WO2017130701A1 - Stator, rotary electric machine, and electric accessory device for automobile - Google Patents

Stator, rotary electric machine, and electric accessory device for automobile Download PDF

Info

Publication number
WO2017130701A1
WO2017130701A1 PCT/JP2017/000695 JP2017000695W WO2017130701A1 WO 2017130701 A1 WO2017130701 A1 WO 2017130701A1 JP 2017000695 W JP2017000695 W JP 2017000695W WO 2017130701 A1 WO2017130701 A1 WO 2017130701A1
Authority
WO
WIPO (PCT)
Prior art keywords
stator
phase coil
coil group
teeth
continuous phase
Prior art date
Application number
PCT/JP2017/000695
Other languages
French (fr)
Japanese (ja)
Inventor
英樹 北村
一農 田子
裕司 辻
金澤 宏至
Original Assignee
日立オートモティブシステムズエンジニアリング株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立オートモティブシステムズエンジニアリング株式会社 filed Critical 日立オートモティブシステムズエンジニアリング株式会社
Priority to JP2017563784A priority Critical patent/JP6500127B2/en
Publication of WO2017130701A1 publication Critical patent/WO2017130701A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/14Stator cores with salient poles
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/04Windings characterised by the conductor shape, form or construction, e.g. with bar conductors
    • H02K3/18Windings for salient poles
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/04Windings characterised by the conductor shape, form or construction, e.g. with bar conductors
    • H02K3/28Layout of windings or of connections between windings

Definitions

  • the present invention relates to a stator, a rotating electrical machine, and an electric auxiliary device for an automobile.
  • EPS electric power steering
  • the rotating electrical machine assists the human hand. For this reason, the driver feels the torque pulsation of the rotating electrical machine through his / her steering wheel (handle). Therefore, in the rotating electrical machine for the EPS apparatus, it is necessary to reduce the cogging torque to about 1/1000 of the generated torque of the rotating electrical machine and the torque pulsation to about 1-2% of the generated torque of the rotating electrical machine.
  • Patent Document 2 discloses that the ratio of the number of magnetic poles of a rotor of a concentrated winding type rotating electrical machine to the number of slots of a stator is set to 14:18 or 22:18, thereby vibrating It is disclosed that the spatial secondary component of the electromagnetic excitation force having a large influence on the frequency can be reduced as compared with the case of 10:12 or 14:12.
  • the spatial secondary component of the electromagnetic excitation force is smaller than in the case of 10:12 or 14:12, so that vibration can be reduced.
  • the spatial secondary component of the electromagnetic excitation force does not disappear completely, it is necessary to further reduce the spatial secondary component of the electromagnetic excitation force in order to further suppress the vibration of the rotating electrical machine.
  • an object of the present invention is to provide a low-vibration stator, a rotating electrical machine, and an automotive electric auxiliary device with reduced electromagnetic excitation force.
  • the present application includes a plurality of means for solving the above-mentioned problems.
  • a stator arranged to face a rotor having 14n (n is an integer of 1 or more) or 22n magnetic poles.
  • the stator coil includes 18n teeth and a concentrated winding type stator coil wound around the teeth, and the stator coil is different in the phase of the stator coil wound around the adjacent teeth.
  • the single phase coil group and the continuous phase coil group in which the phase of the stator coil wound around the adjacent teeth is the same, and the maximum magnetic flux amount inside the tooth around which the single phase coil is wound is the continuous phase. It is characterized by being larger than the maximum magnetic flux amount inside the tooth around which the coil is wound.
  • FIG. 14 is a vertical sectional view in the axial direction of a rotating electrical machine having 14 poles and 18 slots.
  • FIG. The vector diagram showing the phase relationship of the magnetic flux in each tooth in the rotating machine with 14 poles and 18 slots.
  • FIG. 6 is a vertical sectional view in the axial direction of a rotating electrical machine showing a phase arrangement in which a three-phase induced voltage is maximum in a rotating machine having 14 poles and 18 slots.
  • FIG. 3 is a circuit diagram showing coil connection of a rotating machine with 14 poles and 18 slots according to the first embodiment. The calculation result of the spatial secondary component of the electromagnetic excitation force of the rotating machine with 14 poles and 18 slots in the first embodiment.
  • FIG. 6 is a circuit diagram showing coil connection of a rotating machine with 14 poles and 18 slots in the second embodiment.
  • FIG. 7 shows the calculation results of torque of a rotating machine with 14 poles and 18 slots in Example 2.
  • FIG. FIG. 12 is a vertical sectional view in the axial direction of a rotating electrical machine having 14 poles and 18 slots according to a third embodiment.
  • FIG. 9 is a vertical sectional view in the axial direction of a rotating electrical machine having 14 poles and 18 slots according to a fourth embodiment.
  • FIG. 9 is a vertical sectional view in the axial direction of a rotating electrical machine having 22 poles and 18 slots according to a fifth embodiment.
  • Example 1-4 a case where the ratio of the number of magnetic poles to the number of slots is 14:18 will be described by taking a rotating electric machine having 14 magnetic poles and 18 slots (14 poles to 18 slots) as an example.
  • a rotating electrical machine having 22 magnetic poles and 18 slots (22 poles-18 slots) will be described as an example when the ratio of the number of magnetic poles to the number of slots is 22:18.
  • FIG. 1 is a vertical sectional view in the axial direction of a rotating machine having 14 poles and 18 slots.
  • a rotating electrical machine having 14 poles and 18 slots includes a rotor 10 and a stator 20.
  • the rotor 10 includes a rotor core 11 and 14 permanent magnets 12 arranged on the outer peripheral surface (in some cases, inside) of the rotor core.
  • the magnetization direction of the permanent magnet 12 is the radial direction of the rotating electrical machine, and N, S, N, S, and the magnetic poles are alternately changed along the circumferential direction.
  • the stator 20 includes a stator core 21 and a concentrated winding type stator coil 25.
  • the stator core 21 includes 18 teeth 22 projecting opposite to the rotor 10, a core back 23 for forming a magnetic path on the stator outer periphery side of the teeth, and between the teeth adjacent to the core back. And a slot 24 for the formed winding.
  • the stator coil 25 is intensively wound around the teeth 22 and accommodated in the slots 24.
  • FIG. 2 is a vector diagram showing the phase relationship of magnetic flux in each tooth in a rotating machine with 14 poles and 18 slots.
  • the vector numbers in the figure correspond to the teeth numbers in FIG. 1, and the phase of the magnetic flux in each tooth when the rotor is rotated counterclockwise in FIG. 1 is shown. After the amount of magnetic flux of the tooth of number 1 becomes the maximum, the amount of magnetic flux of the tooth of number 14 then becomes the maximum and continues with numbers 9, 4, 17,.
  • Fig. 3 shows a vector diagram showing the phase relationship of magnetic flux in each tooth where the three-phase induced voltage is maximum in a rotating machine with 14 poles and 18 slots.
  • the vector diagram of the magnetic flux with the maximum induced voltage is as shown in FIG.
  • the vectors of numbers 4, 5, 6, 10, 11, 12, 16, 17, 18 were inverted. This operation is equivalent to reversing the coil winding method.
  • the groups of numbers 1, 5, 9, 10, 14, and 18 are U phases, other groups may be U phases, and the V and W phases are delayed by 120 degrees and 240 degrees from the U phase groups. Assign to a group.
  • FIG. 4 shows an axial sectional view of the rotating electrical machine showing a phase arrangement in which the induced voltage of the three phases is maximum in the rotating machine of 14 poles and 18 slots.
  • a minus sign is given to the coil phase in which the vector is inverted.
  • the phase arrangement of the coils of the 14-pole-18-slot rotary electric machine includes a single-phase coil group 251 in which the phases of adjacent coils are different and a continuous-phase coil group 252 in which the phases of adjacent coils are the same. And exist.
  • the phase of the single phase coil group 251 is underlined to distinguish it from the continuous phase coil group 252.
  • FIG. 5 is a circuit diagram showing coil connection of a rotating machine having 14 poles and 18 slots. Although only the U phase is shown in the figure, it is assumed that the V and W phases are similarly connected.
  • the power supply includes a power device such as an inverter. Further, although the coil connection is shown as a Y connection, a ⁇ connection may be used.
  • N is the number of coil turns (N is an integer of 1 or more).
  • Fig. 6 shows the calculation result of the spatial secondary component of the electromagnetic excitation force of a rotating machine with 14 poles and 18 slots. This is because the electromagnetic stress in the air gap between the stator and the rotor is calculated by the magnetic field analysis by the finite element method, and the quadratic and temporal 14th-order components when the electromagnetic stress is Fourier series expanded in time and space. The amplitude value is shown.
  • three cases of electromagnetic excitation force are shown when only the continuous phase coil group 252 is energized, when only the single phase coil group 251 is energized, and both are energized.
  • the electromagnetic excitation force when only the continuous phase coil group 252 is energized is 100%
  • the electromagnetic excitation force when only the single phase coil group 251 is energized is 67%, and both are energized.
  • the force is 34%.
  • the characteristic of the spatial secondary electromagnetic excitation force of a rotating machine with 14 poles and 18 slots is the difference in the spatial secondary electromagnetic excitation force when only the continuous phase coil group 252 is energized and when only the single phase coil group 251 is energized.
  • the amount is substantially equal to the spatial secondary electromagnetic excitation force when both the single phase coil group 251 and the continuous phase coil group 252 are energized.
  • FIG. 7A and 7B show the spatial secondary distribution of the electromagnetic excitation force generated by the single-phase coil group 251 and the space 2 of the electromagnetic excitation force generated by the continuous-phase coil group 252 in the rotating machine having 14 poles and 18 slots.
  • a schematic diagram of the next distribution is shown.
  • the direction of displacement from the circle of the solid curve indicates the direction of the electromagnetic excitation force.
  • FIG. 7A shows the case where the current phase is 0 degree
  • FIG. 7B shows the case where the current phase is 60 degrees. From FIG. 7A, since the current amplitudes of the U, V, and W phases are 1.0, ⁇ 0.5, and ⁇ 0.5 when the current phase is 0 degree, they are generated in the single phase coil group 251 and the continuous phase coil group 252.
  • the spatial secondary distributions of the electromagnetic excitation forces that are generated are shifted from each other by a mechanical angle of 90 degrees and cancel each other.
  • the space secondary electromagnetic excitation force of the rotating machine with 14 poles and 18 slots is the difference between the electromagnetic excitation force when only the continuous phase coil group 252 is energized and when only the single phase coil group 251 is energized. . This is the same even if the current phase changes, and the same phenomenon occurs at a current phase of 60 degrees as shown in FIG. 7B.
  • Example 1 will be described with reference to FIGS. 8-9.
  • FIG. 8 is a circuit diagram showing the coil connection of the rotating machine with 14 poles and 18 slots in the first embodiment. Although only the U phase is shown in the figure, it is assumed that the V and W phases are similarly connected.
  • the power supply includes a power device such as an inverter.
  • the coil connection is a Y connection, but may be a ⁇ connection.
  • the number of turns per coil (per tooth) of the continuous phase coil group 252 was N turns, and the number of turns of the single phase coil group 251 was 1.5 N turns. However, since the minimum number of turns is 0.5, the 1.5N turn is raised or lowered every 0.5 turns.
  • FIG. 9 shows the calculation result of the spatial secondary component of the electromagnetic excitation force of the rotating machine with 14 poles and 18 slots in Example 1. This is because the electromagnetic stress in the air gap between the stator and the rotor is calculated by the magnetic field analysis by the finite element method, and the quadratic and temporal 14th-order components when the electromagnetic stress is Fourier series expanded in time and space. The amplitude value is shown.
  • the electromagnetic excitation force when only the single-phase coil group 251 is energized becomes 97%, and both the continuous-phase coil group 252 and the single-phase coil group 251 In both cases, the electromagnetic excitation force when energized is 5%.
  • the spatial secondary electromagnetic excitation force is the difference between the spatial secondary electromagnetic excitation force when only the continuous phase coil group 252 is energized and when only the single phase coil group 251 is energized.
  • the magnetic force By increasing the magnetic force, the amount of difference from the spatial secondary electromagnetic excitation force when only the continuous phase coil group 252 is energized is reduced, and the electromagnetic excitation force of the rotating machine having 14 poles and 18 slots is reduced. From this, the vibration of the rotating electrical machine can be reduced by making the amount of magnetic flux inside the teeth around which the single phase coil group 251 is wound larger than the amount of magnetic flux inside the teeth around which the continuous phase coil group 252 is wound.
  • Example 1 since the secondary secondary electromagnetic excitation force by the single phase coil group 251 is about 67% from FIG. 6, the number of turns of the single phase coil group 251 is 1.5 ( ⁇ 100 ⁇ 67) N ⁇ . It is desirable to be within 0.1N turns.
  • both the single-phase coil group 251 and the continuous-phase coil group 252 have an integer winding or an integer winding.
  • Example 2 will be described with reference to FIGS. 10-12.
  • FIG. 10 is a circuit diagram showing the coil connection of a rotating machine with 14 poles and 18 slots in the second embodiment. Although only the U phase is shown in the figure, it is assumed that the V and W phases are similarly connected.
  • the power supply includes a power device such as an inverter.
  • the coil connection is a Y connection, but may be a ⁇ connection.
  • there are two power sources for driving the rotating electrical machine the first power source V 1 and the second power source V 2 , the first power source and the continuous phase coil group 252 are connected, and the second power source and the single phase coil group 251. Is connected.
  • the number of turns of the continuous phase coil group 252 and the single phase coil group 251 is N turns.
  • the current from the first power source is I amperes, and the current from the second power source is 1.5 I amperes.
  • FIG. 11 shows the calculation result of the spatial secondary component of the electromagnetic excitation force of the rotating machine having 14 poles and 18 slots according to the second embodiment.
  • the electromagnetic stress in the air gap between the stator and the rotor is calculated by the magnetic field analysis by the finite element method, and the quadratic and temporal 14th-order components when the electromagnetic stress is Fourier series expanded in time and space.
  • the amplitude value is shown.
  • the electromagnetic excitation force when only the single phase coil group 251 is energized becomes 100%, and both the continuous phase coil group 252 and the single phase coil group 251 are both.
  • the electromagnetic excitation force when energized is 2%. Since the current I can be adjusted as a continuous amount, the electromagnetic excitation force can be reduced as compared with the first embodiment.
  • FIG. 12 shows the calculation results of the torque of the rotating machine with 14 poles and 18 slots in Example 2.
  • Torque was calculated by magnetic field analysis by finite element method.
  • three cases of torque are shown when only the current from the first power source V 1 is passed, only the current from the second power source V 2 is passed, and both are passed.
  • the magnetomotive force per coil differs between the continuous phase coil group 252 and the single phase coil group 251
  • the time variation of the torque is small and the torque pulsation is low.
  • the vectors (numbers 2, 5, 8, 11, 14, and 17) of the single-phase coil group 251 have a phase difference of 120 degrees from each other, and a three-phase balance is established.
  • Example 2 the spatial secondary electromagnetic excitation force by the single-phase coil group 251 is about 67% from FIG. 6, so that the current of the single-phase coil group 251 is 1.5 ( ⁇ 100 ⁇ 67) I ⁇ 0. Desirably within 1 IA.
  • Example 2 if you want to decrease the second power supply V 2 of the current, it is possible to reduce the current alone phase coil group 251 by serial connection. Further, when it is desired to lower the voltage of the first power supply V 1 , it is possible to reduce the voltage by making only the continuous phase coil group 252 a ⁇ connection. Also, if you want to decrease the second voltage power supply V 2 is possible to reduce the voltage by only a single phase coil group 251 to ⁇ connection.
  • FIG. 13 is a vertical sectional view in the axial direction of a rotating electrical machine having 14 poles and 18 slots according to the third embodiment.
  • the stator core 21 of the present embodiment is divided at the core back portion.
  • the width of the teeth 221 wound with the single-phase coil group is larger than the width of the teeth 222 wound with the continuous-phase coil group.
  • the magnetic resistance of the path of the magnetic flux generated by the single-phase coil group 251 is reduced. Since the magnetic resistance of the path of the magnetic flux generated by 252 can be made smaller and the amount of magnetic flux inside the teeth around which the single phase coil group 251 is wound can be made larger than the amount of magnetic flux inside the teeth around which the continuous phase coil group 252 is wound. Can be reduced. By dividing the stator core, the material yield and the coil space factor can be improved, but this effect can be obtained without dividing.
  • FIG. 14 is a vertical sectional view in the axial direction of a rotating electrical machine having 14 poles and 18 slots according to the fourth embodiment.
  • the stator core 21 of the present embodiment is divided at the core back portion.
  • the first electromagnetic steel plate 211 is used for the teeth 221 wound with the single phase coil group, and the second electromagnetic steel plate 212 is used for the teeth 222 wound with the continuous phase coil group.
  • the permeability is higher than the permeability of the second electromagnetic steel plate.
  • the magnetic resistance of the magnetic flux path generated by the single-phase coil group 251 is reduced by the magnetic flux generated by the continuous-phase coil group 252. Since the magnetic resistance of the path can be made smaller and the amount of magnetic flux inside the teeth around which the single phase coil group 251 is wound can be made larger than the amount of magnetic flux inside the teeth around which the continuous phase coil group 252 is wound, vibration of the rotating electrical machine can be reduced. Can do.
  • Example 5 will be described with reference to FIG.
  • FIG. 15 is a vertical sectional view in the axial direction of a rotating electrical machine having 22 poles and 18 slots according to the fifth embodiment.
  • the rotating electric machine having 22 poles and 18 slots according to the fifth embodiment includes a rotor 10 and a stator 20.
  • the rotor includes a rotor core 11 and 22 permanent magnets 12 arranged on the outer peripheral surface (in some cases, inside) of the rotor core, and the magnetization of the permanent magnet faces the radial direction of the rotating electrical machine.
  • N, S, N, S, and magnetic poles are alternately arranged along the circumferential direction.
  • the stator is composed of 18 teeth 22 projecting opposite the rotor, a core back 23 for forming a magnetic path on the stator outer periphery of the teeth, and a winding formed between the teeth adjacent to the core back.
  • a stator core 21 composed of a wire slot 24 and a stator coil 25 wound around a tooth are provided.
  • the rotors synchronized with the rotating magnetic field by the coil phase arrangement of FIG. 4 are 14 poles and 22 poles, and even in the 22 pole rotor, the amount of magnetic flux inside the teeth around which the single phase coil group 251 is wound is changed to the continuous phase coil group. By making it larger than the amount of magnetic flux inside the tooth around which 252 is wound, vibration of the rotating electrical machine can be reduced.
  • the present invention is not limited to the case of 14 poles-18 slots or 22 poles-18 slots, but can be applied if the ratio of the number of magnetic poles to the number of slots is 14:18 or 22:18. The same effect as the embodiment can be obtained.
  • this invention is not limited to the above-mentioned Example, Various modifications are included.
  • the above-described embodiments have been described in detail for easy understanding of the present invention, and are not necessarily limited to those having all the configurations described.
  • a part of the configuration of one embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of one embodiment.

Abstract

Provided are a low-vibration stator, a rotary electric machine, and an electric accessory device for an automobile, which have reduced electromagnetic excitation force. The stator 20 is equipped with: 18n (n being an integer of 1 or more) teeth 22 arranged opposing a rotor having 14n or 22n magnetic poles; and stator coils 25 wound around the teeth in a concentrated-winding method. The stator coils include an independent-phase coil group 251 wherein the stator coils wound around adjacent teeth have different phases, and a continuous-phase coil group 252 wherein the stator coils wound around adjacent teeth have the same phase, and the maximum amount of magnetic flux inside the teeth around which the independent-phase coils are wound is greater than the maximum amount of magnetic flux inside the teeth around which the continuous-phase coils are wound.

Description

固定子、回転電機、および自動車用電動補機装置Stator, rotating electrical machine, and automotive electric auxiliary device
 本発明は、固定子、回転電機、および自動車用電動補機装置に関する。 The present invention relates to a stator, a rotating electrical machine, and an electric auxiliary device for an automobile.
 電動化による油圧式パワーステアリング装置からの代替や、ハイブリッド自動車(HEV)、電気自動車(EV)の市場投入を受けて、電動パワーステアリング(以下、EPS)装置の装着率が急速に増大している。 With the replacement of the hydraulic power steering device by electrification and the introduction of hybrid vehicles (HEV) and electric vehicles (EV), the installation rate of electric power steering (hereinafter referred to as EPS) devices is rapidly increasing. .
 EPS装置では、回転電機が人間の手の力をアシストする。このため、運転者はステアリングホイール(ハンドル)を介して回転電機のトルク脈動を手に感じることになる。したがって、EPS装置用の回転電機では、コギングトルクを回転電機の発生トルクの約1/1000程度に、トルク脈動を回転電機の発生トルクの1-2%程度に小さくする必要がある。 In the EPS device, the rotating electrical machine assists the human hand. For this reason, the driver feels the torque pulsation of the rotating electrical machine through his / her steering wheel (handle). Therefore, in the rotating electrical machine for the EPS apparatus, it is necessary to reduce the cogging torque to about 1/1000 of the generated torque of the rotating electrical machine and the torque pulsation to about 1-2% of the generated torque of the rotating electrical machine.
 また、EPS装置の機械部品の摩擦や回転電機の振動によって発生する、車室内の騒音も十分に小さくする必要がある。特に近年では、アイドリングストップなどの機能によって、エンジンの静音化が進展しており、EPS装置等の電装品に対する振動、騒音の要求仕様が厳しくなっている。 Also, it is necessary to sufficiently reduce the noise in the passenger compartment caused by friction of the mechanical parts of the EPS device and vibration of the rotating electrical machine. In particular, in recent years, noise reduction of the engine has progressed due to functions such as idling stop, and the required specifications of vibration and noise for electrical components such as EPS devices have become strict.
 車室内の振動、騒音に繋がる回転電機起因の加振源としては、回転電機の出力軸に発生するトルクの変動(コギングトルクやトルク脈動)と、回転電機の機内に発生する電磁加振力がある。 As a vibration source caused by the rotating electrical machine that leads to vibration and noise in the vehicle interior, there are torque fluctuations (cogging torque and torque pulsation) generated in the output shaft of the rotating electrical machine and electromagnetic excitation force generated in the rotating electrical machine. is there.
 特に電磁加振力を低減する技術として、特許文献2は、集中巻方式の回転電機の回転子の磁極数と固定子のスロット数の比を14:18または22:18にすることで、振動への影響が大きい電磁加振力の空間2次成分を、10:12または14:12の場合と比べて小さくできることを開示している。 In particular, as a technique for reducing the electromagnetic excitation force, Patent Document 2 discloses that the ratio of the number of magnetic poles of a rotor of a concentrated winding type rotating electrical machine to the number of slots of a stator is set to 14:18 or 22:18, thereby vibrating It is disclosed that the spatial secondary component of the electromagnetic excitation force having a large influence on the frequency can be reduced as compared with the case of 10:12 or 14:12.
国際公開第2013/080374号International Publication No. 2013/080374
 集中巻方式の回転電機において、巻線係数が高く、コギングトルクが小さい磁極数とスロット数の比として、8:9または10:9、もしくは、10:12または14:12、があることが知られている。しかし、これらのコンビネーションは、振動への影響が大きい空間1次や空間2次などの低次の電磁加振力が発生するため、振動が大きくなりやすいといった課題がある。 In a concentrated winding type rotating electrical machine, it is known that there are 8: 9 or 10: 9, or 10:12 or 14:12 as a ratio of the number of magnetic poles and the number of slots having a high winding coefficient and a small cogging torque. It has been. However, these combinations have a problem that vibration tends to increase because low-order electromagnetic excitation force such as space primary or space secondary that has a large influence on vibration is generated.
 特許文献1に示される14:18または22:18の場合は、10:12または14:12の場合と比べて電磁加振力の空間2次成分が小さいことから、振動を低減できる。しかし、電磁加振力の空間2次成分が完全になくなることはないため、回転電機の振動を更に抑えるには、電磁加振力の空間2次成分を更に低減する必要がある。 In the case of 14:18 or 22:18 shown in Patent Document 1, the spatial secondary component of the electromagnetic excitation force is smaller than in the case of 10:12 or 14:12, so that vibration can be reduced. However, since the spatial secondary component of the electromagnetic excitation force does not disappear completely, it is necessary to further reduce the spatial secondary component of the electromagnetic excitation force in order to further suppress the vibration of the rotating electrical machine.
 よって、従来技術には電磁加振力の低減に関して改良の余地がある。 Therefore, there is room for improvement in the conventional technology with respect to the reduction of the electromagnetic excitation force.
 そこで本発明は、電磁加振力を低減した、低振動の固定子、回転電機、および自動車用電動補機装置を提供することを目的とする。 Therefore, an object of the present invention is to provide a low-vibration stator, a rotating electrical machine, and an automotive electric auxiliary device with reduced electromagnetic excitation force.
 上記課題を解決するために、例えば特許請求の範囲に記載の構成を採用する。 In order to solve the above problems, for example, the configuration described in the claims is adopted.
 本願は上記課題を解決する手段を複数含んでいるが、その一例を挙げるならば、14n(nは1以上の整数)個または22n個の磁極を有する回転子に対向して配置される固定子であって、18n本のティースと、前記ティースに巻き回された集中巻方式の固定子コイルと、を備え、前記固定子コイルは、隣接するティースに巻き回された固定子コイルの相が異なる単独相コイル群と、隣接するティースに巻き回された固定子コイルの相が同じ連続相コイル群とを有し、前記単独相コイルが巻き回されたティース内部の最大磁束量が、前記連続相コイルが巻き回されたティース内部の最大磁束量より大きいことを特徴とする。 The present application includes a plurality of means for solving the above-mentioned problems. For example, a stator arranged to face a rotor having 14n (n is an integer of 1 or more) or 22n magnetic poles. The stator coil includes 18n teeth and a concentrated winding type stator coil wound around the teeth, and the stator coil is different in the phase of the stator coil wound around the adjacent teeth. The single phase coil group and the continuous phase coil group in which the phase of the stator coil wound around the adjacent teeth is the same, and the maximum magnetic flux amount inside the tooth around which the single phase coil is wound is the continuous phase. It is characterized by being larger than the maximum magnetic flux amount inside the tooth around which the coil is wound.
 本発明によれば、電磁加振力を低減した低振動の固定子、回転電機、および自動車用電動補機装置を提供することができる。 According to the present invention, it is possible to provide a low-vibration stator, a rotating electric machine, and an electric auxiliary machine device for automobiles with reduced electromagnetic excitation force.
 上記した以外の課題、構成及び効果は、以下の実施例の説明により明らかにされる。 Issues, configurations, and effects other than those described above will be clarified by the description of the following examples.
14極-18スロットの回転電機の軸方向垂直断面図。14 is a vertical sectional view in the axial direction of a rotating electrical machine having 14 poles and 18 slots. FIG. 14極-18スロットの回転電機における各ティース中の磁束の位相関係を表したベクトル図。The vector diagram showing the phase relationship of the magnetic flux in each tooth in the rotating machine with 14 poles and 18 slots. 14極-18スロットの回転電機における三相の誘起電圧が最大となる各ティース中の磁束の位相関係を表したベクトル図。The vector diagram showing the phase relationship of the magnetic flux in each tooth | gear in which the induced voltage of three phases in a 14 pole -18 slot rotary electric machine becomes the maximum. 14極-18スロットの回転電機における三相の誘起電圧が最大となる相配置を示した回転電機の軸方向垂直断面図。FIG. 6 is a vertical sectional view in the axial direction of a rotating electrical machine showing a phase arrangement in which a three-phase induced voltage is maximum in a rotating machine having 14 poles and 18 slots. 14極-18スロットの回転電機のコイル接続を示した回路図。The circuit diagram which showed the coil connection of the rotating electrical machine of 14 poles-18 slots. 14極-18スロットの回転電機の電磁加振力の空間2次成分の計算結果。Calculation result of spatial secondary component of electromagnetic excitation force of a rotating machine with 14 poles and 18 slots. 14極-18スロットの回転電機における単独相コイル群251で発生する電磁加振力の空間2次成分と連続相コイル群252で発生する電磁加振力の空間2次成分の模式図(電流位相0度の場合)。Schematic diagram of the spatial secondary component of the electromagnetic excitation force generated by the single-phase coil group 251 and the spatial secondary component of the electromagnetic excitation force generated by the continuous-phase coil group 252 in a 14 pole-18 slot rotary electric machine (current phase) 0 degree). 14極-18スロットの回転電機における単独相コイル群251で発生する電磁加振力の空間2次成分と連続相コイル群252で発生する電磁加振力の空間2次成分の模式図(電流位相60度の場合)。Schematic diagram of the spatial secondary component of the electromagnetic excitation force generated by the single-phase coil group 251 and the spatial secondary component of the electromagnetic excitation force generated by the continuous-phase coil group 252 in a 14 pole-18 slot rotary electric machine (current phase) 60 degrees). 実施例1における14極-18スロットの回転電機のコイル接続を示した回路図。FIG. 3 is a circuit diagram showing coil connection of a rotating machine with 14 poles and 18 slots according to the first embodiment. 実施例1における14極-18スロットの回転電機の電磁加振力の空間2次成分の計算結果。The calculation result of the spatial secondary component of the electromagnetic excitation force of the rotating machine with 14 poles and 18 slots in the first embodiment. 実施例2における14極-18スロットの回転電機のコイル接続を示した回路図。FIG. 6 is a circuit diagram showing coil connection of a rotating machine with 14 poles and 18 slots in the second embodiment. 実施例2における14極-18スロットの回転電機の電磁加振力の空間2次成分の計算結果。The calculation result of the spatial secondary component of the electromagnetic excitation force of the rotating machine with 14 poles and 18 slots in the second embodiment. 実施例2における14極-18スロットの回転電機のトルクの計算結果。FIG. 7 shows the calculation results of torque of a rotating machine with 14 poles and 18 slots in Example 2. FIG. 実施例3における14極-18スロットの回転電機の軸方向垂直断面図。FIG. 12 is a vertical sectional view in the axial direction of a rotating electrical machine having 14 poles and 18 slots according to a third embodiment. 実施例4における14極-18スロットの回転電機の軸方向垂直断面図。FIG. 9 is a vertical sectional view in the axial direction of a rotating electrical machine having 14 poles and 18 slots according to a fourth embodiment. 実施例5における22極-18スロットの回転電機の軸方向垂直断面図。FIG. 9 is a vertical sectional view in the axial direction of a rotating electrical machine having 22 poles and 18 slots according to a fifth embodiment.
 以下、図面を用いて本発明の実施例を説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
 実施例1-4では、磁極数とスロット数との比が14:18の場合について、磁極数が14、スロット数が18(14極-18スロット)の回転電機を例に説明する。実施例5では、磁極数とスロット数との比が22:18の場合について、磁極数が22、スロット数が18(22極-18スロット)の回転電機を例に説明する。 In Example 1-4, a case where the ratio of the number of magnetic poles to the number of slots is 14:18 will be described by taking a rotating electric machine having 14 magnetic poles and 18 slots (14 poles to 18 slots) as an example. In the fifth embodiment, a rotating electrical machine having 22 magnetic poles and 18 slots (22 poles-18 slots) will be described as an example when the ratio of the number of magnetic poles to the number of slots is 22:18.
 まず、図1-7を用いて、14極-18スロットの回転電機の構造、コイル相配置、コイル接続、および電磁加振力の特徴について説明する。 First, the structure of a rotating machine with 14 poles and 18 slots, coil phase arrangement, coil connection, and electromagnetic excitation force will be described with reference to FIGS. 1-7.
 <回転電機の構造> 
 図1に14極-18スロットの回転電機の軸方向垂直断面図を示す。14極-18スロットの回転電機は回転子10と固定子20で構成される。
<Structure of rotating electrical machine>
FIG. 1 is a vertical sectional view in the axial direction of a rotating machine having 14 poles and 18 slots. A rotating electrical machine having 14 poles and 18 slots includes a rotor 10 and a stator 20.
 回転子10は、回転子コア11と、回転子コアの外周表面(内部の場合もあり)に配置された14個の永久磁石12を備えている。永久磁石12の磁化方向は回転電機の径方向であり、周方向に沿ってN・S・N・S・・と磁極が交互に変わるように配置されている。 The rotor 10 includes a rotor core 11 and 14 permanent magnets 12 arranged on the outer peripheral surface (in some cases, inside) of the rotor core. The magnetization direction of the permanent magnet 12 is the radial direction of the rotating electrical machine, and N, S, N, S, and the magnetic poles are alternately changed along the circumferential direction.
 固定子20は、固定子コア21と、集中巻方式の固定子コイル25とを備えている。固定子コア21は、回転子10と対向して突出した18本のティース22と、ティースの固定子外周側に磁路を形成するためのコアバック23と、コアバックと隣り合うティース間とで形成された巻線用のスロット24とを備えている。固定子コイル25は、ティース22に集中的に巻き回わされ、スロット24に収容されている。 The stator 20 includes a stator core 21 and a concentrated winding type stator coil 25. The stator core 21 includes 18 teeth 22 projecting opposite to the rotor 10, a core back 23 for forming a magnetic path on the stator outer periphery side of the teeth, and between the teeth adjacent to the core back. And a slot 24 for the formed winding. The stator coil 25 is intensively wound around the teeth 22 and accommodated in the slots 24.
 <コイル相配置>
 図2-5を用いてコイル相配置の決定方法について説明する。
<Coil phase arrangement>
A method for determining the coil phase arrangement will be described with reference to FIGS.
 図2に14極-18スロットの回転電機における各ティース中の磁束の位相関係を表したベクトル図を示す。図のベクトルの番号と図1のティースの番号が対応しており、図1で回転子を反時計方向に回したときの各ティース内部の磁束の時間に関する位相を示している。番号1のティースの磁束量が最大となった後、次に番号14のティースの磁束量が最大になり、番号9、4、17、・・・と続いていく。 2 is a vector diagram showing the phase relationship of magnetic flux in each tooth in a rotating machine with 14 poles and 18 slots. The vector numbers in the figure correspond to the teeth numbers in FIG. 1, and the phase of the magnetic flux in each tooth when the rotor is rotated counterclockwise in FIG. 1 is shown. After the amount of magnetic flux of the tooth of number 1 becomes the maximum, the amount of magnetic flux of the tooth of number 14 then becomes the maximum and continues with numbers 9, 4, 17,.
 図3に14極-18スロットの回転電機における三相の誘起電圧が最大となる各ティース中の磁束の位相関係を表したベクトル図を示す。コイル相配置を決めるにあたり、三相の誘起電圧が最大となるように各ティースのコイル相を決める必要がある。各ティースにおける誘起電圧の位相関係と磁束の位相関係は同じであることから、図2より誘起電圧が最大となる磁束のベクトル図は図3のようになる。ここでは、番号4、5、6、10、11、12、16、17、18のベクトルを反転させた。この操作はコイルの巻き方を逆にすることと等価である。また、番号1、5、9、10、14、18のグループをU相としたが、他のグループをU相としてもよく、V、W相はU相のグループから120度、240度遅れたグループに割り当てればよい。 Fig. 3 shows a vector diagram showing the phase relationship of magnetic flux in each tooth where the three-phase induced voltage is maximum in a rotating machine with 14 poles and 18 slots. In determining the coil phase arrangement, it is necessary to determine the coil phase of each tooth so that the three-phase induced voltage is maximized. Since the phase relationship of the induced voltage and the phase relationship of the magnetic flux in each tooth are the same, the vector diagram of the magnetic flux with the maximum induced voltage is as shown in FIG. Here, the vectors of numbers 4, 5, 6, 10, 11, 12, 16, 17, 18 were inverted. This operation is equivalent to reversing the coil winding method. In addition, although the groups of numbers 1, 5, 9, 10, 14, and 18 are U phases, other groups may be U phases, and the V and W phases are delayed by 120 degrees and 240 degrees from the U phase groups. Assign to a group.
 図4に14極-18スロットの回転電機における三相の誘起電圧が最大となる相配置を示した回転電機の軸方向断面図を示す。図3でベクトルを反転させたコイル相にはマイナスを付けている。図4に示す通り、14極-18スロットの回転電機のコイルの相配置には、隣接するコイルの相が異なる単独相コイル群251と、隣接するコイルの相が同じである連続相コイル群252とが存在する。以下、図面において、単独相コイル群251の相には下線を付けて連続相コイル群252と区別する。 FIG. 4 shows an axial sectional view of the rotating electrical machine showing a phase arrangement in which the induced voltage of the three phases is maximum in the rotating machine of 14 poles and 18 slots. In FIG. 3, a minus sign is given to the coil phase in which the vector is inverted. As shown in FIG. 4, the phase arrangement of the coils of the 14-pole-18-slot rotary electric machine includes a single-phase coil group 251 in which the phases of adjacent coils are different and a continuous-phase coil group 252 in which the phases of adjacent coils are the same. And exist. Hereinafter, in the drawings, the phase of the single phase coil group 251 is underlined to distinguish it from the continuous phase coil group 252.
 <コイル接続> 
 図5に14極-18スロットの回転電機のコイル接続を示した回路図を示す。図ではU相のみを表示しているが、V、W相も同様に接続されているものとする。また、電源はインバータなどのパワーデバイスを含んでいるものとする。また、コイル結線はY結線として示されているが、Δ結線でもよい。14極-18スロットの回転電機のコイル接続として6直1並列、3直2並列、2直3並列、1直6並列がある。本発明では、並列回路の各直列部に単独相コイルが均等に含まれていることが望ましいことから3直2並列とした。図中のNはコイルターン数である(Nは1以上の整数)。
<Coil connection>
FIG. 5 is a circuit diagram showing coil connection of a rotating machine having 14 poles and 18 slots. Although only the U phase is shown in the figure, it is assumed that the V and W phases are similarly connected. The power supply includes a power device such as an inverter. Further, although the coil connection is shown as a Y connection, a Δ connection may be used. There are 6 series and 1 parallel, 3 series and 2 parallel, 2 series and 3 parallel, and 1 series and 6 parallel as coil connections for a rotating machine with 14 poles and 18 slots. In the present invention, since it is desirable that the single-phase coils are uniformly included in each series portion of the parallel circuit, three series and two parallel are used. In the figure, N is the number of coil turns (N is an integer of 1 or more).
 <電磁加振力の特徴> 
 図6-7を用いて14極-18スロットの回転電機の電磁加振力の特徴について説明する。
<Characteristics of electromagnetic excitation force>
The characteristics of the electromagnetic excitation force of a rotating machine with 14 poles and 18 slots will be described with reference to FIGS.
 図6に14極-18スロットの回転電機の電磁加振力の空間2次成分の計算結果を示す。これは、固定子と回転子の間のエアギャップ中の電磁応力を有限要素法による磁界解析で計算し、電磁応力を時間と空間でフーリエ級数展開したときの空間2次、時間14次成分の振幅値を示したものである。ここでは、連続相コイル群252のみ通電した場合、単独相コイル群251のみ通電した場合、両方とも通電した場合の3ケースの電磁加振力を示している。連続相コイル群252のみ通電したときの電磁加振力を100%としたとき、単独相コイル群251のみ通電したときの電磁加振力は67%であり、両方とも通電したときの電磁加振力は34%である。14極-18スロットの回転電機の空間2次電磁加振力の特徴は、連続相コイル群252のみ通電したときと単独相コイル群251のみ通電したときとの空間2次電磁加振力の差分量が、単独相コイル群251と連続相コイル群252との両方に通電した時の空間2次電磁加振力とほぼ等しいことである。 Fig. 6 shows the calculation result of the spatial secondary component of the electromagnetic excitation force of a rotating machine with 14 poles and 18 slots. This is because the electromagnetic stress in the air gap between the stator and the rotor is calculated by the magnetic field analysis by the finite element method, and the quadratic and temporal 14th-order components when the electromagnetic stress is Fourier series expanded in time and space. The amplitude value is shown. Here, three cases of electromagnetic excitation force are shown when only the continuous phase coil group 252 is energized, when only the single phase coil group 251 is energized, and both are energized. When the electromagnetic excitation force when only the continuous phase coil group 252 is energized is 100%, the electromagnetic excitation force when only the single phase coil group 251 is energized is 67%, and both are energized. The force is 34%. The characteristic of the spatial secondary electromagnetic excitation force of a rotating machine with 14 poles and 18 slots is the difference in the spatial secondary electromagnetic excitation force when only the continuous phase coil group 252 is energized and when only the single phase coil group 251 is energized. The amount is substantially equal to the spatial secondary electromagnetic excitation force when both the single phase coil group 251 and the continuous phase coil group 252 are energized.
 図7A、図7Bに、14極-18スロットの回転電機における単独相コイル群251で発生する電磁加振力の空間2次分布と、連続相コイル群252で発生する電磁加振力の空間2次分布の模式図を示す。実曲線の円からの変位方向が、電磁加振力の方向を示す。図7Aは電流位相0度の場合、図7Bは電流位相60度の場合を示している。図7Aより、電流位相0度のときU,V,W相の電流振幅が1.0,-0.5,-0.5であるため、単独相コイル群251と連続相コイル群252で発生する電磁加振力の空間2次分布は互いに機械角90度ずれて発生し、互いに打ち消し合う。これにより、14極-18スロットの回転電機の空間2次電磁加振力は、連続相コイル群252のみ通電したときと単独相コイル群251のみ通電したときの電磁加振力の差分量となる。これは電流位相が変わっても同じであり、図7Bに示すように電流位相60度においても同様の現象になる。 7A and 7B show the spatial secondary distribution of the electromagnetic excitation force generated by the single-phase coil group 251 and the space 2 of the electromagnetic excitation force generated by the continuous-phase coil group 252 in the rotating machine having 14 poles and 18 slots. A schematic diagram of the next distribution is shown. The direction of displacement from the circle of the solid curve indicates the direction of the electromagnetic excitation force. FIG. 7A shows the case where the current phase is 0 degree, and FIG. 7B shows the case where the current phase is 60 degrees. From FIG. 7A, since the current amplitudes of the U, V, and W phases are 1.0, −0.5, and −0.5 when the current phase is 0 degree, they are generated in the single phase coil group 251 and the continuous phase coil group 252. The spatial secondary distributions of the electromagnetic excitation forces that are generated are shifted from each other by a mechanical angle of 90 degrees and cancel each other. As a result, the space secondary electromagnetic excitation force of the rotating machine with 14 poles and 18 slots is the difference between the electromagnetic excitation force when only the continuous phase coil group 252 is energized and when only the single phase coil group 251 is energized. . This is the same even if the current phase changes, and the same phenomenon occurs at a current phase of 60 degrees as shown in FIG. 7B.
 実施例1を、図8-9を用いて説明する。 Example 1 will be described with reference to FIGS. 8-9.
 図8に実施例1における14極-18スロットの回転電機のコイル接続を示した回路図を示す。図ではU相のみを表示しているが、V,W相も同様に接続されているものとする。また、電源はインバータなどのパワーデバイスを含んでいるものとする。また、コイル結線はY結線であるが、Δ結線でもよい。 FIG. 8 is a circuit diagram showing the coil connection of the rotating machine with 14 poles and 18 slots in the first embodiment. Although only the U phase is shown in the figure, it is assumed that the V and W phases are similarly connected. The power supply includes a power device such as an inverter. The coil connection is a Y connection, but may be a Δ connection.
 本実施例では、連続相コイル群252のコイル1個当たり(ティース1本当たり)のターン数をNターン、単独相コイル群251のターン数を1.5Nターンとした。ただし、ターン数は0.5ターンが最小単位であるため、1.5Nターンは0.5ターン刻みで繰り上げ、または繰り下げを行うものとする。 In this example, the number of turns per coil (per tooth) of the continuous phase coil group 252 was N turns, and the number of turns of the single phase coil group 251 was 1.5 N turns. However, since the minimum number of turns is 0.5, the 1.5N turn is raised or lowered every 0.5 turns.
 図9に実施例1における14極-18スロットの回転電機の電磁加振力の空間2次成分の計算結果を示す。これは、固定子と回転子の間のエアギャップ中の電磁応力を有限要素法による磁界解析で計算し、電磁応力を時間と空間でフーリエ級数展開したときの空間2次、時間14次成分の振幅値を示したものである。単独相コイル群251のターン数を1.5Nターンにしたことにより、単独相コイル群251のみ通電したときの電磁加振力が97%となり、連続相コイル群252と単独相コイル群251の両方とも通電したときの電磁加振力は5%となる。空間2次電磁加振力は連続相コイル群252のみ通電したときと単独相コイル群251のみ通電したときの空間2次電磁加振力の差分量になることから、単独相コイル群251の起磁力を大きくすることで連続相コイル群252のみ通電したときの空間2次電磁加振力との差分量が小さくなり、14極-18スロットの回転電機の電磁加振力が低減する。このことから、単独相コイル群251が巻かれたティース内部の磁束量を連続相コイル群252が巻かれたティース内部の磁束量より大きくすることにより、回転電機の振動を低減できる。 FIG. 9 shows the calculation result of the spatial secondary component of the electromagnetic excitation force of the rotating machine with 14 poles and 18 slots in Example 1. This is because the electromagnetic stress in the air gap between the stator and the rotor is calculated by the magnetic field analysis by the finite element method, and the quadratic and temporal 14th-order components when the electromagnetic stress is Fourier series expanded in time and space. The amplitude value is shown. By setting the number of turns of the single-phase coil group 251 to 1.5N, the electromagnetic excitation force when only the single-phase coil group 251 is energized becomes 97%, and both the continuous-phase coil group 252 and the single-phase coil group 251 In both cases, the electromagnetic excitation force when energized is 5%. The spatial secondary electromagnetic excitation force is the difference between the spatial secondary electromagnetic excitation force when only the continuous phase coil group 252 is energized and when only the single phase coil group 251 is energized. By increasing the magnetic force, the amount of difference from the spatial secondary electromagnetic excitation force when only the continuous phase coil group 252 is energized is reduced, and the electromagnetic excitation force of the rotating machine having 14 poles and 18 slots is reduced. From this, the vibration of the rotating electrical machine can be reduced by making the amount of magnetic flux inside the teeth around which the single phase coil group 251 is wound larger than the amount of magnetic flux inside the teeth around which the continuous phase coil group 252 is wound.
 実施例1では、図6より単独相コイル群251による空間2次電磁加振力が67%程度であることから、単独相コイル群251のターン数は1.5(≒100÷67)N±0.1Nターン以内とすることが望ましい。 In Example 1, since the secondary secondary electromagnetic excitation force by the single phase coil group 251 is about 67% from FIG. 6, the number of turns of the single phase coil group 251 is 1.5 (≈100 ÷ 67) N ±. It is desirable to be within 0.1N turns.
 コイルターン数には整数巻と整数巻がある。整数巻はターン数が整数であり、コイル線の巻き始めと巻き終わりが同じ方向になる。整数巻はターン数が小数(整数+0.5)であり、コイル線の巻き始めと巻き終わりが反対方向になる。実施例1では、ターン数によるばらつきの影響を抑えるため、単独相コイル群251と連続相コイル群252のターン数はどちらも整数巻、または整数巻とすることが望ましい。 There are two types of coil turns: integer winding and integer winding. In the integer winding, the number of turns is an integer, and the winding start and winding end of the coil wire are in the same direction. In the integer winding, the number of turns is a decimal number (integer + 0.5), and the winding start and winding end of the coil wire are in opposite directions. In the first embodiment, in order to suppress the influence of variation due to the number of turns, it is desirable that both the single-phase coil group 251 and the continuous-phase coil group 252 have an integer winding or an integer winding.
 実施例2について図10-12を用いて説明する。 Example 2 will be described with reference to FIGS. 10-12.
 図10に実施例2における14極-18スロットの回転電機のコイル接続を示した回路図を示す。図ではU相のみを表示しているが、V、W相も同様に接続されているものとする。また、電源はインバータなどのパワーデバイスを含んでいるものとする。また、コイル結線はY結線であるが、Δ結線でもよい。実施例2では、回転電機を駆動する電源として第一電源Vと第二電源Vの2つがあり、第一電源と連続相コイル群252が接続され、第二電源と単独相コイル群251が接続されている。連続相コイル群252と単独相コイル群251のターン数はNターンである。第一電源による電流はIアンペア、第二電源による電流は1.5Iアンペアである。 FIG. 10 is a circuit diagram showing the coil connection of a rotating machine with 14 poles and 18 slots in the second embodiment. Although only the U phase is shown in the figure, it is assumed that the V and W phases are similarly connected. The power supply includes a power device such as an inverter. The coil connection is a Y connection, but may be a Δ connection. In the second embodiment, there are two power sources for driving the rotating electrical machine, the first power source V 1 and the second power source V 2 , the first power source and the continuous phase coil group 252 are connected, and the second power source and the single phase coil group 251. Is connected. The number of turns of the continuous phase coil group 252 and the single phase coil group 251 is N turns. The current from the first power source is I amperes, and the current from the second power source is 1.5 I amperes.
 図11に実施例2における14極-18スロットの回転電機の電磁加振力の空間2次成分の計算結果を示す。これは、固定子と回転子の間のエアギャップ中の電磁応力を有限要素法による磁界解析で計算し、電磁応力を時間と空間でフーリエ級数展開したときの空間2次、時間14次成分の振幅値を示したものである。第二電源Vによる電流を1.5Iアンペアとしたことで、単独相コイル群251のみ通電したときの電磁加振力が100%となり、連続相コイル群252と単独相コイル群251の両方とも通電したときの電磁加振力は2%となる。電流Iは連続量として調整できることから、実施例1よりも電磁加振力を低減することが可能となる。 FIG. 11 shows the calculation result of the spatial secondary component of the electromagnetic excitation force of the rotating machine having 14 poles and 18 slots according to the second embodiment. This is because the electromagnetic stress in the air gap between the stator and the rotor is calculated by the magnetic field analysis by the finite element method, and the quadratic and temporal 14th-order components when the electromagnetic stress is Fourier series expanded in time and space. The amplitude value is shown. By setting the current from the second power source V 2 to 1.5 I ampere, the electromagnetic excitation force when only the single phase coil group 251 is energized becomes 100%, and both the continuous phase coil group 252 and the single phase coil group 251 are both. The electromagnetic excitation force when energized is 2%. Since the current I can be adjusted as a continuous amount, the electromagnetic excitation force can be reduced as compared with the first embodiment.
 図12に実施例2における14極-18スロットの回転電機のトルクの計算結果を示す。トルクは有限要素法による磁界解析で計算した。ここでは、第一電源Vによる電流のみを流した場合、第二電源Vによる電流のみを流した場合、両方とも流した場合の3ケースのトルクを示している。図より、連続相コイル群252と単独相コイル群251でコイル1個当たりの起磁力が異なるが、トルクの時間変動は小さく低トルク脈動である。これは、図3のベクトル図において、単独相コイル群251のベクトル(番号2、5、8、11、14、17)が互いに120度の位相差を持っており三相バランスが成立していることから、単独相コイル群251の起磁力を大きくしてもトルク脈動は増加しない。本実施例のもう一つの効果として、第一電源Vまたは第二電源Vのどちらかが故障しても、トルクを50%程度維持することが可能であり、システムの信頼性を向上させることができる。 FIG. 12 shows the calculation results of the torque of the rotating machine with 14 poles and 18 slots in Example 2. Torque was calculated by magnetic field analysis by finite element method. Here, three cases of torque are shown when only the current from the first power source V 1 is passed, only the current from the second power source V 2 is passed, and both are passed. From the figure, although the magnetomotive force per coil differs between the continuous phase coil group 252 and the single phase coil group 251, the time variation of the torque is small and the torque pulsation is low. This is because, in the vector diagram of FIG. 3, the vectors ( numbers 2, 5, 8, 11, 14, and 17) of the single-phase coil group 251 have a phase difference of 120 degrees from each other, and a three-phase balance is established. Therefore, even if the magnetomotive force of the single phase coil group 251 is increased, the torque pulsation does not increase. Another advantage of the present embodiment, even if either of the first power supply V 1 or the second power supply V 2 is failed, it is possible to maintain the torque 50%, improve the reliability of the system be able to.
 実施例2では、図6より単独相コイル群251による空間2次電磁加振力が67%程度であることから、単独相コイル群251の電流は1.5(≒100÷67)I±0.1Iアンペア以内とすることが望ましい。 In Example 2, the spatial secondary electromagnetic excitation force by the single-phase coil group 251 is about 67% from FIG. 6, so that the current of the single-phase coil group 251 is 1.5 (≈100 ÷ 67) I ± 0. Desirably within 1 IA.
 実施例2では、第二電源Vの電流を下げたい場合は、単独相コイル群251を直列接続することで電流を低減することが可能である。また、第一電源Vの電圧を下げたい場合は、連続相コイル群252のみをΔ接続にすることで電圧を低減することが可能である。また、第二電源Vの電圧を下げたい場合は、単独相コイル群251のみをΔ接続にすることで電圧を低減することが可能である。 In Example 2, if you want to decrease the second power supply V 2 of the current, it is possible to reduce the current alone phase coil group 251 by serial connection. Further, when it is desired to lower the voltage of the first power supply V 1 , it is possible to reduce the voltage by making only the continuous phase coil group 252 a Δ connection. Also, if you want to decrease the second voltage power supply V 2 is possible to reduce the voltage by only a single phase coil group 251 to Δ connection.
 実施例3について図13を用いて説明する。 Example 3 will be described with reference to FIG.
 図13に実施例3における14極-18スロットの回転電機の軸方向垂直断面図を示す。本実施例の固定子コア21は、コアバック部で分割されている。分割された固定子コア(分割コア)において、単独相コイル群が巻かれたティース221の幅は、連続相コイル群が巻かれたティース222の幅より大きい。 FIG. 13 is a vertical sectional view in the axial direction of a rotating electrical machine having 14 poles and 18 slots according to the third embodiment. The stator core 21 of the present embodiment is divided at the core back portion. In the divided stator core (divided core), the width of the teeth 221 wound with the single-phase coil group is larger than the width of the teeth 222 wound with the continuous-phase coil group.
 単独相コイル群251が巻かれたティースの幅を連続相コイル群252が巻かれたティースの幅より大きくすることで、単独相コイル群251により発生する磁束の経路の磁気抵抗が連続相コイル群252により発生する磁束の経路の磁気抵抗より小さくでき、単独相コイル群251が巻かれたティース内部の磁束量を連続相コイル群252が巻かれたティース内部の磁束量より大きくできることから、回転電機の振動を低減することができる。固定子コアを分割することで材料歩留まりとコイル占積率を向上できるが、分割しなくても本効果は得られる。 By making the width of the tooth around which the single-phase coil group 251 is wound larger than the width of the tooth around which the continuous-phase coil group 252 is wound, the magnetic resistance of the path of the magnetic flux generated by the single-phase coil group 251 is reduced. Since the magnetic resistance of the path of the magnetic flux generated by 252 can be made smaller and the amount of magnetic flux inside the teeth around which the single phase coil group 251 is wound can be made larger than the amount of magnetic flux inside the teeth around which the continuous phase coil group 252 is wound. Can be reduced. By dividing the stator core, the material yield and the coil space factor can be improved, but this effect can be obtained without dividing.
 実施例4について図14を用いて説明する。 Example 4 will be described with reference to FIG.
 図14に実施例4における14極-18スロットの回転電機の軸方向垂直断面図を示す。本実施例の固定子コア21はコアバック部で分割されている。単独相コイル群が巻かれたティース221には第一の電磁鋼鈑211、連続相コイル群が巻かれたティース222には第二の電磁鋼鈑212を使用し、第一の電磁鋼鈑の透磁率が第二の電磁鋼鈑の透磁率より高い。 FIG. 14 is a vertical sectional view in the axial direction of a rotating electrical machine having 14 poles and 18 slots according to the fourth embodiment. The stator core 21 of the present embodiment is divided at the core back portion. The first electromagnetic steel plate 211 is used for the teeth 221 wound with the single phase coil group, and the second electromagnetic steel plate 212 is used for the teeth 222 wound with the continuous phase coil group. The permeability is higher than the permeability of the second electromagnetic steel plate.
 第一の電磁鋼鈑の透磁率を第二の電磁鋼鈑の透磁率より高くすることで、単独相コイル群251により発生する磁束の経路の磁気抵抗が連続相コイル群252により発生する磁束の経路の磁気抵抗より小さくでき、単独相コイル群251が巻かれたティース内部の磁束量を連続相コイル群252が巻かれたティース内部の磁束量より大きくできることから、回転電機の振動を低減することができる。 By making the magnetic permeability of the first electromagnetic steel plate higher than the magnetic permeability of the second electromagnetic steel plate, the magnetic resistance of the magnetic flux path generated by the single-phase coil group 251 is reduced by the magnetic flux generated by the continuous-phase coil group 252. Since the magnetic resistance of the path can be made smaller and the amount of magnetic flux inside the teeth around which the single phase coil group 251 is wound can be made larger than the amount of magnetic flux inside the teeth around which the continuous phase coil group 252 is wound, vibration of the rotating electrical machine can be reduced. Can do.
 実施例5について図15を用いて説明する。 Example 5 will be described with reference to FIG.
 図15に実施例5における22極-18スロットの回転電機の軸方向垂直断面図を示す。実施例5の22極-18スロットの回転電機は回転子10と固定子20で構成される。回転子は、回転子コア11と、回転子コアの外周表面(内部の場合もあり)に配置された22個の永久磁石12を備えており、永久磁石の磁化は回転電機の径方向を向いており、周方向に沿ってN・S・N・S・・と磁極が交互に代わるように配置されている。固定子は、回転子と対向して突出した18本のティース22と、ティースの固定子外周側に磁路を形成するためのコアバック23と、コアバックと隣り合うティース間で形成された巻線用のスロット24で構成された固定子コア21と、ティースに巻き回わされた固定子コイル25を備えている。 FIG. 15 is a vertical sectional view in the axial direction of a rotating electrical machine having 22 poles and 18 slots according to the fifth embodiment. The rotating electric machine having 22 poles and 18 slots according to the fifth embodiment includes a rotor 10 and a stator 20. The rotor includes a rotor core 11 and 22 permanent magnets 12 arranged on the outer peripheral surface (in some cases, inside) of the rotor core, and the magnetization of the permanent magnet faces the radial direction of the rotating electrical machine. N, S, N, S, and magnetic poles are alternately arranged along the circumferential direction. The stator is composed of 18 teeth 22 projecting opposite the rotor, a core back 23 for forming a magnetic path on the stator outer periphery of the teeth, and a winding formed between the teeth adjacent to the core back. A stator core 21 composed of a wire slot 24 and a stator coil 25 wound around a tooth are provided.
 図4のコイル相配置による回転磁界と同期する回転子は14極と22極であり、22極の回転子においても、単独相コイル群251が巻かれたティース内部の磁束量を連続相コイル群252が巻かれたティース内部の磁束量より大きくすることで、回転電機の振動を低減することができる。 The rotors synchronized with the rotating magnetic field by the coil phase arrangement of FIG. 4 are 14 poles and 22 poles, and even in the 22 pole rotor, the amount of magnetic flux inside the teeth around which the single phase coil group 251 is wound is changed to the continuous phase coil group. By making it larger than the amount of magnetic flux inside the tooth around which 252 is wound, vibration of the rotating electrical machine can be reduced.
 本発明は、14極-18スロットまたは22極-18スロットの場合に限られるものではなく、磁極数とスロット数との比が14:18または22:18であれば適用可能であり、上述した実施例と同様の効果が得られる。 The present invention is not limited to the case of 14 poles-18 slots or 22 poles-18 slots, but can be applied if the ratio of the number of magnetic poles to the number of slots is 14:18 or 22:18. The same effect as the embodiment can be obtained.
 なお、本発明は上記した実施例に限定されるものではなく、様々な変形例が含まれる。例えば、上記した実施例は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施例の構成の一部を他の実施例の構成に置き換えることが可能であり、また、ある実施例の構成に他の実施例の構成を加えることも可能である。また、各実施例の構成の一部について、他の構成の追加・削除・置換をすることが可能である。 In addition, this invention is not limited to the above-mentioned Example, Various modifications are included. For example, the above-described embodiments have been described in detail for easy understanding of the present invention, and are not necessarily limited to those having all the configurations described. Further, a part of the configuration of one embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of one embodiment. Further, it is possible to add, delete, and replace other configurations for a part of the configuration of each embodiment.
 10…回転子
 11…回転子コア
 12…永久磁石
 20…固定子
 21…固定子コア
 211…第一の電磁鋼鈑
 212…第二の電磁鋼鈑
 22…ティース
 221…単独相コイル群が巻かれたティース
 222…連続相コイル群が巻かれたティース
 23…コアバック
 24…スロット
 25…固定子コイル
 251…単独相コイル群
 252…連続相コイル群
 V…第一電源
 V…第二電源
 I…電流
DESCRIPTION OF SYMBOLS 10 ... Rotor 11 ... Rotor core 12 ... Permanent magnet 20 ... Stator 21 ... Stator core 211 ... First electromagnetic steel plate 212 ... Second electromagnetic steel plate 22 ... Teeth 221 ... Single phase coil group is wound Teeth 222 ... Teeth around which a continuous phase coil group is wound 23 ... Core back 24 ... Slot 25 ... Stator coil 251 ... Single phase coil group 252 ... Continuous phase coil group V 1 ... First power source V 2 ... Second power source I ... Current

Claims (11)

  1.  14n(nは1以上の整数)個または22n個の磁極を有する回転子に対向して配置される固定子であって、
     18n本のティースと、
     前記ティースに巻き回された集中巻方式の固定子コイルと、を備え、
     前記固定子コイルは、隣接するティースに巻き回された固定子コイルの相が異なる単独相コイル群と、隣接するティースに巻き回された固定子コイルの相が同じ連続相コイル群とを有し、
     前記単独相コイルが巻き回されたティース内部の最大磁束量が、前記連続相コイルが巻き回されたティース内部の最大磁束量より大きいことを特徴とする固定子。
    A stator arranged to face a rotor having 14n (n is an integer of 1 or more) or 22n magnetic poles,
    18n teeth,
    A concentrated winding stator coil wound around the teeth;
    The stator coil has a single-phase coil group in which phases of stator coils wound around adjacent teeth are different, and a continuous phase coil group in which the phases of stator coils wound around adjacent teeth are the same. ,
    The stator according to claim 1, wherein the maximum amount of magnetic flux inside the teeth around which the single phase coil is wound is larger than the maximum amount of magnetic flux inside the teeth around which the continuous phase coil is wound.
  2.  請求項1に記載の固定子であって、
     前記単独相コイル群のコイル一個当たりの起磁力が、前記連続相コイル群のコイル一個当たりの起磁力より大きいことを特徴とする固定子。
    The stator according to claim 1,
    The stator according to claim 1, wherein a magnetomotive force per coil of the single phase coil group is larger than a magnetomotive force per coil of the continuous phase coil group.
  3.  請求項1または2に記載の固定子であって、
     前記単独相コイル群のコイル一個当たりのターン数が、前記連続相コイル群のコイル一個当たりのターン数より大きいことを特徴とする固定子。
    The stator according to claim 1 or 2,
    The stator characterized in that the number of turns per coil of the single phase coil group is larger than the number of turns per coil of the continuous phase coil group.
  4.  請求項3に記載の固定子であって、
     前記連続相コイル群のコイル一個当たりのターン数をNとしたとき、前記単独相コイル群のコイル一個当たりのターン数が1.5N±0.1Nターン以内であることを特徴とする固定子。
    The stator according to claim 3,
    The stator according to claim 1, wherein the number of turns per coil of the single phase coil group is within 1.5N ± 0.1N turns, where N is the number of turns per coil of the continuous phase coil group.
  5.  請求項1乃至4に記載の固定子であって、
     前記単独相コイル群のコイル一個当たりに流れる電流が、前記連続相コイル群のコイル一個当たりに流れる電流より大きいことを特徴とする固定子。
    The stator according to claim 1, wherein
    The stator, wherein a current flowing per coil of the single phase coil group is larger than a current flowing per coil of the continuous phase coil group.
  6.  請求項5に記載の固定子であって、
     前記連続相コイル群のコイル一個当たりに流れる電流をIアンペアとしたとき、前記単独相コイル群のコイル一個当たりに流れる電流が1.5(≒100÷67)I±0.1Iアンペア以内であることを特徴とする固定子。
    The stator according to claim 5,
    When the current flowing per coil of the continuous phase coil group is I ampere, the current flowing per coil of the single phase coil group is within 1.5 (≈100 ÷ 67) I ± 0.1 I ampere. Stator characterized by that.
  7.  請求項1乃至6のいずれかに記載の固定子であって、
     前記単独相コイル群により発生する磁束の経路の磁気抵抗が、前記連続相コイル群により発生する磁束の経路の磁気抵抗より小さいことを特徴とする固定子。
    The stator according to any one of claims 1 to 6,
    The stator according to claim 1, wherein a magnetic resistance of a path of magnetic flux generated by the single phase coil group is smaller than a magnetic resistance of a path of magnetic flux generated by the continuous phase coil group.
  8.  請求項1乃至7のいずれかに記載の固定子であって、
     前記連続相コイル群が第一の電源と接続され、前記単独相コイル群が第二の電源と接続されたことを特徴とする固定子。
    The stator according to any one of claims 1 to 7,
    The stator, wherein the continuous phase coil group is connected to a first power source, and the single phase coil group is connected to a second power source.
  9.  14n(nは1以上の整数)個または22n個の磁極を有する回転子に対向して配置される固定子であって、
     18n本のティースと、
     前記ティースに巻き回された集中巻方式の固定子コイルと、を備え、
     前記固定子コイルは、隣接するティースに巻き回された固定子コイルの相が異なる単独相コイル群と、隣接するティースに巻き回された固定子コイルの相が同じ連続相コイル群とを有し、
     前記単独相コイル群のコイル1個当たりのターン数が、前記連続相コイル群のコイル1個当たりのターン数より大きいことを特徴とする固定子。
    A stator arranged to face a rotor having 14n (n is an integer of 1 or more) or 22n magnetic poles,
    18n teeth,
    A concentrated winding stator coil wound around the teeth;
    The stator coil has a single-phase coil group in which phases of stator coils wound around adjacent teeth are different, and a continuous phase coil group in which the phases of stator coils wound around adjacent teeth are the same. ,
    The stator characterized in that the number of turns per coil of the single phase coil group is larger than the number of turns per coil of the continuous phase coil group.
  10.  18n(nは1以上の整数)本のティースを有する請求項1乃至9のいずれかに記載の固定子と、
     前記固定子に対向して配置される14n個または22n個の磁極を有する回転子と、
    を備えた回転電機。
    The stator according to any one of claims 1 to 9, which has 18n (n is an integer of 1 or more) teeth,
    A rotor having 14n or 22n magnetic poles arranged opposite to the stator;
    Rotating electric machine with
  11.  請求項10に記載の回転電機を搭載した自動車用電動補機装置。 An electric auxiliary equipment for automobiles equipped with the rotating electrical machine according to claim 10.
PCT/JP2017/000695 2016-01-29 2017-01-12 Stator, rotary electric machine, and electric accessory device for automobile WO2017130701A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017563784A JP6500127B2 (en) 2016-01-29 2017-01-12 Stator, rotating electrical machine, and automotive electric auxiliary device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016015035 2016-01-29
JP2016-015035 2016-01-29

Publications (1)

Publication Number Publication Date
WO2017130701A1 true WO2017130701A1 (en) 2017-08-03

Family

ID=59398839

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/000695 WO2017130701A1 (en) 2016-01-29 2017-01-12 Stator, rotary electric machine, and electric accessory device for automobile

Country Status (2)

Country Link
JP (1) JP6500127B2 (en)
WO (1) WO2017130701A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020198743A (en) * 2019-06-05 2020-12-10 日立オートモティブシステムズ株式会社 Rotary electric machine and automobile electric auxiliary system
US11621598B2 (en) * 2020-03-10 2023-04-04 Qatar University Torque density pseudo six-phase induction machine
JP7365956B2 (en) 2020-04-08 2023-10-20 株式会社ミツバ Brushless motor and brushless motor control method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002272074A (en) * 2001-03-15 2002-09-20 Moric Co Ltd Permanent-magnet three-phase ac rotating electric machine
JP2007259541A (en) * 2006-03-22 2007-10-04 Mitsubishi Electric Corp Permanent magnet type motor
WO2013080374A1 (en) * 2011-12-02 2013-06-06 三菱電機株式会社 Permanent magnet type concentrated winding motor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002272074A (en) * 2001-03-15 2002-09-20 Moric Co Ltd Permanent-magnet three-phase ac rotating electric machine
JP2007259541A (en) * 2006-03-22 2007-10-04 Mitsubishi Electric Corp Permanent magnet type motor
WO2013080374A1 (en) * 2011-12-02 2013-06-06 三菱電機株式会社 Permanent magnet type concentrated winding motor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020198743A (en) * 2019-06-05 2020-12-10 日立オートモティブシステムズ株式会社 Rotary electric machine and automobile electric auxiliary system
US11621598B2 (en) * 2020-03-10 2023-04-04 Qatar University Torque density pseudo six-phase induction machine
JP7365956B2 (en) 2020-04-08 2023-10-20 株式会社ミツバ Brushless motor and brushless motor control method

Also Published As

Publication number Publication date
JPWO2017130701A1 (en) 2018-06-14
JP6500127B2 (en) 2019-04-10

Similar Documents

Publication Publication Date Title
JP4489002B2 (en) Hybrid excitation rotating electric machine and vehicle equipped with hybrid excitation rotating electric machine
US9236775B2 (en) Rotary electric machine
Takano et al. Design and analysis of a switched reluctance motor for next generation hybrid vehicle without PM materials
US20170288517A1 (en) Brushless motor
US8896178B2 (en) Synchronous electric motor drive system having slit windings
WO2017073092A1 (en) Rotary electric machine
JP6226867B2 (en) Brushless motor and brushless motor rotor
JP5932147B2 (en) Multiple multi-phase winding AC rotating electric machine and electric power steering device
US20130106228A1 (en) Electric rotating machine
JP2006174692A (en) Brushless motor
Kohara et al. Finite-element analysis and experiment of current superimposition variable flux machine using permanent magnet
JP6500127B2 (en) Stator, rotating electrical machine, and automotive electric auxiliary device
JP6723349B2 (en) Permanent magnet type motor
US9356498B2 (en) Rotary electric machine with armature magnetic reaction compensation
WO2020105465A1 (en) Rotating electrical machine and automobile electric auxiliary system
JP5972607B2 (en) Electric motor
US20170346353A1 (en) Permanent-magnet-type rotating electrical machine
JP6035957B2 (en) Rotating machine
JP2016093052A (en) Rotary electric machine
WO2017073275A1 (en) Magnet type rotor, rotary electric machine provided with magnet type rotor, and electric automobile provided with rotary electric machine
JP2012100497A (en) Stator core
JP6497231B2 (en) Motor control device
US10236756B2 (en) Rotating electric machine
US20180091009A1 (en) Synchronous rotating electric machine
JP5944185B2 (en) Drive device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17743932

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017563784

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17743932

Country of ref document: EP

Kind code of ref document: A1