formulas (1A) to (1F):
  • Item 5. The polymer according to any one of Items 1 to 4, wherein the number average molecular weight is 10,000 or more.
  • Item 6. A graphene nanoribbon comprising the polymer according to any one of Items 1 to 5.
  • Item 7 The graphene nanoribbon according to Item 6, having a width of 0.5 to 10.0 nm and a length of 10 nm or more.
  • Item 8. The method for producing a polymer according to any one of Items 1 to 5, (1) a step of reacting a polycyclic aromatic compound having a K region and a silole skeleton in the presence of a palladium compound and o-chloranil; or (2) a polycycle having a K region in the presence of a palladium compound and o-chloranil.
  • a production method comprising a step of reacting an aromatic compound with a polycyclic aromatic compound having a silole skeleton.
  • the polycyclic aromatic compound having a K region and a silole skeleton is represented by the general formula (3A) or (3B):
  • A is the same or different and represents an aromatic ring having a K region.
  • R 1 and R 3 represent a hydrogen atom.
  • R 2a and R 4a are the same or different and represent a branched alkyl group. At least one of R 1 and R 2a , R 3 and R 4a , R 1 and A, and R 3 and A may be bonded to each other to form a ring.
  • R 5 and R 6 are the same or different and each represents a hydrogen atom or an alkyl group.
  • the polycyclic aromatic compound having a K region is represented by the general formula (4):
  • A is the same or different and represents an aromatic ring having a K region.
  • R 1 and R 3 represent a hydrogen atom.
  • R 2 and R 4 are the same or different, and are a branched alkyl group, or general formula (4A):
  • R 2a represents a branched alkyl group. At least one of R 1 and R 2a , R 1 and A, and R 3 and A And may be linked to form a ring.) The group represented by these is shown. At least one of R 1 and R 2 , R 3 and R 4 , R 1 and A, and R 3 and A may be bonded to each other to form a ring.
  • Item 10 The production method according to Item 8 or 9, which is a compound represented by:
  • the polycyclic aromatic compound having a silole skeleton is represented by the general formula (5):
  • R 1 and R 3 represent a hydrogen atom.
  • R 2a and R 4a are the same or different and represent a branched alkyl group. At least one of R 1 and R 2a , R 3 and R 4a , R 1 and B, and R 3 and B may be bonded to each other to form a ring.
  • R 5 and R 6 are the same or different and each represents a hydrogen atom or an alkyl group.
  • Item 12. The production method according to any one of Items 8 to 11, wherein the steps (1) and (2) are performed in the presence of a silver compound.
  • the silver compound contains AgSbF 6 or AgBF 4, method according to claim 12.
  • Item 14 The amount of the silver compound used is based on 1 mol of the polycyclic aromatic compound having the K region and a silole skeleton, the polycyclic aromatic compound having the K region, or the polycyclic aromatic compound having the silole skeleton. Item 14. The production method according to Item 12 or 13, which is 0.5 to 5.0 mol.
  • Item 15 The amount of the palladium compound used is 1 mol of the polycyclic aromatic compound having the K region and a silole skeleton, the polycyclic aromatic compound having the K region, or the polycyclic aromatic compound having the silole skeleton.
  • Item 15. The production method according to any one of Items 8 to 14, which is 0.07 to 5.0 mol.
  • Item 16 A laminate in which the graphene nanoribbon according to item 6 or 7 is disposed on a conductive material.
  • Item 17. The laminate according to Item 16, wherein the conductive material is graphene.
  • the polycyclic aromatic compound is a repeating unit, and the polycyclic aromatic compound as the repeating unit shares one bond constituting the benzene ring in the polycyclic aromatic compound, Since a polymer bonded to a polycyclic aromatic compound as an adjacent repeating unit can be provided, a graphene nanoribbon having a controlled width and length can be produced.
  • a polycyclic aromatic compound having a K region and a silole skeleton in the presence of a silver compound and o-chloranil and, if necessary, a palladium compound, side reactions can be carried out in only one step.
  • 2 is a graph showing the results of 1 H-NMR in Test Example 1.
  • 2 is a UV / Vis absorption and fluorescence spectrum of Test Example 1.
  • 4 is a graph showing the results of FT-ATR-IR analysis of Test Example 1.
  • 4 is a Raman spectrum of Test Example 1.
  • 4 is a graph showing the results of 1 H-NMR in Test Example 2.
  • 4 is a UV / Vis absorption and fluorescence spectrum of Test Example 2. It is the UV / Vis absorption and fluorescence spectrum of pyrene in THF solution.
  • 6 is a graph showing the results of FT-ATR-IR analysis in Test Example 2.
  • 4 is a Raman spectrum of Test Example 2.
  • 6 is a graph showing the results of HPLC analysis of Test Example 3.
  • FIG. 6 is a UV / Vis absorption and fluorescence spectrum of Test Example 3.
  • 2 is an IR spectrum of the polymer obtained in Example 12.
  • 2 is a UV / Vis absorption spectrum of the polymer obtained in Example 12.
  • 4 is an IR spectrum of the polymer obtained in Example 13.
  • 2 is a UV / Vis absorption spectrum and a fluorescence spectrum of the polymer obtained in Example 13.
  • 6 is an AFM image of a polymer whose arrangement was observed in Test Example 4.
  • FIG. 6 is a measurement result of DC resistivity of a graphene field effect transistor before and after dropping a GNR solution in Test Example 5.
  • FIG. 5 is a measurement result of DC resistivity of a graphene field effect transistor before and after dropping a GNR solution in Test Example 5.
  • the polymer of the present invention has a polycyclic aromatic structure as a repeating unit, and the polycyclic aromatic compound as the repeating unit shares one bond constituting the benzene ring in the polycyclic aromatic compound. Thus, it is a polymer bonded to a polycyclic aromatic compound as an adjacent repeating unit.
  • Such a polymer of the present invention is a (co) polymerization using a polycyclic aromatic compound having a K region and a silole skeleton, or a polycyclic aromatic compound having a K region and a polycyclic aromatic compound having a silole skeleton as raw materials. It can be obtained by (polymerization or copolymerization).
  • the K region means a convex portion at the end of the armchair that the polycyclic aromatic compound has as follows. That is, the polymer of this invention is comprised by the convex parts of a polycyclic aromatic compound condensing.
  • a site indicated by a dotted line means a condensation site between repeating units. * Means a bond. Adjacent * s may combine with each other to form a ring.
  • Such a repeating unit possessed by such a polymer is a polymer obtained by condensing a repeating unit with a polycyclic aromatic structure having a phenanthrene skeleton, but only if the polycyclic aromatic structure having a phenanthrene skeleton is used.
  • a structure in which an aromatic ring or a heteroaromatic ring is condensed to phenanthrene is also included.
  • the general formula (1) for example, the general formula (1):
  • m represents an integer of 1 or more.
  • A represents an aromatic ring having a K region.
  • R 1 and R 3 represent a hydrogen atom.
  • R 2 and R 4 are the same or different and are a branched alkyl group, or general formula (2):
  • R 2a represents a branched alkyl group. At least one of R 1 and R 2a , R 1 and A, and R 3 and A One may be bonded to each other to form a ring.) The group represented by these is shown. At least one of R 1 and R 2 , R 3 and R 4 , R 1 and A, and R 3 and A may be bonded to each other to form a ring. ] The repeating unit represented by these is mentioned.
  • R 2 in the general formula (1) includes R 2a (branched alkyl group) and a group represented by the general formula (2).
  • R 2 in the general formula (1) Examples of 4 include R 4a (branched alkyl group) and a group represented by the general formula (2).
  • the polymer of the present invention has the general formula (6):
  • m is an integer of 1 or more.
  • the width of the graphene nanoribbon made of the resulting polymer varies. That is, by adjusting m, the width of the graphene nanoribbon made of the resulting polymer can be adjusted.
  • m is preferably 1 to 3, more preferably 1 or 2, and even more preferably 1. .
  • A is an aromatic ring having a K region (that is, an armchair end portion or a convex portion).
  • A may be bonded to at least one of R 1 and R 3 to form a ring.
  • A is bonded to at least one of R 1 and R 3 so as to have a K region. It is preferable to form.
  • R 2 and R 4 are the same as defined above.
  • Y is the same or different and represents CH or N.
  • R 1 and R 3 are hydrogen atoms.
  • R 1 and / or R 3 may combine with A to form a ring.
  • Examples of the ring formed at this time include a benzene ring and a naphthalene ring.
  • R 2 and R 4 may be appropriately selected depending on the type of the substrate, but the following repeating units (1A), (1C), (1E), (1F), etc. From the viewpoint of solubility, R 2a of the repeating unit (1D) described later is represented by the general formula (7):
  • R 7 are the same or different and each represents a C 1-4 alkyl group.
  • R 8 represents a C6-10 alkyl group.
  • the group represented by these is preferable.
  • R 7 in the general formula (7) examples include C1-4 alkyl groups such as a methyl group, an ethyl group, and an n-propyl group. These alkyl groups are preferably selected in accordance with the distance between the repeating units in consideration of the steric environment. For example, when the ring A is a benzene ring, that is, when the repeating unit has a structure having a pyrene skeleton, R 7 must be an ethyl group from the viewpoint of easily obtaining a higher molecular weight polymer. Is preferred.
  • R 8 in the general formula (7) examples include C7-10 alkyl groups such as an n-heptyl group, an n-octyl group, and an n-nonyl group. These alkyl groups can be appropriately selected in consideration of the solubility of the solvent used.
  • examples of the branched alkyl group represented by R 2 and R 4 include, for example, general formulas (7A) to (7C):
  • R 4a of the repeating unit (1D) described later is represented by the general formula (8):
  • R 7 is the same or different and represents a C 1-8 alkyl group.
  • the group represented by these is preferable.
  • R 9 in the general formula (8) examples include C1-8 alkyl groups such as a methyl group, an ethyl group, an n-propyl group, an n-butyl group, and an n-pentyl group. These alkyl groups are preferably selected in accordance with the distance between the repeating units in consideration of the steric environment. For example, with respect to R 4a of the repeating unit (1D) described later, it is preferable that all of R 9 is n-pentyl from the viewpoint of easily obtaining a higher molecular weight polymer.
  • R 2 and R 4 are a group represented by the general formula (2), the branched alkyl group described above is preferable as the branched alkyl group represented by R 2a .
  • R 1 and R 2 , R 3 and R 4 may be bonded to each other to form a ring.
  • R 1 and R 2a may be bonded to each other to form a ring.
  • As the ring formed at this time for example,
  • R 2a and R 4a are the same as defined above.
  • R 2b and R 4b are the same or different and represent a branched alkyl group.
  • the repeating unit represented by these is mentioned. Among these, from the viewpoint of easily obtaining a higher molecular weight polymer, the repeating unit represented by the general formula (1A) is preferable.
  • polymers of the present invention have the general formulas (6A) to (6F):
  • the number of repeating units (that is, the degree of polymerization) is not particularly limited and can be appropriately selected according to the required characteristics. For example, 10 to 1000 is preferable, and 30 to 500 is more preferable.
  • the number of repeating units of the polymer of the present invention is calculated from the number average molecular weight measured in terms of polystyrene by gel permeation chromatography.
  • the number average molecular weight is not particularly limited and can be appropriately selected according to necessary characteristics. For example, it is preferably 10,000 or more, more preferably 15000 to 300000, further preferably 20000 to 200000, 30000 ⁇ 180,000 is particularly preferred.
  • the number average molecular weight of the polymer of the present invention is measured in terms of polystyrene by gel permeation chromatography.
  • the width of the polymer of the present invention is preferably 0.5 to 2.0 nm, more preferably 0.7 to 1.5 nm.
  • the width of the polymer means the width of the polycyclic aromatic skeleton portion that is the main skeleton, and is measured by observation with an atomic force microscope.
  • a compound represented by the following general formula (3A1), (4A), (5A) or the like is used as a substrate, a polymer having a width of about 0.7 nm is easily generated.
  • a compound represented by (3B), (5B) or the like is used, a polymer having a width of about 1.2 nm is likely to be produced.
  • a compound represented by the following general formula (4B) or the like is used as a substrate, A polymer with a width of about 1.5 nm is likely to be produced.
  • the polymer of the present invention described above is, for example, (1) a step of reacting a polycyclic aromatic compound having a K region and a silole skeleton in the presence of a palladium compound and o-chloranil; or (2) a polycycle having a K region in the presence of a palladium compound and o-chloranil. It can be synthesized by a production method comprising a step of reacting an aromatic compound with a polycyclic aromatic compound having a silole skeleton.
  • Extended polymerization (hereinafter also referred to as “APEX polymerization”) proceeds.
  • regioselective and continuous APEX polymerization is performed between the K region in the polycyclic aromatic compound having a K region and the silole skeleton in the polycyclic aromatic compound having a silole skeleton. proceed.
  • This polymerization reaction proceeds because the silole skeleton functions as a ⁇ -extended reagent. For this reason, the polymer of the present invention can be precisely synthesized by a reaction of only one step, and the number of processes can be greatly reduced.
  • a polycyclic aromatic compound having a K region and a silole skeleton that can be used as a substrate includes K at one end.
  • K is a polycyclic aromatic compound having a region and having a silole skeleton at the opposite end.
  • R 4a represents a branched alkyl group. At least one of R 1 and R 2a , R 3 and R 4a , R 1 and A, and R 3 and A may be bonded to each other to form a ring.
  • R 5 and R 6 are the same or different and each represents a hydrogen atom or an alkyl group.
  • the compound represented by these is preferable.
  • the above-described branched alkyl group is preferable.
  • Examples of the alkyl group represented by R 5 and R 6 include C1-4 alkyl groups such as a methyl group, an ethyl group, and an n-propyl group.
  • examples of the ring formed include those described above.
  • polycyclic aromatic compounds having a K region and a silole skeleton that satisfy the above conditions include, for example, general formulas (3A1), (3A2), and (3B1):
  • R 2a , R 4a , R 5 and R 6 are the same as defined above.
  • the compound represented by these is mentioned.
  • a polycyclic aromatic compound having a K region and a silole skeleton for example,
  • the compound represented by the general formula (3A1) is preferable from the viewpoint of easily obtaining a higher molecular weight polymer.
  • polycyclic aromatic compound having a K region that can be used as a substrate is particularly a polycyclic aromatic compound having a K region at both ends.
  • general formula (4) general formula (4):
  • R 1 , R 2 , R 3 and R 4 are the same as defined above. At least one of R 1 and R 2 , R 3 and R 4 , R 1 and A, and R 3 and A may be bonded to each other to form a ring. ] The compound represented by these is mentioned.
  • examples of the ring formed include those described above.
  • polycyclic aromatic compounds having a K region that satisfy the above conditions include, for example, general formulas (4A) to (4B):
  • polycyclic aromatic compound having a silole skeleton that can be used as a substrate is a polycyclic aromatic compound having a silole skeleton at both ends.
  • R 1 , R 2a , R 3 , R 4a , R 5 and R 6 are the same as defined above.
  • B is the same or different and represents an aromatic ring having a silole skeleton. At least one of R 1 and R 2a , R 3 and R 4a , R 1 and B, and R 3 and B may be bonded to each other to form a ring.
  • the compound represented by these is preferable.
  • B is an aromatic ring having a silole skeleton.
  • a ring B for example,
  • R 1 and / or R 3 may combine with B to form a ring.
  • R 1 and R 2a , R 3 and R 4a may be bonded to each other to form a ring.
  • Examples of the ring formed at this time include a benzene ring and a naphthalene ring.
  • polycyclic aromatic compound having a silole skeleton that satisfies the above conditions examples include, for example, general formulas (5A) to (5B):
  • R 2a , R 4a , R 5 and R 6 are the same as defined above.
  • the compound represented by these is mentioned.
  • a polycyclic aromatic compound having a silole skeleton for example,
  • step (2) when step (2) is employed, that is, when a polycyclic aromatic compound having a K region is reacted with a polycyclic aromatic compound having a silole skeleton, a polycyclic having a silole skeleton
  • the amount of the aromatic compound used is preferably from 0.2 to 3.0 mol, more preferably from 0.3 to 2.0 mol, more preferably from 0.5 mol to 1 mol of the polycyclic aromatic compound having a K region, from the viewpoint of easily obtaining a higher molecular weight polymer. More preferred is ⁇ 1.5 mol.
  • Examples of the palladium compound include a known palladium compound as a catalyst for synthesis of a polymer compound and the like, and a divalent palladium compound is preferable from the viewpoint of easily obtaining a higher molecular weight polymer.
  • Examples of palladium compounds that can be used include Pd (OH) 2 , Pd (OCOCH 3 ) 2 , Pd (OCOCF 3 ) 2 , Pd (acac) 2 , PdCl 2 , PdBr 2 , PdI 2 , Pd (NO 3 ) 2 , Pd (CH 3 CN) 4 (SbF 6 ) 2 and the like.
  • Acac means acetylacetonate.
  • Pd (OCOCH 3 ) 2 , Pd (OCOCF 3 ) 2 , PdBr 2 , PdI 2 , Pd ( CH 3 CN) 4 (SbF 6 ) 2 is more preferable, and Pd (OCOCF 3 ) 2 is more preferable.
  • the amount of the palladium compound can be appropriately selected depending on the type of the substrate, and from the viewpoint of easily obtaining a higher molecular weight polymer, for example, the polycyclic aromatic compound having the K region as a substrate and a silole skeleton, 0.07 to 5.0 mol is preferable, 0.15 to 4.0 mol is more preferable, and 0.3 to 3.0 mol is more preferable with respect to 1 mol of the polycyclic aromatic compound having the K region or the polycyclic aromatic compound having the silole skeleton. 0.6 to 2.0 mol is particularly preferable.
  • o-chloranil is used as an oxidizing agent.
  • o-chloranil is not used, the polymerization reaction hardly proceeds and the polymer of the present invention cannot be obtained.
  • other oxidizing agents p-chloranil, 2,3-dichloro-5,6-dicyano-1,4-benzoquinone, 3,5-di-t-butyl-1,2- Similarly, when benzoquinone, CuCl 2 or the like is used, the polymerization reaction hardly proceeds and the polymer of the present invention cannot be obtained.
  • the amount of o-chloranil used can be appropriately selected depending on the type of substrate.
  • a polycyclic aromatic compound having the K region as a substrate and a silole skeleton is preferably 0.5 to 5.0 mol, more preferably 1.0 to 3.0 mol, and even more preferably 1.5 to 2.5 mol. preferable.
  • steps (1) and (2) are preferably performed in the presence of a silver compound.
  • a silver compound By using a silver compound, it is easy to obtain a higher molecular weight polymer.
  • the silver compound is not particularly limited, and is an organic silver compound such as silver acetate, silver pivalate (AgOPiv), silver trifluoromethanesulfonate (AgOTf), silver benzoate (AgOCOPh); silver nitrate, silver fluoride, silver chloride, Inorganic silver such as silver bromide, silver iodide, silver sulfate, silver oxide, silver sulfide, silver tetrafluoroborate (AgBF 4 ), silver hexafluorophosphate (AgPF 6 ), silver hexafluoroantimonate (AgSbF 6 ) Inorganic silver compounds are preferred from the viewpoint of easily obtaining higher molecular weight polymers, such as silver tetrafluoroborate (AgBF 4 ), silver hexafluorophosphate (AgPF 6 ), silver hexafluoroantimonate (AgSbF 6 ) and the like are more preferable, silver tetra
  • the amount of silver compound used can be appropriately selected depending on the type of substrate, and from the viewpoint of easily obtaining a higher molecular weight polymer, for example, a polycyclic aromatic compound having the K region as a substrate and a silole skeleton, 0.5 to 5.0 mol is preferable, 1.0 to 3.0 mol is more preferable, and 1.5 to 2.5 mol is more preferable with respect to 1 mol of the polycyclic aromatic compound having the K region or the polycyclic aromatic compound having the silole skeleton. .
  • steps (1) and (2) are preferably performed in a solvent.
  • the solvent include aliphatic hydrocarbons such as pentane, hexane, heptane, and cyclohexane; aliphatic halogenated hydrocarbons such as dichloromethane, dichloroethane (DCE), chloroform (CHCl 3 ), carbon tetrachloride, and trichloroethylene (TCE); And aromatic halogenated hydrocarbons such as bromobenzene (PhBr) and 1,3,5-tribromobenzene (PhBr 3 ). These can be used alone or in combination of two or more.
  • aliphatic hydrocarbons such as pentane, hexane, heptane, and cyclohexane
  • aliphatic halogenated hydrocarbons such as dichloromethane, dichloroethane (DCE), chloroform (CHCl 3 ), carbon tetrachloride,
  • aliphatic halogenated hydrocarbons, aromatic halogenated hydrocarbons, and the like are preferable from the viewpoint of easily obtaining a higher molecular weight polymer.
  • Dichloroethane (DCE), chloroform (CHCl 3 ), trichloroethylene (TCE) are preferable.
  • Bromobenzene (PhBr), 1,3,5-tribromobenzene (PhBr 3 ) and the like are more preferable, such as dichloroethane (DCE), trichloroethylene (TCE), 1,3,5-tribromobenzene (PhBr 3 ), etc.
  • dichloroethane (DCE) is particularly preferred.
  • additives can be appropriately used as long as the effects of the present invention are not impaired.
  • the production method of the present invention is preferably carried out under anhydrous conditions and under an inert gas atmosphere (nitrogen gas, argon gas, etc.), and the reaction temperature is usually preferably about 40 to 110 ° C., and preferably about 50 to 100 ° C. More preferred is 60 to 90 ° C.
  • the reaction time can be a time during which the polymerization reaction proceeds sufficiently, and is usually preferably 10 minutes to 72 hours, more preferably 1 to 48 hours.
  • the target polymer can be obtained through normal isolation and purification steps (metal removal by silica gel column chromatography, polymer separation or fractionation by gel permeation chromatography (GPC), etc.).
  • the graphene nanoribbon (GNR) of the present invention comprises the above-described polymer of the present invention.
  • the polymer of the present invention is a polycyclic aromatic compound having a K region and a silole skeleton in the step (1), and has a K region in the step (2).
  • APEX polymerization proceeds between the K region in the ring aromatic compound and the silole skeleton in the polycyclic aromatic compound having a silole skeleton.
  • the width of the GNR of the present invention depends on the length of the substrate used in the production method.
  • the length of the GNR of the present invention depends on the degree of polymerization (the number of repeating units) of the polymer of the present invention.
  • the length of the substrate, the general formula (3A), the length from R 2 to R 4 in (3B) and from R 2a in (5) to R 4a length, the general formula (4) means.
  • the width of GNR can be controlled by changing the type of substrate, and the length of GNR can be controlled by changing the reaction conditions. Since the GNR of the present invention is a GNR having a uniform width and length, it is possible to synthesize a large amount of GNRs having a uniform width and length. As described above, according to the present invention, since the width and length of the GNR can be precisely controlled, fine adjustment of electronic physical properties and the like are also possible.
  • the width of the GNR of the present invention is preferably 0.5 to 10.0 nm, more preferably 0.6 to 2.0 nm, and even more preferably 0.7 to 1.5 nm.
  • the GNR width means the distance between the central portion of the GNR and the central portion of the adjacent GNR, and is measured by observation with an atomic force microscope.
  • the length of the GNR of the present invention is preferably 10 nm or more, more preferably 20 to 500 nm, further preferably 50 to 400 nm, and particularly preferably 100 to 300 nm.
  • a silver compound is used in addition to a palladium compound and o-chloranil, a longer GNR is likely to be generated, and a silver compound other than a palladium compound and o-chloranil is not used.
  • a GNR having a shorter length is likely to be generated.
  • a long GNR composed of a polymer with a high degree of polymerization is expected to be applied to semiconductors, solar cells, etc., but even a short GNR composed of a polymer with a low degree of polymerization is suitable for organic EL devices, etc. Is expected to be applied.
  • Such a GNR of the present invention is excellent in film formability because of its high solubility in organic solvents such as chloroform, dichloromethane, tetrahydrofuran (THF) and ethyl acetate.
  • organic solvents such as chloroform, dichloromethane, tetrahydrofuran (THF) and ethyl acetate.
  • Perylene bisimide oligomers are known to exhibit the highest power generation efficiency (conversion efficiency of about 8%) among molecules other than fullerenes as acceptor molecules for organic dye solar cells (Nat. Commun. 2015, Therefore, it is expected to be used as various charge transport materials for OLED, OFET, organic thin-film solar cells, etc. In particular, it is expected to lead to the creation of high-efficiency electron donor molecule groups and high-efficiency electron acceptor molecule groups for organic thin-film solar cells.
  • the GNR of the present invention can increase the resistivity of the conductive material. For example, by placing GNR on graphene as a conductive material, the resistivity (especially direct current resistivity) of graphene can be increased. For this reason, it can be expected that a graphene field effect transistor having a desired resistivity can be obtained by using the GNR of the present invention.
  • diethyl ketone compound 1; 1.06 mL, 10 mmol
  • Grignard reagent 1.5 equivalents, 15 mmol
  • the reaction was stopped by adding water to the reaction solution, extracted with diethyl ether, and the solvent was distilled off. The corresponding alcohol was then isolated by chromatography using hexane as a developing solvent (69%).
  • Example 1 For compound 8 obtained in Synthesis Example 4, using Pd (CH 3 CN) 4 (SbF 6 ) 2 (5 mol%) and o-chloranil (2.0 equivalents) in dichloroethane (DCE) at 80 ° C. The reaction was allowed for 2 hours, 4 hours or 12 hours. After removing the metal using chromatography, the molecular weight was measured by HPLC. The results are shown in Table 1. When APEX polymerization was attempted under standard reaction conditions, dimers and trimers were detected with a matrix-assisted laser desorption / ionization time-of-flight mass spectrometer (MALDI-TOF-MS) (YN-049).
  • MALDI-TOF-MS matrix-assisted laser desorption / ionization time-of-flight mass spectrometer
  • Example 2 Next, the same treatment as in Example 1 was performed except that the reaction time was 12 hours, and the amount of Pd (CH 3 CN) 4 (SbF 6 ) 2 used was a predetermined amount of 5 mol% to 1.0 equivalent. .
  • the 5 mol% sample is YN-050 of Example 1.
  • the results are shown in Table 2.
  • the amount of the catalyst used was increased to 10 mol%, 20 mol%, and 50 mol%, the monomer was completely consumed, and a polymer having a higher molecular weight was detected (YN-054, 055, 057).
  • the amount of the catalyst used was 1.0 equivalent, the number average molecular weight of the polymer of 1% or more was 25000 or more (YN-057). From these results, it can be understood that 1.0 equivalent of the catalyst is most effective.
  • Example 3 Next, the same treatment as in Example 2 was performed except that the amount of Pd (CH 3 CN) 4 (SbF 6 ) 2 used was 50 mol% and the reaction time was 6 hours or 12 hours. The sample for 12 hours is YN-055 of Example 2. The results are shown in Table 3. As a result, since no significant difference was observed, it can be understood that the product is not decomposed or oxidized during the reaction.
  • Example 4 Next, the amount of Pd (CH 3 CN) 4 (SbF 6 ) 2 used was 1.0 equivalent, and DCE was added so that the concentration of compound 8 obtained in Synthesis Example 4 was a predetermined concentration of 50 mM to 0.5 M. Except for this, the same treatment as in Example 2 was performed. The 50 mM sample is YN-057 of Example 2. The results are shown in Table 4. As the concentration of the substrate increases, a polymer with a higher molecular weight was detected by HPLC, but it can be understood that 0.1M is the most effective from the viewpoint of solubility.
  • Example 5 Next, the same treatment as in Example 4 was performed, except that various solvents were added so that the concentration of Compound 8 obtained in Synthesis Example 4 was 0.1M.
  • the DCE sample is YN-060 of Example 4. The results are shown in Table 5. As a result, it can be understood that DCE is most effective.
  • Example 6 Next, the same treatment as in Example 4 was performed, except that DCE was added so that the concentration of Compound 8 obtained in Synthesis Example 4 was 0.1 M, and the heating conditions were variously changed.
  • the sample at 80 ° C. and 12 hours is YN-060 of Example 4.
  • the results are shown in Table 6. As a result, it can be understood that 80 ° C. and 12 hours are the most effective.
  • Example 7 Next, DCE was added so that the concentration of Compound 8 obtained in Synthesis Example 4 was 0.1 M, and the same treatment as in Example 4 was performed except that various oxidizing agents were used instead of o-chloranil. It was.
  • the o-chloranil sample is YN-060 of Example 4. The results are shown in Table 7. As a result, when an oxidizing agent other than o-chloranil is used, the polymerization reaction does not proceed sufficiently and the polymer of the present invention cannot be obtained.
  • Example 8 Next, DCE was added so that the concentration of Compound 8 obtained in Synthesis Example 4 was 0.1 M, and the same treatment as in Example 4 was performed except that various palladium compounds and various silver compounds were used. .
  • Example 9 Next, the same treatment as in Example 8 was performed, except that PdCl 2 was used as the palladium compound, AgSbF 6 was used as the silver compound, and the usage amounts of the palladium compound and the silver compound were variously changed.
  • the 1eq. And 2eq. Samples are YN-092 of Example 8.
  • the results are shown in Table 9. As a result, it can be understood that 1 equivalent of the palladium compound and 2 equivalents of the silver compound are the most effective.
  • Example 10 Next, the same treatment as in Example 8 was performed except that AgSbF 6 was used as the silver compound and various compounds were used as the palladium compound.
  • a sample of PdCl 2 is YN-092 of Example 8. The results are shown in Table 10. As a result, it can be understood that Pd (OCOCF 3 ) 2 is the most effective palladium compound.
  • Example 11 Next, the same treatment as in Example 10 was performed except that Pd (OCOCF 3 ) 2 was used as the palladium compound and the amount of the silver compound used was variously changed. The 2.0 eq. Sample is YN-104 of Example 10. The results are shown in Table 11.
  • the most preferable conditions for polymerization are the following conditions.
  • Table 13 and FIG. 2 show the UV / Vis absorption and fluorescence spectra in the THF solution for the above Entry IV 1 (dimer), 3 (tetramer) and 5 (molecular weight of about 30000).
  • a solid line is an absorption spectrum and a broken line is a fluorescence spectrum. All entries were measurable because they had sufficient solubility in organic solvents such as THF, dichloromethane, and chloroform.
  • the main absorption bands of Entry 3 and 5 were red-shifted compared to Entry 1 and 2.
  • the UV / Vis absorption spectra of Entry 1 and 2 had almost the same characteristics.
  • the band gaps of Entry 1, 2, 3, and 5 mean the onset of the UV / Vis absorption spectrum, and are 4.5, 3.9, 3.7, and 3.2 eV, respectively. These results mean that the band gap decreases as the conjugate length increases. Furthermore, from the fluorescence spectra of Entry 1, 2, 3, and 5, the maximum fluorescence wavelengths in the THF solution were 486, 497, 493, and 506 nm, respectively.
  • Table 15 and FIG. 6A show the UV / Vis absorption and fluorescence spectra in the THF solution for each entry obtained above.
  • the upper diagram is the absorption spectrum
  • the lower diagram is the fluorescence spectrum.
  • the optical spectrum of pyrene in a THF solution is shown in FIG. 6B. All entries were measurable because they had sufficient solubility in organic solvents such as THF, dichloromethane, and chloroform.
  • the main absorption bands of Entry 1 (molecular weight 1000000 or more) and 2 (molecular weight 150,000) were shifted red compared to Entry 3 (trimmer).
  • the UV / Vis absorption spectra of Entry 1 and 2 had almost the same characteristics.
  • the band gaps of Entry 1, 2, 3, and 4 mean the onset of the UV / Vis absorption spectrum, and are 2.5, 2.8, 3.2, and 3.9 eV, respectively. These results mean that the band gap decreases as the conjugate length increases. Furthermore, from the fluorescence spectrum of each entry, the maximum fluorescence wavelengths in the THF solution were 451, 440, 416, and 431 nm, respectively.
  • Example 3 In the same manner as YN-111 in Example 11 (Table 11), a polymer of the present invention was obtained using 150 mg (2.6 mmol) of the substrate. After that, when isolated by GPC, a polymer having a number average molecular weight of about 150,000, a polymer having a number average molecular weight of about 60000-70000, a polymer having a number average molecular weight of about 50000, a trimer, and a dimer are obtained. It disappeared.
  • Table 17 and FIG. 10 show the UV / Vis absorption and fluorescence spectra in the THF solution for each entry obtained above.
  • the upper diagram is the absorption spectrum
  • the lower diagram is the fluorescence spectrum. All entries were measurable because they had sufficient solubility in organic solvents such as THF, dichloromethane, and chloroform.
  • the main absorption bands of Entry 1 (molecular weight of about 150,000) and 2 (molecular weight of about 60000-70000) were shifted in red compared to Entry 4 (trimmer).
  • the UV / Vis absorption spectra of Entry 1 and 2 had almost the same characteristics.
  • the band gaps of Entry 1, 2, 3, 4, and 5 mean the onset of the UV / Vis absorption spectrum, and are 2.5, 2.8, 3.2, 3.9, and 3.9 eV, respectively. These results mean that the band gap decreases as the conjugate length increases. Furthermore, from the fluorescence spectrum of each entry, the maximum maximum fluorescence wavelengths in the THF solution were 473, 473, 443, 442 and 430 nm, respectively.
  • a reductive amination reaction was performed on compound 9 (12 mL, 59 mmol) by allowing ammonium acetate (NH 4 OAc; 519 mmol) and NaBH 3 CN (35 mmol) to act in methanol at room temperature for 54 hours.
  • the reaction was stopped by adding concentrated hydrochloric acid to the reaction solution, and the solvent was distilled off.
  • 1 H-NMR 400 MHz, CDCl 3 ) 0.98 (s, 6H), 1.30-1.32 (m, 16H), 2.65 (s, 2H), 3.24 (m, 1H).
  • Bromination reaction was carried out by allowing Br 2 (28 mmol) and I 2 (6 mmol) to act on compound 11 (5.0 g, 13 mmol) in sulfuric acid at 85 ° C. for 24 hours. After the reaction, the reaction solution was cooled to room temperature, and the generated precipitate was collected by filtration. The precipitate was washed with water and dried to obtain the target compound 12 (96%, Crude). Since this compound is insoluble in any organic solvent, the compound was not identified and purified.
  • FIG. 11 shows the IR spectrum of the obtained polymer.
  • the presence of a carbonyl group and a concave site was suggested, suggesting that the polymer of the present invention was obtained.
  • the UV / Vis absorption spectrum of the obtained polymer is shown in FIG. As a result, it is suggested that an absorption band is present at a position of 200 to 600 nm.
  • Bromination reaction was carried out by allowing Br 2 (257 mmol) to act on the compound 16 (0.6 g, 0.9 mmol) obtained in Synthesis Example 10 in dichloromethane at room temperature for 2 days.
  • the reaction was stopped by adding a saturated aqueous sodium thiosulfate solution to the reaction solution, followed by extraction with dichloromethane and evaporation of the solvent to obtain a crude product of the target compound 17.
  • the target compound was isolated by chromatography using dichloromethane as a developing solvent, and it was confirmed by 1 H NMR, 13 C NMR and FAB-MS that target compound 17 was obtained (96%).
  • Trimethylsilylacetylene (4.0 mmol), Pd (Ph 3 ) 4 (10 mol%) and CuI (10 mol%) were mixed in THF / diisopropylamine mixed solvent with respect to compound 17 (0.4 g, 0.4 mmol) obtained in Synthesis Example 11. And reacted at 60 ° C. for 20 hours. The reaction was stopped by adding water to the reaction solution cooled to room temperature, extracted with dichloromethane, and the solvent was distilled off to obtain a crude product of target compound 18. Thereafter, the target compound was isolated by chromatography using dichloromethane as a developing solvent, and it was confirmed by 1 H-NMR, 13 C-NMR and FAB-MS that the target compound 18 was obtained (90%).
  • Deprotection was carried out by reacting Compound 18 (0.15 g, 0.1 mmol) obtained in Synthesis Example 12 with tetrabutylammonium fluoride (TBAF; 3.1 eq) in dichloromethane at 0 ° C. for 15 minutes.
  • TBAF tetrabutylammonium fluoride
  • the obtained compound was reacted with PtCl 2 (30 mol%) and 1M aqueous hydrogen chloride solution (20 mol%) in a toluene solvent at 90 ° C. for 12 hours.
  • the reaction solution cooled to room temperature was evaporated to obtain a crude product of target compound 19.
  • the UV / Vis absorption spectrum and fluorescence spectrum of the obtained polymer are shown in FIG. As a result, it is suggested that it has an absorption band at a position of 350 to 550 nm, and an emission band at a position of 450 to 700 nm.
  • the surface of the graphene sample onto which the GNR solution was dropped was observed with an atomic force microscope (AFM).
  • the surface was observed by tapping mode using Dimension FastScan AFM (manufactured by Bruker).
  • the obtained phase image is shown in FIG. From FIG. 15, the GNR was selectively oriented on the graphene, and the ribbon width was about 4 nm.
  • the ribbon width means the distance between the center portion of the ribbon and the center portion of the adjacent ribbon.
  • FIG. 16 shows the measurement results of the DC resistivity of the graphene field effect transistor before and after dropping the GNR solution.
  • FIG. 16 shows that the graphene field effect transistor has an increased DC resistance by orienting the GNR on the graphene. Furthermore, the resistivity of graphene before GNR alignment was 8 k ⁇ at the charge neutral point, but 10 k ⁇ after GNR alignment, and the electrical resistivity increased by 1.25 times. From this, it was found that a material having an increased electrical resistivity can be obtained by orienting GNR molecules on the graphene surface.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

Provided is a polymer which contains a polycyclic aromatic compound as a repeating unit and in which the polycyclic aromatic compound contained as a repeating unit is bonded to an adjacent polycyclic aromatic compound that is a repeating unit in such a way as to share one bond that constitutes a benzene ring in the polycyclic aromatic compound. The polymer is obtained through (co)polymerization of a polycyclic aromatic compound having a K region and a silole skeleton as a raw material or a polycyclic aromatic compound having a K region and a polycyclic aromatic compound having a silole skeleton as raw materials, is obtained using a method which has fewer steps and in which secondary reactions are suppressed, and can constitute a GNR in which the width and length are controlled. The repeating unit is preferably a repeating unit represented by general formula (1) [In the formula, * denotes the repeating unit site. m denotes an integer of 1 or higher. A denotes an aromatic ring having a K region. In cases where m is 2 or higher, the plurality of A moieties may be the same as, or different from, each other. R1 and R3 each denote a hydrogen atom. R2 and R4 may be the same as, or different from, each other, and each denote a branched chain alkyl group or a group represented by general formula (2) (In the formula, *, m, A, R1 and R3 are as described above. R2a denotes a branched chain alkyl group. At least one combination of R1 and R2a, R1 and A, and R3 and A may bond to each other to form a ring.) At least one combination of R1 and R2, R3 and R4, R1 and A, and R3 and A may bond to each other to form a ring.]

Description

ポリマー及びその製造方法Polymer and production method thereof
 本発明は、ポリマー及びその製造方法に関する。 The present invention relates to a polymer and a method for producing the same.
 グラフェンナノリボン(GNR)は、高いホール移動度、半導体的性質、透明性、機械的強度、柔軟性等を有していることから、半導体、太陽電池、透明電極、高速トランジスタ、有機EL素子等への応用が期待されている。 Graphene nanoribbon (GNR) has high hole mobility, semiconducting properties, transparency, mechanical strength, flexibility, etc., so it can be used for semiconductors, solar cells, transparent electrodes, high-speed transistors, organic EL devices, etc. The application of is expected.
 GNRの物理的性質は、その幅、長さ及びエッジ構造に依存することから、所望の性質の発現のためには、nmオーダーで幅、長さ及びエッジ構造を制御した精密合成が必要不可欠である。GNRの合成方法としては、大別してトップダウン法とボトムアップ法の2種類が存在する。特に、後者はエッジ構造及び幅を精密に制御して大量にGNRを合成できる点で魅力的である。ただし、長さの短いGNRは溶解性が乏しいため、長さの短いGNRを合成してからそれを中間体として用いてさらに反応させる手法は採用できない。このため、溶解性の高い基質化合物から短い工程数で重合反応を引き起こして長さの長いGNRを合成する方法が求められている。 Since the physical properties of GNR depend on its width, length, and edge structure, precise synthesis with controlled width, length, and edge structure on the order of nm is indispensable for the development of the desired properties. is there. There are roughly two types of GNR synthesis methods: top-down method and bottom-up method. In particular, the latter is attractive in that GNR can be synthesized in large quantities by precisely controlling the edge structure and width. However, since GNR with a short length has poor solubility, it is not possible to employ a method in which a short GNR is synthesized and then used as an intermediate for further reaction. Therefore, a method for synthesizing a long GNR by causing a polymerization reaction from a highly soluble substrate compound with a short number of steps is required.
 一般的なナノグラフェンの合成としては、芳香環成分のカップリング反応、Diels-Alder反応を駆使し、最後に脱水素環化反応によるグラフェン化を行っている(例えば、非特許文献1参照)。GNRの合成においても同様の方法が採用さえている。 As a general synthesis of nano graphene, the coupling reaction of aromatic ring components and the Diels-Alder reaction are used, and finally graphene is formed by a dehydrocyclization reaction (see, for example, Non-Patent Document 1). A similar method is even adopted in the synthesis of GNR.
 しかしながら、上記非特許文献1の方法は多段階反応であるために収率が低く、また、副反応が発生するために、必ずしも汎用性の高い方法とは言えない。 However, since the method of Non-Patent Document 1 is a multistage reaction, the yield is low, and a side reaction occurs, so that it is not necessarily a highly versatile method.
 このため、本発明は、少ない工程且つ副反応を抑制した方法で、幅及び長さを制御したGNRを構成するポリマーを合成する方法を提供することを目的とする。 Therefore, an object of the present invention is to provide a method for synthesizing a polymer constituting GNR having a controlled width and length by a method with few steps and suppressing side reactions.
 本発明者らは上記の課題を解決するために鋭意研究を行った結果、銀化合物及びo-クロラニル、並びに必要に応じてパラジウム化合物の存在下、K領域及びシロール骨格を有する多環芳香族化合物を反応させることで、1工程のみで、副反応が発生することなく、幅、長さ及びエッジ構造が制御されたGNRを構成するポリマーを合成できることを見出した。この反応は、基質としてK領域を有する多環芳香族化合物及びシロール骨格を有する多環芳香族化合物を用いた場合も同様にGNRを構成するポリマーを合成できる。このポリマーは、複数のK領域を有する多環芳香族構造を繰り返し単位とし、該繰り返し単位が有するK領域同士が縮合してなるポリマーである。本発明者らは、このような知見に基づき、さらに研究を重ね、本発明を完成した。すなわち、本発明は以下の構成を包含する。 As a result of intensive studies to solve the above problems, the present inventors have found that a polycyclic aromatic compound having a K region and a silole skeleton in the presence of a silver compound and o-chloranil and, if necessary, a palladium compound. It was found that by reacting, a polymer constituting a GNR having a controlled width, length and edge structure can be synthesized in one step without causing side reactions. In this reaction, when a polycyclic aromatic compound having a K region and a polycyclic aromatic compound having a silole skeleton are used as a substrate, a polymer constituting GNR can be synthesized in the same manner. This polymer is a polymer in which a polycyclic aromatic structure having a plurality of K regions is used as a repeating unit, and the K regions of the repeating unit are condensed. Based on such knowledge, the present inventors have further studied and completed the present invention. That is, the present invention includes the following configurations.
 項1.多環芳香族化合物を繰り返し単位とし、該繰り返し単位としての多環芳香族化合物は、前記多環芳香族化合物中のベンゼン環を構成する1つの結合を共有するように、隣接する繰り返し単位としての多環芳香族化合物と結合している、ポリマー。 Item 1. A polycyclic aromatic compound as a repeating unit, and the polycyclic aromatic compound as the repeating unit is used as an adjacent repeating unit so as to share one bond constituting the benzene ring in the polycyclic aromatic compound. A polymer bound to a polycyclic aromatic compound.
 項2.K領域及びシロール骨格を有する多環芳香族化合物、又はK領域を有する多環芳香族化合物とシロール骨格を有する多環芳香族化合物とを原料として(共)重合している、項1に記載のポリマー。 Item 2. Item 2. The polycyclic aromatic compound having a K region and a silole skeleton, or the (co) polymerization using a polycyclic aromatic compound having a K region and a polycyclic aromatic compound having a silole skeleton as raw materials. polymer.
 項3.一般式(1): Item 3. General formula (1):
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
[式中、*は繰り返し部位を示す。mは1以上の整数を示す。AはK領域を有する芳香族環を示す。mが2以上の整数である場合、複数のAは同一でも異なってもよい。R1及びR3は水素原子を示す。R2及びR4は同一又は異なって、分岐鎖アルキル基、又は一般式(2): [In formula, * shows a repeating site | part. m represents an integer of 1 or more. A represents an aromatic ring having a K region. When m is an integer of 2 or more, the plurality of A may be the same or different. R 1 and R 3 represent a hydrogen atom. R 2 and R 4 are the same or different and are a branched alkyl group, or general formula (2):
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
(式中、*、m、A、R1及びR3は前記に同じである。R2aは分岐鎖アルキル基を示す。R1とR2a、R1とA、及びR3とAの少なくとも1つは互いに結合し、環を形成してもよい。)
で表される基を示す。R1とR2、R3とR4、R1とA、及びR3とAの少なくとも1つは互いに結合し、環を形成してもよい。]
で表される繰り返し単位を有する、項1又は2に記載のポリマー。
(In the formula, *, m, A, R 1 and R 3 are the same as above. R 2a represents a branched alkyl group. At least one of R 1 and R 2a , R 1 and A, and R 3 and A One may be bonded to each other to form a ring.)
The group represented by these is shown. At least one of R 1 and R 2 , R 3 and R 4 , R 1 and A, and R 3 and A may be bonded to each other to form a ring. ]
The polymer of claim | item 1 or 2 which has a repeating unit represented by these.
 項4.前記繰り返し単位が、一般式(1A)~(1F): Item 4. The repeating unit is represented by the general formulas (1A) to (1F):
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
[式中、*、R2a及びR4aは前記に同じである。Yは同一又は異なって、CH又はNを示す。R2b及びR4bは同一又は異なって、分岐鎖アルキル基を示す。]
のいずれかで表される繰り返し単位である、項1~3のいずれかに記載のポリマー。
[Wherein, *, R 2a and R 4a are the same as defined above. Y is the same or different and represents CH or N. R 2b and R 4b are the same or different and represent a branched alkyl group. ]
Item 4. The polymer according to any one of Items 1 to 3, which is a repeating unit represented by any one of:
 項5.数平均分子量が10000以上である、項1~4のいずれかに記載のポリマー。 Item 5. Item 5. The polymer according to any one of Items 1 to 4, wherein the number average molecular weight is 10,000 or more.
 項6.項1~5のいずれかに記載のポリマーからなるグラフェンナノリボン。 Item 6. Item 6. A graphene nanoribbon comprising the polymer according to any one of Items 1 to 5.
 項7.幅が0.5~10.0 nm、長さが10 nm以上である、項6に記載のグラフェンナノリボン。 Item 7. Item 7. The graphene nanoribbon according to Item 6, having a width of 0.5 to 10.0 nm and a length of 10 nm or more.
 項8.項1~5のいずれかに記載のポリマーの製造方法であって、
(1)パラジウム化合物及びo-クロラニルの存在下、K領域及びシロール骨格を有する多環芳香族化合物を反応させる工程、又は
(2)パラジウム化合物及びo-クロラニルの存在下、K領域を有する多環芳香族化合物と、シロール骨格を有する多環芳香族化合物とを反応させる工程
を備える、製造方法。
Item 8. Item 6. The method for producing a polymer according to any one of Items 1 to 5,
(1) a step of reacting a polycyclic aromatic compound having a K region and a silole skeleton in the presence of a palladium compound and o-chloranil; or (2) a polycycle having a K region in the presence of a palladium compound and o-chloranil. A production method comprising a step of reacting an aromatic compound with a polycyclic aromatic compound having a silole skeleton.
 項9.前記工程(1)において、K領域及びシロール骨格を有する多環芳香族化合物が、一般式(3A)又は(3B): Item 9. In the step (1), the polycyclic aromatic compound having a K region and a silole skeleton is represented by the general formula (3A) or (3B):
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
 [式中、Aは同一又は異なって、K領域を有する芳香族環を示す。R1及びR3は水素原子を示す。R2a及びR4aは同一又は異なって、分岐鎖アルキル基を示す。R1とR2a、R3とR4a、R1とA、及びR3とAの少なくとも1つは互いに結合し、環を形成してもよい。R5及びR6は同一又は異なって、水素原子又はアルキル基を示す。]
で表される化合物である、項8に記載の製造方法。
[Wherein, A is the same or different and represents an aromatic ring having a K region. R 1 and R 3 represent a hydrogen atom. R 2a and R 4a are the same or different and represent a branched alkyl group. At least one of R 1 and R 2a , R 3 and R 4a , R 1 and A, and R 3 and A may be bonded to each other to form a ring. R 5 and R 6 are the same or different and each represents a hydrogen atom or an alkyl group. ]
Item 9. The production method according to Item 8, which is a compound represented by:
 項10.前記工程(2)において、K領域を有する多環芳香族化合物が、一般式(4): Item 10. In the step (2), the polycyclic aromatic compound having a K region is represented by the general formula (4):
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000012
[式中、Aは同一又は異なって、K領域を有する芳香族環を示す。R1及びR3は水素原子を示す。R2及びR4は同一又は異なって、分岐鎖アルキル基、又は一般式(4A): [Wherein, A is the same or different and represents an aromatic ring having a K region. R 1 and R 3 represent a hydrogen atom. R 2 and R 4 are the same or different, and are a branched alkyl group, or general formula (4A):
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000013
(式中、A、R1及びR3は前記に同じである。R2aは分岐鎖アルキル基を示す。R1とR2a、R1とA、及びR3とAの少なくとも1つは互いに結合し、環を形成してもよい。)
で表される基を示す。R1とR2、R3とR4、R1とA、及びR3とAの少なくとも1つは互いに結合し、環を形成してもよい。]
で表される化合物である、項8又は9に記載の製造方法。
(In the formula, A, R 1 and R 3 are the same as defined above. R 2a represents a branched alkyl group. At least one of R 1 and R 2a , R 1 and A, and R 3 and A And may be linked to form a ring.)
The group represented by these is shown. At least one of R 1 and R 2 , R 3 and R 4 , R 1 and A, and R 3 and A may be bonded to each other to form a ring. ]
Item 10. The production method according to Item 8 or 9, which is a compound represented by:
 項11.前記工程(2)において、シロール骨格を有する多環芳香族化合物が、一般式(5): Item 11. In the step (2), the polycyclic aromatic compound having a silole skeleton is represented by the general formula (5):
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000014
[式中、Bは同一又は異なって、シロール骨格を有する芳香族環を示す。R1及びR3は水素原子を示す。R2a及びR4aは同一又は異なって、分岐鎖アルキル基を示す。R1とR2a、R3とR4a、R1とB、及びR3とBの少なくとも1つは互いに結合し、環を形成してもよい。R5及びR6は同一又は異なって、水素原子又はアルキル基を示す。]
で表される化合物である、項8~10のいずれかに記載の製造方法。
[Wherein, B are the same or different and each represents an aromatic ring having a silole skeleton. R 1 and R 3 represent a hydrogen atom. R 2a and R 4a are the same or different and represent a branched alkyl group. At least one of R 1 and R 2a , R 3 and R 4a , R 1 and B, and R 3 and B may be bonded to each other to form a ring. R 5 and R 6 are the same or different and each represents a hydrogen atom or an alkyl group. ]
Item 11. The production method according to any one of Items 8 to 10, which is a compound represented by:
 項12.前記工程(1)及び(2)が、銀化合物の存在下に行われる、項8~11のいずれかに記載の製造方法。 Item 12. Item 12. The production method according to any one of Items 8 to 11, wherein the steps (1) and (2) are performed in the presence of a silver compound.
 項13.前記銀化合物が、AgSbF6又はAgBF4を含有する、項12に記載の製造方法。 Item 13. The silver compound contains AgSbF 6 or AgBF 4, method according to claim 12.
 項14.前記銀化合物の使用量が、前記K領域及びシロール骨格を有する多環芳香族化合物、前記K領域を有する多環芳香族化合物、又は前記シロール骨格を有する多環芳香族化合物1モルに対して、0.5~5.0モルである、項12又は13に記載の製造方法。 Item 14. The amount of the silver compound used is based on 1 mol of the polycyclic aromatic compound having the K region and a silole skeleton, the polycyclic aromatic compound having the K region, or the polycyclic aromatic compound having the silole skeleton. Item 14. The production method according to Item 12 or 13, which is 0.5 to 5.0 mol.
 項15.前記パラジウム化合物の使用量が、前記K領域及びシロール骨格を有する多環芳香族化合物、前記K領域を有する多環芳香族化合物、又は前記シロール骨格を有する多環芳香族化合物1モルに対して、0.07~5.0モルである、項8~14のいずれかに記載の製造方法。 Item 15. The amount of the palladium compound used is 1 mol of the polycyclic aromatic compound having the K region and a silole skeleton, the polycyclic aromatic compound having the K region, or the polycyclic aromatic compound having the silole skeleton. Item 15. The production method according to any one of Items 8 to 14, which is 0.07 to 5.0 mol.
 項16.導電材料の上に、項6又は7に記載のグラフェンナノリボンが配置されている、積層体。 Item 16. Item 8. A laminate in which the graphene nanoribbon according to item 6 or 7 is disposed on a conductive material.
 項17.前記導電材料がグラフェンである、項16に記載の積層体。 Item 17. Item 17. The laminate according to Item 16, wherein the conductive material is graphene.
 本発明によれば、多環芳香族化合物を繰り返し単位とし、該繰り返し単位としての多環芳香族化合物は、前記多環芳香族化合物中のベンゼン環を構成する1つの結合を共有するように、隣接する繰り返し単位としての多環芳香族化合物と結合しているポリマーを提供することができるため、幅及び長さを制御したグラフェンナノリボンを製造することも可能である。本発明によれば、銀化合物及びo-クロラニル、並びに必要に応じてパラジウム化合物の存在下、K領域及びシロール骨格を有する多環芳香族化合物を反応させることで、1工程のみで、副反応が発生することなく、幅、長さ及びエッジ構造が制御されたGNRを構成するポリマーを合成できる。この反応は、基質としてK領域を有する多環芳香族化合物及びシロール骨格を有する多環芳香族化合物を用いた場合も同様にGNRを構成するポリマーを合成できる。 According to the present invention, the polycyclic aromatic compound is a repeating unit, and the polycyclic aromatic compound as the repeating unit shares one bond constituting the benzene ring in the polycyclic aromatic compound, Since a polymer bonded to a polycyclic aromatic compound as an adjacent repeating unit can be provided, a graphene nanoribbon having a controlled width and length can be produced. According to the present invention, by reacting a polycyclic aromatic compound having a K region and a silole skeleton in the presence of a silver compound and o-chloranil and, if necessary, a palladium compound, side reactions can be carried out in only one step. Without generation, it is possible to synthesize a polymer constituting a GNR with a controlled width, length and edge structure. In this reaction, when a polycyclic aromatic compound having a K region and a polycyclic aromatic compound having a silole skeleton are used as a substrate, a polymer constituting GNR can be synthesized in the same manner.
試験例1の1H-NMRの結果を示すグラフである。2 is a graph showing the results of 1 H-NMR in Test Example 1. 試験例1のUV/Vis吸収及び蛍光スペクトルである。2 is a UV / Vis absorption and fluorescence spectrum of Test Example 1. 試験例1のFT-ATR-IR分析の結果を示すグラフである。4 is a graph showing the results of FT-ATR-IR analysis of Test Example 1. 試験例1のラマンスペクトルである。4 is a Raman spectrum of Test Example 1. 試験例2の1H-NMRの結果を示すグラフである。4 is a graph showing the results of 1 H-NMR in Test Example 2. 試験例2のUV/Vis吸収及び蛍光スペクトルである。4 is a UV / Vis absorption and fluorescence spectrum of Test Example 2. THF溶液中のピレンのUV/Vis吸収及び蛍光スペクトルである。It is the UV / Vis absorption and fluorescence spectrum of pyrene in THF solution. 試験例2のFT-ATR-IR分析の結果を示すグラフである。6 is a graph showing the results of FT-ATR-IR analysis in Test Example 2. 試験例2のラマンスペクトルである。4 is a Raman spectrum of Test Example 2. 試験例3のHPLC分析の結果を示すグラフである。6 is a graph showing the results of HPLC analysis of Test Example 3. 試験例3のUV/Vis吸収及び蛍光スペクトルである。6 is a UV / Vis absorption and fluorescence spectrum of Test Example 3. 実施例12で得たポリマーのIRスペクトルである。2 is an IR spectrum of the polymer obtained in Example 12. 実施例12で得たポリマーのUV/Vis吸収スペクトルである。2 is a UV / Vis absorption spectrum of the polymer obtained in Example 12. 実施例13で得たポリマーのIRスペクトルである。4 is an IR spectrum of the polymer obtained in Example 13. 実施例13で得たポリマーのUV/Vis吸収スペクトル及び蛍光スペクトルである。2 is a UV / Vis absorption spectrum and a fluorescence spectrum of the polymer obtained in Example 13. 試験例4で配列を観察したポリマーのAFM像である。6 is an AFM image of a polymer whose arrangement was observed in Test Example 4. 試験例5のGNRの溶液滴下前後におけるグラフェン電界効果トランジスタの直流抵抗率の測定結果である。FIG. 6 is a measurement result of DC resistivity of a graphene field effect transistor before and after dropping a GNR solution in Test Example 5. FIG.
 1. ポリマー
 本発明のポリマーは、多環芳香族構造を繰り返し単位とし、該繰り返し単位としての多環芳香族化合物は、前記多環芳香族化合物中のベンゼン環を構成する1つの結合を共有するように、隣接する繰り返し単位としての多環芳香族化合物と結合しているポリマーである。このような本発明のポリマーは、K領域及びシロール骨格を有する多環芳香族化合物、又はK領域を有する多環芳香族化合物とシロール骨格を有する多環芳香族化合物とを原料として(共)重合(重合又は共重合)することにより得ることができる。なお、K領域とは、以下のように、多環芳香族化合物が有するアームチェア端の凸部分を意味する。つまり、多環芳香族化合物の凸部同士が縮合することによって本発明のポリマーが構成されている。
1. Polymer The polymer of the present invention has a polycyclic aromatic structure as a repeating unit, and the polycyclic aromatic compound as the repeating unit shares one bond constituting the benzene ring in the polycyclic aromatic compound. Thus, it is a polymer bonded to a polycyclic aromatic compound as an adjacent repeating unit. Such a polymer of the present invention is a (co) polymerization using a polycyclic aromatic compound having a K region and a silole skeleton, or a polycyclic aromatic compound having a K region and a polycyclic aromatic compound having a silole skeleton as raw materials. It can be obtained by (polymerization or copolymerization). The K region means a convex portion at the end of the armchair that the polycyclic aromatic compound has as follows. That is, the polymer of this invention is comprised by the convex parts of a polycyclic aromatic compound condensing.
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000015
 このような本発明のポリマーは、繰り返し単位が有するK領域同士がベンゼン環を構成する1つの結合を共有するように結合しているため、繰り返し単位同士が結合している箇所において、以下の構造を有する。 In such a polymer of the present invention, since the K regions of the repeating units are bonded so as to share one bond constituting the benzene ring, the following structure is formed at the position where the repeating units are bonded to each other. Have
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000016
[式中、点線で示した部位は繰り返し単位同士の縮合部位を意味する。*はいずれも結合手を意味する。隣接する*同士は互いに結合して環を形成することもある。]
 このようなポリマーが有する繰り返し単位としては、フェナントレン骨格を有する多環芳香族構造を繰り返し単位とし、該繰り返し単位同士が縮合してなるポリマーであるが、フェナントレン骨格を有する多環芳香族構造のみならず、フェナントレンに芳香環又は複素芳香環が縮合した構造も挙げられる。このような繰り返し単位としては、例えば、一般式(1):
[In the formula, a site indicated by a dotted line means a condensation site between repeating units. * Means a bond. Adjacent * s may combine with each other to form a ring. ]
Such a repeating unit possessed by such a polymer is a polymer obtained by condensing a repeating unit with a polycyclic aromatic structure having a phenanthrene skeleton, but only if the polycyclic aromatic structure having a phenanthrene skeleton is used. In addition, a structure in which an aromatic ring or a heteroaromatic ring is condensed to phenanthrene is also included. As such a repeating unit, for example, the general formula (1):
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000017
[式中、*は繰り返し部位を示す。mは1以上の整数を示す。AはK領域を有する芳香族環を示す。mが2以上の整数である場合、複数のAは同一でも異なってもよい。R1及びR3は水素原子を示す。R2及びR4は同一又は異なって、分岐鎖アルキル基、又は一般式(2): [In formula, * shows a repeating site | part. m represents an integer of 1 or more. A represents an aromatic ring having a K region. When m is an integer of 2 or more, the plurality of A may be the same or different. R 1 and R 3 represent a hydrogen atom. R 2 and R 4 are the same or different and are a branched alkyl group, or general formula (2):
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000018
(式中、*、m、A、R1及びR3は前記に同じである。R2aは分岐鎖アルキル基を示す。R1とR2a、R1とA、及びR3とAの少なくとも1つは互いに結合し、環を形成してもよい。)
で表される基を示す。R1とR2、R3とR4、R1とA、及びR3とAの少なくとも1つは互いに結合し、環を形成してもよい。]
で表される繰り返し単位が挙げられる。
(In the formula, *, m, A, R 1 and R 3 are the same as above. R 2a represents a branched alkyl group. At least one of R 1 and R 2a , R 1 and A, and R 3 and A One may be bonded to each other to form a ring.)
The group represented by these is shown. At least one of R 1 and R 2 , R 3 and R 4 , R 1 and A, and R 3 and A may be bonded to each other to form a ring. ]
The repeating unit represented by these is mentioned.
 つまり、一般式(1)におけるR2としては、R2a(分岐鎖アルキル基)である場合と、一般式(2)で表される基である場合が挙げられ、一般式(1)におけるR4としては、R4a(分岐鎖アルキル基)である場合と、一般式(2)で表される基である場合が挙げられる。 That is, R 2 in the general formula (1) includes R 2a (branched alkyl group) and a group represented by the general formula (2). R 2 in the general formula (1) Examples of 4 include R 4a (branched alkyl group) and a group represented by the general formula (2).
 本発明のポリマーは、上記繰り返し単位中の環Aから伸びる2本の結合手が、隣接する繰り返し単位の2個のベンゼン環と結合してベンゼン環を形成する。つまり、本発明のポリマーは、一般式(6): In the polymer of the present invention, two bonds extending from the ring A in the above repeating unit are combined with two benzene rings in the adjacent repeating unit to form a benzene ring. That is, the polymer of the present invention has the general formula (6):
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000019
[式中、m、A、R1、R2、R3及びR4は前記に同じである。点線は同様の構造が続くことを意味する。]
で表される構造を有する。
[Wherein, m, A, R 1 , R 2 , R 3 and R 4 are the same as defined above. The dotted line means that a similar structure follows. ]
It has the structure represented by these.
 一般式(1)、(2)及び(6)において、mは1以上の整数である。mの数によって、結果的に得られるポリマーからなるグラフェンナノリボンの幅が異なる。つまり、mを調整することにより、結果的に得られるポリマーからなるグラフェンナノリボンの幅を調整することができる。本発明のポリマーの合成の容易さ、分子量を大きくすることができる(繰り返し数を大きくすることができる)観点からは、mは1~3が好ましく、1又は2がより好ましく、1がさらに好ましい。 In general formulas (1), (2) and (6), m is an integer of 1 or more. Depending on the number of m, the width of the graphene nanoribbon made of the resulting polymer varies. That is, by adjusting m, the width of the graphene nanoribbon made of the resulting polymer can be adjusted. From the viewpoint of ease of synthesis of the polymer of the present invention and the ability to increase the molecular weight (the number of repetitions can be increased), m is preferably 1 to 3, more preferably 1 or 2, and even more preferably 1. .
 一般式(1)、(2)及び(6)において、AはK領域(つまり、アームチェア端部又は凸部)を有する芳香族環である。なお、Aは、R1及びR3の少なくとも1つと結合して環を形成する場合もあるが、この場合は、K領域を有するようにR1及びR3の少なくとも1つと結合して環を形成することが好ましい。 In the general formulas (1), (2), and (6), A is an aromatic ring having a K region (that is, an armchair end portion or a convex portion). A may be bonded to at least one of R 1 and R 3 to form a ring.In this case, A is bonded to at least one of R 1 and R 3 so as to have a K region. It is preferable to form.
 このような環Aとしては、例えば、 As such a ring A, for example,
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000020
[式中、R2及びR4は前記に同じである。Yは同一又は異なって、CH又はNを示す。]
等が挙げられる。
[Wherein, R 2 and R 4 are the same as defined above. Y is the same or different and represents CH or N. ]
Etc.
 R1及びR3は水素原子である。なお、R1及び/又はR3は、Aと結合して環を形成してもよい。この際形成される環としては、例えば、ベンゼン環、ナフタレン環等が挙げられる。 R 1 and R 3 are hydrogen atoms. R 1 and / or R 3 may combine with A to form a ring. Examples of the ring formed at this time include a benzene ring and a naphthalene ring.
 R2及びR4で示される分岐鎖アルキル基としては、基質の種類によって適宜選択され得るが、後述の繰り返し単位(1A)、(1C)、(1E)、(1F)等を採用する場合や、後述の繰り返し単位(1D)のR2aは、溶解性の観点から、一般式(7): The branched chain alkyl group represented by R 2 and R 4 may be appropriately selected depending on the type of the substrate, but the following repeating units (1A), (1C), (1E), (1F), etc. From the viewpoint of solubility, R 2a of the repeating unit (1D) described later is represented by the general formula (7):
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000021
[式中、R7は同一又は異なって、C1-4アルキル基を示す。R8はC6-10アルキル基を示す。]
で表される基が好ましい。
[Wherein, R 7 are the same or different and each represents a C 1-4 alkyl group. R 8 represents a C6-10 alkyl group. ]
The group represented by these is preferable.
 一般式(7)におけるR7としては、メチル基、エチル基、n-プロピル基等のC1-4アルキル基が挙げられる。これらアルキル基は、立体的環境を考慮し、上記繰り返し単位間の距離にあわせた基を選択することが好ましい。例えば、上記環Aがベンゼン環である場合、つまり、上記繰り返し単位がピレン骨格を有する構造である場合には、より高分子量のポリマーを得やすい観点から、R7はいずれもエチル基であることが好ましい。 Examples of R 7 in the general formula (7) include C1-4 alkyl groups such as a methyl group, an ethyl group, and an n-propyl group. These alkyl groups are preferably selected in accordance with the distance between the repeating units in consideration of the steric environment. For example, when the ring A is a benzene ring, that is, when the repeating unit has a structure having a pyrene skeleton, R 7 must be an ethyl group from the viewpoint of easily obtaining a higher molecular weight polymer. Is preferred.
 一般式(7)におけるR8としては、n-ヘプチル基、n-オクチル基、n-ノニル基等のC7-10アルキル基が挙げられる。これらアルキル基は、使用する溶媒の溶解性を考慮し、適宜選択することができる。 Examples of R 8 in the general formula (7) include C7-10 alkyl groups such as an n-heptyl group, an n-octyl group, and an n-nonyl group. These alkyl groups can be appropriately selected in consideration of the solubility of the solvent used.
 このため、R2及びR4で示される分岐鎖アルキル基としては、例えば、一般式(7A)~(7C): Therefore, examples of the branched alkyl group represented by R 2 and R 4 include, for example, general formulas (7A) to (7C):
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000022
[式中、R7は前記に同じである。]
で表される基が好ましく、一般式(7B)で表される基がより好ましい。
[Wherein R 7 is the same as defined above. ]
The group represented by general formula (7B) is more preferable.
 なお、後述の繰り返し単位(1D)のR4aについては、溶解性の観点から、一般式(8): In addition, R 4a of the repeating unit (1D) described later is represented by the general formula (8):
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000023
[式中、R7は同一又は異なって、C1-8アルキル基を示す。]
で表される基が好ましい。
[Wherein R 7 is the same or different and represents a C 1-8 alkyl group. ]
The group represented by these is preferable.
 一般式(8)におけるR9としては、メチル基、エチル基、n-プロピル基、n-ブチル基、n-ペンチル基等のC1-8アルキル基が挙げられる。これらアルキル基は、立体的環境を考慮し、上記繰り返し単位間の距離にあわせた基を選択することが好ましい。例えば、後述の繰り返し単位(1D)のR4aについては、より高分子量のポリマーを得やすい観点から、R9はいずれもn-ペンチルであることが好ましい。 Examples of R 9 in the general formula (8) include C1-8 alkyl groups such as a methyl group, an ethyl group, an n-propyl group, an n-butyl group, and an n-pentyl group. These alkyl groups are preferably selected in accordance with the distance between the repeating units in consideration of the steric environment. For example, with respect to R 4a of the repeating unit (1D) described later, it is preferable that all of R 9 is n-pentyl from the viewpoint of easily obtaining a higher molecular weight polymer.
 R2及びR4が一般式(2)で表される基である場合、R2aで示される分岐鎖アルキル基としては、上記した分岐鎖アルキル基が好ましい。 When R 2 and R 4 are a group represented by the general formula (2), the branched alkyl group described above is preferable as the branched alkyl group represented by R 2a .
 なお、R1とR2、R3とR4は互いに結合し、環を形成してもよい。また、R1とR2aは互いに結合し、環を形成してもよい。この際形成される環としては、例えば、 R 1 and R 2 , R 3 and R 4 may be bonded to each other to form a ring. R 1 and R 2a may be bonded to each other to form a ring. As the ring formed at this time, for example,
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000024
[式中、R2aは前記に同じである。]
等が挙げられる。
[Wherein, R 2a is the same as defined above. ]
Etc.
 以上のような条件を満たす繰り返し単位としては、例えば、一般式(1A)~(1F): As repeating units satisfying the above conditions, for example, general formulas (1A) to (1F):
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000025
[式中、*、Y、R2a及びR4aは前記に同じである。R2b及びR4bは同一又は異なって、分岐鎖アルキル基を示す。]
で表される繰り返し単位が挙げられる。これらのなかでも、より高分子量のポリマーが得やすい観点から、一般式(1A)で表される繰り返し単位が好ましい。
[Wherein, *, Y, R 2a and R 4a are the same as defined above. R 2b and R 4b are the same or different and represent a branched alkyl group. ]
The repeating unit represented by these is mentioned. Among these, from the viewpoint of easily obtaining a higher molecular weight polymer, the repeating unit represented by the general formula (1A) is preferable.
 このため、本発明のポリマーは、一般式(6A)~(6F): For this reason, the polymers of the present invention have the general formulas (6A) to (6F):
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000027
[式中、Y、R2a及びR4aは前記に同じである。]
等で表される構造を有することが好ましい。
[Wherein, Y, R 2a and R 4a are the same as defined above. ]
It is preferable to have a structure represented by
 本発明のポリマーにおいて、上記繰り返し単位数(つまり、重合度)は、特に制限されず、必要特性に応じて適宜選択することができ、例えば、10~1000が好ましく、30~500がより好ましい。本発明のポリマーの繰り返し単位数は、ゲル浸透クロマトグラフィーにより、ポリスチレン換算で測定した数平均分子量から算出する。 In the polymer of the present invention, the number of repeating units (that is, the degree of polymerization) is not particularly limited and can be appropriately selected according to the required characteristics. For example, 10 to 1000 is preferable, and 30 to 500 is more preferable. The number of repeating units of the polymer of the present invention is calculated from the number average molecular weight measured in terms of polystyrene by gel permeation chromatography.
 本発明のポリマーにおいて、数平均分子量は、特に制限されず、必要特性に応じて適宜選択することができ、例えば、10000以上が好ましく、15000~300000がより好ましく、20000~200000がさらに好ましく、30000~180000が特に好ましい。本発明のポリマーの数平均分子量は、ゲル浸透クロマトグラフィーにより、ポリスチレン換算で測定する。 In the polymer of the present invention, the number average molecular weight is not particularly limited and can be appropriately selected according to necessary characteristics. For example, it is preferably 10,000 or more, more preferably 15000 to 300000, further preferably 20000 to 200000, 30000 ˜180,000 is particularly preferred. The number average molecular weight of the polymer of the present invention is measured in terms of polystyrene by gel permeation chromatography.
 このような本発明のポリマーの幅は、0.5~2.0nmが好ましく、0.7~1.5nmがより好ましい。なお、ポリマーの幅は、主骨格である多環芳香族骨格部分の幅を意味し、原子間力顕微鏡観察により測定する。基質として後述の一般式(3A1)、(4A)、(5A)等で表される化合物を使用した場合は幅が約0.7nmのポリマーが生成されやすく、基質として後述の一般式(3A2)、(3B)、(5B)等で表される化合物を使用した場合は幅が約1.2nmのポリマーが生成されやすく、基質として後述の一般式(4B)等で表される化合物を使用した場合は幅が約1.5nmのポリマーが生成されやすい。 The width of the polymer of the present invention is preferably 0.5 to 2.0 nm, more preferably 0.7 to 1.5 nm. The width of the polymer means the width of the polycyclic aromatic skeleton portion that is the main skeleton, and is measured by observation with an atomic force microscope. When a compound represented by the following general formula (3A1), (4A), (5A) or the like is used as a substrate, a polymer having a width of about 0.7 nm is easily generated. When a compound represented by (3B), (5B) or the like is used, a polymer having a width of about 1.2 nm is likely to be produced. When a compound represented by the following general formula (4B) or the like is used as a substrate, A polymer with a width of about 1.5 nm is likely to be produced.
 2. ポリマーの製造方法
 上記した本発明のポリマーは、例えば、
(1)パラジウム化合物及びo-クロラニルの存在下、K領域及びシロール骨格を有する多環芳香族化合物を反応させる工程、又は
(2)パラジウム化合物及びo-クロラニルの存在下、K領域を有する多環芳香族化合物と、シロール骨格を有する多環芳香族化合物とを反応させる工程
を備える製造方法により合成することができる。
2. Polymer production method The polymer of the present invention described above is, for example,
(1) a step of reacting a polycyclic aromatic compound having a K region and a silole skeleton in the presence of a palladium compound and o-chloranil; or (2) a polycycle having a K region in the presence of a palladium compound and o-chloranil. It can be synthesized by a production method comprising a step of reacting an aromatic compound with a polycyclic aromatic compound having a silole skeleton.
 このような方法を採用することにより、工程(1)においては、K領域及びシロール骨格を有する多環芳香族化合物におけるK領域とシロール骨格との間で、位置選択的且つ連続的な一段階π拡張重合(以下、「APEX重合」と言うこともある)が進行する。また、工程(2)においては、K領域を有する多環芳香族化合物におけるK領域と、シロール骨格を有する多環芳香族化合物におけるシロール骨格との間で、位置選択的且つ連続的なAPEX重合が進行する。この重合反応が進行するのは、シロール骨格がπ拡張反応剤として機能するためである。このため、本発明のポリマーを、わずか一段階の反応により精密に合成することが可能であり、工程数の大幅な短縮が可能である。 By adopting such a method, in the step (1), a regioselective and continuous one-step π between the K region and the silole skeleton in the polycyclic aromatic compound having the K region and the silole skeleton. Extended polymerization (hereinafter also referred to as “APEX polymerization”) proceeds. In the step (2), regioselective and continuous APEX polymerization is performed between the K region in the polycyclic aromatic compound having a K region and the silole skeleton in the polycyclic aromatic compound having a silole skeleton. proceed. This polymerization reaction proceeds because the silole skeleton functions as a π-extended reagent. For this reason, the polymer of the present invention can be precisely synthesized by a reaction of only one step, and the number of processes can be greatly reduced.
 (2-1)基質
 K領域及びシロール骨格を有する多環芳香族化合物
 本発明の製造方法において、基質として使用できるK領域及びシロール骨格を有する多環芳香族化合物としては、片側の端部にK領域を有し、反対側の端部にシロール骨格を有する多環芳香族化合物であれば特に制限されない。例えば、一般式(3A)又は(3B):
(2-1) Polycyclic aromatic compound having a substrate K region and a silole skeleton In the production method of the present invention, a polycyclic aromatic compound having a K region and a silole skeleton that can be used as a substrate includes K at one end. There is no particular limitation as long as it is a polycyclic aromatic compound having a region and having a silole skeleton at the opposite end. For example, the general formula (3A) or (3B):
Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-C000028
[式中、A、R1、R2a及びR3は前記に同じである。R4aは分岐鎖アルキル基を示す。R1とR2a、R3とR4a、R1とA、及びR3とAの少なくとも1つは互いに結合し、環を形成してもよい。R5及びR6は同一又は異なって、水素原子又はアルキル基を示す。]
で表される化合物が好ましい。
[Wherein, A, R 1 , R 2a and R 3 are the same as defined above. R 4a represents a branched alkyl group. At least one of R 1 and R 2a , R 3 and R 4a , R 1 and A, and R 3 and A may be bonded to each other to form a ring. R 5 and R 6 are the same or different and each represents a hydrogen atom or an alkyl group. ]
The compound represented by these is preferable.
 R4aで示される分岐鎖アルキル基としては、上記した分岐鎖アルキル基が好ましい。 As the branched alkyl group represented by R 4a , the above-described branched alkyl group is preferable.
 R5及びR6で示されるアルキル基としては、例えば、メチル基、エチル基、n-プロピル基等のC1-4アルキル基が挙げられる。 Examples of the alkyl group represented by R 5 and R 6 include C1-4 alkyl groups such as a methyl group, an ethyl group, and an n-propyl group.
 R1とR2a、R3とR4a、R1とA、及びR3とAの少なくとも1つが互いに結合し、環を形成する場合、形成される環は、上記説明したものが挙げられる。 When at least one of R 1 and R 2a , R 3 and R 4a , R 1 and A, and R 3 and A are bonded to each other to form a ring, examples of the ring formed include those described above.
 以上のような条件を満たすK領域及びシロール骨格を有する多環芳香族化合物としては、例えば、一般式(3A1)、(3A2)、(3B1): Examples of polycyclic aromatic compounds having a K region and a silole skeleton that satisfy the above conditions include, for example, general formulas (3A1), (3A2), and (3B1):
Figure JPOXMLDOC01-appb-C000029
Figure JPOXMLDOC01-appb-C000029
[式中、R2a、R4a、R5及びR6は前記に同じである。]
で表される化合物が挙げられる。具体的には、K領域及びシロール骨格を有する多環芳香族化合物としては、例えば、
[Wherein, R 2a , R 4a , R 5 and R 6 are the same as defined above. ]
The compound represented by these is mentioned. Specifically, as a polycyclic aromatic compound having a K region and a silole skeleton, for example,
Figure JPOXMLDOC01-appb-C000030
Figure JPOXMLDOC01-appb-C000030
等が挙げられる。これらのなかでも、より高分子量のポリマーが得やすい観点から、一般式(3A1)で表される化合物が好ましい。 Etc. Among these, the compound represented by the general formula (3A1) is preferable from the viewpoint of easily obtaining a higher molecular weight polymer.
 K領域を有する多環芳香族化合物
 本発明の製造方法において、基質として使用できるK領域を有する多環芳香族化合物としては、両側の端部にK領域を有する多環芳香族化合物であれば特に制限されない。例えば、一般式(4):
Polycyclic aromatic compound having a K region In the production method of the present invention, the polycyclic aromatic compound having a K region that can be used as a substrate is particularly a polycyclic aromatic compound having a K region at both ends. Not limited. For example, general formula (4):
Figure JPOXMLDOC01-appb-C000031
Figure JPOXMLDOC01-appb-C000031
[式中、A、R1、R2、R3及びR4は前記に同じである。R1とR2、R3とR4、R1とA、及びR3とAの少なくとも1つは互いに結合し、環を形成してもよい。]
で表される化合物が挙げられる。
[Wherein, A, R 1 , R 2 , R 3 and R 4 are the same as defined above. At least one of R 1 and R 2 , R 3 and R 4 , R 1 and A, and R 3 and A may be bonded to each other to form a ring. ]
The compound represented by these is mentioned.
 R1とR2、R3とR4、R1とA、及びR3とAの少なくとも1つが互いに結合し、環を形成する場合、形成される環は、上記説明したものが挙げられる。 When at least one of R 1 and R 2 , R 3 and R 4 , R 1 and A, and R 3 and A are bonded to each other to form a ring, examples of the ring formed include those described above.
 以上のような条件を満たすK領域を有する多環芳香族化合物としては、例えば、一般式(4A)~(4B): Examples of polycyclic aromatic compounds having a K region that satisfy the above conditions include, for example, general formulas (4A) to (4B):
Figure JPOXMLDOC01-appb-C000032
Figure JPOXMLDOC01-appb-C000032
[式中、Y、R2a及びR4aは前記に同じである。]
で表される化合物が挙げられる。具体的には、K領域を有する多環芳香族化合物としては、例えば、
[Wherein, Y, R 2a and R 4a are the same as defined above. ]
The compound represented by these is mentioned. Specifically, as a polycyclic aromatic compound having a K region, for example,
Figure JPOXMLDOC01-appb-C000033
Figure JPOXMLDOC01-appb-C000033
等が挙げられる。 Etc.
 シロール骨格を有する多環芳香族化合物
 本発明の製造方法において、基質として使用できるシロール骨格を有する多環芳香族化合物としては、両側の端部にシロール骨格を有する多環芳香族化合物であれば特に制限されない。例えば、一般式(5):
Polycyclic aromatic compound having a silole skeleton In the production method of the present invention, the polycyclic aromatic compound having a silole skeleton that can be used as a substrate is a polycyclic aromatic compound having a silole skeleton at both ends. Not limited. For example, general formula (5):
Figure JPOXMLDOC01-appb-C000034
Figure JPOXMLDOC01-appb-C000034
[式中、R1、R2a、R3、R4a、R5及びR6は前記に同じである。Bは同一又は異なって、シロール骨格を有する芳香族環を示す。R1とR2a、R3とR4a、R1とB、及びR3とBの少なくとも1つは互いに結合し、環を形成してもよい。]
で表される化合物が好ましい。
[Wherein, R 1 , R 2a , R 3 , R 4a , R 5 and R 6 are the same as defined above. B is the same or different and represents an aromatic ring having a silole skeleton. At least one of R 1 and R 2a , R 3 and R 4a , R 1 and B, and R 3 and B may be bonded to each other to form a ring. ]
The compound represented by these is preferable.
 一般式(5)において、Bはシロール骨格を有する芳香族環である。このような環Bとしては、例えば、 In the general formula (5), B is an aromatic ring having a silole skeleton. As such a ring B, for example,
Figure JPOXMLDOC01-appb-C000035
Figure JPOXMLDOC01-appb-C000035
[式中、R5及びR6は前記に同じである。]
等が挙げられる。
[Wherein, R 5 and R 6 are the same as defined above. ]
Etc.
 なお、R1及び/又はR3は、Bと結合して環を形成してもよい。また、R1とR2a、R3とR4aは互いに結合し、環を形成してもよい。この際形成される環としては、例えば、ベンゼン環、ナフタレン環等が挙げられる。 R 1 and / or R 3 may combine with B to form a ring. R 1 and R 2a , R 3 and R 4a may be bonded to each other to form a ring. Examples of the ring formed at this time include a benzene ring and a naphthalene ring.
 以上のような条件を満たすシロール骨格を有する多環芳香族化合物としては、例えば、一般式(5A)~(5B): Examples of the polycyclic aromatic compound having a silole skeleton that satisfies the above conditions include, for example, general formulas (5A) to (5B):
Figure JPOXMLDOC01-appb-C000036
Figure JPOXMLDOC01-appb-C000036
[式中、R2a、R4a、R5及びR6は前記に同じである。]
で表される化合物が挙げられる。具体的には、シロール骨格を有する多環芳香族化合物としては、例えば、
[Wherein, R 2a , R 4a , R 5 and R 6 are the same as defined above. ]
The compound represented by these is mentioned. Specifically, as a polycyclic aromatic compound having a silole skeleton, for example,
Figure JPOXMLDOC01-appb-C000037
Figure JPOXMLDOC01-appb-C000037
等が挙げられる。 Etc.
 本発明の製造方法において、工程(2)を採用する場合、つまり、K領域を有する多環芳香族化合物と、シロール骨格を有する多環芳香族化合物とを反応させる場合、シロール骨格を有する多環芳香族化合物の使用量は、より高分子量のポリマーを得やすい観点から、K領域を有する多環芳香族化合物1モルに対して、0.2~3.0モルが好ましく、0.3~2.0モルがより好ましく、0.5~1.5モルがさらに好ましい。 In the production method of the present invention, when step (2) is employed, that is, when a polycyclic aromatic compound having a K region is reacted with a polycyclic aromatic compound having a silole skeleton, a polycyclic having a silole skeleton The amount of the aromatic compound used is preferably from 0.2 to 3.0 mol, more preferably from 0.3 to 2.0 mol, more preferably from 0.5 mol to 1 mol of the polycyclic aromatic compound having a K region, from the viewpoint of easily obtaining a higher molecular weight polymer. More preferred is ˜1.5 mol.
 (2-2)パラジウム化合物
 本発明の製造方法では、触媒としてパラジウム化合物を使用する。なお、パラジウム化合物を使用しない場合は、重合反応はほとんど進行せず、本発明のポリマーが得られにくい。
(2-2) Palladium Compound In the production method of the present invention, a palladium compound is used as a catalyst. When no palladium compound is used, the polymerization reaction hardly proceeds and it is difficult to obtain the polymer of the present invention.
 パラジウム化合物としては、高分子化合物等の合成用触媒として公知のパラジウム化合物等が挙げられ、より高分子量のポリマーを得やすい観点から、2価パラジウム化合物が好ましい。使用できるパラジウム化合物としては、例えば、Pd(OH)2、Pd(OCOCH3)2、Pd(OCOCF3)2、Pd(acac)2、PdCl2、PdBr2、PdI2、Pd(NO3)2、Pd(CH3CN)4(SbF6)2等が挙げられる。なお、acacはアセチルアセトネートを意味する。本発明においては、弱いカチオン性のパラジウム化合物を使用することで基質のシロール骨格を崩壊させにくく、より高分子量のポリマーを得やすい観点から、Pd(OH)2、Pd(OCOCH3)2、Pd(OCOCF3)2、PdBr2、PdI2、Pd(CH3CN)4(SbF6)2等が好ましく、Pd(OCOCH3)2、Pd(OCOCF3)2、PdBr2、PdI2、Pd(CH3CN)4(SbF6)2等がより好ましく、Pd(OCOCF3)2がさらに好ましい。 Examples of the palladium compound include a known palladium compound as a catalyst for synthesis of a polymer compound and the like, and a divalent palladium compound is preferable from the viewpoint of easily obtaining a higher molecular weight polymer. Examples of palladium compounds that can be used include Pd (OH) 2 , Pd (OCOCH 3 ) 2 , Pd (OCOCF 3 ) 2 , Pd (acac) 2 , PdCl 2 , PdBr 2 , PdI 2 , Pd (NO 3 ) 2 , Pd (CH 3 CN) 4 (SbF 6 ) 2 and the like. Acac means acetylacetonate. In the present invention, by using a weak cationic palladium compound, it is difficult to collapse the silole skeleton of the substrate, and from the viewpoint of easily obtaining a higher molecular weight polymer, Pd (OH) 2 , Pd (OCOCH 3 ) 2 , Pd (OCOCF 3 ) 2 , PdBr 2 , PdI 2 , Pd (CH 3 CN) 4 (SbF 6 ) 2 etc. are preferred, Pd (OCOCH 3 ) 2 , Pd (OCOCF 3 ) 2 , PdBr 2 , PdI 2 , Pd ( CH 3 CN) 4 (SbF 6 ) 2 is more preferable, and Pd (OCOCF 3 ) 2 is more preferable.
 パラジウム化合物の使用量は、基質の種類により適宜選択することが可能であり、より高分子量のポリマーを得やすい観点から、例えば、基質である前記K領域及びシロール骨格を有する多環芳香族化合物、前記K領域を有する多環芳香族化合物、又は前記シロール骨格を有する多環芳香族化合物1モルに対して、0.07~5.0モルが好ましく、0.15~4.0モルがより好ましく、0.3~3.0モルがさらに好ましく、0.6~2.0モルが特に好ましい。 The amount of the palladium compound can be appropriately selected depending on the type of the substrate, and from the viewpoint of easily obtaining a higher molecular weight polymer, for example, the polycyclic aromatic compound having the K region as a substrate and a silole skeleton, 0.07 to 5.0 mol is preferable, 0.15 to 4.0 mol is more preferable, and 0.3 to 3.0 mol is more preferable with respect to 1 mol of the polycyclic aromatic compound having the K region or the polycyclic aromatic compound having the silole skeleton. 0.6 to 2.0 mol is particularly preferable.
 (2-3)o-クロラニル
 本発明の製造方法では、酸化剤としてo-クロラニルを使用する。なお、o-クロラニルを使用しない場合は、重合反応はほとんど進行せず、本発明のポリマーが得られない。また、o-クロラニルの代わりに、他の酸化剤(p-クロラニル、2,3-ジクロロ-5,6-ジシアノ-1,4-ベンゾキノン、3,5-ジ-t-ブチル-1,2-ベンゾキノン、CuCl2等)を用いた場合も同様に、重合反応はほとんど進行せず、本発明のポリマーが得られない。
(2-3) o-chloranil In the production method of the present invention, o-chloranil is used as an oxidizing agent. When o-chloranil is not used, the polymerization reaction hardly proceeds and the polymer of the present invention cannot be obtained. Instead of o-chloranil, other oxidizing agents (p-chloranil, 2,3-dichloro-5,6-dicyano-1,4-benzoquinone, 3,5-di-t-butyl-1,2- Similarly, when benzoquinone, CuCl 2 or the like is used, the polymerization reaction hardly proceeds and the polymer of the present invention cannot be obtained.
 o-クロラニルの使用量は、基質の種類により適宜選択することが可能であり、より高分子量のポリマーを得やすい観点から、例えば、基質である前記K領域及びシロール骨格を有する多環芳香族化合物、前記K領域を有する多環芳香族化合物、又は前記シロール骨格を有する多環芳香族化合物1モルに対して、0.5~5.0モルが好ましく、1.0~3.0モルがより好ましく、1.5~2.5モルがさらに好ましい。 The amount of o-chloranil used can be appropriately selected depending on the type of substrate. From the viewpoint of easily obtaining a higher molecular weight polymer, for example, a polycyclic aromatic compound having the K region as a substrate and a silole skeleton. The polycyclic aromatic compound having the K region or the polycyclic aromatic compound having the silole skeleton is preferably 0.5 to 5.0 mol, more preferably 1.0 to 3.0 mol, and even more preferably 1.5 to 2.5 mol. preferable.
 (2-4)銀化合物
 本発明の製造方法において、工程(1)及び(2)は、銀化合物の存在下で行うことが好ましい。銀化合物を使用することにより、より高分子量のポリマーを得やすい。
(2-4) Silver Compound In the production method of the present invention, steps (1) and (2) are preferably performed in the presence of a silver compound. By using a silver compound, it is easy to obtain a higher molecular weight polymer.
 銀化合物としては、特に制限されず、酢酸銀、ピバル酸銀(AgOPiv)、トリフルオロメタンスルホン酸銀(AgOTf)、安息香酸銀(AgOCOPh)等の有機銀化合物;硝酸銀、フッ化銀、塩化銀、臭化銀、ヨウ化銀、硫酸銀、酸化銀、硫化銀、テトラフルオロホウ酸銀(AgBF4)、ヘキサフルオロリン酸銀(AgPF6)、ヘキサフルオロアンチモン酸銀(AgSbF6)等の無機銀化合物等が挙げられ、より高分子量のポリマーを得やすい観点から、無機銀化合物が好ましく、テトラフルオロホウ酸銀(AgBF4)、ヘキサフルオロリン酸銀(AgPF6)、ヘキサフルオロアンチモン酸銀(AgSbF6)等がより好ましく、テトラフルオロホウ酸銀(AgBF4)、ヘキサフルオロアンチモン酸銀(AgSbF6)等がさらに好ましく、ヘキサフルオロアンチモン酸銀(AgSbF6)が特に好ましい。これらの銀化合物は、単独で用いることもでき、2種以上を組合せて用いることもできる。 The silver compound is not particularly limited, and is an organic silver compound such as silver acetate, silver pivalate (AgOPiv), silver trifluoromethanesulfonate (AgOTf), silver benzoate (AgOCOPh); silver nitrate, silver fluoride, silver chloride, Inorganic silver such as silver bromide, silver iodide, silver sulfate, silver oxide, silver sulfide, silver tetrafluoroborate (AgBF 4 ), silver hexafluorophosphate (AgPF 6 ), silver hexafluoroantimonate (AgSbF 6 ) Inorganic silver compounds are preferred from the viewpoint of easily obtaining higher molecular weight polymers, such as silver tetrafluoroborate (AgBF 4 ), silver hexafluorophosphate (AgPF 6 ), silver hexafluoroantimonate (AgSbF 6 ) and the like are more preferable, silver tetrafluoroborate (AgBF 4 ), silver hexafluoroantimonate (AgSbF 6 ) and the like are more preferable, and silver hexafluoroantimonate (AgSbF 6 ) is particularly preferable. . These silver compounds can be used alone or in combination of two or more.
 銀化合物の使用量は、基質の種類により適宜選択することが可能であり、より高分子量のポリマーを得やすい観点から、例えば、基質である前記K領域及びシロール骨格を有する多環芳香族化合物、前記K領域を有する多環芳香族化合物、又は前記シロール骨格を有する多環芳香族化合物1モルに対して、0.5~5.0モルが好ましく、1.0~3.0モルがより好ましく、1.5~2.5モルがさらに好ましい。なお、複数の銀化合物を使用する場合には、合計使用量が上記範囲内となるように調整することが好ましい。 The amount of silver compound used can be appropriately selected depending on the type of substrate, and from the viewpoint of easily obtaining a higher molecular weight polymer, for example, a polycyclic aromatic compound having the K region as a substrate and a silole skeleton, 0.5 to 5.0 mol is preferable, 1.0 to 3.0 mol is more preferable, and 1.5 to 2.5 mol is more preferable with respect to 1 mol of the polycyclic aromatic compound having the K region or the polycyclic aromatic compound having the silole skeleton. . In addition, when using a some silver compound, it is preferable to adjust so that a total usage-amount will be in the said range.
 (2-5)その他
 本発明の製造方法において、工程(1)及び(2)は、溶媒中で行うことが好ましい。溶媒としては、例えば、ペンタン、ヘキサン、ヘプタン、シクロヘキサン等の脂肪族炭化水素;ジクロロメタン、ジクロロエタン(DCE)、クロロホルム(CHCl3)、四塩化炭素、トリクロロエチレン(TCE)等の脂肪族ハロゲン化炭化水素;ブロモベンゼン(PhBr)、1,3,5-トリブロモベンゼン(PhBr3)等の芳香族ハロゲン化炭化水素等が挙げられる。これらは、単独で用いることもでき、2種以上を組合せて用いることもできる。これらのうち、本発明では、より高分子量のポリマーを得やすい観点から、脂肪族ハロゲン化炭化水素、芳香族ハロゲン化炭化水素等が好ましく、ジクロロエタン(DCE)、クロロホルム(CHCl3)、トリクロロエチレン(TCE)、ブロモベンゼン(PhBr)、1,3,5-トリブロモベンゼン(PhBr3)等がより好ましく、ジクロロエタン(DCE)、トリクロロエチレン(TCE)、1,3,5-トリブロモベンゼン(PhBr3)等がさらに好ましく、ジクロロエタン(DCE)が特に好ましい。
(2-5) Others In the production method of the present invention, steps (1) and (2) are preferably performed in a solvent. Examples of the solvent include aliphatic hydrocarbons such as pentane, hexane, heptane, and cyclohexane; aliphatic halogenated hydrocarbons such as dichloromethane, dichloroethane (DCE), chloroform (CHCl 3 ), carbon tetrachloride, and trichloroethylene (TCE); And aromatic halogenated hydrocarbons such as bromobenzene (PhBr) and 1,3,5-tribromobenzene (PhBr 3 ). These can be used alone or in combination of two or more. Among these, in the present invention, aliphatic halogenated hydrocarbons, aromatic halogenated hydrocarbons, and the like are preferable from the viewpoint of easily obtaining a higher molecular weight polymer. Dichloroethane (DCE), chloroform (CHCl 3 ), trichloroethylene (TCE) are preferable. ), Bromobenzene (PhBr), 1,3,5-tribromobenzene (PhBr 3 ) and the like are more preferable, such as dichloroethane (DCE), trichloroethylene (TCE), 1,3,5-tribromobenzene (PhBr 3 ), etc. Are more preferred, and dichloroethane (DCE) is particularly preferred.
 本発明の製造方法においては、上記成分以外にも、本発明の効果を損なわない範囲で、適宜添加剤を使用することもできる。 In the production method of the present invention, in addition to the above components, additives can be appropriately used as long as the effects of the present invention are not impaired.
 本発明の製造方法は、無水条件下且つ不活性ガス雰囲気(窒素ガス、アルゴンガス等)下で行うことが好ましく、反応温度は、通常、40~110℃程度が好ましく、50~100℃程度がより好ましく、60~90℃がさらに好ましい。反応時間は、重合反応が十分に進行する時間とすることができ、通常、10分~72時間が好ましく、1~48時間がより好ましい。 The production method of the present invention is preferably carried out under anhydrous conditions and under an inert gas atmosphere (nitrogen gas, argon gas, etc.), and the reaction temperature is usually preferably about 40 to 110 ° C., and preferably about 50 to 100 ° C. More preferred is 60 to 90 ° C. The reaction time can be a time during which the polymerization reaction proceeds sufficiently, and is usually preferably 10 minutes to 72 hours, more preferably 1 to 48 hours.
 反応終了後は、通常の単離及び精製工程(シリカゲルカラムクロマトグラフィーによる金属の除去、ゲル浸透クロマトグラフィー(GPC)によるポリマーの分離又は分取等)を経て、目的ポリマーを得ることができる。 After completion of the reaction, the target polymer can be obtained through normal isolation and purification steps (metal removal by silica gel column chromatography, polymer separation or fractionation by gel permeation chromatography (GPC), etc.).
 3. グラフェンナノリボン
 本発明のグラフェンナノリボン(GNR)は、上記した本発明のポリマーからなる。本発明のポリマーは、上記のとおり、工程(1)においてはK領域及びシロール骨格を有する多環芳香族化合物におけるK領域とシロール骨格との間で、工程(2)においてはK領域を有する多環芳香族化合物におけるK領域とシロール骨格を有する多環芳香族化合物におけるシロール骨格との間で、APEX重合が進行する。
3. Graphene nanoribbon The graphene nanoribbon (GNR) of the present invention comprises the above-described polymer of the present invention. As described above, the polymer of the present invention is a polycyclic aromatic compound having a K region and a silole skeleton in the step (1), and has a K region in the step (2). APEX polymerization proceeds between the K region in the ring aromatic compound and the silole skeleton in the polycyclic aromatic compound having a silole skeleton.
 このため、本発明のGNRの幅は、上記製造方法において使用する基質の長さに依存する。また、本発明のGNRの長さは、本発明のポリマーの重合度(繰り返し単位数)に依存する。なお、基質の長さとは、一般式(3A)、(3B)及び(5)においてはR2aからR4aまでの長さ、一般式(4)においてはR2からR4までの長さを意味する。このため、基質の種類を変えることによってGNRの幅を制御することができ、反応条件を変えることによってGNRの長さを制御することができる。このような本発明のGNRは、幅及び長さが均一なGNRであることから、幅及び長さが均一なGNRを大量合成することも可能である。このように、本発明によれば、GNRの幅及び長さを精密に制御することが可能であることから、細かな電子物性の調節等も可能である。 For this reason, the width of the GNR of the present invention depends on the length of the substrate used in the production method. The length of the GNR of the present invention depends on the degree of polymerization (the number of repeating units) of the polymer of the present invention. Note that the length of the substrate, the general formula (3A), the length from R 2 to R 4 in (3B) and from R 2a in (5) to R 4a length, the general formula (4) means. For this reason, the width of GNR can be controlled by changing the type of substrate, and the length of GNR can be controlled by changing the reaction conditions. Since the GNR of the present invention is a GNR having a uniform width and length, it is possible to synthesize a large amount of GNRs having a uniform width and length. As described above, according to the present invention, since the width and length of the GNR can be precisely controlled, fine adjustment of electronic physical properties and the like are also possible.
 このような本発明のGNRの幅は、0.5~10.0nmが好ましく、0.6~2.0nmがより好ましく、0.7~1.5nmがさらに好ましい。なお、GNRの幅は、GNRの中心部分と、隣接するGNRの中心部分との距離を意味し、原子間力顕微鏡観察により測定する。 The width of the GNR of the present invention is preferably 0.5 to 10.0 nm, more preferably 0.6 to 2.0 nm, and even more preferably 0.7 to 1.5 nm. The GNR width means the distance between the central portion of the GNR and the central portion of the adjacent GNR, and is measured by observation with an atomic force microscope.
 また、このような本発明のGNRの長さは、10nm以上が好ましく、20~500nmがより好ましく、50~400nmがさらに好ましく、100~300nmが特に好ましい。例えば、本発明の製造方法において、パラジウム化合物及びo-クロラニル以外に銀化合物を使用すれば、より長さの長いGNRが生成されやすく、パラジウム化合物及びo-クロラニル以外に銀化合物を使用しない場合は、より長さの短いGNRが生成されやすい。なお、重合度の高いポリマーからなる長さの長いGNRは半導体、太陽電池等への応用が期待されるが、重合度の低いポリマーからなる長さの短いGNRであっても有機EL素子等への応用が期待される。 Further, the length of the GNR of the present invention is preferably 10 nm or more, more preferably 20 to 500 nm, further preferably 50 to 400 nm, and particularly preferably 100 to 300 nm. For example, in the production method of the present invention, if a silver compound is used in addition to a palladium compound and o-chloranil, a longer GNR is likely to be generated, and a silver compound other than a palladium compound and o-chloranil is not used. A GNR having a shorter length is likely to be generated. A long GNR composed of a polymer with a high degree of polymerization is expected to be applied to semiconductors, solar cells, etc., but even a short GNR composed of a polymer with a low degree of polymerization is suitable for organic EL devices, etc. Is expected to be applied.
 このような本発明のGNRは、クロロホルム、ジクロロメタン、テトラヒドロフラン(THF)、酢酸エチル等の有機溶媒への溶解性が高いことから成膜性にも優れる。また、ペリレンビスイミドオリゴマーは有機色素太陽電池のアクセプター分子として、フラーレン以外の分子群のなかで最高の発電効率(変換効率約8 %)を示すことが知られている(Nat. Commun. 2015, 6, 9242)ため、OLED、OFET、有機薄膜太陽電池等の各種電荷輸送材料等として期待される。特に、有機薄膜太陽電池の高効率電子ドナー分子群及び高効率電子アクセプター分子群の創成につながることが期待される。 Such a GNR of the present invention is excellent in film formability because of its high solubility in organic solvents such as chloroform, dichloromethane, tetrahydrofuran (THF) and ethyl acetate. Perylene bisimide oligomers are known to exhibit the highest power generation efficiency (conversion efficiency of about 8%) among molecules other than fullerenes as acceptor molecules for organic dye solar cells (Nat. Commun. 2015, Therefore, it is expected to be used as various charge transport materials for OLED, OFET, organic thin-film solar cells, etc. In particular, it is expected to lead to the creation of high-efficiency electron donor molecule groups and high-efficiency electron acceptor molecule groups for organic thin-film solar cells.
 また、本発明のGNRは、導電材料の抵抗率を上昇させることができる。例えば、導電材料としてグラフェンの上でGNRを配置させることにより、グラフェンの抵抗率(特に直流抵抗率)を上昇させることができる。このため、本発明のGNRを使用することで、所望の抵抗率を有するグラフェン電界効果トランジスタを得られると期待できる。 Also, the GNR of the present invention can increase the resistivity of the conductive material. For example, by placing GNR on graphene as a conductive material, the resistivity (especially direct current resistivity) of graphene can be increased. For this reason, it can be expected that a graphene field effect transistor having a desired resistivity can be obtained by using the GNR of the present invention.
 以下、本発明について、実施例を挙げて具体的に説明するが、本発明は、これらの実施例に何ら制約されるものではない。 Hereinafter, the present invention will be specifically described with reference to examples, but the present invention is not limited to these examples.
 1H NMR(600 MHz, 400 MHz)スペクトル及び13C NMR(151 MHz)スペクトルは、JEOL ECA-600分光計で、CDCl3中で記録した。1H NMRの化学シフト(δ)はテトラメチルシラン(δ0.00 ppm)の相対的な百万分率(ppm)で表した。マススペクトルはJEOL JMS-700により得た。なお、HPLCチャートは、より左側にピークが存在するほど、より高分子量のポリマーが合成できていることを示す。全ての反応は、標準的な真空ライン技法を用いて、フレームドライしたガラス容器中で、アルゴン(Ar)ガス雰囲気下に乾燥溶媒を用いて行った。 1 H NMR (600 MHz, 400 MHz) and 13 C NMR (151 MHz) spectra were recorded in CDCl 3 on a JEOL ECA-600 spectrometer. 1 H NMR chemical shift (δ) is expressed in relative parts per million (ppm) of tetramethylsilane (δ 0.00 ppm). Mass spectra were obtained with JEOL JMS-700. The HPLC chart indicates that the higher the molecular weight of the polymer, the more the peak on the left side. All reactions were performed using a dry solvent under an argon (Ar) gas atmosphere in a flame-dried glass container using standard vacuum line techniques.
 [合成例1:化合物2の合成] [Synthesis Example 1: Synthesis of Compound 2]
Figure JPOXMLDOC01-appb-C000038
Figure JPOXMLDOC01-appb-C000038
 まず、ジエチルケトン(化合物1; 1.06 mL, 10 mmol)と1-ブロモオクタン及びMgから合成したグリニャール試薬(1.5当量, 15 mmol)とをTHF中で-20℃で撹拌し、その後室温で撹拌することで反応させた。反応溶液に水を加えることで反応を停止し、ジエチルエーテルを用いて抽出を行い溶媒留去した。その後、対応するアルコールを、ヘキサンを展開溶媒としたクロマトグラフィーで単離した(69%)。 First, diethyl ketone (compound 1; 1.06 mL, 10 mmol) and Grignard reagent (1.5 equivalents, 15 mmol) synthesized from 1-bromooctane and Mg are stirred in THF at -20 ° C, and then stirred at room temperature. It was made to react. The reaction was stopped by adding water to the reaction solution, extracted with diethyl ether, and the solvent was distilled off. The corresponding alcohol was then isolated by chromatography using hexane as a developing solvent (69%).
 次に、得られたアルコール(3-エチル-ウンデカン-3-オール)を濃塩酸中で1時間激しく攪拌することで反応させた。反応溶液に水を加えることで反応を停止し、ジエチルエーテルを用いて抽出を行い溶媒留去した。その後、化合物2(3-クロロ-3-エチルウンデカン)を、ヘキサンを展開溶媒としたクロマトグラフィーで単離し目的化合物が得られたことを1H-NMRで確認した(99%)。
1H-NMR(400MHz, CDCl3): 0.88 (t, 9H), 0.96 (t, 4H), 1.26 (s, 14H)。
Next, the obtained alcohol (3-ethyl-undecan-3-ol) was reacted by vigorously stirring in concentrated hydrochloric acid for 1 hour. The reaction was stopped by adding water to the reaction solution, extracted with diethyl ether, and the solvent was distilled off. Thereafter, Compound 2 (3-chloro-3-ethylundecane) was isolated by chromatography using hexane as a developing solvent, and it was confirmed by 1 H-NMR that the target compound was obtained (99%).
1 H-NMR (400 MHz, CDCl 3 ): 0.88 (t, 9H), 0.96 (t, 4H), 1.26 (s, 14H).
 [合成例2:化合物11の合成] [Synthesis Example 2: Synthesis of Compound 11]
Figure JPOXMLDOC01-appb-C000039
Figure JPOXMLDOC01-appb-C000039
 フルオレン(166 mg, 1 mmol)及び合成例1で得た化合物2(2.5 mmol)に対して、AlCl3(2.0 mmol)をCH3NO2中で、40℃で24時間作用させることでFriedel-Craftsアルキル化反応を行った。反応溶液にメタノールを加えることで反応を停止し、水を用いて有機相を洗浄したのち溶媒留去した。化合物11を、ヘキサンを展開溶媒としたクロマトグラフィーで単離し、目的の化合物が得られたことを1H-NMR、FAB-MSで確認した(50%)。
1H-NMR (400 MHz, CDCl3) 0.86-0.88 (m, 18), 1.06-1.32 (m, 36H), 3.85 (s, 2H), 7.31-7.39 (m, 2H), 7.41-7.45 (m, 2H), 7.66 (d, 2H). MS(FAB): m/z (%)= 530 [M・+] (100)。
Fluorene (166 mg, 1 mmol) and Compound 2 (2.5 mmol) obtained in Synthesis Example 1 were allowed to react with AlCl 3 (2.0 mmol) in CH 3 NO 2 at 40 ° C. for 24 hours. Crafts alkylation reaction was performed. The reaction was stopped by adding methanol to the reaction solution, the organic phase was washed with water, and then the solvent was distilled off. Compound 11 was isolated by chromatography using hexane as a developing solvent, and it was confirmed by 1 H-NMR and FAB-MS that the desired compound was obtained (50%).
1 H-NMR (400 MHz, CDCl 3 ) 0.86-0.88 (m, 18), 1.06-1.32 (m, 36H), 3.85 (s, 2H), 7.31-7.39 (m, 2H), 7.41-7.45 (m , 2H), 7.66 (d, 2H). MS (FAB): m / z (%) = 530 [M + ] (100).
 [合成例3:化合物7の合成] [Synthesis Example 3: Synthesis of Compound 7]
Figure JPOXMLDOC01-appb-C000040
Figure JPOXMLDOC01-appb-C000040
 合成例2で得た化合物11(120 mg, 0.22 mmol)に対して、n-ブチルリチウム(n-BuLi; 1.0当量)をTHF中、0℃で3分間反応させ、リチエーション反応を引き起こした後、パラホルムアルデヒド((CH2O)n; 1.1当量)をTHF中、100℃で20分間反応させた。反応溶液に飽和NaHCO3水溶液を加えることで反応を停止し、ジエチルエーテルを用いて抽出を行い溶媒留去した。さらに、得られた化合物に対して、P2O5(5.0当量)をトルエン中、室温で1時間反応させ、ピナコール転位を行った。反応溶液に飽和NaHCO3水溶液を加えることで反応を停止し、ジエチルエーテルを用いて抽出を行い溶媒留去した。反応を完了させて対応する化合物7をヘキサンを展開溶媒としたクロマトグラフィーで単離し、目的の化合物が得られたことを1H-NMR、FAB-MSで確認した(60mg, 47%, 2 step)。
1H-NMR(400 MHz, CDCl3): 0.81-0.83 (m, 18H) , 1.23-126 (m, 36H), 7.53-7.96 (m, 2H), 8.23-8.25 (m, 2H), 8.55-8.57 (m, 2H), 8.83-8.85 (m, 2H). MS(FAB): m/z (%)= 542 [M・+] (100)。
After reacting compound 11 (120 mg, 0.22 mmol) obtained in Synthesis Example 2 with n-butyllithium (n-BuLi; 1.0 equivalent) in THF at 0 ° C. for 3 minutes to cause a lithiation reaction , Paraformaldehyde ((CH 2 O) n; 1.1 eq) was reacted in THF at 100 ° C. for 20 minutes. The reaction was stopped by adding a saturated aqueous NaHCO 3 solution to the reaction solution, extracted with diethyl ether, and the solvent was distilled off. Further, P 2 O 5 (5.0 equivalents) was reacted with toluene in the toluene at room temperature for 1 hour to perform pinacol rearrangement. The reaction was stopped by adding a saturated aqueous NaHCO 3 solution to the reaction solution, extracted with diethyl ether, and the solvent was distilled off. Upon completion of the reaction, the corresponding compound 7 was isolated by chromatography using hexane as a developing solvent, and it was confirmed by 1 H-NMR and FAB-MS that the desired compound was obtained (60 mg, 47%, 2 step ).
1 H-NMR (400 MHz, CDCl 3 ): 0.81-0.83 (m, 18H), 1.23-126 (m, 36H), 7.53-7.96 (m, 2H), 8.23-8.25 (m, 2H), 8.55- 8.57 (m, 2H), 8.83-8.85 (m, 2H). MS (FAB): m / z (%) = 542 [M · + ] (100).
 [合成例4:化合物8の合成] [Synthesis Example 4: Synthesis of Compound 8]
Figure JPOXMLDOC01-appb-C000041
Figure JPOXMLDOC01-appb-C000041
 合成例3で得た化合物7に対して、t-ブチルリチウム(t-BuLi; 4.0当量)をTMEDA(4.0当量)中、60℃で3時間反応させ、リチエーション反応を引き起こした後、得られた化合物とジメチルジクロロシラン(Me2SiCl2; 2.0当量)をTHF中、-78℃で撹拌した後に室温で24時間反応させた。反応溶液に飽和NaHCO3水溶液を加えることで反応を停止し、ジエチルエーテルを用いて抽出を行い溶媒留去した。反応を完了させて対応する化合物8をヘキサンを展開溶媒としたクロマトグラフィーで単離し、目的化合物8が得られたことを1H-NMR、FAB-MSで確認した(35%)。
1H-NMR (600 MHz, CDCl3) 0.53 (s, 6H), 0.80-0.85 (m, 18H), 1.20-1.24 (m, 36H), 7.63-7.65 (m, 2H), 7.70 (s, 2H), 7.84-7.85 (m, 2H). MS(FAB): m/z (%)= 599 [M + H・+] (100)。
It is obtained after reacting compound 7 obtained in Synthesis Example 3 with t-butyllithium (t-BuLi; 4.0 equivalents) in TMEDA (4.0 equivalents) at 60 ° C. for 3 hours to cause a lithiation reaction. The compound and dimethyldichlorosilane (Me 2 SiCl 2 ; 2.0 equivalents) were stirred in THF at −78 ° C. and then reacted at room temperature for 24 hours. The reaction was stopped by adding a saturated aqueous NaHCO 3 solution to the reaction solution, extracted with diethyl ether, and the solvent was distilled off. The reaction was completed and the corresponding compound 8 was isolated by chromatography using hexane as a developing solvent, and it was confirmed by 1 H-NMR and FAB-MS that the target compound 8 was obtained (35%).
1 H-NMR (600 MHz, CDCl 3 ) 0.53 (s, 6H), 0.80-0.85 (m, 18H), 1.20-1.24 (m, 36H), 7.63-7.65 (m, 2H), 7.70 (s, 2H ), 7.84-7.85 (m, 2H). MS (FAB): m / z (%) = 599 [M + H · + ] (100).
 [実施例1]
 合成例4で得た化合物8に対して、Pd(CH3CN)4(SbF6)2(5mol%)及びo-クロラニル(2.0当量)を用いて、ジクロロエタン(DCE)中、80℃で所定時間(2時間、4時間又は12時間)反応させた。クロマトグラフィーを用いて金属を除去したのち、HPLCにより分子量測定を行った。結果を表1に示す。標準反応条件でAPEX重合を行おうとしたところ、マトリックス支援レーザー脱離イオン化飛行時間型質量分析計(MALDI-TOF-MS)により、ダイマー及びトリマーを検出した(YN-049)。次に、反応時間を長くし、全てのo-クロラニルを消費したところ、14量体及び16量体も検出した(YN-050)。反応混合物を12時間撹拌する間に、全てのモノマーが消費しなかったことから、より多くの触媒を投入することが好ましいことが示唆される。
[Example 1]
For compound 8 obtained in Synthesis Example 4, using Pd (CH 3 CN) 4 (SbF 6 ) 2 (5 mol%) and o-chloranil (2.0 equivalents) in dichloroethane (DCE) at 80 ° C. The reaction was allowed for 2 hours, 4 hours or 12 hours. After removing the metal using chromatography, the molecular weight was measured by HPLC. The results are shown in Table 1. When APEX polymerization was attempted under standard reaction conditions, dimers and trimers were detected with a matrix-assisted laser desorption / ionization time-of-flight mass spectrometer (MALDI-TOF-MS) (YN-049). Next, when the reaction time was lengthened and all o-chloranil was consumed, 14-mer and 16-mer were also detected (YN-050). While the reaction mixture was stirred for 12 hours, all of the monomer was not consumed, suggesting that it is preferable to add more catalyst.
Figure JPOXMLDOC01-appb-T000042
Figure JPOXMLDOC01-appb-T000042
 [実施例2]
 次に、反応時間を12時間とし、Pd(CH3CN)4(SbF6)2の使用量を5 mol%~1.0当量の所定量としたこと以外は実施例1と同様の処理を行った。なお、5mol%の試料は、実施例1のYN-050である。結果を表2に示す。触媒の使用量を10mol%、20mol%、50mol%と増大させるに従い、モノマーは完全に消費され、より分子量の大きなポリマーが検出した(YN-054, 055, 057)。触媒の使用量が1.0当量の場合には、1%以上のポリマーの数平均分子量が25000以上であった(YN-057)。これらの結果から、触媒の使用量は1.0当量が最も効果的であることが理解できる。
[Example 2]
Next, the same treatment as in Example 1 was performed except that the reaction time was 12 hours, and the amount of Pd (CH 3 CN) 4 (SbF 6 ) 2 used was a predetermined amount of 5 mol% to 1.0 equivalent. . The 5 mol% sample is YN-050 of Example 1. The results are shown in Table 2. As the amount of the catalyst used was increased to 10 mol%, 20 mol%, and 50 mol%, the monomer was completely consumed, and a polymer having a higher molecular weight was detected (YN-054, 055, 057). When the amount of the catalyst used was 1.0 equivalent, the number average molecular weight of the polymer of 1% or more was 25000 or more (YN-057). From these results, it can be understood that 1.0 equivalent of the catalyst is most effective.
Figure JPOXMLDOC01-appb-T000043
Figure JPOXMLDOC01-appb-T000043
 [実施例3]
 次に、Pd(CH3CN)4(SbF6)2の使用量を50mol%とし、反応時間を6時間又は12時間としたこと以外は実施例2と同様の処理を行った。なお、12時間の試料は、実施例2のYN-055である。結果を表3に示す。この結果、特に大きな違いは見られなかったことから、反応中に生成物の分解、酸化等は起こらないことが理解できる。
[Example 3]
Next, the same treatment as in Example 2 was performed except that the amount of Pd (CH 3 CN) 4 (SbF 6 ) 2 used was 50 mol% and the reaction time was 6 hours or 12 hours. The sample for 12 hours is YN-055 of Example 2. The results are shown in Table 3. As a result, since no significant difference was observed, it can be understood that the product is not decomposed or oxidized during the reaction.
Figure JPOXMLDOC01-appb-T000044
Figure JPOXMLDOC01-appb-T000044
 [実施例4]
 次に、Pd(CH3CN)4(SbF6)2の使用量を1.0当量とし、合成例4で得た化合物8の濃度が50mM~0.5Mの所定濃度となるようにDCEを添加したこと以外は実施例2と同様の処理を行った。なお、50mMの試料は、実施例2のYN-057である。結果を表4に示す。基質の濃度が増加するに従い、より分子量の大きなポリマーがHPLCで検出されたものの、溶解性の観点から、0.1Mが最も効果的であることが理解できる。
[Example 4]
Next, the amount of Pd (CH 3 CN) 4 (SbF 6 ) 2 used was 1.0 equivalent, and DCE was added so that the concentration of compound 8 obtained in Synthesis Example 4 was a predetermined concentration of 50 mM to 0.5 M. Except for this, the same treatment as in Example 2 was performed. The 50 mM sample is YN-057 of Example 2. The results are shown in Table 4. As the concentration of the substrate increases, a polymer with a higher molecular weight was detected by HPLC, but it can be understood that 0.1M is the most effective from the viewpoint of solubility.
Figure JPOXMLDOC01-appb-T000045
Figure JPOXMLDOC01-appb-T000045
 [実施例5]
 次に、合成例4で得た化合物8の濃度が0.1Mとなるように各種溶媒を添加したこと以外は実施例4と同様の処理を行った。なお、DCEの試料は、実施例4のYN-060である。結果を表5に示す。この結果、DCEが最も効果的であることが理解できる。
[Example 5]
Next, the same treatment as in Example 4 was performed, except that various solvents were added so that the concentration of Compound 8 obtained in Synthesis Example 4 was 0.1M. The DCE sample is YN-060 of Example 4. The results are shown in Table 5. As a result, it can be understood that DCE is most effective.
Figure JPOXMLDOC01-appb-T000046
Figure JPOXMLDOC01-appb-T000046
 [実施例6]
 次に、合成例4で得た化合物8の濃度が0.1 MとなるようにDCEを添加し、加熱条件を種々変更したこと以外は実施例4と同様の処理を行った。なお、80℃及び12時間の試料は、実施例4のYN-060である。結果を表6に示す。この結果、80℃及び12時間が最も効果的であることが理解できる。
[Example 6]
Next, the same treatment as in Example 4 was performed, except that DCE was added so that the concentration of Compound 8 obtained in Synthesis Example 4 was 0.1 M, and the heating conditions were variously changed. The sample at 80 ° C. and 12 hours is YN-060 of Example 4. The results are shown in Table 6. As a result, it can be understood that 80 ° C. and 12 hours are the most effective.
Figure JPOXMLDOC01-appb-T000047
Figure JPOXMLDOC01-appb-T000047
 [実施例7]
 次に、合成例4で得た化合物8の濃度が0.1MとなるようにDCEを添加し、o-クロラニルの代わりに種々の酸化剤を使用したこと以外は実施例4と同様の処理を行った。なお、o-クロラニルの試料は、実施例4のYN-060である。結果を表7に示す。この結果、o-クロラニル以外の酸化剤を使用した場合は、十分に重合反応が進行せず、本発明のポリマーは得られない。
[Example 7]
Next, DCE was added so that the concentration of Compound 8 obtained in Synthesis Example 4 was 0.1 M, and the same treatment as in Example 4 was performed except that various oxidizing agents were used instead of o-chloranil. It was. The o-chloranil sample is YN-060 of Example 4. The results are shown in Table 7. As a result, when an oxidizing agent other than o-chloranil is used, the polymerization reaction does not proceed sufficiently and the polymer of the present invention cannot be obtained.
Figure JPOXMLDOC01-appb-T000048
Figure JPOXMLDOC01-appb-T000048
 [実施例8]
 次に、合成例4で得た化合物8の濃度が0.1MとなるようにDCEを添加し、種々のパラジウム化合物及び種々の銀化合物を使用したこと以外は実施例4と同様の処理を行った。なお、Pd(CH3CN)4(SbF6)2及びnoneの試料は、実施例4のYN-060である。結果を表8に示す。
[Example 8]
Next, DCE was added so that the concentration of Compound 8 obtained in Synthesis Example 4 was 0.1 M, and the same treatment as in Example 4 was performed except that various palladium compounds and various silver compounds were used. . A sample of Pd (CH 3 CN) 4 (SbF 6 ) 2 and none is YN-060 of Example 4. The results are shown in Table 8.
Figure JPOXMLDOC01-appb-T000049
Figure JPOXMLDOC01-appb-T000049
 [実施例9]
 次に、パラジウム化合物としてPdCl2、銀化合物としてAgSbF6を使用し、パラジウム化合物及び銀化合物の使用量を種々変更したこと以外は実施例8と同様の処理を行った。なお、1eq.及び2eq.の試料は、実施例8のYN-092である。結果を表9に示す。この結果、パラジウム化合物は1当量、銀化合物は2当量が最も効果的であることが理解できる。
[Example 9]
Next, the same treatment as in Example 8 was performed, except that PdCl 2 was used as the palladium compound, AgSbF 6 was used as the silver compound, and the usage amounts of the palladium compound and the silver compound were variously changed. The 1eq. And 2eq. Samples are YN-092 of Example 8. The results are shown in Table 9. As a result, it can be understood that 1 equivalent of the palladium compound and 2 equivalents of the silver compound are the most effective.
Figure JPOXMLDOC01-appb-T000050
Figure JPOXMLDOC01-appb-T000050
 [実施例10]
 次に、銀化合物としてAgSbF6を使用し、パラジウム化合物として種々の化合物を使用したこと以外は実施例8と同様の処理を行った。なお、PdCl2の試料は、実施例8のYN-092である。結果を表10に示す。この結果、パラジウム化合物はPd(OCOCF3)2が最も効果的であることが理解できる。
[Example 10]
Next, the same treatment as in Example 8 was performed except that AgSbF 6 was used as the silver compound and various compounds were used as the palladium compound. A sample of PdCl 2 is YN-092 of Example 8. The results are shown in Table 10. As a result, it can be understood that Pd (OCOCF 3 ) 2 is the most effective palladium compound.
Figure JPOXMLDOC01-appb-T000051
Figure JPOXMLDOC01-appb-T000051
 [実施例11]
 次に、パラジウム化合物としてPd(OCOCF3)2を使用し、銀化合物の使用量を種々変更したこと以外は実施例10と同様の処理を行った。なお、2.0eq.の試料は、実施例10のYN-104である。結果を表11に示す。
[Example 11]
Next, the same treatment as in Example 10 was performed except that Pd (OCOCF 3 ) 2 was used as the palladium compound and the amount of the silver compound used was variously changed. The 2.0 eq. Sample is YN-104 of Example 10. The results are shown in Table 11.
Figure JPOXMLDOC01-appb-T000052
Figure JPOXMLDOC01-appb-T000052
 以上から、ポリマー化のために最も好ましい条件は以下の条件であることが理解できる。 From the above, it can be understood that the most preferable conditions for polymerization are the following conditions.
Figure JPOXMLDOC01-appb-C000053
Figure JPOXMLDOC01-appb-C000053
 [試験例1]
 実施例4(表4)のYN-060と同様の方法で、75mg(1.3mmol)の基質を用いて、本発明のポリマーを得た。その後、GPCで単離したところ、数平均分子量が30000程度のポリマー、5~16量体のポリマー、4量体、トリマー及びダイマーが得られ、いずれもシロール骨格が消滅していた。
[Test Example 1]
In the same manner as in YN-060 of Example 4 (Table 4), the polymer of the present invention was obtained using 75 mg (1.3 mmol) of the substrate. Thereafter, when isolated by GPC, a polymer having a number average molecular weight of about 30,000, a polymer of 5 to 16 mer, a tetramer, a trimer and a dimer were obtained, and the silole skeleton disappeared in all.
 また、APEX重合の結果、1H-NMRの結果から、4量体以下の化合物のピークが顕著にブロードになっており、1Hシグナルが8.00ppmから9.80ppmに遷移しており、凹型部位の存在を示唆している。このため、上記の全ての実施例において、APEX重合が進行して本発明のポリマーが得られていることが示唆される。結果を表12及び図1に示す。 In addition, as a result of APEX polymerization, from the result of 1 H-NMR, the peak of the compound below the tetramer is significantly broadened, and the 1 H signal transitions from 8.00 ppm to 9.80 ppm. Suggests existence. For this reason, in all the above-mentioned examples, it is suggested that APEX polymerization proceeds to obtain the polymer of the present invention. The results are shown in Table 12 and FIG.
Figure JPOXMLDOC01-appb-T000054
Figure JPOXMLDOC01-appb-T000054
 上記Entry 1(ダイマー)、3(4量体)及び5(分子量30000程度)について、THF溶液中のUV/Vis吸収及び蛍光スペクトルを表13及び図2に示す。図2において、実線が吸収スペクトル、破線が蛍光スペクトルである。いずれのEntryも、THF、ジクロロメタン、クロロホルム等の有機溶媒に対して十分な溶解性を有していることから測定が可能であった。Entry 3及び5の主な吸収バンドは、Entry 1及び2と比較して赤色シフトしていた。Entry 1及び2のUV/Vis吸収スペクトルは、ほとんど同じ特徴を有していた。また、Entry 1, 2, 3及び5のバンドギャップは、UV/Vis吸収スペクトルの立ち上がり(onset)を意味しており、それぞれ4.5, 3.9, 3.7及び3.2eVである。これらの結果は、共役長の増加にともないバンドギャップが減少することを意味する。さらに、Entry 1, 2, 3及び5の蛍光スペクトルから、THF溶液中での最大蛍光波長は、それぞれ486, 497, 493, 506nmであった。 Table 13 and FIG. 2 show the UV / Vis absorption and fluorescence spectra in the THF solution for the above Entry IV 1 (dimer), 3 (tetramer) and 5 (molecular weight of about 30000). In FIG. 2, a solid line is an absorption spectrum and a broken line is a fluorescence spectrum. All entries were measurable because they had sufficient solubility in organic solvents such as THF, dichloromethane, and chloroform. The main absorption bands of Entry 3 and 5 were red-shifted compared to Entry 1 and 2. The UV / Vis absorption spectra of Entry 1 and 2 had almost the same characteristics. The band gaps of Entry 1, 2, 3, and 5 mean the onset of the UV / Vis absorption spectrum, and are 4.5, 3.9, 3.7, and 3.2 eV, respectively. These results mean that the band gap decreases as the conjugate length increases. Furthermore, from the fluorescence spectra of Entry 1, 2, 3, and 5, the maximum fluorescence wavelengths in the THF solution were 486, 497, 493, and 506 nm, respectively.
Figure JPOXMLDOC01-appb-T000055
Figure JPOXMLDOC01-appb-T000055
 また、それぞれのEntryのFT-ATR-IR分析を行った。その結果、いずれのEntryにおいても、APEX重合を示差する凹型部位における芳香族C-H結合の865 cm-1の位置にピークが見られた。結果を図3に示す。 In addition, FT-ATR-IR analysis of each entry was performed. As a result, in each entry, a peak was observed at a position of 865 cm −1 of the aromatic CH bond in the concave site indicating APEX polymerization. The results are shown in FIG.
 次に、Entry 5の532 nmにおけるラマンスペクトルの結果から、蛍光のために明確ではないものの、1352 cm-1の位置にDバンド(disorderバンド)、1524 cm-1の位置にGバンド(graphiteバンド)を有していた。この結果は、GNRの文献値とも整合する。結果を図4に示す。 Next, from the result of Raman spectrum at 532 nm of Entry 5, although not clear due to fluorescence, D band (disorder band) at 1352 cm -1 and G band (graphite band) at 1524 cm -1 ). This result is consistent with GNR literature values. The results are shown in FIG.
 これらの測定結果は、APEX重合によりGNRが合成できていることを意味している。 These measurement results mean that GNR can be synthesized by APEX polymerization.
 [試験例2]
 実施例11(表11)のYN-111と同様の方法で、75mg(1.3mmol)の基質を用いて、本発明のポリマーを得た。その後、GPCで単離したところ、数平均分子量が1000000程度のポリマー、数平均分子量が150000程度のポリマー、トリマー及びダイマーが得られ、いずれもシロール骨格が消滅していた。
[Test Example 2]
In the same manner as in YN-111 of Example 11 (Table 11), the polymer of the present invention was obtained using 75 mg (1.3 mmol) of the substrate. Then, when isolated by GPC, a polymer having a number average molecular weight of about 1000000, a polymer having a number average molecular weight of about 150,000, a trimer, and a dimer were obtained, and the silole skeleton disappeared in all.
 また、APEX重合の結果、1H-NMRの結果から、9.80ppmのピークが極端にブロードになっており、凹型部位の存在を示唆している。このため、上記の全ての実施例において、APEX重合が進行して本発明のポリマーが得られていることが示唆される。結果を表14及び図5に示す。 In addition, as a result of APEX polymerization, from the 1 H-NMR result, the peak at 9.80 ppm is extremely broad, suggesting the presence of a concave site. For this reason, in all the above-mentioned examples, it is suggested that APEX polymerization proceeds to obtain the polymer of the present invention. The results are shown in Table 14 and FIG.
Figure JPOXMLDOC01-appb-T000056
Figure JPOXMLDOC01-appb-T000056
 上記で得られた各Entryについて、THF溶液中のUV/Vis吸収及び蛍光スペクトルを表15及び図6Aに示す。図6Aにおいて、上図が吸収スペクトル、下図が蛍光スペクトルである。参考までに、THF溶液中のピレンの光学スペクトルを図6Bに示す。いずれのEntryも、THF、ジクロロメタン、クロロホルム等の有機溶媒に対して十分な溶解性を有していることから測定が可能であった。Entry 1(分子量1000000以上)及び2(分子量150000程度)の主な吸収バンドは、Entry 3(トリマー)と比較して赤色シフトしていた。Entry 1及び2のUV/Vis吸収スペクトルは、ほとんど同じ特徴を有していた。また、Entry 1, 2, 3及び4のバンドギャップは、UV/Vis吸収スペクトルの立ち上がり(onset)を意味しており、それぞれ2.5, 2.8, 3.2及び3.9eVである。これらの結果は、共役長の増加にともないバンドギャップが減少することを意味する。さらに、各Entryの蛍光スペクトルから、THF溶液中での最大蛍光波長は、それぞれ451, 440, 416, 431nmであった。 Table 15 and FIG. 6A show the UV / Vis absorption and fluorescence spectra in the THF solution for each entry obtained above. In FIG. 6A, the upper diagram is the absorption spectrum, and the lower diagram is the fluorescence spectrum. For reference, the optical spectrum of pyrene in a THF solution is shown in FIG. 6B. All entries were measurable because they had sufficient solubility in organic solvents such as THF, dichloromethane, and chloroform. The main absorption bands of Entry 1 (molecular weight 1000000 or more) and 2 (molecular weight 150,000) were shifted red compared to Entry 3 (trimmer). The UV / Vis absorption spectra of Entry 1 and 2 had almost the same characteristics. The band gaps of Entry 1, 2, 3, and 4 mean the onset of the UV / Vis absorption spectrum, and are 2.5, 2.8, 3.2, and 3.9 eV, respectively. These results mean that the band gap decreases as the conjugate length increases. Furthermore, from the fluorescence spectrum of each entry, the maximum fluorescence wavelengths in the THF solution were 451, 440, 416, and 431 nm, respectively.
Figure JPOXMLDOC01-appb-T000057
Figure JPOXMLDOC01-appb-T000057
 また、それぞれのEntryのFT-ATR-IR分析を行った。その結果、いずれのEntryにおいても、APEX重合を示差する凹型部位における芳香族C-H結合の865cm-1の位置にピークが見られた。結果を図7に示す。 In addition, FT-ATR-IR analysis of each entry was performed. As a result, in each entry, a peak was observed at the position of 865 cm −1 of the aromatic CH bond in the concave site indicating APEX polymerization. The results are shown in FIG.
 次に、Entry 1の532nmにおけるラマンスペクトルの結果から、蛍光のために明確ではないものの、1352cm-1の位置にDバンド(disorderバンド)、1524cm-1の位置にGバンド(graphiteバンド)を有していた。この結果は、GNRの文献値とも整合する。結果を図8に示す。 Then, chromatic results of the Raman spectrum at 532nm of Entry 1, although not clear for fluorescent, D band at 1352cm -1 (disorder band), the G band (graphite band) to the position of 1524Cm -1 Was. This result is consistent with GNR literature values. The results are shown in FIG.
 これらの測定結果は、APEX重合によりGNRが合成できていることを意味している。 These measurement results mean that GNR can be synthesized by APEX polymerization.
 [試験例3]
 実施例11(表11)のYN-111と同様の方法で、150mg(2.6mmol)の基質を用いて、本発明のポリマーを得た。その後、GPCで単離したところ、数平均分子量が150000程度のポリマー、数平均分子量が60000~70000程度のポリマー、数平均分子量が50000程度のポリマー、トリマー及びダイマーが得られ、いずれもシロール骨格が消滅していた。
[Test Example 3]
In the same manner as YN-111 in Example 11 (Table 11), a polymer of the present invention was obtained using 150 mg (2.6 mmol) of the substrate. After that, when isolated by GPC, a polymer having a number average molecular weight of about 150,000, a polymer having a number average molecular weight of about 60000-70000, a polymer having a number average molecular weight of about 50000, a trimer, and a dimer are obtained. It disappeared.
 また、APEX重合の結果、1H-NMRの結果から、9.80ppmのピークが極端にブロードになっており、凹型部位の存在を示唆している。このため、上記の全ての実施例において、APEX重合が進行して本発明のポリマーが得られていることが示唆される。結果を表16及び図9に示す。 In addition, as a result of APEX polymerization, from the 1 H-NMR result, the peak at 9.80 ppm is extremely broad, suggesting the presence of a concave site. For this reason, in all the above-mentioned examples, it is suggested that APEX polymerization proceeds to obtain the polymer of the present invention. The results are shown in Table 16 and FIG.
Figure JPOXMLDOC01-appb-T000058
Figure JPOXMLDOC01-appb-T000058
 上記で得られた各Entryについて、THF溶液中のUV/Vis吸収及び蛍光スペクトルを表17及び図10に示す。図10において、上図が吸収スペクトル、下図が蛍光スペクトルである。いずれのEntryも、THF、ジクロロメタン、クロロホルム等の有機溶媒に対して十分な溶解性を有していることから測定が可能であった。Entry 1(分子量150000程度)及び2(分子量60000~70000程度)の主な吸収バンドは、Entry 4(トリマー)と比較して赤色シフトしていた。Entry 1及び2のUV/Vis吸収スペクトルは、ほとんど同じ特徴を有していた。また、Entry 1, 2, 3, 4及び5のバンドギャップは、UV/Vis吸収スペクトルの立ち上がり(onset)を意味しており、それぞれ2.5, 2.8, 3.2, 3.9及び3.9eVである。これらの結果は、共役長の増加にともないバンドギャップが減少することを意味する。さらに、各Entryの蛍光スペクトルから、THF溶液中での最大極大蛍光波長は、それぞれ473, 473, 443, 442及び430nmであった。 Table 17 and FIG. 10 show the UV / Vis absorption and fluorescence spectra in the THF solution for each entry obtained above. In FIG. 10, the upper diagram is the absorption spectrum, and the lower diagram is the fluorescence spectrum. All entries were measurable because they had sufficient solubility in organic solvents such as THF, dichloromethane, and chloroform. The main absorption bands of Entry 1 (molecular weight of about 150,000) and 2 (molecular weight of about 60000-70000) were shifted in red compared to Entry 4 (trimmer). The UV / Vis absorption spectra of Entry 1 and 2 had almost the same characteristics. The band gaps of Entry 1, 2, 3, 4, and 5 mean the onset of the UV / Vis absorption spectrum, and are 2.5, 2.8, 3.2, 3.9, and 3.9 eV, respectively. These results mean that the band gap decreases as the conjugate length increases. Furthermore, from the fluorescence spectrum of each entry, the maximum maximum fluorescence wavelengths in the THF solution were 473, 473, 443, 442 and 430 nm, respectively.
Figure JPOXMLDOC01-appb-T000059
Figure JPOXMLDOC01-appb-T000059
 また、それぞれのEntryのFT-ATR-IR分析を行った。その結果、いずれのEntryにおいても、APEX重合を示差する凹型部位における芳香族C-H結合の865cm-1の位置にピークが見られた。 In addition, FT-ATR-IR analysis of each entry was performed. As a result, in each entry, a peak was observed at the position of 865 cm −1 of the aromatic CH bond in the concave site indicating APEX polymerization.
 次に、Entry 1の532nmにおけるラマンスペクトルの結果から、蛍光のために明確ではないものの、1352cm-1の位置にDバンド(disorderバンド)、1524cm-1の位置にGバンド(graphiteバンド)を有していた。この結果は、GNRの文献値とも整合する。 Then, chromatic results of the Raman spectrum at 532nm of Entry 1, although not clear for fluorescent, D band at 1352cm -1 (disorder band), the G band (graphite band) to the position of 1524Cm -1 Was. This result is consistent with GNR literature values.
 これらの測定結果は、APEX重合によりGNRが合成できていることを意味している。 These measurement results mean that GNR can be synthesized by APEX polymerization.
 [合成例5:化合物10の合成] [Synthesis Example 5: Synthesis of Compound 10]
Figure JPOXMLDOC01-appb-C000060
Figure JPOXMLDOC01-appb-C000060
 化合物9(12mL, 59mmol)に対して、酢酸アンモニウム(NH4OAc; 519mmol)及びNaBH3CN(35mmol)をメタノール中で、室温で54時間作用させることで還元的アミノ化反応を行った。反応溶液に濃塩酸を加えることで反応を停止し、溶媒留去した。粗生成物を水中に分散させ、1M NaOH水溶液を用いてpH = 10に調整した。この溶液にクロロホルムを加え抽出を行った後、溶媒を留去することで目的化合物10を単離し、目的の化合物が得られたことを1H-NMRで確認した(96%)。
1H-NMR (400MHz, CDCl3) 0.98 (s, 6H), 1.30-1.32 (m, 16H), 2.65 (s, 2H), 3.24 (m, 1H)。
A reductive amination reaction was performed on compound 9 (12 mL, 59 mmol) by allowing ammonium acetate (NH 4 OAc; 519 mmol) and NaBH 3 CN (35 mmol) to act in methanol at room temperature for 54 hours. The reaction was stopped by adding concentrated hydrochloric acid to the reaction solution, and the solvent was distilled off. The crude product was dispersed in water and adjusted to pH = 10 using 1M aqueous NaOH. Chloroform was added to this solution for extraction, and then the solvent was distilled off to isolate the target compound 10. It was confirmed by 1 H-NMR that the target compound was obtained (96%).
1 H-NMR (400 MHz, CDCl 3 ) 0.98 (s, 6H), 1.30-1.32 (m, 16H), 2.65 (s, 2H), 3.24 (m, 1H).
 [合成例6:化合物12の合成] [Synthesis Example 6: Synthesis of Compound 12]
Figure JPOXMLDOC01-appb-C000061
Figure JPOXMLDOC01-appb-C000061
 化合物11(5.0g, 13mmol)に対してBr2(28mmol)及びI2(6mmol)を硫酸中で、85℃で24時間作用させることで臭素化反応を行った。反応後、反応溶液を室温まで冷却し、生成した沈殿物を濾取した。この沈殿物を水で洗浄したのち、乾燥させることで目的化合物12を得た(96%, Crude)。本化合物は、あらゆる有機溶媒に不溶であるため、化合物の同定及び精製を行っていない。 Bromination reaction was carried out by allowing Br 2 (28 mmol) and I 2 (6 mmol) to act on compound 11 (5.0 g, 13 mmol) in sulfuric acid at 85 ° C. for 24 hours. After the reaction, the reaction solution was cooled to room temperature, and the generated precipitate was collected by filtration. The precipitate was washed with water and dried to obtain the target compound 12 (96%, Crude). Since this compound is insoluble in any organic solvent, the compound was not identified and purified.
 [合成例7:化合物13の合成] [Synthesis Example 7: Synthesis of Compound 13]
Figure JPOXMLDOC01-appb-C000062
Figure JPOXMLDOC01-appb-C000062
 合成例6で得た化合物12(6.9g, 12mmol)に対して合成例5で得た化合物10(39mmol)をNMP中で、150℃で4時間反応させた。室温に冷却した反応溶液を希塩酸に加えることで生成物を沈殿させ濾取した。この沈殿物を水で洗浄したのち、乾燥させることで目的化合物13の粗生成物を得た。その後、クロマトグラフィー及び再結晶を行うことで目的化合物を単離し、目的化合物13が得られたことを1H-NMR、FAB-MSで確認した(39%)。
1H-NMR (400MHz, CDCl3): 0.83 (t, 12H), 1.25-1.27 (m, 16H), 1.84-186 (m, 2H), 1.87 (m, 4H), 2.24 (m, 4H), 5.18 (m, 2H), 8.61-8.63 (m, 6H). MS(FAB): m/z (%)= 854 [M・+] (100), 699[M-alkyl・+](43)。
Compound 10 (39 mmol) obtained in Synthesis Example 5 was reacted at 150 ° C. for 4 hours in NMP with respect to Compound 12 (6.9 g, 12 mmol) obtained in Synthesis Example 6. The reaction solution cooled to room temperature was added to dilute hydrochloric acid to precipitate the product, which was collected by filtration. The precipitate was washed with water and dried to obtain a crude product of target compound 13. Thereafter, the target compound was isolated by chromatography and recrystallization, and it was confirmed by 1 H-NMR and FAB-MS that the target compound 13 was obtained (39%).
1 H-NMR (400MHz, CDCl 3): 0.83 (t, 12H), 1.25-1.27 (m, 16H), 1.84-186 (m, 2H), 1.87 (m, 4H), 2.24 (m, 4H), 5.18 (m, 2H), 8.61-8.63 (m, 6H). MS (FAB): m / z (%) = 854 [M • + ] (100), 699 [M-alkyl • + ] (43).
 [合成例8:化合物14の合成] [Synthesis Example 8: Synthesis of Compound 14]
Figure JPOXMLDOC01-appb-C000063
Figure JPOXMLDOC01-appb-C000063
 合成例7で得た化合物13(0.015mmol)に対して、t-ブチルリチウム(t-BuLi; 4.0当量)をテトラメチルエチレンジアミン(TMEDA; 4.0当量)中、60℃で3時間反応させ、リチエーション反応を引き起こした後、得られた化合物とジメチルクロロシラン(Me2SiHCl; 2.2当量)をジエチルエーテル中、-78℃で撹拌した後に室温で24時間反応させた。反応溶液に飽和NaHCO3水溶液を加えることで反応を停止し、ジエチルエーテルを用いて抽出を行い溶媒留去した。反応を完了させて対応する化合物14をPTLCで精製し、目的化合物14が得られたことをFAB-MSで確認した(30%)。
MS(FAB): m/z (%)= 813 [M・+] (100)。
The compound 13 (0.015 mmol) obtained in Synthesis Example 7 was reacted with t-butyllithium (t-BuLi; 4.0 equivalents) in tetramethylethylenediamine (TMEDA; 4.0 equivalents) at 60 ° C. for 3 hours, followed by lithiation. After causing the reaction, the obtained compound and dimethylchlorosilane (Me 2 SiHCl; 2.2 equivalents) were stirred in diethyl ether at −78 ° C. and then reacted at room temperature for 24 hours. The reaction was stopped by adding a saturated aqueous NaHCO 3 solution to the reaction solution, extracted with diethyl ether, and the solvent was distilled off. Upon completion of the reaction, the corresponding compound 14 was purified by PTLC, and it was confirmed by FAB-MS that the target compound 14 was obtained (30%).
MS (FAB): m / z (%) = 813 [M + ] (100).
 [合成例9:化合物15の合成] [Synthesis Example 9: Synthesis of Compound 15]
Figure JPOXMLDOC01-appb-C000064
Figure JPOXMLDOC01-appb-C000064
 合成例8で得た化合物14(30mg; 0.04mmol)に対してクロロトリス(トリフェニルホスフィン)ロジウム(RhCl(PPh3)3; 5mol%)を1,4-ジオキサン中で、135℃で3時間反応させた。溶媒を留去することで反応を停止し、PTLCによって精製を行った。目的の化合物15が得られたことをFAB-MSで確認した(30%)。
m/z (%)= 810 [M・+] (100)。
Reaction of compound 14 (30 mg; 0.04 mmol) obtained in Synthesis Example 8 with chlorotris (triphenylphosphine) rhodium (RhCl (PPh 3 ) 3 ; 5 mol%) in 1,4-dioxane at 135 ° C. for 3 hours I let you. The reaction was stopped by distilling off the solvent, and purification was performed by PTLC. It was confirmed by FAB-MS that the target compound 15 was obtained (30%).
m / z (%) = 810 [M · + ] (100).
 [実施例12] [Example 12]
Figure JPOXMLDOC01-appb-C000065
Figure JPOXMLDOC01-appb-C000065
 次に、基質として市販の化合物16(2mg, 0.004mmol)、合成例9で得た化合物15(3mg, 0.004mmol)を用い、パラジウム化合物としてPd(OCOCF3)2を2.0当量使用し、銀化合物としてAgSbF6を4.0当量使用し、o-クロラニルを4.0当量使用すること以外は実施例11と同様の処理を行った。結果を表18に示す。 Next, using a commercially available compound 16 (2 mg, 0.004 mmol) as a substrate, compound 15 (3 mg, 0.004 mmol) obtained in Synthesis Example 9, and using 2.0 equivalents of Pd (OCOCF 3 ) 2 as a palladium compound, a silver compound As in Example 11, except that 4.0 equivalent of AgSbF 6 was used and 4.0 equivalent of o-chloranil was used. The results are shown in Table 18.
Figure JPOXMLDOC01-appb-T000066
Figure JPOXMLDOC01-appb-T000066
 以上から、単独重合のみならず、共重合の場合も反応が進行し、本発明のポリマーを得ることができた。得られたポリマーのIRスペクトルを図11に示す。その結果、カルボニル基と凹型部位の存在が示唆され、本発明のポリマーが得られたことを示唆している。また、得られたポリマーのUV/Vis吸収スペクトルを図12に示す。その結果、200~600nmの位置に吸収バンドを有していることが示唆されている。 From the above, the reaction proceeded not only in homopolymerization but also in copolymerization, and the polymer of the present invention could be obtained. FIG. 11 shows the IR spectrum of the obtained polymer. As a result, the presence of a carbonyl group and a concave site was suggested, suggesting that the polymer of the present invention was obtained. Moreover, the UV / Vis absorption spectrum of the obtained polymer is shown in FIG. As a result, it is suggested that an absorption band is present at a position of 200 to 600 nm.
 [合成例10:化合物16の合成] [Synthesis Example 10: Synthesis of Compound 16]
Figure JPOXMLDOC01-appb-C000067
Figure JPOXMLDOC01-appb-C000067
 化合物11(3.2g, 8mmol)に対して合成例5で得た化合物10(16mmol)をイミダゾール中で、150℃で4時間反応させた。室温に冷却した反応溶液を希塩酸に加えることで生成物を沈殿させ濾取した。この沈殿物を水で洗浄したのち、乾燥させることで目的化合物16の粗生成物を得た。その後、ジクロロメタンを展開溶媒としたクロマトグラフィーを行うことで目的化合物を単離し、目的化合物16が得られたことを1H NMR、13C NMR 、FAB-MSで確認した(96%)。
1H NMR(400MHz, CDCl3) δ0.83(t, 12H), 1.23-1.35 (m, 24H), 1.83-1.85(m, 4H), 2.21-2.27(m, 4H), 5.18-5.19 (m, 2H), 8.61-8.68 (m, 8H). 13C NMR(150 MHz, CDCl3) δ164.54, 134.24, 131.72, 120.96, 129.45, 126.22, 122.86, 54.83, 32.39, 31.86, 26.78, 22.68, 14.16. HRMS (FAB) m/z calcd for C46H54N2O4 +[M]+: 698.4038, found 698.4042。
Compound 10 (16 mmol) obtained in Synthesis Example 5 was reacted with Compound 11 (3.2 g, 8 mmol) in imidazole at 150 ° C. for 4 hours. The reaction solution cooled to room temperature was added to dilute hydrochloric acid to precipitate the product, which was collected by filtration. The precipitate was washed with water and dried to obtain a crude product of target compound 16. Thereafter, the target compound was isolated by chromatography using dichloromethane as a developing solvent, and it was confirmed by 1 H NMR, 13 C NMR and FAB-MS that target compound 16 was obtained (96%).
1 H NMR (400MHz, CDCl 3 ) δ0.83 (t, 12H), 1.23-1.35 (m, 24H), 1.83-1.85 (m, 4H), 2.21-2.27 (m, 4H), 5.18-5.19 (m , 2H), 8.61-8.68 (m, 8H). 13 C NMR (150 MHz, CDCl 3) δ164.54, 134.24, 131.72, 120.96, 129.45, 126.22, 122.86, 54.83, 32.39, 31.86, 26.78, 22.68, 14.16 HRMS (FAB) m / z calcd for C 46 H 54 N 2 O 4 + [M] + : 698.4038, found 698.4042.
 [合成例11:化合物17の合成] [Synthesis Example 11: Synthesis of Compound 17]
Figure JPOXMLDOC01-appb-C000068
Figure JPOXMLDOC01-appb-C000068
 合成例10で得た化合物16(0.6g, 0.9 mmol)に対してBr2(257mmol)をジクロロメタン中で、室温で2日作用させることで臭素化反応を行った。反応溶液に飽和チオ硫酸ナトリウム水溶液を加えることで反応を停止し、ジクロロメタンを用いて抽出を行い溶媒留去することで目的化合物17の粗生成物を得た。その後、ジクロロメタンを展開溶媒としたクロマトグラフィーを行うことで目的化合物を単離し、目的化合物17が得られたことを1H NMR、13C NMR 、FAB-MSで確認した(96%)。
1H NMR(400MHz, CDCl3) δ0.84(t, 12H), 1.22-1.30(m, 24H), 1.82-1.84(m, 4H), 2.21-2.27(m, 4H), 5.18-5.19 (m, 2H), 8.69(d, J = 7.6 Hz, 2H), 8.92(d, J = 7.6 Hz, 2H), 9.49-9.51(m, 2H). 13C NMR(150 MHz, CDCl3) δ164.27, 163.79, 163.13, 162.59, 138.58, 137.91, 133.11, 132.98, 132.83, 132.63, 130.62, 130.50, 129.86, 129.39, 128.56, 128.20, 128.10, 127.30, 126.98, 123.88, 123.46, 123.15, 122.75, 121.6, 120.88, 55.28, 55.08, 54.90, 32.45, 31.84, 26.70, 22.69, 14.18. HRMS (FAB) m/z calcd for C46H52N2O4Br2 +[M]+: 854.2293, found 854.2291。
Bromination reaction was carried out by allowing Br 2 (257 mmol) to act on the compound 16 (0.6 g, 0.9 mmol) obtained in Synthesis Example 10 in dichloromethane at room temperature for 2 days. The reaction was stopped by adding a saturated aqueous sodium thiosulfate solution to the reaction solution, followed by extraction with dichloromethane and evaporation of the solvent to obtain a crude product of the target compound 17. Thereafter, the target compound was isolated by chromatography using dichloromethane as a developing solvent, and it was confirmed by 1 H NMR, 13 C NMR and FAB-MS that target compound 17 was obtained (96%).
1 H NMR (400MHz, CDCl 3 ) δ0.84 (t, 12H), 1.22-1.30 (m, 24H), 1.82-1.84 (m, 4H), 2.21-2.27 (m, 4H), 5.18-5.19 (m , 2H), 8.69 (d, J = 7.6 Hz, 2H), 8.92 (d, J = 7.6 Hz, 2H), 9.49-9.51 (m, 2H). 13 C NMR (150 MHz, CDCl 3 ) δ164.27 , 163.79, 163.13, 162.59, 138.58, 137.91, 133.11, 132.98, 132.83, 132.63, 130.62, 130.50, 129.86, 129.39, 128.56, 128.20, 128.10, 127.30, 126.98, 123.88, 123.46, 123.15, 122.75, 551.628 , 55.08, 54.90, 32.45, 31.84, 26.70, 22.69, 14.18. HRMS (FAB) m / z calcd for C 46 H 52 N 2 O 4 Br 2 + [M] + : 854.2293, found 854.2291.
 [合成例12:化合物18の合成] [Synthesis Example 12: Synthesis of Compound 18]
Figure JPOXMLDOC01-appb-C000069
Figure JPOXMLDOC01-appb-C000069
 合成例11で得た化合物17(0.4g, 0.4mmol)に対して、トリメチルシリルアセチレン(4.0mmol)、Pd(Ph3)4(10mol%)及びCuI(10mol%)をTHF・ジイソプロピルアミン混合溶媒中で、60℃で20時間反応させた。室温に冷却した反応溶液に水に加えることで反応を停止し、ジクロロメタンを用いて抽出を行い溶媒留去することで目的化合物18の粗生成物を得た。その後、ジクロロメタンを展開溶媒としたクロマトグラフィーを行うことで目的化合物を単離し、目的化合物18が得られたことを1H-NMR、13C-NMR 、FAB-MSで確認した(90%)。
1H NMR (400MHz, CDCl3) δ0.37(s, 18H), 0.84(t, 12H), 1.24-1.33(m, 24H), 1.80-1.84(m, 4H), 2.21-2.28(m, 4H), 5.18 (m, 2H), 8.14(d, J = 7.6 Hz, 2H), 8.81(d, J = 7.6 Hz, 2H), 10.18-10.26(m, 2H). 13C NMR(150MHz, CDCl3) δ164.90, 164.64, 163.82, 163.55, 139.42, 139.12, 138.44, 137.22, 134.53, 124.36, 131.47, 130.60, 128.43, 128.42, 128.00, 127.96, 127.79, 127.79, 124.34, 123.61, 123.03, 122.45, 120.78, 120.20, 107.06, 106.76, 106.39, 106.33, 55.36, 32.89, 32.36, 27.26, 23.20, 14.67, 0.23, 0.09. HRMS (FAB) m/z calcd for C56H70N2O4Si2 +[M]+: 890.4874, found 890.4871。
Trimethylsilylacetylene (4.0 mmol), Pd (Ph 3 ) 4 (10 mol%) and CuI (10 mol%) were mixed in THF / diisopropylamine mixed solvent with respect to compound 17 (0.4 g, 0.4 mmol) obtained in Synthesis Example 11. And reacted at 60 ° C. for 20 hours. The reaction was stopped by adding water to the reaction solution cooled to room temperature, extracted with dichloromethane, and the solvent was distilled off to obtain a crude product of target compound 18. Thereafter, the target compound was isolated by chromatography using dichloromethane as a developing solvent, and it was confirmed by 1 H-NMR, 13 C-NMR and FAB-MS that the target compound 18 was obtained (90%).
1 H NMR (400MHz, CDCl 3 ) δ0.37 (s, 18H), 0.84 (t, 12H), 1.24-1.33 (m, 24H), 1.80-1.84 (m, 4H), 2.21-2.28 (m, 4H ), 5.18 (m, 2H), 8.14 (d, J = 7.6 Hz, 2H), 8.81 (d, J = 7.6 Hz, 2H), 10.18-10.26 (m, 2H). 13 C NMR (150 MHz, CDCl 3 ) δ164.90, 164.64, 163.82, 163.55, 139.42, 139.12, 138.44, 137.22, 134.53, 124.36, 131.47, 130.60, 128.43, 128.42, 128.00, 127.96, 127.79, 127.79, 124.34, 123.61, 123.03, 122.45, 120.78, 120.20 , 107.06, 106.76, 106.39, 106.33, 55.36, 32.89, 32.36, 27.26, 23.20, 14.67, 0.23, 0.09.HRMS (FAB) m / z calcd for C 56 H 70 N 2 O 4 Si 2 + [M] + : 890.4874, found 890.4871.
 [合成例13:化合物19の合成] [Synthesis Example 13: Synthesis of Compound 19]
Figure JPOXMLDOC01-appb-C000070
Figure JPOXMLDOC01-appb-C000070
 合成例12で得た化合物18(0.15g, 0.1mmol)に対してテトラブチルアンモニウムフルオライド(TBAF; 3.1当量)をジクロロメタン中、0℃で15分反応させ、脱保護を行った。得られた化合物とPtCl2(30mol%)及び1M塩化水素水溶液(20mol%)をトルエン溶媒中で、90℃で12時間反応させた。室温に冷却した反応溶液を溶媒留去することで目的化合物19の粗生成物を得た。その後、クロロホルム/ヘキサン1: 1の混合溶媒を展開溶媒としたクロマトグラフィーを行うことで目的化合物を単離し、目的化合物19が得られたことを1H NMR、13C NMR、 FAB-MSで確認した(12%)。
1H NMR (400MHz, CDCl3) δ0.84(t, 12H), 1.24-1.31(m, 24H), 1.88-1.94(m, 4H), 2.33-2.36(m, 4H), 5.31 (brs, 2H), 8.77(s, 4H), 9.46(s, 4H). 13C NMR (150MHz, CDCl3) δ164.78, 131.67, 129.38, 128.95, 128.88, 122.81, 122.80, 120.04, 55.33, 32.73 32.74, 27.03, 22.82, 14.25. HRMS (FAB) m/z calcd for C50H54N2O4 +[M]+: 746.4083, found 746.4081。
Deprotection was carried out by reacting Compound 18 (0.15 g, 0.1 mmol) obtained in Synthesis Example 12 with tetrabutylammonium fluoride (TBAF; 3.1 eq) in dichloromethane at 0 ° C. for 15 minutes. The obtained compound was reacted with PtCl 2 (30 mol%) and 1M aqueous hydrogen chloride solution (20 mol%) in a toluene solvent at 90 ° C. for 12 hours. The reaction solution cooled to room temperature was evaporated to obtain a crude product of target compound 19. Then, the target compound was isolated by chromatography using a mixed solvent of chloroform / hexane 1: 1, and the target compound 19 was confirmed by 1 H NMR, 13 C NMR, and FAB-MS. (12%).
1 H NMR (400MHz, CDCl 3 ) δ0.84 (t, 12H), 1.24-1.31 (m, 24H), 1.88-1.94 (m, 4H), 2.33-2.36 (m, 4H), 5.31 (brs, 2H ), 8.77 (s, 4H) , 9.46 (s, 4H). 13 C NMR (150MHz, CDCl 3) δ164.78, 131.67, 129.38, 128.95, 128.88, 122.81, 122.80, 120.04, 55.33, 32.73 32.74, 27.03, 22.82, 14.25. HRMS (FAB) m / z calcd for C 50 H 54 N 2 O 4 + [M] + : 746.4083, found 746.4081.
 [実施例13] [Example 13]
Figure JPOXMLDOC01-appb-C000071
Figure JPOXMLDOC01-appb-C000071
 合成例13で得た化合物19(20mg, 0.027mmol)に対して、化合物20(7.1mg, 0.0027mmol)、パラジウム化合物としてPd(OCOCF3)2を2.0当量使用し、銀化合物としてAgSbF6を4.0当量使用し、o-クロラニルを4.0当量使用して、ジクロロエタン中80℃で12時間反応を行った。クロマトグラフィーと金属スカベンジャーを用いて金属を除去したのち、HPLCにより分子量測定を行った。結果を表19に示す。この結果、共重合の場合も反応が進行し、本発明のポリマーを得ることができた。得られたポリマーのIRスペクトルを図13に示す。また、得られたポリマーのUV/Vis吸収スペクトル及び蛍光スペクトルを図14に示す(左側が吸収スペクトル、右側が蛍光スペクトルである)。その結果、350-550nmの位置に吸収バンドを有していることが示唆され、450-700nmの位置に発光バンドを有していることが示唆される。 For compound 19 (20 mg, 0.027 mmol) obtained in Synthesis Example 13, compound 20 (7.1 mg, 0.0027 mmol), 2.0 equivalents of Pd (OCOCF 3 ) 2 as a palladium compound, and 4.0 g of AgSbF 6 as a silver compound are used. The reaction was carried out in dichloroethane at 80 ° C. for 12 hours using 4.0 equivalents of o-chloranil. After removing the metal using chromatography and a metal scavenger, the molecular weight was measured by HPLC. The results are shown in Table 19. As a result, the reaction proceeded also in the case of copolymerization, and the polymer of the present invention could be obtained. The IR spectrum of the obtained polymer is shown in FIG. Moreover, the UV / Vis absorption spectrum and fluorescence spectrum of the obtained polymer are shown in FIG. As a result, it is suggested that it has an absorption band at a position of 350 to 550 nm, and an emission band at a position of 450 to 700 nm.
Figure JPOXMLDOC01-appb-T000072
Figure JPOXMLDOC01-appb-T000072
 [試験例4:グラフェンナノリボンの配列]
 試験例2のEntry 2で得られたポリマー(GNR; Mn= 155032, Mw/Mn= 1.20, ca. 300mer, 幅約0.7nm, 長さ約135nm)をグラフェン上に並べた。なお、ポリマーの幅は、試験例2で得られたポリマーにおけるピレン骨格の幅を意味する。具体的には、熱酸化膜付きシリコン基板上に粘着テープによりグラフェンを剥離し、GNRの溶液を20μL滴下した。溶液は0.002mgのGNRを1mLの1,2,4-トリクロロベンゼンに溶かしたものである。溶液を滴下した基板を空気中にて100℃で10分間加熱を行い、液滴を乾燥させた。
[Test Example 4: Graphene nanoribbon array]
The polymer obtained in Entry 2 of Test Example 2 (GNR; Mn = 1555032, Mw / Mn = 1.20, ca. 300mer, width about 0.7 nm, length about 135 nm) was arranged on graphene. The polymer width means the width of the pyrene skeleton in the polymer obtained in Test Example 2. Specifically, graphene was peeled off with an adhesive tape on a silicon substrate with a thermal oxide film, and 20 μL of a GNR solution was dropped. The solution is 0.002 mg of GNR dissolved in 1 mL of 1,2,4-trichlorobenzene. The substrate on which the solution was dropped was heated in air at 100 ° C. for 10 minutes to dry the droplets.
 GNRの溶液を滴下したグラフェン試料表面を、原子間力顕微鏡(AFM)により観察した。表面の観察は、Dimension FastScan AFM(Bruker社製)を用い、タッピングモードにより行った。得られた位相像を図15に示す。図15から、グラフェン上にて選択的にGNRが配向し、リボン幅はおよそ4nmであった。なお、リボン幅は、リボンの中心部分と、隣接するリボンの中心部分との距離を意味する。 The surface of the graphene sample onto which the GNR solution was dropped was observed with an atomic force microscope (AFM). The surface was observed by tapping mode using Dimension FastScan AFM (manufactured by Bruker). The obtained phase image is shown in FIG. From FIG. 15, the GNR was selectively oriented on the graphene, and the ribbon width was about 4 nm. The ribbon width means the distance between the center portion of the ribbon and the center portion of the adjacent ribbon.
 [試験例5:直流抵抗率の測定]
 熱酸化膜付きシリコン基板状に剥離したグラフェンへ微細加工により厚さ60nmの金電極を取り付け、電界効果トランジスタに加工した。このグラフェン上に、上記試験例4と同様の手順により試験例2のEntry 2で得られたポリマー(GNR; Mn= 155032, Mw/Mn= 1.20, ca. 300mer, 幅約0.7nm, 長さ約135nm)の溶液を滴下して乾燥させた。これにより作製したGNR-グラフェン複合体の直流抵抗率の測定を行った。具体的には、試料電極及び基板にSP-0型プローバー(ESSテック社製)を用いて探針を取り付け、10mVの電圧をソース-ドレイン間に印加し、ゲート電圧を-40Vから40Vまで掃引し、抵抗率の変化を測定した。電圧印加及び直流抵抗率の測定には4200-SCS型半導体パラメーター・アナライザー(ケースレーインスツルメンツ社製)を用いた。GNRの溶液滴下前後におけるグラフェン電界効果トランジスタの直流抵抗率の測定結果を図16に示す。
[Test Example 5: Measurement of DC resistivity]
A gold electrode with a thickness of 60 nm was attached by fine processing to graphene exfoliated into a silicon substrate with a thermal oxide film, and processed into a field effect transistor. On this graphene, the polymer obtained in Entry 2 of Test Example 2 (GNR; Mn = 155032, Mw / Mn = 1.20, ca. 300mer, width of about 0.7 nm, length of about 135 nm) was added dropwise and dried. The direct current resistivity of the produced GNR-graphene composite was measured. Specifically, a probe is attached to the sample electrode and the substrate using an SP-0 type prober (manufactured by ESS Tech), a 10 mV voltage is applied between the source and drain, and the gate voltage is swept from -40 V to 40 V. The change in resistivity was measured. A 4200-SCS type semiconductor parameter analyzer (manufactured by Keithley Instruments) was used for voltage application and DC resistance measurement. FIG. 16 shows the measurement results of the DC resistivity of the graphene field effect transistor before and after dropping the GNR solution.
 図16から、グラフェン電界効果トランジスタは、グラフェン上でGNRを配向させることにより直流抵抗率が上昇した。さらに、GNR配向前のグラフェンの抵抗率は電荷中性点において8kΩであったのに対し、GNR配向後は10kΩであり、電気抵抗率が1.25倍上昇した。このことから、グラフェン表面にGNR分子が配向することにより、電気抵抗率が上昇する材料が得られることが分かった。 FIG. 16 shows that the graphene field effect transistor has an increased DC resistance by orienting the GNR on the graphene. Furthermore, the resistivity of graphene before GNR alignment was 8 kΩ at the charge neutral point, but 10 kΩ after GNR alignment, and the electrical resistivity increased by 1.25 times. From this, it was found that a material having an increased electrical resistivity can be obtained by orienting GNR molecules on the graphene surface.

Claims (17)

  1. 多環芳香族化合物を繰り返し単位とし、該繰り返し単位としての多環芳香族化合物は、前記多環芳香族化合物中のベンゼン環を構成する1つの結合を共有するように、隣接する繰り返し単位としての多環芳香族化合物と結合している、ポリマー。 A polycyclic aromatic compound as a repeating unit, and the polycyclic aromatic compound as the repeating unit is used as an adjacent repeating unit so as to share one bond constituting the benzene ring in the polycyclic aromatic compound. A polymer bound to a polycyclic aromatic compound.
  2. K領域及びシロール骨格を有する多環芳香族化合物、又はK領域を有する多環芳香族化合物とシロール骨格を有する多環芳香族化合物とを原料として(共)重合している、請求項1に記載のポリマー。 The polycyclic aromatic compound having a K region and a silole skeleton, or the (cyclic) polymerization using a polycyclic aromatic compound having a K region and a polycyclic aromatic compound having a silole skeleton as raw materials. Polymer.
  3. 一般式(1):
    Figure JPOXMLDOC01-appb-C000001
    [式中、*は繰り返し部位を示す。mは1以上の整数を示す。AはK領域を有する芳香族環を示す。mが2以上の整数である場合、複数のAは同一でも異なってもよい。R1及びR3は水素原子を示す。R2及びR4は同一又は異なって、分岐鎖アルキル基、又は一般式(2):
    Figure JPOXMLDOC01-appb-C000002
    (式中、*、m、A、R1及びR3は前記に同じである。R2aは分岐鎖アルキル基を示す。R1とR2a、R1とA、及びR3とAの少なくとも1つは互いに結合し、環を形成してもよい。)
    で表される基を示す。R1とR2、R3とR4、R1とA、及びR3とAの少なくとも1つは互いに結合し、環を形成してもよい。]
    で表される繰り返し単位を有する、請求項1又は2に記載のポリマー。
    General formula (1):
    Figure JPOXMLDOC01-appb-C000001
    [In formula, * shows a repeating site | part. m represents an integer of 1 or more. A represents an aromatic ring having a K region. When m is an integer of 2 or more, the plurality of A may be the same or different. R 1 and R 3 represent a hydrogen atom. R 2 and R 4 are the same or different and are a branched alkyl group, or general formula (2):
    Figure JPOXMLDOC01-appb-C000002
    (In the formula, *, m, A, R 1 and R 3 are the same as above. R 2a represents a branched alkyl group. At least one of R 1 and R 2a , R 1 and A, and R 3 and A One may be bonded to each other to form a ring.)
    The group represented by these is shown. At least one of R 1 and R 2 , R 3 and R 4 , R 1 and A, and R 3 and A may be bonded to each other to form a ring. ]
    The polymer of Claim 1 or 2 which has a repeating unit represented by these.
  4. 前記繰り返し単位が、一般式(1A)~(1F):
    Figure JPOXMLDOC01-appb-C000003
    [式中、*、R2a及びR4aは前記に同じである。Yは同一又は異なって、CH又はNを示す。R2b及びR4bは同一又は異なって、分岐鎖アルキル基を示す。]
    のいずれかで表される繰り返し単位である、請求項1~3のいずれかに記載のポリマー。
    The repeating unit is represented by the general formulas (1A) to (1F):
    Figure JPOXMLDOC01-appb-C000003
    [Wherein, *, R 2a and R 4a are the same as defined above. Y is the same or different and represents CH or N. R 2b and R 4b are the same or different and represent a branched alkyl group. ]
    The polymer according to any one of claims 1 to 3, which is a repeating unit represented by any of the above:
  5. 数平均分子量が10000以上である、請求項1~4のいずれかに記載のポリマー。 The polymer according to any one of claims 1 to 4, having a number average molecular weight of 10,000 or more.
  6. 請求項1~5のいずれかに記載のポリマーからなるグラフェンナノリボン。 A graphene nanoribbon comprising the polymer according to any one of claims 1 to 5.
  7. 幅が0.5~10.0 nm、長さが10 nm以上である、請求項6に記載のグラフェンナノリボン。 The graphene nanoribbon according to claim 6, having a width of 0.5 to 10.0 nm and a length of 10 nm or more.
  8. 請求項1~5のいずれかに記載のポリマーの製造方法であって、
    (1)パラジウム化合物及びo-クロラニルの存在下、K領域及びシロール骨格を有する多環芳香族化合物を反応させる工程、又は
    (2)パラジウム化合物及びo-クロラニルの存在下、K領域を有する多環芳香族化合物と、シロール骨格を有する多環芳香族化合物とを反応させる工程
    を備える、製造方法。
    A method for producing the polymer according to any one of claims 1 to 5,
    (1) a step of reacting a polycyclic aromatic compound having a K region and a silole skeleton in the presence of a palladium compound and o-chloranil; or (2) a polycycle having a K region in the presence of a palladium compound and o-chloranil. A production method comprising a step of reacting an aromatic compound with a polycyclic aromatic compound having a silole skeleton.
  9. 前記工程(1)において、K領域及びシロール骨格を有する多環芳香族化合物が、一般式(3A)又は(3B):
    Figure JPOXMLDOC01-appb-C000004
    [式中、Aは同一又は異なって、K領域を有する芳香族環を示す。R1及びR3は水素原子を示す。R2a及びR4aは同一又は異なって、分岐鎖アルキル基を示す。R1とR2a、R3とR4a、R1とA、及びR3とAの少なくとも1つは互いに結合し、環を形成してもよい。R5及びR6は同一又は異なって、水素原子又はアルキル基を示す。]
    で表される化合物である、請求項8に記載の製造方法。
    In the step (1), the polycyclic aromatic compound having a K region and a silole skeleton is represented by the general formula (3A) or (3B):
    Figure JPOXMLDOC01-appb-C000004
    [Wherein, A is the same or different and represents an aromatic ring having a K region. R 1 and R 3 represent a hydrogen atom. R 2a and R 4a are the same or different and represent a branched alkyl group. At least one of R 1 and R 2a , R 3 and R 4a , R 1 and A, and R 3 and A may be bonded to each other to form a ring. R 5 and R 6 are the same or different and each represents a hydrogen atom or an alkyl group. ]
    The manufacturing method of Claim 8 which is a compound represented by these.
  10. 前記工程(2)において、K領域を有する多環芳香族化合物が、一般式(4):
    Figure JPOXMLDOC01-appb-C000005
    [式中、Aは同一又は異なって、K領域を有する芳香族環を示す。R1及びR3は水素原子を示す。R2及びR4は同一又は異なって、分岐鎖アルキル基、又は一般式(4A):
    Figure JPOXMLDOC01-appb-C000006
    (式中、A、R1及びR3は前記に同じである。R2aは分岐鎖アルキル基を示す。R1とR2a、R1とA、及びR3とAの少なくとも1つは互いに結合し、環を形成してもよい。)
    で表される基を示す。R1とR2、R3とR4、R1とA、及びR3とAの少なくとも1つは互いに結合し、環を形成してもよい。]
    で表される化合物である、請求項8又は9に記載の製造方法。
    In the step (2), the polycyclic aromatic compound having a K region is represented by the general formula (4):
    Figure JPOXMLDOC01-appb-C000005
    [Wherein, A is the same or different and represents an aromatic ring having a K region. R 1 and R 3 represent a hydrogen atom. R 2 and R 4 are the same or different, and are a branched alkyl group, or general formula (4A):
    Figure JPOXMLDOC01-appb-C000006
    (In the formula, A, R 1 and R 3 are the same as defined above. R 2a represents a branched alkyl group. At least one of R 1 and R 2a , R 1 and A, and R 3 and A And may be linked to form a ring.)
    The group represented by these is shown. At least one of R 1 and R 2 , R 3 and R 4 , R 1 and A, and R 3 and A may be bonded to each other to form a ring. ]
    The manufacturing method of Claim 8 or 9 which is a compound represented by these.
  11. 前記工程(2)において、シロール骨格を有する多環芳香族化合物が、一般式(5):
    Figure JPOXMLDOC01-appb-C000007
    [式中、Bは同一又は異なって、シロール骨格を有する芳香族環を示す。R1及びR3は水素原子を示す。R2a及びR4aは同一又は異なって、分岐鎖アルキル基を示す。R1とR2a、R3とR4a、R1とB、及びR3とBの少なくとも1つは互いに結合し、環を形成してもよい。R5及びR6は同一又は異なって、水素原子又はアルキル基を示す。]
    で表される化合物である、請求項8~10のいずれかに記載の製造方法。
    In the step (2), the polycyclic aromatic compound having a silole skeleton is represented by the general formula (5):
    Figure JPOXMLDOC01-appb-C000007
    [Wherein, B are the same or different and each represents an aromatic ring having a silole skeleton. R 1 and R 3 represent a hydrogen atom. R 2a and R 4a are the same or different and represent a branched alkyl group. At least one of R 1 and R 2a , R 3 and R 4a , R 1 and B, and R 3 and B may be bonded to each other to form a ring. R 5 and R 6 are the same or different and each represents a hydrogen atom or an alkyl group. ]
    The production method according to any one of claims 8 to 10, which is a compound represented by the formula:
  12. 前記工程(1)及び(2)が、銀化合物の存在下に行われる、請求項8~11のいずれかに記載の製造方法。 The production method according to any one of claims 8 to 11, wherein the steps (1) and (2) are carried out in the presence of a silver compound.
  13. 前記銀化合物が、AgSbF6又はAgBF4を含有する、請求項12に記載の製造方法。 The silver compound contains AgSbF 6 or AgBF 4, The method according to claim 12.
  14. 前記銀化合物の使用量が、前記K領域及びシロール骨格を有する多環芳香族化合物、前記K領域を有する多環芳香族化合物、又は前記シロール骨格を有する多環芳香族化合物1モルに対して、0.5~5.0モルである、請求項12又は13に記載の製造方法。 The amount of the silver compound used is based on 1 mol of the polycyclic aromatic compound having the K region and a silole skeleton, the polycyclic aromatic compound having the K region, or the polycyclic aromatic compound having the silole skeleton. The production method according to claim 12 or 13, wherein the amount is 0.5 to 5.0 mol.
  15. 前記パラジウム化合物の使用量が、前記K領域及びシロール骨格を有する多環芳香族化合物、前記K領域を有する多環芳香族化合物、又は前記シロール骨格を有する多環芳香族化合物1モルに対して、0.07~5.0モルである、請求項8~14のいずれかに記載の製造方法。 The amount of the palladium compound used is 1 mol of the polycyclic aromatic compound having the K region and a silole skeleton, the polycyclic aromatic compound having the K region, or the polycyclic aromatic compound having the silole skeleton. The production method according to any one of claims 8 to 14, wherein the amount is 0.07 to 5.0 mol.
  16. 導電材料の上に、請求項6又は7に記載のグラフェンナノリボンが配置されている、積層体。 A laminate in which the graphene nanoribbon according to claim 6 or 7 is disposed on a conductive material.
  17. 前記導電材料がグラフェンである、請求項16に記載の積層体。 The laminate according to claim 16, wherein the conductive material is graphene.
PCT/JP2017/003037 2016-01-28 2017-01-27 Polymer and method for producing same WO2017131190A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017563871A JP6664710B2 (en) 2016-01-28 2017-01-27 Polymer and method for producing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-014380 2016-01-28
JP2016014380 2016-01-28

Publications (1)

Publication Number Publication Date
WO2017131190A1 true WO2017131190A1 (en) 2017-08-03

Family

ID=59398301

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/003037 WO2017131190A1 (en) 2016-01-28 2017-01-27 Polymer and method for producing same

Country Status (2)

Country Link
JP (1) JP6664710B2 (en)
WO (1) WO2017131190A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108191903A (en) * 2017-12-21 2018-06-22 上海师范大学 A kind of synthetic method of cool imidodicarbonic diamide and its derivative based on imidodicarbonic diamide
WO2020184625A1 (en) * 2019-03-12 2020-09-17 国立大学法人東海国立大学機構 Graphene nanoribbon and method for producing same
CN115210245A (en) * 2020-03-04 2022-10-18 国立大学法人东海国立大学机构 Preparation method of naphthyl silole, naphthyl silole with heterocyclic group and graphene nanoribbon with heterocyclic group

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015050442A (en) * 2013-09-04 2015-03-16 本田技研工業株式会社 Photoelectric conversion material, process of manufacturing the same, and organic thin film solar cell using the same
JP2015101499A (en) * 2013-11-22 2015-06-04 富士通株式会社 Graphene film, electronic device, and method for manufacturing electronic device
WO2015173215A1 (en) * 2014-05-15 2015-11-19 Basf Se Ortho-terphenyls for the preparation of graphene nanoribbons

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015050442A (en) * 2013-09-04 2015-03-16 本田技研工業株式会社 Photoelectric conversion material, process of manufacturing the same, and organic thin film solar cell using the same
JP2015101499A (en) * 2013-11-22 2015-06-04 富士通株式会社 Graphene film, electronic device, and method for manufacturing electronic device
WO2015173215A1 (en) * 2014-05-15 2015-11-19 Basf Se Ortho-terphenyls for the preparation of graphene nanoribbons

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
KENICHIRO ITAMI: "4 One-shot K-region-selective annulative pi -extension for nanographene synthesis and functionalization", NATURE COMMUNICATIONS, 16 February 2015 (2015-02-16) *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108191903A (en) * 2017-12-21 2018-06-22 上海师范大学 A kind of synthetic method of cool imidodicarbonic diamide and its derivative based on imidodicarbonic diamide
WO2020184625A1 (en) * 2019-03-12 2020-09-17 国立大学法人東海国立大学機構 Graphene nanoribbon and method for producing same
CN113677731A (en) * 2019-03-12 2021-11-19 田冈化学工业株式会社 Graphene nanoribbons and methods of making the same
KR20210141970A (en) 2019-03-12 2021-11-23 타오카 케미컬 컴퍼니 리미티드 Graphene nanoribbon and its manufacturing method
EP3940013A4 (en) * 2019-03-12 2023-01-18 Taoka Chemical Co., Ltd. Graphene nanoribbon and method for producing same
CN115210245A (en) * 2020-03-04 2022-10-18 国立大学法人东海国立大学机构 Preparation method of naphthyl silole, naphthyl silole with heterocyclic group and graphene nanoribbon with heterocyclic group

Also Published As

Publication number Publication date
JP6664710B2 (en) 2020-03-13
JPWO2017131190A1 (en) 2018-11-22

Similar Documents

Publication Publication Date Title
EP2287936B1 (en) Carbon nanotube composite, organic semiconductor composite, and field-effect transistor
US20160207774A1 (en) Oligophenylene monomers and polymeric precursors for producing graphene nanoribbons
WO2012149257A2 (en) Graphene nanoribbons, methods of making same, and uses thereof
US9550678B2 (en) Polymeric precursors for producing graphene nanoribbons and methods for preparing them
JP4157463B2 (en) Novel benzodichalcogenophene derivative, method for producing the same, and organic semiconductor device using the same
JP2007019086A (en) Organic semiconductor material, semiconductor device using same and field-effect transistor
WO2007029547A1 (en) Polymer comprising unit comprising fluorocyclopentane ring fused with aromatic ring and organic thin film and organic thin film element both comprising the same
KR20170008798A (en) Ortho-terphenyls for the preparation of graphene nanoribbons
JP6664710B2 (en) Polymer and method for producing the same
US20150299381A1 (en) Polymeric precursors for producing graphene nanoribbons and suitable oligophenylene monomers for preparing them
JP4752269B2 (en) Porphyrin compound and method for producing the same, organic semiconductor film, and semiconductor device
WO2020184625A1 (en) Graphene nanoribbon and method for producing same
Lehnherr et al. Synthesis of soluble oligo-and polymeric pentacene-based materials
EP2887414A1 (en) Organic semiconductor solution and organic semiconductor film
CN114891188B (en) Conjugated organic metal polymer containing nitroxide free radical and ferrocene group, preparation method and application thereof, and composite thermoelectric film
JP4913007B2 (en) Novel liquid crystalline n-type organic conductor material
Wong et al. Synthesis and characterisation of new oligoacetylenic silanes
Lee et al. The synthesis and structural characterization of the first bis (benzocrown ethers) with polyyne linkages
JP4014960B2 (en) Molecular wire and manufacturing method thereof
WO2023100914A1 (en) Method for manufacturing oligofuran skeleton-containing polycarbosilane and oligofuran skeleton-containing polycarbosilane
JP2005145968A (en) Unsymmetrical straight-chain organic oligomer, method for producing the same, and use of the same
JP6400268B2 (en) Fulvalene compound, production method thereof, solar cell material and organic transistor material
JP6833188B2 (en) Compounds, light emitting or electronic materials using them, and gas sensor materials
JP4365357B2 (en) Side chain-containing organic silane compound, organic thin film transistor, and production method thereof
JP2004307847A (en) Functional organic thin film and preparation process thereof

Legal Events

Date Code Title Description
DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17744420

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017563871

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17744420

Country of ref document: EP

Kind code of ref document: A1