WO2017130510A1 - Positioning device, positioning method, and positioning system - Google Patents

Positioning device, positioning method, and positioning system Download PDF

Info

Publication number
WO2017130510A1
WO2017130510A1 PCT/JP2016/082681 JP2016082681W WO2017130510A1 WO 2017130510 A1 WO2017130510 A1 WO 2017130510A1 JP 2016082681 W JP2016082681 W JP 2016082681W WO 2017130510 A1 WO2017130510 A1 WO 2017130510A1
Authority
WO
WIPO (PCT)
Prior art keywords
positioning
positioning method
mobile station
setting unit
static
Prior art date
Application number
PCT/JP2016/082681
Other languages
French (fr)
Japanese (ja)
Inventor
晴登 武田
呂尚 高岡
Original Assignee
ソニー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニー株式会社 filed Critical ソニー株式会社
Publication of WO2017130510A1 publication Critical patent/WO2017130510A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/38Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system
    • G01S19/39Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system the satellite radio beacon positioning system transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/42Determining position
    • G01S19/43Determining position using carrier phase measurements, e.g. kinematic positioning; using long or short baseline interferometry
    • G01S19/44Carrier phase ambiguity resolution; Floating ambiguity; LAMBDA [Least-squares AMBiguity Decorrelation Adjustment] method

Definitions

  • This disclosure relates to a positioning device, a positioning method, and a positioning system.
  • interferometric positioning in which positioning is performed by measuring the phase of a radio wave (carrier wave) from a GPS satellite at two points: a reference station whose position is known and an unknown point whose position is unknown.
  • the interference positioning the path difference of the carrier between two points is obtained, and the relative position of the unknown point from the reference station is calculated, thereby positioning the unknown point.
  • the accuracy of distance measurement of the carrier phase is high, and in the interference positioning, positioning can be performed with an accuracy of about several mm to several cm.
  • positioning methods for interference positioning for example, a positioning method corresponding to a static state or a positioning method corresponding to a moving state.
  • the positioning method corresponding to the static state is a positioning method suitable when the unknown point is in the static state
  • the positioning method corresponding to the dynamic state is a positioning method suitable when the unknown point is in the dynamic state.
  • Patent Document 1 discloses a positioning device that performs the above-described interference positioning.
  • Patent Document 1 discloses a vehicle including a GPS receiver and an inertial unit (IMU) as a positioning device. The vehicle disclosed in Patent Document 1 performs interference positioning using a GPS receiver and an inertial device provided in consideration of a side slip of the vehicle.
  • IMU inertial unit
  • the positioning method performed by the device as described in the above-mentioned prior art is the positioning method in the static state or the moving state. It was fixed to one of the positioning methods.
  • the present disclosure proposes a positioning device, a positioning method, and a positioning system that perform positioning by selecting a positioning method from a plurality of positioning methods including a positioning method corresponding to a static state or a positioning method corresponding to a moving state.
  • a positioning method is selected from a plurality of positioning methods including a receiving unit that receives radio waves from a satellite, a first positioning method corresponding to a static state, and a second positioning method corresponding to a moving state.
  • a positioning device is provided that includes a setting unit and a positioning unit that performs positioning based on radio waves from the satellite by the positioning method selected by the setting unit.
  • the positioning device can perform positioning by selecting a positioning method from a plurality of positioning methods including a positioning method corresponding to a static state or a positioning method corresponding to a moving state.
  • FIG. 1 is a schematic diagram illustrating the principle of interference positioning.
  • FIG. 2 is a schematic diagram illustrating the principle of obtaining an integer value bias in interference positioning.
  • FIG. 3 is a diagram illustrating a path difference of radio waves with respect to an elevation angle of a GPS satellite viewed from a mobile station.
  • FIG. 4 is a schematic diagram illustrating a configuration of a system according to an embodiment of the present disclosure.
  • FIG. 5 is a block diagram illustrating a configuration of the mobile station according to the embodiment of the present disclosure.
  • FIG. 6 is a flowchart showing a first operation example of the mobile station of this embodiment.
  • FIG. 7 is a flowchart showing a second operation example of the mobile station according to the present embodiment.
  • FIG. 1 is a diagram illustrating the principle of interference positioning.
  • FIG. 1 shows a GPS satellite 100, a reference station 200 whose position is known, and a mobile station 300 whose position is unknown.
  • the mobile station 300 is an example of a positioning device that performs positioning by receiving radio waves from the GPS satellite 100, and performs interference positioning while moving.
  • the reference station 200 and the mobile station 300 include GPS receivers 202 and 302, respectively, as an example of a receiving unit that receives radio waves from the GPS satellite 100.
  • the GPS satellite 100 orbits in a predetermined orbit and the position of the GPS satellite 100 is known.
  • the GPS satellite 100 transmits radio waves in the L1 band (1575.42 MHz) and the L2 band (1227.6 MHz).
  • the reference station 200 and the mobile station 300 observe the radio wave transmitted by the GPS satellite 100 with the GPS receivers 202 and 302, and introduce an error in the carrier phase and pseudorange (the true distance from the GPS satellite 100 to the GPS receivers 202 and 302). Observed distance).
  • the reference station 200 transmits the observed observation values (carrier phase and pseudorange) and the position information of the reference station 200 to the mobile station 300, and the mobile station 300 and the observation values of the reference station 200 are transmitted by itself.
  • the relative position of the mobile station 300 with respect to the reference station 200 using the observed values the positioning of the mobile station 300 is performed.
  • the principle of interference positioning will be described in more detail with reference to FIG.
  • a dotted line shown in FIG. 1 is an equidistant surface from the GPS satellite 100, and L in FIG. 1 indicates a path between the GPS satellite 100 and the GPS receiver 202 of the reference station 200, and the GPS satellite 100 and the mobile station 300. This means a path difference between the GPS receiver 302 and the path.
  • the path difference L shown in FIG. 1 is the sum of the length of an integral number of waves of the carrier wave of the GPS satellite 100 and the length of a fraction corresponding to the phase angle ⁇ .
  • the wave number of the carrier wave included between the GPS satellite 100 and the GPS receivers 202 and 302 is generally called an integer value bias.
  • obtaining the integer value bias is synonymous with obtaining the path difference.
  • radio waves from the same GPS satellite 100 are observed at the GPS receivers 202 and 302 of the reference station 200 and the mobile station 300 as described above. Then, using the observation values from the GPS satellites 100 respectively observed by the reference station 200 and the mobile station 300, the mobile station 300 calculates an integer value bias.
  • the mobile station 300 obtains a baseline vector indicated by an arrow in FIG. 1 using the calculated integer value bias, and the relative position of the mobile station 300 with respect to the reference station 200 is obtained based on the baseline vector.
  • the wavelength of the carrier wave of the GPS satellite 100 is 19 cm for the above-described L1 band and 24 cm for the L2 band.
  • the GPS receivers 202 and 302 have a high accuracy of observation of the carrier wave phase, and a carrier wave having such a wavelength can be measured by interference positioning with an accuracy of several millimeters to several centimeters.
  • the interference positioning includes a plurality of positioning methods, and static positioning is included as an example of the first positioning method corresponding to the static state. Further, the interference positioning includes kinematic positioning as an example of the second positioning method corresponding to the moving state as the state of the mobile station 300.
  • the mobile station 300 can perform the positioning by observing the radio wave from the satellite for a long time.
  • the mobile station 300 determines an integer value bias (also referred to as initialization) at the start of observation, and performs positioning in a short time while receiving observation data from another device.
  • integer bias is calculated with high probability in static positioning.
  • the integer value bias since observation is performed while the mobile station 300 is moving in kinematic positioning, the integer value bias must be obtained in a short time, and the integer value bias may not be calculated depending on the situation.
  • the GPS satellite i102 In order to cancel the ionospheric delay I, the tropospheric delay T, and the clock error ⁇ i of the GPS satellite i102 from the equation (1), it is the difference in the carrier phase measured simultaneously from the GPS satellite i102 by the mobile station 300 and the reference station 200. A single phase difference is calculated. At this time, it is preferable that a GPS satellite having a large elevation angle when viewed from the mobile station 300 is selected as the GPS satellite i102.
  • FIG. 3 is a diagram showing an example of the relationship between the positions of the two GPS satellites 106 and 108 and the position of the mobile station 300.
  • the GPS satellite 106 is a satellite whose elevation angle viewed from the mobile station 300 is relatively larger than that of the GPS satellite 108.
  • the distance between the mobile station 300 and the GPS satellite 106 is compared with the distance between the mobile station 300 and the GPS satellite 108, the distance between the mobile station 300 and the GPS satellite 106 is smaller.
  • the ionosphere and the troposphere that passes through decreases as the elevation angle of the satellite viewed from the mobile station 300 increases, the ionosphere delay I and troposphere delay T decrease. Therefore, when observation is performed using a GPS satellite common to the reference station 200 and the mobile station 300, it is preferable to select a GPS satellite having a large elevation angle.
  • subscript B means the reference station 200.
  • the clock error on the GPS satellite i102 side is eliminated by the single phase difference between the mobile station and the reference station.
  • the single phase difference between the mobile station and the reference station does not eliminate the clock error on the GPS receivers 202 and 302 side. Therefore, in order to eliminate the clock error on the GPS receivers 202 and 302 side, a double phase difference between the GPS satellite j104 and the GPS satellite j104 different from the GPS satellite i102 is calculated.
  • a number M of double phase differences which is one less than the number K of GPS satellites used for positioning, is defined.
  • x (t n + 1), y (t n + 1) and z (t n + 1) denotes the coordinates of the mobile station 300 at time t n + 1
  • x (t n), y (t n) and z (t n ) means the coordinate of the mobile station 300 at time t n.
  • the value of the integer ambiguity at time t n is represented as follows using the correction amount ⁇ B of the integer ambiguity.
  • I is a unit matrix.
  • W is a weight matrix.
  • the correction amounts ⁇ x and ⁇ B are calculated by performing calculation until the correction amounts ⁇ x and ⁇ B converge using the least square method. Note that the value calculated here is a real number, and this real number is called a float solution.
  • LAMBDA Least-square Ambiguity Adjustment Adjustment Method
  • the double phase difference expressed by the equation (3) is calculated as in the static positioning.
  • kinematic positioning is performed using an algorithm of the Kalman filter, positioning is performed using observation values at only one time point instead of using observation values at a plurality of time points as described above. That is, the above equation (10) is defined as follows in kinematic positioning.
  • P is a covariance matrix of state variables
  • R is a covariance matrix of observation errors.
  • the correction amounts ⁇ x and ⁇ B calculated by applying the Kalman filter algorithm are Float solutions as described above. Therefore, the LAMBDA method is similarly used to change the float solution to the int solution.
  • the mobile station 300 which is an unknown point calculates an integer value bias using the single phase difference and double phase difference of the carrier wave. Then, the mobile station 300 can perform static positioning or kinematic positioning using the calculated integer value bias.
  • Example of system configuration> The interference measurement positioning principle and the integer value bias calculation method have been described above in detail.
  • a positioning device that performs interference positioning will be described.
  • the positioning device includes, for example, a mobile station 300 as shown in FIG. 4 that performs positioning while moving.
  • the mobile station 300 of this embodiment selects one positioning method from the static positioning method or the kinematic positioning method according to the situation of the mobile station 300 as described later.
  • the system according to the present embodiment includes a GPS satellite 100, a reference station 200 whose position is known, a mobile station 300 whose position is unknown, and a network 400.
  • the GPS satellite 100 transmits radio waves in the same manner as described above, and the reference station 200 and the mobile station 300 receive the radio waves transmitted from the GPS satellite 100.
  • the network 400 carries information from the reference station 200 or the mobile station 300.
  • the network 400 may be a public network such as the Internet or a network having a wireless interface such as a mobile phone network.
  • the mobile station 300 receives the observation value (carrier phase and pseudorange) of the reference station 200 and information on the position of the reference station 200 via the network 400, and receives information from the reference station 200 and radio waves from the GPS satellite 100 by itself. Interferometric positioning is performed using observation values obtained by observing.
  • the position of the reference station 200 is known, and the reference station 200 includes a device that can measure the carrier phase from the GPS satellite 100.
  • the reference station 200 may be a structure installed in a city area, such as a building or a traffic light or a base station of a mobile phone network, equipped with a device capable of measuring the carrier phase from the GPS satellite 100.
  • the reference station 200 may be an electronic reference point installed by the Geographical Survey Institute.
  • the mobile station 300 is shown as a vehicle in FIG. However, in this embodiment, the mobile station 300 is not limited to a vehicle, and may be a device that can be carried by a person such as a mobile phone or a game machine.
  • the mobile station 300 may be a ship, and includes a device that can measure a carrier wave phase from the GPS satellite 100.
  • the mobile station 300 may be any device as long as it moves.
  • the mobile station 300 includes a GPS receiver 302, a wireless communicator 304, a storage unit 306, a processing unit 308, an acceleration sensor 314, a gyro sensor 316, a geomagnetic sensor 318, an atmospheric pressure sensor 320, and a camera 322. .
  • the GPS receiver 302 is an example of a receiving unit that receives radio waves from the GPS satellite 100, and sends information about the received radio waves from the GPS satellite 100 to the processing unit 308.
  • the wireless communication device 304 is a device for performing wireless communication with other devices. The wireless communication device 304 receives the observation value observed by the reference station 200 and the information regarding the position of the reference station 200 from the reference station 200 via the network 400, and sends the information received from the reference station 200 to the processing unit 308.
  • the wireless communication device 304 may be a transceiver used for a wireless LAN such as Bluetooth (registered trademark), Wi-Fi, or a mobile phone network such as LTE (Long Term Evolution).
  • the storage unit 306 stores a program and data used for the operation of the mobile station 300. Examples of data stored in the storage unit 306 include observation values of the reference station 200 received by the wireless communication receiver 304 and position information of the reference station 200. The storage unit 306 also stores observation values observed by the GPS receiver 302 of the mobile station 300.
  • the storage unit 306 may be a storage medium such as a nonvolatile memory, a magnetic disk, or an optical disk. Examples of the non-volatile memory include a flash memory and a USB memory. Examples of the magnetic disk include a hard disk and a disk-type magnetic disk. Examples of the optical disc include a CD (Compact Disc), a DVD (Digital Versatile Disc), and a BD (Blue-Ray Disc (registered trademark)).
  • the processing unit 308 includes a setting unit 310 and a positioning unit 312.
  • the setting unit 310 selects a suitable positioning method from a plurality of positioning methods including the first positioning method corresponding to the static state and the second positioning method corresponding to the moving state.
  • the setting unit may be configured to select a positioning method from a static positioning method or a kinematic positioning method based on measurement information from various sensors or cameras 322.
  • the positioning unit 312 performs positioning based on radio waves from the GPS satellite 100 received by the GPS receiver 302 by the positioning method selected by the setting unit 310.
  • Various sensors such as an acceleration sensor 314, a gyro sensor 316, a geomagnetic sensor 318, and an atmospheric pressure sensor 320 are used to detect the state of the mobile station 300, and measurement information measured by the various sensors is sent to the processing unit 308.
  • the acceleration sensor 314 detects acceleration applied to the mobile station 300.
  • acceleration sensors 314 such as an optical method and a semiconductor method, and the mobile station 300 of this embodiment may include any type of acceleration sensor 314.
  • the processing unit 308 may calculate the speed of the mobile station 300 by integrating the output of the acceleration sensor 314.
  • the gyro sensor 316 detects the angular velocity and angular acceleration of the mobile station 300. Similarly to the acceleration sensor 314, the gyro sensor 316 includes various types such as a fluid type and an optical type, and the mobile station 300 according to the present embodiment may include any type of gyro sensor 316.
  • the setting unit 310 may determine the state according to the following method.
  • the probability that the mobile station 300 is in a static state is modeled, and this probability is used for the state determination of the mobile station 300.
  • This state determination includes threshold determination. It is easy to use a normal distribution for the probability distribution. Further, a Laplace distribution or a mixed distribution may be used as the probability distribution.
  • the setting unit 310 performs preprocessing on the measurement value omega Gyro measurements s accl and the gyro sensor 316 of the acceleration sensor 314.
  • the preprocessing is filter processing for noise removal such as bias removal or smoothing.
  • the setting unit 310 calculates a static state probability based on the following equation.
  • the setting unit 310 determines that the mobile station 300 is in a static state. On the other hand, if the value of the equation (15) is smaller than a certain value ⁇ , the setting unit 310 determines that the mobile station 300 is in a moving state.
  • the geomagnetic sensor 318 detects the magnitude and direction of the geomagnetism.
  • the geomagnetic sensor 318 detects the direction in which the mobile station 300 is facing.
  • the atmospheric pressure sensor 320 detects atmospheric pressure.
  • the altitude of the mobile station 300 is detected by the atmospheric pressure sensor 320.
  • the setting unit 310 determines whether the mobile station 300 is in a static state or a moving state based on measurement information from the various sensors described above.
  • the sensors used for the acceleration sensor 314, the gyro sensor 316, the geomagnetic sensor 318, and the atmospheric pressure sensor 320 may be changed depending on the characteristics of the mobile station 300, or may be used in combination.
  • the setting unit 310 can determine the state of the mobile station 300 more reliably and in detail.
  • the camera 322 is used to determine the state of the mobile station 300 as with the various sensors described above.
  • An image captured by the camera 322 is sent to the processing unit 308, and the processing unit 308 performs image processing such as feature point detection.
  • the feature point detection may be performed using a general algorithm such as SURF (Speed-Up Robust Features) or SIFT (Scale Invariant Feature Transform).
  • the setting unit 310 is configured to determine whether or not the detected feature point has moved for a predetermined time in the captured image in which the feature point detection has been performed. May be.
  • the setting unit 310 may be configured to determine the state of the mobile station 300 by setting coordinates in the captured image and determining whether or not the detected feature point has changed for a predetermined time. .
  • FIG. 6 illustrates an operation example when the mobile station 300 first performs static positioning and performs kinematic positioning using an integer value bias calculated by static positioning.
  • the initial value of the integer value bias may not be calculated.
  • the number of unknowns increases, so the mobile station 300 may not be able to calculate an integer value bias.
  • the mobile station 300 performing the first operation detects whether or not the mobile station 300 is in a static state using a sensor or the like. If the mobile station 300 is in a static state, the positioning unit 312 performs static positioning.
  • the positioning unit 312 performs static positioning, first, an integer value bias that is an initial value is calculated.
  • the positioning unit 312 can reliably perform kinematic positioning. Further, when the integer value bias becomes indefinite due to cycle slip or the like, the kinematic positioning can be surely performed by taking over the integer value bias calculated by the static positioning to the kinematic positioning.
  • FIG. 6 is a flowchart showing an operation example when the integer value bias calculated by the above-described static positioning is taken over by the kinematic positioning.
  • the various sensors and / or the camera 322 perform various measurements in S102.
  • the sensor at least one of the above-described acceleration sensor 314, gyro sensor 316, geomagnetic sensor 318, and atmospheric pressure sensor 320 is used, and measurement is performed using the camera 322 in addition to or instead of the sensor. It may be configured.
  • the target to be measured varies depending on the sensor.
  • the acceleration sensor 314 measures acceleration with respect to the mobile station 300
  • the gyro sensor 316 measures angular velocity and each acceleration with respect to the mobile station 300.
  • the geomagnetic sensor 318 measures the direction in which the mobile station 300 is facing by measuring the geomagnetism.
  • the atmospheric pressure sensor 320 measures the altitude of the mobile station 300.
  • the camera 322 performs imaging.
  • the processing unit 308 receives measurement information from the sensor and / or camera 322.
  • the setting unit 310 determines whether or not the mobile station 300 is in a static state based on measurement information received from various sensors and / or the camera 322.
  • the setting unit 310 determines in S104 that the mobile station 300 is in a static state according to the above-described method, the setting unit 310 selects to perform positioning by static positioning. Accordingly, the process proceeds to S106.
  • the positioning unit 312 performs static positioning based on the radio wave received from the GPS receiver 302 and the observation value of the reference station 200 received from the wireless communication device 304.
  • positioning unit 312 calculates a single phase difference and a double phase difference as described above, and in S108, positioning unit 312 calculates an integer value bias based on equation (11).
  • the setting unit 310 mobile station 300 If it is determined that the static state, the storage unit 306 starts to store the residuals z n observations (observation error of the time t n).
  • the positioning unit 312 calculates an integer value bias using the residual z 0 of past observation values stored in the storage unit 306.
  • the sensor and / or the camera 322 performs measurement.
  • the setting unit 310 determines whether or not the mobile station 300 is in a moving state based on the measurement of the sensor and / or the camera 322. If the setting unit 310 determines in S112 that the mobile station 300 is in a static state, the process returns to S106, and the positioning unit 312 continues static positioning.
  • the process proceeds to S114.
  • the setting unit 310 selects to perform kinematic positioning.
  • the positioning unit 312 takes over the integer value bias calculated by the static positioning as an initial value and performs kinematic positioning.
  • the setting unit 310 determines whether the mobile station 300 is in a static state or a moving state based on the measurement of the sensor and / or the camera 322.
  • the positioning unit 312 performs static positioning.
  • the positioning unit 312 can reliably calculate the integer value bias by performing static positioning.
  • the positioning unit 312 can perform takeover kinematic positioning using the calculated integer value bias as an initial value.
  • the positioning unit 312 can perform static positioning to reliably obtain the integer value bias.
  • the positioning unit 312 can reliably perform kinematic positioning by using the integer value bias calculated as the initial value when performing kinematic positioning.
  • Second example of operation> The operation example in which the setting unit 310 first selects the static positioning and the positioning unit 312 performs the kinematic positioning by taking over the integer value bias calculated by the static positioning has been described above.
  • the positioning unit 312 performs positioning by taking over the integer value bias calculated by one positioning method selected by the setting unit 310 to another positioning method will be described.
  • FIG. 7 is a diagram illustrating a second operation example in such a case.
  • each sensor and / or camera 322 starts measurement as in the first operation example.
  • the setting unit 310 determines the state of the mobile station 300 based on the measurement of the sensor and / or camera 322.
  • the process proceeds to S206.
  • the setting unit 310 determines whether there is an integer value bias that has already been calculated.
  • the process proceeds to S208, and the positioning unit 312 newly calculates the integer value bias. Then, the positioning unit 312 performs static positioning using the integer value bias calculated in S208 (S212).
  • the process proceeds to S210.
  • the already calculated integer value bias includes both an integer value bias calculated by static positioning and an integer value bias calculated by kinematic positioning.
  • the positioning unit 312 uses the already calculated integer value bias for the static positioning.
  • the positioning unit 312 performs static positioning. The post-process of S212 returns to S202, and the processes from S202 to S212 are repeated.
  • step S204 when the setting unit 310 determines that the mobile station 300 is in a moving state, the process proceeds to S214.
  • step S214 the setting unit 310 determines whether there is an integer value bias that has already been calculated.
  • the process proceeds to S216, and the positioning unit 312 newly calculates the integer value bias.
  • the positioning unit 312 performs kinematic positioning using the integer value bias calculated in S216 (S220).
  • the process proceeds to S218.
  • the already calculated integer value bias includes both an integer value bias calculated by static positioning and an integer value bias calculated by kinematic positioning.
  • the positioning unit 312 uses the already calculated integer value bias for kinematic positioning. Then, the positioning unit 312 performs kinematic positioning in S220. The post-processing of S220 returns to S202, and the processing from S202 to S220 is repeated.
  • the integer value bias calculated by static positioning is inherited by kinematic positioning
  • the integer value bias calculated by kinematic positioning is inherited by static positioning. That is, the calculated integer value bias is taken over in both directions.
  • the integer value bias calculated by a certain positioning method is taken over by another positioning method, so that the convergence of the integer value bias is accelerated in the process of calculating the integer value bias, and the positioning unit 312 performs positioning. Can be done quickly.
  • the state determination of the mobile station 300 may be determined based on measurement of a vehicle speed sensor that detects the vehicle speed of the vehicle.
  • a vehicle speed sensor measures the rotation of an engine crankshaft or axle, and the vehicle speed sensor measures a vehicle speed by sending a pulse signal to a control circuit. That is, the speed of the object is determined from a measurement object different from the acceleration sensor 314 described above.
  • the vehicle speed sensor for the state determination of the mobile station 300, for example, even when the engine vibration is large and the state cannot be correctly determined by the acceleration sensor 314 or the like, the state determination of the mobile station 300 is correctly performed. Is called.
  • a distance sensor that emits light such as infrared rays and lasers, or sound waves such as ultrasonic waves to an object, measures the reflection of the light and sound waves, and calculates the distance to the object is a state determination of the mobile station 300 May be used.
  • the setting unit 310 may determine that the mobile station 300 is in a static state.
  • the distance between the mobile station 300 and the object changes due to the movement of the object irradiated with light or the like.
  • the distance sensors are different from each other in the mobile station 300 so that a plurality of distance sensors detect objects in different directions. Placed on the surface.
  • the setting unit 310 can arrange the distance between the target object in the plurality of directions and the mobile station 300 by arranging the distance sensors on different surfaces of the mobile station 300 so as to detect the target object in different directions. Can be measured. As a result, even if one object moves, the object in the other direction does not move. Therefore, the distance between the mobile station 300 and the object is constant, and the processing unit 308 correctly operates the mobile station 300. The state can be determined.
  • the setting unit 310 may be configured to select static positioning when the accuracy of the integer value bias deteriorates. In interferometric positioning, the accuracy of integer value bias calculation may deteriorate over time or depending on the positioning environment. Therefore, the setting unit 310 may select static positioning when the integer value bias deteriorates below a predetermined condition.
  • the setting unit 310 may be configured to perform static positioning when a predetermined time has elapsed.
  • the setting unit 310 may be configured to periodically perform static positioning. By configuring the setting unit 310 in this way, the setting unit 310 does not need to perform static positioning when the integer value bias is accurately calculated.
  • a computer program for operating the processing unit 308 including the setting unit 310 and the positioning unit 312 as described above may be provided.
  • a storage medium storing such a program may be provided.
  • the setting unit 310 includes a plurality of positioning methods including a positioning method corresponding to a static state or a positioning method corresponding to a moving state. Select the positioning method from. More specifically, the setting unit 310 selects a positioning method suitable for the state of the mobile station 300, and the positioning unit 312 performs positioning using the positioning method selected by the setting unit 310. At this time, when there is a known integer value bias, the positioning unit 312 performs positioning using the integer value bias.
  • the known integer value bias may be an integer value bias calculated using static positioning, or may be an integer value bias calculated using kinematic positioning. That is, the positioning unit 312 may use the integer value bias calculated by static positioning for kinematic positioning, or may use the integer value bias calculated by kinematic positioning for static positioning.
  • the positioning unit 312 can perform the positioning quickly. Further, for example, in the kinematic positioning, when the positioning unit 312 cannot calculate the integer value bias, the positioning unit 312 reliably performs the kinematic positioning by using the integer value bias calculated by the static positioning for the kinematic positioning. be able to.
  • a receiver for receiving radio waves from a satellite A setting unit for selecting a positioning method from a plurality of positioning methods including a first positioning method corresponding to a static state and a second positioning method corresponding to a moving state; A positioning unit that performs positioning based on radio waves from the satellites by the positioning method selected by the setting unit; A positioning device.
  • the positioning device according to (1) wherein the first positioning method corresponding to the static state is a static positioning method, and the second positioning method corresponding to the moving state is a kinematic positioning method.
  • the positioning device according to any one of (1) to (3), wherein the inherited information is an integer value bias.
  • a sensor for detecting a state of the positioning device When the setting unit determines that the positioning device is stationary based on measurement information of the sensor, The positioning device according to (2), wherein the positioning is set from the kinematic positioning method to the static positioning method.
  • the sensor is a gyro sensor and an acceleration sensor, The positioning device according to (5), wherein the setting unit determines that the positioning device is stationary using the gyro sensor and the acceleration sensor.
  • the sensor is a camera; The positioning device according to (5), wherein the setting unit determines that the positioning device is stationary using the camera.
  • a reference station with a known location and receiving radio waves from a satellite A positioning device that acquires information from the reference station and performs positioning;
  • the positioning device includes a receiving unit that receives radio waves from a satellite;

Abstract

[Problem] To select a positioning method from a plurality of positioning methods including a positioning method corresponding to a static state and a positioning method corresponding to a moving state, and perform positioning. [Solution] A positioning device provided with: a receiving unit for receiving a radio wave from a satellite; a determining unit for determining the positioning method from a plurality of positioning methods including a first positioning method corresponding to a static state and a second positioning method corresponding to a moving state; and a positioning unit for performing positioning on the basis of the radio wave from the satellite via the positioning method determined by the determining unit.

Description

測位装置、測位方法、測位システムPositioning device, positioning method, positioning system
 本開示は、測位装置、測位方法および測位システムに関する。 This disclosure relates to a positioning device, a positioning method, and a positioning system.
 近年、位置が既知である基準局と、位置が未知である未知点との2地点で、GPS衛星からの電波(搬送波)の位相を測定して測位を行う干渉測位が注目されている。干渉測位では、2地点間の搬送波の行路差を求め、基準局からの未知点の相対位置を算出することによって、未知点の位置が測位される。搬送波位相の測距精度は高く、干渉測位では数mmから数cm程度の精度で測位が可能である。干渉測位には複数の測位方法があり、例えば、静状態に対応する測位方法または動状態に対応する測位方法がある。静状態に対応する測位方法は、未知点が静状態であるときに適した測位方法であり、動状態に対応する測位方法は、未知点が動状態であるときに適した測位方法である。 In recent years, attention has been paid to interferometric positioning in which positioning is performed by measuring the phase of a radio wave (carrier wave) from a GPS satellite at two points: a reference station whose position is known and an unknown point whose position is unknown. In the interference positioning, the path difference of the carrier between two points is obtained, and the relative position of the unknown point from the reference station is calculated, thereby positioning the unknown point. The accuracy of distance measurement of the carrier phase is high, and in the interference positioning, positioning can be performed with an accuracy of about several mm to several cm. There are a plurality of positioning methods for interference positioning, for example, a positioning method corresponding to a static state or a positioning method corresponding to a moving state. The positioning method corresponding to the static state is a positioning method suitable when the unknown point is in the static state, and the positioning method corresponding to the dynamic state is a positioning method suitable when the unknown point is in the dynamic state.
 特許文献1には、上記した干渉測位を行う測位装置が開示されている。特許文献1には、測位装置としてGPS受信機および慣性装置(IMU)を備えた車両が開示されている。特許文献1に開示された車両は、備えられたGPS受信機および慣性装置を用いて車両の横滑りを考慮して干渉測位を行う。 Patent Document 1 discloses a positioning device that performs the above-described interference positioning. Patent Document 1 discloses a vehicle including a GPS receiver and an inertial unit (IMU) as a positioning device. The vehicle disclosed in Patent Document 1 performs interference positioning using a GPS receiver and an inertial device provided in consideration of a side slip of the vehicle.
特開2011-122921号公報JP2011-122921A
 特許文献1に開示されているような測位装置は、測位装置の使用用途が決まっていたため、上述した先行文献に示されるように、装置が行う測位方法は、静状態における測位方法または動状態における測位方法のどちらか1つに固定されていた。 Since the positioning device as disclosed in Patent Document 1 has been determined to be used for the positioning device, the positioning method performed by the device as described in the above-mentioned prior art is the positioning method in the static state or the moving state. It was fixed to one of the positioning methods.
 そこで本開示では、静状態に対応する測位方法または動状態に対応する測位方法を含む複数の測位方法から測位方法を選択して測位を行う測位装置、測位方法および測位システムを提案する。 Therefore, the present disclosure proposes a positioning device, a positioning method, and a positioning system that perform positioning by selecting a positioning method from a plurality of positioning methods including a positioning method corresponding to a static state or a positioning method corresponding to a moving state.
 本開示によれば、衛星から電波を受信する受信部と、静状態に対応する第1の測位方法、および動状態に対応する第2の測位方法を含む複数の測位方法から測位方法を選択する設定部と、前記設定部により選択された測位方法により、前記衛星からの電波に基づいて測位を行う測位部と、を備える、測位装置が提供される。 According to the present disclosure, a positioning method is selected from a plurality of positioning methods including a receiving unit that receives radio waves from a satellite, a first positioning method corresponding to a static state, and a second positioning method corresponding to a moving state. A positioning device is provided that includes a setting unit and a positioning unit that performs positioning based on radio waves from the satellite by the positioning method selected by the setting unit.
 以上説明したように本開示によれば、測位装置は、静状態に対応する測位方法または動状態に対応する測位方法を含む複数の測位方法から測位方法を選択して測位を行うことができる。 As described above, according to the present disclosure, the positioning device can perform positioning by selecting a positioning method from a plurality of positioning methods including a positioning method corresponding to a static state or a positioning method corresponding to a moving state.
 なお、上記の効果は必ずしも限定されず、上記の効果とともに、または上記の効果に代えて、本明細書に示されたいずれかの効果、または本明細書から把握され得る他の効果が奏されてもよい。 The above effects are not necessarily limited, and any of the effects shown in the present specification or other effects that can be grasped from the present specification are exhibited together with or in place of the above effects. May be.
図1は、干渉測位の原理を説明する概略図である。FIG. 1 is a schematic diagram illustrating the principle of interference positioning. 図2は、干渉測位において、整数値バイアスを求める原理を説明する概略図である。FIG. 2 is a schematic diagram illustrating the principle of obtaining an integer value bias in interference positioning. 図3は、移動局から見たGPS衛星の仰角に対する電波の行路差を示す図である。FIG. 3 is a diagram illustrating a path difference of radio waves with respect to an elevation angle of a GPS satellite viewed from a mobile station. 図4は、本開示の実施形態のシステムの構成を示す概略図である。FIG. 4 is a schematic diagram illustrating a configuration of a system according to an embodiment of the present disclosure. 図5は、本開示の実施形態の移動局の構成を示すブロック図である。FIG. 5 is a block diagram illustrating a configuration of the mobile station according to the embodiment of the present disclosure. 図6は、本実施形態の移動局の第1の動作例を示すフロー図である。FIG. 6 is a flowchart showing a first operation example of the mobile station of this embodiment. 図7は、本実施形態の移動局の第2の動作例を示すフロー図である。FIG. 7 is a flowchart showing a second operation example of the mobile station according to the present embodiment.
 以下に添付図面を参照しながら、本開示の好適な実施の形態について詳細に説明する。なお、本明細書及び図面において、実質的に同一の機能構成を有する構成要素については、同一の符号を付することにより重複説明を省略する。 Hereinafter, preferred embodiments of the present disclosure will be described in detail with reference to the accompanying drawings. In addition, in this specification and drawing, about the component which has the substantially same function structure, duplication description is abbreviate | omitted by attaching | subjecting the same code | symbol.
 なお、説明は以下の順序で行う。
 0.干渉測位の原理および種類
 1.整数値バイアスの算出方法
 2.システム構成の例
 3.移動局の構成
 4.第1の動作例
 5.第2の動作例
 6.補足
 7.むすび
The description will be given in the following order.
0. Interference positioning principles and types 1. Integer value bias calculation method 2. System configuration example Configuration of mobile station 4. First operation example Second operation example 6. Supplement 7 Conclusion
 <0.干渉測位の原理および種類>
 図1は、干渉測位の原理を示す図である。図1には、GPS衛星100と、位置が既知である基準局200と、位置が未知である移動局300とが示される。なお、移動局300は、GPS衛星100から電波を受信して測位を行う測位装置の一例であり、移動をしながら干渉測位を行う。基準局200および移動局300は、GPS衛星100から電波を受信する受信部の一例として、GPS受信機202、302をそれぞれ備える。
<0. Interference positioning principles and types>
FIG. 1 is a diagram illustrating the principle of interference positioning. FIG. 1 shows a GPS satellite 100, a reference station 200 whose position is known, and a mobile station 300 whose position is unknown. The mobile station 300 is an example of a positioning device that performs positioning by receiving radio waves from the GPS satellite 100, and performs interference positioning while moving. The reference station 200 and the mobile station 300 include GPS receivers 202 and 302, respectively, as an example of a receiving unit that receives radio waves from the GPS satellite 100.
 GPS衛星100は、所定の軌道で周回しており、GPS衛星100の位置は既知である。GPS衛星100は、L1帯(1575.42MHz)とL2帯(1227.6MHz)の電波を送信している。基準局200および移動局300は、GPS受信機202、302でGPS衛星100が送信する電波を観測し、搬送波位相および疑似距離(GPS衛星100からGPS受信機202、302までの真の距離に誤差を含んだ距離)を観測する。 The GPS satellite 100 orbits in a predetermined orbit and the position of the GPS satellite 100 is known. The GPS satellite 100 transmits radio waves in the L1 band (1575.42 MHz) and the L2 band (1227.6 MHz). The reference station 200 and the mobile station 300 observe the radio wave transmitted by the GPS satellite 100 with the GPS receivers 202 and 302, and introduce an error in the carrier phase and pseudorange (the true distance from the GPS satellite 100 to the GPS receivers 202 and 302). Observed distance).
 一般的に干渉測位では、基準局200は、観測した観測値(搬送波位相および疑似距離)および基準局200の位置情報を移動局300に送信し、移動局300は、基準局200の観測値と、自身で観測した観測値とを用いて基準局200に対する移動局300の相対位置を算出することによって、移動局300の測位が行われる。以下、図1を用いて干渉測位の原理についてより詳細に説明する。 In general, in the interference positioning, the reference station 200 transmits the observed observation values (carrier phase and pseudorange) and the position information of the reference station 200 to the mobile station 300, and the mobile station 300 and the observation values of the reference station 200 are transmitted by itself. By calculating the relative position of the mobile station 300 with respect to the reference station 200 using the observed values, the positioning of the mobile station 300 is performed. Hereinafter, the principle of interference positioning will be described in more detail with reference to FIG.
 図1において示される点線は、GPS衛星100からの等距離面であり、図1のLは、GPS衛星100と基準局200のGPS受信機202の間の行路と、GPS衛星100と移動局300のGPS受信機302の間の行路との行路差を意味する。図1で示された行路差Lは、GPS衛星100の搬送波の整数個の波数分の長さと、位相角θに相当する端数分の長さとの和となる。ここで、GPS衛星100―GPS受信機202、302間に含まれる搬送波の波数は、一般的に整数値バイアスと呼ばれる。 A dotted line shown in FIG. 1 is an equidistant surface from the GPS satellite 100, and L in FIG. 1 indicates a path between the GPS satellite 100 and the GPS receiver 202 of the reference station 200, and the GPS satellite 100 and the mobile station 300. This means a path difference between the GPS receiver 302 and the path. The path difference L shown in FIG. 1 is the sum of the length of an integral number of waves of the carrier wave of the GPS satellite 100 and the length of a fraction corresponding to the phase angle θ. Here, the wave number of the carrier wave included between the GPS satellite 100 and the GPS receivers 202 and 302 is generally called an integer value bias.
 干渉測位において、搬送波位相は、GPS受信機202、302において計測できるため、整数値バイアスを求めることは、行路差を求めることと同義となる。この整数値バイアスを求めるため、上述したように基準局200および移動局300のそれぞれのGPS受信機202、302において、同じGPS衛星100からの電波を観測する。そして、基準局200と移動局300でそれぞれ観測したGPS衛星100からの観測値を使用して、移動局300は整数値バイアスを算出する。また、移動局300は、算出した整数値バイアスを用いて図1において矢印で示される基線ベクトルを求め、この基線ベクトルによって、基準局200に対する移動局300の相対位置が求められる。 In the interference positioning, since the carrier wave phase can be measured by the GPS receivers 202 and 302, obtaining the integer value bias is synonymous with obtaining the path difference. In order to obtain this integer value bias, radio waves from the same GPS satellite 100 are observed at the GPS receivers 202 and 302 of the reference station 200 and the mobile station 300 as described above. Then, using the observation values from the GPS satellites 100 respectively observed by the reference station 200 and the mobile station 300, the mobile station 300 calculates an integer value bias. In addition, the mobile station 300 obtains a baseline vector indicated by an arrow in FIG. 1 using the calculated integer value bias, and the relative position of the mobile station 300 with respect to the reference station 200 is obtained based on the baseline vector.
 なお、GPS衛星100の搬送波の波長は、上述したL1帯の波長が19cmであり、L2帯の波長が24cmである。GPS受信機202、302における搬送波位相の観測精度は高く、このような波長の搬送波において、数mmから数cm程度の精度で、干渉測位では測位が可能である。 Note that the wavelength of the carrier wave of the GPS satellite 100 is 19 cm for the above-described L1 band and 24 cm for the L2 band. The GPS receivers 202 and 302 have a high accuracy of observation of the carrier wave phase, and a carrier wave having such a wavelength can be measured by interference positioning with an accuracy of several millimeters to several centimeters.
 上記では、干渉測位の原理の概略が説明された。次に、干渉測位の種類について説明される。干渉測位には上述したように複数の測位方法があり、静状態に対応する第1の測位方法の例としてスタティック測位が含まれる。また、干渉測位には移動局300の状態として動状態に対応する第2の測位方法の例としてキネマティック測位が含まれる。 In the above, the outline of the principle of interference positioning was explained. Next, the types of interference positioning will be described. As described above, the interference positioning includes a plurality of positioning methods, and static positioning is included as an example of the first positioning method corresponding to the static state. Further, the interference positioning includes kinematic positioning as an example of the second positioning method corresponding to the moving state as the state of the mobile station 300.
 スタティック測位では移動局300が静止して観測が行われるため、移動局300は、長時間衛星からの電波を観測し、測位を行うことが可能である。キネマティック測位では、移動局300は、観測開始時に整数値バイアスを決定(初期化ともいう。)し、他の装置から観測データを受信しながら短時間で測位を行う。 In the static positioning, since the mobile station 300 is stationary and the observation is performed, the mobile station 300 can perform the positioning by observing the radio wave from the satellite for a long time. In kinematic positioning, the mobile station 300 determines an integer value bias (also referred to as initialization) at the start of observation, and performs positioning in a short time while receiving observation data from another device.
 以上の相違点から、スタティック測位では高い確率で整数値バイアスが算出される。一方、キネマティック測位では移動局300が移動しながら観測が行われるため、短時間で整数値バイアスを求めなければならず、状況によっては整数値バイアスが算出されないことがある。 From the above differences, integer bias is calculated with high probability in static positioning. On the other hand, since observation is performed while the mobile station 300 is moving in kinematic positioning, the integer value bias must be obtained in a short time, and the integer value bias may not be calculated depending on the situation.
Figure JPOXMLDOC01-appb-I000001
Figure JPOXMLDOC01-appb-I000001
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-I000003
Figure JPOXMLDOC01-appb-I000003
 次に、(1)の式から電離層遅延I、対流圏遅延TおよびGPS衛星i102の時計誤差δを相殺するため、移動局300と基準局200で同時にGPS衛星i102から測定した搬送波位相の差である1重位相差が計算される。このとき、GPS衛星i102は、移動局300から見て仰角が大きいGPS衛星が選択されることが好ましい。 Next, in order to cancel the ionospheric delay I, the tropospheric delay T, and the clock error δ i of the GPS satellite i102 from the equation (1), it is the difference in the carrier phase measured simultaneously from the GPS satellite i102 by the mobile station 300 and the reference station 200. A single phase difference is calculated. At this time, it is preferable that a GPS satellite having a large elevation angle when viewed from the mobile station 300 is selected as the GPS satellite i102.
 図3は、2つのGPS衛星106、108の位置と、移動局300の位置との関係の例を示す図である。GPS衛星106は、移動局300から見た仰角がGPS衛星108に比べて相対的に大きい衛星を示している。図3からわかるように、移動局300とGPS衛星106との距離と、移動局300とGPS衛星108との距離とを比べると、移動局300とGPS衛星106との距離の方が小さい。このように、移動局300から見た衛星の仰角が大きくなれば通過する電離層および対流圏の距離が小さくなるため、電離層遅延Iおよび対流圏遅延Tは小さくなる。よって、基準局200と移動局300とで共通のGPS衛星を用いて観測を行う場合は、仰角が大きいGPS衛星が選択されることが好ましい。 FIG. 3 is a diagram showing an example of the relationship between the positions of the two GPS satellites 106 and 108 and the position of the mobile station 300. The GPS satellite 106 is a satellite whose elevation angle viewed from the mobile station 300 is relatively larger than that of the GPS satellite 108. As can be seen from FIG. 3, when the distance between the mobile station 300 and the GPS satellite 106 is compared with the distance between the mobile station 300 and the GPS satellite 108, the distance between the mobile station 300 and the GPS satellite 106 is smaller. Thus, since the distance between the ionosphere and the troposphere that passes through decreases as the elevation angle of the satellite viewed from the mobile station 300 increases, the ionosphere delay I and troposphere delay T decrease. Therefore, when observation is performed using a GPS satellite common to the reference station 200 and the mobile station 300, it is preferable to select a GPS satellite having a large elevation angle.
Figure JPOXMLDOC01-appb-I000004
Figure JPOXMLDOC01-appb-I000004
Figure JPOXMLDOC01-appb-M000005
ここで添え字Bは、基準局200を意味する。
Figure JPOXMLDOC01-appb-M000005
Here, the subscript B means the reference station 200.
 (2)の式から理解されるように、移動局-基準局間の1重位相差では、GPS衛星i102側の時計誤差は消去される。しかし、移動局-基準局間の1重位相差では、GPS受信機202、302側の時計誤差は消去されない。このため、GPS受信機202、302側の時計誤差を消去するために、GPS衛星i102とは異なるGPS衛星j104との2重位相差が計算される。 As understood from the equation (2), the clock error on the GPS satellite i102 side is eliminated by the single phase difference between the mobile station and the reference station. However, the single phase difference between the mobile station and the reference station does not eliminate the clock error on the GPS receivers 202 and 302 side. Therefore, in order to eliminate the clock error on the GPS receivers 202 and 302 side, a double phase difference between the GPS satellite j104 and the GPS satellite j104 different from the GPS satellite i102 is calculated.
Figure JPOXMLDOC01-appb-I000006
Figure JPOXMLDOC01-appb-I000006
Figure JPOXMLDOC01-appb-M000007
 ここで、測位に使用するGPS衛星の数Kより一つ少ない数Mの2重位相差が定義される。
Figure JPOXMLDOC01-appb-M000007
Here, a number M of double phase differences, which is one less than the number K of GPS satellites used for positioning, is defined.
 上述したようにM個の2重位相差を定義すると、上記(3)の式より時刻tにおける独立した方程式が以下のように定義される。 When M double phase differences are defined as described above, an independent equation at time t is defined as follows from the above equation (3).
Figure JPOXMLDOC01-appb-M000008
Figure JPOXMLDOC01-appb-M000008
 上記(4)の式の各式において左辺-右辺が計算され、行列z(時刻tの観測誤差)が、以下のように定義される。 In each of the above formulas (4), the left side-right side is calculated, and the matrix z n (observation error at time t n ) is defined as follows.
Figure JPOXMLDOC01-appb-M000009
Figure JPOXMLDOC01-appb-M000009
 次に、時刻tにおける移動局300の位置と、時刻tn+1における移動局300の位置との関係は、補正量Δx、Δy、Δzを用いると以下のように表される。 Next, the relationship between the position of the mobile station 300, the location of the mobile station 300 at time t n + 1 at time t n, the correction amount [Delta] x, [Delta] y, is expressed as follows using Delta] z.
Figure JPOXMLDOC01-appb-M000010
 ここでx(tn+1)、y(tn+1)およびz(tn+1)は、時刻tn+1における移動局300の座標を意味し、x(t)、y(t)およびz(t)は、時刻tにおける移動局300の座標を意味する。
Figure JPOXMLDOC01-appb-M000010
Where x (t n + 1), y (t n + 1) and z (t n + 1) denotes the coordinates of the mobile station 300 at time t n + 1, x (t n), y (t n) and z (t n ) means the coordinate of the mobile station 300 at time t n.
 また同様に、時刻tにおける整数値バイアスの値と、時刻tn+1における整数値バイアスの値との関係は、整数値バイアスの補正量ΔBを用いると以下のように表される。 Similarly, the value of the integer ambiguity at time t n, the relationship between the value of the integer bias at time t n + 1, is represented as follows using the correction amount ΔB of the integer ambiguity.
Figure JPOXMLDOC01-appb-M000011
Figure JPOXMLDOC01-appb-M000011
Figure JPOXMLDOC01-appb-I000012
Figure JPOXMLDOC01-appb-I000012
Figure JPOXMLDOC01-appb-M000013
Figure JPOXMLDOC01-appb-M000013
Figure JPOXMLDOC01-appb-I000014
Figure JPOXMLDOC01-appb-I000014
Figure JPOXMLDOC01-appb-M000015
Figure JPOXMLDOC01-appb-M000015
 上記した式より、t=0およびt=nのときのzは、以下のように表される。 From the above formula, z n when t = 0 and t = n is expressed as follows.
Figure JPOXMLDOC01-appb-M000016
 ここで、Iは単位行列である。
Figure JPOXMLDOC01-appb-M000016
Here, I is a unit matrix.
 上記した(10)の式を変換すると、以下のようになる。 When the above formula (10) is converted, it becomes as follows.
Figure JPOXMLDOC01-appb-M000017
 ここで、Wは重み行列である。(11)の式において、さらに最小二乗法を用いて補正量ΔxおよびΔBが収束するまで計算が行われることによって、補正量ΔxおよびΔBは算出される。なお、ここで算出される値は実数であり、この実数は、Float解と呼ばれる。
Figure JPOXMLDOC01-appb-M000017
Here, W is a weight matrix. In the equation (11), the correction amounts Δx and ΔB are calculated by performing calculation until the correction amounts Δx and ΔB converge using the least square method. Note that the value calculated here is a real number, and this real number is called a float solution.
 得られたFloat解から整数値(これは、Int解と呼ばれる。)にするため、一般的にLAMBDA法(Least-square Ambiguity Decorrelation Adjustment Method)が用いられる。 In order to make an integer value (this is called an Int solution) from the obtained float solution, the LAMBDA method (Least-square Ambiguity Adjustment Adjustment Method) is generally used.
 <キネマティック測位の測位方法>
 以上では、複数の時間の観測値を用いてスタティック測位が行われる場合の演算方法が示された。以下では、カルマンフィルタのアルゴリズムを用いてキネマティック測位が行われる場合の演算方法が示される。
<Positioning method of kinematic positioning>
The calculation method in the case where static positioning is performed using observation values at a plurality of times has been described above. In the following, a calculation method when kinematic positioning is performed using the Kalman filter algorithm will be described.
 キネマティック測位においてもスタティック測位と同様に、(3)の式で示される2重位相差が算出される。カルマンフィルタのアルゴリズムを用いてキネマティック測位が行われる場合、上述したように複数の時点の観測値を利用するのではなく1つの時点のみの観測値を用いて測位を行う。つまり、上述した(10)の式は、キネマティック測位において以下のように定義される。 In the kinematic positioning, the double phase difference expressed by the equation (3) is calculated as in the static positioning. When kinematic positioning is performed using an algorithm of the Kalman filter, positioning is performed using observation values at only one time point instead of using observation values at a plurality of time points as described above. That is, the above equation (10) is defined as follows in kinematic positioning.
Figure JPOXMLDOC01-appb-M000018
Figure JPOXMLDOC01-appb-M000018
 また、上記した(12)の式にカルマンフィルタのアルゴリズムを適用すると、(12)の式は、以下の式で表される。 Further, when the Kalman filter algorithm is applied to the above equation (12), the equation (12) is expressed by the following equation.
Figure JPOXMLDOC01-appb-M000019
 ここで、Pは状態変数の共分散行列であり、Rは観測誤差の共分散行列である。このように、カルマンフィルタのアルゴリズムを適用して算出された補正量ΔxおよびΔBは、上述したようにFloat解である。よって、Float解からInt解にするため、同様にLAMBDA法が用いられる。
Figure JPOXMLDOC01-appb-M000019
Here, P is a covariance matrix of state variables, and R is a covariance matrix of observation errors. As described above, the correction amounts Δx and ΔB calculated by applying the Kalman filter algorithm are Float solutions as described above. Therefore, the LAMBDA method is similarly used to change the float solution to the int solution.
 上述したように、干渉測位では、未知点である移動局300は、搬送波の1重位相差および2重位相差を用いて整数値バイアスを算出する。そして、移動局300は、算出された整数値バイアスを用いてスタティック測位またはキネマティック測位を行うことができる。 As described above, in the interference positioning, the mobile station 300 which is an unknown point calculates an integer value bias using the single phase difference and double phase difference of the carrier wave. Then, the mobile station 300 can perform static positioning or kinematic positioning using the calculated integer value bias.
 <2.システム構成の例>
 以上では、干渉測位の測位原理および整数値バイアスの算出方法について詳細に説明された。以下では、本開示の実施形態に係るシステム構成の例が説明される。本実施形態では、干渉測位を行う測位装置について説明される。なお、測位装置としては、例えば移動をしながら測位を行う、図4に示されるような移動局300が含まれる。また、本実施形態の移動局300は、後述するように移動局300の状況に応じてスタティック測位方法またはキネマティック測位方法のうちから1つの測位方法を選択する。
<2. Example of system configuration>
The interference measurement positioning principle and the integer value bias calculation method have been described above in detail. Hereinafter, an example of a system configuration according to an embodiment of the present disclosure will be described. In the present embodiment, a positioning device that performs interference positioning will be described. Note that the positioning device includes, for example, a mobile station 300 as shown in FIG. 4 that performs positioning while moving. Moreover, the mobile station 300 of this embodiment selects one positioning method from the static positioning method or the kinematic positioning method according to the situation of the mobile station 300 as described later.
 本実施形態に係るシステムは、GPS衛星100と、位置が既知である基準局200と、位置が未知である移動局300と、ネットワーク400が含まれる。GPS衛星100は、上述した説明と同様に電波を発信しており、基準局200および移動局300は、GPS衛星100から発信された電波を受信する。ネットワーク400は、基準局200または移動局300からの情報を搬送する。ネットワーク400は、例えば、インターネットなどの公のネットワークでもよく、携帯電話網などのような無線インターフェイスを有するネットワークであってもよい。また、移動局300は、ネットワーク400を介して基準局200の観測値(搬送波位相および擬似距離)および基準局200の位置に関する情報を受信し、基準局200からの情報と、自身でGPS衛星100からの電波を観測して得た観測値とを用いて干渉測位を行う。 The system according to the present embodiment includes a GPS satellite 100, a reference station 200 whose position is known, a mobile station 300 whose position is unknown, and a network 400. The GPS satellite 100 transmits radio waves in the same manner as described above, and the reference station 200 and the mobile station 300 receive the radio waves transmitted from the GPS satellite 100. The network 400 carries information from the reference station 200 or the mobile station 300. The network 400 may be a public network such as the Internet or a network having a wireless interface such as a mobile phone network. In addition, the mobile station 300 receives the observation value (carrier phase and pseudorange) of the reference station 200 and information on the position of the reference station 200 via the network 400, and receives information from the reference station 200 and radio waves from the GPS satellite 100 by itself. Interferometric positioning is performed using observation values obtained by observing.
 基準局200の位置は既知であり、基準局200は、GPS衛星100から搬送波位相を測定できる装置を備えている。例えば、基準局200は、GPS衛星100から搬送波位相を測定できる装置を備えた、ビルまたは信号機または携帯電話網の基地局など市街地に設置された構造物であってもよい。また、基準局200は、国土地理院が設置している電子基準点であってもよい。 The position of the reference station 200 is known, and the reference station 200 includes a device that can measure the carrier phase from the GPS satellite 100. For example, the reference station 200 may be a structure installed in a city area, such as a building or a traffic light or a base station of a mobile phone network, equipped with a device capable of measuring the carrier phase from the GPS satellite 100. The reference station 200 may be an electronic reference point installed by the Geographical Survey Institute.
 また、移動局300は、図4では車両として示されている。しかし、本実施形態において移動局300は車両に限定されず、携帯電話またはゲーム機など人が携帯できる装置であってもよい。また、移動局300は船舶であってもよく、GPS衛星100から搬送波位相を測定できる装置を備えており、移動を行う装置であれば移動局300はどのような装置であってもよい。 The mobile station 300 is shown as a vehicle in FIG. However, in this embodiment, the mobile station 300 is not limited to a vehicle, and may be a device that can be carried by a person such as a mobile phone or a game machine. The mobile station 300 may be a ship, and includes a device that can measure a carrier wave phase from the GPS satellite 100. The mobile station 300 may be any device as long as it moves.
 <3.移動局の構成>
 以上では、本実施形態のシステム構成について説明された。次に、移動局300の構成について図5を用いて詳細に説明される。移動局300は、GPS受信機302と、無線通信機304と、記憶部306と、処理部308と、加速度センサ314と、ジャイロセンサ316と、地磁気センサ318と、気圧センサ320と、カメラ322と、を備える。
<3. Configuration of mobile station>
The system configuration of this embodiment has been described above. Next, the configuration of mobile station 300 will be described in detail with reference to FIG. The mobile station 300 includes a GPS receiver 302, a wireless communicator 304, a storage unit 306, a processing unit 308, an acceleration sensor 314, a gyro sensor 316, a geomagnetic sensor 318, an atmospheric pressure sensor 320, and a camera 322. .
 GPS受信機302は、GPS衛星100から電波を受信する受信部の一例であり、受信したGPS衛星100からの電波に関する情報を処理部308に送る。無線通信機304は、他の装置と無線通信を行うための装置である。無線通信機304は、基準局200からネットワーク400を介して基準局200で観測した観測値および基準局200の位置に関する情報を受信し、基準局200から受信した情報を処理部308に送る。無線通信機304は、Bluetooth(登録商標)、Wi-Fiなどの無線LAN、またはLTE(Long Term Evolution)などの携帯電話網に用いられる送受信機であってもよい。 The GPS receiver 302 is an example of a receiving unit that receives radio waves from the GPS satellite 100, and sends information about the received radio waves from the GPS satellite 100 to the processing unit 308. The wireless communication device 304 is a device for performing wireless communication with other devices. The wireless communication device 304 receives the observation value observed by the reference station 200 and the information regarding the position of the reference station 200 from the reference station 200 via the network 400, and sends the information received from the reference station 200 to the processing unit 308. The wireless communication device 304 may be a transceiver used for a wireless LAN such as Bluetooth (registered trademark), Wi-Fi, or a mobile phone network such as LTE (Long Term Evolution).
 また、記憶部306は、移動局300の動作に用いられるプログラムおよびデータを記憶する。記憶部306に記憶されるデータとしては、無線通信用受信機304によって受信された基準局200の観測値および基準局200の位置情報などがある。また、記憶部306は、移動局300のGPS受信機302が観測した観測値も記憶する。記憶部306は、不揮発性メモリ、磁気ディスク、光ディスクなどの記憶媒体であってもよい。不揮発性メモリとしては、例えば、フラッシュメモリ、USBメモリなどがある。また、磁気ディスクは、例えば、ハードディスクおよび円盤型磁性体ディスクなどがある。また、光ディスクは、例えば、CD(Compact Disc)、DVD(Digital Versatile Disc)、BD(Blue-Ray Disc(登録商標))などがある。 Further, the storage unit 306 stores a program and data used for the operation of the mobile station 300. Examples of data stored in the storage unit 306 include observation values of the reference station 200 received by the wireless communication receiver 304 and position information of the reference station 200. The storage unit 306 also stores observation values observed by the GPS receiver 302 of the mobile station 300. The storage unit 306 may be a storage medium such as a nonvolatile memory, a magnetic disk, or an optical disk. Examples of the non-volatile memory include a flash memory and a USB memory. Examples of the magnetic disk include a hard disk and a disk-type magnetic disk. Examples of the optical disc include a CD (Compact Disc), a DVD (Digital Versatile Disc), and a BD (Blue-Ray Disc (registered trademark)).
 処理部308は、設定部310と、測位部312とを備える。設定部310は、静状態に対応する第1の測位方法および動状態に対応する第2の測位方法を含む複数の測位方法から適した測位方法を選択する。例えば、設定部は、各種センサまたはカメラ322からの計測情報に基づいてスタティック測位方法またはキネマティック測位方法から測位方法を選択するように構成されてもよい。また、測位部312は、設定部310によって選択された測位方法によってGPS受信機302が受信したGPS衛星100からの電波に基づいて測位を行う。 The processing unit 308 includes a setting unit 310 and a positioning unit 312. The setting unit 310 selects a suitable positioning method from a plurality of positioning methods including the first positioning method corresponding to the static state and the second positioning method corresponding to the moving state. For example, the setting unit may be configured to select a positioning method from a static positioning method or a kinematic positioning method based on measurement information from various sensors or cameras 322. The positioning unit 312 performs positioning based on radio waves from the GPS satellite 100 received by the GPS receiver 302 by the positioning method selected by the setting unit 310.
 加速度センサ314、ジャイロセンサ316、地磁気センサ318および気圧センサ320などの各種センサは、移動局300の状態を検知するために用いられ、各種センサが計測した計測情報は、処理部308に送られる。加速度センサ314は、移動局300に加わった加速度を検出する。加速度センサ314には光学的方式、半導体方式など多様な種類があり、本実施形態の移動局300は、どのような種類の加速度センサ314を備えてもよい。また、処理部308は、加速度センサ314の出力を積分することによって移動局300の速度を算出してもよい。 Various sensors such as an acceleration sensor 314, a gyro sensor 316, a geomagnetic sensor 318, and an atmospheric pressure sensor 320 are used to detect the state of the mobile station 300, and measurement information measured by the various sensors is sent to the processing unit 308. The acceleration sensor 314 detects acceleration applied to the mobile station 300. There are various types of acceleration sensors 314 such as an optical method and a semiconductor method, and the mobile station 300 of this embodiment may include any type of acceleration sensor 314. Further, the processing unit 308 may calculate the speed of the mobile station 300 by integrating the output of the acceleration sensor 314.
 ジャイロセンサ316は、移動局300の角速度および角加速度を検出する。ジャイロセンサ316も加速度センサ314と同様に、流体式、光学式などの多様な種類があり、本実施形態の移動局300は、どのような種類のジャイロセンサ316を備えてもよい。加速度センサ314およびジャイロセンサ316を用いて移動局300の状態が判定される場合、設定部310は、以下の方法に従って状態を判定してもよい。 The gyro sensor 316 detects the angular velocity and angular acceleration of the mobile station 300. Similarly to the acceleration sensor 314, the gyro sensor 316 includes various types such as a fluid type and an optical type, and the mobile station 300 according to the present embodiment may include any type of gyro sensor 316. When the state of the mobile station 300 is determined using the acceleration sensor 314 and the gyro sensor 316, the setting unit 310 may determine the state according to the following method.
 例えば、移動局300が静状態である確率をモデル化し、この確率が移動局300の状態判定に用いられる。この状態判定は閾値判定を含む。確率分布には正規分布を用いることが簡易である。また、確率分布にはラプラス分布または混合分布が用いられてもよい。 For example, the probability that the mobile station 300 is in a static state is modeled, and this probability is used for the state determination of the mobile station 300. This state determination includes threshold determination. It is easy to use a normal distribution for the probability distribution. Further, a Laplace distribution or a mixed distribution may be used as the probability distribution.
 最初に、設定部310は、加速度センサ314の計測値sacclおよびジャイロセンサ316の計測値ωgyroに対して前処理を行う。前処理は、例えばバイアス除去または平滑化などのノイズ除去のフィルタ処理である。 First, the setting unit 310 performs preprocessing on the measurement value omega Gyro measurements s accl and the gyro sensor 316 of the acceleration sensor 314. The preprocessing is filter processing for noise removal such as bias removal or smoothing.
 次に、前処理が行われた各センサの計測値sacclおよびωgyroに基づいて、設定部310は、以下の式に基づいて静状態確率を算出する。 Next, based on the measured values s accl and ω gyro of each sensor that has been preprocessed, the setting unit 310 calculates a static state probability based on the following equation.
Figure JPOXMLDOC01-appb-M000020
Figure JPOXMLDOC01-appb-M000020
 なお、上記(14)式は、以下の式のように算出される。 The above equation (14) is calculated as the following equation.
Figure JPOXMLDOC01-appb-M000021
Figure JPOXMLDOC01-appb-M000021
 また、(15)式中の各項は、以下のように表される。 Moreover, each term in the equation (15) is expressed as follows.
Figure JPOXMLDOC01-appb-M000022
Figure JPOXMLDOC01-appb-M000022
Figure JPOXMLDOC01-appb-M000023
Figure JPOXMLDOC01-appb-M000023
 ここで、(15)の式の値がある値δより大きいとき、設定部310は、移動局300は静状態であると判定する。また反対に、(15)の式の値がある値δより小さければ、設定部310は、移動局300は動状態であると判定する。 Here, when the value of the equation (15) is larger than a certain value δ, the setting unit 310 determines that the mobile station 300 is in a static state. On the other hand, if the value of the equation (15) is smaller than a certain value δ, the setting unit 310 determines that the mobile station 300 is in a moving state.
 地磁気センサ318は、地磁気の大きさおよび方向を検出する。地磁気センサ318によって、移動局300が向いている方向が検出される。気圧センサ320は、大気の圧力を検出する。気圧センサ320によって、移動局300の高度が検出される。設定部310は、上述した各種のセンサからの計測情報に基づいて、移動局300が静状態であるか、動状態であるか判定を行う。 The geomagnetic sensor 318 detects the magnitude and direction of the geomagnetism. The geomagnetic sensor 318 detects the direction in which the mobile station 300 is facing. The atmospheric pressure sensor 320 detects atmospheric pressure. The altitude of the mobile station 300 is detected by the atmospheric pressure sensor 320. The setting unit 310 determines whether the mobile station 300 is in a static state or a moving state based on measurement information from the various sensors described above.
 加速度センサ314、ジャイロセンサ316、地磁気センサ318、気圧センサ320は、移動局300の特性によって用いられるセンサは変更されてもよく、組み合わせて用いられてもよい。複数のセンサが用いられることによって、設定部310は、より確実に、またより詳細に移動局300の状態判定を行うことができる。 The sensors used for the acceleration sensor 314, the gyro sensor 316, the geomagnetic sensor 318, and the atmospheric pressure sensor 320 may be changed depending on the characteristics of the mobile station 300, or may be used in combination. By using a plurality of sensors, the setting unit 310 can determine the state of the mobile station 300 more reliably and in detail.
 カメラ322は、上述した各種センサと同様に移動局300の状態を判定するために用いられる。カメラ322で撮像された画像は、処理部308に送られ、処理部308は、特徴点検出などの画像処理を行う。特徴点検出は、SURF(Speed-Up Robust Features)またはSIFT(Scale Invariant Feature Transform)などの一般的なアルゴリズムを用いて行われてもよい。 The camera 322 is used to determine the state of the mobile station 300 as with the various sensors described above. An image captured by the camera 322 is sent to the processing unit 308, and the processing unit 308 performs image processing such as feature point detection. The feature point detection may be performed using a general algorithm such as SURF (Speed-Up Robust Features) or SIFT (Scale Invariant Feature Transform).
 カメラ322によって移動局300の状態を判定する場合、設定部310は、特徴点検出が行われた撮像画像において、検出された特徴点が所定の時間動いていないか否かを判定するように構成されてもよい。例えば、撮像画像において座標を設定し、検出された特徴点が所定の時間変化していないかを判定することによって、設定部310は、移動局300の状態を判定するように構成されてもよい。 When the state of the mobile station 300 is determined by the camera 322, the setting unit 310 is configured to determine whether or not the detected feature point has moved for a predetermined time in the captured image in which the feature point detection has been performed. May be. For example, the setting unit 310 may be configured to determine the state of the mobile station 300 by setting coordinates in the captured image and determining whether or not the detected feature point has changed for a predetermined time. .
 <4.第1の動作例>
 以上では、図5を用いて移動局300の構成が説明された。以下では、本実施形態の移動局300の動作例が説明される。図6では、移動局300が、最初にスタティック測位を行い、スタティック測位で算出された整数値バイアスを用いてキネマティック測位を行うときの動作例が説明される。
<4. First operation example>
In the above, the structure of the mobile station 300 was demonstrated using FIG. Below, the operation example of the mobile station 300 of this embodiment is demonstrated. FIG. 6 illustrates an operation example when the mobile station 300 first performs static positioning and performs kinematic positioning using an integer value bias calculated by static positioning.
 上述したように、干渉測位を行うには非常に複雑な計算が必要とされる。よって、移動局300の状況によっては整数値バイアスの初期値を算出することができないことがある。特に、移動局300が移動しながら測位を行うキネマティック測位では未知数が多くなることから、移動局300は、整数値バイアスを算出することができないことがある。 As described above, very complicated calculation is required to perform interference positioning. Therefore, depending on the situation of the mobile station 300, the initial value of the integer value bias may not be calculated. In particular, in kinematic positioning in which positioning is performed while the mobile station 300 moves, the number of unknowns increases, so the mobile station 300 may not be able to calculate an integer value bias.
 よって、第1の動作を行う移動局300は、センサなどを用いて移動局300が静状態か否かを検出し、移動局300が静状態であれば測位部312はスタティック測位を行う。測位部312がスタティック測位を行うことによって、まず初期値となる整数値バイアスを算出する。算出された整数値バイアスをキネマティック測位の初期値として用いることによって、測位部312は、確実にキネマティック測位を行うことができる。また、サイクルスリップなどで整数値バイアスが不定となった場合、スタティック測位で算出した整数値バイアスをキネマティック測位に引き継ぐことによって確実にキネマティック測位を行うことができる。 Therefore, the mobile station 300 performing the first operation detects whether or not the mobile station 300 is in a static state using a sensor or the like. If the mobile station 300 is in a static state, the positioning unit 312 performs static positioning. When the positioning unit 312 performs static positioning, first, an integer value bias that is an initial value is calculated. By using the calculated integer value bias as the initial value of kinematic positioning, the positioning unit 312 can reliably perform kinematic positioning. Further, when the integer value bias becomes indefinite due to cycle slip or the like, the kinematic positioning can be surely performed by taking over the integer value bias calculated by the static positioning to the kinematic positioning.
 図6は、上述したスタティック測位で算出した整数値バイアスが、キネマティック測位に引き継がれるときの動作例を示すフロー図である。 FIG. 6 is a flowchart showing an operation example when the integer value bias calculated by the above-described static positioning is taken over by the kinematic positioning.
 S100において処理が開始されると、S102において各種センサおよび/またはカメラ322は各種計測を行う。センサは、上述した加速度センサ314、ジャイロセンサ316、地磁気センサ318、気圧センサ320のなかから少なくとも一つが用いられ、また、センサに加えて、または代えてカメラ322を用いて計測が行われるように構成されてもよい。 When the process is started in S100, the various sensors and / or the camera 322 perform various measurements in S102. As the sensor, at least one of the above-described acceleration sensor 314, gyro sensor 316, geomagnetic sensor 318, and atmospheric pressure sensor 320 is used, and measurement is performed using the camera 322 in addition to or instead of the sensor. It may be configured.
 なお、計測される対象は、センサに応じて異なる。例えば、加速度センサ314は、移動局300に対する加速度を計測し、ジャイロセンサ316は、移動局300に対する角速度および各加速度を計測する。また、地磁気センサ318は、地磁気を計測することによって移動局300が向いている方角を計測する。また、気圧センサ320は、移動局300の高度を計測する。また、カメラ322は、撮像を行う。 Note that the target to be measured varies depending on the sensor. For example, the acceleration sensor 314 measures acceleration with respect to the mobile station 300, and the gyro sensor 316 measures angular velocity and each acceleration with respect to the mobile station 300. The geomagnetic sensor 318 measures the direction in which the mobile station 300 is facing by measuring the geomagnetism. The atmospheric pressure sensor 320 measures the altitude of the mobile station 300. The camera 322 performs imaging.
 次にS104において、処理部308は、センサおよび/またはカメラ322からの計測情報を受け取る。ここで設定部310は、各種センサおよび/またはカメラ322から受け取った計測情報に基づいて移動局300が静状態か否かを判定する。 Next, in S104, the processing unit 308 receives measurement information from the sensor and / or camera 322. Here, the setting unit 310 determines whether or not the mobile station 300 is in a static state based on measurement information received from various sensors and / or the camera 322.
 S104において設定部310が、上述した方法に従って移動局300は静状態であると判定すると、設定部310は、スタティック測位で測位を行うことを選択する。これによって処理は、S106に進む。S106において、測位部312は、GPS受信機302から受信される電波および無線通信機304から受信される基準局200の観測値に基づいてスタティック測位を行う。 When the setting unit 310 determines in S104 that the mobile station 300 is in a static state according to the above-described method, the setting unit 310 selects to perform positioning by static positioning. Accordingly, the process proceeds to S106. In S <b> 106, the positioning unit 312 performs static positioning based on the radio wave received from the GPS receiver 302 and the observation value of the reference station 200 received from the wireless communication device 304.
 具体的には、測位部312は、上述したように1重位相差および2重位相差を算出し、S108において、測位部312は、(11)式に基づいて整数値バイアスを算出する。なお、S104において、設定部310が、移動局300は静状態であると判定すると、記憶部306は、観測値の残差z(時刻tの観測誤差)を記憶し始める。測位部312は、記憶部306が記憶した過去の観測値の残差z0を使用して整数値バイアスを算出する。 Specifically, positioning unit 312 calculates a single phase difference and a double phase difference as described above, and in S108, positioning unit 312 calculates an integer value bias based on equation (11). Incidentally, in S104, the setting unit 310, mobile station 300 If it is determined that the static state, the storage unit 306 starts to store the residuals z n observations (observation error of the time t n). The positioning unit 312 calculates an integer value bias using the residual z 0 of past observation values stored in the storage unit 306.
 次にS110において、センサおよび/またはカメラ322は、計測を行う。S112において、設定部310は、センサおよび/またはカメラ322の計測に基づいて移動局300が動状態か否かを判定する。S112において、設定部310が、移動局300は静状態であると判定すると、処理はS106に戻り、測位部312は、スタティック測位を継続する。 Next, in S110, the sensor and / or the camera 322 performs measurement. In S112, the setting unit 310 determines whether or not the mobile station 300 is in a moving state based on the measurement of the sensor and / or the camera 322. If the setting unit 310 determines in S112 that the mobile station 300 is in a static state, the process returns to S106, and the positioning unit 312 continues static positioning.
 S112において、センサおよび/またはカメラ322の計測に基づいて移動局300は動状態であると設定部310が判定すると処理はS114に移る。S114において、設定部310は、キネマティック測位を行うことを選択する。そして、S114において、設定部310の選択に基づいて、測位部312は、スタティック測位で算出した整数値バイアスを初期値として引き継ぎ、キネマティック測位を行う。 In S112, when the setting unit 310 determines that the mobile station 300 is in a moving state based on the measurement of the sensor and / or the camera 322, the process proceeds to S114. In S114, the setting unit 310 selects to perform kinematic positioning. In S114, based on the selection of the setting unit 310, the positioning unit 312 takes over the integer value bias calculated by the static positioning as an initial value and performs kinematic positioning.
 上述したように、本実施形態の移動局300では、設定部310がセンサおよび/またはカメラ322の計測に基づいて、移動局300が静状態であるか、動状態であるかを判定する。設定部310が、移動局300は静状態であると判定した場合、測位部312は、スタティック測位を行う。測位部312は、スタティック測位を行うことにより、整数値バイアスを確実に算出することができる。そして、設定部310が、移動局300は動状態であると判定した際に、測位部312は、算出した整数値バイアスを初期値として引き継ぎキネマティック測位を行うことができる。 As described above, in the mobile station 300 of the present embodiment, the setting unit 310 determines whether the mobile station 300 is in a static state or a moving state based on the measurement of the sensor and / or the camera 322. When the setting unit 310 determines that the mobile station 300 is in a static state, the positioning unit 312 performs static positioning. The positioning unit 312 can reliably calculate the integer value bias by performing static positioning. When the setting unit 310 determines that the mobile station 300 is in a moving state, the positioning unit 312 can perform takeover kinematic positioning using the calculated integer value bias as an initial value.
 このように、移動局300が静状態のとき、測位部312がスタティック測位を行うことによって確実に整数値バイアスを求めることができる。また、測位部312は、キネマティック測位を行う際の初期値として算出された整数値バイアスを使用することによって、測位部312は、確実にキネマティック測位を行うことができる。 As described above, when the mobile station 300 is in a static state, the positioning unit 312 can perform static positioning to reliably obtain the integer value bias. In addition, the positioning unit 312 can reliably perform kinematic positioning by using the integer value bias calculated as the initial value when performing kinematic positioning.
 <5.第2の動作例>
 以上では、設定部310が最初にスタティック測位を選択し、測位部312は、スタティック測位で算出された整数値バイアスを引き継いでキネマティック測位を行う動作例が説明された。以下では、測位部312が、設定部310によって選択された一つの測位方法で算出された整数値バイアスを、他の測位方法に引き継いで測位を行う動作例について説明される。図7は、このような場合の第2の動作例を示す図である。
<5. Second example of operation>
The operation example in which the setting unit 310 first selects the static positioning and the positioning unit 312 performs the kinematic positioning by taking over the integer value bias calculated by the static positioning has been described above. Hereinafter, an operation example in which the positioning unit 312 performs positioning by taking over the integer value bias calculated by one positioning method selected by the setting unit 310 to another positioning method will be described. FIG. 7 is a diagram illustrating a second operation example in such a case.
 第2の動作例において、S200で処理が開始されると、第1の動作例と同様に各センサおよび/またはカメラ322は、計測を開始する。次に、S204において、設定部310は、センサおよび/またはカメラ322の計測に基づいて移動局300の状態判定を行う。 In the second operation example, when the process is started in S200, each sensor and / or camera 322 starts measurement as in the first operation example. Next, in S <b> 204, the setting unit 310 determines the state of the mobile station 300 based on the measurement of the sensor and / or camera 322.
 S204において、移動局300は静状態であると設定部310が判定すると、処理はS206に進む。S206において、設定部310は、既に算出された整数値バイアスがあるか否かを判定する。ここで、算出された整数値バイアスが存在しない場合、処理はS208に進み、測位部312は、整数値バイアスを新規に算出する。そして、測位部312は、S208において算出された整数値バイアスを用いてスタティック測位を行う(S212)。 In S204, if the setting unit 310 determines that the mobile station 300 is in a static state, the process proceeds to S206. In S206, the setting unit 310 determines whether there is an integer value bias that has already been calculated. Here, when the calculated integer value bias does not exist, the process proceeds to S208, and the positioning unit 312 newly calculates the integer value bias. Then, the positioning unit 312 performs static positioning using the integer value bias calculated in S208 (S212).
 S206において、既に算出された整数値バイアスが存在する場合、処理は、S210に進む。ここで、既に算出された整数値バイアスには、スタティック測位で算出された整数値バイアスおよびキネマティック測位で算出された整数値バイアスの両方が含まれる。S210において、測位部312は、既に算出されている整数値バイアスをスタティック測位に使用する。そして、S212において測位部312は、スタティック測位を行う。S212の後処理はS202に戻り、S202からS212までの処理が繰り返される。 In S206, when there is an integer bias that has already been calculated, the process proceeds to S210. Here, the already calculated integer value bias includes both an integer value bias calculated by static positioning and an integer value bias calculated by kinematic positioning. In S210, the positioning unit 312 uses the already calculated integer value bias for the static positioning. In S212, the positioning unit 312 performs static positioning. The post-process of S212 returns to S202, and the processes from S202 to S212 are repeated.
 次に、S204において、移動局300が動状態であると判定された場合の動作例が説明される。S204において、移動局300は動状態であると設定部310が判定すると、処理はS214に進む。そして、S214において、設定部310は、既に算出された整数値バイアスがあるか否かを判定する。ここで、算出された整数値バイアスが存在しない場合、処理はS216に進み、測位部312は、整数値バイアスを新規に算出する。そして、測位部312は、S216において算出された整数値バイアスを用いてキネマティック測位を行う(S220)。 Next, an operation example when it is determined in S204 that the mobile station 300 is in a moving state will be described. In S204, when the setting unit 310 determines that the mobile station 300 is in a moving state, the process proceeds to S214. In step S214, the setting unit 310 determines whether there is an integer value bias that has already been calculated. Here, when the calculated integer value bias does not exist, the process proceeds to S216, and the positioning unit 312 newly calculates the integer value bias. Then, the positioning unit 312 performs kinematic positioning using the integer value bias calculated in S216 (S220).
 S214において、既に算出された整数値バイアスが存在する場合、処理はS218に進む。ここで、既に算出された整数値バイアスには、スタティック測位で算出された整数値バイアスおよびキネマティック測位で算出された整数値バイアスの両方が含まれる。S218において、測位部312は、既に算出されている整数値バイアスをキネマティック測位に使用する。そして、測位部312は、S220において、キネマティック測位を行う。S220の後処理はS202に戻り、S202からS220までの処理が繰り返される。 In S214, if there is an integer value bias that has already been calculated, the process proceeds to S218. Here, the already calculated integer value bias includes both an integer value bias calculated by static positioning and an integer value bias calculated by kinematic positioning. In S218, the positioning unit 312 uses the already calculated integer value bias for kinematic positioning. Then, the positioning unit 312 performs kinematic positioning in S220. The post-processing of S220 returns to S202, and the processing from S202 to S220 is repeated.
 上述した第2の動作例では、スタティック測位で算出された整数値バイアスがキネマティック測位に引き継がれ、また、キネマティック測位で算出された整数値バイアスがスタティック測位に引き継がれる。つまり、算出された整数値バイアスは、双方向に引き継がれる。 In the second operation example described above, the integer value bias calculated by static positioning is inherited by kinematic positioning, and the integer value bias calculated by kinematic positioning is inherited by static positioning. That is, the calculated integer value bias is taken over in both directions.
 このように、ある一つの測位方法で算出された整数値バイアスが他の測位方法に引き継がれることによって、整数値バイアスの算出過程において整数値バイアスの収束が早くなり、測位部312は、測位を迅速に行うことができる。 Thus, the integer value bias calculated by a certain positioning method is taken over by another positioning method, so that the convergence of the integer value bias is accelerated in the process of calculating the integer value bias, and the positioning unit 312 performs positioning. Can be done quickly.
 <6.補足>
 以上、添付図面を参照しながら本開示の好適な実施形態について詳細に説明した。なお、本開示の技術的範囲はかかる例に限定されない。本開示の技術分野における通常の知識を有する者であれば、特許請求の範囲に記載された技術的思想の範疇内において、各種の変更例または修正例に想到し得ることは明らかであり、これらについても、当然に本開示の技術的範囲に属する。
<6. Supplement>
The preferred embodiments of the present disclosure have been described in detail above with reference to the accompanying drawings. Note that the technical scope of the present disclosure is not limited to such an example. It is obvious that a person having ordinary knowledge in the technical field of the present disclosure can come up with various changes or modifications within the scope of the technical idea described in the claims. Is naturally within the technical scope of the present disclosure.
 例えば、移動局300が車両である場合、移動局300の状態判定は、車両の車速を検知する車速センサの計測に基づいて判定されてもよい。一般的に車速センサは、エンジンのクランク軸または車軸の回転を計測し、車速センサは、制御回路にパルス信号を送ることによって車速を計測している。つまり、上述した加速度センサ314などとは異なる計測対象から対象物の速度などを判定している。 For example, when the mobile station 300 is a vehicle, the state determination of the mobile station 300 may be determined based on measurement of a vehicle speed sensor that detects the vehicle speed of the vehicle. Generally, a vehicle speed sensor measures the rotation of an engine crankshaft or axle, and the vehicle speed sensor measures a vehicle speed by sending a pulse signal to a control circuit. That is, the speed of the object is determined from a measurement object different from the acceleration sensor 314 described above.
 このように、車速センサを移動局300の状態判定に用いることによって、例えば、エンジンの振動が大きく、加速度センサ314などでは正しく状態判定ができない場合であっても正しく移動局300の状態判定が行われる。 As described above, by using the vehicle speed sensor for the state determination of the mobile station 300, for example, even when the engine vibration is large and the state cannot be correctly determined by the acceleration sensor 314 or the like, the state determination of the mobile station 300 is correctly performed. Is called.
 また、赤外線およびレーザなどの光、または超音波などの音波を対象物に発射し、その光や音波の反射を計測して対象物との距離を算出する距離センサが、移動局300の状態判定に用いられてもよい。この場合、移動局300と対象物との距離が一定であると設定部310が判定した場合、移動局300は静状態であると、設定部310は判定してもよい。 In addition, a distance sensor that emits light such as infrared rays and lasers, or sound waves such as ultrasonic waves to an object, measures the reflection of the light and sound waves, and calculates the distance to the object is a state determination of the mobile station 300 May be used. In this case, when the setting unit 310 determines that the distance between the mobile station 300 and the object is constant, the setting unit 310 may determine that the mobile station 300 is in a static state.
 なお、距離センサを用いる場合、光などを照射している対象物が移動することにより、移動局300と対象物の距離が変わってしまうことが考えられる。この場合、移動局300が動状態であると設定部310が誤って判定することを防ぐため、複数の距離センサが異なる方向の対象物を検知するように、距離センサは、移動局300の異なる面に配置される。 In the case of using a distance sensor, it is conceivable that the distance between the mobile station 300 and the object changes due to the movement of the object irradiated with light or the like. In this case, in order to prevent the setting unit 310 from erroneously determining that the mobile station 300 is in a moving state, the distance sensors are different from each other in the mobile station 300 so that a plurality of distance sensors detect objects in different directions. Placed on the surface.
 このように、複数の距離センサが異なる方向の対象物を検知するように移動局300の異なる面に配置されることによって、設定部310は、複数の方向の対象物と移動局300との距離を計測できる。これによって、たとえ一方の対象物が移動しても他の方向の対象物は移動していないため、移動局300と対象物の間の距離は一定であり、処理部308は、正しく移動局300の状態判定を行うことができる。 As described above, the setting unit 310 can arrange the distance between the target object in the plurality of directions and the mobile station 300 by arranging the distance sensors on different surfaces of the mobile station 300 so as to detect the target object in different directions. Can be measured. As a result, even if one object moves, the object in the other direction does not move. Therefore, the distance between the mobile station 300 and the object is constant, and the processing unit 308 correctly operates the mobile station 300. The state can be determined.
 また、設定部310は、整数値バイアスの精度が悪化したときにスタティック測位を選択するように構成されてもよい。干渉測位においては、時間の経過により、または測位環境によって整数値バイアスの算出精度が悪化することがある。よって、設定部310は、整数値バイアスが所定の条件以下に悪化したときにスタティック測位を選択してもよい。また、設定部310は、所定の時間が経過するとスタティック測位を行うように構成されてもよい。また、設定部310は、定期的にスタティック測位を行うように構成されてもよい。このように設定部310が構成されることにより、設定部310は、精度よく整数値バイアスが算出されているときにスタティック測位を行う必要がなくなる。 Also, the setting unit 310 may be configured to select static positioning when the accuracy of the integer value bias deteriorates. In interferometric positioning, the accuracy of integer value bias calculation may deteriorate over time or depending on the positioning environment. Therefore, the setting unit 310 may select static positioning when the integer value bias deteriorates below a predetermined condition. The setting unit 310 may be configured to perform static positioning when a predetermined time has elapsed. The setting unit 310 may be configured to periodically perform static positioning. By configuring the setting unit 310 in this way, the setting unit 310 does not need to perform static positioning when the integer value bias is accurately calculated.
 また、設定部310および測位部312を含む処理部308を、上述したように動作させるためのコンピュータプログラムが提供されてもよい。また、このようなプログラムが記憶された記憶媒体が提供されてもよい。 Also, a computer program for operating the processing unit 308 including the setting unit 310 and the positioning unit 312 as described above may be provided. A storage medium storing such a program may be provided.
 <7.むすび>
 以上説明したように、本開示の第1の動作例および第2の動作例によれば、設定部310は、静状態に対応する測位方法または動状態に対応する測位方法を含む複数の測位方法から測位方法を選択する。より詳細にいえば、設定部310は、移動局300の状態に適した測位方法を選択し、測位部312は、設定部310が選択した測位方法で測位を行う。このとき、測位部312は、既知の整数値バイアスが存在する場合、その整数値バイアスを使用して測位を行う。
<7. Conclusion>
As described above, according to the first operation example and the second operation example of the present disclosure, the setting unit 310 includes a plurality of positioning methods including a positioning method corresponding to a static state or a positioning method corresponding to a moving state. Select the positioning method from. More specifically, the setting unit 310 selects a positioning method suitable for the state of the mobile station 300, and the positioning unit 312 performs positioning using the positioning method selected by the setting unit 310. At this time, when there is a known integer value bias, the positioning unit 312 performs positioning using the integer value bias.
 ここで、既知の整数値バイアスは、スタティック測位を用いて算出された整数値バイアスであってもよく、また、キネマティック測位を用いて算出された整数値バイアスであってもよい。つまり、測位部312は、スタティック測位で算出された整数値バイアスをキネマティック測位で使用してもよく、また、キネマティック測位で算出された整数値バイアスをスタティック測位で使用してもよい。 Here, the known integer value bias may be an integer value bias calculated using static positioning, or may be an integer value bias calculated using kinematic positioning. That is, the positioning unit 312 may use the integer value bias calculated by static positioning for kinematic positioning, or may use the integer value bias calculated by kinematic positioning for static positioning.
 このように、整数値バイアスが双方向に引き継がれることによって、整数値バイアスの算出過程において、整数値バイアスの収束が早くなり、測位部312は、測位を迅速に行うことができる。また、例えば、キネマティック測位において、測位部312が整数値バイアスを算出できない場合、測位部312はスタティック測位で算出された整数値バイアスをキネマティック測位に用いることによって、確実にキネマティック測位を行うことができる。 As described above, since the integer value bias is taken over in both directions, the convergence of the integer value bias is accelerated in the calculation process of the integer value bias, and the positioning unit 312 can perform the positioning quickly. Further, for example, in the kinematic positioning, when the positioning unit 312 cannot calculate the integer value bias, the positioning unit 312 reliably performs the kinematic positioning by using the integer value bias calculated by the static positioning for the kinematic positioning. be able to.
 また、本明細書に記載された効果は、あくまで例示であって限定的ではない。つまり、本開示に係る技術は、上記の効果とともに、または上記の効果に代えて、本明細書の記載から当業者には明らかな他の効果を奏しうる。 In addition, the effects described in this specification are merely examples and are not limiting. That is, the technology according to the present disclosure can exhibit other effects that are apparent to those skilled in the art from the description of the present specification in addition to or instead of the above effects.
 なお、以下のような構成も本開示の技術的範囲に属する。
(1)
 衛星から電波を受信する受信部と、
 静状態に対応する第1の測位方法、および動状態に対応する第2の測位方法を含む複数の測位方法から測位方法を選択する設定部と、
 前記設定部により選択された測位方法により、前記衛星からの電波に基づいて測位を行う測位部と、
を備える、測位装置。
(2)
 前記静状態に対応する第1の測位方法はスタティック測位方法であり、前記動状態に対応する第2の測位方法はキネマティック測位方法である、前記(1)に記載の測位装置。
(3)
 前記測位部は、前記第1の測位方法または前記第2の測位方法で用いられた情報を、もう一方の測位方法に引き継いで測位を行う、前記(1)または(2)に記載の測位装置。
(4)
 前記引き継がれる情報は整数値バイアスである、前記(1)から3のいずれか1項に記載の測位装置。
(5)
 前記測位装置の状態を検知するセンサをさらに備え、
 前記設定部は、前記センサの計測情報に基づいて前記測位装置が静止していると判定すると、
 前記キネマティック測位方法から前記スタティック測位方法に設定する、前記(2)に記載の測位装置。
(6)
 前記センサはジャイロセンサおよび加速度センサであり、
 前記設定部は、前記ジャイロセンサおよび前記加速度センサを用いて前記測位装置が静止していると判定する、前記(5)に記載の測位装置。
(7)
 前記センサはカメラであり、
 前記設定部は、前記カメラを用いて前記測位装置が静止していると判定する、前記(5)に記載の測位装置。
(8)
 衛星から電波を受信し、
 静状態に対応する第1の測位方法、および動状態に対応する第2の測位方法を含む複数の測位方法から測位方法を設定し、
 前記設定された測位方法により、前記衛星からの電波に基づいて測位を行う、
測位方法。
(9)
 位置が既知であり、衛星から電波を受信する基準局と、
 前記基準局から情報を取得し、測位を行う測位装置と、を有し、
 前記測位装置は、衛星から電波を受信する受信部と、
 静状態に対応する第1の測位方法、および動状態に対応する第2の測位方法を含む複数の測位方法から測位方法を設定する設定部と、
 前記設定部により設定された測位方法により、前記衛星からの電波に基づいて測位を行う測位部と、を備える、
測位システム。
The following configurations also belong to the technical scope of the present disclosure.
(1)
A receiver for receiving radio waves from a satellite;
A setting unit for selecting a positioning method from a plurality of positioning methods including a first positioning method corresponding to a static state and a second positioning method corresponding to a moving state;
A positioning unit that performs positioning based on radio waves from the satellites by the positioning method selected by the setting unit;
A positioning device.
(2)
The positioning device according to (1), wherein the first positioning method corresponding to the static state is a static positioning method, and the second positioning method corresponding to the moving state is a kinematic positioning method.
(3)
The positioning device according to (1) or (2), wherein the positioning unit performs positioning by taking over the information used in the first positioning method or the second positioning method to the other positioning method. .
(4)
The positioning device according to any one of (1) to (3), wherein the inherited information is an integer value bias.
(5)
A sensor for detecting a state of the positioning device;
When the setting unit determines that the positioning device is stationary based on measurement information of the sensor,
The positioning device according to (2), wherein the positioning is set from the kinematic positioning method to the static positioning method.
(6)
The sensor is a gyro sensor and an acceleration sensor,
The positioning device according to (5), wherein the setting unit determines that the positioning device is stationary using the gyro sensor and the acceleration sensor.
(7)
The sensor is a camera;
The positioning device according to (5), wherein the setting unit determines that the positioning device is stationary using the camera.
(8)
Receive radio waves from the satellite,
Setting a positioning method from a plurality of positioning methods including a first positioning method corresponding to a static state and a second positioning method corresponding to a moving state;
Positioning is performed based on radio waves from the satellite by the set positioning method.
Positioning method.
(9)
A reference station with a known location and receiving radio waves from a satellite;
A positioning device that acquires information from the reference station and performs positioning;
The positioning device includes a receiving unit that receives radio waves from a satellite;
A setting unit for setting a positioning method from a plurality of positioning methods including a first positioning method corresponding to a static state and a second positioning method corresponding to a moving state;
A positioning unit that performs positioning based on radio waves from the satellite by the positioning method set by the setting unit,
Positioning system.
 100  GPS衛星
 200  基準局
 202  GPS受信機
 300  移動局
 302  GPS受信機
 304  無線通信機
 306  記憶部
 308  処理部
 310  設定部
 312  測位部
 314  加速度センサ
 316  ジャイロセンサ
 318  地磁気センサ
 320  気圧センサ
 322  カメラ
 400  ネットワーク
100 GPS Satellite 200 Reference Station 202 GPS Receiver 300 Mobile Station 302 GPS Receiver 304 Wireless Communication Device 306 Storage Unit 308 Processing Unit 310 Setting Unit 312 Positioning Unit 314 Acceleration Sensor 316 Gyro Sensor 318 Geomagnetic Sensor 320 Atmospheric Sensor 322 Camera 400 Network

Claims (9)

  1.  衛星から電波を受信する受信部と、
     静状態に対応する第1の測位方法、および動状態に対応する第2の測位方法を含む複数の測位方法から測位方法を選択する設定部と、
     前記設定部により選択された測位方法により、前記衛星からの電波に基づいて測位を行う測位部と、
    を備える、測位装置。
    A receiver for receiving radio waves from a satellite;
    A setting unit for selecting a positioning method from a plurality of positioning methods including a first positioning method corresponding to a static state and a second positioning method corresponding to a moving state;
    A positioning unit that performs positioning based on radio waves from the satellites by the positioning method selected by the setting unit;
    A positioning device.
  2.  前記静状態に対応する第1の測位方法はスタティック測位方法であり、前記動状態に対応する第2の測位方法はキネマティック測位方法である、請求項1に記載の測位装置。 The positioning device according to claim 1, wherein the first positioning method corresponding to the static state is a static positioning method, and the second positioning method corresponding to the moving state is a kinematic positioning method.
  3.  前記測位部は、前記第1の測位方法または前記第2の測位方法で用いられた情報を、もう一方の測位方法に引き継いで測位を行う、請求項2に記載の測位装置。 The positioning device according to claim 2, wherein the positioning unit performs positioning by taking over the information used in the first positioning method or the second positioning method to the other positioning method.
  4.  前記引き継がれる情報は整数値バイアスである、請求項3に記載の測位装置。 The positioning device according to claim 3, wherein the information to be inherited is an integer value bias.
  5.  前記測位装置の状態を検知するセンサをさらに備え、
     前記設定部は、前記センサの計測情報に基づいて前記測位装置が静止していると判定すると、
     前記キネマティック測位方法から前記スタティック測位方法に設定する、請求項3に記載の測位装置。
    A sensor for detecting a state of the positioning device;
    When the setting unit determines that the positioning device is stationary based on measurement information of the sensor,
    The positioning device according to claim 3, wherein the positioning method is set from the kinematic positioning method to the static positioning method.
  6.  前記センサはジャイロセンサおよび加速度センサであり、
     前記設定部は、前記ジャイロセンサおよび前記加速度センサを用いて前記測位装置が静止していると判定する、請求項5に記載の測位装置。
    The sensor is a gyro sensor and an acceleration sensor,
    The positioning device according to claim 5, wherein the setting unit determines that the positioning device is stationary using the gyro sensor and the acceleration sensor.
  7.  前記センサはカメラであり、
     前記設定部は、前記カメラを用いて前記測位装置が静止していると判定する、請求項5に記載の測位装置。
    The sensor is a camera;
    The positioning device according to claim 5, wherein the setting unit determines that the positioning device is stationary using the camera.
  8.  衛星から電波を受信し、
     静状態に対応する第1の測位方法、および動状態に対応する第2の測位方法を含む複数の測位方法から測位方法を設定し、
     前記設定された測位方法により、前記衛星からの電波に基づいて測位を行う、
    測位方法。
    Receive radio waves from the satellite,
    Setting a positioning method from a plurality of positioning methods including a first positioning method corresponding to a static state and a second positioning method corresponding to a moving state;
    Positioning is performed based on radio waves from the satellite by the set positioning method.
    Positioning method.
  9.  位置が既知であり、衛星から電波を受信する基準局と、
     前記基準局から情報を取得し、測位を行う測位装置と、を有し、
     前記測位装置は、衛星から電波を受信する受信部と、
     静状態に対応する第1の測位方法、および動状態に対応する第2の測位方法を含む複数の測位方法から測位方法を設定する設定部と、
     前記設定部により設定された測位方法により、前記衛星からの電波に基づいて測位を行う測位部と、を備える、
    測位システム。
    A reference station with a known location and receiving radio waves from a satellite;
    A positioning device that acquires information from the reference station and performs positioning;
    The positioning device includes a receiving unit that receives radio waves from a satellite;
    A setting unit for setting a positioning method from a plurality of positioning methods including a first positioning method corresponding to a static state and a second positioning method corresponding to a moving state;
    A positioning unit that performs positioning based on radio waves from the satellite by the positioning method set by the setting unit,
    Positioning system.
PCT/JP2016/082681 2016-01-27 2016-11-02 Positioning device, positioning method, and positioning system WO2017130510A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016012911A JP2017133895A (en) 2016-01-27 2016-01-27 Positioning apparatus, positioning method, positioning system
JP2016-012911 2016-01-27

Publications (1)

Publication Number Publication Date
WO2017130510A1 true WO2017130510A1 (en) 2017-08-03

Family

ID=59399053

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/082681 WO2017130510A1 (en) 2016-01-27 2016-11-02 Positioning device, positioning method, and positioning system

Country Status (2)

Country Link
JP (1) JP2017133895A (en)
WO (1) WO2017130510A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002257918A (en) * 2001-02-28 2002-09-11 Yoshinori Fukazawa Position measuring system and method therefor
JP2003090873A (en) * 2001-07-10 2003-03-28 Techno Vanguard:Kk Observation device, gps position observation facility, and gps position observation facility using the observation device
JP2004264120A (en) * 2003-02-28 2004-09-24 Takenaka Komuten Co Ltd Fixed point positioning method such as perpendicular reference point, and positional information record system of fixed point
JP2005164395A (en) * 2003-12-02 2005-06-23 Toyota Motor Corp Carrier wave phase type gps positioning apparatus and method
JP2008128793A (en) * 2006-11-20 2008-06-05 Toyota Motor Corp Vehicle position measuring device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002257918A (en) * 2001-02-28 2002-09-11 Yoshinori Fukazawa Position measuring system and method therefor
JP2003090873A (en) * 2001-07-10 2003-03-28 Techno Vanguard:Kk Observation device, gps position observation facility, and gps position observation facility using the observation device
JP2004264120A (en) * 2003-02-28 2004-09-24 Takenaka Komuten Co Ltd Fixed point positioning method such as perpendicular reference point, and positional information record system of fixed point
JP2005164395A (en) * 2003-12-02 2005-06-23 Toyota Motor Corp Carrier wave phase type gps positioning apparatus and method
JP2008128793A (en) * 2006-11-20 2008-06-05 Toyota Motor Corp Vehicle position measuring device

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
MISRA, PRATAP ET AL.: "Seisetsu GPS Kihon Gainen . Sokui Genri . Shingo to Jushinki", NAVIGATION AND TIMING OF JAPAN, 1 April 2010 (2010-04-01), pages 224 - 225, ISBN: 978-4-87974-631-3 *
WELLENHOF ET AL., GNSS NO SUBETE GPS , GLONASS , GALILEO..., 10 February 2010 (2010-02-10), pages 158 - 160, ISBN: 978-4-7722-2008-8 *

Also Published As

Publication number Publication date
JP2017133895A (en) 2017-08-03

Similar Documents

Publication Publication Date Title
US11441907B2 (en) Positioning device and positioning method
JP5421903B2 (en) Partial search carrier phase integer ambiguity determination
JP5301762B2 (en) Carrier phase relative positioning device
JP2021509717A (en) Positioning systems, methods and media
JP5078082B2 (en) POSITIONING DEVICE, POSITIONING SYSTEM, COMPUTER PROGRAM, AND POSITIONING METHOD
JP5590010B2 (en) Positioning device and program
JP2009544037A (en) A method for increasing the reliability of location information when moving from a regional, wide-area, or global carrier phase difference navigation (WADGPS) to a local real-time mechanical (RTK) navigation system
JP2012207919A (en) Abnormal value determination device, positioning device, and program
JP2010071686A (en) Positioning apparatus, computer program, and positioning method
WO2017136161A1 (en) Alignment of visual inertial odometry and satellite positioning system reference frames
Bai et al. Time-correlated window-carrier-phase-aided GNSS positioning using factor graph optimization for urban positioning
Han et al. Robust GPS/BDS/INS tightly coupled integration with atmospheric constraints for long-range kinematic positioning
US11243311B2 (en) Method and device for determining a position of a mobile object
JP5636552B2 (en) How to optimize the acquisition of spread spectrum signals from satellites by mobile receivers
US20190011570A1 (en) Gnss device location verification
JP6318523B2 (en) POSITIONING SYSTEM, DEVICE, METHOD, AND PROGRAM
KR20130036145A (en) A moving information determination apparatus, a receiver, and a method thereby
KR101511462B1 (en) Method and apparatus for estimating satellite positioning reliability
JP2010223684A (en) Positioning apparatus for moving body
JP2021143861A (en) Information processor, information processing method, and information processing system
JP2023508119A (en) System and method for GNSS ambiguity determination
JP2012159347A (en) Mobile positioning apparatus
Kumar et al. Identifying reflected gps signals and improving position estimation using 3d map simultaneously built with laser range scanner
JP7111298B2 (en) Satellite selection device and program
JP2022545327A (en) Increase sensitivity to reflected GNSS signals

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16888095

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16888095

Country of ref document: EP

Kind code of ref document: A1