WO2017131033A1 - 無線通信システム、無線通信端末および無線通信方法 - Google Patents
無線通信システム、無線通信端末および無線通信方法 Download PDFInfo
- Publication number
- WO2017131033A1 WO2017131033A1 PCT/JP2017/002547 JP2017002547W WO2017131033A1 WO 2017131033 A1 WO2017131033 A1 WO 2017131033A1 JP 2017002547 W JP2017002547 W JP 2017002547W WO 2017131033 A1 WO2017131033 A1 WO 2017131033A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- wireless communication
- communication standard
- random access
- wireless
- transmission
- Prior art date
Links
- 238000004891 communication Methods 0.000 title claims abstract description 466
- 238000000034 method Methods 0.000 title claims abstract description 142
- 230000005540 biological transmission Effects 0.000 claims abstract description 216
- 238000012545 processing Methods 0.000 claims description 28
- 238000007726 management method Methods 0.000 description 26
- 230000011664 signaling Effects 0.000 description 5
- 101100172132 Mus musculus Eif3a gene Proteins 0.000 description 4
- 230000002093 peripheral effect Effects 0.000 description 4
- 230000000694 effects Effects 0.000 description 2
- 238000013467 fragmentation Methods 0.000 description 2
- 238000006062 fragmentation reaction Methods 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 238000013468 resource allocation Methods 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L69/00—Network arrangements, protocols or services independent of the application payload and not provided for in the other groups of this subclass
- H04L69/18—Multiprotocol handlers, e.g. single devices capable of handling multiple protocols
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W74/00—Wireless channel access
- H04W74/08—Non-scheduled access, e.g. ALOHA
- H04W74/0833—Random access procedures, e.g. with 4-step access
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B7/00—Radio transmission systems, i.e. using radiation field
- H04B7/24—Radio transmission systems, i.e. using radiation field for communication between two or more posts
- H04B7/26—Radio transmission systems, i.e. using radiation field for communication between two or more posts at least one of which is mobile
- H04B7/2621—Radio transmission systems, i.e. using radiation field for communication between two or more posts at least one of which is mobile using frequency division multiple access [FDMA]
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04J—MULTIPLEX COMMUNICATION
- H04J1/00—Frequency-division multiplex systems
- H04J1/02—Details
- H04J1/08—Arrangements for combining channels
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W4/00—Services specially adapted for wireless communication networks; Facilities therefor
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W74/00—Wireless channel access
- H04W74/08—Non-scheduled access, e.g. ALOHA
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W74/00—Wireless channel access
- H04W74/08—Non-scheduled access, e.g. ALOHA
- H04W74/0833—Random access procedures, e.g. with 4-step access
- H04W74/0841—Random access procedures, e.g. with 4-step access with collision treatment
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W88/00—Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
- H04W88/02—Terminal devices
- H04W88/06—Terminal devices adapted for operation in multiple networks or having at least two operational modes, e.g. multi-mode terminals
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W88/00—Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
- H04W88/08—Access point devices
- H04W88/10—Access point devices adapted for operation in multiple networks, e.g. multi-mode access points
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L5/00—Arrangements affording multiple use of the transmission path
- H04L5/0001—Arrangements for dividing the transmission path
- H04L5/0003—Two-dimensional division
- H04L5/0005—Time-frequency
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L5/00—Arrangements affording multiple use of the transmission path
- H04L5/003—Arrangements for allocating sub-channels of the transmission path
- H04L5/0053—Allocation of signaling, i.e. of overhead other than pilot signals
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02D—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
- Y02D30/00—Reducing energy consumption in communication networks
- Y02D30/70—Reducing energy consumption in communication networks in wireless communication networks
Definitions
- the present invention relates to a wireless communication system in which a wireless communication terminal supports a plurality of wireless communication standards and performs wireless communication by effectively using frequency resources.
- the present invention also relates to a wireless communication terminal and a wireless communication method in the wireless communication system of the present invention.
- the frequency resource is the same even if it is read as a frequency segment meaning a frequency block.
- wireless communication standards for high-speed wireless communication such as wireless LAN and LTE have used different frequency bands and specified different access procedures.
- the IEEE802.11 standard is widely used for wireless LANs.
- the IEEE802.11b / g / n standard is used in the 2.4GHz band, which is an unlicensed unlicensed band, and IEEE802.11a / n is used in the 5GHz band, which is also an unlicensed band.
- LAA Liense-Assisted Access
- MuLTEfire using an unlicensed band used by a wireless LAN or the like
- LAA is a method of performing communication using a license band and an unlicensed band.
- frequency resources are used while competing with many wireless terminals.
- a wireless terminal using LAA can communicate in an unlicensed band in addition to a license band in which users are limited, and can increase available frequency resources. Furthermore, it is expected that higher speeds can be realized if available frequency resources increase.
- the new LAA and MuLTEfire compete with the conventional wireless LAN, Zigbee (registered trademark), Bluetooth® (registered trademark), and the like. Furthermore, in the unlicensed band, not only the number of wireless terminals that use the same frequency band but also the number of wireless communication standards that use the same frequency band increases, so that multiple wireless communication systems with different wireless communication standards have the same frequency. It is required to efficiently use limited frequency resources while competing in the band.
- random access control based on CSMA / CA (Carrier Sense Multiple Access with Collision Avoidance) is executed.
- CSMA / CA Carrier Sense Multiple Access with Collision Avoidance
- the process waits until the channel is in a transmittable state without starting transmission. That is, in the random access control described above, frames are transmitted by time division for each wireless terminal.
- IEEE802.11 which is a wireless LAN standard, uses a frequency division multiple access method (FDMA: Frequency Division Multiple Access) to simultaneously transmit multiple wireless LAN frames. How to do is being studied.
- FDMA frequency division multiple access method
- one frequency band can be divided and used at the same time. If it is determined that a channel can be used by a radio base station in downlink communication, different channels are addressed to a plurality of radio terminals. You can start sending all at once.
- uplink communication after a wireless base station transmits a wireless LAN frame that controls the timing of a plurality of wireless terminals, the plurality of wireless terminals simultaneously start transmitting wireless LAN frames using different frequency resources.
- Wireless LAN frames can be received from a plurality of wireless terminals at a time. Therefore, it is expected that communication with many wireless terminals can be performed and frequency utilization efficiency can be further improved as compared with a method of accessing one by one with CSMA / CA.
- the random access procedure of the wireless LAN system performs frame transmission by time division. Therefore, as the number of wireless communication standards and wireless terminals competing in the same frequency band increases, the transmission standby time tends to increase.
- wireless communication standards other than wireless LAN systems such as LAA systems become widely used, in addition to the increase in the number of wireless terminals of wireless LAN systems alone, traffic of wireless communication standards other than wireless LAN systems such as LAA systems will increase. Will be used in the unlicensed band, and the transmission waiting time will be longer.
- there are wireless terminals that transmit in the unlicensed band with a maximum bandwidth of 160 MHz there is a concern that the effect of extending the transmission standby time may occur in a wide band.
- FIG. 22 shows the relationship between two wireless communication standards competing in the same frequency band.
- two wireless communication standards A and B competing in the same frequency band for example, a wireless LAN system and an LAA system are assumed.
- the wireless communication terminal a1 of the wireless communication standard A and the wireless communication terminal b1 of the wireless communication standard B detect the wireless frames transmitted to each other and are regarded as interference partners.
- the other is transmitted during the period during which either one is transmitting. It will wait for transmission. Therefore, the time for waiting for transmission is longer than when there is no interference partner.
- FIG. 23 shows an example of a sequence in an interference wireless communication environment.
- the wireless communication standard A uses four channels ch1 to ch4, and the wireless communication standard B uses one channel ch1, and performs transmission control based on CSMA / CA. That is, when it is detected that the other station is transmitting a frame and the transmission channel cannot be transmitted, it is necessary to wait for the transmission of the own station. For this reason, the wireless communication standard A is a reason that the channel ch1 cannot be transmitted on the vacant channels ch2, ch3, and ch4 during the transmission period of the wireless communication standard B, and the frequency utilization efficiency is significantly reduced. Become.
- the wireless communication standards A and B are the same even if they are replaced with, for example, the IEEE802.11ac standard and the IEEE802.11ax standard when the wireless communication standards are different in the wireless LAN system, for example.
- each of the wireless communication terminals a1 and b1 of the two wireless communication standards is accommodated in one housing, and as shown in FIG. 24, one wireless communication terminal is used as the wireless communication standard A control unit and the wireless communication standard B control unit.
- the wireless communication standard A control unit and the wireless communication standard B control unit have different wireless communication standards, it is necessary to transmit at different transmission opportunities as shown in FIG. Become.
- the transmission standby time becomes long and the frequency utilization efficiency is lowered.
- the channel to be used can be changed or the bandwidth can be reduced.
- a channel with few competing terminals is selected for communication.
- a method of reducing the channel bandwidth and not including the subchannels in the communication channel is conceivable.
- FIG. 25 shows an example of channel switching in the wireless communication standard A.
- the wireless communication standard A can switch between four channels ch1 to ch4, and the wireless communication standard B uses one channel ch1.
- the wireless communication standard B is wireless when the channel ch1 is being used.
- Communication standard A uses channels ch3 and ch4, and channel ch2 may remain unused. Therefore, although the wireless communication standard A and the wireless communication standard B do not compete with each other for channel use, the frequency resources that can be used by channel switching cannot be used to the maximum extent.
- Channels ch3 and ch4 have a high time rate used for frame transmission, but when the traffic load of the wireless communication standard B using channel ch1 is small, the channel ch1 usage time rate is compared with channels ch3 and ch4. Greatly reduced. That is, the use frequency varies among the channels being used, which causes a decrease in frequency use efficiency.
- An object of the present invention is to provide a wireless communication system, a wireless communication terminal, and a wireless communication method in which a wireless communication terminal manages and controls a plurality of wireless communication standards and simultaneously transmits a wireless frame of each wireless communication standard by FDMA. To do.
- a wireless communication terminal including a plurality of wireless communication standard controllers respectively corresponding to a plurality of wireless communication standards sharing a frequency resource executes a random access procedure corresponding to each wireless communication standard
- the wireless communication terminal performs random communication corresponding to the plurality of wireless communication standards with respect to the plurality of wireless communication standard control units.
- a plurality of wireless communication standard control units are controlled by the simultaneous transmission management unit.
- a random access procedure is executed by a plurality of radio communication standard controllers respectively corresponding to a plurality of radio communication standards sharing a frequency resource, and a transmission right is acquired with the frequency resource used for each radio communication standard.
- a random access procedure parameter corresponding to each of a plurality of wireless communication standards is set for a plurality of wireless communication standard control units, and the frequency and transmission start timing of the plurality of wireless communication standards
- a simultaneous transmission management unit that performs control to simultaneously transmit wireless frames of each wireless communication standard for which transmission rights have been acquired by FDMA, and a plurality of wireless communication standard control units are configured to control a plurality of wireless communication standard control units by controlling the simultaneous transmission management unit.
- the radio frame of the radio communication standard is configured to simultaneously transmit the FDMA.
- the simultaneous transmission management unit is configured to set parameters to be a random access procedure common to a plurality of wireless communication standards in the plurality of wireless communication standard control units.
- the control unit may execute a common random access procedure and perform a process of simultaneously transmitting a wireless frame of a wireless communication standard that has acquired a transmission right by FDMA.
- the simultaneous transmission management unit is configured to set parameters for each random access procedure of the plurality of wireless communication standards in the plurality of wireless communication standard control units, and the plurality of wireless communication standards
- the control unit may execute each random access procedure, and may perform a process of simultaneously transmitting a wireless frame of a wireless communication standard satisfying a transmission right acquisition condition by FDMA.
- the simultaneous transmission management unit may be configured to perform control so that each random access implementation period corresponding to a plurality of wireless communication standards is aligned with the longest or prescribed random access implementation period according to the wireless communication standard.
- the simultaneous transmission management unit is configured to set a parameter to be a random access procedure of any of the plurality of wireless communication standards in the plurality of wireless communication standard control units, and
- the standard control unit may execute a random access procedure and perform a process of simultaneously transmitting a wireless frame of a wireless communication standard that has acquired a transmission right by FDMA.
- the plurality of wireless communication standard control units execute a random access procedure corresponding to the plurality of wireless communication standards, and when the wireless communication standard having acquired the transmission right is one, It may be configured to perform processing for transmitting a radio frame by switching to only the communication standard.
- the plurality of wireless communication standard control units perform a period during which other wireless communication terminals prohibit transmission in a control sequence of a predetermined wireless communication standard and simultaneously before the simultaneous transmission by FDMA. It is good also as a structure which performs the process which notifies the information of the frequency resource used for transmission.
- a wireless communication standard control unit other than the predetermined wireless communication standard executes a random access procedure corresponding to the wireless communication standard, acquires a transmission right, and A configuration may be adopted in which processing is performed for simultaneous transmission by a radio frame of a radio communication standard and FDMA.
- a random access procedure is executed by a plurality of radio communication standard controllers respectively corresponding to a plurality of radio communication standards sharing a frequency resource, and a transmission right is acquired with the frequency resource used for each radio communication standard.
- a simultaneous transmission management unit sets parameters of a random access procedure corresponding to each of a plurality of wireless communication standards for a plurality of wireless communication standard control units, and A step of controlling the frequency and the transmission start timing, and performing a control to simultaneously transmit the radio frame of each radio communication standard for which the transmission right is acquired by FDMA, and the plurality of radio communication standard control units are controlled by the simultaneous transmission management unit.
- scan simultaneously transmits the radio frames of a plurality of wireless communication standards by FDMA.
- the present invention provides a plurality of wireless communications using frequency resources obtained by executing a random access procedure corresponding to each wireless communication standard and acquiring a transmission right in an environment in which communications of a plurality of wireless communication standards sharing frequency resources are mixed.
- frequency resources can be utilized to the maximum for each radio communication standard, compared with the case where time division is performed for each radio communication standard, thereby improving frequency utilization efficiency. Can do.
- FIG. 4 shows Example 4 of the simultaneous transmission method by FDMA in this invention. It is a figure explaining the random access procedure example 1 of the radio
- FIG. It is a figure explaining the example 1 of simultaneous transmission processing in the random access procedure of the radio
- FIG. It is a figure explaining the example 2 of simultaneous transmission processing in the random access procedure of the radio
- FIG. It is a figure explaining the example 3 of simultaneous transmission processing in the random access procedure of the radio
- FIG. It is a figure explaining the example 4 of simultaneous transmission in the random access procedure of the radio
- FIG. It is a figure explaining the simultaneous transmission process example 5 in the random access procedure of the radio
- FIG. It is a figure explaining the example 6 of simultaneous transmission in the random access procedure of the radio
- FIG. It is a figure explaining the example 7 of simultaneous transmission processing in the random access procedure of the radio
- FIG. It is a figure explaining the example 8 of simultaneous transmission in the random access procedure of the wireless communication standards A and B.
- FIG. 1 shows a configuration example of a wireless communication system of the present invention.
- the wireless communication system of the present invention includes a wireless communication terminal 100 corresponding to wireless communication standards A and B, a wireless communication terminal 200A of wireless communication standard A communicating with the wireless communication terminal 100, and a wireless communication terminal 100. It is configured by a wireless communication terminal 200B of the wireless communication standard B that communicates.
- the wireless communication terminal 100 includes, as main components, a wireless communication standard A control unit 110A that performs communication control of the wireless communication standard A, a wireless communication standard B control unit 110B that performs communication control of the wireless communication standard B, and each wireless communication And a simultaneous transmission management unit 120 which executes a random access procedure via the standard A / B control unit and performs simultaneous transmission control by FDMA in the wireless communication standards A and B.
- the wireless communication standards A and B are, for example, a wireless LAN system and a LAA system that use the same unlicensed band, and one wireless communication standard that uses the unlicensed band.
- a case corresponding to IEEE802.11ac standard, IEEE802.11ax standard, etc. is assumed.
- IEEE802.11ac standard, IEEE802.11ax standard, etc. is assumed.
- the former case where the random access procedure is almost common will be described as an example.
- simultaneous transmission control is easier.
- the wireless communication standard A for example, any or all of the channels ch1 to ch4 including the primary channel are used, and in the wireless communication standard B, for example, only the channel ch1 is used.
- the radio communication standards A and B use a random access procedure based on the same rule, it is assumed that parameters necessary for acquiring a transmission right are shared.
- the simultaneous transmission management unit 120 also suppresses the amount of interference between the wireless communication standards A and B even if the wireless communication standards A and B are simultaneously transmitted in parallel. Control to adjust the timing. Note that the control for matching the transmission start timing of radio frames transmitted in the wireless communication standards A and B includes a case where transmission is performed again after execution of the random access procedure in one of the wireless communication standards.
- a configuration example of the wireless communication terminal is specifically shown below.
- FIG. 2 shows a configuration example 1 of the wireless communication terminal of the present invention.
- the wireless communication terminal 100 includes a wireless communication standard A control unit 110A, a wireless communication standard B control unit 110B, and a simultaneous transmission management unit 120 having the basic configuration shown in FIG.
- Corresponding transmission / reception packet management units 130A and 130B, a diplexer connected to a plurality of antennas, and a switch 140 are configured.
- the transmission / reception packet management units 130A and 130B perform packet transmission / reception processing and scheduling between the external network 300 and the wireless communication standard A control unit 110A and the wireless communication standard B control unit 110B. Exchange metadata such as the presence and size of packets.
- the transmission packets of the wireless communication standards A and B are received via the diplexer and the switch 140 when the wireless communication standard A control unit 110A and the wireless communication standard B control unit 110B perform random access control and acquire the transmission right. Is transmitted as a radio frame.
- the simultaneous transmission management unit 120 includes a frequency sharing simultaneous transmission control unit 121, a timing control unit 122, and a frequency control unit 123, and controls a random access procedure of the wireless communication standard A control unit 110A and the wireless communication standard B control unit 110B. Controls simultaneous transmission by FDMA.
- the timing control unit 122 performs control for matching clock synchronization and transmission start timing.
- the frequency control unit 123 performs control for frequency synchronization so that inter-subchannel interference or the like does not occur in signals of the wireless communication standards A and B when transmitting by FDMA.
- the frequency sharing simultaneous transmission control unit 121 controls random access control and frequency resource scheduling when FDMA is performed.
- Each control unit may be configured not only by hardware but also by software, and FIG. 2 shows the logical relationship of each control according to the role of each control unit.
- the broken line is a path for transmitting control information
- the solid line is a path for transmitting data.
- FIG. 3 shows a configuration example 2 of the wireless communication terminal of the present invention.
- the wireless communication terminal of Configuration Example 2 has a configuration in which the transmission / reception packet management units 130A and 130B of Configuration Example 1 are shared and accommodated in the simultaneous transmission management unit 120.
- Other configurations are the same as those of the configuration example 1.
- FIG. 4 shows a configuration example 3 of the wireless communication terminal of the present invention.
- the wireless communication standards A and B of the configuration example 1 are assumed to be, for example, a wireless LAN system and an LAA system that use the same unlicensed band. It is assumed that a band is also used.
- the wireless communication terminal 100 of the configuration example 3 includes a wireless communication standard B control unit 110B ′ that uses a license band, a diplexer, and a switch 140 ′.
- Radio communication standard B control units 110B and 110B ′ are connected to the transmission / reception packet management unit 130B according to the channel to be transmitted and received.
- FIG. 5 shows a configuration example 4 of the wireless communication terminal of the present invention.
- the wireless communication terminal of the configuration example 4 has a configuration in which the transmission / reception packet management units 130 ⁇ / b> A and 130 ⁇ / b> B of the configuration example 3 are shared and accommodated in the simultaneous transmission management unit 120.
- Other configurations are the same as those of the configuration example 3.
- the wireless communication terminal 100 is configured so that the wireless communication standard A control unit 110A and the wireless communication standard B control unit 110B have the simultaneous transmission management unit according to the configuration shown in the configuration example 1 to FIG.
- the random access procedure is executed under the control of 120 to acquire the transmission right, the frequency of each channel used for simultaneous transmission and the transmission start timing are controlled, and the wireless frames of the wireless communication standards A and B are simultaneously transmitted by FDMA. Send.
- Examples 1 to 4 of the simultaneous transmission method by FDMA will be described below, then random access procedure examples 1 to 4 of the wireless communication standards A and B will be described, and then in the random access procedure of the wireless communication standards A and B Simultaneous transmission processing examples 1 to 8 will be described.
- FIG. 6 shows a first embodiment of the simultaneous transmission method by FDMA in the present invention.
- the radio communication terminal 100 performs the random access procedure of the radio communication standard A and the random access procedure of the radio communication standard B, and the channels ch1 to ch4 used in the radio communication standard A and the channels used in the radio communication standard B In ch1, carrier sense for a predetermined random access execution period is performed.
- the radio frame of radio communication standard A uses channels ch2 to ch4, and the radio frame of radio communication standard B uses channel ch1. Used and transmitted simultaneously by FDMA. Since the simultaneous transmission management unit 120 of the wireless communication terminal 100 performs control to match the frequency and transmission start timing of signals transmitted in each wireless communication standard, even if they are simultaneously transmitted in parallel, the mutual interference amount is minimized. be able to.
- FIG. 7 shows a second embodiment of the simultaneous transmission method by FDMA in the present invention.
- the radio communication terminal 100 performs the random access procedure of the radio communication standard A and the random access procedure of the radio communication standard B.
- the radio frame of the radio communication standard A uses the channels ch2 to ch4 and the radio communication standard B
- the radio frame is simultaneously transmitted by FDMA using channel ch1.
- the frame time length of the wireless communication standard A is shorter than the frame time length of the wireless communication standard B
- adjustment is performed to align the frame time length.
- the frame time length can be adjusted by padding, frame extension, fragmentation, and transmission rate change.
- Padding adjusts the frame time length by adding a bit string.
- the frame extension adjusts the frame time length by continuing to transmit signals while maintaining the same transmission power level after completion of the frame.
- Fragmentation refers to dividing a frame smaller than a block unit of a normal frame.
- the frame time length is adjusted by adding the divided frame portion to the frame whose frame time length is desired to be extended.
- the wireless communication standard B is an LAA system
- the LTE frame symbol length, transmission slot time length, subframe time length and frame time length are specified, and information is obtained from a license band for exchanging control frames. Obtainable.
- the wireless communication terminal 100 can grasp in advance the time for completing the transmission of the wireless frame of the LAA system, and can align the frame time length of the wireless LAN system that is the wireless communication standard A.
- the frame time lengths do not have to be aligned. Inter-channel interference is less likely to occur even if another terminal transmits a frame on the channel on which the wireless communication standards A and B are communicating, and a wireless frame addressed to itself is not generated in the wireless communication standard with a shorter frame time length.
- the channel time lengths may not be aligned, and the channel use may be immediately stopped for a channel for which frame transmission has been completed quickly, so that another wireless communication terminal existing in the same area can use the channel.
- FIG. 8 shows a third embodiment of the simultaneous transmission method by FDMA in the present invention.
- the wireless communication terminal 100 before performing simultaneous transmission with the wireless communication standards A and B, the wireless communication terminal 100 performs a NAV: Set the transmission prohibition period.
- the control frame a frame that allows at least a terminal that performs communication of the wireless communication standard A or the wireless communication standard B to recognize the frame content is used.
- an appropriate NAV setting can be performed for a terminal capable of recognizing the contents of the control frame, and interruption during frame transmission can be prevented.
- the wireless communication standard A is a wireless LAN system
- the wireless communication standard B is an LAA system
- the control frame is a control frame of a wireless LAN frame.
- the neighboring wireless LAN terminals execute the carrier sense of the LAA frame of channel ch1 at a value 20 dB higher than the carrier sense level of the wireless LAN signal. . Therefore, even if the transmission power density is the same between the channels ch2 to ch4 and the channel ch1, the carrier sense results are different, and the wireless LAN terminals in the vicinity may start transmission during the LAA frame transmission period on the channel ch1. There is.
- the peripheral wireless LAN terminal starts transmission, the transmission quality of the LAA frame deteriorates, which may lead to a decrease in throughput.
- FIG. 9 shows a fourth embodiment of the FDMA simultaneous transmission method according to the present invention.
- the wireless communication terminal 100 transmits a control frame before simultaneous transmission with the wireless communication standards A and B as in the third embodiment, and sets a NAV: transmission prohibition period for peripheral wireless terminals. To do. Further, the wireless communication terminal 100 executes the random access procedure again based on the wireless communication standard B before starting transmission of the wireless communication standard B.
- the random access procedure is independent between the wireless communication standard A and the wireless communication standard B
- the NAV setting is performed in advance by the method of the third embodiment, and the transmission right is acquired after suppressing the number of competing wireless communication terminals.
- FIG. 10 shows a random access procedure example 1 of the wireless communication standards A and B.
- the simultaneous transmission management unit 120 performs the wireless communication standard A control unit 110A and the wireless communication standard B control unit 110B.
- the same control is performed by setting common parameters necessary for acquiring the transmission right by random access.
- the LAA system calculates a random access execution period required for carrier sense as a fixed time + random time, and the setting range of the fixed time and the random time differs depending on the frame transmission priority.
- the fixed time and random time set in the LAA system are calculated as follows.
- Tf 16 ⁇ sec and Ts is 9 ⁇ sec
- the above formulas and fixed parameters are equivalent to IEEE802.11a / n / ac / ax of the wireless LAN system.
- the setting values and setting ranges of mpm and CWp in the LAA system are very similar to the AIFSN (ArbitationbitInter Frame Space Number) and CW range of the wireless LAN system. Therefore, the wireless communication terminal 100 can determine that the wireless LAN system and the LAA system have the same random access procedure, and perform the simultaneous transmission control while sharing the same parameters.
- the wireless communication standard A is a wireless LAN system
- the wireless communication standard B is an LAA system.
- the simultaneous transmission management unit 120 of the wireless communication terminal 100 selects the larger one when the AIFSN of the wireless LAN system and the mpLA of the LAA system are different values or the CW sizes are different. Based on the selected value, the wireless communication standard A control unit 110A and the wireless communication standard B control unit 110B calculate a common random access execution period and execute carrier sense.
- the wireless LAN system performs carrier sense on all the channels ch1 to ch4 that can be transmitted including the primary channel ch4, and the LAA system executes only on the channel ch1 that can be transmitted. In this example, the LAA system does not perform multi-channel communication. As a result of each carrier sense, if the channel is idle after the random access execution period expires, the wireless LAN system uses channels ch2 to ch4, the LAA system uses channel ch1 and starts simultaneous transmission by FDMA.
- the wireless communication standards A and B are, for example, the IEEE802.11ac standard and the IEEE802.11ax standard of the wireless LAN system, and the primary channel common to the wireless communication standards A and B is set to the channel ch1, for example, the same A random access procedure can be used.
- the wireless communication standard A the secondary channels ch2 to ch4 are used, and in the wireless communication standard B, the primary channel ch1 is used, and simultaneous transmission is started by FDMA.
- Such channel setting for each wireless communication standard can be notified to the wireless communication terminal on the receiving side through signaling processing.
- FIG. 11 shows a random access procedure example 2 of the wireless communication standards A and B.
- the wireless communication standard A control unit 110A and the wireless communication standard B control unit 110B of the wireless communication terminal 100 try to acquire a transmission right by a random access procedure based on each standard, and both can acquire the transmission right It is considered that the transmission right for simultaneous transmission is acquired for the first time when is established.
- the wireless communication standard A is a wireless LAN system
- the wireless communication standard B is an LAA system.
- the wireless LAN system and the LAA system start carrier sense at the same timing.
- the wireless LAN system performs carrier sense on all channels ch1 to ch4 that can be transmitted including the primary channel ch4, and the LAA system executes only on the channel ch1 that can be transmitted.
- the LAA system expires the random access implementation period earlier than the wireless LAN system.
- the LAA system does not transmit a wireless frame immediately after the random access execution period in order to perform simultaneous transmission with the wireless LAN system.
- the wireless communication standard B control unit 110B obtains control information from the frequency sharing simultaneous transmission control unit 121 and continues to perform carrier sense until the random access implementation period in the wireless LAN system expires. If the channel is determined to be idle after the random access implementation period of the wireless LAN system expires, the wireless LAN system uses channels ch2 to ch4, the LAA system uses channel ch1, and starts simultaneous transmission by FDMA.
- FIG. 12 shows a random access procedure example 3 of the wireless communication standards A and B.
- the wireless communication standard A is a wireless LAN system
- the wireless communication standard B is an LAA system
- the LAA system performs burst communication on the channel ch1.
- carrier sense is a rule that allows a time of 34 ⁇ sec or more. For this reason, the wireless LAN system performs carrier sense by setting a random access execution period of at least 34 ⁇ sec. On the other hand, the LAA system does not calculate the random access execution period, and performs carrier sense for the same time when the random access execution time of the wireless LAN system is 34 ⁇ sec or more.
- FIG. 13 shows a random access procedure example 3 of the wireless communication standards A and B.
- the wireless communication standards A and B may be a wireless LAN system and an LAA system, or may be different wireless communication standards of the wireless LAN system.
- the wireless communication terminal 100 executes a random access procedure based on one of the wireless communication standards. However, when performing carrier sense, carrier sense is performed on all channels scheduled to be used including the other wireless communication standard.
- the wireless LAN system uses channels ch2 to ch4 and the LAA system uses channel ch1
- only the carrier sense of the wireless communication standard in which the carrier sense is the same or always longer between the wireless LAN system and the LAA system is channel ch1. Performed with ⁇ ch4.
- only the wireless LAN system performs carrier sense on all channels. If the channel is determined to be idle after the random access implementation period of the wireless LAN system expires, the wireless LAN system uses channels ch2 to ch4, the LAA system uses channel ch1, and starts simultaneous transmission by FDMA.
- FIG. 14 shows a simultaneous transmission processing example 1 in the random access procedure of the wireless communication standards A and B.
- the channels ch2 to ch4 determined to be idle by the wireless communication standard A are used by FDMA. Send. That is, for example, when the channel ch1 is a primary channel, transmission is performed only on the secondary channel.
- Such channel setting of the wireless communication standard A can be notified to the receiving wireless communication terminal by a signaling process.
- FIG. 15 shows a simultaneous transmission process example 2 in the random access procedure of the wireless communication standards A and B.
- the channels ch3 to ch4 determined as the idle state by the wireless communication standard A and the idle state is determined by the wireless communication standard B.
- Simultaneous transmission by FDMA is performed using the channel ch1. That is, simultaneous transmission by FDMA enables transmission between discontinuous channels.
- Such channel settings of the wireless communication standards A and B can be notified to the wireless communication terminal on the receiving side through signaling processing.
- FIG. 16 shows a third example of simultaneous transmission processing in the random access procedure of the wireless communication standards A and B.
- Communication standard A uses channels ch2 to ch4
- wireless communication standard B uses channel ch1 to start simultaneous transmission by FDMA.
- Such channel settings of the wireless communication standards A and B can be notified to the wireless communication terminal on the receiving side through signaling processing.
- FIG. 17 shows a simultaneous transmission process example 4 in the random access procedure of the wireless communication standards A and B.
- wireless communication standard A in which carrier sense of all channels is performed is determined to be idle in all channels
- wireless communication standard B in which carrier sense of channel ch1 is performed is determined to be busy
- Communication standard A starts transmission by FDMA using channels ch1 to ch4.
- Such channel setting of the wireless communication standard A can be notified to the receiving wireless communication terminal by a signaling process.
- the wireless communication standard A is a wireless LAN system that performs carrier sense on all channels, and the primary channel is ch4, and the wireless communication standard B is only the channel ch1.
- FIG. 18 shows a fifth example of simultaneous transmission processing in the random access procedure of the wireless communication standards A and B.
- the primary channel ch4 is a random access implementation period.
- the secondary channels ch1 to ch3 need only be idle before the PIFS time from the scheduled transmission start.
- channels ch2 to ch4 are idle during the random access implementation period, and channel ch1 is busy at the start of carrier sense, but is idle before PIFS time from the scheduled transmission start.
- the channel ch1 needs to be idle in the random access implementation period.
- the channel ch1 changes from busy to idle at the carrier sense level of the wireless communication standard B, but the time t until the scheduled transmission start is shorter than the random access implementation period of the wireless communication standard B.
- the wireless communication terminal 100 since the wireless communication terminal 100 cannot acquire the transmission right in the wireless communication standard B, the wireless communication terminal 100 starts simultaneous transmission using the channels ch1 to ch4 in the wireless LAN system of the wireless communication standard A.
- FIG. 19 shows a sixth example of simultaneous transmission processing in the random access procedure of the wireless communication standards A and B.
- channels ch2 to ch4 are idle during the random access implementation period of the wireless communication standard A.
- the channel ch1 is busy at the start of carrier sense and then becomes idle, but the time t that is idle before the start of transmission is less than the PIFS time. Therefore, the wireless communication terminal 100 cannot use the channel ch1 in the wireless LAN system of the wireless communication standard A, and starts transmission using the channels ch2 to ch4.
- FIG. 20 shows a simultaneous transmission processing example 7 in the random access procedure of the wireless communication standards A and B.
- channels ch2 to ch4 are idle during the random access implementation period of the wireless communication standard A.
- the channel ch1 is busy at the start of carrier sense, but is idle before the PIFS time from the scheduled transmission start.
- the channel ch1 becomes busy to idle at the carrier sense level of the wireless communication standard B, but the time t until the scheduled transmission start is longer than the random access implementation period of the wireless communication standard B. Therefore, wireless communication terminal 100 uses channels ch2 to ch4 in the wireless LAN system of wireless communication standard A and uses channel ch1 in wireless communication standard B, and starts simultaneous transmission by FDMA.
- FIG. 21 shows a simultaneous transmission processing example 8 in the random access procedure of the wireless communication standards A and B.
- the wireless communication standard B is an LAA system
- the timing at which data transmission can be started is determined by the timing of the license band for exchanging control frames and the like.
- the LAA system can obtain a transmission right by performing random access before the transmission start timing, only the reservation signal that does not perform data transfer is transmitted until the transmission start timing. As a result, the frequency utilization efficiency is also reduced by the reserved signal length.
- the wireless communication standard A is transmitted without performing simultaneous transmission as shown here. Only send with. By this procedure, the frequency occupation time can be reduced, and the frequency utilization efficiency can be prevented from being lowered by the reservation signal.
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Computer Security & Cryptography (AREA)
- Mobile Radio Communication Systems (AREA)
Abstract
Description
図22において、同じ周波数帯域で競合する2つの無線通信規格A,Bとして、例えば無線LANシステムとLAAシステムを想定する。これらの無線通信システムが隣接する無線通信環境では、無線通信規格Aの無線通信端末a1と無線通信規格Bの無線通信端末b1が、互いに送信する無線フレームを検出して干渉相手とみてしまう。ここで、無線通信端末a1および無線通信端末b1が送信する前にCSMA/CAのようなランダムアクセス制御を実施する場合に互いに無線フレームを検出すると、どちらか一方が送信している期間に他方は送信を待機することになる。そのため、干渉相手がいない場合と比較して送信を待機する時間が長くなる。
図23において、無線通信規格Aは4つのチャネルch1~ch4を使用し、無線通信規格Bは1つのチャネルch1を使用し、それぞれCSMA/CAに基づく送信制御を行う。すなわち、他局がフレーム送信中であり送信チャネルが送信不可の状態と検出された場合、自局の送信を待機させる必要がある。そのため、無線通信規格Aは、無線通信規格Bの送信期間はチャネルch1は当然のこと、空いているチャネルch2,ch3,ch4上で送信することができず、周波数利用効率が著しく低下する原因となる。
図25において、無線通信規格Aは4つのチャネルch1~ch4のチャネル切替が可能であり、無線通信規格Bは1つのチャネルch1を使用する。ただし、無線通信規格Aが連続したチャネルのみ使用可能な場合や、利用可能なチャネル帯域幅が単位チャネル帯域幅の偶数倍のみである場合、無線通信規格Bがチャネルch1を使用中のときは無線通信規格Aはチャネルch3,ch4を使用し、チャネルch2が使われないまま残ってしまうことがある。したがって、無線通信規格Aと無線通信規格Bは、互いにチャネル利用で競合することはなくなるが、チャネル切り替えによって使用可能な周波数リソースを最大限利用できない。また、チャネルch3,ch4はフレーム送信に利用される時間率が高いが、チャネルch1を利用している無線通信規格Bのトラヒック負荷が小さい場合はチャネルch1の利用時間率はチャネルch3,ch4と比較して大幅に小さくなる。すなわち、使用されているチャネル間でも利用頻度にばらつきが発生し、周波数利用効率が低下する原因となる。
図1において、本発明の無線通信システムは、無線通信規格A,Bに対応する無線通信端末100と、無線通信端末100と通信する無線通信規格Aの無線通信端末200Aと、無線通信端末100と通信する無線通信規格Bの無線通信端末200Bにより構成される。無線通信端末100は、主要な構成として、無線通信規格Aの通信制御を行う無線通信規格A制御部110Aと、無線通信規格Bの通信制御を行う無線通信規格B制御部110Bと、各無線通信規格A/B制御部を介してランダムアクセス手順を実行し、無線通信規格A,BにおいてFDMAによる同時送信制御を行う同時送信管理部120とを備える。
図2において、無線通信端末100は、図1に示す基本構成の無線通信規格A制御部110A、無線通信規格B制御部110B、同時送信管理部120に加えて、各無線通信規格A,Bに対応する送信/受信パケット管理部130A,130B、複数のアンテナに接続するダイプレクサおよびスイッチ140により構成される。
図3において、構成例2の無線通信端末は、構成例1の送信/受信パケット管理部130A,130Bを共通化し、同時送信管理部120に収容した構成である。その他の構成は構成例1と同様である。
図4において、構成例1の無線通信規格A,Bは、同じアンライセンスバンドを使用する例えば無線LANシステムとLAAシステムを想定しているが、無線通信規格Bではアンライセンスバンドと別帯域のライセンスバンドも併用することを想定する。構成例3の無線通信端末100は、構成例1の無線通信端末100の構成に加えて、ライセンスバンドを使用する無線通信規格B制御部110B’と、ダイプレクサおよびスイッチ140’を備える。送信/受信パケット管理部130Bには、送受信するチャネルに応じて無線通信規格B制御部110B,110B’が接続される。
図5において、構成例4の無線通信端末は、構成例3の送信/受信パケット管理部130A,130Bを共通化し、同時送信管理部120に収容した構成である。その他の構成は構成例3と同様である。
図6は、本発明におけるFDMAによる同時送信方法の実施例1を示す。
図6において、無線通信端末100は、無線通信規格Aのランダムアクセス手順および無線通信規格Bのランダムアクセス手順を実施し、無線通信規格Aで用いるチャネルch1~ch4と、無線通信規格Bで用いるチャネルch1で、それぞれ所定のランダムアクセス実施期間のキャリアセンスを行う。ランダムアクセス実施期間が終わって各チャネルがアイドルとなって送信権を獲得できた場合には、無線通信規格Aの無線フレームはチャネルch2~ch4を用い、無線通信規格Bの無線フレームはチャネルch1を用い、FDMAにより同時送信する。無線通信端末100の同時送信管理部120は、各無線通信規格で送信する信号の周波数および送信開始タイミングを合わせる制御を実施するため、並列に同時送信しても互いの干渉量を最小限に抑えることができる。
図7は、本発明におけるFDMAによる同時送信方法の実施例2を示す。
図7において、無線通信端末100は、無線通信規格Aのランダムアクセス手順および無線通信規格Bのランダムアクセス手順を実施し、無線通信規格Aの無線フレームはチャネルch2~ch4を用い、無線通信規格Bの無線フレームはチャネルch1を用い、FDMAにより同時送信する。
図8は、本発明におけるFDMAによる同時送信方法の実施例3を示す。
図8において、無線通信端末100は、無線通信規格A,Bで同時送信を行う前に、制御用フレーム単体および制御用フレームの交換を含む制御用シーケンスにより、周辺の無線端末に対してNAV:送信禁止期間を設定する。制御用フレームは、少なくとも無線通信規格Aまたは無線通信規格Bの通信を実施する端末がフレーム内容を認識可能なフレームを使用する。制御用フレームを予め送信しておくことで、制御用フレームの内容を認識可能な端末に対して適切なNAV設定が行うことができ、フレーム送信中の割り込みを防ぐことができる。また、制御フレームを利用して、無線通信規格Aまたは無線通信規格Bの送受間の無線通信端末でデータ送信に利用する周波数リソース情報を予め交換することができる。
図9は、本発明におけるFDMAによる同時送信方法の実施例4を示す。
図9において、無線通信端末100は、実施例3と同様に無線通信規格A,Bで同時送信を行う前に制御用フレームを送信し、周辺の無線端末に対してNAV:送信禁止期間を設定する。さらに、無線通信端末100は、無線通信規格Bの送信を開始するまでに無線通信規格Bに基づいて再度ランダムアクセス手順を実行する。ランダムアクセス手順が無線通信規格Aおよび無線通信規格Bで独立している場合、実施例3の方法によって事前にNAV設定を行い、競合する無線通信端末の数を抑えた上で送信権を獲得するため、無線通信規格Bの送信権獲得率が向上する効果が期待できる。すなわち、予め制御用フレームで周辺の無線端末に対してNAVが設定されているため、無線通信規格Bのランダムアクセス実施期間で競合する周辺の無線端末数が減少し、送信権を得やすくなる。
図10は、無線通信規格A,Bのランダムアクセス手順例1を示す。
図10において、無線通信規格A,Bが同一の規定に基づくランダムアクセス手順を用いて同時送信を行う場合は、同時送信管理部120が無線通信規格A制御部110Aと無線通信規格B制御部110Bに対して、ランダムアクセスで送信権を獲得するために必要な共通のパラメータを設定して同一の制御を実施する。例えば、LAAシステムは、キャリアセンスに必要とするランダムアクセス実施期間を一定時間+ランダム時間で算出しており、この一定時間とランダム時間の設定範囲はフレーム送信の優先度で異なってくる。LAAシステムで設定される一定時間とランダム時間は次のように算出される。
一定時間=Tf +mp *Ts
ランダム時間=CWp *Ts
図11は、無線通信規格A,Bのランダムアクセス手順例2を示す。
図11において、無線通信端末100の無線通信規格A制御部110Aおよび無線通信規格B制御部110Bは、それぞれの規格に基づくランダムアクセス手順による送信権獲得を試みて、双方ともに送信権を獲得できる条件が成立した場合に初めて同時送信のための送信権を獲得したとみなす。
図12は、無線通信規格A,Bのランダムアクセス手順例3を示す。
ここでは、無線通信規格Aは無線LANシステム、無線通信規格BはLAAシステムとし、LAAシステムがチャネルch1上でバースト通信を行っているものとする。
図13は、無線通信規格A,Bのランダムアクセス手順例3を示す。
ここでは、無線通信規格A,Bは、無線LANシステムとLAAシステムでもよいし、無線LANシステムの異なる無線通信規格であってもよい。無線通信端末100は、いずれか一方の無線通信規格に基づくランダムアクセス手順を実行する。ただし、キャリアセンスを行う際は他方の無線通信規格も含めて利用予定の全チャネルをキャリアセンスする。
図14は、無線通信規格A,Bのランダムアクセス手順における同時送信処理例1を示す。
図14において、無線通信規格A,Bの各キャリアセンスレベルで、ともにチャネルch1がビジーであると判定された場合、無線通信規格Aでアイドル状態と判定されたチャネルch2~ch4を用いてFDMAによる送信を行う。すなわち、例えばチャネルch1がプライマリチャネルである場合、セカンダリチャネルのみで送信することになる。このような無線通信規格Aのチャネル設定は、受信側の無線通信端末に対してシグナリング処理により通知することができる。
図15は、無線通信規格A,Bのランダムアクセス手順における同時送信処理例2を示す。
図15において、無線通信規格Aのキャリアセンスでチャネルch2がビジーであると判定された場合、無線通信規格Aでアイドル状態と判定されたチャネルch3~ch4と、無線通信規格Bでアイドル状態と判定されたチャネルch1を用いてFDMAによる同時送信を行う。すなわち、FDMAによる同時送信では不連続なチャネル間での送信を可能とする。このような無線通信規格A,Bのチャネル設定は、受信側の無線通信端末に対してシグナリング処理により通知することができる。
図16は、無線通信規格A,Bのランダムアクセス手順における同時送信処理例3を示す。
図16において、全チャネルのキャリアセンスを実施している無線通信規格Aではチャネルch1がビジーと判定され、チャネルch1のキャリアセンスを実施している無線通信規格Bではアイドルと判定された場合、無線通信規格Aはチャネルch2~ch4を用い、無線通信規格Bはチャネルch1を用い、FDMAによる同時送信を開始する。このような無線通信規格A,Bのチャネル設定は、受信側の無線通信端末に対してシグナリング処理により通知することができる。
図17は、無線通信規格A,Bのランダムアクセス手順における同時送信処理例4を示す。
図17において、全チャネルのキャリアセンスを実施している無線通信規格Aでは全チャネルでアイドルと判定され、チャネルch1のキャリアセンスを実施している無線通信規格Bではビジーと判定された場合、無線通信規格Aはチャネルch1~ch4を用いてFDMAによる送信を開始する。このような無線通信規格Aのチャネル設定は、受信側の無線通信端末に対してシグナリング処理により通知することができる。
以下に示す同時送信処理例5~7では、無線通信規格Aは全チャネルでキャリアセンスを行う無線LANシステムでプライマリチャネルをch4とし、無線通信規格Bはチャネルch1のみを使用するものとする。
図18において、無線通信規格Aの無線LANシステムにおいて送信権を獲得するには、プライマリチャネルch4がランダムアクセス実施期間である
一定時間DIFS+ランダムBackoff
でアイドルである必要があるが、セカンダリチャネルch1~ch3は送信開始予定からPIFS時間前がアイドルであればよい。ここでは、チャネルch2~ch4がランダムアクセス実施期間中アイドルであり、チャネルch1がキャリアセンス開始時にビジーであるが、送信開始予定からPIFS時間前がアイドルになっている。
図19は、無線通信規格A,Bのランダムアクセス手順における同時送信処理例6を示す。
図19において、チャネルch2~ch4は、無線通信規格Aのランダムアクセス実施期間中アイドルである。チャネルch1は、キャリアセンス開始時にビジーであり、その後にアイドルになるが、送信開始予定前のアイドルである時間tがPIFS時間に満たない。したがって、無線通信端末100は、無線通信規格Aの無線LANシステムでチャネルch1を使用できず、チャネルch2~ch4を用いた送信を開始する。
図20は、無線通信規格A,Bのランダムアクセス手順における同時送信処理例7を示す。
図20において、チャネルch2~ch4は、無線通信規格Aのランダムアクセス実施期間中アイドルである。チャネルch1は、キャリアセンス開始時にビジーであるが、送信開始予定からPIFS時間前がアイドルになっている。また、チャネルch1は、無線通信規格Bのキャリアセンスレベルでビジーからアイドルになるが、送信開始予定までの時間tが無線通信規格Bのランダムアクセス実施期間より長い。したがって、無線通信端末100は、無線通信規格Aの無線LANシステムでチャネルch2~ch4を用い、無線通信規格Bでチャネルch1を用い、FDMAによる同時送信を開始する。
図21は、無線通信規格A,Bのランダムアクセス手順における同時送信処理例8を示す。
ここでは、無線通信規格BがLAAシステムであり、データ送信開始できるタイミングが制御フレームなどを交換するライセンスバンドのタイミングによって決定されている場合の例を示す。この場合、LAAシステムは送信開始タイミングまでにランダムアクセスを実施して送信権を獲得できたとしても、送信開始タイミングまではデータ転送を行わない予約信号のみが送信される。そのため、予約信号長分だけ周波数利用効率も低下してしまう。特に、無線通信規格Aのフレーム時間長がアクセス権取得後の無線通信規格Bの送信開始タイミングまでに完了してしまう場合、ここに示すように同時送信を行わずに全チャネルを無線通信規格Aのみで送信する。本手順によって周波数占有時間を小さくでき、予約信号により周波数利用効率を低下させないようにできる。
110A 無線通信規格A制御部
110B 無線通信規格B制御部
120 同時送信管理部
121 周波数共用同時送信制御部
122 タイミング制御部
123 周波数制御部
130,130A,130B 送信/受信パケット管理部
140 ダイプレクサおよびスイッチ
200A 無線通信端末(無線通信規格A)
200B 無線通信端末(無線通信規格B)
300 外部ネットワーク
Claims (10)
- 周波数リソースを共用する複数の無線通信規格にそれぞれ対応する複数の無線通信規格制御部を備えた無線通信端末が、各無線通信規格に対応するランダムアクセス手順を実行し、無線通信規格ごとに用いる周波数リソースで送信権を獲得して無線フレームを送信する無線通信システムにおいて、
前記無線通信端末は、前記複数の無線通信規格制御部に対して、前記複数の無線通信規格にそれぞれ対応するランダムアクセス手順のパラメータを設定し、前記複数の無線通信規格の周波数および送信開始タイミングを制御し、送信権を獲得した各無線通信規格の無線フレームを周波数分割多元接続方式により同時送信させる制御を行う同時送信管理部を備え、
前記複数の無線通信規格制御部は、前記同時送信管理部の制御により前記複数の無線通信規格にそれぞれ対応するランダムアクセス手順を実行して送信権を獲得した周波数リソースで、前記複数の無線通信規格の無線フレームを周波数分割多元接続方式により同時送信する構成である
ことを特徴とする無線通信システム。 - 周波数リソースを共用する複数の無線通信規格にそれぞれ対応する複数の無線通信規格制御部でランダムアクセス手順を実行し、無線通信規格ごとに用いる周波数リソースで送信権を獲得して無線フレームを送信する無線通信端末において、
前記複数の無線通信規格制御部に対して、前記複数の無線通信規格にそれぞれ対応するランダムアクセス手順のパラメータを設定し、前記複数の無線通信規格の周波数および送信開始タイミングを制御し、送信権を獲得した各無線通信規格の無線フレームを周波数分割多元接続方式により同時送信させる制御を行う同時送信管理部を備え、
前記複数の無線通信規格制御部は、前記同時送信管理部の制御により前記複数の無線通信規格にそれぞれ対応するランダムアクセス手順を実行して送信権を獲得した周波数リソースで、前記複数の無線通信規格の無線フレームを周波数分割多元接続方式により同時送信する構成である
ことを特徴とする無線通信端末。 - 請求項2に記載の無線通信端末において、
前記同時送信管理部は、前記複数の無線通信規格で共通のランダムアクセス手順となるパラメータを前記複数の無線通信規格制御部に設定する構成であり、
前記複数の無線通信規格制御部は、前記共通のランダムアクセス手順を実行し、送信権を獲得した無線通信規格の無線フレームを周波数分割多元接続方式により同時送信する処理を行う構成である
ことを特徴とする無線通信端末。 - 請求項2に記載の無線通信端末において、
前記同時送信管理部は、前記複数の無線通信規格の各々のランダムアクセス手順となるパラメータを前記複数の無線通信規格制御部に設定する構成であり、
前記複数の無線通信規格制御部は、前記各々のランダムアクセス手順を実行し、送信権獲得の条件が満たされた無線通信規格の無線フレームを周波数分割多元接続方式により同時送信する処理を行う構成である
ことを特徴とする無線通信端末。 - 請求項4に記載の無線通信端末において、
前記同時送信管理部は、前記複数の無線通信規格に対応する各々のランダムアクセス実施期間を、無線通信規格に応じて最長または規定のランダムアクセス実施期間に揃える制御を行う構成である
ことを特徴とする無線通信端末。 - 請求項2に記載の無線通信端末において、
前記同時送信管理部は、前記複数の無線通信規格のいずれかのランダムアクセス手順となるパラメータを前記複数の無線通信規格制御部に設定する構成であり、
前記複数の無線通信規格制御部は、前記いずれかのランダムアクセス手順を実行し、送信権を獲得した無線通信規格の無線フレームを周波数分割多元接続方式により同時送信する処理を行う構成である
ことを特徴とする無線通信端末。 - 請求項2に記載の無線通信端末において、
前記複数の無線通信規格制御部は、前記複数の無線通信規格に対応するランダムアクセス手順を実行し、送信権を獲得した無線通信規格が1つの場合に、当該無線通信規格のみに切り替えて無線フレームを送信する処理を行う構成である
ことを特徴とする無線通信端末。 - 請求項2に記載の無線通信端末において、
前記複数の無線通信規格制御部は、前記周波数分割多元接続方式で同時送信する前に、所定の無線通信規格の制御用シーケンスで他の無線通信端末が送信を禁止する期間および同時送信に用いる周波数リソースの情報を通知する処理を行う構成である
ことを特徴とする無線通信端末。 - 請求項8に記載の無線通信端末において、
前記所定の無線通信規格の制御用シーケンスの後に、前記所定の無線通信規格以外の無線通信規格制御部は、その無線通信規格に対応するランダムアクセス手順を実行し、送信権を獲得して前記所定の無線通信規格の無線フレームと周波数分割多元接続方式により同時送信する処理を行う構成である
ことを特徴とする無線通信端末。 - 周波数リソースを共用する複数の無線通信規格にそれぞれ対応する複数の無線通信規格制御部でランダムアクセス手順を実行し、無線通信規格ごとに用いる周波数リソースで送信権を獲得して無線フレームを送信する無線通信方法において、
前記複数の無線通信規格制御部に対して、同時送信管理部が前記複数の無線通信規格にそれぞれ対応するランダムアクセス手順のパラメータを設定し、前記複数の無線通信規格の周波数および送信開始タイミングを制御し、送信権を獲得した各無線通信規格の無線フレームを周波数分割多元接続方式により同時送信させる制御を行うステップを有し、
前記複数の無線通信規格制御部は、前記同時送信管理部の制御により前記複数の無線通信規格にそれぞれ対応するランダムアクセス手順を実行して送信権を獲得した周波数リソースで、前記複数の無線通信規格の無線フレームを周波数分割多元接続方式により同時送信する
ことを特徴とする無線通信方法。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020187021719A KR102089662B1 (ko) | 2016-01-29 | 2017-01-25 | 무선 통신 시스템, 무선 통신 단말 및 무선 통신 방법 |
CN201780008618.4A CN108605370B (zh) | 2016-01-29 | 2017-01-25 | 无线通信系统、无线通信终端以及无线通信方法 |
EP17744263.9A EP3410750B1 (en) | 2016-01-29 | 2017-01-25 | Wireless communication system, wireless station, and wireless communication method |
JP2017564309A JP6585739B2 (ja) | 2016-01-29 | 2017-01-25 | 無線通信システム、無線通信端末および無線通信方法 |
US16/072,583 US10798225B2 (en) | 2016-01-29 | 2017-01-25 | Simultaneous transmission method across multiple wireless communication standards |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016-015834 | 2016-01-29 | ||
JP2016015834 | 2016-01-29 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017131033A1 true WO2017131033A1 (ja) | 2017-08-03 |
Family
ID=59398087
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2017/002547 WO2017131033A1 (ja) | 2016-01-29 | 2017-01-25 | 無線通信システム、無線通信端末および無線通信方法 |
Country Status (6)
Country | Link |
---|---|
US (1) | US10798225B2 (ja) |
EP (1) | EP3410750B1 (ja) |
JP (1) | JP6585739B2 (ja) |
KR (1) | KR102089662B1 (ja) |
CN (1) | CN108605370B (ja) |
WO (1) | WO2017131033A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2019140974A1 (zh) * | 2018-01-17 | 2019-07-25 | 中兴通讯股份有限公司 | 数据传输控制方法、装置、数据传输设备及存储介质 |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109525294A (zh) * | 2018-10-08 | 2019-03-26 | 三星(中国)半导体有限公司 | 一种数据传输方法、装置及设备 |
WO2021026897A1 (zh) * | 2019-08-15 | 2021-02-18 | 北京小米移动软件有限公司 | 网络分配向量设置方法和装置 |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012517737A (ja) * | 2009-02-06 | 2012-08-02 | ソニー株式会社 | 無線ホームメッシュネットワークブリッジアダプタ |
Family Cites Families (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9924512B1 (en) * | 2009-03-24 | 2018-03-20 | Marvell International Ltd. | OFDMA with block tone assignment for WLAN |
KR101383413B1 (ko) | 2010-02-12 | 2014-04-08 | 후지쯔 가부시끼가이샤 | 무선 통신 장치, 무선 통신 시스템 및 무선 통신 방법 |
US9240846B2 (en) * | 2011-11-04 | 2016-01-19 | Blackberry Limited | Random access channel procedures for in-device coexistence interference avoidance |
JP5785329B2 (ja) * | 2012-07-19 | 2015-09-30 | 日本電信電話株式会社 | 無線通信システム及び無線通信方法 |
US9565593B2 (en) | 2013-05-20 | 2017-02-07 | Qualcomm Incorporated | Techniques for selecting subframe type or for interleaving signals for wireless communications over unlicensed spectrum |
US20160095154A1 (en) * | 2013-05-23 | 2016-03-31 | Telefonaktiebolaget L M Ericsson (Publ) | Methods and Apparatus for Handling Connections to Multiple Radio Access Technologies |
US9900923B2 (en) * | 2013-11-01 | 2018-02-20 | Qualcomm Incorporated | Techniques for using carrier aggregation in dual connectivity wireless communications |
US9936502B2 (en) * | 2013-12-18 | 2018-04-03 | Huawei Technologies Co., Ltd. | System and method for OFDMA resource management in WLAN |
JP6599994B2 (ja) * | 2015-01-09 | 2019-10-30 | インターデイジタル パテント ホールディングス インコーポレイテッド | Wlanにおけるbssカラー強化型送信(bss−cet) |
US20160234834A1 (en) * | 2015-02-09 | 2016-08-11 | Huawei Technologies Co., Ltd. | System and Method for Transmitting Data in a Wireless LAN Multi-User Transmission Opportunity |
US10104676B2 (en) * | 2015-05-04 | 2018-10-16 | Mediatek Inc. | Gaining an mu-TXOP for transmitting packet using OFDMA |
ES2833536T3 (es) * | 2015-05-27 | 2021-06-15 | Huawei Tech Co Ltd | Método y dispositivo de acceso de canal |
US11350448B2 (en) * | 2015-06-16 | 2022-05-31 | Qualcomm Incorporated | Transmission opportunity contention for multiple user operation |
US10135651B2 (en) * | 2015-06-24 | 2018-11-20 | Newracom, Inc. | Enhanced clear channel assessment |
CN106888505B (zh) * | 2015-12-15 | 2021-02-12 | 华为技术有限公司 | 数据传输的方法和站点 |
CN105554891B (zh) * | 2015-12-28 | 2019-01-18 | 珠海市魅族科技有限公司 | 无线局域网的通信方法及通信装置和站点 |
-
2017
- 2017-01-25 CN CN201780008618.4A patent/CN108605370B/zh active Active
- 2017-01-25 JP JP2017564309A patent/JP6585739B2/ja active Active
- 2017-01-25 WO PCT/JP2017/002547 patent/WO2017131033A1/ja active Application Filing
- 2017-01-25 US US16/072,583 patent/US10798225B2/en active Active
- 2017-01-25 KR KR1020187021719A patent/KR102089662B1/ko active IP Right Grant
- 2017-01-25 EP EP17744263.9A patent/EP3410750B1/en active Active
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012517737A (ja) * | 2009-02-06 | 2012-08-02 | ソニー株式会社 | 無線ホームメッシュネットワークブリッジアダプタ |
Non-Patent Citations (6)
Title |
---|
"IEEE Std 802.11 TM 2012 IEEE standard for Information Technology - Telecommunications and information exchange between systems - Local and metropolitan area networks Specific requirements Parti 1, Wireless LAN Medium", THE LAN/MAN STANDARDS COMMITTEE |
"Introduction of LAA (eNB Channel Acccess Procedure", 3GPP R1 -1 57922, December 2015 (2015-12-01) |
"Study on licensed-assisted access to unlicensed spectrum", 3GPP TR 36.889, 2015 |
ROBERT STACEY ET AL.: "Specification Framework for TGax", IEEE 802.11 -15/01 32R9, 22 September 2015 (2015-09-22) |
See also references of EP3410750A4 |
SHOKO SHINOHARA ET AL.: "A Novel Multi-User Multi-Channel Transmission Techinique for Next Generation Wireless LAN Systems", IEICE TECHNICAL REPORT, vol. 112, no. 351, 12 June 2012 (2012-06-12), pages 53 - 58, XP055573795, ISSN: 0913-5685 * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2019140974A1 (zh) * | 2018-01-17 | 2019-07-25 | 中兴通讯股份有限公司 | 数据传输控制方法、装置、数据传输设备及存储介质 |
Also Published As
Publication number | Publication date |
---|---|
KR20180099792A (ko) | 2018-09-05 |
JPWO2017131033A1 (ja) | 2018-11-08 |
CN108605370A (zh) | 2018-09-28 |
CN108605370B (zh) | 2022-03-22 |
JP6585739B2 (ja) | 2019-10-02 |
US20190045035A1 (en) | 2019-02-07 |
EP3410750A4 (en) | 2019-09-25 |
KR102089662B1 (ko) | 2020-03-16 |
US10798225B2 (en) | 2020-10-06 |
EP3410750B1 (en) | 2020-11-25 |
EP3410750A1 (en) | 2018-12-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3395117B1 (en) | Listen before talk channel access procedure for uplink laa | |
EP3998799A1 (en) | Link setting method and device for multi-link transmission in wireless lan communication system | |
US20170339680A1 (en) | Tx scheduling using hybrid signaling techniques | |
EP3216297B1 (en) | Media access control for license-assisted access | |
KR20210041117A (ko) | 액세스 방법 및 장치 | |
US10506615B2 (en) | Method for performing communication by using spectrum resource and communications device | |
KR20210007881A (ko) | 무선랜 통신 시스템에서 다중 링크 전송을 위한 링크 설정 방법 및 장치 | |
CN110832945B (zh) | 信道接入和介质预留机制 | |
US12047873B2 (en) | Low latency solutions for restricted target wake time (r-TWT) during multi-link operation (MLO) | |
US20160353485A1 (en) | Managing medium access for wireless devices | |
JP6585739B2 (ja) | 無線通信システム、無線通信端末および無線通信方法 | |
US10070329B2 (en) | Device and method | |
CN104066198B (zh) | 无线局域网络中选择信道的方法及系统 | |
EP4115687B1 (en) | Control of uplink wireless transmissions in shared txop | |
US20230199831A1 (en) | Channel Access Method and Communication Apparatus | |
EP4147474B1 (en) | Backoff counter handling for txop sharing | |
US20230049192A1 (en) | Traffic management in restricted target wake time (twt) service periods | |
WO2021095168A1 (ja) | 無線lanシステム、アクセスポイント装置及び無線通信方法 | |
US20240188135A1 (en) | Channel backoff in a wireless network | |
EP4376478A1 (en) | Method and apparatus for nstr communication in communication system supporting multiple links | |
EP4454396A1 (en) | Low latency solutions for restricted target wake time (r-twt) during multi-link operation (mlo) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17744263 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2017564309 Country of ref document: JP |
|
ENP | Entry into the national phase |
Ref document number: 20187021719 Country of ref document: KR Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2017744263 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 2017744263 Country of ref document: EP Effective date: 20180829 |