WO2017129914A1 - Method for producing pigments - Google Patents

Method for producing pigments Download PDF

Info

Publication number
WO2017129914A1
WO2017129914A1 PCT/FR2017/050188 FR2017050188W WO2017129914A1 WO 2017129914 A1 WO2017129914 A1 WO 2017129914A1 FR 2017050188 W FR2017050188 W FR 2017050188W WO 2017129914 A1 WO2017129914 A1 WO 2017129914A1
Authority
WO
WIPO (PCT)
Prior art keywords
dry biomass
pigments
cells
μmoles
normalized
Prior art date
Application number
PCT/FR2017/050188
Other languages
French (fr)
Inventor
Rémi PRADELLES
Antoine DELBRUT
Vincent USACHE
Original Assignee
Microphyt
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Microphyt filed Critical Microphyt
Publication of WO2017129914A1 publication Critical patent/WO2017129914A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P23/00Preparation of compounds containing a cyclohexene ring having an unsaturated side chain containing at least ten carbon atoms bound by conjugated double bonds, e.g. carotenes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/12Unicellular algae; Culture media therefor
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/12Unicellular algae; Culture media therefor
    • C12N1/125Unicellular algae isolates
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N13/00Treatment of microorganisms or enzymes with electrical or wave energy, e.g. magnetism, sonic waves
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P17/00Preparation of heterocyclic carbon compounds with only O, N, S, Se or Te as ring hetero atoms
    • C12P17/18Preparation of heterocyclic carbon compounds with only O, N, S, Se or Te as ring hetero atoms containing at least two hetero rings condensed among themselves or condensed with a common carbocyclic ring system, e.g. rifamycin
    • C12P17/182Heterocyclic compounds containing nitrogen atoms as the only ring heteroatoms in the condensed system
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12RINDEXING SCHEME ASSOCIATED WITH SUBCLASSES C12C - C12Q, RELATING TO MICROORGANISMS
    • C12R2001/00Microorganisms ; Processes using microorganisms
    • C12R2001/89Algae ; Processes using algae

Definitions

  • the invention relates to the production of pigments by cells capable of photosynthesis.
  • These pigments include photosynthetic pigments capable of capturing light and photoprotective pigments which do not capture light or very little and which protect cells exposed to an excess of photons, or more broadly to oxidative stress.
  • Photosynthetic pigments are chemical compounds that allow the transformation of light energy into chemical energy in photosynthetic organisms.
  • a photon strikes a molecule of photosynthetic pigment, its energy excites an atom of this molecule, and makes it go to an excited state, of high energy level.
  • the energy accumulated in the pigment molecule is released during the return to the ground state of the molecule by a release of heat, and by a fluorescence phenomenon, by the transmission of the excitation state to another molecule and / or by the conversion of energy.
  • the photosynthetic pigments are essentially divided into two types, the active pigments, capable of performing the three modes of release of the energy accumulated above, which are in particular able to transfer the light energy in the photosynthetic electron transport chain.
  • the light energy is converted into chemical energy, and of which chlorophyll a is the representative, and the accessory pigments incapable of directly effecting this conversion of energy and which include in particular phycobilins and some carotenoids such as neoxanthine, siphonoxanthin , diadinoxanthin, fucoxanthin, violaxanthin, peridinine and echinenone.
  • the photoprotective pigments include non-photosynthetic carotenoids and in particular carotenes including lycopene and beta-carotene, and xanthophylls such as antheraxanthin, zeaxanthin, neoxanthine, lutein, loroxanthin, astaxanthin, canthaxanthin, and diatoxanthin.
  • the invention relates more particularly to the production of accessories photosynthetic pigments as well as pigments phot.oprotect.eurs.
  • fucoxanthin is only synthesized by certain macroalgae and certain microalgae.
  • fucoxanthin by macroalgae is problematic because of the seasonal nature of such production, the contamination by elements present in the marine environment (chemical pollutants, heavy metals, iodine, etc.) and the low fucoxanthin content of obtained biomass averaging 0.09% (m: m) relative to dry biomass.
  • WQ2013 / 136025A1 there is known a process for producing docosahexaenoic acid and eicosapentaenoic acid by culturing a microalgae of the genus Nitzschia, subjected to discontinuous and / or variable illumination of light over time, this process allowing, also to produce fucoxanthin.
  • the present illumination intensity variations the amplitude of which is between 5 micromoles of photon.m -2 biomassête.s -1 and 1000 ⁇ moles.m - 2 .s -1 and speaker variations between 2 and 3600 times per hour, this method of culture allows to enrich the biomass fucoxanthin only 0.2% (m: m) in dry matter and therefore does not solve the problem of too low yields.
  • the invention provides a solution with a cost-effective process and a simple implementation for a production of pigments involved, directly or indirectly, in photosynthesis, especially photosynthetic accessory pigments and pigment photoprotective.
  • the invention relates to a process for the production of pigments by cells capable of photosynthesis, according to which said cells are cultivated under conditions suitable for their development, in order to obtain a biomass, said process comprising a step of overproduction of said pigments according to which one applies to said cells a normalized luminous power with respect to the dry biomass, dependent on said pigments, said luminous power, expressed in ⁇ moles of photons per gram of said dry biomass per second, being at least 2 ⁇ moles.g _1 .s -1 and not more than 200 ⁇ mol
  • biomass means the mass of the biological material present in the culture medium which consists essentially of cells.
  • This biomass being dependent on its biotope, its quantity evolves during the process according to the conditions that are applied to it.
  • This quantity generally expressed in grams, at a given instant is determined in dry biomass by conventional techniques known to those skilled in the art.
  • ABO Algae Biomass Organization
  • Industrial Algae Measurements October 2013, Version 6.0, in particular but not only, available at
  • Normalized light power with respect to dry biomass means a light intensity expressed in ⁇ moies of photons applied per gram of dry biomass per second. This value is said to be normalized because, because of its dependence on the pigment to be produced, this value is predetermined.
  • Example 1 illustrates a method of predermination of this value for the production of fucoxanthin and for two species of microalgae, Tisochrysis lutea and Phaedactylum tricornutum.
  • the invention is more specifically described with reference to the accessory photosynthetic pigments as defined above, because to date, no production method on an industrial scale exists. But as said above, the method of the invention also applies to photoprotective pigments.
  • the value of the normalized luminous power with respect to the dry biomass, to be applied to the culture which will be designated by parameter in the remainder of the description, is dependent on the nature of the pigment to be produced.
  • the value of the parameter is at least 2, preferably at least 5, and at most 150, preferably of not more than 130 ⁇ moles e photons per gram of dry biomass per second.
  • the pigments are chosen from carotenoids and photosynthetic phycobilins.
  • the process is applied to the production of photosynthetic xanthophils, such as fucoxanthin, and the value of the parameter is chosen from values of 5 to 30 ⁇ moles.g -1 .s-. 1
  • the value of the parameter is at least 30, preferably at least 50, and at most 200, preferably at most 190 ⁇ mol of photons per gram of dry biomass per second.
  • the pigments are preferably chosen from photoprotective carotenoids, such as beta-carotene and asthaxanthin.
  • Parameter management is carried out during the light phases or in a relevant way within a sufficient period of time before the harvest of the production.
  • the normalized light power relative to the dry biomass is applied during all or part of the exponential growth phase of the cell culture.
  • the parameter is characterized during production by the measurement of the average photon flux, expressed in ⁇ moles of photon per m 2 and per second, applied to the production system subtracted from the average photon flux absorbed by the production system and normalized by the amount of biomass contained in the production system at the time of measurement.
  • the measurements of the normalized light power with respect to the dry biomass can be carried out by a quantum-meter type device. Dry biomass measurements can be carried out after filtration or centrifugation of the culture, rinsing and drying of the biomass thus recovered, or by on-line absorbance measurements at the appropriate wavelengths after determining the correlation between the absorbance at a given wavelength and dry biomass.
  • the light source applied to the production system is of natural or artificial origin or a combination of both.
  • the light source has continuous operation and / or operation in day / night mode according to naturally occurring photoperiods.
  • the emission spectrum of the light source can be selected, modified, adapted to meet particular characteristics specific to the pigments to be produced.
  • the modification of the emission spectrum of the light source can occur during production.
  • the increase or decrease in photon flux applied to the system can be effected by mechanized or manual moving net systems between the light source and the production system.
  • the increase or decrease of the flux of photons applied to the system can be effected by direct action on the light source in the case of an artificial source.
  • the increase in dry biomass within the production system can be achieved through controlled additions of nutrients that will have a direct influence on the amount of biomass.
  • the decrease in dry biomass in the production system can be achieved by dilution of the production system.
  • the parameter described by the process can be controlled and kept constant during all or part of the production via an automated device connected to light intensity sensors and sensors allowing the quantification of dry biomass, by acting on the light intensity applied to the crop, as previously described, and / or dry biomass within the production system.
  • the method described allows the production of pigments by cells capable of photosynthesis according to the batch, fed-batch, continuous, semi-continuous, turbidostat or chemostat type of culture control modes within a photobioreactor type culture system or any type of microalgae production system allowing a large and controlled mixing of the reaction medium to ensure homogeneity of the received photon flux per cell.
  • the cells capable of photosynthesis may be cells of prokaryotic or eukaryotic organisms such as algae, and in particular microalgae or macroalgae.
  • said organisms are microalgae, such as those belonging to the classes Pinguiophyceae, Chrysophyceae, Bacillariophyceae, Mamiellophyceae, Prymnesiophyceae, Haptophyceae or Coccolithophyceae.
  • the cells are advantageously microalgae cells of the species Tisochrysis lutea of the class of Prymnesiophyceae or of the species Phaedactylum tricornutum of the class Bacillariophyceae and the normalized luminous power relative to the applied dry biomass is at least 2 ⁇ moles.g - 1 .s -1 and at most 30 ⁇ moles.g - 1 .s-. 1
  • Such a process is illustrated in the following examples in support of the figure which represents a standard curve of fucoxanthin concentration produced in the biomass as a function of the parameter value.
  • the pigment is fucoxanthin
  • the cells are microalgae cells of the species Tisochrysis lutea or the species Phaedactylum tricornutum and the normalized luminous power relative to the applied dry biomass is at least 15 ⁇ moles.g - 1 .s -1 and at most 25 ⁇ moles.g - 1 .s -1 .
  • Example 1 Determination of the Normalized Light Output with Respect to the Dry Biomass to be Applied to the Culture
  • the parameter quantity of photons per unit of dry biomass in the production system and per unit of time is dependent on the pigment in question. To a lesser extent, it is also dependent on the organism whose cells are cultured.
  • This example relates to the production of fucoxanthin from microalgae cultures of the species Tisochrysis lutea of the class Prymnesiophyceae and Phaedactylum tricornutum of the class Bacillariophyceae.
  • the culture medium used is mineral, conventionally used for the culture of marine microalgae species, f / 2 type (RRL Guillard and JH Ryther, 1962, Gran Can J. Microbiol 8, 229-239) sterilized by autoclaving. .
  • the cultures are carried out in photobioreactors of 10 L capacity, previously sterilized.
  • Aeration and agitation of crops are provided by a bubbling system with a flow rate of 10 L / h ⁇ 1 of air, 1.5% of this flow is C0 2 .
  • the culture temperature is 25 ° C ⁇ 1 ° C.
  • the pH of the cultures is 7.5 ⁇ 0.5.
  • Crop lighting is provided by neon lights and lighting is provided 24 hours a day.
  • the inoculation rates applied allow an initial cell density of cultures of 1 to 2.10 6 cells / ml.
  • the monitoring of cultures are daily after sterile samples.
  • Two cultures of the microalga P. tricornutum are carried out in an identical manner and without nutrient deficiency, with the exception of the mode of management of the applied light intensity: a culture being carried out in a conventional manner and a culture being carried out according to the method of the invention.
  • T. lutea microalgae Six cultures of the T. lutea microalgae are carried out identically and without nutrient deficiency, with the exception of the applied light intensity management mode: three cultures are carried out in a conventional manner and three cultures are conducted according to the method of the invention.
  • the management of the so-called conventional light is characterized by the application of a constant light intensity of 100 ⁇ . ⁇ 2 ⁇ "1 to the culture and therefore of a value of ⁇ of photons per cell per second, which will decrease at during the culture because of the increase of the cell density.
  • the light management method of the invention involves the adaptation of the light intensity applied to the crop, by determining a normalized light power with respect to the dry biomass as a function of the concentration. cellular; the amount of photon per cell per second is thus kept constant. Since the pigment to be overproduced is a photosynthetic pigment, it is advantageously chosen in a range of between 2 and 30 ⁇ moles of photons per gram of dry biomass per second. It emerges from example 1 that it is of the order of 20 ⁇ mol.g -1. s -1 . It is applied as early as the growth phase of primed culture.
  • the biomass is harvested at the beginning of the stationary phase, the fucoxanthin is extracted and quantified by HPLC.
  • the fucoxanthin concentrations of the dry biomasses from the cultures, expressed as a percentage (m: m), as well as the fucoxanthin productivity, expressed in mg per liter of culture medium and per day, are compared according to the management mode of the light tracking. The results are shown in the following Table 1.
  • Example 3 Process for producing fucoxanthin from microalgae cultures on an industrial scale
  • the work focuses on the management of normalized light output compared to dry biomass in a microalgae culture (Tisochrysis lutea).
  • the culture medium used is mineral, of f / 2 type as in Example 2.
  • the culture systems are industrial photobioreactors (CAMARGUE) of 4730 L capacity, previously sterilized. The aeration of the cultures is ensured with a flow rate of 20L / min of air in cocurrent of the culture as described in the patent application WO2010 / 109108A1.
  • the culture temperature is 25 ° C ⁇ 5 ° C.
  • the pH of the cultures is 7.5 ⁇ 0.5.
  • the pH of the cultures is automatically regulated by the injection of C0 2 .
  • the crop lighting is of natural origin (sun), the incoming light intensity is regulated by opening-closing protective curtains constituting the climatic greenhouse in which is implanted photobioreactor.
  • the inoculation rates applied allow an initial cell density of cultures of 1 to 2.10 6 cells / ml.
  • the monitoring of cultures are daily after sterile samples.
  • Two cultures of the T. lutea microalgae are carried out identically and without nutrient deficiency, with the exception of the mode of management of the applied light intensity: a culture being carried out in a conventional manner and a culture being carried out according to the method of the invention.
  • the so-called conventional light management is characterized by the application of an unregulated light intensity to the culture and therefore a value of ⁇ mole of photons per cell per second variable during the culture due to the increase of cell density.
  • the light management method involves the adaptation of the light intensity applied to the culture as a function of the cell concentration: the quantity of photon per cell and per second is thus kept constant, and this value is of the order of 20 ⁇ mol of photons per gram of dry biomass per second, from the primed culture growth phase.
  • the biomass is harvested at the beginning of the stationary phase, the fucoxanthin is extracted and quantified by HPLC. Concentrations in fucoxanthin, dry biomass from the cultures, expressed as a percentage (m: m), as well as fucoxanthin productivity, expressed in mg per liter of culture medium and per day, are compared according to the modality of the management of the light. The results are shown in the following Table 2.

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Biotechnology (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Genetics & Genomics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Microbiology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Cell Biology (AREA)
  • Biomedical Technology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Botany (AREA)
  • General Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Virology (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

The invention relates to a method for producing pigments by cells capable of photosynthesis, according to which said cells are cultivated in conditions suitable for the development thereof, in order to obtain a biomass, the method comprising a step of overproduction of said pigments according to which a pre-determined light intensity normalised in relation to dry biomass is applied to said cells, said light intensity, expressed in µmoles of photons per gram of said dry biomass and per second, being at least 2µmoles.g-1.s-1 and at most 200 µmoles.g-1.s-..

Description

PROCEDE DE PRODUCTION DE PIGMENTS  PROCESS FOR PRODUCING PIGMENTS
L'invention concerne la production de pigments par des cellules capables de photosynthèse. The invention relates to the production of pigments by cells capable of photosynthesis.
Ces pigments comprennent les pigments photosynthétiques capables de capter la lumière et les pigments photoprotecteurs qui ne captent pas la lumière ou très peu et qui protègent les cellules exposées à un excès de photons, ou plus largement à un stress oxydant.  These pigments include photosynthetic pigments capable of capturing light and photoprotective pigments which do not capture light or very little and which protect cells exposed to an excess of photons, or more broadly to oxidative stress.
Les pigments photosynthétiques sont des composés chimiques permettant la transformation de l'énergie lumineuse en énergie chimique chez les organismes effectuant la photosynthèse. Lorsqu'un photon heurte une molécule de pigment photosynthétique, son énergie excite un atome de cette molécule, et la fait passer à un état excité, de niveau énergétique élevé. L'énergie accumulée dans la molécule de pigment est libérée lors du retour à l'état fondamental de la molécule par un dégagement de chaleur, et par un phénomène de fluorescence, par la transmission de l'état d'excitation à une autre molécule et/ou par la conversion de l'énergie.  Photosynthetic pigments are chemical compounds that allow the transformation of light energy into chemical energy in photosynthetic organisms. When a photon strikes a molecule of photosynthetic pigment, its energy excites an atom of this molecule, and makes it go to an excited state, of high energy level. The energy accumulated in the pigment molecule is released during the return to the ground state of the molecule by a release of heat, and by a fluorescence phenomenon, by the transmission of the excitation state to another molecule and / or by the conversion of energy.
Les pigments photosynthétiques se divisent essentiellement en deux types, les pigments actifs, capables d'effectuer les trois modes de libération de l'énergie accumulée ci-dessus, qui sont notamment aptes à transférer l'énergie lumineuse dans la chaîne de transport des électrons photosynthétiques où l'énergie lumineuse est convertie en énergie chimique, et dont la chlorophylle a est le représentant, et les pigments accessoires incapables d'effectuer directement cette conversion de l'énergie et qui comprennent notamment les phycobilines et certains caroténoïdes comme la néoxanthine, la siphonoxanthine, la diadinoxanthine, la fucoxanthine, la violaxanthine, la péridinine et l'échinénone.  The photosynthetic pigments are essentially divided into two types, the active pigments, capable of performing the three modes of release of the energy accumulated above, which are in particular able to transfer the light energy in the photosynthetic electron transport chain. where the light energy is converted into chemical energy, and of which chlorophyll a is the representative, and the accessory pigments incapable of directly effecting this conversion of energy and which include in particular phycobilins and some carotenoids such as neoxanthine, siphonoxanthin , diadinoxanthin, fucoxanthin, violaxanthin, peridinine and echinenone.
Les pigments photoprotecteurs comprennent les caroténoïdes non photosynthétiques et en particulier les carotènes dont le lycopène et le bêta- carotène, et des xanthophylles comme l'anthéraxanthine, la zéaxanthine, la néoxanthine, la lutéine, la loroxanthine, l'astaxanthine, la canthaxanthine, et la diatoxanthine.  The photoprotective pigments include non-photosynthetic carotenoids and in particular carotenes including lycopene and beta-carotene, and xanthophylls such as antheraxanthin, zeaxanthin, neoxanthine, lutein, loroxanthin, astaxanthin, canthaxanthin, and diatoxanthin.
L'invention concerne plus particulièrement la production des pigments photosynthétiques accessoires ainsi que les pigments phot.oprotect.eurs. The invention relates more particularly to the production of accessories photosynthetic pigments as well as pigments phot.oprotect.eurs.
Au-delà de leurs fonctions colorantes largement exploitées dans l'industrie agroalimentaire, nombre de ces pigments possèdent des propriétés biologiques d'intérêt, et notamment une activité anti-oxydante, trouvant ainsi diverses utilisations en pharmacie et en cosmétique. A titre d'exemple, différentes études sur la fucoxanthine, un pigment de la famille des xanthophylles, rapportent qu'en plus de ses applications en tant qu'anti-oxydant, elle présente des propriétés antiinflammatoires, anti-cancer, anti-obésité, anti-diabète, anti-angiogénèse et peut même être employée pour traiter la malaria. Beyond their coloring functions widely used in the food industry, many of these pigments have biological properties of interest, including antioxidant activity, thus finding various uses in pharmacy and cosmetics. For example, different studies on the fucoxanthin, a pigment of the family of xanthophylls, report that in addition to its applications as antioxidant, it has anti-inflammatory properties, anti-cancer, anti-obesity, anti-diabetes, anti-angiogenesis and can even to be used to treat malaria.
L'avenir de ces pigments est donc prometteur et il est indispensable de disposer d'outils pour leur production à l'échelle industrielle, en particulier pour les pigments photosynthétiques accessoires pour lesquels aucune voie rentable n'est encore disponible.  The future of these pigments is therefore promising and it is essential to have tools for their production on an industrial scale, in particular for accessory photosynthetic pigments for which no profitable route is yet available.
A titre d'exemple, la fucoxanthine est uniquement synthétisée par certaines macroalgues et certaines microalgues.  By way of example, fucoxanthin is only synthesized by certain macroalgae and certain microalgae.
La production de fucoxanthine par les macroalgues est problématique de par le caractère saisonnier d'une telle production, la contamination par les éléments présents dans le milieu naturel marin (polluants chimiques, métaux lourds, iode, etc.) et la faible teneur en fucoxanthine des biomasses obtenues qui sont en moyenne de 0,09% (m :m) par rapport à la biomasse sèche.  The production of fucoxanthin by macroalgae is problematic because of the seasonal nature of such production, the contamination by elements present in the marine environment (chemical pollutants, heavy metals, iodine, etc.) and the low fucoxanthin content of obtained biomass averaging 0.09% (m: m) relative to dry biomass.
Quant à la production de fucoxanthine par microalgues, les concentrations atteintes au sein de la biomasse sèche sont en moyenne de 0,70% (m :m). Une seule étude fait état d'une teneur de 1,98% (m :m) dans le cas de la microalgue Isochrysis sp. (P. Crupi et al., Rapid Commun. Mass Spectrom. 2013, 27, 1027-1035).  As for the production of fucoxanthin by microalgae, the concentrations reached within the dry biomass are on average 0.70% (m: m). Only one study reported a content of 1.98% (m: m) in the case of the microalga Isochrysis sp. (Crupi P. et al., Rapid Commun Mass Spectrom 2013, 27, 1027-1035).
A l'heure actuelle, certains spécialistes suggèrent que la seule possibilité de surproduire ces pigments serait l'ingénierie moléculaire (KJM M ulders et al., 2014, J. Phycol. 2014, 50(2), 229-242), et ce, malgré la faible connaissance des voies métaboliques et des enzymes impliquées dans leur synthèse et le faible degré de maturité des outils moléculaires disponibles pour certains microorganismes.  At present, some experts suggest that the only possibility of overproducing these pigments would be molecular engineering (KJM M ulders et al., 2014, J. Phycol 2014, 50 (2), 229-242), and , despite the poor knowledge of the metabolic pathways and enzymes involved in their synthesis and the low degree of maturity of the molecular tools available for certain microorganisms.
De plus, il a été démontré que dans le cas d'une production en lumière naturelle, la quantité et la concentration en pigments photosynthétiques accessoires de la production est dépendante du moment de la récolte du système au cours de la journée du fait des différentes variations d'intensités lumineuses au cours de la phase ensoleillée et de la valeur des intensités lumineuses (Obata et Taguchi, 2012, Plankton Benthos Res 7(3), 101-110). Ceci rend l'exploitation industrielle difficile à optimiser et à rationnaliser dans le cadre d'une reproductibilité des caractéristiques d'une production.  In addition, it has been shown that in the case of natural light production, the quantity and concentration of accessory photosynthetic pigments of the production is dependent on the time of harvest of the system during the day because of the different variations. luminous intensities during the sunny phase and the value of the light intensities (Obata and Taguchi, 2012, Plankton Benthos Res 7 (3), 101-110). This makes industrial exploitation difficult to optimize and rationalize as part of a reproducibility of the characteristics of a production.
Selon WQ2013/136025A1, on connaît un procédé de production d'acide docosahexaénoïque et d'acide éicosapentaénoïque par une culture d'une microalgue du genre Nitzschia, soumise à un éclairement discontinu et/ou va riable de lumière au cours du temps, ce procédé permettant, aussi de produire de la fucoxanthine. L'éclairement présente des variations d'intensité, dont l'amplitude est comprise entre 5 μmoles de photon.m-2 de biomasse exposée.s-1 et 1000 μmoles.m- 2 .s -1 et les variations intervenant entre 2 et 3600 fois par heure, Ce mode de culture ne permet d'enrichir la biomasse en fucoxanthine qu'à hauteur de 0,2% (m:m) en matière sèche et ne permet donc pas de résoudre le problème de trop faibles rendements. According to WQ2013 / 136025A1, there is known a process for producing docosahexaenoic acid and eicosapentaenoic acid by culturing a microalgae of the genus Nitzschia, subjected to discontinuous and / or variable illumination of light over time, this process allowing, also to produce fucoxanthin. The present illumination intensity variations, the amplitude of which is between 5 micromoles of photon.m -2 biomass exposée.s -1 and 1000 μmoles.m - 2 .s -1 and speaker variations between 2 and 3600 times per hour, this method of culture allows to enrich the biomass fucoxanthin only 0.2% (m: m) in dry matter and therefore does not solve the problem of too low yields.
A ce jour, il existe un réel besoin d'un procédé de production plus performant. To date, there is a real need for a more efficient production process.
L'invention apporte une solution avec un procédé rentable et d'une mise en œuvre simple pour une production de pigments impliqués, directement ou non, dans la photosynthèse, et en particulier les pigments photosynthétiques accessoires et les pigments photoprotecteurs. The invention provides a solution with a cost-effective process and a simple implementation for a production of pigments involved, directly or indirectly, in photosynthesis, especially photosynthetic accessory pigments and pigment photoprotective.
De manière inattendue, les auteurs ont découvert qu'en soumettant une culture de cellules capables de photosynthèse à une puissance lumineuse normalisée par rapport à la biomasse sèche, la production de pigment était fortement augmentée.  Surprisingly, the authors discovered that by subjecting a photosynthetic cell culture to normalized light power over dry biomass, pigment production was greatly increased.
Ainsi l'invention concerne un procédé de production de pigments par des cellules capables de photosynthèse, selon lequel on cultive lesdites cellules dans des conditions appropriées à leur développement, pour obtenir une biomasse, ledit procédé comprenant une étape de surproduction desdits pigments selon laquelle on applique auxdites cellules une puissance lumineuse normalisée par rapport à la biomasse sèche, dépendante desdits pigments, ladite puissance lumineuse, exprimée en μmoles de photons par gramme de ladite biomasse sèche et par seconde, étant d'au moins 2 μmoles.g _1.s -1 et d'au plus 200 μmoles
Figure imgf000005_0001
Thus, the invention relates to a process for the production of pigments by cells capable of photosynthesis, according to which said cells are cultivated under conditions suitable for their development, in order to obtain a biomass, said process comprising a step of overproduction of said pigments according to which one applies to said cells a normalized luminous power with respect to the dry biomass, dependent on said pigments, said luminous power, expressed in μmoles of photons per gram of said dry biomass per second, being at least 2 μmoles.g _1 .s -1 and not more than 200 μmol
Figure imgf000005_0001
Avant d'exposer l'invention plus en détail, certains termes employés sont définis.  Before exposing the invention in more detail, certain terms used are defined.
Selon l'invention, on entend par biomasse, la masse de la matière biologique présente dans le milieu de culture qui est essentiellement constituée des cellules. Cette biomasse étant dépendante de son biotope, sa quantité évolue au cours du procédé en fonction des conditions qui lui sont appliquées. Cette quantité, généralement exprimée en gramme, à un instant donné est déterminée en biomasse sèche, par des techniques classiques connues de l'homme du métier. A titre d'exemple, l'homme du métier peut se reporter au document publié par la Algae Biomass Organisation (ABO), industrial Algae Measurements, Octobre 2013, Version 6.0, notamment mais pas uniquement, disponible à l'adresse
Figure imgf000005_0002
According to the invention, biomass means the mass of the biological material present in the culture medium which consists essentially of cells. This biomass being dependent on its biotope, its quantity evolves during the process according to the conditions that are applied to it. This quantity, generally expressed in grams, at a given instant is determined in dry biomass by conventional techniques known to those skilled in the art. By way of example, one skilled in the art can refer to the document published by the Algae Biomass Organization (ABO), Industrial Algae Measurements, October 2013, Version 6.0, in particular but not only, available at
Figure imgf000005_0002
Figure imgf000005_0003
qui est un recueil des méthoiogies standard employées et approuvées par les principaux acteurs mondiaux dans le secteur des algues, et en particulier à son Annexe A, aux pages 7-8 où est décrit le protocole de mesure de la biomasse sèche d'une culture de cellules.
Figure imgf000005_0003
which is a compendium of standard methodologies used and endorsed by the main global players in the seaweed sector, and particular to its Annex A, on pages 7-8 where is described the protocol for measuring the dry biomass of a cell culture.
Par puissance lumineuse normalisée par rapport à la biomasse sèche, on entend une intensité lumineuse exprimée en μmoies de photons appliquées par gramme de biomasse sèche et par seconde. Cette valeur est dite normalisée car du fait de sa dépendance au pigment à produire, cette valeur est prédéterminée. L'exemple 1 illustre une méthode de prédermination de cette valeur pour la production de la fucoxanthine et pour deux espèces de microalgue, Tisochrysis lutea et Phaedactylum tricornutum.  Normalized light power with respect to dry biomass means a light intensity expressed in μmoies of photons applied per gram of dry biomass per second. This value is said to be normalized because, because of its dependence on the pigment to be produced, this value is predetermined. Example 1 illustrates a method of predermination of this value for the production of fucoxanthin and for two species of microalgae, Tisochrysis lutea and Phaedactylum tricornutum.
L'invention est plus spécifiquement décrite en référence aux pigments photosynthétiques accessoires tels que définis ci-dessus, car à ce jour, aucun procédé de production à l'échelle industrielle n'existe. Mais comme dit précédemment, le procédé de l'invention s'applique aussi aux pigments photoprotecteurs.  The invention is more specifically described with reference to the accessory photosynthetic pigments as defined above, because to date, no production method on an industrial scale exists. But as said above, the method of the invention also applies to photoprotective pigments.
L'invention est ci-après exposée plus en détail et ses variantes, notamment variantes préférentielles, présentées.  The invention is hereinafter described in more detail and its variants, especially preferred variants, presented.
La valeur de la puissance lumineuse normalisée par rapport à la biomasse sèche, à appliquer à la culture, que l'on désignera par paramètre dans la suite de la description, est dépendante de la nature du pigment à produire.  The value of the normalized luminous power with respect to the dry biomass, to be applied to the culture, which will be designated by parameter in the remainder of the description, is dependent on the nature of the pigment to be produced.
Les auteurs ont observé qu'elle devait être d'au moins 2 μmoles.g- 1 .s-1 et d'au plus 200 μmoles.g- 1 .s-1. Dans cette fourchette, sa valeur est avantageusement plus élevée pour la production de pigments photoprotecteurs comparativement à celle de pigments photosynthétiques accessoires. The authors observed that it should be at least 2 μmoles.g - 1 .s -1 and at most 200 μmoles.g - 1 .s -1 . In this range, its value is advantageously higher for the production of photoprotective pigments compared to that of accessory photosynthetic pigments.
Ainsi, selon une mise en œuvre préférée du procédé de l'invention appliqué à la production de pigments photosynthétiques, la valeur du paramètre est d'au moins 2, de préférence d'au moins 5, et d'au plus 150, de préférence d'au plus 130, μιmoles e photons par gramme de biomasse sèche et par seconde. Dans cette variante, les pigments sont choisis parmi les caroténoïdes et les phycobilines photosynthétiques. Avantageusement, le procédé est appliqué à la production de xanthophilles photosynthétiques, comme la fucoxanthine, et la valeur du paramètre est choisie parmi les valeurs de 5 à 30 μmoles.g- 1 .s-.1 Thus, according to a preferred embodiment of the process of the invention applied to the production of photosynthetic pigments, the value of the parameter is at least 2, preferably at least 5, and at most 150, preferably of not more than 130 μιmoles e photons per gram of dry biomass per second. In this variant, the pigments are chosen from carotenoids and photosynthetic phycobilins. Advantageously, the process is applied to the production of photosynthetic xanthophils, such as fucoxanthin, and the value of the parameter is chosen from values of 5 to 30 μmoles.g -1 .s-. 1
Selon une mise en œuvre préférée du procédé de l'invention appliqué à la production de pigments photoprotecteurs, la valeur du paramètre est d'au moins 30, de préférence d'au moins 50, et d'au plus 200, de préférence d'au plus 190, μmoles de photons par gramme de biomasse sèche et par seconde. Dans cette variante, les pigments sont de préférence choisis parmi les caroténoïdes photoprotecteurs, tels que la bêta-carotène et l'asthaxanthine. La gestion du paramètre s'effectue lors des phases lumineuses ou de façon pertinente dans un laps de temps suffisant avant la récolte de la production. De préférence, on applique la puissance lumineuse normalisée par rapport à la biomasse sèche, pendant tout ou partie de la phase exponentielle de croissance de la culture cellulaire. According to a preferred implementation of the process of the invention applied to the production of photoprotective pigments, the value of the parameter is at least 30, preferably at least 50, and at most 200, preferably at most 190 μmol of photons per gram of dry biomass per second. In this variant, the pigments are preferably chosen from photoprotective carotenoids, such as beta-carotene and asthaxanthin. Parameter management is carried out during the light phases or in a relevant way within a sufficient period of time before the harvest of the production. Preferably, the normalized light power relative to the dry biomass is applied during all or part of the exponential growth phase of the cell culture.
Le paramètre est caractérisé en cours de production par la mesure du flux de photons moyen, exprimé en μmoles de photon par m2 et par seconde, appliqué au système de production retranché du flux de photons moyen absorbé par le système de production et normalisé par la quantité de biomasse contenue dans le système de production au temps de la mesure. Les mesures de la puissance lumineuse normalisée par rapport à la biomasse sèche peuvent être effectuées par un dispositif de type quantum-mètre. Les mesures de biomasses sèches peuvent être effectuées après filtration ou centrifugation de la culture, rinçage et séchage de la biomasse ainsi récupérée, ou par des mesures en ligne d'absorbance aux longueurs d'ondes adéquates après détermination de la corrélation entre l'absorbance à une longueur d'onde donnée et la biomasse sèche. The parameter is characterized during production by the measurement of the average photon flux, expressed in μmoles of photon per m 2 and per second, applied to the production system subtracted from the average photon flux absorbed by the production system and normalized by the amount of biomass contained in the production system at the time of measurement. The measurements of the normalized light power with respect to the dry biomass can be carried out by a quantum-meter type device. Dry biomass measurements can be carried out after filtration or centrifugation of the culture, rinsing and drying of the biomass thus recovered, or by on-line absorbance measurements at the appropriate wavelengths after determining the correlation between the absorbance at a given wavelength and dry biomass.
La source lumineuse appliquée au système de production est d'origine naturelle ou artificielle ou une combinaison des deux.  The light source applied to the production system is of natural or artificial origin or a combination of both.
La source lumineuse a un fonctionnement continu et/ou un fonctionnement en mode jour/nuit selon les photopériodes naturellement rencontrées. Le spectre d'émission de la source lumineuse peut être choisi, modifié, adapté afin de répondre à des caractéristiques particulières propres aux pigments à produire.  The light source has continuous operation and / or operation in day / night mode according to naturally occurring photoperiods. The emission spectrum of the light source can be selected, modified, adapted to meet particular characteristics specific to the pigments to be produced.
La modification du spectre d'émission de la source lumineuse peut survenir en cours de production.  The modification of the emission spectrum of the light source can occur during production.
La régulation de ce paramètre à maintenir constant peut s'effectuer par la variation d'un ou de plusieurs facteurs :  The regulation of this parameter to maintain constant can be carried out by the variation of one or more factors:
- augmentation ou diminution du flux de photons appliqué au système, ou  - increase or decrease in the flow of photons applied to the system, or
- augmentation ou diminution de la biomasse sèche au sein du système de production, ou  - increase or decrease in dry biomass within the production system, or
- couplage de ces actions  - coupling of these actions
L'augmentation ou la diminution du flux de photons appliqués au système peut s'effectuer par des systèmes de voilages mobiles mécanisés ou manuels entre la source lumineuse et le système de production. L'augmentation ou la diminution du flux de photons appliqués au système peut s'effectuer par action directe sur la source lumineuse dans le cas d'une source artificielle. The increase or decrease in photon flux applied to the system can be effected by mechanized or manual moving net systems between the light source and the production system. The increase or decrease of the flux of photons applied to the system can be effected by direct action on the light source in the case of an artificial source.
L'augmentation de la biomasse sèche au sein du système de production peut s'effectuer par des ajouts contrôlés de nutriments qui auront une influence directe sur la quantité de biomasse.  The increase in dry biomass within the production system can be achieved through controlled additions of nutrients that will have a direct influence on the amount of biomass.
La diminution de la biomasse sèche au sein du système de production peut s'effectuer par dilutions du système de production.  The decrease in dry biomass in the production system can be achieved by dilution of the production system.
Le paramètre décrit par le procédé, peut être contrôlé et maintenu constant pendant tout ou partie de la production via un dispositif automatisé relié à des capteurs d'intensité lumineuse et des capteurs permettant la quantification de la biomasse sèche, en agissant sur l'intensité lumineuse appliquée à la culture, selon les modalités décrites précédemment, et/ou sur la biomasse sèche au sein du système de production.  The parameter described by the process, can be controlled and kept constant during all or part of the production via an automated device connected to light intensity sensors and sensors allowing the quantification of dry biomass, by acting on the light intensity applied to the crop, as previously described, and / or dry biomass within the production system.
Le procédé décrit permet la production de pigments par des cellules capables de photosynthèse selon les modes de conduite de culture de type batch, fed-batch, continu, semi-continu, turbidostat ou chemostat au sein d'un système de culture de type photobioréacteur ou tout type de système de production de microalgues permettant un mélange important et contrôlé du milieu réactionnel afin d'assurer l'homogénéité du flux de photon reçu par cellule.  The method described allows the production of pigments by cells capable of photosynthesis according to the batch, fed-batch, continuous, semi-continuous, turbidostat or chemostat type of culture control modes within a photobioreactor type culture system or any type of microalgae production system allowing a large and controlled mixing of the reaction medium to ensure homogeneity of the received photon flux per cell.
Les cellules capables de photosynthèse peuvent être des cellules d'organismes procaryotes ou eucaryotes comme des algues, et notamment microalgues ou macroalgues. Selon une variante de l'invention, lesdits organismes sont des microalgues, telles que celles appartenant aux classes des Pinguiophyceae, Chrysophyceae, Bacillariophyceae, Mamiellophyceae, Prymnesiophyceae, Haptophyceae ou Coccolithophyceae.  The cells capable of photosynthesis may be cells of prokaryotic or eukaryotic organisms such as algae, and in particular microalgae or macroalgae. According to a variant of the invention, said organisms are microalgae, such as those belonging to the classes Pinguiophyceae, Chrysophyceae, Bacillariophyceae, Mamiellophyceae, Prymnesiophyceae, Haptophyceae or Coccolithophyceae.
Aux fins de la production de fucoxanthine selon l'invention, avantageusement les cellules sont des cellules de microalgue de l'espèce Tisochrysis lutea de la classe des Prymnesiophyceae ou de l'espèce Phaedactylum tricornutum de la classe des Bacillariophyceae et la puissance lumineuse normalisée par rapport à la biomasse sèche appliquée est d'au moins 2 μmoles.g- 1 .s-1 et d'au plus 30 μmoles.g- 1 .s-.1 Un tel procédé est illustré dans les exemples suivants à l'appui de la figure qui représente une courbe étalon de la concentration en fucoxanthine produite dans la biomasse en fonction de la valeur du paramètre. For the purposes of the production of fucoxanthin according to the invention, the cells are advantageously microalgae cells of the species Tisochrysis lutea of the class of Prymnesiophyceae or of the species Phaedactylum tricornutum of the class Bacillariophyceae and the normalized luminous power relative to the applied dry biomass is at least 2 μmoles.g - 1 .s -1 and at most 30 μmoles.g - 1 .s-. 1 Such a process is illustrated in the following examples in support of the figure which represents a standard curve of fucoxanthin concentration produced in the biomass as a function of the parameter value.
Dans une application intéressante du procédé de l'invention, le pigment est la fucoxanthine, les cellules sont des cellules de microalgue de l'espèce Tisochrysis lutea ou de l'espèce Phaedactylum tricornutum et la puissance lumineuse normalisée par rapport à la biomasse sèche appliquée est d'au moins 15 μmoles.g- 1 .s-1 et d'au plus 25 μmoles.g- 1 .s-1 . Exemple 1 : Détermination de la puissance lumineuse normalisée par rapport à la biomasse sèche à appliquer à la culture In an interesting application of the process of the invention, the pigment is fucoxanthin, the cells are microalgae cells of the species Tisochrysis lutea or the species Phaedactylum tricornutum and the normalized luminous power relative to the applied dry biomass is at least 15 μmoles.g - 1 .s -1 and at most 25 μmoles.g - 1 .s -1 . Example 1 Determination of the Normalized Light Output with Respect to the Dry Biomass to be Applied to the Culture
Comme indiqué précédemment, le paramètre quantité de photons par unité de biomasse sèche dans le système de production et par unité de temps, est dépendant du pigment considéré. Dans une moindre mesure, il est aussi dépendant de l'organisme dont les cellules sont cultivées.  As indicated previously, the parameter quantity of photons per unit of dry biomass in the production system and per unit of time is dependent on the pigment in question. To a lesser extent, it is also dependent on the organism whose cells are cultured.
C'est pourquoi la détermination de ce paramètre s'effectue par expérimentation, qui relève toutefois des compétences générales de l'homme du métier. Une technique de détermination parfaitement reproductible, est ci-après décrite.  This is why the determination of this parameter is carried out by experimentation, which however falls within the general skills of a person skilled in the art. A perfectly reproducible determination technique is hereinafter described.
Différentes valeurs de ce paramètre, c'est-à-dire de μιηοΐθ de photons par gramme de biomasse séchée et par seconde, sont appliquées à des productions de pigments par des cellules capables de photosynthèse et les teneurs en pigments ainsi produites sont quantifiées.  Different values of this parameter, that is to say μιηοΐθ of photons per gram of dried biomass per second, are applied to pigment productions by cells capable of photosynthesis and the pigment contents thus produced are quantified.
Ainsi de telles expérimentations sont exemplifiées dans le cas d'une production de fucoxanthine par une culture de la microalgue T. lutea et illustrées par la courbe représentée à la figure.  Thus, such experiments are exemplified in the case of fucoxanthin production by a culture of T. lutea microalgae and illustrated by the curve shown in FIG.
Il ressort de cette courbe que le pic de production est obtenu avec une valeur du paramètre de l'ordre de 20 μmoles de photons par gramme de biomasse sèche par seconde.  It follows from this curve that the peak of production is obtained with a parameter value of the order of 20 μmol of photons per gram of dry biomass per second.
Exemple 2 : Procédé de production de fucoxanthine à partir de cultures de microalgues Example 2 Process for producing fucoxanthin from microalgae cultures
Cet exemple porte sur la production de fucoxanthine à partir de cultures de microalgues des espèces Tisochrysis lutea de la classe des Prymnesiophyceae et Phaedactylum tricornutum de la classe des Bacillariophyceae.  This example relates to the production of fucoxanthin from microalgae cultures of the species Tisochrysis lutea of the class Prymnesiophyceae and Phaedactylum tricornutum of the class Bacillariophyceae.
Les cultures sont réalisées dans les mêmes conditions qui sont détaillées ci- après :  The cultures are carried out under the same conditions which are detailed below:
Le milieu de culture utilisé est minéral, classiquement utilisé pour la culture des espèces de microalgues marines, de type f/2 (RRL Guillard et JH Ryther, 1962, Gran. Can. J. Microbiol. 8, 229-239) stérilisé par autoclavage. Les cultures sont effectuées dans des photobioréacteurs de 10 L de capacité, préalablement stérilisés. The culture medium used is mineral, conventionally used for the culture of marine microalgae species, f / 2 type (RRL Guillard and JH Ryther, 1962, Gran Can J. Microbiol 8, 229-239) sterilized by autoclaving. . The cultures are carried out in photobioreactors of 10 L capacity, previously sterilized.
L'aération et l'agitation des cultures sont assurées par un système de bullage avec un débit de 10 L/h ±1 d'air dont 1,5% de ce débit est du C02. Aeration and agitation of crops are provided by a bubbling system with a flow rate of 10 L / h ± 1 of air, 1.5% of this flow is C0 2 .
La température de culture est de 25°C ±1°C.  The culture temperature is 25 ° C ± 1 ° C.
Le pH des cultures est de 7,5 ± 0,5.  The pH of the cultures is 7.5 ± 0.5.
L'éclairage des cultures est fourni par des néons et l'éclairage est assuré 24h/24.  Crop lighting is provided by neon lights and lighting is provided 24 hours a day.
Les taux d'inoculation appliqués permettent une densité cellulaire initiale des cultures de l à 2.106 cellules/ml. The inoculation rates applied allow an initial cell density of cultures of 1 to 2.10 6 cells / ml.
Les suivis des cultures sont journaliers après prélèvements stériles.  The monitoring of cultures are daily after sterile samples.
Les paramètres quantifiés sont :  Quantified parameters are:
- La densité cellulaire par comptage sur lame de Malassez  - The cell density by counting on Malassez's blade
- L'absorbance à 880 nm par spectrophotométrie  Absorbance at 880 nm by spectrophotometry
- La concentration en biomasse sèche par centrifugation d'un volume connu, rinçage du culot et séchage à l'étuve jusqu'à stabilisation de la masse résiduelle  - The concentration of dry biomass by centrifugation of a known volume, rinsing of the pellet and drying in an oven until stabilization of the residual mass
- La concentration en P04 2" par test colorimétrique - The concentration of P0 4 2 " by colorimetric test
- La concentration en N03 " par test colorimétrique - The concentration in N0 3 " by colorimetric test
- L'intensité lumineuse entrante et sortante des cultures via un quantum- mètre.  - The light intensity coming in and out of crops via a quantum meter.
Deux cultures de la microalgue P. tricornutum sont réalisées de manière identique et sans carence en nutriments, à l'exception du mode de gestion de l'intensité lumineuse appliquée : une culture étant menée de façon classique et une culture étant menée selon le procédé de l'invention.  Two cultures of the microalga P. tricornutum are carried out in an identical manner and without nutrient deficiency, with the exception of the mode of management of the applied light intensity: a culture being carried out in a conventional manner and a culture being carried out according to the method of the invention.
Six cultures de la microalgue T. lutea sont réalisées de manière identique et sans carence en nutriment, à l'exception du mode de gestion de l'intensité lumineuse appliquée : trois cultures étant menées de façon classique et trois cultures étant menées selon le procédé de l'invention.  Six cultures of the T. lutea microalgae are carried out identically and without nutrient deficiency, with the exception of the applied light intensity management mode: three cultures are carried out in a conventional manner and three cultures are conducted according to the method of the invention.
La gestion de la lumière dite classique se caractérise par l'application d'une intensité lumineuse constante de 100 μΐΎΐοΙ.ητ 2^"1 à la culture et donc d'une valeur de μιηοΐθ de photons par cellule par seconde, qui va diminuer au cours de la culture du fait de l'augmentation de la densité cellulaire. The management of the so-called conventional light is characterized by the application of a constant light intensity of 100 μΐΎΐοΙ.ητ 2 ^ "1 to the culture and therefore of a value of μιηοΐθ of photons per cell per second, which will decrease at during the culture because of the increase of the cell density.
Le procédé de gestion de la lumière de l'invention implique l'adaptation de l'intensité lumineuse appliquée à la culture, par la détermination d'une puissance lumineuse normalisée par rapport à la biomasse sèche en fonction de la concentration cellulaire ; la quantité de photon par cellule et par seconde est ainsi maintenue constante. Le pigment à surproduire étant un pigment photosynthétique, elle est avantageusement choisie dans un intervalle compris entre 2 et 30 μmoles de photons par gramme de biomasse sèche et par seconde. I l ressort de l'exem ple 1 qu'elle est de l'ordre de 20 μmol.g -1.s-1. Elle est appliquée dès la phase de croissance de culture amorcée. The light management method of the invention involves the adaptation of the light intensity applied to the crop, by determining a normalized light power with respect to the dry biomass as a function of the concentration. cellular; the amount of photon per cell per second is thus kept constant. Since the pigment to be overproduced is a photosynthetic pigment, it is advantageously chosen in a range of between 2 and 30 μmoles of photons per gram of dry biomass per second. It emerges from example 1 that it is of the order of 20 μmol.g -1. s -1 . It is applied as early as the growth phase of primed culture.
Pour chacune des cultures, la biomasse est récoltée en début de phase stationnaire, la fucoxanthine est extraite puis quantifiée par HPLC. Les concentrations en fucoxanthine des biomasses sèches issues des cultures, exprimées en pourcentage (m :m), ainsi que les productivités en fucoxanthine, exprimées en mg par litre de milieu de culture et par jour, sont comparées en fonction du mode de gestion de la lumière suivi. Les résultats sont présentés dans le tableau 1 suivant.  For each crop, the biomass is harvested at the beginning of the stationary phase, the fucoxanthin is extracted and quantified by HPLC. The fucoxanthin concentrations of the dry biomasses from the cultures, expressed as a percentage (m: m), as well as the fucoxanthin productivity, expressed in mg per liter of culture medium and per day, are compared according to the management mode of the light tracking. The results are shown in the following Table 1.
Tableau 1  Table 1
Figure imgf000011_0001
Figure imgf000011_0001
I l ressort du Tableau 1 que, comparativement aux cultures menées selon un procédé classique, le procédé de l'invention permet : From Table 1 it can be seen that, compared to conventional cultures, the method of the invention allows:
— » Une augmentation des teneurs en fucoxanthine d'un facteur 2 à 2,4 et — » Une augmentation des productivités en fucoxanthine d'un facteur 2 à 2,4, du fait d'une conservation des productivités en biomasse.  - »An increase in fucoxanthin levels by a factor of 2 to 2.4 and -» An increase in fucoxanthin productivity by a factor of 2 to 2.4, due to a conservation of biomass productivities.
Exemple 3 : Procédé de production de fucoxanthine à partir de cultures de microalgues à l'échelle industrielle Example 3 Process for producing fucoxanthin from microalgae cultures on an industrial scale
Les travaux portent sur la gestion de la puissance lumineuse normalisée par rapport à la biomasse sèche apportée à une culture de microalgue (Tisochrysis lutea).  The work focuses on the management of normalized light output compared to dry biomass in a microalgae culture (Tisochrysis lutea).
Le milieu de culture utilisé est minéral, de type f/2 comme dans l'exemple 2. The culture medium used is mineral, of f / 2 type as in Example 2.
Les systèmes de culture sont des photobioréacteurs industriels (CAMARGUE) de 4730 L de capacité, préalablement stérilisés. L'aération des cultures est assurée avec un débit de 20L/min d'air à co-courant de la culture tel que décrit dans la demande de brevet WO2010/109108A1. The culture systems are industrial photobioreactors (CAMARGUE) of 4730 L capacity, previously sterilized. The aeration of the cultures is ensured with a flow rate of 20L / min of air in cocurrent of the culture as described in the patent application WO2010 / 109108A1.
La température de culture est de 25°C ±5°C.  The culture temperature is 25 ° C ± 5 ° C.
Le pH des cultures est de 7,5 ± 0,5. Le pH des cultures est automatiquement régulé par l'injection de C02. The pH of the cultures is 7.5 ± 0.5. The pH of the cultures is automatically regulated by the injection of C0 2 .
L'éclairage des cultures est d'origine naturelle (soleil), l'intensité lumineuse entrante est régulée par ouverture-fermeture de rideaux protecteurs constitutifs de la serre climatique dans laquelle est implanté le photobioréacteur.  The crop lighting is of natural origin (sun), the incoming light intensity is regulated by opening-closing protective curtains constituting the climatic greenhouse in which is implanted photobioreactor.
Les taux d'inoculation appliqués permettent une densité cellulaire initiale des cultures de l à 2.106 cellules/ml. The inoculation rates applied allow an initial cell density of cultures of 1 to 2.10 6 cells / ml.
Les suivis des cultures sont journaliers après prélèvements stériles.  The monitoring of cultures are daily after sterile samples.
Les paramètres quantifiés sont :  Quantified parameters are:
- La densité cellulaire par comptage sur lame de Malassez  - The cell density by counting on Malassez's blade
- L'absorbance à 880nm par spectrophotométrie  Absorbance at 880 nm by spectrophotometry
- La concentration en biomasse sèche par centrifugation d'un volume connu, rinçage du culot et séchage à l'étuve jusqu'à stabilisation de la masse résiduelle  - The concentration of dry biomass by centrifugation of a known volume, rinsing of the pellet and drying in an oven until stabilization of the residual mass
- La concentration en P04 2- par test colorimétrique - The concentration of P0 4 2- by colorimetric test
- La concentration en N03- par test colorimétrique - The concentration in N0 3 - by colorimetric test
- L'intensité lumineuse entrante et sortante des cultures via un quantum- mètre  - The light intensity coming in and out of crops via a quantum meter
Deux cultures de la microalgue T. lutea sont réalisées de manière identique et sans carence en nutriments, à l'exception du mode de gestion de l'intensité lumineuse appliquée : une culture étant menée de façon classique et une culture étant menée selon le procédé de l'invention.  Two cultures of the T. lutea microalgae are carried out identically and without nutrient deficiency, with the exception of the mode of management of the applied light intensity: a culture being carried out in a conventional manner and a culture being carried out according to the method of the invention.
La gestion de la lumière dite classique se caractérise par l'application d'une intensité lumineuse non régulée à la culture et donc d'une valeur de μmole de photons par cellule par seconde variable au cours de la culture du fait de l'augmentation de la densité cellulaire.  The so-called conventional light management is characterized by the application of an unregulated light intensity to the culture and therefore a value of μmole of photons per cell per second variable during the culture due to the increase of cell density.
A contrario, le procédé de gestion de la lumière implique l'adaptation de l'intensité lumineuse appliquée à la culture en fonction de la concentration cellulaire : la quantité de photon par cellule et par seconde est donc maintenue constante, et ce, à une valeur de l'ordre de 20 μmoles de photons par gramme de biomasse sèche et par seconde, dès la phase de croissance de culture amorcée.  On the other hand, the light management method involves the adaptation of the light intensity applied to the culture as a function of the cell concentration: the quantity of photon per cell and per second is thus kept constant, and this value is of the order of 20 μmol of photons per gram of dry biomass per second, from the primed culture growth phase.
Pour chacune des cultures, la biomasse est récoltée en début de phase stationnaire, la fucoxanthine est extraite puis quantifiée par HPLC. Les concentrations en fucoxanthine des biomasses sèches issues des cultures, exprimées en pourcentage (m :m), ainsi que les productivités en fucoxanthine, exprimées en mg par litre de milieu de culture et par jour, sont comparées en fonction de la modalité de la gestion de la lumière. Les résultats sont présentés dans le tableau 2 suivant. For each crop, the biomass is harvested at the beginning of the stationary phase, the fucoxanthin is extracted and quantified by HPLC. Concentrations in fucoxanthin, dry biomass from the cultures, expressed as a percentage (m: m), as well as fucoxanthin productivity, expressed in mg per liter of culture medium and per day, are compared according to the modality of the management of the light. The results are shown in the following Table 2.
Figure imgf000013_0001
Figure imgf000013_0001
De façon surprenante, il ressort du Tableau 2 que, comparativement aux cultures menées selon un procédé classique, le procédé de l'invention permet :  Surprisingly, it can be seen from Table 2 that, compared to cultures carried out according to a conventional method, the method of the invention makes it possible:
— » Une augmentation des teneurs en fucoxanthine, d'un facteur 1,8 et — » Une augmentation des productivités en fucoxanthine d'un facteur 2,4.  - »An increase in fucoxanthin levels by a factor of 1.8 and -» An increase in fucoxanthin productivity by a factor of 2.4.

Claims

REVENDICATIONS
1. Procédé de production de pigments par des cellules capables de photosynthèse, selon lequel on cultive lesdites cellules dans des conditions appropriées à leur développement, pour obtenir une biomasse, caractérisé en ce que le procédé comprend une étape de surproduction desdits pigments selon laquelle on applique auxdites cellules une puissance lumineuse normalisée par rapport à la biomasse sèche, prédéterminée, ladite puissance lumineuse, exprimée en μmoles de photons par gramme de ladite biomasse sèche et par seconde, étant d'au moins 2 μmoles.g -1.s-1 et d'au plus 200 μmoles.g -1.s-1 . 1. A process for producing pigments by cells capable of photosynthesis, according to which said cells are cultivated under conditions suitable for their development, in order to obtain a biomass, characterized in that the process comprises a step of overproduction of said pigments according to which one applies said cells have a light power normalized with respect to the predetermined dry biomass, said light power, expressed in μmoles of photons per gram of said dry biomass per second, being at least 2 μmol.g -1. s -1 and at most 200 μmoles.g -1. s -1 .
2. Procédé selon la revendication 1, caractérisée en ce que les cellules capables de photosynthèse sont des cellules d'organismes procaryotes ou eucaryotes.  2. Method according to claim 1, characterized in that the cells capable of photosynthesis are cells of prokaryotic or eukaryotic organisms.
3. Procédé selon la revendication 2, caractérisé en ce que lesdits organismes sont des microalgues, telles que celles appartenant aux classes des Pinguiophyceae, Chrysophyceae, Bacillariophyceae, Mamiellophyceae, Prymnesiophyceae, Haptophyceae ou Coccolithophyceae.  3. Method according to claim 2, characterized in that said organisms are microalgae, such as those belonging to the classes of Pinguiophyceae, Chrysophyceae, Bacillariophyceae, Mamiellophyceae, Prymnesiophyceae, Haptophyceae or Coccolithophyceae.
4. Procédé l'une quelconque des revendications précédentes, caractérisé en ce que les pigments sont choisis parmi les caroténoïdes et les phycobilines photosynthétiques et la puissance lumineuse normalisée par rapport à la biomasse sèche appliquée est d'au moins 2 μmoles.g -1.s-1 et d'au plus 150 μmoles.g -1.s-1 4. Method according to any one of the preceding claims, characterized in that the pigments are chosen from photosynthetic carotenoids and phycobilins and the normalized luminous power with respect to the applied dry biomass is at least 2 μmol.g -1. s -1 and at most 150 μmoles.g -1. s -1
5. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que les pigments sont des xanthophylles photosynthétiques et la puissance lumineuse normalisée par rapport à la biomasse sèche appliquée est d'au moins 5 μmoles.g -1.s-1 et d'au plus 30 μmoles.g -1.s-1 . 5. Method according to any one of the preceding claims, characterized in that the pigments are photosynthetic xanthophylls and the normalized light power relative to the applied dry biomass is at least 5 μmol.g -1. s -1 and at most 30 μmoles.g -1. s -1 .
6. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que le pigment est la fucoxanthine, les cellules sont des cellules de microalgue de l'espèce Tisochrysis lutea ou de l'espèce Phaedactylum tricornutum et la puissance lumineuse normalisée par rapport à la biomasse sèche appliquée est d'au moins 15 μmoles.g -1.s-1 et d'au plus 25 μ μmoles.g -1.s-1 6. Process according to any one of the preceding claims, characterized in that the pigment is fucoxanthin, the cells are microalgae cells of the species Tisochrysis lutea or of the species Phaedactylum tricornutum and the light power normalized with respect to the applied dry biomass is at least 15 μmol.g -1. s -1 and at most 25 μ μmoles.g -1. s -1
7. Procédé l'une quelconque des revendications précédentes, caractérisé en ce que les pigments sont choisis parmi les caroténoïdes photoprotecteurs et la puissance lumineuse normalisée par rapport à la biomasse sèche appliquée est d'au moins 30, de préférence d'au moins 50 μmoles.g -1.s-1 . 7. Method according to any one of the preceding claims, characterized in that the pigments are chosen from photoprotective carotenoids and the normalized luminous power with respect to the applied dry biomass is at least 30, preferably at least 50 μmoles. .g -1. s -1 .
8. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que la puissance lumineuse normalisée par rapport à la biomasse sèche est maintenue constante par variation du flux de photons appliqué à la culture ou variation de la biomasse sèche au sein de la culture. 8. Method according to any one of the preceding claims, characterized in that the normalized light power relative to the dry biomass is kept constant by variation of the photon flux applied to the crop or variation of dry biomass within the culture. .
9. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce qu'on applique la puissance lumineuse normalisée par rapport à la biomasse sèche pendant tout ou partie de la phase exponentielle de croissance de la culture cellulaire. 9. Method according to any one of the preceding claims, characterized in that applying the normalized light power relative to the dry biomass during all or part of the exponential growth phase of the cell culture.
PCT/FR2017/050188 2016-01-29 2017-01-27 Method for producing pigments WO2017129914A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR16/50729 2016-01-29
FR1650729A FR3047252B1 (en) 2016-01-29 2016-01-29 PROCESS FOR PRODUCING PIGMENTS

Publications (1)

Publication Number Publication Date
WO2017129914A1 true WO2017129914A1 (en) 2017-08-03

Family

ID=56263807

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2017/050188 WO2017129914A1 (en) 2016-01-29 2017-01-27 Method for producing pigments

Country Status (2)

Country Link
FR (1) FR3047252B1 (en)
WO (1) WO2017129914A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2964667A1 (en) * 2010-09-15 2012-03-16 Fermentalg PROCESS FOR THE CULTURE OF MIXOTROPHIC UNICELLULAR ALGAE IN THE PRESENCE OF DISCONTINUOUS LIGHT RATIO IN THE FORM OF FLASHS
WO2013136025A1 (en) * 2012-03-16 2013-09-19 Fermentalg Production of docosahexaenoic acid and/or eicosapentaenoic acid and/or carotenoids in mixotrophic mode using nitzschia

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2964667A1 (en) * 2010-09-15 2012-03-16 Fermentalg PROCESS FOR THE CULTURE OF MIXOTROPHIC UNICELLULAR ALGAE IN THE PRESENCE OF DISCONTINUOUS LIGHT RATIO IN THE FORM OF FLASHS
WO2013136025A1 (en) * 2012-03-16 2013-09-19 Fermentalg Production of docosahexaenoic acid and/or eicosapentaenoic acid and/or carotenoids in mixotrophic mode using nitzschia

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
KIM Z H ET AL: "Enhanced production of astaxanthin by flashing light using Haematococcus pluvialis", ENZYME AND MICROBIAL TECHNOLOGY, STONEHAM, MA, US, vol. 39, no. 3, 3 July 2006 (2006-07-03), pages 414 - 419, XP027948963, ISSN: 0141-0229, [retrieved on 20060703] *
LABABPOUR A ET AL: "Effects of nutrient supply methods and illumination with blue light emitting diodes (LEDs) on astaxanthin production by Haematococcus pluvialis", JOURNAL OF BIOSCIENCE AND BIOENGINEERING, ELSEVIER, AMSTERDAM, NL, vol. 98, no. 6, 1 January 2004 (2004-01-01), pages 452 - 456, XP004727090, ISSN: 1389-1723 *
SFORZA ELEONORA ET AL: "Effect of specific light supply rate on photosynthetic efficiency of Nannochloropsis salina in a continuous flat plate photobioreactor", APPLIED MICROBIOLOGY AND BIOTECHNOLOGY, SPRINGER, DE, vol. 99, no. 19, 11 August 2015 (2015-08-11), pages 8309 - 8318, XP035541994, ISSN: 0175-7598, [retrieved on 20150811], DOI: 10.1007/S00253-015-6876-7 *

Also Published As

Publication number Publication date
FR3047252B1 (en) 2018-03-02
FR3047252A1 (en) 2017-08-04

Similar Documents

Publication Publication Date Title
EP3353283A1 (en) Novel method for the culture of unicellular red algae
Kim et al. Growth and pigment content of Gracilaria tikvahiae McLachlan under fluorescent and LED lighting
EP3185694B1 (en) Novel method for culture of algae, in particular microalgae
EP2825631B1 (en) Production of astaxanthin and docosahexaenoic acid in mixotrophic mode using schizochytrium
EP3024924B1 (en) Method for fed-batch fermentation of chlorellae fed by sequential, automated provisions of glucose
FR3008423A1 (en) NEW STRAIN OF AURANTIOCHYTRIUM
Sung et al. Wavelength shift strategy to enhance lipid productivity of Nannochloropsis gaditana
WO2013136025A1 (en) Production of docosahexaenoic acid and/or eicosapentaenoic acid and/or carotenoids in mixotrophic mode using nitzschia
Masojídek et al. Changes in photosynthesis, growth and biomass composition in outdoor Chlorella g120 culture during the metabolic shift from heterotrophic to phototrophic cultivation regime
EP2844734B1 (en) Production of lutein in mixotrophic mode by scenedesmus
EP3440185B1 (en) Selective bioreactor for microalgae
WO2017129914A1 (en) Method for producing pigments
EP3271449B1 (en) Bioreactor for microalgae
EP2978836B1 (en) Method for stabilising oxidation-sensitive metabolites produced by microalgae of the chlorella genus
Tounsi et al. Photoautotrophic growth and accumulation of macromolecules by Porphyridium cruentum UTEX 161 depending on culture media
WO2013136029A1 (en) Production of polysaccharides in mixotrophic mode using nostoc
WO2020099590A1 (en) Device for producing microalgae
EP3516036A1 (en) Bioreactor for the selection of microalgae
WO2023118401A1 (en) Method for capturing phytotoxins in a biological reactor
Che et al. Photobiological Optimization, Aeration, Agitation and Two Phase Culture System of Chlamydomonas Hedleyi for the Improvement of Biomass and Lipids

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17706578

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17706578

Country of ref document: EP

Kind code of ref document: A1