WO2017130630A1 - Agent for enhancing high-temperature resistance in plant, method for enhancing high-temperature resistance, agent for suppressing whitening, and dreb2a gene expression promoter - Google Patents

Agent for enhancing high-temperature resistance in plant, method for enhancing high-temperature resistance, agent for suppressing whitening, and dreb2a gene expression promoter Download PDF

Info

Publication number
WO2017130630A1
WO2017130630A1 PCT/JP2016/089061 JP2016089061W WO2017130630A1 WO 2017130630 A1 WO2017130630 A1 WO 2017130630A1 JP 2016089061 W JP2016089061 W JP 2016089061W WO 2017130630 A1 WO2017130630 A1 WO 2017130630A1
Authority
WO
WIPO (PCT)
Prior art keywords
plant
temperature stress
allantoin
plants
gene
Prior art date
Application number
PCT/JP2016/089061
Other languages
French (fr)
Japanese (ja)
Inventor
坂本 敦
裕士 島田
翔真 田中
増俊 野尻
ユウ 付
憲之 木崎
北野 光昭
Original Assignee
株式会社カネカ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2016043503A external-priority patent/JP6532026B2/en
Application filed by 株式会社カネカ filed Critical 株式会社カネカ
Priority to EP16888214.0A priority Critical patent/EP3409116B1/en
Priority to ES16888214T priority patent/ES2955007T3/en
Priority to CN201680080335.6A priority patent/CN108882712B/en
Publication of WO2017130630A1 publication Critical patent/WO2017130630A1/en
Priority to US15/977,890 priority patent/US10182569B2/en
Priority to US16/034,010 priority patent/US20180310565A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01HNEW PLANTS OR NON-TRANSGENIC PROCESSES FOR OBTAINING THEM; PLANT REPRODUCTION BY TISSUE CULTURE TECHNIQUES
    • A01H3/00Processes for modifying phenotypes, e.g. symbiosis with bacteria
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G7/00Botany in general
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N47/00Biocides, pest repellants or attractants, or plant growth regulators containing organic compounds containing a carbon atom not being member of a ring and having no bond to a carbon or hydrogen atom, e.g. derivatives of carbonic acid
    • A01N47/08Biocides, pest repellants or attractants, or plant growth regulators containing organic compounds containing a carbon atom not being member of a ring and having no bond to a carbon or hydrogen atom, e.g. derivatives of carbonic acid the carbon atom having one or more single bonds to nitrogen atoms
    • A01N47/28Ureas or thioureas containing the groups >N—CO—N< or >N—CS—N<
    • A01N47/36Ureas or thioureas containing the groups >N—CO—N< or >N—CS—N< containing the group >N—CO—N< directly attached to at least one heterocyclic ring; Thio analogues thereof
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N47/00Biocides, pest repellants or attractants, or plant growth regulators containing organic compounds containing a carbon atom not being member of a ring and having no bond to a carbon or hydrogen atom, e.g. derivatives of carbonic acid
    • A01N47/08Biocides, pest repellants or attractants, or plant growth regulators containing organic compounds containing a carbon atom not being member of a ring and having no bond to a carbon or hydrogen atom, e.g. derivatives of carbonic acid the carbon atom having one or more single bonds to nitrogen atoms
    • A01N47/28Ureas or thioureas containing the groups >N—CO—N< or >N—CS—N<
    • A01N47/38Ureas or thioureas containing the groups >N—CO—N< or >N—CS—N< containing the group >N—CO—N< where at least one nitrogen atom is part of a heterocyclic ring; Thio analogues thereof
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8261Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
    • C12N15/8271Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance

Definitions

  • the present invention relates to a high-temperature stress tolerance improver in plants, a method for improving high-temperature stress tolerance, a whitening inhibitor, and a DREB2A gene expression promoter.
  • Plants are exposed to various environmental stresses such as high temperature and dryness. Since plants are difficult to move like animals, mechanisms have been developed to protect themselves from environmental stress.
  • a drought stress responsive element is a sequence whose presence was confirmed in the Arabidopsis genome by promoter analysis of RD29A, which is one of water stress-inducible genes.
  • DREB DRE binding protein
  • DREB2A is a transcription factor isolated as a protein that binds to DRE.
  • DREB2A is a transcription factor of APETALA2 / ethylene-responsive element binding factor type (AP2 / ERF-type) and was isolated as a protein that recognizes DRE (Non-patent Document 3). Since DREB2A is strongly induced by dry and high salt concentration conditions, it is considered that DREB2A is a transcription factor that works under dry and high salt stress conditions (Non-Patent Document 1).
  • DREB2A The activity of DREB2A is controlled after translation, and the 30 amino acid region adjacent to the AP2 / ERF DNA binding domain is thought to play an important role in the post-translational control of the protein.
  • DREB2A CA lacking this region has activity, and Arabidopsis overexpressing DREB2A CA exhibits a fertile phenotype, and drought stress tolerance has been significantly improved (non-patent literature). 2).
  • Non-Patent Document 3 and Patent Document 1 report a mechanism by which DREB2A induces a target gene when a plant is subjected to high temperature stress.
  • a mechanism has been proposed in which the protein DPB3-1 (or NF-YC10) interacts with DREB2A to promote induction of a high-temperature stress resistance gene by DREB2A. Yes.
  • Non-Patent Document 3 shows that the interaction between DPB3-1 and DREB2A does not affect the expression of a drought stress-inducing gene.
  • Patent Document 2 describes that in a transformed plant into which the DREB2A gene has been introduced, the rooting rate is improved and the longevity of cut flowers is prolonged.
  • allantoin (5-ureidohydantoin) is an intermediate product generated in the process of decomposing nucleobase (purine base).
  • allantoin is produced from 5-hydroxyisouric acid by allantoin synthase (AS) and decomposed into allantoic acid by allantoinase (ALN).
  • AS allantoin synthase
  • ALN allantoinase
  • Non-Patent Document 5 reports that growth is promoted when allantoin is given to Arabidopsis thaliana.
  • Patent Document 3 discloses a method for protecting a plant from stress by giving a ureido such as allantoin to the plant.
  • Patent Document 3 discloses that plants are damaged by oxidative stress during environmental disturbances such as drought and cold, and that when the concentration of ureido is high, the scavenger pathway is promoted and the plants are protected from damage.
  • allantoin is known to have an effect of improving stress tolerance such as drought stress tolerance and low temperature stress tolerance in plants.
  • stress tolerance such as drought stress tolerance and low temperature stress tolerance in plants.
  • high temperature stress tolerance and allantoin has not been investigated so far.
  • Non-Patent Document 3 As described above, interaction between DPB3-1 and DREB2A is necessary for induction of high-temperature stress tolerance by DREB2A, whereas this interaction is necessary for induction of drought stress tolerance. It is described as irrelevant. As is clear from this, even if a certain component can improve resistance to stress other than high temperature stress such as drought stress, it does not necessarily have an effect of improving high temperature stress resistance. Therefore, from the conventional knowledge that allantoin has an effect of improving tolerance to several stresses other than high-temperature stress in plants, the action of allantoin related to high-temperature stress tolerance cannot be predicted.
  • the expression of the DREB2A gene in plants contributes to improvement of various stress tolerances such as high temperature stress tolerance and drought stress tolerance as described above. It is also known that the expression of the DREB2A gene has advantageous effects such as an improved rooting rate and an extended flower life of cut flowers. A substance capable of promoting the expression of the DREB2A gene can exert these advantageous effects when applied to plants. However, no such material has been previously provided. As described in Patent Document 1, a transformed plant into which the DREB2A gene has been introduced can exert advantageous effects due to DREB2A, but because the transformed plant is a plant that does not exist in nature, it is difficult to use industrially. There's a problem. It is considered that the utility of a technique for improving the expression of the DREB2A gene in a plant by applying a naturally occurring substance to the plant is considered to be great.
  • an object of the present invention is to provide means for improving tolerance to high temperature stress in plants. Another object of the present invention is to provide a means for suppressing plant whitening. Another object of the present invention is to provide a means for promoting the expression of the DREB2A gene in plants.
  • the present inventors have found that when allantoin is allowed to act on a plant, an unexpected effect of improving the high temperature stress tolerance of the plant, suppressing the whitening of the plant, and promoting the DREB2A gene in the plant occurs.
  • the invention has been completed. Specifically, the present invention includes the following inventions.
  • the high temperature stress according to (1) for suppressing one or more of whitening of the plant due to high temperature stress, wiping of the plant due to high temperature stress, and winding of a plant leaf due to high temperature stress. Tolerance improver.
  • the high-temperature stress tolerance improving agent according to (1) or (2) which promotes the expression of the DREB2A gene in a plant.
  • a method for improving the high temperature stress tolerance of a plant comprising a step of applying the high temperature stress tolerance improving agent according to any one of (1) to (3) to the plant.
  • the method according to (4) wherein in the step, the high-temperature stress tolerance improver is applied to a plant before being subjected to stress.
  • a DREB2A gene expression promoter for promoting the expression of the DREB2A gene in a plant, containing allantoin as an active ingredient.
  • a method for suppressing whitening of a plant comprising a step of applying the whitening inhibitor according to (6) to a plant.
  • a method for promoting the expression of the DREB2A gene in a plant comprising a step of applying the DREB2A gene expression promoting agent according to (7) to the plant.
  • Use of allantoin to improve high temperature stress tolerance of plants (11) Use of allantoin to suppress plant whitening.
  • FIG. 1 photographs of each petri dish after Arabidopsis thaliana was treated under each heat shock condition and grown for 1 week are shown.
  • the survival rate when Arabidopsis thaliana is treated under each heat shock condition and grown for 1 week is shown.
  • Experiment 2 the photograph of the onion of the 3rd day after the heat shock processed for 1.5 hours at 45 degreeC is shown.
  • the upper part of FIG. 3 is a photograph of an onion in the allantoin area (survival rate 33.3%), and the lower part of FIG. 3 is a photograph of the onion in the water area (survival rate 0%).
  • Allantoin is also called 5-ureidohydantoin, and has a structure in which a free form is represented by the following formula.
  • Allantoin has one asymmetric carbon (indicated by * in the formula), and there are (R) -allantoin and (S) -allantoin forms.
  • the allantoin used in the present invention may be (R) -allantoin, (S) -allantoin, or a mixture thereof.
  • Allantoin may be in any form that can be used by plants, and can be in an appropriate form such as a free form or a solvate such as a hydrate. Moreover, 2 or more types of mixtures may be sufficient among forms, such as a free body and a hydrate.
  • the target plant to which the allantoin, the allantoin-containing composition, the high-temperature stress tolerance improver, the bleaching inhibitor or the DREB2A gene expression promoter is applied is not particularly limited and includes various plants such as dicotyledonous plants and monocotyledonous plants.
  • dicotyledonous plants examples include morning glory plants, Brassica plants, convolvulaceae plants, sweet potato plants, Arabidopsis plants, papaver plants, pteridophytes plants, chickweed plants, papaver plants, prunus plants, clover plants , Nominotsunuri genus plant, Oyafusuma genus plant, Waspionian genus plant, Hamachabe genus plant, Otsumexa genus plant, Shiotsume genus plant, Mantema genus plant, genus genus plant, Fusiflora genus plant, Nadesicoaceae plant, euphorbiaceae plant, Asteraceae plant, Pepperaceae plant, Cypridaceae plant, Willow family plant, Prunus plant plant, Walnut plant plant, Birch plant plant, Beech plant plant, Elmaceae plant, Mulberry plant plant, Nettle plant plant plant, Chrysanthemum plant plant, Papaver plant Plant, sandal
  • Monocotyledonous plants include, for example, duckweed plants, duckweed plants, cattleya plants, cymbidium plants, dendrobum plants, leek plants, phalaenopsis plants, banda plants, paphiopedilum plants, orchidaceae plants, gammaidae Plants, licorices, periwinkles, cicadaceae, euphorbiaceae, euphorbiaceae, stigmaceae, scorpionaceae, cyperaceae, palmaceae, taroaceae, asteraceae, cypressaceae, It is applied to scorpionaceae plants, rush family plants, sandalaceae plants, liliaceae plants, amaryllidaceae plants, genus genus plants, iris plants, scallops plants, ginger plants, cannaid plants, cynomolgus plants, etc. Can do.
  • the target plant is not limited to a wild type plant, and may be a mutant or a transformant.
  • High temperature stress tolerance improving agent, method for improving high temperature stress tolerance> is a high temperature stress tolerance improver for improving the high temperature stress tolerance of a plant, containing allantoin as an active ingredient.
  • One embodiment of the present invention is a method for improving the high temperature stress tolerance of a plant, comprising the step of applying the above-mentioned high temperature stress tolerance improving agent to a plant.
  • the high temperature stress is stress caused by exposure of a plant to a temperature higher than the normal growth temperature, for example, 25 ° C. or higher, more specifically 30 ° C. or higher, and more specifically 50 This is stress caused by exposure of plants to temperatures below °C.
  • a temperature higher than the normal growth temperature for example, 25 ° C. or higher, more specifically 30 ° C. or higher, and more specifically 50
  • This is stress caused by exposure of plants to temperatures below °C.
  • it does not specifically limit as the time per day when a plant body is exposed to the said high temperature, For example, 60 minutes or more, More specifically, 90 minutes or more are mentioned, More specifically, 600 minutes or less is mentioned.
  • the high-temperature stress tolerance improving agent and the high-temperature stress tolerance improving method of the present invention are effective for improving tolerance to stress received by plants exposed to a high-temperature environment, particularly in a high-temperature stress. It is.
  • the high temperature stress tolerance improving agent and the high temperature stress tolerance improving method of the present invention are characterized in that, among the above physiological disorders caused by high temperature stress, at least the plant is whitened by high temperature stress (chlorosis), and high temperature stress. It has been confirmed that one or more of the plant withering and suppression of plant leaf rolling due to high temperature stress were suppressed.
  • the mechanism of the high-temperature stress tolerance enhancement action by allantoin is not particularly limited, but as one possibility, high temperature is promoted by promoting the expression of the DREB2A gene in plants.
  • the mechanism that stress tolerance improves is estimated.
  • the promotion of the expression of the DREB2A gene the following ⁇ 5.
  • the expression of the DREB2A gene is promoted in plants, and the heat shock transcription factor 3 ( It is estimated that the high temperature stress tolerance is improved by suppressing the expression of the HSF3) gene.
  • Non-Patent Document 1 in Arabidopsis thaliana in which DREB2A CA is overexpressed, the expression level of the HSF3 gene is improved, and accordingly, high-temperature stress tolerance is improved.
  • the expression level of the DREB2A gene is improved, while the expression level of the HSF3 gene is suppressed and high-temperature stress tolerance is improved, so that allantoin has been known so far. It is presumed that high temperature stress tolerance in plants is improved by a mechanism different from the mechanism.
  • the suppression of the expression of the HSF3 gene the following ⁇ 5.
  • the high-temperature stress tolerance improver of the present invention may be any agent that contains allantoin and has an effect of improving the high-temperature stress tolerance of plants, and may be allantoin itself or a combination of allantoin and other components.
  • the allantoin-containing composition may be used.
  • the high temperature stress tolerance improving agent of the present invention can contain an effective amount of allantoin that improves high temperature stress tolerance in plants.
  • the high-temperature stress resistance improver of the present invention can be in any shape such as solid or liquid.
  • the high-temperature stress tolerance improver of the present invention is an allantoin-containing composition
  • it may further contain other components useful for plants and components necessary for formulation.
  • other components include known fertilizer components.
  • Components necessary for formulation include carriers, liquid media and the like.
  • the high-temperature stress resistance improver of the present invention is an allantoin-containing composition
  • its production method is not particularly limited, and each component is mixed, or if it is a solid composition, it is pulverized, granulated, and dried as necessary. If it is a liquid composition, operations such as stirring and dispersion can be performed as necessary.
  • the method for improving the high temperature stress resistance of a plant according to the present invention includes a step of applying the above high temperature stress resistance improving agent to a plant.
  • the target plant is a plant that needs to be improved in resistance to high temperature stress, for example, a plant cultivated in an environment that may be subjected to high temperature stress such as the above temperature condition.
  • Specific plant types are as described above.
  • the high temperature stress tolerance improver of the present invention As a method of applying the high temperature stress tolerance improver of the present invention to plants, plants such as plant roots, stems, leaves, etc. in which the allantoin released from the high temperature stress tolerance improver of the present invention or the high temperature stress tolerance improver of the present invention is used.
  • the method is not particularly limited as long as it can contact the body, and may be applied so that the high-temperature stress tolerance improver of the present invention is in direct contact with the plant body, or cultivation of soil or the like on which the plant body is established You may apply the high temperature stress tolerance improvement agent of this invention to a support
  • the high-temperature stress tolerance improver of the present invention can be applied to plants so that an effective amount of allantoin that improves high-temperature stress tolerance is applied in plants.
  • the timing for applying the high-temperature stress tolerance improver of the present invention to plants is not particularly limited, but preferably, the high-temperature stress tolerance improver of the present invention is applied to plants before being subjected to high-temperature stress.
  • the high temperature stress tolerance improving agent of the present invention promotes the expression of the DREB2A gene. As described above, when the DREB2A gene is expressed, it is presumed that the expression of various stress resistance genes is induced. For this reason, it is estimated that the plant to which the high temperature stress tolerance improving agent of the present invention has been applied in advance before being subjected to high temperature stress is in a state in which high temperature stress tolerance has been improved in advance, and the survival rate when subsequently subjected to high temperature stress is high.
  • the time when the high temperature stress tolerance improver of the present invention is applied to the plant is T1, and the plant begins to be exposed to high temperature stress.
  • T2 the time from T1 to T2 is preferably 0.5 to 10 days, preferably 0.5 to 9 days, preferably 0.5 to 8 days, preferably 0.5 to 7 days, preferably Is 0.5-6 days, preferably 0.5-5 days, preferably 0.5-4 days, preferably 0.5-3 days, preferably 0.5-2 days, preferably 0.5-days. 1.5 days.
  • the survival rate after exposure to high temperature stress is high.
  • the high temperature stress tolerance improver of the present invention may be applied N times (N is 2 or more) to a plant before being subjected to high temperature stress. In that case, each time point T1 n (n is It is preferable that the time from an integer of 1 to N) to T2 satisfy the above range.
  • One embodiment of the present invention is a whitening inhibitor for suppressing plant whitening, which contains allantoin as an active ingredient.
  • One embodiment of the present invention is a method for suppressing plant whitening, which comprises the step of applying the whitening inhibitor to a plant.
  • Plant whitening also called chlorosis, is mainly caused by high-temperature stress.
  • the plant that is subject to whitening suppression according to the present invention is a plant that requires whitening suppression, for example, a plant that is cultivated in an environment that may be subjected to high-temperature stress such as the above temperature conditions.
  • Specific plant types are as described above.
  • the whitening inhibitor of the present invention only needs to contain allantoin and has an action of suppressing plant whitening, may be allantoin itself, or may contain allantoin and other components. It may be a composition.
  • the whitening inhibitor of the present invention can contain an effective amount of allantoin that suppresses whitening in plants.
  • the whitening inhibitor of the present invention can be in any shape such as solid or liquid.
  • the whitening inhibitor of the present invention is an allantoin-containing composition
  • the same allantoin-containing composition as described for the high-temperature stress resistance improver can be used.
  • the whitening inhibitor of the present invention or the allantoin released from the whitening inhibitor of the present invention may come into contact with a plant body such as a plant root, stem or leaf.
  • the method is not particularly limited as long as it can be applied, and may be applied so that the whitening inhibitor of the present invention is in direct contact with the plant body, or the whitening inhibitor of the present invention is applied to a cultivation carrier such as soil in which the plant body is fixed. May be applied.
  • the whitening inhibitor of this invention can be applied to a plant so that the effective amount of allantoin which suppresses whitening may be applied in a plant.
  • the timing for applying the whitening inhibitor of the present invention to plants is not particularly limited, but preferably, the whitening inhibitor of the present invention is applied to plants before being subjected to stress that causes whitening (for example, high-temperature stress).
  • the whitening inhibitor of the present invention promotes the expression of the DREB2A gene. As described above, when the DREB2A gene is expressed, it is presumed that the expression of various stress resistance genes is induced. For this reason, the plant to which the whitening inhibitor of the present invention has been applied in advance before being subjected to stress is in a state in which stress tolerance has been improved in advance, and it is predicted that whitening when subsequently subjected to stress is effectively suppressed. .
  • the time when the whitening inhibitor of the present invention is applied to the plant is T1, and the plant begins to be exposed to the stress.
  • the time from T1 to T2 is preferably 0.5 to 10 days, preferably 0.5 to 9 days, preferably 0.5 to 8 days, preferably 0.5 to 7 days, Preferably 0.5 to 6 days, preferably 0.5 to 5 days, preferably 0.5 to 4 days, preferably 0.5 to 3 days, preferably 0.5 to 2 days, preferably 0.5 ⁇ 1.5 days.
  • the whitening inhibitor of the present invention may be applied N times (N is 2 or more) to the plant before receiving the stress.
  • N is 2 or more
  • One embodiment of the present invention is a DREB2A gene expression promoter for promoting the expression of the DREB2A gene in plants, containing allantoin as an active ingredient.
  • One embodiment of the present invention is also a method of promoting the expression of the DREB2A gene in a plant, comprising the step of applying the above-mentioned DREB2A gene expression promoter to the plant.
  • inventions of the present invention contribute to the improvement of various stress tolerances such as high temperature stress tolerance and drought stress tolerance by promoting the expression of the DREB2A gene in plants. Moreover, there are advantageous effects such as improvement of the rooting rate in the target plant and extension of the flower life of cut flowers.
  • the expression of the HSF3 gene is preferably suppressed.
  • gene expression includes a process of expressing mRNA using genomic DNA as a template (transcription) and / or a process of synthesizing protein using the mRNA as a template (translation).
  • a gene is a nucleic acid containing a base sequence encoding a predetermined polypeptide, and typically refers to genomic DNA of a plant or mRNA generated using genomic DNA as a template.
  • Acceleration of the expression of the DREB2A gene in the present invention means that the expression level of the DREB2A gene is significantly increased as compared with a plant not applied with allantoin.
  • the promotion of the expression of the DREB2A gene in a plant can be confirmed by detecting the increase in the amount of mRNA encoding the DREB2A polypeptide and / or the amount of the DREB2A polypeptide in the plant. .
  • the degree of promotion of the expression of the DREB2A gene in the present invention is not particularly limited, but when the expression level of the DREB2A gene in a plant not applied with the DREB2A gene expression promoter of the present invention is 100, the expression of the DREB2A gene of the present invention
  • the expression level of the DREB2A gene in the plant to which the promoter is applied is, for example, 120 or more, preferably 150 or more, preferably 200 or more.
  • ⁇ Suppression of HSF3 gene expression in the present invention means that the expression level of the HSF3 gene is significantly reduced as compared with plants not applied with allantoin. Suppression of HSF3 gene expression in plants can be confirmed by detecting a decrease in the amount of mRNA encoding the HSF3 polypeptide and / or a decrease in the amount of HSF3 polypeptide in the plant. .
  • the degree of suppression of the expression of the HSF3 gene in the present invention is not particularly limited, but when the expression level of the HSF3 gene in a plant not applied with the DREB2A gene expression promoter of the present invention is 100, the expression of the DREB2A gene of the present invention
  • the expression level of the HSF3 gene in the plant to which the promoter is applied is, for example, 90 or less, preferably 80 or less, preferably 75 or less.
  • the plant that is the target of promoting the expression of the DREB2A gene according to the present invention is a plant that needs to promote the expression of the gene. For example, there is a possibility of being subjected to high-temperature stress such as the above temperature condition or other stresses. It is a plant cultivated in a certain environment. Specific plant types are as described above.
  • the DREB2A gene expression promoter of the present invention may be any agent that contains allantoin and has an action of promoting the expression of the DREB2A gene in plants, and may be allantoin itself, or allantoin and other components may be used. It may be a combined allantoin-containing composition.
  • the DREB2A gene expression promoter of the present invention can contain an effective amount of allantoin that promotes the expression of the DREB2A gene in plants.
  • the DREB2A gene expression promoter of the present invention can also contain an effective amount of allantoin that suppresses the expression of the HSF3 gene in plants.
  • the DREB2A gene expression promoter of the present invention can be in any shape such as solid or liquid.
  • the DREB2A gene expression promoter of the present invention is an allantoin-containing composition
  • the same allantoin-containing composition as described for the high-temperature stress resistance improver can be used.
  • a method of applying the DREB2A gene expression promoter of the present invention to plants plants such as plant roots, stems, leaves, etc., in which the DREB2A gene expression promoter of the present invention or the allantoin released from the DREB2A gene expression promoter of the present invention is used.
  • the method is not particularly limited as long as it is a method capable of contacting the body, and the DREB2A gene expression promoter of the present invention may be applied directly to the plant body, or cultivation of soil or the like to which the plant body has been established.
  • the DREB2A gene expression promoter of the present invention may be applied to the carrier.
  • the DREB2A gene expression promoter of the present invention can be applied to a plant so that an effective amount of allantoin that promotes the expression of the DREB2A gene in the plant is applied.
  • the DREB2A gene expression promoter of the present invention can be applied to a plant so that an effective amount of allantoin that suppresses the expression of the HSF3 gene in the plant is applied.
  • the timing of applying the DREB2A gene expression promoter of the present invention to plants is not particularly limited, but preferably, the DREB2A gene expression promoter of the present invention is applied to plants before being subjected to stress (for example, high temperature stress).
  • the DREB2A gene expression promoter of the present invention promotes the expression of the DREB2A gene.
  • stress for example, high temperature stress.
  • the DREB2A gene expression promoter of the present invention promotes the expression of the DREB2A gene.
  • the DREB2A gene expression promoter of the present invention it is presumed that the expression of various stress resistance genes is induced. For this reason, it is estimated that the plant to which the DREB2A gene expression promoter of the present invention was applied in advance before being stressed is in a state in which stress tolerance has been improved in advance, and the survival rate when stressed thereafter is high.
  • the time point at which the DREB2A gene expression promoter of the present invention is applied to the plant is T1
  • the time point at which the DREB2A gene expression promoter of the present invention is applied to the plant is T1
  • the time point at which the plant begins to be exposed to the stress is T2
  • the time from T1 to T2 is preferably 0.5 to 10 days, preferably 0.5 to 9 days, preferably 0.5 to 8 days, preferably 0.5 to 7 days, preferably Is 0.5-6 days, preferably 0.5-5 days, preferably 0.5-4 days, preferably 0.5-3 days, preferably 0.5-2 days, preferably 0.5-days. 1.5 days.
  • the survival rate after exposure to the stress is high.
  • the DREB2A gene expression promoter of the present invention may be applied N times (N is 2 or more) to the plant before receiving the stress. In this case, each time point T1 n (n Is preferably an integer of 1 to N) to T2 respectively.
  • the DREB2A gene refers to a database (http://www.ncbi.nlm.nih.gov/) provided by NCBI (National Center for Biotechnology Information, National Center for Biotechnology) and other databases.
  • a gene comprising a base sequence encoding a polypeptide annotated as responsive element-binding protein 2A or dehydration-responsive element-binding protein 2A-like, and a base encoding a polypeptide having a function homologous to the polypeptide refers to a gene that contains a sequence.
  • a partial base sequence from the 189th base to the 1196th base in the base sequence shown in SEQ ID NO: 1 is a region encoding the DREB2A polypeptide.
  • nucleotide sequence encoding a polypeptide having a function homologous to a polypeptide annotated as dehydration-responsive-element-binding protein 2A or dehydration-responsive element-binding protein 2A-like is included. Gene expression may be promoted.
  • Examples of the gene containing a base sequence encoding a polypeptide having a function homologous to the polypeptide annotated as dehydration-responsive element-binding protein 2A or dehydration-responsive element-binding protein 2A-like for example, (1) 1 or several, for example, 1 to 20, preferably 1 in the amino acid sequence of the Arabidopsis DREB2A polypeptide encoded by the partial base sequence from the 189th base to the 1196th base in the base sequence shown in SEQ ID NO: 1.
  • a gene comprising a base sequence encoding a polypeptide having a function homologous to the Arabidopsis DREB2A polypeptide, or (2) 60% or more, preferably 70% or more, preferably the amino acid sequence of the Arabidopsis DREB2A polypeptide 80% or more, preferably 85% or more, preferably 90% or more, preferably 95% or more, preferably Properly comprises an amino acid sequence with a sequence identity of 98% or more, and, the Arabidopsis DREB2A gene comprising a nucleotide sequence encoding a polypeptide having a polypeptide homologous to function but are not limited to these.
  • sequence identity of amino acid sequences can be determined using methods well known to those skilled in the art, sequence analysis software, and the like. For example, when the amino acid sequence of the Arabidopsis DREB2A polypeptide is aligned with the two amino acid sequences by inserting gaps as necessary so that the degree of coincidence between the amino acid sequence and other amino acid sequences is maximized, Refers to the ratio (%) of the number of matched amino acid residues to the number of amino acid residues (including gap number when gaps are inserted), and can be determined using a protein search system by BLAST or FASTA (Karlin, S., et al., 1993, Proceedings of the National, Academic, Sciences, USA, 90, p.
  • the HSF3 gene refers to heat stress in a database (http://www.ncbi.nlm.nih.gov/) provided by NCBI (National Center for Biotechnology Information, National Center for Biotechnology) and other databases.
  • a gene comprising a base sequence encoding a polypeptide annotated as transcription factor A-1b or heat stress transcription factor A-1b-like, and a base sequence encoding a polypeptide having a function homologous to the polypeptide. Refers to the gene containing.
  • a gene containing a base sequence encoding a polypeptide having a function homologous to a polypeptide annotated as heat stress transcription factor A-1b or heat stress transcription factor A-1b-like Expression may be suppressed.
  • Examples of the gene containing a base sequence encoding a polypeptide having a function homologous to the polypeptide annotated as heat stress transcription factor A-1b or heat stress transcription factor A-1b-like (1) In the amino acid sequence of the Arabidopsis thaliana HSF3 polypeptide encoded by the partial base sequence from the 174th base to the 1619th base in the base sequence shown in SEQ ID NO: 2, one or several, for example, 1 to 20, preferably 1, -15, preferably 1-10, preferably 1-5, preferably 1-3, preferably 1 or 2, comprising amino acid sequences substituted, deleted, inserted and / or added And a gene comprising a base sequence encoding a polypeptide having a function homologous to the Arabidopsis thaliana HSF3 polypeptide, or (2) 60% or more, preferably 70% or more, preferably the amino acid sequence of the Arabidopsis thaliana HSF3 polypeptide 80% or more, preferably 85% or more, preferably 90% or more, preferably
  • aln-1 35S: ALN The (3) complement of the allantoinase gene-disrupted strain (aln-1 35S: ALN) is obtained by converting a DNA encoding the entire length of allantoinase derived from wild-type Arabidopsis thaliana into the above-mentioned aln-1 It was obtained by introduction.
  • a specific preparation method is as described in Non-Patent Document 4.
  • One petri dish of 1 / 2MS solid medium was radially divided into three sections, and nine seeds (one petri dish total of 27 grains) were sown in each section for each line (see FIG. 1A).
  • the petri dish was placed in a clean bench with the lid open, the water around the seeds was evaporated (about 20-30 minutes), and the petri dish was sealed with surgical tape.
  • Each petri dish was wrapped with aluminum foil one by one and subjected to low temperature treatment (4 ° C.) for 2 days to overcome sleep.
  • the cells were transferred to a culture room and cultured for 7 days under conditions of 22 ° C.
  • Results A photograph of each petri dish after treatment under each heat shock condition and growth for 1 week is shown in FIG. 1B.
  • the arrangement of plant lines in each petri dish shown in FIG. 1B is as shown in FIG. 1A.
  • the numerical value in the petri dish indicates (number of surviving seedlings) / (number of germinated seedlings) in each section.
  • Fig. 2 shows the survival rate under each heat shock condition.
  • the survival rate shown in FIG. 2 is the result of calculating the average value in two tests by obtaining the survival rate (%) in each condition based on the survival number result shown in FIG. 1B.
  • a polypot (integrated with a balance dish) was placed on a bat and placed in an incubator at 22 ° C., 10000 Lux, 12 hours light period, 12 hours dark period, and cultivation was started. Let the cultivation start date be the 0th day of sowing. On the 5th day of sowing, germination was confirmed. On the 6th day of sowing, 3 individuals (1 plant per site) were left in each pot, and the remaining plants were thinned out.
  • water zone tap water
  • allantoin zone 1 mM allantoin aqueous solution
  • 40 ml / pot was applied to each experimental zone.
  • 40 ml / pot of tap water was supplied to all pots.
  • each bat was placed in a thermostatic chamber and exposed to 45 ° C. control for 1 hour, 1.5 hours, and 2 hours to give high temperature stress.
  • the soil in the pot was kept in sufficient moisture before and after the high temperature stress. After completion of the high temperature stress treatment, it was returned to the incubator at 22 ° C. and cultivation was continued.
  • 40 ml / pot of water was supplied. Further, 40 ml / pot of water was supplied at intervals of 2 days.
  • survival rate indicates the ratio of the surviving plant to the number of plants subjected to heat shock treatment.
  • individuals with physiological disorders whitening, wilting, leaf winding
  • FIG. 3 shows a photograph of the plant on the third day after heat shock treated at 45 ° C. for 1.5 hours.
  • the upper part of FIG. 3 is a photograph of a plant in the allantoin area (survival rate 33.3%), and the lower part of FIG. 3 is a photograph of the plant in the water area (survival rate 0%).
  • a polypot (integrated with a balance dish) was placed on a bat and placed in an incubator at 22 ° C., 10000 Lux, 12 hours light period, 12 hours dark period, and cultivation was started. Let the cultivation start date be the 0th day of sowing.
  • the survival rate on the seventh day after the heat shock was 33.3% in the water zone and 100% in the allanto-in zone after 1 hour treatment. From the above result, the high temperature stress tolerance imparting effect by application of allantoin was confirmed.
  • survival rate indicates the ratio of the surviving plant to the number of plants subjected to heat shock treatment.
  • individuals with physiological disorders whitening, wilting, leaf winding
  • FIG. 4 shows a photograph of the plant on the seventh day after heat shock treated at 45 ° C. for 1 hour.
  • the upper part of FIG. 4 is a photograph of a plant body in the allantoin area (survival rate 100%), and the lower part of FIG. 4 is a photograph of the plant body in the water area (survival rate 33.3%).
  • microarray raw data are registered and published under the accession number of NCBI Gene Expression Omnibus (http://www.ncbi.nlm.nih.gov/geo/). These microarray data were standardized by a parametric method using a three-parameter lognormal distribution model using the SuperNORM service of Skylight Baotech Co., Ltd., and the expression level of each gene was converted into a z-score (see Konishi above) , T. (2004)). This standardization work enables comparison of gene expression levels between different microarrays. Standardized data is registered with the GSE73841 accession number.
  • HSF3 heat shock transcription factor 3 gene
  • the circular accommodating portion in plan view is divided into two semicircular sections by one partition wall extending in the diameter direction.
  • One compartment of the petri dish contains an allantoin-free 1 / 2MS solid medium, the other compartment contains an allantoin-added 1 / 2MS solid medium, and each seed contains 15 seeds (30 dishes in total). (See FIG. 5A).
  • the petri dish was placed in a clean bench with the lid open, the water around the seeds was evaporated (about 20-30 minutes), and the petri dish was sealed with surgical tape. (7) Each petri dish was wrapped with aluminum foil one by one and subjected to low temperature treatment (4 ° C.) for 2 days to overcome sleep. (8) The cells were transferred to a culture room and cultured for 7 days under conditions of 22 ° C. and long days (light irradiation for 16 hours under fluorescent lamps; 0.07 mmol photons m ⁇ 1 s ⁇ 1 ). (9) The 7-day-old plant grown aseptically according to the above (8) was placed in an incubator set at 45 ° C. in advance, and heat shock was applied for 105 minutes in the dark.
  • Results A photograph of each petri dish after treatment under each heat shock condition and growth for 1 week is shown in FIG. 5B.
  • the arrangement of plant lines in each petri dish shown in FIG. 5B is as shown in FIG. 5A.
  • the numerical value in the petri dish indicates (number of surviving seedlings) / (number of germinated seedlings) in each section.
  • Fig. 6 shows the survival rate under each heat shock condition.
  • the survival rate (%) in each condition was obtained based on the result of the survival number shown in FIG. 5B, and the survival rate was similarly obtained for another single test not shown in the photograph. It is the result of calculating the rate (%) and calculating the average value in the two tests.

Abstract

A purpose of the present invention is to provide a means for enhancing high-temperature resistance in a plant. Provided is an agent for enhancing high-temperature resistance in a plant, said agent comprising allantoin as an active ingredient. Also provided is a method for enhancing high-temperature resistance in a plant, said method comprising a step for applying the aforesaid agent for enhancing high-temperature resistance to the plant.

Description

植物における高温ストレス耐性向上剤、高温ストレス耐性を向上させる方法、白化抑制剤、及びDREB2A遺伝子発現促進剤High temperature stress tolerance improver in plant, method for improving high temperature stress tolerance, whitening inhibitor, and DREB2A gene expression promoter
 本発明は、植物における高温ストレス耐性向上剤、高温ストレス耐性を向上させる方法、白化抑制剤、及びDREB2A遺伝子発現促進剤に関する。 The present invention relates to a high-temperature stress tolerance improver in plants, a method for improving high-temperature stress tolerance, a whitening inhibitor, and a DREB2A gene expression promoter.
 植物は高温、乾燥等の様々な環境ストレスに曝されて生息している。植物は動物のように移動することが難しいことから、環境ストレスから身を守るための機構が植物では発達している。 Plants are exposed to various environmental stresses such as high temperature and dryness. Since plants are difficult to move like animals, mechanisms have been developed to protect themselves from environmental stress.
 乾燥ストレス応答性エレメント(DRE; dehydration responsive element)は、シロイヌナズナのゲノムにおいて、水ストレス誘導性遺伝子の1つであるRD29Aのプロモーター解析により存在が確認された配列である。DREB(DRE binding protein)はDREに結合するタンパク質として単離された転写因子である。DREBのうちDREB2Aは、APETALA2/エチレン応答性エレメント結合因子型(AP2/ERF-type)の転写因子であり、DREを認識するタンパク質として単離された(非特許文献3)。DREB2Aは乾燥及び高塩濃度条件により強く誘導されることから、乾燥ストレス及び高塩ストレス条件において働く転写因子であると考えられる(非特許文献1)。DREB2Aの活性は翻訳後に制御されており、AP2/ERF DNA結合ドメインに隣接する30アミノ酸の領域がタンパク質の翻訳後の制御に重要な役割を果たしていると考えられる。DREB2Aにおいてこの領域を欠損させたDREB2A CAは活性を有し、DREB2A CAを過剰発現させたシロイヌナズナは矮性の表現型を示し、乾燥ストレス耐性が顕著に向上することが確認されている(非特許文献2)。 A drought stress responsive element (DRE) is a sequence whose presence was confirmed in the Arabidopsis genome by promoter analysis of RD29A, which is one of water stress-inducible genes. DREB (DRE binding protein) is a transcription factor isolated as a protein that binds to DRE. Among the DREBs, DREB2A is a transcription factor of APETALA2 / ethylene-responsive element binding factor type (AP2 / ERF-type) and was isolated as a protein that recognizes DRE (Non-patent Document 3). Since DREB2A is strongly induced by dry and high salt concentration conditions, it is considered that DREB2A is a transcription factor that works under dry and high salt stress conditions (Non-Patent Document 1). The activity of DREB2A is controlled after translation, and the 30 amino acid region adjacent to the AP2 / ERF DNA binding domain is thought to play an important role in the post-translational control of the protein. In DREB2A, DREB2A CA lacking this region has activity, and Arabidopsis overexpressing DREB2A CA exhibits a fertile phenotype, and drought stress tolerance has been significantly improved (non-patent literature). 2).
 非特許文献3、特許文献1では、植物が高温ストレスを受けた際にDREB2Aがターゲット遺伝子を誘導する機構について報告されている。非特許文献3、特許文献1によれば、DPB3-1(又はNF-YC10)というタンパク質がDREB2Aと相互作用することにより、DREB2Aによる高温ストレス耐性遺伝子の誘導が促進されるという機構が提唱されている。また非特許文献3ではDPB3-1とDREB2Aとの前記相互作用は、乾燥ストレス誘導遺伝子の発現に影響しないことが示されている。 Non-Patent Document 3 and Patent Document 1 report a mechanism by which DREB2A induces a target gene when a plant is subjected to high temperature stress. According to Non-Patent Document 3 and Patent Document 1, a mechanism has been proposed in which the protein DPB3-1 (or NF-YC10) interacts with DREB2A to promote induction of a high-temperature stress resistance gene by DREB2A. Yes. Non-Patent Document 3 shows that the interaction between DPB3-1 and DREB2A does not affect the expression of a drought stress-inducing gene.
 特許文献2では、DREB2A遺伝子を導入した形質転換植物では、発根率が向上すること、及び、切花の花持ちが延長することが記載されている。 Patent Document 2 describes that in a transformed plant into which the DREB2A gene has been introduced, the rooting rate is improved and the longevity of cut flowers is prolonged.
 一方、アラントイン(5-ウレイドヒダントイン)は、核酸塩基(プリン塩基)の分解過程で生じる中間産物である。植物体内では、アラントインは、5-ヒドロキシイソ尿酸からアラントインシンターゼ(AS)により生成され、アラントイナーゼ(ALN)によりアラントイン酸へと分解される。非特許文献4では、シロイヌナズナにおいてALN遺伝子を破壊しアラントインを植物体内に蓄積するように変異させたaln-1変異株が、野生株と比較して高い乾燥ストレス耐性を有することを報告している。 On the other hand, allantoin (5-ureidohydantoin) is an intermediate product generated in the process of decomposing nucleobase (purine base). In the plant, allantoin is produced from 5-hydroxyisouric acid by allantoin synthase (AS) and decomposed into allantoic acid by allantoinase (ALN). Non-Patent Document 4 reports that the aln-1 mutant strain in which Arabidopsis thaliana has disrupted the ALN gene and mutated to accumulate allantoin in the plant body has higher drought stress tolerance than the wild strain. .
 非特許文献5では、シロイヌナズナにアラントインを付与すると生長が促進されることが報告されている。 Non-Patent Document 5 reports that growth is promoted when allantoin is given to Arabidopsis thaliana.
 特許文献3では、アラントイン等のウレイドを植物に与えることでストレスから植物を保護する方法が開示されている。特許文献3では干ばつ、寒冷等の環境の乱れの際に植物は酸化ストレスによりダメージを受けること、ウレイドの濃度が高いとスカベンジャー経路が促進され植物がダメージから保護されることが開示されている。 Patent Document 3 discloses a method for protecting a plant from stress by giving a ureido such as allantoin to the plant. Patent Document 3 discloses that plants are damaged by oxidative stress during environmental disturbances such as drought and cold, and that when the concentration of ureido is high, the scavenger pathway is promoted and the plants are protected from damage.
WO2013/111755WO2013 / 111755 特許第4219711号Japanese Patent No. 4219711 US2010/0333237US2010 / 0333337
 植物が高温ストレスを受けると、植物が白化する、萎れる、葉が縮れる等の問題が生じ、高温ストレスが過度であると植物生存できなくなる場合がある。このため農作物等の植物における高温ストレス耐性の向上が求められている。 When a plant is subjected to high temperature stress, problems such as whitening of the plant, wilt, and leaf shrinkage may occur, and if the plant is excessively hot, the plant may not be able to survive. For this reason, the improvement of the high temperature stress tolerance in plants, such as agricultural products, is calculated | required.
 上記の通りアラントインは、植物において乾燥ストレス耐性、低温ストレス耐性等のストレス耐性を向上させる作用を有することが知られている。しかしながら高温ストレス耐性とアラントインとの関係はこれまで調査されていない。 As described above, allantoin is known to have an effect of improving stress tolerance such as drought stress tolerance and low temperature stress tolerance in plants. However, the relationship between high temperature stress tolerance and allantoin has not been investigated so far.
 アラントインについては、植物において特に乾燥ストレス耐性を向上させる作用がこれまでに研究されている。 ラ ン ト Allantoin has been studied to improve drought stress tolerance in plants.
 しかし植物において、乾燥ストレス耐性と高温ストレス耐性とは異質な性質であり、ストレス耐性発現の機構が異なることから、乾燥ストレス耐性と高温ストレス耐性とに相関性はない。例えば非特許文献3では、上記の通り、DREB2Aによる高温ストレス耐性誘導のためにはDPB3-1とDREB2Aとの相互作用が必要であるのに対して、該相互作用は、乾燥ストレス耐性誘導には無関係であると記載されている。このことからも明らかな通り、ある成分が、乾燥ストレス等の、高温ストレス以外のストレスに対する耐性を向上させることができたとしても、それが高温ストレス耐性を向上させる作用を有するとは限らない。従って、アラントインが植物に高温ストレス以外の幾つかのストレスへの耐性の向上作用を有するという従来の知見からは、高温ストレス耐性に関するアラントインの作用を予測することはできない。 However, in plants, drought stress tolerance and high temperature stress tolerance are different properties, and since the mechanism of stress tolerance expression is different, there is no correlation between drought stress tolerance and high temperature stress tolerance. For example, in Non-Patent Document 3, as described above, interaction between DPB3-1 and DREB2A is necessary for induction of high-temperature stress tolerance by DREB2A, whereas this interaction is necessary for induction of drought stress tolerance. It is described as irrelevant. As is clear from this, even if a certain component can improve resistance to stress other than high temperature stress such as drought stress, it does not necessarily have an effect of improving high temperature stress resistance. Therefore, from the conventional knowledge that allantoin has an effect of improving tolerance to several stresses other than high-temperature stress in plants, the action of allantoin related to high-temperature stress tolerance cannot be predicted.
 一方、植物におけるDREB2A遺伝子の発現は、上記の通り、高温ストレス耐性、乾燥ストレス耐性等の各種ストレス耐性の向上に寄与する。また、DREB2A遺伝子の発現は、発根率の向上、切花の花持ちの延長等の有利な効果を奏することも知られている。DREB2A遺伝子の発現を促進させることできる物質は、植物に施用することでこれらの有利な作用を奏することが可能である。しかしそのような物質は従来提供されていない。特許文献1に記載されているようにDREB2A遺伝子を導入した形質転換植物ではDREB2Aによる有利な作用を奏することができるが、形質転換植物は天然に存在しない植物であるため産業的な利用が難しいという問題がある。天然に存在する物質を植物に施用することにより該植物でのDREB2A遺伝子の発現を向上させる技術の有用性は大きいと考えられる。 On the other hand, the expression of the DREB2A gene in plants contributes to improvement of various stress tolerances such as high temperature stress tolerance and drought stress tolerance as described above. It is also known that the expression of the DREB2A gene has advantageous effects such as an improved rooting rate and an extended flower life of cut flowers. A substance capable of promoting the expression of the DREB2A gene can exert these advantageous effects when applied to plants. However, no such material has been previously provided. As described in Patent Document 1, a transformed plant into which the DREB2A gene has been introduced can exert advantageous effects due to DREB2A, but because the transformed plant is a plant that does not exist in nature, it is difficult to use industrially. There's a problem. It is considered that the utility of a technique for improving the expression of the DREB2A gene in a plant by applying a naturally occurring substance to the plant is considered to be great.
 そこで本発明は、植物において高温ストレス耐性を向上させるための手段を提供することを目的の1つとする。本発明はまた、植物の白化を抑制するための手段を提供することを目的の1つとする。本発明は更にまた、植物においてDREB2A遺伝子の発現を促進するための手段を提供することを目的の1つとする。 Therefore, an object of the present invention is to provide means for improving tolerance to high temperature stress in plants. Another object of the present invention is to provide a means for suppressing plant whitening. Another object of the present invention is to provide a means for promoting the expression of the DREB2A gene in plants.
 本発明者らは植物にアラントインを作用させると、植物の高温ストレス耐性が向上する、植物の白化が抑制される、植物においてDREB2A遺伝子が促進されるという予想外の効果が生じることを見出し、本発明を完成するに至った。具体的には、本発明は以下の発明を包含する。
(1)アラントインを有効成分として含有する、植物の高温ストレス耐性を向上させるための、高温ストレス耐性向上剤。
(2)高温ストレスにより植物が白化すること、高温ストレスにより植物が萎れること、及び、高温ストレスにより植物の葉が巻くことのうち1つ以上を抑制するための、(1)に記載の高温ストレス耐性向上剤。
(3)植物においてDREB2A遺伝子の発現を促進する、(1)又は(2)に記載の高温ストレス耐性向上剤。
(4)(1)~(3)のいずれかに記載の高温ストレス耐性向上剤を植物に施用する工程を含む、植物の高温ストレス耐性を向上させる方法。
(5)前記工程において、前記高温ストレス耐性向上剤を、ストレスを受ける前の植物に施用する、(4)に記載の方法。
(6)アラントインを有効成分として含有する、植物の白化を抑制するための、白化抑制剤。
(7)アラントインを有効成分として含有する、植物においてDREB2A遺伝子の発現を促進するための、DREB2A遺伝子発現促進剤。
(8)(6)に記載の白化抑制剤を植物に施用する工程を含む、植物の白化を抑制する方法。
(9)(7)に記載のDREB2A遺伝子発現促進剤を植物に施用する工程を含む、植物においてDREB2A遺伝子の発現を促進する方法。
(10)植物の高温ストレス耐性を向上させるためのアラントインの使用。
(11)植物の白化を抑制するためのアラントインの使用。
(12)植物においてDREB2A遺伝子の発現を促進するためのアラントインの使用。
The present inventors have found that when allantoin is allowed to act on a plant, an unexpected effect of improving the high temperature stress tolerance of the plant, suppressing the whitening of the plant, and promoting the DREB2A gene in the plant occurs. The invention has been completed. Specifically, the present invention includes the following inventions.
(1) A high-temperature stress tolerance improver for improving the high-temperature stress tolerance of a plant, containing allantoin as an active ingredient.
(2) The high temperature stress according to (1) for suppressing one or more of whitening of the plant due to high temperature stress, wiping of the plant due to high temperature stress, and winding of a plant leaf due to high temperature stress. Tolerance improver.
(3) The high-temperature stress tolerance improving agent according to (1) or (2), which promotes the expression of the DREB2A gene in a plant.
(4) A method for improving the high temperature stress tolerance of a plant, comprising a step of applying the high temperature stress tolerance improving agent according to any one of (1) to (3) to the plant.
(5) The method according to (4), wherein in the step, the high-temperature stress tolerance improver is applied to a plant before being subjected to stress.
(6) A whitening inhibitor for suppressing plant whitening, which contains allantoin as an active ingredient.
(7) A DREB2A gene expression promoter for promoting the expression of the DREB2A gene in a plant, containing allantoin as an active ingredient.
(8) A method for suppressing whitening of a plant, comprising a step of applying the whitening inhibitor according to (6) to a plant.
(9) A method for promoting the expression of the DREB2A gene in a plant, comprising a step of applying the DREB2A gene expression promoting agent according to (7) to the plant.
(10) Use of allantoin to improve high temperature stress tolerance of plants.
(11) Use of allantoin to suppress plant whitening.
(12) Use of allantoin to promote the expression of the DREB2A gene in plants.
 本明細書は本願の優先権の基礎となる日本国特許出願番号2016-016383号、2016-043503号の開示内容を包含する。 This specification includes the disclosure of Japanese Patent Application Nos. 2016-016383 and 2016-043503, which are the basis of the priority of the present application.
実験1における1シャーレ内の区画の説明図である。It is explanatory drawing of the division in 1 petri dish in Experiment 1. FIG. 実験1において、シロイヌナズナを各熱ショック条件で処理し1週間生育させた後の各シャーレの写真を示す。In Experiment 1, photographs of each petri dish after Arabidopsis thaliana was treated under each heat shock condition and grown for 1 week are shown. 実験1において、シロイヌナズナを各熱ショック条件で処理し1週間生育させたときの生存率を示す。In Experiment 1, the survival rate when Arabidopsis thaliana is treated under each heat shock condition and grown for 1 week is shown. 実験2において、45℃で1.5時間処理したヒートショック後3日目のタマネギの写真を示す。図3上段がアラントイン区(生存率33.3%)のタマネギの写真であり、図3下段が水区(生存率0%)のタマネギの写真である。In Experiment 2, the photograph of the onion of the 3rd day after the heat shock processed for 1.5 hours at 45 degreeC is shown. The upper part of FIG. 3 is a photograph of an onion in the allantoin area (survival rate 33.3%), and the lower part of FIG. 3 is a photograph of the onion in the water area (survival rate 0%). 実験3において、45℃で1時間処理したヒートショック後7日目のコマツナの写真を示す。図4上段がアラントイン区(生存率100%)のコマツナの写真であり、図4下段が水区(生存率33.3%)のコマツナの写真である。In Experiment 3, a photograph of Komatsuna on the seventh day after heat shock treated at 45 ° C. for 1 hour is shown. The upper part of FIG. 4 is a photograph of Komatsuna in the allantoin area (survival rate 100%), and the lower part of FIG. 4 is a photograph of the Komatsuna in the water area (survival rate 33.3%). 実験6における1シャーレ内の区画の説明図である。It is explanatory drawing of the division in 1 petri dish in the experiment 6. FIG. 実験6において、各アラントイン濃度の培地で栽培したシロイヌナズナを熱ショック条件及び対照条件で処理し1週間生育させた後の各シャーレの写真を示す。In Experiment 6, the photographs of each petri dish after growing Arabidopsis cultivated in a medium with each allantoin concentration under heat shock conditions and control conditions for 1 week are shown. 実験6において、各アラントイン濃度の培地で栽培したシロイヌナズナを熱ショック条件及び対照条件で処理し1週間生育させたときの生存率を示す。In Experiment 6, the survival rate when Arabidopsis thaliana cultivated in a medium with each allantoin concentration was treated with heat shock conditions and control conditions and grown for one week is shown.
<1.アラントイン>
 アラントインは5-ウレイドヒダントインとも呼ばれ、フリー体が次式で表される構造を有する。
<1. Allantoin>
Allantoin is also called 5-ureidohydantoin, and has a structure in which a free form is represented by the following formula.
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
 アラントインは1つの不斉炭素(式中*で示す)を有し、(R)-アラントインと(S)-アラントインの形態がある。本発明に用いるアラントインとしては(R)-アラントインであってもよいし、(S)-アラントインであってもよいし、それらの混合物であってもよい。 Allantoin has one asymmetric carbon (indicated by * in the formula), and there are (R) -allantoin and (S) -allantoin forms. The allantoin used in the present invention may be (R) -allantoin, (S) -allantoin, or a mixture thereof.
 アラントインは植物が利用可能な形態であればよく、フリー体の形態や、水和物等の溶媒和物の形態の適当な形態であることができる。また、フリー体、水和物等の形態のうち2種以上の混合物であってもよい。 Allantoin may be in any form that can be used by plants, and can be in an appropriate form such as a free form or a solvate such as a hydrate. Moreover, 2 or more types of mixtures may be sufficient among forms, such as a free body and a hydrate.
<2.植物>
 本発明においてアラントイン、アラントイン含有組成物、高温ストレス耐性向上剤、白化抑制剤又はDREB2A遺伝子発現促進剤を施用する対象植物は特に限定されず双子葉植物、単子葉植物等の種々の植物である。
<2. Plant>
In the present invention, the target plant to which the allantoin, the allantoin-containing composition, the high-temperature stress tolerance improver, the bleaching inhibitor or the DREB2A gene expression promoter is applied is not particularly limited and includes various plants such as dicotyledonous plants and monocotyledonous plants.
 双子葉植物としては例えばアサガオ属植物、アブラナ属植物、ヒルガオ属植物、サツマイモ属植物、シロイヌナズナ属植物、ネナシカズラ属植物、ナデシコ属植物、ハコベ属植物、タカネツメクサ属植物、ミミナグサ属植物、ツメクサ属植物、ノミノツヅリ属植物、オオヤマフスマ属植物、ワチガイソウ属植物、ハマハコベ属植物、オオツメクサ属植物、シオツメクサ属植物、マンテマ属植物、センノウ属植物、フシグロ属植物、ナデシコ科植物、モクマモウ科植物、ドクダミ科植物、コショウ科植物、センリョウ科植物、ヤナギ科植物、ヤマモモ科植物、クルミ科植物、カバノキ科植物、ブナ科植物、ニレ科植物、クワ科植物、イラクサ科植物、カワゴケソウ科植物、ヤマモガシ科植物、ボロボロノキ科植物、ビャクダン科植物、ヤドリギ科植物、ウマノスズクサ科植物、ヤッコソウ科植物、ツチトリモチ科植物、タデ科植物、アカザ科植物、ヒユ科植物、オシロイバナ科植物、ヤマトグサ科植物、ヤマゴボウ科植物、ツルナ科植物、スベリヒユ科植物、モクレン科植物、ヤマグルマ科植物、カツラ科植物、スイレン科植物、マツモ科植物、キンポウゲ科植物、アケビ科植物、メギ科植物、ツヅラフジ科植物、ロウバイ科植物、クスノキ科植物、ケシ科植物、フウチョウソウ科植物、アブラナ科植物、モウセンゴケ科植物、ウツボカズラ科植物、ベンケイソウ科植物、ユキノシタ科植物、トベラ科植物、マンサク科植物、スズカケノキ科植物、バラ科植物、マメ科植物、カタバミ科植物、フウロソウ科植物、アマ科植物、ハマビシ科植物、ミカン科植物、ニガキ科植物、センダン科植物、ヒメハギ科植物、トウダイグサ科植物、アワゴケ科植物、ツゲ科植物、ガンコウラン科植物、ドクウツギ科植物、ウルシ科植物、モチノキ科植物、ニシキギ科植物、ミツバウツギ科植物、クロタキカズラ科植物、カエデ科植物、トチノキ科植物、ムクロジ科植物、アワブキ科植物、ツリフネソウ科植物、クロウメモドキ科植物、ブドウ科植物、ホルトノキ科植物、シナノキ科植物、アオイ科植物、アオギリ科植物、サルナシ科植物、ツバキ科植物、オトギリソウ科植物、ミゾハコベ科植物、ギョリュウ科植物、スミレ科植物、イイギリ科植物、キブシ科植物、トケイソウ科植物、シュウカイドウ科植物、サボテン科植物、ジンチョウゲ科植物、グミ科植物、ミソハギ科植物、ザクロ科植物、ヒルギ科植物、ウリノキ科植物、ノボタン科植物、ヒシ科植物、アカバナ科植物、アリノトウグサ科植物、スギナモ科植物、ウコギ科植物、セリ科植物、ミズキ科植物、イワウメ科植物、リョウブ科植物、イチヤクソウ科植物、ツツジ科植物、ヤブコウジ科植物、サクラソウ科植物、イソマツ科植物、カキノキ科植、ハイノキ科植物、エゴノキ科植物、モクセイ科植物、フジウツギ科植物、リンドウ科植物、キョウチクトウ科植物、ガガイモ科植物、ハナシノブ科植物、ムラサキ科植物、クマツヅラ科植物、シソ科植物、ナス科植物、ゴマノハグサ科植物、ノウゼンカズラ科植物、ゴマ科植物、ハマウツボ科植物、イワタバコ科植物、タヌキモ科植物、キツネノマゴ科植物、ハマジンチョウ科植物、ハエドクソウ科植物、オオバコ科植物、アカネ科植物、スイカズラ科植物、レンプクソウ科植物、オミナエシ科植物、マツムシソウ科植物、ウリ科植物、キキョウ科植物、キク科植物等に施用することができる。 Examples of dicotyledonous plants include morning glory plants, Brassica plants, convolvulaceae plants, sweet potato plants, Arabidopsis plants, papaver plants, pteridophytes plants, chickweed plants, papaver plants, prunus plants, clover plants , Nominotsunuri genus plant, Oyafusuma genus plant, Waspionian genus plant, Hamachabe genus plant, Otsumexa genus plant, Shiotsume genus plant, Mantema genus plant, genus genus plant, Fusiflora genus plant, Nadesicoaceae plant, euphorbiaceae plant, Asteraceae plant, Pepperaceae plant, Cypridaceae plant, Willow family plant, Prunus plant plant, Walnut plant plant, Birch plant plant, Beech plant plant, Elmaceae plant, Mulberry plant plant, Nettle plant plant plant, Chrysanthemum plant plant, Papaver plant plant Plant, sandalwood family, mistletoe Plant, urchinaceae plant, japonicaceae plant, scorpionaceae plant, capeaceae plant, red crustacean plant, amaranthaceae plant, white-bellied plant, scorpionaceae plant, pokeweed plant, periwinkle plant, magnoliaceae plant, magnoliaceae plant , Corn borer plant, wigaceae plant, water lily family plant, pine family plant, buttercup plant, echaceae plant, barberry plant, camellia plant, camellia plant, camphor plant, poppy plant, cruciferous plant, rape Genus plant, genus genus plant, nematode plant, crassulaceae plant, saxifragaceae plant, toberaceae plant, witch plant, sycamore plant, rose family plant, legume plant, oxenaceae plant, plant family plant, leguminous plant plant , Anopheles family, Citrus family, Nigella family, Senda Plant, Himegi plant, Euphorbiaceae plant, Amagoaceae plant, Boxwood plant, Ganoderma plant, Dermatophyceae plant, Ursiaceae plant, Ilexaceae plant, Euonymaceae plant, Oleopteraceae plant, Black-faced plant family, Maple family plant , Cariaceae, Scarletaceae, Astraphyceae, Periwinkle, Cryptomaceae, Grape, Horaceae, Lindenaceae, Mallow, Aegiriaceae, Sarnaceae, Camellia, Hypericum Plant, Ezoaceae plant, Goryoaceae plant, Violet family plant, Hygienaceae plant, Brachyceae plant, Passifloraceae plant, Pleurotus plant, Cactiaceae plant, Dendrobaceae plant, Gumiaceae plant, Papilioceae plant, Pomegranate plant , Oleaceae, urchinaceae, membran Plant, cypress plant, red spider plant, arynotaceae plant, cedar plant, araceae plant, sericaceae plant, pachyderm plant, cranaceae plant, rhododendron plant, ivyaceae plant, azalea plant, azalea family plant , Primaceae plant, pine plant, oyster plant, cypress plant, rhododendron plant, oleaceae plant, oleaceae plant, gentian plant, oleander plant, genus plant, red oak plant, oleaceae plant, oleander Plant, Lamiaceae plant, Solanum plant, Solanum plantaceae plant, Sphagnum plantaceae plant, Sesame plant plant, Scorpion plant plant, Siwa tobacco plant plant, Raccoonaceae plant, Scarlet plant family plant, Nymphalidae plant, Scorpionaceae plant, Plantain plant , Rubiaceae, Honeysuckle, Lempuku C Department of the plant, can be applied valerianaceae plant, dipsacaceae plants, cucurbits, Campanulaceae plants, Asteraceae, and the like.
 単子葉植物としては例えばウキクサ属植物、アオウキクサ属植物、カトレア属植物、シンビジウム属植物,デンドロビューム属植物、ネギ属植物、ファレノプシス属植物,バンダ属植物,パフィオペディラム属植物,ラン科植物、ガマ科植物、ミクリ科植物、ヒルムシロ科植物、イバラモ科植物、ホロムイソウ科植物、オモダカ科植物、トチカガミ科植物、ホンゴウソウ科植物、カヤツリグサ科植物、ヤシ科植物、サトイモ科植物、ホシグサ科植物、ツユクサ科植物、ミズアオイ科植物、イグサ科植物、ビャクブ科植物、ユリ科植物、ヒガンバナ科植物、ヤマノイモ科植物、アヤメ科植物、バショウ科植物、ショウガ科植物、カンナ科植物、ヒナノシャクジョウ科植物等に施用することができる。 Monocotyledonous plants include, for example, duckweed plants, duckweed plants, cattleya plants, cymbidium plants, dendrobum plants, leek plants, phalaenopsis plants, banda plants, paphiopedilum plants, orchidaceae plants, gammaidae Plants, licorices, periwinkles, cicadaceae, euphorbiaceae, euphorbiaceae, stigmaceae, scorpionaceae, cyperaceae, palmaceae, taroaceae, asteraceae, cypressaceae, It is applied to scorpionaceae plants, rush family plants, sandalaceae plants, liliaceae plants, amaryllidaceae plants, genus genus plants, iris plants, scallops plants, ginger plants, cannaid plants, cynomolgus plants, etc. Can do.
 対象となる植物は野生型の植物には限定されず、変異体や形質転換体等であってもよい。 The target plant is not limited to a wild type plant, and may be a mutant or a transformant.
<3.高温ストレス耐性向上剤、高温ストレス耐性を向上する方法>
 本発明の一実施形態は、アラントインを有効成分として含有する、植物の高温ストレス耐性を向上させるための、高温ストレス耐性向上剤である。
<3. High temperature stress tolerance improving agent, method for improving high temperature stress tolerance>
One embodiment of the present invention is a high temperature stress tolerance improver for improving the high temperature stress tolerance of a plant, containing allantoin as an active ingredient.
 本発明の一実施形態は、前記の高温ストレス耐性向上剤を植物に施用する工程を含む、植物の高温ストレス耐性を向上させる方法である。 One embodiment of the present invention is a method for improving the high temperature stress tolerance of a plant, comprising the step of applying the above-mentioned high temperature stress tolerance improving agent to a plant.
 ここで高温ストレスとは、通常の生育温度よりも高い温度、例えば25℃以上、より具体的には30℃以上の温度に植物体が曝されることによるストレスであり、より具体的には50℃以下の温度に植物体が曝されることによるストレスである。前記高温に植物体が曝される1日当たりの時間としては特に限定されないが、例えば60分間以上、より具体的には90分間以上が挙げられ、より具体的には600分間以下が挙げられる。 Here, the high temperature stress is stress caused by exposure of a plant to a temperature higher than the normal growth temperature, for example, 25 ° C. or higher, more specifically 30 ° C. or higher, and more specifically 50 This is stress caused by exposure of plants to temperatures below ℃. Although it does not specifically limit as the time per day when a plant body is exposed to the said high temperature, For example, 60 minutes or more, More specifically, 90 minutes or more are mentioned, More specifically, 600 minutes or less is mentioned.
 本発明の高温ストレス耐性向上剤及びの高温ストレス耐性向上方法は、高温ストレスのなかでも特に、十分な湿度を保ち且つ高温の環境に曝された植物が受けるストレスに対する耐性を向上させるために効果的である。 The high-temperature stress tolerance improving agent and the high-temperature stress tolerance improving method of the present invention are effective for improving tolerance to stress received by plants exposed to a high-temperature environment, particularly in a high-temperature stress. It is.
 一般に植物は、高温ストレス環境に曝されると、植物が白化する(クロロシス)、植物が萎れる、葉が巻く等の生理障害が生じる。本発明の高温ストレス耐性向上剤及びの高温ストレス耐性向上方法によれば、これらの生理障害のうち1つ以上を抑制することができると期待される。本明細書に記載の実験では、本発明の高温ストレス耐性向上剤及び高温ストレス耐性向上方法は、高温ストレスによる上記生理障害のなかでも少なくとも、高温ストレスにより植物が白化すること(クロロシス)、高温ストレスにより植物が萎れること、及び、高温ストレスにより植物の葉が巻くことのうち1つ以上を抑制したことが確認されている。 Generally, when a plant is exposed to a high temperature stress environment, the plant is whitened (chlorosis), the plant is wilted, a physiological disorder such as a leaf is rolled up. According to the high temperature stress tolerance improving agent and the high temperature stress tolerance improving method of the present invention, it is expected that one or more of these physiological disorders can be suppressed. In the experiment described in the present specification, the high temperature stress tolerance improving agent and the high temperature stress tolerance enhancement method of the present invention are characterized in that, among the above physiological disorders caused by high temperature stress, at least the plant is whitened by high temperature stress (chlorosis), and high temperature stress. It has been confirmed that one or more of the plant withering and suppression of plant leaf rolling due to high temperature stress were suppressed.
 本発明の高温ストレス耐性向上剤及び高温ストレス耐性向上方法において、アラントインによる高温ストレス耐性向上作用の機構は特に限定されないが、可能性の1つとして、植物においてDREB2A遺伝子の発現を促進することにより高温ストレス耐性が向上するという機構が推定される。DREB2A遺伝子の発現の促進については、下記の<5.DREB2A遺伝子発現促進剤、DREB2A遺伝子の発現を促進する方法>に詳述する。 In the high-temperature stress tolerance improving agent and high-temperature stress tolerance improvement method of the present invention, the mechanism of the high-temperature stress tolerance enhancement action by allantoin is not particularly limited, but as one possibility, high temperature is promoted by promoting the expression of the DREB2A gene in plants. The mechanism that stress tolerance improves is estimated. Regarding the promotion of the expression of the DREB2A gene, the following <5. DREB2A gene expression promoter and method for promoting the expression of DREB2A gene>
 本発明の高温ストレス耐性向上剤及び高温ストレス耐性向上方法において、アラントインによる高温ストレス耐性向上作用の機構の他の可能性として、植物においてDREB2A遺伝子の発現を促進し、且つ、熱ショック転写因子3(HSF3)遺伝子の発現を抑制することにより高温ストレス耐性が向上するという機構が推定される。非特許文献1によれば、DREB2A CAを過剰発現させたシロイヌナズナにおいては、HSF3遺伝子の発現量が向上し、それに伴い高温ストレス耐性が向上する。本発明では、植物にアラントインを与えることにより、DREB2A遺伝子の発現量が向上する一方で、HSF3遺伝子の発現量が抑制され、高温ストレス耐性が向上することから、アラントインは、これまで知られていた機構とは異質な機構により植物での高温ストレス耐性を向上させると推定される。HSF3遺伝子の発現の抑制については、下記の<5.DREB2A遺伝子発現促進剤、DREB2A遺伝子の発現を促進する方法>に詳述する。 In the high temperature stress tolerance improving agent and the high temperature stress tolerance improving method of the present invention, as another possibility of the mechanism of the high temperature stress tolerance enhancement action by allantoin, the expression of the DREB2A gene is promoted in plants, and the heat shock transcription factor 3 ( It is estimated that the high temperature stress tolerance is improved by suppressing the expression of the HSF3) gene. According to Non-Patent Document 1, in Arabidopsis thaliana in which DREB2A CA is overexpressed, the expression level of the HSF3 gene is improved, and accordingly, high-temperature stress tolerance is improved. In the present invention, by giving allantoin to a plant, the expression level of the DREB2A gene is improved, while the expression level of the HSF3 gene is suppressed and high-temperature stress tolerance is improved, so that allantoin has been known so far. It is presumed that high temperature stress tolerance in plants is improved by a mechanism different from the mechanism. Regarding the suppression of the expression of the HSF3 gene, the following <5. DREB2A gene expression promoter and method for promoting the expression of DREB2A gene>
 本発明の高温ストレス耐性向上剤は、アラントインを含有し、且つ植物の高温ストレス耐性を向上させる作用を有するものであればよく、アラントイン自体であってもよいし、アラントインと他の成分とが組み合わされたアラントイン含有組成物であってもよい。本発明の高温ストレス耐性向上剤は、植物において高温ストレス耐性を向上する有効量のアラントインを含有することができる。 The high-temperature stress tolerance improver of the present invention may be any agent that contains allantoin and has an effect of improving the high-temperature stress tolerance of plants, and may be allantoin itself or a combination of allantoin and other components. The allantoin-containing composition may be used. The high temperature stress tolerance improving agent of the present invention can contain an effective amount of allantoin that improves high temperature stress tolerance in plants.
 本発明の高温ストレス耐性向上剤は固形状、液状等の任意の形状であることができる。 The high-temperature stress resistance improver of the present invention can be in any shape such as solid or liquid.
 本発明の高温ストレス耐性向上剤がアラントイン含有組成物である場合、アラントインに加えて、植物に有益な他の成分や、製剤化に必要な成分を更に含んでいてもよい。他の成分としては公知の肥料成分等が挙げられる。製剤化に必要な成分としては、担体、液体媒体等が挙げられる。 When the high-temperature stress tolerance improver of the present invention is an allantoin-containing composition, in addition to allantoin, it may further contain other components useful for plants and components necessary for formulation. Examples of other components include known fertilizer components. Components necessary for formulation include carriers, liquid media and the like.
 本発明の高温ストレス耐性向上剤がアラントイン含有組成物である場合、その製造方法は特に限定されず、各成分を混合したり、固形状組成物であれば必要に応じて粉砕、造粒、乾燥等の操作をして、液体状組成物であれば必要に応じて撹拌、分散等の操作をして製造することができる。 When the high-temperature stress resistance improver of the present invention is an allantoin-containing composition, its production method is not particularly limited, and each component is mixed, or if it is a solid composition, it is pulverized, granulated, and dried as necessary. If it is a liquid composition, operations such as stirring and dispersion can be performed as necessary.
 本発明の、植物の高温ストレス耐性を向上させる方法は、上記の高温ストレス耐性向上剤を植物に施用する工程を含む。このとき対象となる植物としては、高温ストレス耐性の向上を必要とする植物であり、例えば、上記の温度条件のような高温ストレスを受ける可能性のある環境で栽培される植物である。具体的な植物の種類は既述の通りである。 The method for improving the high temperature stress resistance of a plant according to the present invention includes a step of applying the above high temperature stress resistance improving agent to a plant. At this time, the target plant is a plant that needs to be improved in resistance to high temperature stress, for example, a plant cultivated in an environment that may be subjected to high temperature stress such as the above temperature condition. Specific plant types are as described above.
 本発明の高温ストレス耐性向上剤を植物に施用する方法としては、本発明の高温ストレス耐性向上剤又は本発明の高温ストレス耐性向上剤から放出されたアラントインが植物の根、茎、葉などの植物体に接触することができる方法であれば特に限定されず、前記植物体に本発明の高温ストレス耐性向上剤が直接接するように施用してもよいし、前記植物体が定着した土壌等の栽培担体に本発明の高温ストレス耐性向上剤を施用してもよい。本発明では、植物において高温ストレス耐性を向上する有効量のアラントインが施用されるように、本発明の高温ストレス耐性向上剤を植物に施用することができる。 As a method of applying the high temperature stress tolerance improver of the present invention to plants, plants such as plant roots, stems, leaves, etc. in which the allantoin released from the high temperature stress tolerance improver of the present invention or the high temperature stress tolerance improver of the present invention is used. The method is not particularly limited as long as it can contact the body, and may be applied so that the high-temperature stress tolerance improver of the present invention is in direct contact with the plant body, or cultivation of soil or the like on which the plant body is established You may apply the high temperature stress tolerance improvement agent of this invention to a support | carrier. In the present invention, the high-temperature stress tolerance improver of the present invention can be applied to plants so that an effective amount of allantoin that improves high-temperature stress tolerance is applied in plants.
 本発明の高温ストレス耐性向上剤を植物に施用する時期は特に限定されないが、好ましくは、本発明の高温ストレス耐性向上剤を、高温ストレスを受ける前の植物に施用する。本発明の高温ストレス耐性向上剤は、DREB2A遺伝子の発現を促進する。既述の通りDREB2A遺伝子が発現すると各種ストレス耐性遺伝子の発現が誘導されると推定される。このため、高温ストレスを受ける前に予め本発明の高温ストレス耐性向上剤を施用した植物は、高温ストレス耐性が予め向上した状態となり、その後に高温ストレスを受けたときの生存率が高いと推定される。 The timing for applying the high-temperature stress tolerance improver of the present invention to plants is not particularly limited, but preferably, the high-temperature stress tolerance improver of the present invention is applied to plants before being subjected to high-temperature stress. The high temperature stress tolerance improving agent of the present invention promotes the expression of the DREB2A gene. As described above, when the DREB2A gene is expressed, it is presumed that the expression of various stress resistance genes is induced. For this reason, it is estimated that the plant to which the high temperature stress tolerance improving agent of the present invention has been applied in advance before being subjected to high temperature stress is in a state in which high temperature stress tolerance has been improved in advance, and the survival rate when subsequently subjected to high temperature stress is high. The
 本発明の高温ストレス耐性向上剤を高温ストレスを受ける前の植物に施用する場合、本発明の高温ストレス耐性向上剤を前記植物に施用する時点をT1とし、前記植物が高温ストレスに曝され始める時点をT2としたとき、T1からT2までの時間が好ましくは0.5~10日、好ましくは0.5~9日、好ましくは0.5~8日、好ましくは0.5~7日、好ましくは0.5~6日、好ましくは0.5~5日、好ましくは0.5~4日、好ましくは0.5~3日、好ましくは0.5~2日、好ましくは0.5~1.5日である。この実施形態によれば、前記植物は本発明の高温ストレス耐性向上剤により高温ストレス耐性が向上した状態で高温ストレスに曝されるため、高温ストレスに曝された後の生存率が高い。本発明の高温ストレス耐性向上剤を高温ストレスを受ける前の植物にN回(Nは2以上)施用してもよく、その場合は、高温ストレス耐性向上剤を施用する各時点T1(nは1~Nの整数)からT2までの時間がそれぞれ上記範囲を満たすことが好ましい。本発明の高温ストレス耐性向上剤を複数回施用することにより、植物の高温ストレス耐性を更に向上させることができる。 When applying the high temperature stress tolerance improver of the present invention to a plant before being subjected to high temperature stress, the time when the high temperature stress tolerance improver of the present invention is applied to the plant is T1, and the plant begins to be exposed to high temperature stress. When T2 is T2, the time from T1 to T2 is preferably 0.5 to 10 days, preferably 0.5 to 9 days, preferably 0.5 to 8 days, preferably 0.5 to 7 days, preferably Is 0.5-6 days, preferably 0.5-5 days, preferably 0.5-4 days, preferably 0.5-3 days, preferably 0.5-2 days, preferably 0.5-days. 1.5 days. According to this embodiment, since the plant is exposed to high temperature stress in a state in which high temperature stress tolerance is improved by the high temperature stress tolerance improver of the present invention, the survival rate after exposure to high temperature stress is high. The high temperature stress tolerance improver of the present invention may be applied N times (N is 2 or more) to a plant before being subjected to high temperature stress. In that case, each time point T1 n (n is It is preferable that the time from an integer of 1 to N) to T2 satisfy the above range. By applying the high temperature stress tolerance improver of the present invention a plurality of times, the high temperature stress tolerance of the plant can be further improved.
<4.白化抑制剤、植物の白化を抑制する方法>
 本発明の一実施形態は、アラントインを有効成分として含有する、植物の白化を抑制するための、白化抑制剤である。
<4. Whitening Inhibitor, Method for Inhibiting Plant Whitening>
One embodiment of the present invention is a whitening inhibitor for suppressing plant whitening, which contains allantoin as an active ingredient.
 本発明の一実施形態は、前記白化抑制剤を植物に施用する工程を含む植物の白化を抑制する方法である。 One embodiment of the present invention is a method for suppressing plant whitening, which comprises the step of applying the whitening inhibitor to a plant.
 植物の白化はクロロシスとも呼ばれ、主に高温ストレスにより生じる。 Plant whitening, also called chlorosis, is mainly caused by high-temperature stress.
 本発明による白化抑制の対象となる植物は、白化の抑制を必要とする植物であり、例えば、上記の温度条件のような高温ストレスを受ける可能性のある環境で栽培される植物である。具体的な植物の種類は既述の通りである。 The plant that is subject to whitening suppression according to the present invention is a plant that requires whitening suppression, for example, a plant that is cultivated in an environment that may be subjected to high-temperature stress such as the above temperature conditions. Specific plant types are as described above.
 本発明の白化抑制剤は、アラントインを含有し、且つ植物の白化を抑制する作用を有するものであればよく、アラントイン自体であってもよいし、アラントインと他の成分とが組み合わされたアラントイン含有組成物であってもよい。本発明の白化抑制剤は、植物において白化を抑制する有効量のアラントインを含有することができる。 The whitening inhibitor of the present invention only needs to contain allantoin and has an action of suppressing plant whitening, may be allantoin itself, or may contain allantoin and other components. It may be a composition. The whitening inhibitor of the present invention can contain an effective amount of allantoin that suppresses whitening in plants.
 本発明の白化抑制剤は固形状、液状等の任意の形状であることができる。 The whitening inhibitor of the present invention can be in any shape such as solid or liquid.
 本発明の白化抑制剤がアラントイン含有組成物である場合、該組成物は高温ストレス耐性向上剤について説明したのと同様のアラントイン含有組成物を使用できる。 When the whitening inhibitor of the present invention is an allantoin-containing composition, the same allantoin-containing composition as described for the high-temperature stress resistance improver can be used.
 本発明の白化抑制剤を植物に施用する方法としては、本発明の白化抑制剤又は本発明の白化抑制剤から放出されたアラントインが植物の根、茎、葉などの植物体に接触することができる方法であれば特に限定されず、前記植物体に本発明の白化抑制剤が直接接するように施用してもよいし、前記植物体が定着した土壌等の栽培担体に本発明の白化抑制剤を施用してもよい。本発明では、植物において白化を抑制する有効量のアラントインが施用されるように、本発明の白化抑制剤を植物に施用することができる。 As a method of applying the whitening inhibitor of the present invention to a plant, the whitening inhibitor of the present invention or the allantoin released from the whitening inhibitor of the present invention may come into contact with a plant body such as a plant root, stem or leaf. The method is not particularly limited as long as it can be applied, and may be applied so that the whitening inhibitor of the present invention is in direct contact with the plant body, or the whitening inhibitor of the present invention is applied to a cultivation carrier such as soil in which the plant body is fixed. May be applied. In this invention, the whitening inhibitor of this invention can be applied to a plant so that the effective amount of allantoin which suppresses whitening may be applied in a plant.
 本発明の白化抑制剤を植物に施用する時期は特に限定されないが、好ましくは、本発明の白化抑制剤を、白化の原因となるストレス(例えば高温ストレス)を受ける前の植物に施用する。本発明の白化抑制剤は、DREB2A遺伝子の発現を促進する。既述の通りDREB2A遺伝子が発現すると各種ストレス耐性遺伝子の発現が誘導されると推定される。このため、ストレスを受ける前に予め本発明の白化抑制剤を施用した植物は、ストレス耐性が予め向上した状態となり、その後にストレスを受けたときの白化が効果的に抑制されると予測される。 The timing for applying the whitening inhibitor of the present invention to plants is not particularly limited, but preferably, the whitening inhibitor of the present invention is applied to plants before being subjected to stress that causes whitening (for example, high-temperature stress). The whitening inhibitor of the present invention promotes the expression of the DREB2A gene. As described above, when the DREB2A gene is expressed, it is presumed that the expression of various stress resistance genes is induced. For this reason, the plant to which the whitening inhibitor of the present invention has been applied in advance before being subjected to stress is in a state in which stress tolerance has been improved in advance, and it is predicted that whitening when subsequently subjected to stress is effectively suppressed. .
 本発明の白化抑制剤を、白化の原因となるストレスを受ける前の植物に施用する場合、本発明の白化抑制剤を前記植物に施用する時点をT1とし、前記植物が前記ストレスに曝され始める時点をT2としたとき、T1からT2までの時間が好ましくは0.5~10日、好ましくは0.5~9日、好ましくは0.5~8日、好ましくは0.5~7日、好ましくは0.5~6日、好ましくは0.5~5日、好ましくは0.5~4日、好ましくは0.5~3日、好ましくは0.5~2日、好ましくは0.5~1.5日である。この実施形態によれば、前記植物は本発明の白化抑制剤によりストレス耐性が向上した状態で前記ストレスに曝されるため、前記ストレスに曝された後の白化がより効果的に抑制される。本発明の白化抑制剤を、前記ストレスを受ける前の植物にN回(Nは2以上)施用してもよく、その場合は、白化抑制剤を施用する各時点T1(nは1~Nの整数)からT2までの時間がそれぞれ上記範囲を満たすことが好ましい。本発明の白化抑制剤を複数回施用することにより、植物の白化を更に抑制することができる。 When applying the whitening inhibitor of the present invention to a plant before being subjected to stress that causes whitening, the time when the whitening inhibitor of the present invention is applied to the plant is T1, and the plant begins to be exposed to the stress. When the time point is T2, the time from T1 to T2 is preferably 0.5 to 10 days, preferably 0.5 to 9 days, preferably 0.5 to 8 days, preferably 0.5 to 7 days, Preferably 0.5 to 6 days, preferably 0.5 to 5 days, preferably 0.5 to 4 days, preferably 0.5 to 3 days, preferably 0.5 to 2 days, preferably 0.5 ~ 1.5 days. According to this embodiment, since the plant is exposed to the stress in a state in which stress tolerance is improved by the whitening inhibitor of the present invention, whitening after being exposed to the stress is more effectively suppressed. The whitening inhibitor of the present invention may be applied N times (N is 2 or more) to the plant before receiving the stress. In this case, each time point T1 n (n is 1 to N) at which the whitening inhibitor is applied. It is preferable that the time from T) to T2 satisfy the above range. By applying the whitening inhibitor of the present invention a plurality of times, plant whitening can be further suppressed.
<5.DREB2A遺伝子発現促進剤、DREB2A遺伝子の発現を促進する方法>
 本発明の一実施形態は、アラントインを有効成分として含有する、植物においてDREB2A遺伝子の発現を促進するための、DREB2A遺伝子発現促進剤である。
<5. DREB2A Gene Expression Promoter, Method for Promoting DREB2A Gene Expression>
One embodiment of the present invention is a DREB2A gene expression promoter for promoting the expression of the DREB2A gene in plants, containing allantoin as an active ingredient.
 本発明の一実施形態はまた、前記DREB2A遺伝子発現促進剤を植物に施用する工程を含む、植物においてDREB2A遺伝子の発現を促進する方法である。 One embodiment of the present invention is also a method of promoting the expression of the DREB2A gene in a plant, comprising the step of applying the above-mentioned DREB2A gene expression promoter to the plant.
 本発明のこれらの実施形態は、植物でのDREB2A遺伝子の発現を促進することにより、高温ストレス耐性、乾燥ストレス耐性等の各種ストレス耐性の向上に寄与する。また、対象植物における発根率の向上、切花の花持ちの延長等の有利な効果を奏する。 These embodiments of the present invention contribute to the improvement of various stress tolerances such as high temperature stress tolerance and drought stress tolerance by promoting the expression of the DREB2A gene in plants. Moreover, there are advantageous effects such as improvement of the rooting rate in the target plant and extension of the flower life of cut flowers.
 本発明の、植物においてDREB2A遺伝子の発現を促進する方法では、好ましくは、HSF3遺伝子の発現が抑制される。 In the method of the present invention for promoting the expression of the DREB2A gene in a plant, the expression of the HSF3 gene is preferably suppressed.
 本発明において遺伝子の発現とはゲノムDNAを鋳型としてmRNAを発現する過程(転写)、及び/又は、前記mRNAを鋳型としてタンパク質を合成する過程(翻訳)を含む。本発明において遺伝子とは、所定のポリペプチドをコードする塩基配列を含む核酸であり、典型的には、植物が有するゲノムDNA又はゲノムDNAを鋳型として生成されるmRNAを指す。 In the present invention, gene expression includes a process of expressing mRNA using genomic DNA as a template (transcription) and / or a process of synthesizing protein using the mRNA as a template (translation). In the present invention, a gene is a nucleic acid containing a base sequence encoding a predetermined polypeptide, and typically refers to genomic DNA of a plant or mRNA generated using genomic DNA as a template.
 本発明におけるDREB2A遺伝子の発現の促進とは、アラントインを施用していない植物と比較して、DREB2A遺伝子の発現量が有意に増大することを意味する。植物においてDREB2A遺伝子の発現が促進されることは、植物体内でのDREB2AのポリペプチドをコードするmRNAの量、及び/又は、DREB2Aのポリペプチドの量の増大を検出することにより確認することができる。本発明におけるDREB2A遺伝子の発現の促進の程度は特に限定されないが、本発明のDREB2A遺伝子発現促進剤を施用していない植物でのDREB2A遺伝子の発現量を100としたとき、本発明のDREB2A遺伝子発現促進剤を施用した植物でのDREB2A遺伝子の発現量が例えば120以上、好ましくは150以上、好ましくは200以上となる。 Acceleration of the expression of the DREB2A gene in the present invention means that the expression level of the DREB2A gene is significantly increased as compared with a plant not applied with allantoin. The promotion of the expression of the DREB2A gene in a plant can be confirmed by detecting the increase in the amount of mRNA encoding the DREB2A polypeptide and / or the amount of the DREB2A polypeptide in the plant. . The degree of promotion of the expression of the DREB2A gene in the present invention is not particularly limited, but when the expression level of the DREB2A gene in a plant not applied with the DREB2A gene expression promoter of the present invention is 100, the expression of the DREB2A gene of the present invention The expression level of the DREB2A gene in the plant to which the promoter is applied is, for example, 120 or more, preferably 150 or more, preferably 200 or more.
 本発明におけるHSF3遺伝子の発現の抑制とは、アラントインを施用していない植物と比較して、HSF3遺伝子の発現量が有意に減少することを意味する。植物においてHSF3遺伝子の発現が抑制されることは、植物体内でのHSF3のポリペプチドをコードするmRNAの量、及び/又は、HSF3のポリペプチドの量の減少を検出することにより確認することができる。本発明におけるHSF3遺伝子の発現の抑制の程度は特に限定されないが、本発明のDREB2A遺伝子発現促進剤を施用していない植物でのHSF3遺伝子の発現量を100としたとき、本発明のDREB2A遺伝子発現促進剤を施用した植物でのHSF3遺伝子の発現量が例えば90以下、好ましくは80以下、好ましくは75以下となる。 <Suppression of HSF3 gene expression in the present invention means that the expression level of the HSF3 gene is significantly reduced as compared with plants not applied with allantoin. Suppression of HSF3 gene expression in plants can be confirmed by detecting a decrease in the amount of mRNA encoding the HSF3 polypeptide and / or a decrease in the amount of HSF3 polypeptide in the plant. . The degree of suppression of the expression of the HSF3 gene in the present invention is not particularly limited, but when the expression level of the HSF3 gene in a plant not applied with the DREB2A gene expression promoter of the present invention is 100, the expression of the DREB2A gene of the present invention The expression level of the HSF3 gene in the plant to which the promoter is applied is, for example, 90 or less, preferably 80 or less, preferably 75 or less.
 本発明によるDREB2A遺伝子の発現の促進の対象となる植物は、前記遺伝子の発現の促進を必要とする植物であり、例えば、上記の温度条件のような高温ストレスや、他のストレスを受ける可能性のある環境で栽培される植物である。具体的な植物の種類は既述の通りである。 The plant that is the target of promoting the expression of the DREB2A gene according to the present invention is a plant that needs to promote the expression of the gene. For example, there is a possibility of being subjected to high-temperature stress such as the above temperature condition or other stresses. It is a plant cultivated in a certain environment. Specific plant types are as described above.
 本発明のDREB2A遺伝子発現促進剤は、アラントインを含有し、且つ植物のDREB2A遺伝子の発現を促進する作用を有するものであればよく、アラントイン自体であってもよいし、アラントインと他の成分とが組み合わされたアラントイン含有組成物であってもよい。本発明のDREB2A遺伝子発現促進剤は、植物においてDREB2A遺伝子の発現を促進する有効量のアラントインを含有することができる。本発明のDREB2A遺伝子発現促進剤はまた、植物においてHSF3遺伝子の発現を抑制する有効量のアラントインを含有することができる。 The DREB2A gene expression promoter of the present invention may be any agent that contains allantoin and has an action of promoting the expression of the DREB2A gene in plants, and may be allantoin itself, or allantoin and other components may be used. It may be a combined allantoin-containing composition. The DREB2A gene expression promoter of the present invention can contain an effective amount of allantoin that promotes the expression of the DREB2A gene in plants. The DREB2A gene expression promoter of the present invention can also contain an effective amount of allantoin that suppresses the expression of the HSF3 gene in plants.
 本発明のDREB2A遺伝子発現促進剤は固形状、液状等の任意の形状であることができる。 The DREB2A gene expression promoter of the present invention can be in any shape such as solid or liquid.
 本発明のDREB2A遺伝子発現促進剤がアラントイン含有組成物である場合、該組成物は高温ストレス耐性向上剤について説明したのと同様のアラントイン含有組成物を使用できる。 When the DREB2A gene expression promoter of the present invention is an allantoin-containing composition, the same allantoin-containing composition as described for the high-temperature stress resistance improver can be used.
 本発明のDREB2A遺伝子発現促進剤を植物に施用する方法としては、本発明のDREB2A遺伝子発現促進剤又は本発明のDREB2A遺伝子発現促進剤から放出されたアラントインが植物の根、茎、葉などの植物体に接触することができる方法であれば特に限定されず、前記植物体に本発明のDREB2A遺伝子発現促進剤が直接接するように施用してもよいし、前記植物体が定着した土壌等の栽培担体に本発明のDREB2A遺伝子発現促進剤を施用してもよい。本発明では、植物においてDREB2A遺伝子の発現を促進する有効量のアラントインが施用されるように、本発明のDREB2A遺伝子発現促進剤を植物に施用することができる。本発明では、植物においてHSF3遺伝子の発現を抑制する有効量のアラントインが施用されるように、本発明のDREB2A遺伝子発現促進剤を植物に施用することができる。 As a method of applying the DREB2A gene expression promoter of the present invention to plants, plants such as plant roots, stems, leaves, etc., in which the DREB2A gene expression promoter of the present invention or the allantoin released from the DREB2A gene expression promoter of the present invention is used. The method is not particularly limited as long as it is a method capable of contacting the body, and the DREB2A gene expression promoter of the present invention may be applied directly to the plant body, or cultivation of soil or the like to which the plant body has been established. The DREB2A gene expression promoter of the present invention may be applied to the carrier. In the present invention, the DREB2A gene expression promoter of the present invention can be applied to a plant so that an effective amount of allantoin that promotes the expression of the DREB2A gene in the plant is applied. In the present invention, the DREB2A gene expression promoter of the present invention can be applied to a plant so that an effective amount of allantoin that suppresses the expression of the HSF3 gene in the plant is applied.
 本発明のDREB2A遺伝子発現促進剤を植物に施用する時期は特に限定されないが、好ましくは、本発明のDREB2A遺伝子発現促進剤を、ストレス(例えば高温ストレス)を受ける前の植物に施用する。本発明のDREB2A遺伝子発現促進剤は、DREB2A遺伝子の発現を促進する。既述の通りDREB2A遺伝子が発現すると各種ストレス耐性遺伝子の発現が誘導されると推定される。このため、ストレスを受ける前に予め本発明のDREB2A遺伝子発現促進剤を施用した植物は、ストレス耐性が予め向上した状態となり、その後にストレスを受けたときの生存率が高いと推定される。 The timing of applying the DREB2A gene expression promoter of the present invention to plants is not particularly limited, but preferably, the DREB2A gene expression promoter of the present invention is applied to plants before being subjected to stress (for example, high temperature stress). The DREB2A gene expression promoter of the present invention promotes the expression of the DREB2A gene. As described above, when the DREB2A gene is expressed, it is presumed that the expression of various stress resistance genes is induced. For this reason, it is estimated that the plant to which the DREB2A gene expression promoter of the present invention was applied in advance before being stressed is in a state in which stress tolerance has been improved in advance, and the survival rate when stressed thereafter is high.
 本発明のDREB2A遺伝子発現促進剤を、ストレスを受ける前の植物に施用する場合、本発明のDREB2A遺伝子発現促進剤を前記植物に施用する時点をT1とし、前記植物が前記ストレスに曝され始める時点をT2としたとき、T1からT2までの時間が好ましくは0.5~10日、好ましくは0.5~9日、好ましくは0.5~8日、好ましくは0.5~7日、好ましくは0.5~6日、好ましくは0.5~5日、好ましくは0.5~4日、好ましくは0.5~3日、好ましくは0.5~2日、好ましくは0.5~1.5日である。この実施形態によれば、前記植物は本発明のDREB2A遺伝子発現促進剤によりストレス耐性が向上した状態で前記ストレスに曝されるため、前記ストレスに曝された後の生存率が高い。本発明のDREB2A遺伝子発現促進剤を、前記ストレスを受ける前の植物にN回(Nは2以上)施用してもよく、その場合は、DREB2A遺伝子発現促進剤を施用する各時点T1(nは1~Nの整数)からT2までの時間がそれぞれ上記範囲を満たすことが好ましい。本発明のDREB2A遺伝子発現促進剤を複数回施用することにより、植物のストレス耐性を更に向上させることができる。 When the DREB2A gene expression promoter of the present invention is applied to a plant before being subjected to stress, the time point at which the DREB2A gene expression promoter of the present invention is applied to the plant is T1, and the time point at which the plant begins to be exposed to the stress When T2 is T2, the time from T1 to T2 is preferably 0.5 to 10 days, preferably 0.5 to 9 days, preferably 0.5 to 8 days, preferably 0.5 to 7 days, preferably Is 0.5-6 days, preferably 0.5-5 days, preferably 0.5-4 days, preferably 0.5-3 days, preferably 0.5-2 days, preferably 0.5-days. 1.5 days. According to this embodiment, since the plant is exposed to the stress in a state where stress tolerance is improved by the DREB2A gene expression promoter of the present invention, the survival rate after exposure to the stress is high. The DREB2A gene expression promoter of the present invention may be applied N times (N is 2 or more) to the plant before receiving the stress. In this case, each time point T1 n (n Is preferably an integer of 1 to N) to T2 respectively. By applying the DREB2A gene expression promoter of the present invention a plurality of times, the stress resistance of the plant can be further improved.
 本発明においてDREB2A遺伝子とは、NCBI(米国立生物工学情報センター、National Center for Biotechnology)が提供するデータベース(http://www.ncbi.nlm.nih.gov/)やその他のデータベースにおいて、dehydration-responsive element-binding protein 2A又はdehydration-responsive element-binding protein 2A-likeとアノテーションされているポリペプチドをコードする塩基配列を含む遺伝子、並びに、前記ポリペプチドと相同な機能を有するポリペプチドをコードする塩基配列を含む遺伝子を指す。 In the present invention, the DREB2A gene refers to a database (http://www.ncbi.nlm.nih.gov/) provided by NCBI (National Center for Biotechnology Information, National Center for Biotechnology) and other databases. a gene comprising a base sequence encoding a polypeptide annotated as responsive element-binding protein 2A or dehydration-responsive element-binding protein 2A-like, and a base encoding a polypeptide having a function homologous to the polypeptide Refers to a gene that contains a sequence.
 NCBIが提供するデータベース(http://www.ncbi.nlm.nih.gov/)においてdehydration-responsive element-binding protein 2A又はdehydration-responsive element-binding protein 2A-likeとアノテーションされているポリペプチドをコードする塩基配列を含む遺伝子は、下記URLのウェブサイトに示される検索結果により確認することができる:
http://www.ncbi.nlm.nih.gov/gene/?term=dehydration-responsive+element-binding+protein+2A
 例えばシロイヌナズナのDREB2A遺伝子(AGIコード=AT5G05410)は、cDNAの塩基配列としては、配列番号1に示す通りである。配列番号1に示す塩基配列のうち第189塩基から第1196塩基までの部分塩基配列が、DREB2Aのポリペプチドをコードする領域である。
Encodes the polypeptide annotated as dehydration-responsive element-binding protein 2A or dehydration-responsive element-binding protein 2A-like in the database provided by NCBI (http://www.ncbi.nlm.nih.gov/) The gene containing the nucleotide sequence to be confirmed can be confirmed by the search result shown on the website of the following URL:
http://www.ncbi.nlm.nih.gov/gene/?term=dehydration-responsive+element-binding+protein+2A
For example, the Arabidopsis DREB2A gene (AGI code = AT5G05410) is as shown in SEQ ID NO: 1 as the base sequence of cDNA. A partial base sequence from the 189th base to the 1196th base in the base sequence shown in SEQ ID NO: 1 is a region encoding the DREB2A polypeptide.
 また、対象とする植物によっては、dehydration-responsive element-binding protein 2A又はdehydration-responsive element-binding protein 2A-likeとアノテーションされているポリペプチドと相同な機能を有するポリペプチドをコードする塩基配列を含む遺伝子の発現が促進されてもよい。 In addition, depending on the target plant, a nucleotide sequence encoding a polypeptide having a function homologous to a polypeptide annotated as dehydration-responsive-element-binding protein 2A or dehydration-responsive element-binding protein 2A-like is included. Gene expression may be promoted.
 前記の、dehydration-responsive element-binding protein 2A又はdehydration-responsive element-binding protein 2A-likeとアノテーションされているポリペプチドと相同な機能を有するポリペプチドをコードする塩基配列を含む遺伝子としては、例えば、
(1)配列番号1に示す塩基配列のうち第189塩基から第1196塩基までの部分塩基配列がコードするシロイヌナズナDREB2Aポリペプチドのアミノ酸配列において、1又は数個、例えば1~20個、好ましくは1~15個、好ましくは1~10個、好ましくは1~5個、好ましくは1~3個、好ましくは1又は2個、のアミノ酸が置換、欠失、挿入及び/又は付加したアミノ酸配列を含み、且つ、前記シロイヌナズナDREB2Aポリペプチドと相同な機能を有するポリペプチドをコードする塩基配列を含む遺伝子、又は
(2)前記シロイヌナズナDREB2Aポリペプチドのアミノ酸配列と60%以上、好ましくは70%以上、好ましくは80%以上、好ましくは85%以上、好ましくは90%以上、好ましくは95%以上、好ましくは98%以上の配列同一性を有するアミノ酸配列を含み、且つ、前記シロイヌナズナDREB2Aポリペプチドと相同な機能を有するポリペプチドをコードする塩基配列を含む遺伝子
が挙げられるがこれらには限定されない。
Examples of the gene containing a base sequence encoding a polypeptide having a function homologous to the polypeptide annotated as dehydration-responsive element-binding protein 2A or dehydration-responsive element-binding protein 2A-like, for example,
(1) 1 or several, for example, 1 to 20, preferably 1 in the amino acid sequence of the Arabidopsis DREB2A polypeptide encoded by the partial base sequence from the 189th base to the 1196th base in the base sequence shown in SEQ ID NO: 1. -15, preferably 1-10, preferably 1-5, preferably 1-3, preferably 1 or 2, comprising amino acid sequences substituted, deleted, inserted and / or added And a gene comprising a base sequence encoding a polypeptide having a function homologous to the Arabidopsis DREB2A polypeptide, or (2) 60% or more, preferably 70% or more, preferably the amino acid sequence of the Arabidopsis DREB2A polypeptide 80% or more, preferably 85% or more, preferably 90% or more, preferably 95% or more, preferably Properly comprises an amino acid sequence with a sequence identity of 98% or more, and, the Arabidopsis DREB2A gene comprising a nucleotide sequence encoding a polypeptide having a polypeptide homologous to function but are not limited to these.
 本発明においてアミノ酸配列の配列同一性は、当業者に周知の方法、配列解析ソフトウェア等を使用して求めることができる。例えば、前記シロイヌナズナDREB2Aポリペプチドのアミノ酸配列と、他のアミノ酸配列との一致度が最大となるように、必要に応じてギャップを挿入して、この2つのアミノ酸配列のアラインメントを行ったとき、総アミノ酸残基数(ギャップを挿入する場合、ギャップ数を含む)に対する一致したアミノ酸残基数の割合(%)を指し、BLASTやFASTAによるタンパク質の検索システムを用いて決定することができる(Karlin,S.ら、1993年、Proceedings of the National  Academic Sciences U.S.A.、第90巻、p.5873-5877;Altschul,S.F.ら、1990年、Journal  of  Molecular  Biology、第215巻、p.403-410;Pearson,W.R.ら、1988年、Proceedings of the National Academic Sciences U.S.A.、第85巻、p.2444-2448)。 In the present invention, the sequence identity of amino acid sequences can be determined using methods well known to those skilled in the art, sequence analysis software, and the like. For example, when the amino acid sequence of the Arabidopsis DREB2A polypeptide is aligned with the two amino acid sequences by inserting gaps as necessary so that the degree of coincidence between the amino acid sequence and other amino acid sequences is maximized, Refers to the ratio (%) of the number of matched amino acid residues to the number of amino acid residues (including gap number when gaps are inserted), and can be determined using a protein search system by BLAST or FASTA (Karlin, S., et al., 1993, Proceedings of the National, Academic, Sciences, USA, 90, p. 5873-5877; Altschul, SF, et al., 1990, Journal of Molecular Biology, 21st. Pearson, WR et al., 1988, Proceedingsingof the National Academic SciencesU.S.A., 85, pp. 2444-2448).
 本発明においてHSF3遺伝子とは、NCBI(米国立生物工学情報センター、National Center for Biotechnology)が提供するデータベース(http://www.ncbi.nlm.nih.gov/)やその他のデータベースにおいて、heat stress transcription factor A-1b又はheat stress transcription factor A-1b-likeとアノテーションされているポリペプチドをコードする塩基配列を含む遺伝子、並びに、前記ポリペプチドと相同な機能を有するポリペプチドをコードする塩基配列を含む遺伝子を指す。 In the present invention, the HSF3 gene refers to heat stress in a database (http://www.ncbi.nlm.nih.gov/) provided by NCBI (National Center for Biotechnology Information, National Center for Biotechnology) and other databases. a gene comprising a base sequence encoding a polypeptide annotated as transcription factor A-1b or heat stress transcription factor A-1b-like, and a base sequence encoding a polypeptide having a function homologous to the polypeptide. Refers to the gene containing.
 NCBIが提供するデータベース(http://www.ncbi.nlm.nih.gov/)においてheat stress transcription factor A-1b又はheat stress transcription factor A-1b-likeとアノテーションされているポリペプチドをコードする塩基配列を含む遺伝子は、下記URLのウェブサイトに示される検索結果により確認することができる:
http://www.ncbi.nlm.nih.gov/gene/?term=heat+stress+transcription+factor+A-1b
 例えばシロイヌナズナのHSF3遺伝子(AGIコード=AT5G16820)は、cDNAの塩基配列としては、配列番号2に示す通りである。配列番号2に示す塩基配列のうち第174塩基から第1619塩基までの部分塩基配列が、HSF3のポリペプチドをコードする領域である。
Base encoding a polypeptide annotated as heat stress transcription factor A-1b or heat stress transcription factor A-1b-like in the database provided by NCBI (http://www.ncbi.nlm.nih.gov/) The gene containing the sequence can be confirmed by the search results shown on the website at the following URL:
http://www.ncbi.nlm.nih.gov/gene/?term=heat+stress+transcription+factor+A-1b
For example, the HSF3 gene (AGI code = AT5G16820) of Arabidopsis thaliana is as shown in SEQ ID NO: 2 as the base sequence of cDNA. The partial base sequence from the 174th base to the 1619th base in the base sequence shown in SEQ ID NO: 2 is a region encoding the HSF3 polypeptide.
 また、対象とする植物によっては、heat stress transcription factor A-1b又はheat stress transcription factor A-1b-likeとアノテーションされているポリペプチドと相同な機能を有するポリペプチドをコードする塩基配列を含む遺伝子の発現が抑制されてもよい。 Depending on the target plant, a gene containing a base sequence encoding a polypeptide having a function homologous to a polypeptide annotated as heat stress transcription factor A-1b or heat stress transcription factor A-1b-like Expression may be suppressed.
 前記の、heat stress transcription factor A-1b又はheat stress transcription factor A-1b-likeとアノテーションされているポリペプチドと相同な機能を有するポリペプチドをコードする塩基配列を含む遺伝子としては、例えば、
(1)配列番号2に示す塩基配列のうち第174塩基から第1619塩基までの部分塩基配列がコードするシロイヌナズナHSF3ポリペプチドのアミノ酸配列において、1又は数個、例えば1~20個、好ましくは1~15個、好ましくは1~10個、好ましくは1~5個、好ましくは1~3個、好ましくは1又は2個、のアミノ酸が置換、欠失、挿入及び/又は付加したアミノ酸配列を含み、且つ、前記シロイヌナズナHSF3ポリペプチドと相同な機能を有するポリペプチドをコードする塩基配列を含む遺伝子、又は
(2)前記シロイヌナズナHSF3ポリペプチドのアミノ酸配列と60%以上、好ましくは70%以上、好ましくは80%以上、好ましくは85%以上、好ましくは90%以上、好ましくは95%以上、好ましくは98%以上の配列同一性を有するアミノ酸配列を含み、且つ、前記シロイヌナズナHSF3ポリペプチドと相同な機能を有するポリペプチドをコードする塩基配列を含む遺伝子
が挙げられるがこれらには限定されない。
Examples of the gene containing a base sequence encoding a polypeptide having a function homologous to the polypeptide annotated as heat stress transcription factor A-1b or heat stress transcription factor A-1b-like,
(1) In the amino acid sequence of the Arabidopsis thaliana HSF3 polypeptide encoded by the partial base sequence from the 174th base to the 1619th base in the base sequence shown in SEQ ID NO: 2, one or several, for example, 1 to 20, preferably 1, -15, preferably 1-10, preferably 1-5, preferably 1-3, preferably 1 or 2, comprising amino acid sequences substituted, deleted, inserted and / or added And a gene comprising a base sequence encoding a polypeptide having a function homologous to the Arabidopsis thaliana HSF3 polypeptide, or (2) 60% or more, preferably 70% or more, preferably the amino acid sequence of the Arabidopsis thaliana HSF3 polypeptide 80% or more, preferably 85% or more, preferably 90% or more, preferably 95% or more, preferably 98 It comprises an amino acid sequence having a sequence identity or more, and, the Arabidopsis HSF3 but gene comprising a nucleotide sequence encoding a polypeptide having a polypeptide homologous functions include, but are not limited thereto.
 以下、本発明を、具体例を参照して説明する。しかしながら以下の具体例は本発明の範囲を限定するものではない。
<実験1.アラントイン蓄積シロイヌナズナの高温ストレス耐性の評価>
1.植物材料
 シロイヌナズナ(Arabidopsis thaliana (L.) Heynh., accession Columbia-0)について、遺伝的背景が異なる以下の3種のラインを用いた。
(1)野生株(WT)
(2)アラントイナーゼ遺伝子破壊株(aln-1)
(3)アラントイナーゼ遺伝子破壊株の相補株(aln-1 35S:ALN)
 これらの植物は、非特許文献4において用いられているものと同じである。なお、アラントイナーゼ遺伝子破壊株の相補株(aln-1 35S:ALN)は、前記文献において「35Spro:ALN/aln-1」と表示されているものと同一である。
Hereinafter, the present invention will be described with reference to specific examples. However, the following specific examples do not limit the scope of the present invention.
<Experiment 1. Evaluation of high-temperature stress tolerance of allantoin-accumulating Arabidopsis>
1. Plant material For Arabidopsis thaliana (L.) Heynh., Accessum Columbia-0, the following three lines with different genetic backgrounds were used.
(1) Wild strain (WT)
(2) Allantoinase gene disruption strain (aln-1)
(3) Complementary strain of allantoinase gene disruption strain (aln-1 35S: ALN)
These plants are the same as those used in Non-Patent Document 4. The allantoinase gene-disrupted strain complement (aln-1 35S: ALN) is the same as that indicated in the above document as “35Spro: ALN / aln-1”.
 上記(2)アラントイナーゼ遺伝子破壊株(SALK_000325, Yang, J. and Han K.-H, Plant Physiology, 134: 1039-1049)は、the Arabidopsis Biological Resource Center(Ohio State University)から入手したものである。 The above (2) Allantoinase gene disruption strain (SALK_000325, Yang, J. and Han K.-H, Plant Physiology, 134: 1039-1049) was obtained from the Arabidopsis Biological Resource Center (OhiitiUsitOs). is there.
 上記(3)アラントイナーゼ遺伝子破壊株の相補株(aln-1 35S:ALN)は、野生型シロイヌナズナ由来のアラントイナーゼの全長をコードするDNAを、ベクターを利用して上記のaln-1に導入して得られたものである。具体的な調製方法は非特許文献4に記載の通りである。 The (3) complement of the allantoinase gene-disrupted strain (aln-1 35S: ALN) is obtained by converting a DNA encoding the entire length of allantoinase derived from wild-type Arabidopsis thaliana into the above-mentioned aln-1 It was obtained by introduction. A specific preparation method is as described in Non-Patent Document 4.
2.生育培地
 規定の半分の濃度のムラシゲ・スクーグ培地用混合塩類(Murashige T., F. Skoog F. 1962, A revised medium for rapid growth and bioassays with tobacco tissue cultures, Physiologia Plantarum 15: 473-497)及びスクロース、ビタミン類、ゲランガム(固化剤)をMES[2-(N-モルホリノ)エタンスルホン酸]緩衝液に溶解した。得られた溶液をオートクレーブ後、25mLずつ深型滅菌シャーレFX(サンセイ医療器材;90×20mm)に分注してクリーンベンチ内で固化させ、1/2MS固形培地とした。得られた1/2MS固形培地は各成分を表1に示す濃度で含む。
Figure JPOXMLDOC01-appb-T000002
2. Growth medium Mixed salt for Murashige and Skoog medium (Murashige T., F. Skoog F. 1962, A revised medium for rapid growth and bioassays with tobacco tissue cultures, Physiologia Plantarum 15: 473-497) and sucrose Vitamins and gellan gum (solidifying agent) were dissolved in MES [2- (N-morpholino) ethanesulfonic acid] buffer. The resulting solution was autoclaved and then dispensed into a deep sterile petri dish FX (Sansei Medical Equipment; 90 × 20 mm) in a volume of 25 mL and solidified in a clean bench to obtain a ½ MS solid medium. The obtained 1 / 2MS solid medium contains each component at the concentrations shown in Table 1.
Figure JPOXMLDOC01-appb-T000002
3.生育条件および高温ストレス処理
(1)上記植物の完熟種子を数百粒とり1.5mLチューブに入れた。以下の操作(2)~(6)はクリーンベンチ内で行った。
(2)2.5%(v/v)次亜塩素酸ナトリウム1mLを、種子の入ったチューブに入れ、小型旋回ミキサー(18回転/分)にセットして10分間滅菌した。
(3)スピンダウン後、次亜塩素酸ナトリウム溶液を捨てて滅菌水を1mL加え、(2)の操作を行った。
(4)滅菌水を用いて(3)の操作を3回繰り返し、種子を十分に洗浄した。
(5)1/2MS固形培地の1シャーレを放射状に3つの区画に分け、各ラインについてそれぞれ1つの区画に9粒の種子(1シャーレ合計27粒)を播種した(図1A参照)。
(6)蓋をあけた状態でシャーレをクリーンベンチ内に置き、種子周りの水を蒸発させた後(約20~30分間)、サージカルテープでシャーレをシールした。
(7)シャーレを1枚ずつアルミホイルで包み、低温処理(4℃)を2日間行い休眠打破した。
(8)培養室に移し、22℃・長日条件(蛍光灯下で16時間光照射;0.07mmol photons m-1 s-1)で7日間培養した。
(9)上記(8)により無菌生育させた7日齢植物を、予め45℃に設定しておいたインキュベータの庫内に置き、暗黒下で熱ショックを75分間、90分間又は105分間与えた。対照試験では、熱ショックを与えず22℃での生育を継続した。
(10)熱ショック処理後、シャーレを22℃インキュベータ内で10~15分間冷却し、上記(8)の条件で再び1週間生育させた。ダメージがシリアスな場合は3日目頃から葉のクロロシス(白化現象)が観察されるようになる。この現象を利用して生存率を評価した。
3. Growth conditions and high-temperature stress treatment (1) Hundreds of mature seeds of the above plants were collected and placed in a 1.5 mL tube. The following operations (2) to (6) were performed in a clean bench.
(2) 1 mL of 2.5% (v / v) sodium hypochlorite was placed in a tube containing seeds, placed in a small swirling mixer (18 rotations / min) and sterilized for 10 minutes.
(3) After spin down, the sodium hypochlorite solution was discarded and 1 mL of sterilized water was added, and the operation of (2) was performed.
(4) Using the sterilized water, the operation of (3) was repeated 3 times to sufficiently wash the seeds.
(5) One petri dish of 1 / 2MS solid medium was radially divided into three sections, and nine seeds (one petri dish total of 27 grains) were sown in each section for each line (see FIG. 1A).
(6) The petri dish was placed in a clean bench with the lid open, the water around the seeds was evaporated (about 20-30 minutes), and the petri dish was sealed with surgical tape.
(7) Each petri dish was wrapped with aluminum foil one by one and subjected to low temperature treatment (4 ° C.) for 2 days to overcome sleep.
(8) The cells were transferred to a culture room and cultured for 7 days under conditions of 22 ° C. and long days (light irradiation for 16 hours under fluorescent lamps; 0.07 mmol photons m −1 s −1 ).
(9) The 7-day-old plant grown aseptically according to (8) above was placed in an incubator set at 45 ° C. in advance, and heat shock was applied for 75 minutes, 90 minutes, or 105 minutes in the dark. . In the control test, the growth at 22 ° C. was continued without applying heat shock.
(10) After the heat shock treatment, the petri dish was cooled in a 22 ° C. incubator for 10 to 15 minutes, and grown again for 1 week under the condition (8). If the damage is serious, leaf chlorosis will be observed from the third day. The survival rate was evaluated using this phenomenon.
 上記試験を2回行った。 The above test was performed twice.
4.結果
 各熱ショック条件で処理し1週間生育させた後の各シャーレの写真を図1Bに示す。図1Bに示す個々のシャーレ内の植物のラインの配置は図1Aに示す通りである。シャーレ内の数値は各区画での(生存した実生の数)/(発芽した実生の数)を示す。
4). Results A photograph of each petri dish after treatment under each heat shock condition and growth for 1 week is shown in FIG. 1B. The arrangement of plant lines in each petri dish shown in FIG. 1B is as shown in FIG. 1A. The numerical value in the petri dish indicates (number of surviving seedlings) / (number of germinated seedlings) in each section.
 図2には、各熱ショック条件での生存率を示す。図2に示す生存率は、図1Bに数値を示した生存数の結果を元に各条件での生存率(%)を求め、2つの試験での平均値を算出した結果である。 Fig. 2 shows the survival rate under each heat shock condition. The survival rate shown in FIG. 2 is the result of calculating the average value in two tests by obtaining the survival rate (%) in each condition based on the survival number result shown in FIG. 1B.
 図1B及び図2に示す試験結果から、アラントイナーゼ遺伝子破壊株(aln-1)は高温ストレスに耐性を有することが分かる。アラントイナーゼ遺伝子破壊株(aln-1)では植物体内でアラントインの代謝が進まず蓄積されることから、本実験で観察された高温ストレス耐性はアラントインが植物体内で高濃度に存在することにより生じるものと結論づけた。 1B and 2 show that the allantoinase gene-disrupted strain (aln-1) is resistant to high-temperature stress. In the allantoinase gene-disrupted strain (aln-1), allantoin metabolism does not proceed in the plant body, so the high temperature stress tolerance observed in this experiment is caused by the high concentration of allantoin in the plant body. It was concluded that
 高温ストレスによりダメージを受けた植物では、葉のクロロシス(白化現象)が観察された。 In the plants damaged by high temperature stress, leaf chlorosis (whitening phenomenon) was observed.
<実験2.アラントイン施用による単子葉植物への高温ストレス耐性付与>
 一辺5cmのポリポットをバランスディッシュBD-2(アズワン社)に載せ、70mlのバーミキュライト(プロトリーフ社)を入れ、その上に80ml培養土(タキイ種苗)を入れ、タマネギ(品種:ネオアース、タキイ種苗)の種を3粒×3箇所播種し、更にその上に20mlのバーミキュライトを覆土した。その後に、水道水50ml×2回の給水をバランスディッシュに行った。ポリポット(バランスディッシュと一体で)をバットに載せ、22℃、10000Lux、12時間明期、12時間暗期のインキュベータに置き、栽培を開始した。栽培開始日を播種0日目とする。播種5日目、発芽が確認された。播種6日目、各ポットの3個体(1箇所につき1個体)を残し、残りの個体を間引いた。
<Experiment 2. Giving high temperature stress tolerance to monocotyledonous plants by allantoin application>
Place a 5cm side polypot on a balance dish BD-2 (As One), put 70ml vermiculite (Protolef), put 80ml culture soil (Takii seedling) on it, onion (variety: Neo Earth, Takii seedling) The seeds were sowed in 3 grains × 3 places, and further 20 ml of vermiculite was covered with the seeds. After that, tap water 50 ml × 2 times water supply was performed in a balance dish. A polypot (integrated with a balance dish) was placed on a bat and placed in an incubator at 22 ° C., 10000 Lux, 12 hours light period, 12 hours dark period, and cultivation was started. Let the cultivation start date be the 0th day of sowing. On the 5th day of sowing, germination was confirmed. On the 6th day of sowing, 3 individuals (1 plant per site) were left in each pot, and the remaining plants were thinned out.
 播種6日目、実験区ごとに水道水(以下、水区)、或いは、1mMアラントイン水溶液(アラントイン区)40ml/ポットをそれぞれに施用した。播種11日目、全ポットに40ml/ポットの水道水を給水した。播種13日目(タマネギは本葉第2葉期)、バットごと恒温器に入れて45℃コントロール下で1時間、1.5時間、2時間さらし、高温ストレスを与えた。高温ストレス前後でポット中の土は十分な湿気を保った状態であった。高温ストレス処理終了後、22℃のインキュベータに戻し、栽培を継続した。ヒートショック後2日目に、40ml/ポットの給水を行った。さらに、その後中2日の間隔で40ml/ポットの給水を行った。 On the 6th day of sowing, tap water (hereinafter referred to as “water zone”) or 1 mM allantoin aqueous solution (allantoin zone) 40 ml / pot was applied to each experimental zone. On the 11th day after sowing, 40 ml / pot of tap water was supplied to all pots. On the 13th day after sowing (onion is the second leaf stage of the main leaf), each bat was placed in a thermostatic chamber and exposed to 45 ° C. control for 1 hour, 1.5 hours, and 2 hours to give high temperature stress. The soil in the pot was kept in sufficient moisture before and after the high temperature stress. After completion of the high temperature stress treatment, it was returned to the incubator at 22 ° C. and cultivation was continued. On the second day after the heat shock, 40 ml / pot of water was supplied. Further, 40 ml / pot of water was supplied at intervals of 2 days.
 ヒートショック後3日目の生存率は、1時間処理で、水区22.2%、アラントイン区66.7%、1.5時間処理で、水区0%、アラントイン区33.3%、2時間処理で、水区0%、アラントイン区11.1%であった。ヒートショック後8日目の生存率も同じ結果であった。以上の結果から、アラントインの施用による高温ストレス耐性付与効果が確認できた。 Survival rate on the third day after the heat shock was 22.2% for the water zone, 66.7% for the allantoin zone after treatment for 1 hour, 0% for the water zone, 33.3% for the allantoin zone for 2 hours. By time treatment, it was 0% in the water zone and 11.1% in the allanto-in zone. The survival rate on the 8th day after the heat shock was the same result. From the above result, the high temperature stress tolerance imparting effect by application of allantoin was confirmed.
 ここで「生存率」とは、ヒートショック処理を施した植物体の数に対する、生存した植物体の割合を示す。生存率の算出に際しては、最新葉に生理障害(白化、萎れ、葉の巻)があり、これ以上生育しない個体を生存していない個体として扱った。 Here, “survival rate” indicates the ratio of the surviving plant to the number of plants subjected to heat shock treatment. In calculating the survival rate, individuals with physiological disorders (whitening, wilting, leaf winding) in the latest leaf and no longer growing were treated as non-viable individuals.
 図3には、45℃で1.5時間処理したヒートショック後3日目の植物体の写真を示す。図3上段がアラントイン区(生存率33.3%)の植物体の写真であり、図3下段が水区(生存率0%)の植物体の写真である。 FIG. 3 shows a photograph of the plant on the third day after heat shock treated at 45 ° C. for 1.5 hours. The upper part of FIG. 3 is a photograph of a plant in the allantoin area (survival rate 33.3%), and the lower part of FIG. 3 is a photograph of the plant in the water area (survival rate 0%).
<実験3.アラントイン施用による双子葉植物への高温ストレス耐性付与>
 一辺5cmのポリポットをバランスディッシュBD-2(アズワン社)に載せ、70mlのバーミキュライト(プロトリーフ社)を入れ、その上に80ml培養土(タキイ種苗)を入れ、コマツナ(品種:楽天、タキイ種苗)の種をポット中央に3粒播種し、更にその上に20mlのバーミキュライトを覆土した。その後に、水道水50ml×2回の給水をバランスディッシュに行った。ポリポット(バランスディッシュと一体で)をバットに載せ、22℃、10000Lux、12時間明期、12時間暗期のインキュベータに置き、栽培を開始した。栽培開始日を播種0日目とする。
<Experiment 3. Addition of high temperature stress tolerance to dicotyledonous plants by allantoin application>
Place a 5cm side polypot on Balance Dish BD-2 (As One), put 70ml vermiculite (Protolef), put 80ml culture soil (Takii seedling) on top, Komatsuna (variety: Rakuten, Takii seedling) 3 seeds were sown in the center of the pot, and 20 ml of vermiculite was covered with the seed. After that, tap water 50 ml × 2 times water supply was performed in a balance dish. A polypot (integrated with a balance dish) was placed on a bat and placed in an incubator at 22 ° C., 10000 Lux, 12 hours light period, 12 hours dark period, and cultivation was started. Let the cultivation start date be the 0th day of sowing.
 播種3日目、発芽が確認された。播種6日目、各ポットの1個体を残し、残りの個体を間引いた。播種6日目、実験区ごとに水道水又は1mMアラントイン水溶液40ml/ポットをそれぞれに施用した。播種11日目、全ポットに40ml/ポットの水道水を給水した。播種13日目、実験区ごとに水道水又は1mMアラントイン水溶液40ml/ポットをそれぞれに施用した。播種14日目(コマツナは本葉第2葉期)、バットごと恒温器に入れて45℃コントロール下で1時間さらし、高温ストレスを与えた。高温ストレス前後でポット中の土は十分な湿気を保った状態であった。高温ストレス処理終了後、22℃のインキュベータに戻し、栽培を継続した。ヒートショック後2日目に、40ml/ポットの給水を行った。さらに、その後中2日の間隔で40ml/ポットの給水を行った。 On the third day of sowing, germination was confirmed. On the 6th day after sowing, one individual was left in each pot, and the remaining individuals were thinned out. On the 6th day after sowing, 40 ml / pot of tap water or 1 mM allantoin aqueous solution was applied to each experimental group. On the 11th day after sowing, 40 ml / pot of tap water was supplied to all pots. On the 13th day after sowing, 40 ml / pot of tap water or 1 mM allantoin aqueous solution was applied to each experimental group. On the 14th day after sowing (Komatsuna is the second leaf stage of the main leaf), the bat was placed in a thermostatic chamber and exposed to 45 ° C. for 1 hour to give high temperature stress. The soil in the pot was kept in sufficient moisture before and after the high temperature stress. After completion of the high temperature stress treatment, it was returned to the incubator at 22 ° C. and cultivation was continued. On the second day after the heat shock, 40 ml / pot of water was supplied. Further, 40 ml / pot of water was supplied at intervals of 2 days.
 ヒートショック後7日目の生存率は、1時間処理で、水区33.3%、アラントイン区100%であった。以上の結果から、アラントインの施用による高温ストレス耐性付与効果が確認できた。 The survival rate on the seventh day after the heat shock was 33.3% in the water zone and 100% in the allanto-in zone after 1 hour treatment. From the above result, the high temperature stress tolerance imparting effect by application of allantoin was confirmed.
 ここで「生存率」とは、ヒートショック処理を施した植物体の数に対する、生存した植物体の割合を示す。生存率の算出に際しては、最新葉に生理障害(白化、萎れ、葉の巻)があり、これ以上生育しない個体を生存していない個体として扱った。 Here, “survival rate” indicates the ratio of the surviving plant to the number of plants subjected to heat shock treatment. In calculating the survival rate, individuals with physiological disorders (whitening, wilting, leaf winding) in the latest leaf and no longer growing were treated as non-viable individuals.
 図4には、45℃で1時間処理したヒートショック後7日目の植物体の写真を示す。図4上段がアラントイン区(生存率100%)の植物体の写真であり、図4下段が水区(生存率33.3%)の植物体の写真である。 FIG. 4 shows a photograph of the plant on the seventh day after heat shock treated at 45 ° C. for 1 hour. The upper part of FIG. 4 is a photograph of a plant body in the allantoin area (survival rate 100%), and the lower part of FIG. 4 is a photograph of the plant body in the water area (survival rate 33.3%).
<実験4.アラントイン蓄積植物におけるDREB2A遺伝子の発現促進>
1.概要
 シロイヌナズナ(Arabidopsis thaliana (L.) Heynh.)の遺伝子発現に与えるアラントインの影響を精査するために、アラントイナーゼの遺伝子破壊によりアラントインを蓄積するaln-1変異株のマイクロアレイ未加工データ(NCBI Gene Expression Omnibus accession number GSE44922)に対して、Konishi, T. (2004) Three-parameter longnormal distribution ubiquitously found in cDNA microarray data and its application to parametric data treatment. BMC Bioinformatics 5: 5に記載の手法に従って標準化処理を施した。得られた標準化データに対して二次元配置分散分析を適用し、厳格な検定条件(P<0.001)のもと、野生株と比較して転写産物レベルが3倍以上変動した遺伝子を選抜した(Konishi, T. (2011) Microarray test results should not be compensated for multiplicity of gene contents. BMC Syst. Biol. 5(Suppl 2): S6)。これらの遺伝子に対してVirtualPlant (version 1.3; http://virtualplant.bio.nyu.edu/cgi-bin/vpweb/)を使用して、生物プロセスに関する遺伝子オントロジー(GO)解析を行った。
<Experiment 4. Promotion of DREB2A gene expression in allantoin-accumulating plants>
1. Summary In order to investigate the effects of allantoin on the gene expression of Arabidopsis thaliana (L.) Heynh., Microarray raw data (NCBI Gene) of alan-1 mutants that accumulate allantoin by gene disruption of allantoinase Expression Omnibus accession number GSE44922) is standardized according to the method described in Konishi, T. (2004) Three-parameter longnormal distribution ubiquitously found in cDNA microarray data and its application to parametric data treatment.BMC Bioinformatics 5: 5. did. Applying two-dimensional analysis of variance to the standardized data obtained, and selecting genes whose transcript level fluctuated more than 3 times compared to wild-type strains under strict test conditions (P <0.001) (Konishi, T. (2011) Microarray test results should not be compensated for multiplicity of gene contents. BMC Syst. Biol. 5 (Suppl 2): S6). Using these genes, Virtual Ontology (version 1.3; http://virtualplant.bio.nyu.edu/cgi-bin/vpweb/) was used for gene ontology (GO) analysis on biological processes.
2.手順の詳細
 シロイヌナズナの2週齢の野生株及びaln-1変異株の苗から全RNAを抽出した。各遺伝子型について2つの独立した生物試料を用いた。RNAのcDNAへの逆転写とラベリング及びAffymetrics ATH1 Gene Chipsへのハイブリダイゼーションを、製造元の指示書に従って行った。ハイブリダイゼーションを行ったマイクロアレイを洗浄後、Affymetrics GeneChip Scanner 3000 7Gを用いてハイブリダイゼーションに由来するシグナルを収集した。この手順により、野生株及びaln-1変異株のそれぞれについて2枚ずつ計4枚のマイクロアレイ未加工データを取得した。この手順はWatanabe, S. et. al., (2014) Plant Cell Environ. 37: 1022-1036に記載されている通りである。
2. Details of Procedure Total RNA was extracted from seedlings of 2 weeks old wild and aln-1 mutants of Arabidopsis thaliana. Two independent biological samples were used for each genotype. Reverse transcription and labeling of RNA to cDNA and hybridization to Affymetrics ATH1 Gene Chips were performed according to the manufacturer's instructions. After washing the hybridized microarray, signals derived from hybridization were collected using Affymetrics GeneChip Scanner 3000 7G. According to this procedure, a total of four microarray raw data were obtained for each of the wild strain and the aln-1 mutant. This procedure is as described in Watanabe, S. et. Al., (2014) Plant Cell Environ. 37: 1022-1036.
 これらのマイクロアレイ未加工データは、NCBI Gene Expression Omnibus(http://www.ncbi.nlm.nih.gov/geo/)のアクセッション番号で登録・公開されている。これらのマイクロアレイデータについて、スカイライト・バオテック(株)のSuperNORMサービスを利用して、3パラメータ対数正規分布モデルを使ったパラメトリック法により標準化し、各遺伝子の発現量をzスコアに変換した(前記Konishi, T. (2004))。この標準化作業により、異なるマイクロアレイ間での遺伝子発現量の比較が可能となる。標準化したデータはGSE73841のアクセッション番号で登録されている。 These microarray raw data are registered and published under the accession number of NCBI Gene Expression Omnibus (http://www.ncbi.nlm.nih.gov/geo/). These microarray data were standardized by a parametric method using a three-parameter lognormal distribution model using the SuperNORM service of Skylight Baotech Co., Ltd., and the expression level of each gene was converted into a z-score (see Konishi above) , T. (2004)). This standardization work enables comparison of gene expression levels between different microarrays. Standardized data is registered with the GSE73841 accession number.
 個々の遺伝子の発現量を野生株とaln-1変異株の間で比較した。aln-1変異株の発現量が3倍以上増大あるいは低下した遺伝子を、前記Konishi,2011の方法に従い厳格な検定条件(P<0.001)のもと二元配置分散分析(ANOVA)により選抜した。VirtualPlant (version 1.3; http://virtualplant.bio.nyu.edu/cgi-bin/vpweb/)のBioMapsツールをデフォルトの設定で使用し(偽発見率補正したFisherの正確確率検定, P<0.01)、Arabidopsisゲノムアノテーション (TAIR release 10; http://arabidopsis.org/) に従い、生物プロセスに関する遺伝子オントロジー(GO)解析を行った。 The expression level of each gene was compared between the wild strain and the aln-1 mutant. A gene whose expression level of the aln-1 mutant was increased or decreased by 3 times or more was selected by two-way analysis of variance (ANOVA) under the strict test conditions (P <0.001) according to the method of Konishi, 2011. did. Use the BioMaps tool of VirtualPlant (version 1.3; http://virtualplant.bio.nyu.edu/cgi-bin/vpweb/) with default settings (Fisher exact probability test corrected for false discovery rate, P <0.01) According to Arabidopsis Genome Annotation (TAIR release 10; http://arabidopsis.org/), gene ontology (GO) analysis on biological processes was performed.
3.結果
 上記の解析の結果、aln-1変異株において、DREB2A遺伝子(AGIコード=AT5G05410、配列番号1)の発現量は野生株の3.17倍であった。
3. Results As a result of the above analysis, the expression level of the DREB2A gene (AGI code = AT5G05410, SEQ ID NO: 1) in the aln-1 mutant was 3.17 times that in the wild strain.
 一方で、aln-1変異株において、熱ショック転写因子3遺伝子(HSF3)(AGIコード=AT5G16820、配列番号2)の発現量は野生株の0.577倍であった。 On the other hand, the expression level of heat shock transcription factor 3 gene (HSF3) (AGI code = AT5G16820, SEQ ID NO: 2) in the aln-1 mutant was 0.577 times that of the wild strain.
<実験5.アラントイン含有培地中での栽培によるDREB2A遺伝子の発現促進>
 シロイヌナズナ野生株種子(Columbia-0)を2.5%(v/v)次亜塩素酸ナトリウムで滅菌後、実験1、表1記載の1/2MS固形培地(1mMアラントインを含む、コントロール区はアラントインなし、直径90mm、高さは20mmの深型シャーレ)に播種し、長日条件(5000Lux、16時間明期、8時間暗期のインキュベータ、22℃)で14日間成長させた。市販キットを用いてシロイヌナズナ葉、茎からRNAの抽出(NucleoSpin RNAII、MACHEREY-NAGEL)、逆転写(ReverTra Ace qPCR RT Master Mix、TOYOBO)および定量PCR(KAPA SYBR FAST qPCR Master Mix、KAPABIOSYSTEMS)を行った。レファレンス遺伝子にはACT2(AGIコード=AT3G18780)を用いた。その結果、コントロール区と比較してDREB2A(AGIコード=AT5G05410、配列番号1)の相対発現量は2.2倍、HSF3(AGIコード=AT5G16820、配列番号2)の相対発現量は0.7倍であった。
<Experiment 5. Promotion of DREB2A gene expression by cultivation in an allantoin-containing medium>
After sterilizing Arabidopsis wild seeds (Columbia-0) with 2.5% (v / v) sodium hypochlorite, experiment 1, 1/2 MS solid medium described in Table 1 (including 1 mM allantoin, control group is allantoin) None, 90 mm in diameter and 20 mm in height type petri dish, and seeded for 14 days under long day conditions (5000 Lux, 16 hours light period, 8 hours dark period incubator, 22 ° C.). Extraction of RNA from Arabidopsis leaves and stems using commercially available kits (NucleoSpin RNAII, MACHEREY-NAGEL), reverse transcription (ReverseTra Ace qPCR RT Master Mix, TOYOBO) and quantitative PCR (KAPA SYBR FAST qAP Master X . ACT2 (AGI code = AT3G18780) was used as a reference gene. As a result, the relative expression level of DREB2A (AGI code = AT5G05410, SEQ ID NO: 1) was 2.2 times that of the control group, and the relative expression level of HSF3 (AGI code = AT5G16820, SEQ ID NO: 2) was 0.7 times. Met.
<実験6.アラントイン含有培地中での栽培したシロイヌナズナの高温ストレス耐性の評価>
1.植物材料
 シロイヌナズナ(Arabidopsis thaliana (L.) Heynh., accession Columbia-0)については、実験1.に記載の野生株(WT)を用いた。
<Experiment 6. Evaluation of high-temperature stress tolerance of Arabidopsis grown in an allantoin-containing medium>
1. Plant Material For Arabidopsis thaliana (L.) Heynh., Accession Columbia-0), Experiment 1. The wild strain (WT) described in 1. was used.
2.生育培地
 実験1、表1記載の1/2MS固形培地(アラントイン添加区は10μM、100μM、1000μMアラントインを更に添加し、アラントイン無添加区はアラントインの添加なし、深型シャーレNo. 903 VALMARK 滅菌シャーレ;イナ・オプティカ社)。
3.生育条件および高温ストレス処理
(1)上記植物の完熟種子を数百粒とり1.5mLチューブに入れた。以下の操作(2)~(6)はクリーンベンチ内で行った。
(2)2.5%(v/v)次亜塩素酸ナトリウム1mLを、種子の入ったチューブに入れ、小型旋回ミキサー(18回転/分)にセットして10分間滅菌した。
(3)スピンダウン後、次亜塩素酸ナトリウム溶液を捨てて滅菌水を1mL加え、(2)の操作を行った。
(4)滅菌水を用いて(3)の操作を3回繰り返し、種子を十分に洗浄した。
(5)前記シャーレでは、平面視で円形の収容部が、直径方向に延びる1つの隔壁によって半円形の2つの区画に区切られている。前記シャーレの一方の区画にアラントイン無添加1/2MS固形培地を収容し、他方の区画にアラントイン添加1/2MS固形培地を収容し、それぞれ1つの区画に15粒の種子(1シャーレ合計30粒)を播種した(図5A参照)。
(6)蓋をあけた状態でシャーレをクリーンベンチ内に置き、種子周りの水を蒸発させた後(約20~30分間)、サージカルテープでシャーレをシールした。
(7)シャーレを1枚ずつアルミホイルで包み、低温処理(4℃)を2日間行い休眠打破した。
(8)培養室に移し、22℃・長日条件(蛍光灯下で16時間光照射;0.07mmol photons m-1 s-1)で7日間培養した。
(9)上記(8)により無菌生育させた7日齢植物を、予め45℃に設定しておいたインキュベータの庫内に置き、暗黒下で熱ショックを105分間与えた。対照試験では、熱ショックを与えず23℃での生育を継続した。
(10)熱ショック処理後、シャーレを23℃インキュベータ内で10~15分間冷却し、上記(8)の条件で再び1週間生育させた。ダメージがシリアスな場合は3日目頃から葉のクロロシス(白化現象)が観察されるようになる。この現象を利用して生存率を評価した。
2. Growth medium Experiment 1, 1 / 2MS solid medium described in Table 1 (Allantin-added sections were further added with 10 μM, 100 μM, and 1000 μM allantoin, and allantoin-free sections were not added with allantoin, deep dish No. 903 VALMARK sterilized dish; Ina Optica).
3. Growth conditions and high-temperature stress treatment (1) Hundreds of mature seeds of the above plants were collected and placed in a 1.5 mL tube. The following operations (2) to (6) were performed in a clean bench.
(2) 1 mL of 2.5% (v / v) sodium hypochlorite was placed in a tube containing seeds, placed in a small swirling mixer (18 rotations / min) and sterilized for 10 minutes.
(3) After spin down, the sodium hypochlorite solution was discarded and 1 mL of sterilized water was added, and the operation of (2) was performed.
(4) Using the sterilized water, the operation of (3) was repeated 3 times to sufficiently wash the seeds.
(5) In the petri dish, the circular accommodating portion in plan view is divided into two semicircular sections by one partition wall extending in the diameter direction. One compartment of the petri dish contains an allantoin-free 1 / 2MS solid medium, the other compartment contains an allantoin-added 1 / 2MS solid medium, and each seed contains 15 seeds (30 dishes in total). (See FIG. 5A).
(6) The petri dish was placed in a clean bench with the lid open, the water around the seeds was evaporated (about 20-30 minutes), and the petri dish was sealed with surgical tape.
(7) Each petri dish was wrapped with aluminum foil one by one and subjected to low temperature treatment (4 ° C.) for 2 days to overcome sleep.
(8) The cells were transferred to a culture room and cultured for 7 days under conditions of 22 ° C. and long days (light irradiation for 16 hours under fluorescent lamps; 0.07 mmol photons m −1 s −1 ).
(9) The 7-day-old plant grown aseptically according to the above (8) was placed in an incubator set at 45 ° C. in advance, and heat shock was applied for 105 minutes in the dark. In the control test, the growth at 23 ° C. was continued without applying heat shock.
(10) After the heat shock treatment, the petri dish was cooled in a 23 ° C. incubator for 10 to 15 minutes, and grown again for 1 week under the condition (8) above. If the damage is serious, leaf chlorosis will be observed from the third day. The survival rate was evaluated using this phenomenon.
 上記試験を2回行った。 The above test was performed twice.
4.結果
 各熱ショック条件で処理し1週間生育させた後の各シャーレの写真を図5Bに示す。図5Bに示す個々のシャーレ内の植物のラインの配置は図5Aに示す通りである。シャーレ内の数値は各区画での(生存した実生の数)/(発芽した実生の数)を示す。
4). Results A photograph of each petri dish after treatment under each heat shock condition and growth for 1 week is shown in FIG. 5B. The arrangement of plant lines in each petri dish shown in FIG. 5B is as shown in FIG. 5A. The numerical value in the petri dish indicates (number of surviving seedlings) / (number of germinated seedlings) in each section.
 図6には、各熱ショック条件での生存率を示す。図6に示す生存率は、図5Bに数値を示した生存数の結果を元に各条件での生存率(%)を求め、写真を示していない別の1回の試験についても同様に生存率(%)を求め、2つの試験での平均値を算出した結果である。 Fig. 6 shows the survival rate under each heat shock condition. As for the survival rate shown in FIG. 6, the survival rate (%) in each condition was obtained based on the result of the survival number shown in FIG. 5B, and the survival rate was similarly obtained for another single test not shown in the photograph. It is the result of calculating the rate (%) and calculating the average value in the two tests.
 図5B及び図6に示す試験結果から、アラントイン含有培地中での栽培したシロイヌナズナは高温ストレスに耐性を有することが分かる。アラントイン含有培地中で栽培したシロイヌナズナでは植物体内でアラントインが蓄積されることから、本実験で観察された高温ストレス耐性はアラントインが植物体内で高濃度に存在することにより生じるものと結論づけた。 From the test results shown in FIG. 5B and FIG. 6, it can be seen that Arabidopsis cultivated in the allantoin-containing medium is resistant to high temperature stress. In Arabidopsis thaliana cultivated in an allantoin-containing medium, it was concluded that the high temperature stress tolerance observed in this experiment was caused by the high concentration of allantoin in the plant.
 高温ストレスによりダメージを受けた植物では、葉のクロロシス(白化現象)が観察された。 In the plants damaged by high temperature stress, leaf chlorosis (whitening phenomenon) was observed.
 本明細書で引用した全ての刊行物、特許及び特許出願はそのまま引用により本明細書に組み入れられるものとする。 All publications, patents and patent applications cited in this specification are incorporated herein by reference in their entirety.

Claims (7)

  1.  アラントインを有効成分として含有する、植物の高温ストレス耐性を向上させるための、高温ストレス耐性向上剤。 A high-temperature stress tolerance improver containing allantoin as an active ingredient for improving the high-temperature stress tolerance of plants.
  2.  高温ストレスにより植物が白化すること、高温ストレスにより植物が萎れること、及び、高温ストレスにより植物の葉が巻くことのうち1つ以上を抑制するための、請求項1に記載の高温ストレス耐性向上剤。 The high-temperature stress tolerance improver according to claim 1 for suppressing one or more of whitening of a plant by high-temperature stress, wiping of a plant by high-temperature stress, and winding of a plant leaf by high-temperature stress. .
  3.  植物においてDREB2A遺伝子の発現を促進する、請求項1又は2に記載の高温ストレス耐性向上剤。 The high temperature stress tolerance improver according to claim 1 or 2, which promotes the expression of the DREB2A gene in a plant.
  4.  請求項1~3のいずれかに記載の高温ストレス耐性向上剤を植物に施用する工程を含む、植物の高温ストレス耐性を向上させる方法。 A method for improving the high temperature stress resistance of a plant, comprising a step of applying the high temperature stress resistance improving agent according to any one of claims 1 to 3 to the plant.
  5.  前記工程において、前記高温ストレス耐性向上剤を、ストレスを受ける前の植物に施用する、請求項4に記載の方法。 The method according to claim 4, wherein in the step, the high-temperature stress tolerance improver is applied to a plant before being subjected to stress.
  6.  アラントインを有効成分として含有する、植物の白化を抑制するための、白化抑制剤。 A whitening inhibitor containing allantoin as an active ingredient to suppress plant whitening.
  7.  アラントインを有効成分として含有する、植物においてDREB2A遺伝子の発現を促進するための、DREB2A遺伝子発現促進剤。  A DREB2A gene expression promoter for promoting the expression of the DREB2A gene in plants, containing allantoin as an active ingredient.
PCT/JP2016/089061 2016-01-29 2016-12-28 Agent for enhancing high-temperature resistance in plant, method for enhancing high-temperature resistance, agent for suppressing whitening, and dreb2a gene expression promoter WO2017130630A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP16888214.0A EP3409116B1 (en) 2016-01-29 2016-12-28 Use of allantoin for enhancing high-temperature resistance in plant
ES16888214T ES2955007T3 (en) 2016-01-29 2016-12-28 Use of allantoin to enhance resistance to high temperatures in plants
CN201680080335.6A CN108882712B (en) 2016-01-29 2016-12-28 Agent for improving high-temperature stress resistance of plant, method for improving high-temperature stress resistance, albinism inhibitor, and DREB2A gene expression promoter
US15/977,890 US10182569B2 (en) 2016-01-29 2018-05-11 Composition comprising allantoin and method of applying allantoin to a plant
US16/034,010 US20180310565A1 (en) 2016-01-29 2018-07-12 Composition comprising allantoin and method of applying allantoin to a plant

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2016-016383 2016-01-29
JP2016016383 2016-01-29
JP2016-043503 2016-03-07
JP2016043503A JP6532026B2 (en) 2016-01-29 2016-03-07 High-temperature stress tolerance improver in plants, method for improving high-temperature stress tolerance, whitening inhibitor, and DREB2A gene expression promoter

Related Child Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/032452 Continuation-In-Part WO2018047940A1 (en) 2016-01-29 2017-09-08 Growth inhibitor for gramineous plant

Publications (1)

Publication Number Publication Date
WO2017130630A1 true WO2017130630A1 (en) 2017-08-03

Family

ID=59398045

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/089061 WO2017130630A1 (en) 2016-01-29 2016-12-28 Agent for enhancing high-temperature resistance in plant, method for enhancing high-temperature resistance, agent for suppressing whitening, and dreb2a gene expression promoter

Country Status (3)

Country Link
CN (1) CN108882712B (en)
ES (1) ES2955007T3 (en)
WO (1) WO2017130630A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180310565A1 (en) * 2016-01-29 2018-11-01 Kaneka Corporation Composition comprising allantoin and method of applying allantoin to a plant
CN109206496A (en) * 2018-11-19 2019-01-15 中国科学院植物研究所 Application of the protein G hFLS1 in regulation plant heat resistance property
WO2019216302A1 (en) * 2018-05-11 2019-11-14 株式会社カネカ Method for cultivating plants and coloring accelerator for grape berries
WO2023171639A1 (en) * 2022-03-07 2023-09-14 株式会社カネカ Agricultural composition and method for cultivating plants using same
WO2024071065A1 (en) * 2022-09-26 2024-04-04 株式会社カネカ Composition for coating plant seed

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113061613A (en) * 2019-12-30 2021-07-02 兰州大学 Application of CbDREB2AL gene in preparation of salt-tolerant transgenic plants
CN111154800A (en) * 2020-03-11 2020-05-15 中国农业科学院作物科学研究所 Application of rice OsRNCR gene and encoding protein thereof in enhancing salt tolerance of plants

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005094580A1 (en) * 2004-03-03 2005-10-13 Isagro S.P.A. Mixtures and methods for the induction of resistance in plants
JP4219711B2 (en) 2003-03-14 2009-02-04 独立行政法人国際農林水産業研究センター Manufacture of plants with improved rooting rate and cut flowers with stress tolerance genes
WO2009095922A1 (en) * 2008-01-31 2009-08-06 Yeda Research And Development Co. Ltd. Method for protecting plants from stress and senescence
WO2013111755A1 (en) 2012-01-25 2013-08-01 国立大学法人 東京大学 Plant body showing improved resistance against environmental stress and method for producing same
JP2016016383A (en) 2014-07-10 2016-02-01 伸幸 真鍋 Cleaning mode switching mechanism of injection nozzle
JP2016043503A (en) 2014-08-20 2016-04-04 三星ダイヤモンド工業株式会社 Dividing method of brittle material substrate, substrate holding member for dividing brittle material substrate and frame body for stretching adhesive film used upon division of brittle material substrate

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1161142A (en) * 1996-01-29 1997-10-08 李启荣 Plant growth regulator
CN1149571A (en) * 1996-09-06 1997-05-14 李舒养 Mixed production increasing agent using allantoin niacinamide as main component

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4219711B2 (en) 2003-03-14 2009-02-04 独立行政法人国際農林水産業研究センター Manufacture of plants with improved rooting rate and cut flowers with stress tolerance genes
WO2005094580A1 (en) * 2004-03-03 2005-10-13 Isagro S.P.A. Mixtures and methods for the induction of resistance in plants
WO2009095922A1 (en) * 2008-01-31 2009-08-06 Yeda Research And Development Co. Ltd. Method for protecting plants from stress and senescence
US20100333237A1 (en) 2008-01-31 2010-12-30 Robert Fluhr Method for protecting plants from stress and senescence
WO2013111755A1 (en) 2012-01-25 2013-08-01 国立大学法人 東京大学 Plant body showing improved resistance against environmental stress and method for producing same
JP2016016383A (en) 2014-07-10 2016-02-01 伸幸 真鍋 Cleaning mode switching mechanism of injection nozzle
JP2016043503A (en) 2014-08-20 2016-04-04 三星ダイヤモンド工業株式会社 Dividing method of brittle material substrate, substrate holding member for dividing brittle material substrate and frame body for stretching adhesive film used upon division of brittle material substrate

Non-Patent Citations (16)

* Cited by examiner, † Cited by third party
Title
"NCBI", Database accession no. GSE44922
ALTSCHUL, S. F. ET AL., JOURNAL OF MOLECULAR BIOLOGY, vol. 215, 1990, pages 403 - 410
DIRK V. CHARLSON ET AL.: "Allantoate amidohydrolase transcript expression is independent of drought tolerance in soybean", JOURNAL OF EXPERIMENTAL BOTANY, vol. 60, no. 3, 2009, pages 847 - 851, XP055531806 *
HIROSHI TAKAGI ET AL.: "Allantoin, a stress- related purine metabolite, can activate jasmonate signaling in a MYC2-regulated and abscisic acid-dependent manner", JOURNAL OF EXPERIMENTAL BOTANY, vol. 67, no. 8, 1 March 2016 (2016-03-01), pages 2519 - 2532, XP055531811 *
KARLIN, S. ET AL., PROCEEDINGS OF THE NATIONAL ACADEMIC SCIENCES, U.S.A., vol. 90, 1993, pages 5873 - 5877
KONISHI, T.: "Microarray test results should not be compensated for multiplicity of gene contents", BMC SYST. BIOL., vol. 5, no. 2, 2011, pages 6
MURASHIGE T.; F. SKOOG F.: "A revised medium for rapid growth and bioassays with tobacco tissue cultures", PHYSIOLOGIA PLANTARUM, vol. 15, 1962, pages 473 - 497
PEARSON, W. R. ET AL., PROCEEDINGS OF THE NATIONAL ACADEMIC SCIENCES, vol. 85, 1988, pages 2444 - 2448
SAKUMA, Y. ET AL., PLANT CELL, vol. 18, 2006, pages 1292 - 1309
SAKUMA, Y. ET AL., PROC. NATL. ACAD. SCI., vol. 103, 2006, pages 18822 - 18827
SATO, H., PLANT CELL, vol. 26, 2014, pages 4954 - 4973
SHOMA TANAKA ET AL.: "Impact of allantoin accumulation on heat shock tolerance in Arabidopsis", ABSTRACT BOOK ANNUAL MEETING OF JSPP 2016, vol. 57th, 11 March 2016 (2016-03-11), pages 317, XP009512795 *
SHUNSUKE WATANABE ET AL.: "The purine metabolite allantoin enhances abiotic stress tolerance through synergistic activation of abscisic acid metabolism.", PLANT, CELL AND ENVIRONMENT, vol. 37, 2014, pages 1022 - 1036, XP055531804 *
WATANABE ET AL., ABSTRACTS OF THE 55TH ANNUAL MEETING OF THE JAPANESE SOCIETY OF PLANT PHYSIOLOGISTS, 2014
WATANABE, S. ET AL., PLANT CELL ENVIRON., vol. 37, 2014, pages 1022 - 1036
YANG, J.; HAN K.-H, PLANT PHYSIOLOGY, vol. 134, pages 1039 - 1049

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180310565A1 (en) * 2016-01-29 2018-11-01 Kaneka Corporation Composition comprising allantoin and method of applying allantoin to a plant
WO2019216302A1 (en) * 2018-05-11 2019-11-14 株式会社カネカ Method for cultivating plants and coloring accelerator for grape berries
JP7329506B2 (en) 2018-05-11 2023-08-18 株式会社カネカ Method for cultivating plants and coloring promoter for grape berries
CN109206496A (en) * 2018-11-19 2019-01-15 中国科学院植物研究所 Application of the protein G hFLS1 in regulation plant heat resistance property
CN109206496B (en) * 2018-11-19 2020-11-17 中国科学院植物研究所 Application of protein GhFLS1 in regulation and control of plant heat resistance
WO2023171639A1 (en) * 2022-03-07 2023-09-14 株式会社カネカ Agricultural composition and method for cultivating plants using same
WO2024071065A1 (en) * 2022-09-26 2024-04-04 株式会社カネカ Composition for coating plant seed

Also Published As

Publication number Publication date
CN108882712A (en) 2018-11-23
ES2955007T3 (en) 2023-11-28
CN108882712B (en) 2022-01-11

Similar Documents

Publication Publication Date Title
WO2017130630A1 (en) Agent for enhancing high-temperature resistance in plant, method for enhancing high-temperature resistance, agent for suppressing whitening, and dreb2a gene expression promoter
Raney Transcriptome analysis of drought induced stress in Chenopodium quinoa
Graham et al. Towards an understanding of the nature of resistance to Phytophthora root rot in red raspberry
Chen et al. Fine mapping identifies CsGCN5 encoding a histone acetyltransferase as putative candidate gene for tendril-less1 mutation (td-1) in cucumber
Ge et al. Genetic mapping and localization of quantitative trait loci for chlorophyll content in Chinese cabbage (Brassica rapa ssp. pekinensis)
Wang et al. Functions of two Malus hupehensis (Pamp.) Rehd. YTPs (MhYTP1 and MhYTP2) in biotic-and abiotic-stress responses
JP2016527884A (en) Genes that confer resistance to downy mildew in sunflower
CN107058339A (en) Soybean GmCIB1 genes and GmCRY2 genes and its regulation and control bloom and aging effect
Chowrasia et al. Oryza coarctata roxb
CN110004154B (en) Application of tea tree CsJAZ1 gene
CN104357465A (en) Application of plant low temperature resistant gene AtLCBK1
CN104328127B (en) Tumorous stem mustard stress resistance gene BjEFh1 as well as plant expression vector and application thereof
CN107304422A (en) Control the application of the OsSBR1 genes and its RNA interference fragments of resisting rice sheath blight
JP6758624B2 (en) Tomato heat-resistant mutant and its production method
JP6532026B2 (en) High-temperature stress tolerance improver in plants, method for improving high-temperature stress tolerance, whitening inhibitor, and DREB2A gene expression promoter
CN108034662B (en) Application of wheat stripe rust PSTG _06025 gene in stripe rust prevention and treatment and cultivation method of stripe rust resistant wheat
Ngo et al. The differentially regulated genes TvQR1 and TvPirin of the parasitic plant Triphysaria exhibit distinctive natural allelic diversity
CN105132428B (en) A kind of and the relevant ZmLRT genes of root system of plant character and its relevant biological material and application
CN108220304A (en) The breeding method of application and Rust resistance bacterium wheat of the wheat stripe rust PSTG_06371 genes in stripe rust prevention
CN108559753A (en) The breeding method of application and Rust resistance bacterium wheat of the wheat stripe rust PSTG_17694 genes in stripe rust prevention
CN109535236B (en) Heme binding protein gene TaHBP1, recombinant interference vector and application thereof
CN107653252B (en) Application of cotton GbSLR1 gene in plant root and branch development
JP7458062B2 (en) How to improve seed productivity in plants
Ezin et al. Gene expression and phenotypic characterization of flooding tolerance in tomato
CN116622725B (en) Hybrid tulip tree LhMFT2 gene and application

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16888214

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2016888214

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2016888214

Country of ref document: EP

Effective date: 20180829