WO2017131142A1 - Frequency management device - Google Patents

Frequency management device Download PDF

Info

Publication number
WO2017131142A1
WO2017131142A1 PCT/JP2017/002900 JP2017002900W WO2017131142A1 WO 2017131142 A1 WO2017131142 A1 WO 2017131142A1 JP 2017002900 W JP2017002900 W JP 2017002900W WO 2017131142 A1 WO2017131142 A1 WO 2017131142A1
Authority
WO
WIPO (PCT)
Prior art keywords
spectrum
frequency
unit
information
amount
Prior art date
Application number
PCT/JP2017/002900
Other languages
French (fr)
Japanese (ja)
Inventor
ミルザ ゴーラン キブリア
ガブリエル ポルト ヴィラーディ
健太郎 石津
史秀 児島
Original Assignee
国立研究開発法人情報通信研究機構
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立研究開発法人情報通信研究機構 filed Critical 国立研究開発法人情報通信研究機構
Publication of WO2017131142A1 publication Critical patent/WO2017131142A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/02Resource partitioning among network components, e.g. reuse partitioning
    • H04W16/04Traffic adaptive resource partitioning
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/14Spectrum sharing arrangements between different networks

Definitions

  • the present invention relates to wireless communication technology, and more particularly to a method of sharing a frequency spectrum in a wireless communication system.
  • the frequency spectrum of radio waves is an extremely valuable resource. Given the growing demand for technologies such as Wi-Fi and smart grids, this resource must be used efficiently. However, the lack of free frequency spectrum makes it difficult to meet the growing demand for wireless connections. Under the traditional exclusive licensing system, many frequency spectra are not utilized spatially and temporally.
  • Frequency sharing is complementary to traditional non-licensing and exclusive licensing schemes and can be realized through collaboration between existing network infrastructure and new technologies.
  • the radio supervisory authority grants a license for a frequency band assigned to a plurality of radio wave users without specifying boundaries between the radio wave users.
  • the shared access method shared access
  • the current radio wave user shares the frequency band with a plurality of radio wave users for a certain period in a certain area.
  • Radio supervisory authorities such as the US Federal Communications Commission, have allocated radio frequency spectrums as bands of a predetermined bandwidth, and unallocated frequency bands are depleted. Studies have shown that a significant portion of the allocated / licensed frequency band is unused both in the spatial and temporal domains. Assigning a frequency band exclusively to a specific radio wave user does not guarantee that the frequency band is used efficiently.
  • the sharing of the frequency spectrum is adjusted according to a predetermined sharing rule based on various conditions and a common agreement. For example, when a predetermined frequency spectrum is shared by two parties, the bandwidth can be simply divided by half, or the ratio of the bandwidth to be used by each depends on the amount of contribution and other contributions You can also.
  • the present invention has been made to solve such a problem, and an object of the present invention is to provide a frequency management device capable of effectively using frequency resources with flexibility.
  • the frequency management device is a frequency management device that allocates a frequency band individually used by each of the wireless networks among the common frequency bands for a plurality of wireless networks sharing a common frequency band,
  • a storage unit for storing frequency spectrum unit information indicating units constituting a common frequency band; and initial spectrum amount information of a frequency spectrum used by each of the plurality of radio networks in the common frequency band; and the plurality of radios
  • a receiving unit that receives required spectrum amount information indicating a frequency spectrum amount required by a plurality of wireless networks to which the shared control unit belongs through a shared control unit belonging to the network; and based on the initial spectral amount information and the required spectral amount information
  • the common frequency band Based on the relative spectrum amount corresponding to each of the plurality of wireless networks and the frequency spectrum unit information, the allocation calculation unit for calculating the relative spectrum amount to be allocated to each of the plurality of wireless networks, to each of the plurality of networks A spectrum calculation unit for calculating an allocated spectrum amount to be allocated.
  • the frequency management system includes two resource allocation units and manages a common subcarrier grid.
  • the system accommodates wireless networks operated by two or more operators, each of the two or more wireless networks having one or more base stations and corresponding user stations. Each of these wireless networks shares a frequency band to be used. That is, in a radio network belonging to a different operator, transmission is performed from the subordinate base station to the user station using the same frequency band, or from the user station to the base station using the same frequency band.
  • the frequency management system includes a frequency manager 10, operators 1 to 3 that receive allocation of a frequency spectrum used by the frequency manager 10, and a radio supervisory authority that exchanges information with the frequency manager 10. 4.
  • the frequency manager 10 adjusts the frequency spectrum used by the radio stations under the operators 1 to 3 for the common frequency spectrum.
  • Operators 1 to 3 are operators who operate a wireless network, such as a telecommunications carrier. Operators 1 to 3 are permitted to use a common frequency spectrum by the radio wave supervisory authority 4 with the same priority, and share the common frequency spectrum. Operators 1 to 3 each have a wireless network including its own base stations 1b to 3b and user stations (US) 1c to 3c. Operators 1 to 3 include shared controllers (SSC) 1a to 3a connected to the frequency manager 10 and adjust the frequency spectrum to be used.
  • SSC shared controllers
  • the frequency manager 10 is connected to the operators 1 to 3 and the radio wave supervisory authority 4 through a wireless or wired line, and adjusts the frequency spectrum shared by the operators 1 to 3. In adjusting the shared frequency spectrum, the frequency manager 10 acquires information on the available shared frequency spectrum from a location information database (not shown) or a licensed shared access repository installed in the radio wave management authority 4.
  • the frequency manager 10 includes a storage unit 11, a transmission / reception unit 12, an allocation calculation unit 13, a spectrum calculation unit 14, and a fragment calculation unit 15.
  • the storage unit 11 stores various data for the frequency manager 10 to realize adjustment of the frequency spectrum. Specifically, the radio spectrum protocol used by the operators 1 to 3, the basic spectrum information of the frequency spectrum acquired from the radio wave supervisory authority 4, the information regarding the spectrum sharing policy and the sharing method in the operators 1 to 3 are stored.
  • the transmission / reception unit 12 is a communication interface of the frequency manager 10 and transmits / receives information such as frequency spectrum allocation information and protocols stored in the storage unit 11 to / from the operators 1 to 3 and the radio wave supervisory authority 4.
  • the transmission / reception of the transmission / reception unit 12 may be performed via a wired line or a wireless line.
  • the transmission / reception unit 12 can transmit the utilization state of the frequency spectrum in the surrounding area to the database of the radio wave supervisory authority 4 as necessary. As a result, the frequency management database of the radio wave management authority 4 is updated.
  • the allocation calculation unit 13 determines the total amount of frequency spectrum to be allocated to each of the operators 1 to 3 according to the traffic demands and the sharing policy. The allocation calculation unit 13 calculates the bandwidth of the frequency spectrum that is actually allocated to the operators 1 to 3 using the required bandwidth information transmitted from the operators 1 to 3.
  • the spectrum calculation unit 14 calculates a common subcarrier grid prior to using the shared frequency spectrum.
  • the common subcarrier grid is determined based on structural information such as continuous or discontinuous, propagation characteristics of the shared frequency spectrum such as coherence time and coherence bandwidth. This determination may take into account factors that have a significant impact on the structure of the common subcarrier grid, such as expected user density, carrier frequency offset tolerance.
  • the subcarrier grid 21 has a plurality of subcarriers within a shared frequency spectrum.
  • the spectrum calculation unit 14 can assign the frequency spectrum to be assigned to the operators 1 to 3 as the number of subcarriers (position of subcarriers to be assigned).
  • the spectrum calculation unit 14 may perform allocation not as a subcarrier unit but as a resource block (resource block) including a plurality of subcarriers.
  • resource block resource block
  • one resource block is composed of 12 subcarriers.
  • the calculation is performed in units of resource blocks rather than in units of subcarriers. The number can be reduced, and further efficiency can be achieved.
  • the fragment calculation unit 15 calculates a fragment portion to be assigned to each of the operators 1 to 3 when the shared frequency spectrum is not continuous.
  • FIG. 2B shows an example of a discontinuous subcarrier grid 22. As shown in FIG. 2B, when the shared frequency spectrum is not continuous, subcarriers corresponding to fragmented frequency bands are allocated. Also in the discontinuous subcarrier grid 22, the allocation may be performed as a resource block including a plurality of subcarriers instead of a subcarrier unit.
  • Operators 1 to 3 have shared controllers 1a to 3a, base stations 1b to 3b, and user stations 1c to 3c.
  • the shared controllers 1a to 3a function as a communication interface that transmits information related to sharing of the frequency spectrum to the frequency manager 10.
  • the shared controllers 1a to 3a manage the frequency resources used by the corresponding base stations 1b to 3b and user stations 1c to 3c.
  • the shared controllers 1a to 3a may be equipped with a GPS system to synchronize frequency spectrum information between different operators.
  • the base stations 1b to 3b enable data transmission to the corresponding user stations 1c to 3c by enabling or disabling the subcarriers assigned from the frequency manager 10 via the shared controllers 1a to 3a.
  • the transmission / reception unit 12 acquires management information such as protocols and rules related to sharing of the frequency spectrum from the radio wave monitoring authority 4 and stores it in the storage unit 11 (step 100, hereinafter indicated as “S100”).
  • the storage unit 11 stores in advance an operator 1 to 3, a corresponding sharing agreement policy, and an allocation ratio ⁇ indicating an allocation for each of the operators 1 to 3 in all frequency spectrums to be shared.
  • the allocation ratio ⁇ is expressed by Equation 1.
  • N op is the number of operators.
  • the allocation ratio ⁇ is an element that determines the amount of frequency spectrum corresponding to each of the operators 1 to 3 according to the shared agreement policy, the traffic request, and the subcarrier signal-to-noise ratio (SNR).
  • the common agreement policy includes, for example, contents that use a large frequency spectrum in descending order of the financial contributions of the operators 1 to 3, and the allocation ratio ⁇ is set in advance based on the common agreement policy.
  • Each of the shared controllers 1a to 3a of the operators 1 to 3 first determines the required frequency spectrum amount required by its own radio network, that is, the number of subcarriers, based on the throughput requirements of the user stations 1c to 3c and the total allowable transmission power. Calculate (S200).
  • the shared controllers 1a to 3a send the calculated frequency spectrum request amount to the frequency manager 10 together with the subcarrier signal-to-noise ratios of the corresponding user stations 1c to 3c.
  • Equation 2 the minimum amount of the frequency spectrum required from the shared controllers 1a to 3a so as to satisfy the requirements of the user stations 1c to 3c is expressed by Equation 2.
  • the frequency spectrum minimum amount shown in Equation 2 is calculated based on the average subcarrier signal-to-noise ratio and transmission power limit shown in Equation 3.
  • the average subcarrier signal-to-noise ratio shown in Equation 3 represents a matrix of operator channel quality information.
  • the allocation calculation unit 13 calculates an effective allocation ratio ⁇ act shown in Equation 4 before entering the allocation process (S300).
  • the effective allocation ratio ⁇ act is an allocation ratio that is actually used for frequency spectrum allocation in consideration of requests (demands) from each operator. That is, the allocation ratio ⁇ is an initial value of the allocation ratio determined based on the common agreement policy, and the effective allocation ratio ⁇ act is an allocation ratio calculated in consideration of each operator's demand.
  • the spectrum calculation unit 14 is a coherence bandwidth B coh , coherence time T coh , allowable carrier frequency offset (CFO) CFO tol , Doppler frequency f D , and discontinuous frequency spectrum stored in advance in the storage unit 11.
  • CFO carrier frequency offset
  • f D Doppler frequency f D
  • discontinuous frequency spectrum stored in advance in the storage unit 11.
  • the number of subcarriers N sub and the subcarrier interval ⁇ sub in the subcarrier grid S grid are calculated.
  • the subcarrier interval ⁇ sub is carefully set so as to have flat fading characteristics in all subcarriers.
  • Equation 5 the number of subcarriers N sub and the subcarrier interval ⁇ sub are expressed as Equation 5. Assuming a uniform common subcarrier grid, even if the frequency spectrum is discontinuous, the subcarrier grid can cover all operating frequency spectrums. That is, as shown in FIG. 2B, even if the shared frequency spectrum is discontinuous, all the fragmented frequency bands can be covered as long as they are in subcarrier units (or resource block units).
  • the allocation calculation unit 13 and the spectrum calculation unit 14 realize a frequency spectrum distribution process that satisfies fair and harmonized requirements while maximizing the total system throughput based on the sharing policy and the traffic request of the operator. Allocation between the operators of the frequency spectrum is performed so as to satisfy the relations of Expressions 6 and 7 (S400).
  • parameter ⁇ n act is an effective allocation ratio in operator n, subcarriers roughly corresponding to the effective allocation ratio for each operator are distributed.
  • the effective allocation ratio of the operator n depends on the current traffic request of the operator and the sharing policy expected by the operator when all the shared controllers 1a to 3a request a frequency spectrum exceeding the allocation ratio ⁇ n agreed as an initial state. Calculated based on the minimum bandwidth.
  • ⁇ n act as shown in Expression 7, it is possible to clearly control the allocation ratio of the frequency spectrum.
  • transmission and reception unit 12 transmits the calculated subcarrier shared controller 1a to 3a of the operator 1 to 3 (S500).
  • the allocation calculation unit 13 calculates a set of effective allocation ratios.
  • the allocation calculation unit 13 realizes dynamic and fair frequency spectrum allocation according to the rules stored in advance in the storage unit 11 (S301). Amount of the frequency spectrum allocated to the operator n, i.e., [delta] n, is calculated based on the maximum transmit power P Max (n) and the average subcarrier SN ratio H (n), adjustment under some fairness criteria (S302).
  • the allocation calculation unit 13 allocates subcarriers according to the shared agreement policy stored in the storage unit 11 so as to be proportional to ⁇ n based on the policy as shown in Equation 10 (S304).
  • the allocation calculation unit 13 breaks the agreement policy.
  • a desired amount of frequency spectrum is allocated regardless of shared agreement (S307, S309).
  • frequency spectrum is distributed based not only on the allocation ratio based on the common agreement policy but also on the effective allocation ratio considering the operator's request. Can be achieved. Further, according to the frequency management system and the frequency management apparatus of this embodiment, not only the operator's request (demand) but also the total value of the presence / absence of demand for each operator (for example, parameter ⁇ shown in step 305 in FIG. 4) is used. Therefore, the frequency spectrum can be distributed more evenly for the plurality of operators.
  • the spectrum calculation unit 14 calculates subcarriers to be assigned for each operator (S401 to S407).
  • ⁇ S 1 , S 2 ,..., S Nop ⁇ represents a set of subcarriers assigned to the corresponding operator, and has a relationship represented by Expression 16.
  • the sub-carrier S n may be made of bands smaller fragment of the frequency spectrum is organized, may consist of those fragments were scattered across the entire frequency spectrum.
  • frequency spectrum allocation based on subcarriers requires a considerably long time to determine allocation because the calculation process is repeated. If the channel frequency selectivity is high in the operating environment, N tends to increase because the subcarrier interval is shortened. This increases the computation time.
  • the spectrum calculation unit 14 can allocate the frequency spectrum on a subband basis, not on a subcarrier basis, in order to reduce the calculation time. That is, it can be calculated as a continuous subcarrier group (band). Similarly, the subcarrier set may be calculated as a continuous subcarrier or may be a subcarrier set. The same effect can be obtained when the frequency spectrum is assigned based on the resource block shown in FIG. 2B.
  • the frequency manager of the embodiment can include a fragment calculation unit 15 that performs frequency adjustment between operators.
  • the operator can transmit to the frequency manager in the form of a variable ⁇ about the desired fragment portion of the allocation of the fragmented frequency spectrum through the shared controller.
  • the fragment calculation unit 15 redistributes the subcarriers using the variable ⁇ sent from the operator for the frequency spectrum assigned to each operator calculated by the spectrum calculation unit 14.
  • the variable ⁇ has a value in a range corresponding to the number of operators sharing the frequency. For example, if there are only two operators, the variable ⁇ can be binary data. If one operator wants to transmit in the lower end region of the frequency spectrum, send 0 or 1. The same applies to the other operator. If the operator is 3 or more, the variable ⁇ is defined as 2-bit data, for example, “00” is defined as a low frequency side end region, and “11” is defined as a high frequency side end region. Good.
  • the fragment calculation unit 15 can determine which position of the frequency spectrum sharing the operator is assigned using the variable ⁇ sent from the common controller of each operator. Depending on various conditions such as short-range communication, channel propagation characteristics, and fragment area capacity, it is possible to extend from one fragment area to another fragment area in the shared frequency band.
  • the frequency manager needs to give priority in consideration of the above conditions. If all operators request the same type of application target and have the same priority, the fragment calculation unit 15 determines a preferred operator by random selection in order to perform fair distribution. When a similar situation occurs in the future, the fragment calculation unit 15 performs the same random selection for other persons except for the operator (shared controller) that has given the previous priority. Thereby, frequency spectrum distribution among operators can be performed fairly.
  • each operator When performing fragmentary frequency spectrum allocation, each operator can have an independent network separately from the communication line between the shared controller and the frequency manager. Thereby, each operator can adjust the positions of subcarriers and the like with each other according to the use form, traffic form, etc. of their transmission frame structure. That is, the operator can adjust the frequency by changing the number of subcarriers and adjusting the subcarrier interval in the fragment area.
  • the fragment calculation unit 15 may perform processing in units of resource blocks instead of subcarriers.
  • the shared frequency band is defined as a plurality of subcarriers and distributed among operators, a continuous / non-continuous shared frequency spectrum can be used efficiently. In particular, many operators can share even a small frequency spectrum region.
  • each operator can independently allocate frequencies according to system requirements and service types.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

A frequency management device according to a mode of embodiment of the present invention allocates frequency bands to be used individually by each of a plurality of radio networks sharing a frequency band, and is provided with: a storage unit which stores frequency spectrum unit information indicating a unit which forms the shared frequency band, and initial spectrum quantity information of frequency spectra used by each of the plurality of radio networks; a receiving unit which receives, via a shared control unit belonging to the plurality of radio networks, required spectrum quantity information indicating a necessary frequency spectrum quantity; an allocation calculating unit which calculates a relative spectrum quantity to be allocated to each of the plurality of radio networks, on the basis of the initial spectrum quantity information and the required spectrum quantity information; and a spectrum calculating unit which calculates an allocated spectrum quantity to be allocated to each of the plurality of radio networks, on the basis of the relative spectrum quantity and the frequency spectrum unit information corresponding to each of the plurality of networks.

Description

周波数管理装置Frequency management device
 本発明は、無線通信技術に関し、より詳細には、無線通信システムにおける周波数スペクトルを共用する方法に関する。 The present invention relates to wireless communication technology, and more particularly to a method of sharing a frequency spectrum in a wireless communication system.
 電波の周波数スペクトルは、極めて価値のある資源である。Wi-Fiやスマートグリッドのような技術への需要の高まりを踏まえると、この資源は効率的に用いなければならない。しかし、空いた周波数スペクトルの欠如により、無線接続に対する需要の高まりに応えることが難しくなっている。従来の排他的な免許制度の下では、多くの周波数スペクトルが空間的および時間的に活用されていない。 The frequency spectrum of radio waves is an extremely valuable resource. Given the growing demand for technologies such as Wi-Fi and smart grids, this resource must be used efficiently. However, the lack of free frequency spectrum makes it difficult to meet the growing demand for wireless connections. Under the traditional exclusive licensing system, many frequency spectra are not utilized spatially and temporally.
 周波数資源の不足と将来的に予測されている無線トラフィックの爆発的増加により、既存の電波資源を十分に利用することが重要である。周波数の共用は、従来の非免許および排他的免許制度を補完するものであり、既存のネットワークインフラと新しい技術との協調により実現することができる。 It is important to make full use of existing radio wave resources due to the shortage of frequency resources and the expected explosion of radio traffic in the future. Frequency sharing is complementary to traditional non-licensing and exclusive licensing schemes and can be realized through collaboration between existing network infrastructure and new technologies.
 電波利用者間の周波数スペクトルの共用は、たくさんの手法が挙げられる。たとえば、コ・プライマリ共用法(co-primary sharing)においては、電波監理当局は、複数の電波利用者に割り当てる周波数帯について、電波利用者間の境界を特定することなく免許を付与する。共用アクセス法(shared access)においては、現在の電波利用者が、その周波数帯を一定の地域で一定の期間複数の電波利用者と共用する。 There are many methods for sharing the frequency spectrum among radio wave users. For example, in the co-primary sharing method, the radio supervisory authority grants a license for a frequency band assigned to a plurality of radio wave users without specifying boundaries between the radio wave users. In the shared access method (shared access), the current radio wave user shares the frequency band with a plurality of radio wave users for a certain period in a certain area.
 米国連邦通信委員会をはじめとする電波監理当局は、電波の周波数スペクトルを、所定の帯域幅の周波数帯として帯状に割り当てており、未割当の周波数帯は枯渇している。研究によれば、割当済み/免許済の周波数帯のうちかなりの部分が空間的および時間領域の両方において未利用の状態にある。特定の電波利用者に対し排他的に周波数帯を割り当てることは、当該周波数帯を効率的に利用されることを保証するものではない。 Radio supervisory authorities, such as the US Federal Communications Commission, have allocated radio frequency spectrums as bands of a predetermined bandwidth, and unallocated frequency bands are depleted. Studies have shown that a significant portion of the allocated / licensed frequency band is unused both in the spatial and temporal domains. Assigning a frequency band exclusively to a specific radio wave user does not guarantee that the frequency band is used efficiently.
 周波数スペクトルの共用は、諸々の条件と共通の協定(mutual agreement)の元に所定の共用ルールに従って調整される。たとえば、所定の周波数スペクトルを二者で共用する場合、単純に帯域幅を二分の一ずつとすることもできるし、出資額その他の貢献の度合いによりそれぞれが使用する帯域幅の比率を決定することもできる。 The sharing of the frequency spectrum is adjusted according to a predetermined sharing rule based on various conditions and a common agreement. For example, when a predetermined frequency spectrum is shared by two parties, the bandwidth can be simply divided by half, or the ratio of the bandwidth to be used by each depends on the amount of contribution and other contributions You can also.
 一方で、周波数スペクトルを共用する運用者(オペレータ)の無線ネットワークの事情により、トラヒックの量やその増減はそれぞれ異なるから、協定の元に定められたルールではスループットを向上させることはできず、周波数資源の有効利用を図ることができない。 On the other hand, depending on the situation of the operator (operator) wireless network sharing the frequency spectrum, the amount of traffic and its increase and decrease are different, so the rules established under the agreement cannot improve the throughput. Effective use of resources cannot be achieved.
米国特許出願公開第2014/0274104号明細書US Patent Application Publication No. 2014/0274104 国際公開第2015/017463号International Publication No. 2015/017463 国際公開第2014/005645号International Publication No. 2014/005645
 このように、従来の周波数スペクトルの共用手法では、スループットを向上させることが困難であり、柔軟性をもった周波数資源の有効利用を図ることができないという問題があった。本発明はかかる課題を解決するためになされたもので、柔軟性をもった周波数資源の有効利用を図ることのできる周波数管理装置を提供することを目的としている。 Thus, in the conventional frequency spectrum sharing method, it is difficult to improve the throughput, and there is a problem that it is not possible to effectively use frequency resources with flexibility. The present invention has been made to solve such a problem, and an object of the present invention is to provide a frequency management device capable of effectively using frequency resources with flexibility.
 実施形態に係る周波数管理装置は、共通する周波数帯を共用する複数の無線ネットワークについて、前記共通する周波数帯のうち前記無線ネットワークそれぞれが個別に使用する周波数帯を割り当てる周波数管理装置であって、前記共通する周波数帯を構成する単位を示す周波数スペクトル単位情報と、前記共通する周波数帯において前記複数の無線ネットワークそれぞれが使用する周波数スペクトルの初期スペクトル量情報とを記憶する記憶部と、前記複数の無線ネットワークに属する共用制御部を通じて該共用制御部が属する複数の無線ネットワークが必要とする周波数スペクトル量を示す所要スペクトル量情報を受信する受信部と、前記初期スペクトル量情報および前記所要スペクトル量情報に基づいて、前記共通する周波数帯のうち前記複数の無線ネットワークそれぞれに割り当てる相対的スペクトル量を計算する割当演算部と、前記複数の無線ネットワークそれぞれに対応する前記相対的スペクトル量および前記周波数スペクトル単位情報に基づいて、前記複数のネットワークそれぞれに割り当てる割当スペクトル量を計算するスペクトル演算部とを具備する。 The frequency management device according to the embodiment is a frequency management device that allocates a frequency band individually used by each of the wireless networks among the common frequency bands for a plurality of wireless networks sharing a common frequency band, A storage unit for storing frequency spectrum unit information indicating units constituting a common frequency band; and initial spectrum amount information of a frequency spectrum used by each of the plurality of radio networks in the common frequency band; and the plurality of radios A receiving unit that receives required spectrum amount information indicating a frequency spectrum amount required by a plurality of wireless networks to which the shared control unit belongs through a shared control unit belonging to the network; and based on the initial spectral amount information and the required spectral amount information The common frequency band Based on the relative spectrum amount corresponding to each of the plurality of wireless networks and the frequency spectrum unit information, the allocation calculation unit for calculating the relative spectrum amount to be allocated to each of the plurality of wireless networks, to each of the plurality of networks A spectrum calculation unit for calculating an allocated spectrum amount to be allocated.
 本発明によれば、柔軟性をもった周波数資源の有効利用を図ることができる。 According to the present invention, it is possible to effectively use frequency resources having flexibility.
実施形態に係る周波数管理システムの構成を示すブロック図である。It is a block diagram which shows the structure of the frequency management system which concerns on embodiment. 連続するサブキャリアの概要を示す図である。It is a figure which shows the outline | summary of a continuous subcarrier. 非連続のサブキャリアの概要を示す図である。It is a figure which shows the outline | summary of a discontinuous subcarrier. 実施形態に係る周波数管理システムの動作を示すフローチャートである。It is a flowchart which shows operation | movement of the frequency management system which concerns on embodiment. 実施形態に係る割当演算部の動作例を示すフローチャートである。It is a flowchart which shows the operation example of the allocation calculating part which concerns on embodiment. 実施形態に係るスペクトル演算部の動作例を示すフローチャートである。It is a flowchart which shows the operation example of the spectrum calculating part which concerns on embodiment. オペレータ数の増加による実施形態のスループットの変化を示す図である。It is a figure which shows the change of the throughput of embodiment by the increase in the number of operators. 複数のユーザが存在する場合の実施形態のスループットの変化を示す図である。It is a figure showing change of throughput of an embodiment in case a plurality of users exist.
 実施形態に係る周波数管理システムは、二つの資源割り当て手段を具備し、共通のサブキャリアグリッドを管理する。このシステムは、二以上のオペレータが運用する無線ネットワークを収容し、当該二以上の無線ネットワークはそれぞれ一つ以上の基地局および対応するユーザ局をもっている。これらの無線ネットワークは、それぞれ使用する周波数帯を共用する。すなわち、異なるオペレータに属する無線ネットワークでは、配下の基地局からユーザ局に対して同一の周波数帯を用いて送信し、またはユーザ局から基地局へ同一の周波数帯用いて送信する。 The frequency management system according to the embodiment includes two resource allocation units and manages a common subcarrier grid. The system accommodates wireless networks operated by two or more operators, each of the two or more wireless networks having one or more base stations and corresponding user stations. Each of these wireless networks shares a frequency band to be used. That is, in a radio network belonging to a different operator, transmission is performed from the subordinate base station to the user station using the same frequency band, or from the user station to the base station using the same frequency band.
 (実施形態の構成)
 図1を参照して、実施形態に係る周波数管理システムの構成を説明する。図1に示すように、この周波数管理システムは、周波数マネージャ10と、該周波数マネージャ10により自己の使用する周波数スペクトルの割当を受けるオペレータ1ないし3と、周波数マネージャ10と情報交換を行う電波監理当局4とから構成される。周波数マネージャ10は、共通の周波数スペクトルについてオペレータ1ないし3の配下の無線局が使用する周波数スペクトルを調整する。
(Configuration of the embodiment)
With reference to FIG. 1, the structure of the frequency management system which concerns on embodiment is demonstrated. As shown in FIG. 1, the frequency management system includes a frequency manager 10, operators 1 to 3 that receive allocation of a frequency spectrum used by the frequency manager 10, and a radio supervisory authority that exchanges information with the frequency manager 10. 4. The frequency manager 10 adjusts the frequency spectrum used by the radio stations under the operators 1 to 3 for the common frequency spectrum.
 オペレータ1ないし3は、無線ネットワークを運用する運用者であり、たとえば電気通信事業者などである。オペレータ1ないし3は、電波監理当局4から共通の周波数スペクトルの使用を同じ優先順位で許可されており、当該共通の周波数スペクトルを共用する。オペレータ1ないし3は、自己の基地局1bないし3bおよびユーザ局(US)1cないし3cからなる無線ネットワークをそれぞれ有している。オペレータ1ないし3は、周波数マネージャ10と接続された共用コントローラ(SSC)1aないし3aを具備しており、使用する周波数スペクトルを調整する。 Operators 1 to 3 are operators who operate a wireless network, such as a telecommunications carrier. Operators 1 to 3 are permitted to use a common frequency spectrum by the radio wave supervisory authority 4 with the same priority, and share the common frequency spectrum. Operators 1 to 3 each have a wireless network including its own base stations 1b to 3b and user stations (US) 1c to 3c. Operators 1 to 3 include shared controllers (SSC) 1a to 3a connected to the frequency manager 10 and adjust the frequency spectrum to be used.
 周波数マネージャ10は、オペレータ1ないし3および電波監理当局4と無線または有線回線で接続され、オペレータ1ないし3が共用する周波数スペクトルを調整する。共用する周波数スペクトルの調整にあたって、周波数マネージャ10は、位置情報データベース(図示せず)または電波監理当局4に設置された免許済の共用アクセスレポジトリから、利用可能な共用周波数スペクトルに関する情報を取得する。 The frequency manager 10 is connected to the operators 1 to 3 and the radio wave supervisory authority 4 through a wireless or wired line, and adjusts the frequency spectrum shared by the operators 1 to 3. In adjusting the shared frequency spectrum, the frequency manager 10 acquires information on the available shared frequency spectrum from a location information database (not shown) or a licensed shared access repository installed in the radio wave management authority 4.
 周波数マネージャ10は、記憶部11、送受信部12、割当演算部13、スペクトル演算部14、断片演算部15を備えている。 The frequency manager 10 includes a storage unit 11, a transmission / reception unit 12, an allocation calculation unit 13, a spectrum calculation unit 14, and a fragment calculation unit 15.
 記憶部11は、周波数マネージャ10が周波数スペクトルの調整を実現するための諸データを記憶する。具体的には、オペレータ1ないし3が利用する無線スペクトルのプロトコル、電波監理当局4から取得した周波数スペクトルの基本監理情報、オペレータ1ないし3におけるスペクトル共用ポリシーおよび共用方法に関する情報を記憶する。 The storage unit 11 stores various data for the frequency manager 10 to realize adjustment of the frequency spectrum. Specifically, the radio spectrum protocol used by the operators 1 to 3, the basic spectrum information of the frequency spectrum acquired from the radio wave supervisory authority 4, the information regarding the spectrum sharing policy and the sharing method in the operators 1 to 3 are stored.
 送受信部12は、周波数マネージャ10の通信インタフェースであり、オペレータ1ないし3や電波監理当局4と周波数スペクトルの割当情報や、記憶部11が記憶するプロトコルなどの情報を送受信する。送受信部12の送受信は、有線回線を介して行ってもよいし無線回線を介して行ってもよい。送受信部12は、必要に応じて周辺地域の周波数スペクトルの利用状況を電波監理当局4のデータベースに送信することができる。これにより、電波監理当局4の周波数管理データベースが更新される。 The transmission / reception unit 12 is a communication interface of the frequency manager 10 and transmits / receives information such as frequency spectrum allocation information and protocols stored in the storage unit 11 to / from the operators 1 to 3 and the radio wave supervisory authority 4. The transmission / reception of the transmission / reception unit 12 may be performed via a wired line or a wireless line. The transmission / reception unit 12 can transmit the utilization state of the frequency spectrum in the surrounding area to the database of the radio wave supervisory authority 4 as necessary. As a result, the frequency management database of the radio wave management authority 4 is updated.
 割当演算部13は、オペレータ1ないし3それぞれのトラヒック需要や共用ポリシーに従って、それぞれに割り当てる周波数スペクトルの総量を決定する。割当演算部13は、オペレータ1ないし3から送られる所要帯域幅情報などを用いて、実際にオペレータ1ないし3に割り当てる周波数スペクトルの帯域幅を計算する。 The allocation calculation unit 13 determines the total amount of frequency spectrum to be allocated to each of the operators 1 to 3 according to the traffic demands and the sharing policy. The allocation calculation unit 13 calculates the bandwidth of the frequency spectrum that is actually allocated to the operators 1 to 3 using the required bandwidth information transmitted from the operators 1 to 3.
 スペクトル演算部14は、共用周波数スペクトルの利用に先立って共通サブキャリアグリッドを算出する。共通サブキャリアグリッドは、連続または不連続などの構造情報や、コヒーレンス時間、コヒーレンス帯域幅など当該共用周波数スペクトルの伝搬特性に基づいて決定される。この決定は、予想されるユーザ密度、キャリア周波数オフセットの許容値など共通サブキャリアグリッドの構造に大きな影響を与える要素を考慮してもよい。図2Aに示すように、サブキャリアグリッド21は、共用する周波数スペクトルの範囲内に複数のサブキャリアを有している。スペクトル演算部14は、オペレータ1ないし3に割り当てる周波数スペクトルを、サブキャリアの数(割り当てるサブキャリアの位置)として割り当てることができる。ここで、スペクトル演算部14は、サブキャリア単位ではなく、複数のサブキャリアからなる資源ブロック(リソースブロック)として割り当てを行ってもよい。LTEシステムの場合、一つのリソースブロックが12のサブキャリアから構成されるが、複数のサブキャリアからなるリソースブロック単位で周波数資源を利用するシステムでは、サブキャリア単位よりもリソースブロック単位の方が演算数を少なくすることができ、さらなる効率化を図ることができる。 The spectrum calculation unit 14 calculates a common subcarrier grid prior to using the shared frequency spectrum. The common subcarrier grid is determined based on structural information such as continuous or discontinuous, propagation characteristics of the shared frequency spectrum such as coherence time and coherence bandwidth. This determination may take into account factors that have a significant impact on the structure of the common subcarrier grid, such as expected user density, carrier frequency offset tolerance. As shown in FIG. 2A, the subcarrier grid 21 has a plurality of subcarriers within a shared frequency spectrum. The spectrum calculation unit 14 can assign the frequency spectrum to be assigned to the operators 1 to 3 as the number of subcarriers (position of subcarriers to be assigned). Here, the spectrum calculation unit 14 may perform allocation not as a subcarrier unit but as a resource block (resource block) including a plurality of subcarriers. In the case of an LTE system, one resource block is composed of 12 subcarriers. However, in a system that uses frequency resources in units of resource blocks composed of a plurality of subcarriers, the calculation is performed in units of resource blocks rather than in units of subcarriers. The number can be reduced, and further efficiency can be achieved.
 断片演算部15は、共用周波数スペクトルが連続的でない場合に、オペレータ1ないし3それぞれに割り当てる断片部分を算出する。図2Bは、非連続のサブキャリアグリッド22の例を示す。図2Bに示すように、共有する周波数スペクトルが連続的ではない場合、断片化した周波数帯に対応するサブキャリアが割り当てられる。非連続のサブキャリアグリッド22においても、サブキャリア単位ではなく、複数のサブキャリアからなるリソースブロックとして割り当てを行ってもよい。 The fragment calculation unit 15 calculates a fragment portion to be assigned to each of the operators 1 to 3 when the shared frequency spectrum is not continuous. FIG. 2B shows an example of a discontinuous subcarrier grid 22. As shown in FIG. 2B, when the shared frequency spectrum is not continuous, subcarriers corresponding to fragmented frequency bands are allocated. Also in the discontinuous subcarrier grid 22, the allocation may be performed as a resource block including a plurality of subcarriers instead of a subcarrier unit.
 オペレータ1ないし3は、共有コントローラ1aないし3a、基地局1bないし3bおよびユーザ局1cないし3cを有している。共有コントローラ1aないし3aは、周波数スペクトルの共用に関する情報を周波数マネージャ10に伝達する通信インタフェースとして機能する。また、共用コントローラ1aないし3aは、対応する配下の基地局1bないし3bおよびユーザ局1cないし3cが使用する周波数資源を管理する。共用コントローラ1aないし3aは、GPSシステムを具備して異なるオペレータ間の周波数スペクトル情報を同期させてもよい。基地局1bないし3bは、共用コントローラ1aないし3aを介して周波数マネージャ10から割り当てられたサブキャリアを有効または無効とすることで、対応するユーザ局1cないし3cにデータを送信可能とする。 Operators 1 to 3 have shared controllers 1a to 3a, base stations 1b to 3b, and user stations 1c to 3c. The shared controllers 1a to 3a function as a communication interface that transmits information related to sharing of the frequency spectrum to the frequency manager 10. The shared controllers 1a to 3a manage the frequency resources used by the corresponding base stations 1b to 3b and user stations 1c to 3c. The shared controllers 1a to 3a may be equipped with a GPS system to synchronize frequency spectrum information between different operators. The base stations 1b to 3b enable data transmission to the corresponding user stations 1c to 3c by enabling or disabling the subcarriers assigned from the frequency manager 10 via the shared controllers 1a to 3a.
 (実施形態の動作)
 続いて、図1および3を参照して、実施形態の周波数管理装置の動作を説明する。
(Operation of the embodiment)
Next, the operation of the frequency management apparatus according to the embodiment will be described with reference to FIGS.
 送受信部12は、電波監理当局4から周波数スペクトルの共用に関するプロトコルや規則などの監理情報を取得し、記憶部11に記憶する(ステップ100。以下「S100」のように示す。)。記憶部11は、オペレータ1ないし3、対応する共用合意ポリシー、および共用対象の全周波数スペクトルにおける各オペレータ1ないし3それぞれに対する割り当て分を示す割当比率ρを関連付けて予め記憶している。割当比率ρは、数式1にて表される。
Figure JPOXMLDOC01-appb-M000001
 ここで、Nopは、オペレータ数である。割当比率ρは、共用合意ポリシー、トラヒック要求およびサブキャリアSN比(SNR)に応じてオペレータ1ないし3それぞれに対応する周波数スペクトル量を決定する要素である。共通合意ポリシーは、例えばオペレータ1ないし3それぞれの金銭的貢献の大きい順に大きな周波数スペクトルを使用するような内容を含んでおり、割当比率ρは、共通合意ポリシーに基づいて予め設定されている。
The transmission / reception unit 12 acquires management information such as protocols and rules related to sharing of the frequency spectrum from the radio wave monitoring authority 4 and stores it in the storage unit 11 (step 100, hereinafter indicated as “S100”). The storage unit 11 stores in advance an operator 1 to 3, a corresponding sharing agreement policy, and an allocation ratio ρ indicating an allocation for each of the operators 1 to 3 in all frequency spectrums to be shared. The allocation ratio ρ is expressed by Equation 1.
Figure JPOXMLDOC01-appb-M000001
Here, N op is the number of operators. The allocation ratio ρ is an element that determines the amount of frequency spectrum corresponding to each of the operators 1 to 3 according to the shared agreement policy, the traffic request, and the subcarrier signal-to-noise ratio (SNR). The common agreement policy includes, for example, contents that use a large frequency spectrum in descending order of the financial contributions of the operators 1 to 3, and the allocation ratio ρ is set in advance based on the common agreement policy.
 オペレータ1ないし3の共用コントローラ1aないし3aそれぞれは、まず、自己の無線ネットワークが必要とする所要周波数スペクトル量、すなわちサブキャリア数を、ユーザ局1cないし3cのスループット要求および合計許容送信電力に基づいて計算する(S200)。共用コントローラ1aないし3aは、計算した周波数スペクトル要求量を、対応するユーザ局1cないし3cのサブキャリアSN比とともに周波数マネージャ10に送る。 Each of the shared controllers 1a to 3a of the operators 1 to 3 first determines the required frequency spectrum amount required by its own radio network, that is, the number of subcarriers, based on the throughput requirements of the user stations 1c to 3c and the total allowable transmission power. Calculate (S200). The shared controllers 1a to 3a send the calculated frequency spectrum request amount to the frequency manager 10 together with the subcarrier signal-to-noise ratios of the corresponding user stations 1c to 3c.
 ここで、ユーザ局1cないし3cの要求を満足するよう共用コントローラ1aないし3aから要求される周波数スペクトルの最小量は、数式2にて表される。
Figure JPOXMLDOC01-appb-M000002
 数式2に示す周波数スペクトル最小量は、数式3に示す平均サブキャリアSN比および送信電力制限に基づいて計算される。
Figure JPOXMLDOC01-appb-M000003
 数式3に示す平均サブキャリアSN比は、オペレータのチャネル品質情報のマトリクスを示している。
Here, the minimum amount of the frequency spectrum required from the shared controllers 1a to 3a so as to satisfy the requirements of the user stations 1c to 3c is expressed by Equation 2.
Figure JPOXMLDOC01-appb-M000002
The frequency spectrum minimum amount shown in Equation 2 is calculated based on the average subcarrier signal-to-noise ratio and transmission power limit shown in Equation 3.
Figure JPOXMLDOC01-appb-M000003
The average subcarrier signal-to-noise ratio shown in Equation 3 represents a matrix of operator channel quality information.
 割当演算部13は、割当処理に入る前に、数式4に示す有効割当比率ρactを計算する(S300)。有効割当比率ρactは、記憶部11に記憶された割当比率ρとは異なり、各オペレータからの要求(需要)を加味して実際に周波数スペクトルの割り当てに用いる割当比率である。すなわち、割当比率ρは共通合意ポリシーに基づき決定される割当比率の初期値であり、有効割当比率ρactは、各オペレータの需要を加味して計算される割当比率である。
Figure JPOXMLDOC01-appb-M000004
The allocation calculation unit 13 calculates an effective allocation ratio ρ act shown in Equation 4 before entering the allocation process (S300). Unlike the allocation ratio ρ stored in the storage unit 11, the effective allocation ratio ρact is an allocation ratio that is actually used for frequency spectrum allocation in consideration of requests (demands) from each operator. That is, the allocation ratio ρ is an initial value of the allocation ratio determined based on the common agreement policy, and the effective allocation ratio ρ act is an allocation ratio calculated in consideration of each operator's demand.
Figure JPOXMLDOC01-appb-M000004
 スペクトル演算部14は、予め記憶部11に記憶したコヒーレンス帯域幅Bcoh、コヒーレンス時間Tcoh、許容キャリア周波数オフセット(CFO:Carrier Frequency Offset)CFOtol、ドップラー周波数f、不連続周波数スペクトルであればその中でより小さい帯域幅サイズBlowなどの諸々のパラメータに応じて、サブキャリアグリッドSgridのうちサブキャリア数Nsub、サブキャリア間隔Δsubを計算する。このとき、サブキャリア間隔Δsubは、すべてのサブキャリアにおいて平坦なフェージング特性となるよう慎重に設定される。 The spectrum calculation unit 14 is a coherence bandwidth B coh , coherence time T coh , allowable carrier frequency offset (CFO) CFO tol , Doppler frequency f D , and discontinuous frequency spectrum stored in advance in the storage unit 11. Among them, according to various parameters such as a smaller bandwidth size B low , the number of subcarriers N sub and the subcarrier interval Δ sub in the subcarrier grid S grid are calculated. At this time, the subcarrier interval Δsub is carefully set so as to have flat fading characteristics in all subcarriers.
 一般に、BcohおよびTcohは、Δsubの最大値や最小値を決定する。したがって、サブキャリア数Nsub、サブキャリア間隔Δsubは数式5のように表される。
Figure JPOXMLDOC01-appb-M000005
 均一な共通サブキャリアグリッドを仮定すると、周波数スペクトルが不連続であったとしても、サブキャリアグリッドは運用する周波数スペクトルすべてをカバーすることができる。すなわち、図2Bに示すように、共用する周波数スペクトルが不連続であっても、サブキャリア単位(またはリソースブロック単位)であれば、断片化された周波数帯域すべてをカバーできる。
In general, B coh and T coh determine the maximum value and the minimum value of Δ sub . Therefore, the number of subcarriers N sub and the subcarrier interval Δ sub are expressed as Equation 5.
Figure JPOXMLDOC01-appb-M000005
Assuming a uniform common subcarrier grid, even if the frequency spectrum is discontinuous, the subcarrier grid can cover all operating frequency spectrums. That is, as shown in FIG. 2B, even if the shared frequency spectrum is discontinuous, all the fragmented frequency bands can be covered as long as they are in subcarrier units (or resource block units).
 割当演算部13およびスペクトル演算部14は、共用ポリシーおよびオペレータのトラヒック要求に基づき、システムスループットの合計を最大化しつつ、公平で調和のとれた要件を満たすような周波数スペクトルの分配処理を実現する。周波数スペクトルのオペレータ間の割り当ては、概ね数式6および7の関係を満たすように行われる(S400)。
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000007
 ここで、パラメータρ actは、オペレータnにおける有効割当比率であるから、概ねオペレータごとの有効割当比率に応じたサブキャリアが分配される。
The allocation calculation unit 13 and the spectrum calculation unit 14 realize a frequency spectrum distribution process that satisfies fair and harmonized requirements while maximizing the total system throughput based on the sharing policy and the traffic request of the operator. Allocation between the operators of the frequency spectrum is performed so as to satisfy the relations of Expressions 6 and 7 (S400).
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000007
Here, since parameter ρ n act is an effective allocation ratio in operator n, subcarriers roughly corresponding to the effective allocation ratio for each operator are distributed.
 オペレータnにおける有効割当比率は、すべての共用コントローラ1aないし3aが初期状態として合意した割当比率ρを超える周波数スペクトルを要求する場合、オペレータの現在のトラヒック要求やオペレータが期待する共有ポリシーに応じた帯域幅の最小値に基づいて計算される。数式7に示すように正規化された割当比率ρ actを用いることで、周波数スペクトルの割当比率を明確に制御することが可能になる。 The effective allocation ratio of the operator n depends on the current traffic request of the operator and the sharing policy expected by the operator when all the shared controllers 1a to 3a request a frequency spectrum exceeding the allocation ratio ρ n agreed as an initial state. Calculated based on the minimum bandwidth. By using the normalized allocation ratio ρ n act as shown in Expression 7, it is possible to clearly control the allocation ratio of the frequency spectrum.
 スペクトル演算部14がサブキャリアSを計算すると、送受信部12は、計算したサブキャリアをオペレータ1ないし3の共用コントローラ1aないし3aに送信する(S500)。 When the spectrum calculation unit 14 calculates the sub-carrier S n, transmission and reception unit 12 transmits the calculated subcarrier shared controller 1a to 3a of the operator 1 to 3 (S500).
 (割当演算部の動作)
 次に、図1および図4を参照して、割当演算部13の動作を説明する。割当演算部13は、有効割当比率の組を計算する。
(Operation of the allocation calculator)
Next, the operation of the allocation calculation unit 13 will be described with reference to FIGS. 1 and 4. The allocation calculation unit 13 calculates a set of effective allocation ratios.
 割当演算部13は、予め記憶部11に記憶されたルールに従って動的かつ公平な周波数スペクトルの割当を実現する(S301)。オペレータnに割り当てられる周波数スペクトルの分量、すなわちδは、最大送信電力PMax (n)および平均サブキャリアSN比H(n)に基づいて計算され、いくつかの公平な基準のもとで調整される(S302)。 The allocation calculation unit 13 realizes dynamic and fair frequency spectrum allocation according to the rules stored in advance in the storage unit 11 (S301). Amount of the frequency spectrum allocated to the operator n, i.e., [delta] n, is calculated based on the maximum transmit power P Max (n) and the average subcarrier SN ratio H (n), adjustment under some fairness criteria (S302).
 もし、数式8に示すサブキャリア数δに関する周波数スペクトルの要求量が、各オペレータが共用に合意した割当比率ρに対応する数式9に示す実際の要求比例値η以上または以下である場合(S303のYes)、割当演算部13は、記憶部11に記憶された共用合意ポリシーに従って、数式10に示すように当該ポリシーに基づくρに比例するようにサブキャリアを割り当てる(S304)。
Figure JPOXMLDOC01-appb-M000008
Figure JPOXMLDOC01-appb-M000009
Figure JPOXMLDOC01-appb-M000010
If the required amount of the frequency spectrum related to the number of subcarriers δ n shown in Equation 8 is greater than or less than the actual required proportional value η n shown in Equation 9 corresponding to the allocation ratio ρ n that each operator has agreed to share. (Yes in S303), the allocation calculation unit 13 allocates subcarriers according to the shared agreement policy stored in the storage unit 11 so as to be proportional to ρ n based on the policy as shown in Equation 10 (S304).
Figure JPOXMLDOC01-appb-M000008
Figure JPOXMLDOC01-appb-M000009
Figure JPOXMLDOC01-appb-M000010
 いくつかのオペレータについて数式11を満たすとともに、残りのオペレータについて数式12を満たし(i≠j)、さらに数式13を満足する場合(S306,S308のYes)、割当演算部13は、合意ポリシーを破らないように、共用の合意にかかわらず所望の分量の周波数スペクトルを割り当てる(S307,S309)。
Figure JPOXMLDOC01-appb-M000011
Figure JPOXMLDOC01-appb-M000012
Figure JPOXMLDOC01-appb-M000013
When satisfying Expression 11 for some operators and Expression 12 for the remaining operators (i ≠ j) and further satisfying Expression 13 (Yes in S306 and S308), the allocation calculation unit 13 breaks the agreement policy. A desired amount of frequency spectrum is allocated regardless of shared agreement (S307, S309).
Figure JPOXMLDOC01-appb-M000011
Figure JPOXMLDOC01-appb-M000012
Figure JPOXMLDOC01-appb-M000013
 しかし、もし数式14を満たす場合(S306,S308のNo)、周波数マネージャは、「|δ-η|」の和の値に応じて、「δ<η」となるオペレータに対し追加的な周波数スペクトルを割り当てる(S310,S311)。
Figure JPOXMLDOC01-appb-M000014
However, if Expression 14 is satisfied (No in S306 and S308), the frequency manager adds to the operator satisfying “δ nn ” according to the sum of “| δ n −η n |”. Frequency spectrum is allocated (S310, S311).
Figure JPOXMLDOC01-appb-M000014
 この実施形態の周波数管理システム、周波数管理装置によれば、共通合意ポリシーに基づく割当比率だけでなく、オペレータの要求を加味した有効割当比率に基づいて周波数スペクトルの分配を行うので、周波数スペクトルの柔軟な割り当てを実現することができる。また、この実施形態の周波数管理システム、周波数管理装置によれば、オペレータの要求(需要)だけでなく、オペレータ個々の需要の存否の合計値(たとえば図4のステップ305に示すパラメータν)を用いて周波数スペクトルの分配を行うので、複数のオペレータ全体にとってより公平な周波数スペクトルの分配を実現することができる。 According to the frequency management system and the frequency management apparatus of this embodiment, frequency spectrum is distributed based not only on the allocation ratio based on the common agreement policy but also on the effective allocation ratio considering the operator's request. Can be achieved. Further, according to the frequency management system and the frequency management apparatus of this embodiment, not only the operator's request (demand) but also the total value of the presence / absence of demand for each operator (for example, parameter ν shown in step 305 in FIG. 4) is used. Therefore, the frequency spectrum can be distributed more evenly for the plurality of operators.
 (スペクトル演算部の動作)
 続いて、図5を参照して、スペクトル演算部14の動作を説明する。スペクトル演算部14は、オペレータごとに割り当てるサブキャリアを計算する(S401ないしS407)。
(Operation of spectrum calculation unit)
Next, the operation of the spectrum calculation unit 14 will be described with reference to FIG. The spectrum calculation unit 14 calculates subcarriers to be assigned for each operator (S401 to S407).
 オペレータiは、数式15に示す条件を満たせば、対応するすべてのユーザ局について最も高いSN比をもつサブキャリアの割当を受ける機会を有する(S408ないしS410)。
Figure JPOXMLDOC01-appb-M000015
If the condition shown in Expression 15 is satisfied, the operator i has an opportunity to receive the allocation of the subcarrier having the highest S / N ratio for all the corresponding user stations (S408 to S410).
Figure JPOXMLDOC01-appb-M000015
 ここで、{S,S,…,SNop}は対応するオペレータに割り当てられたサブキャリアの組を示し、数式16に示す関係にある。
Figure JPOXMLDOC01-appb-M000016
Here, {S 1 , S 2 ,..., S Nop } represents a set of subcarriers assigned to the corresponding operator, and has a relationship represented by Expression 16.
Figure JPOXMLDOC01-appb-M000016
 この手法によれば、要求する周波数スペクトルの分量と共用ポリシーに応じたサブキャリアの割当を実現することができる。ここで、「||X||」は、Xの組の基数を現している。さらに、それぞれのオペレータに対するサブキャリアの割り当ては、ユーザ局の間で公平さが維持されるように行われる。すなわち、それぞれのユーザ局は、ラウンドロビンの手法により、最善のサブキャリアの割り当てを得るよう等しい機会を有している。 According to this method, it is possible to realize the allocation of subcarriers according to the required amount of frequency spectrum and the shared policy. Here, “|| X ||” represents the radix of the set of X. Furthermore, the allocation of subcarriers to each operator is performed so that fairness is maintained among user stations. That is, each user station has equal opportunities to obtain the best subcarrier allocation in a round robin manner.
 最後に、周波数マネージャがサブキャリアの組{S,S,…,SNop}を探索した後、すべてのオペレータに通知する。異なるオペレータに対する周波数スペクトルの割り当ては、数式17に示す式により実現される。
Figure JPOXMLDOC01-appb-M000017
Finally, after the frequency manager searches for a set of subcarriers {S 1 , S 2 ,..., S Nop }, it notifies all operators. The allocation of the frequency spectrum to different operators is realized by the equation shown in Equation 17.
Figure JPOXMLDOC01-appb-M000017
 ここで、サブキャリアSは、図2Bに示すように、周波数スペクトルの小さい断片がまとまった帯域からなるものでもよいし、周波数スペクトル全体にわたって断片が散らばったものからなるものでもよい。 Here, the sub-carrier S n, as shown in Figure 2B, may be made of bands smaller fragment of the frequency spectrum is organized, may consist of those fragments were scattered across the entire frequency spectrum.
 一般に、サブキャリアをベースとした周波数スペクトルの割り当ては、計算処理が繰り返されるから、割り当てを決定するのにかなり長い時間を必要とする。もし運用環境においてチャネルの周波数選択性が高い場合、サブキャリア間隔が短くなるのでNが大きくなる傾向にある。これにより計算時間が増加する。 Generally, frequency spectrum allocation based on subcarriers requires a considerably long time to determine allocation because the calculation process is repeated. If the channel frequency selectivity is high in the operating environment, N tends to increase because the subcarrier interval is shortened. This increases the computation time.
 そこで、実施形態のスペクトル演算部14は、計算時間を減らすため、サブキャリア単位ではなく、サブバンドベースで周波数スペクトルを割り当てることができる。すなわち、連続的なサブキャリアのグループ(バンド)として計算することができる。同様に、サブキャリアの組は、連続したサブキャリアとして計算してもよいし、サブキャリアの組としてもよい。図2Bに示すリソースブロックベースで周波数スペクトルを割り当てた場合も同様の効果を得ることができる。 Therefore, the spectrum calculation unit 14 according to the embodiment can allocate the frequency spectrum on a subband basis, not on a subcarrier basis, in order to reduce the calculation time. That is, it can be calculated as a continuous subcarrier group (band). Similarly, the subcarrier set may be calculated as a continuous subcarrier or may be a subcarrier set. The same effect can be obtained when the frequency spectrum is assigned based on the resource block shown in FIG. 2B.
 (断片演算部の機能)
 共用する周波数スペクトルが断片化している場合にも、同様の手順を適用することができる。共用する周波数スペクトルが断片化している場合、実施形態の周波数マネージャは、オペレータ間の周波数調整を行う断片演算部15を備えることができる。
(Function of the fragment calculation unit)
A similar procedure can be applied when the shared frequency spectrum is fragmented. When the frequency spectrum to be shared is fragmented, the frequency manager of the embodiment can include a fragment calculation unit 15 that performs frequency adjustment between operators.
 オペレータは、共用コントローラを通じて、断片化した周波数スペクトルの割当について自己の希望する断片部分について変数αという形で周波数マネージャに伝えることができる。断片演算部15は、スペクトル演算部14が計算したオペレータごとに割り当てる周波数スペクトルについて、オペレータから送られた変数αを用いてサブキャリアを再分配する。 The operator can transmit to the frequency manager in the form of a variable α about the desired fragment portion of the allocation of the fragmented frequency spectrum through the shared controller. The fragment calculation unit 15 redistributes the subcarriers using the variable α sent from the operator for the frequency spectrum assigned to each operator calculated by the spectrum calculation unit 14.
 変数αは、当該周波数を共用するオペレータの数に応じた範囲の値をもつ。たとえば、もし二つのオペレータのみであるなら、変数αはバイナリデータとすることができる。もし一方のオペレータが周波数スペクトルの低域側端部領域で送信したい場合、0または1を送る。他方のオペレータも同様である。もしオペレータが3以上あれば、変数αは2ビットサイズのデータとして、たとえば「00」であれば低域側端部領域、「11」であれば高域側端部領域のように定義すればよい。 The variable α has a value in a range corresponding to the number of operators sharing the frequency. For example, if there are only two operators, the variable α can be binary data. If one operator wants to transmit in the lower end region of the frequency spectrum, send 0 or 1. The same applies to the other operator. If the operator is 3 or more, the variable α is defined as 2-bit data, for example, “00” is defined as a low frequency side end region, and “11” is defined as a high frequency side end region. Good.
 断片演算部15は、各オペレータの共用コントローラから送られる変数αを用いて、オペレータを共用する周波数スペクトルのどの位置を割り当てるか決定することができる。短距離通信やチャネル伝搬特性、断片領域の容量などの諸条件によっては、共用周波数帯の中の一つの断片領域から他の断片領域へまたがることも可能である。 The fragment calculation unit 15 can determine which position of the frequency spectrum sharing the operator is assigned using the variable α sent from the common controller of each operator. Depending on various conditions such as short-range communication, channel propagation characteristics, and fragment area capacity, it is possible to extend from one fragment area to another fragment area in the shared frequency band.
 ここで、二以上のオペレータが同じ断片領域を要求した場合、周波数マネージャは上記条件を考慮して優先権を与える必要がある。もしすべてのオペレータが同種の適用対象を要求し優先度が同じ場合は、断片演算部15は、公平な分配を行うためランダム選択により優先するオペレータを決定する。同じような状況が将来的に発生した場合は、断片演算部15は、前回優先権を与えたオペレータ(共用コントローラ)を除いた他者を対象に同様のランダム選択を行う。これにより、オペレータ間の周波数スペクトルの分配を公平に行うことができる。 Here, when two or more operators request the same fragment area, the frequency manager needs to give priority in consideration of the above conditions. If all operators request the same type of application target and have the same priority, the fragment calculation unit 15 determines a preferred operator by random selection in order to perform fair distribution. When a similar situation occurs in the future, the fragment calculation unit 15 performs the same random selection for other persons except for the operator (shared controller) that has given the previous priority. Thereby, frequency spectrum distribution among operators can be performed fairly.
 断片的な周波数スペクトルの割当を行う場合、オペレータそれぞれは、共用コントローラおよび周波数マネージャ間の通信回線とは別に、独立したネットワークを持つことができる。これにより、オペレータそれぞれは、自己の送信フレーム構造を利用形態やトラヒック形式などに従って互いにサブキャリアの位置などを調整することが可能になる。すなわち、オペレータは、サブキャリアの数を変更して断片領域内のサブキャリア間隔を調節することで周波数の調整を図ることができる。なお、断片演算部15は、サブキャリアに替えてリソースブロック単位で処理しても構わない。 When performing fragmentary frequency spectrum allocation, each operator can have an independent network separately from the communication line between the shared controller and the frequency manager. Thereby, each operator can adjust the positions of subcarriers and the like with each other according to the use form, traffic form, etc. of their transmission frame structure. That is, the operator can adjust the frequency by changing the number of subcarriers and adjusting the subcarrier interval in the fragment area. Note that the fragment calculation unit 15 may perform processing in units of resource blocks instead of subcarriers.
 実施形態の周波数マネージャ、周波数管理システムによれば、共用する周波数帯を複数のサブキャリアとして定義し、オペレータ間に分配するので、連続/非連続の共用周波数スペクトルを効率に利用することができる。特に、小さい周波数スペクトル領域であっても多くのオペレータが共用することができる。 According to the frequency manager and the frequency management system of the embodiment, since the shared frequency band is defined as a plurality of subcarriers and distributed among operators, a continuous / non-continuous shared frequency spectrum can be used efficiently. In particular, many operators can share even a small frequency spectrum region.
 また、図6および7に示すように、周波数スペクトルを共用するオペレータが多い場合でも高い周波数ダイバーシティ特性を達成できる。すなわち、オペレータの基地局およびユーザ局に対して周波数資源をより公平に共用させ、より公平な周波数スペクトルの共用を効率的に実現できる。 Further, as shown in FIGS. 6 and 7, even when there are many operators sharing the frequency spectrum, high frequency diversity characteristics can be achieved. That is, it is possible to share the frequency resource more fairly to the operator base station and the user station and to efficiently share the frequency spectrum more evenly.
 周波数スペクトル割当を、オペレータ間の分配比率およびサブキャリア分配の二段階で行うので、オペレータそれぞれはシステム要件やサービスの種類に応じて独立した周波数割り当てを可能にする。 Since frequency spectrum allocation is performed in two stages of distribution ratio between operators and subcarrier distribution, each operator can independently allocate frequencies according to system requirements and service types.
 1~3…オペレータ、1a~3a…共用コントローラ、1b~3b…基地局、1c~3c…ユーザ局、10…周波数マネージャ、11…記憶部、12…送受信部、13…割当演算部、14…スペクトル演算部、15…断片制御部。 DESCRIPTION OF SYMBOLS 1-3 ... Operator, 1a-3a ... Shared controller, 1b-3b ... Base station, 1c-3c ... User station, 10 ... Frequency manager, 11 ... Memory | storage part, 12 ... Transmission / reception part, 13 ... Allocation calculating part, 14 ... Spectrum calculation unit, 15... Fragment control unit.

Claims (5)

  1.  共通する周波数帯を共用する複数の無線ネットワークについて、前記共通する周波数帯のうち前記無線ネットワークそれぞれが個別に使用する周波数帯を割り当てる周波数管理装置であって、
     前記共通する周波数帯を構成する単位を示す周波数スペクトル単位情報と、前記共通する周波数帯において前記複数の無線ネットワークそれぞれが使用する周波数スペクトルの初期スペクトル量情報とを記憶する記憶部と、
     前記複数の無線ネットワークに属する共用制御部を通じて該共用制御部が属する複数の無線ネットワークが必要とする周波数スペクトル量を示す所要スペクトル量情報を受信する受信部と、
     前記初期スペクトル量情報および前記所要スペクトル量情報に基づいて、前記共通する周波数帯のうち前記複数の無線ネットワークそれぞれに割り当てる相対的スペクトル量を計算する割当演算部と、
     前記複数の無線ネットワークそれぞれに対応する前記相対的スペクトル量および前記周波数スペクトル単位情報に基づいて、前記複数のネットワークそれぞれに割り当てる割当スペクトル量を計算するスペクトル演算部と
    を具備する周波数管理装置。
    For a plurality of wireless networks sharing a common frequency band, a frequency management device that allocates a frequency band individually used by each of the wireless networks among the common frequency bands,
    A storage unit for storing frequency spectrum unit information indicating a unit constituting the common frequency band, and initial spectrum amount information of a frequency spectrum used by each of the plurality of wireless networks in the common frequency band;
    A receiving unit for receiving required spectrum amount information indicating a frequency spectrum amount required by a plurality of wireless networks to which the shared control unit belongs through a shared control unit belonging to the plurality of wireless networks;
    An allocation calculator that calculates a relative spectral amount to be allocated to each of the plurality of wireless networks in the common frequency band based on the initial spectral amount information and the required spectral amount information;
    A frequency management device comprising: a spectrum calculation unit that calculates an allocated spectrum amount to be assigned to each of the plurality of networks based on the relative spectrum amount and the frequency spectrum unit information corresponding to each of the plurality of wireless networks.
  2.  前記割当演算部は、前記複数の無線ネットワークに対応する前記初期スペクトル量情報および前記所要スペクトル量情報が一致しない場合、前記複数の無線ネットワークすべてにおける前記初期スペクトル量情報および前記所要スペクトル量情報の差分の合計値を用いて、前記初期スペクトル量情報および前記所要スペクトル量情報が一致しない前記複数の無線ネットワークに対する前記相対的スペクトル量を計算することを特徴とする請求項1記載の周波数管理装置。 The allocation calculation unit, when the initial spectrum amount information and the required spectrum amount information corresponding to the plurality of wireless networks do not match, a difference between the initial spectrum amount information and the required spectrum amount information in all of the plurality of wireless networks The frequency management apparatus according to claim 1, wherein the relative spectrum amount for the plurality of wireless networks in which the initial spectrum amount information and the required spectrum amount information do not match is calculated using a total value of
  3.  前記スペクトル演算部は、フェージング特性を考慮して前記割当スペクトル量を計算することを特徴とする請求項1または2記載の周波数管理装置。 The frequency management device according to claim 1 or 2, wherein the spectrum calculation unit calculates the allocated spectrum amount in consideration of fading characteristics.
  4.  前記周波数スペクトル単位情報は、サブキャリアの組からなる情報であり、
     前記スペクトル演算部は、前記割当スペクトル量として前記サブキャリアの組を計算すること
    を特徴とする請求項1ないし3のいずれか1項に記載の周波数管理装置。
    The frequency spectrum unit information is information consisting of a set of subcarriers,
    The frequency management apparatus according to any one of claims 1 to 3, wherein the spectrum calculation unit calculates the set of subcarriers as the allocated spectrum amount.
  5.  前記周波数スペクトル単位情報は、複数のサブキャリアの組からなるリソースブロックからなる情報であり、
     前記スペクトル演算部は、前記割当スペクトル量として前記リソースブロックの量を計算すること
    を特徴とする請求項1ないし3のいずれか1項に記載の周波数管理装置。
    The frequency spectrum unit information is information composed of resource blocks composed of a set of a plurality of subcarriers,
    The frequency management apparatus according to claim 1, wherein the spectrum calculation unit calculates the amount of the resource block as the allocated spectrum amount.
PCT/JP2017/002900 2016-01-29 2017-01-27 Frequency management device WO2017131142A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016016626A JP2017135686A (en) 2016-01-29 2016-01-29 Frequency management device
JP2016-016626 2016-01-29

Publications (1)

Publication Number Publication Date
WO2017131142A1 true WO2017131142A1 (en) 2017-08-03

Family

ID=59399063

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/002900 WO2017131142A1 (en) 2016-01-29 2017-01-27 Frequency management device

Country Status (2)

Country Link
JP (1) JP2017135686A (en)
WO (1) WO2017131142A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111726869A (en) * 2019-03-22 2020-09-29 上海朗帛通信技术有限公司 Method and apparatus in a node used for wireless communication

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7287911B2 (en) * 2020-03-06 2023-06-06 株式会社Kddi総合研究所 Frequency mapping device, frequency mapping method and computer program
WO2021200311A1 (en) * 2020-03-31 2021-10-07 日本電気株式会社 Control device, control method, and program
JP7491369B2 (en) * 2020-03-31 2024-05-28 日本電気株式会社 Mobile communication system and control method
JP2024057113A (en) * 2021-03-01 2024-04-24 ソニーグループ株式会社 Communication control device, network device, communication control system, communication control method, and information communication method

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
J. LUO ET AL.: "Multi-Carrier Waveform Based Flexible Inter- Operator Spectrum Sharing for 5G Systems", IEEE INTERNATIONAL SYMPOSIUM ON DYNAMIC SPECTRUM ACCESS NETWORKS (DYSPAN, 19 May 2014 (2014-05-19), pages 449 - 457, XP032596029 *
M. G. KIBRIA ET AL.: "SOCP Approximation Based Resource Allocation in Shared Spectrum Access Communications", INTERNATIONAL CONFERENCE ON ADVANCED INFORMATION NETWORKING AND APPLICATIONS WORKSHOPS (WAINA, 19 May 2016 (2016-05-19), pages 481 - 486, XP032902468 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111726869A (en) * 2019-03-22 2020-09-29 上海朗帛通信技术有限公司 Method and apparatus in a node used for wireless communication
CN111726869B (en) * 2019-03-22 2023-04-07 上海朗帛通信技术有限公司 Method and apparatus in a node used for wireless communication

Also Published As

Publication number Publication date
JP2017135686A (en) 2017-08-03

Similar Documents

Publication Publication Date Title
WO2017131142A1 (en) Frequency management device
CN107409329B (en) First and second network nodes, methods thereof, and computer readable media
CN101388694B (en) Apparatus and method for determining resources for peer to peer communication in a communication system
EP2761913B1 (en) Whitespace channel allocation
Azari et al. Hypergraph-based analysis of clustered co-operative beamforming with application to edge caching
CN112492603B (en) Multistage dynamic spectrum sharing method based on block chain technology
KR101630563B1 (en) Spectrum management system and method
CN111066337B (en) Spectrum sharing for hierarchical switching between networks and/or devices
CN107659915B (en) Internet-of-vehicles human-vehicle resource allocation method based on geographic region information
Jiang et al. Base station association game in multi-cell wireless networks (special paper)
Singh et al. Co-primary inter-operator spectrum sharing over a limited spectrum pool using repeated games
Shang et al. An economic aspect of device-to-device assisted offloading in cellular networks
JP2022127162A (en) Communication control device and communication control method
Abbas et al. Joint computing, communication and cost-aware task offloading in D2D-enabled Het-MEC
CN110536306B (en) Optimal power distribution method in multi-channel cognitive wireless network based on convex optimization
Li et al. Channel allocation scheme based on greedy algorithm in cognitive vehicular networks
Veeramakali et al. Intelligent dynamic spectrum allocation with bandwidth flexibility in cognitive radio network
Salameh et al. Price-and rate-aware multi-channel spectrum access for profit enhancement in opportunistic networks with QoS guarantees
CN105792228A (en) Cognitive radio frequency spectrum sharing system and frequency spectrum sharing method adopted by same
KR101770810B1 (en) Method for allocating uplink resource and cognitive small cell network system for performing the same
CN106900050B (en) downlink power processing method, processor and base station
Gopal et al. Resource allocation algorithm for 5G and B5G D2D underlay wireless cellular networks
WO2016101671A1 (en) Device and method for allocating frequency spectrum
KR20140036104A (en) Method for calculating fairness index and method for allocating resources based on the fairness index in coexistence management system
Gu et al. Resource allocation scheme for D2D communication based on ILA

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17744372

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17744372

Country of ref document: EP

Kind code of ref document: A1