WO2017128938A1 - 时间提前量的估计方法和装置 - Google Patents

时间提前量的估计方法和装置 Download PDF

Info

Publication number
WO2017128938A1
WO2017128938A1 PCT/CN2017/070335 CN2017070335W WO2017128938A1 WO 2017128938 A1 WO2017128938 A1 WO 2017128938A1 CN 2017070335 W CN2017070335 W CN 2017070335W WO 2017128938 A1 WO2017128938 A1 WO 2017128938A1
Authority
WO
WIPO (PCT)
Prior art keywords
frequency domain
domain data
user
interference
processing
Prior art date
Application number
PCT/CN2017/070335
Other languages
English (en)
French (fr)
Inventor
陈海红
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2017128938A1 publication Critical patent/WO2017128938A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/021Estimation of channel covariance
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/004Synchronisation arrangements compensating for timing error of reception due to propagation delay
    • H04W56/0045Synchronisation arrangements compensating for timing error of reception due to propagation delay compensating for timing error by altering transmission time

Definitions

  • the present disclosure relates to the field of communications, for example, to a method and apparatus for estimating Timing Advance (TA).
  • TA Timing Advance
  • a TA is a parameter that indicates that a evolved NodeB (eNodeB) receives a timing offset of data transmitted by a User Equipment (UE).
  • eNodeB instructs the UE to send an uplink demodulation reference signal (DMRS) or a sounding reference signal (SRS) at a predetermined time point, and obtains a TA after timing measurement, and the eNodeB passes the physical downlink shared channel.
  • DMRS uplink demodulation reference signal
  • SRS sounding reference signal
  • the PUCCH Physical Uplink Control Channel
  • the TA estimation algorithm in the related art is based on a time domain sliding correlation method or a frequency domain correlation method.
  • the following is the TA estimation process in the SRS frequency domain correlation method (see Figure 1):
  • the eNodeB samples the air interface data 30720 points per millisecond, and the interval between each two samples is recorded as T s , the Cyclic Prefix (CP), and then Fourier transform to obtain N-point frequency domain data, which is extracted according to high-level information.
  • the eNodeB upper layer can inform the physical layer of the current resource block of the current subframe (Resource Block, RB) all the PUCCH resource number (Resource Index) of the user, and the PUCCH resource number of the target user to be estimated by the TA (hereinafter referred to as the target user code channel).
  • the target user code channel the physical layer of the current resource block of the current subframe (Resource Block, RB) all the PUCCH resource number (Resource Index) of the user, and the PUCCH resource number of the target user to be estimated by the TA (hereinafter referred to as the target user code channel).
  • the RB of one PUCCH can be restored for the format 1 at most.
  • the RB of one PUCCH can be restored for the format 1 at most.
  • up to 12 PUCCH resource numbers can be multiplexed for format 2.
  • PUCCH resource user number hereinafter referred to as the idle users are code channel PUCCH based on the TA estimation process (see FIG. 2):
  • the eNodeB samples the air interface data 30720 points per millisecond, and the interval between each two sampling points is recorded as T s , goes to the CP, and then undergoes Fourier transform to obtain N-point frequency domain data, and extracts corresponding PUCCH frequency domain data according to the high-level information, such as format.
  • RE resource Element
  • Reference signal base sequence Corresponding to the "3rd Generation Partnership Project Technical Specification Group Radio Access Network Evolved Universal Terrestrial Radio Access (E-UTRA); Physical Channels and Modulation" (version V11.6.0) 5.5
  • n s represents the sequence number of the radio intraframe slot
  • l represents the sequence number of the Orthogonal Frequency Division Multiplexing (OFDM) symbol in which the cell reference signal is located in the slot.
  • OFDM Orthogonal Frequency Division Multiplexing
  • the DMRS and PUCCH can also estimate the TA through the same process.
  • the PUCCH is one RB and the energy peak is small relative to the SRS and the DMRS, the accuracy of the TA estimation is susceptible to weak channel and interference. When the channel is weak or there is interference, the accuracy of the TA estimation will drastically deteriorate.
  • the present disclosure provides a method and an apparatus for estimating a TA value, which can reduce the accuracy of the TA value estimation in the PUCCH scenario in the related art, and the accuracy is easily affected by the weak channel and interference.
  • the TA estimation accuracy will be The phenomenon of sharp deterioration.
  • the present disclosure provides a method for estimating a timing advance, comprising: acquiring frequency domain data of a physical uplink control channel PUCCH; performing at least one of the following processing on the frequency domain data: calculating a target user according to the frequency domain data a channel estimation vector, and performing anti-fading processing on the frequency domain data according to the channel estimation vector, and calculating an interference noise covariance matrix of the target user according to the frequency domain data, and according to the interference noise covariance matrix pair Performing anti-interference processing on the frequency domain data; and performing inverse Fourier transform on the processed frequency domain data to obtain a TA.
  • the frequency domain data r User of the PUCCH is obtained by the following formula:
  • the number of subcarriers SC on one resource block RB, n represents the number of pilot symbols and data symbols, and i represents the subcarrier number.
  • P is the number of receiving antennas of the radio base station, 0, 1, ..., P-1 represents the antenna number, and T represents the transposition.
  • calculating a channel estimation vector of the target user according to the frequency domain data including:
  • the calculation formula of the channel estimation vector H Tg,p of the p-th antenna of the Tg target users includes:
  • Base sequence Cyclic shift ⁇ Tg defined reference signal sequence base sequence Divided into different groups, u is the group number, v is the base serial number in the group, and the cyclic shift of the Tg target users
  • Tg is the serial number of the target user.
  • n s represents the sequence number of the intra-frame slot
  • l represents the sequence number of the OFDM symbol in which the cell reference signal is located in the slot
  • p represents the antenna sequence number.
  • n' Tg (n s ) is a cyclic shift of the slot number of the Tg target users in the radio frame, n s , Right Perform a remainder operation;
  • Calculating the calculation formula of the interference noise covariance matrix R uu in the interference noise covariance matrix of the target user according to the frequency domain data r User includes:
  • r Id (n) [r Id,0 (n) r Id,1 (n) ... r Id,P-1 (n)] T ,
  • IdNum is the total number of idle users
  • Id is the serial number of the idle user
  • Id 0, 1, ..., IdNum-1
  • H in H indicates conjugate transposition
  • n' Id (n s ) is the first Id
  • the idle intra-frame slot number of an idle user is a cyclic shift of n s .
  • performing anti-fading processing on the frequency domain data r User including:
  • H Tg [H Tg, 0 H Tg, 1 ... H Tg, P-1 ] T ,
  • Performing anti-interference processing on the frequency domain data r User including:
  • Ruu -1 is the inverse of Ruu
  • Anti-fading processing and anti-interference processing for the frequency domain data r User including:
  • the present disclosure also provides an apparatus for estimating a TA, comprising: an obtaining module configured to acquire frequency domain data of a physical uplink control channel PUCCH; and a calculating module configured to calculate a channel estimation vector of the target user according to the frequency domain data At least one of an interference noise covariance matrix; the processing module configured to perform at least one of the following processing on the frequency domain data: performing anti-fading processing on the frequency domain data according to the channel estimation vector, and, according to the The interference noise covariance matrix performs anti-interference processing on the frequency domain data; and the estimation module is configured to perform inverse Fourier transform on the processed frequency domain data to obtain a TA.
  • the obtaining module obtains the frequency domain data r User by using the following formula:
  • the number of subcarriers SC on one resource block RB, n represents the number of pilot symbols and data symbols, and i represents the subcarrier number.
  • P is the number of receiving antennas of the radio base station, 0, 1, ..., P-1 represents the antenna number, and T represents the transposition.
  • the computing module includes:
  • a first calculating unit configured to calculate the channel estimation vector according to the following formula:
  • Base sequence Cyclic shift ⁇ Tg defined reference signal sequence base sequence Divided into different groups, u is the group number, v is the base serial number in the group, and the cyclic shift of the Tg target users
  • Tg is the serial number of the target user.
  • n s represents the sequence number of the intra-frame slot
  • l represents the sequence number of the OFDM symbol in which the cell reference signal is located in the slot
  • p represents the antenna sequence number.
  • n' Tg (n s ) is a cyclic shift of the slot number of the Tg target users in the radio frame, n s , Right Perform a remainder operation;
  • a second calculating unit configured to calculate the interference noise covariance matrix R uu according to the following formula:
  • r Id (n) [r Id,0 (n) r Id,1 (n) ... r Id,P-1 (n)] T ,
  • IdNum is the total number of idle users
  • Id is the serial number of the idle user
  • Id 0, 1, ..., IdNum-1
  • H in H indicates conjugate transposition
  • n' Id (n s ) is the first Id
  • the idle intra-frame slot number of an idle user is a cyclic shift of n s .
  • the processing module performs anti-fading processing on the frequency domain data r User , including:
  • H Tg [H Tg, 0 H Tg, 1 ... H Tg, P-1 ] T ;
  • the processing module performs anti-interference processing on the frequency domain data r User , including:
  • Ruu -1 is the inverse of Ruu
  • the processing module performs anti-fading and anti-interference processing on the frequency domain data r User , including:
  • the present disclosure also provides a non-transitory computer readable storage medium storing computer executable instructions arranged to perform the methods described above.
  • the present disclosure also provides an electronic device, including:
  • At least one processor At least one processor
  • the memory stores instructions executable by the at least one processor, the instructions being executed by the at least one processor to cause the at least one processor to perform the method described above.
  • the present disclosure incorporates anti-interference and anti-fading processing in the related PUCCH-based TA estimation process flow, so that the improved TA estimation algorithm can resist debounce and anti-interference. Even in the case of a weakened channel or interference, the TA estimation algorithm of the present disclosure can improve the TA value estimation performance of the PUCCH, and the accuracy is easily affected by the weakened channel and interference when the TA value estimation is performed in the PUCCH scenario in the related art. When the channel is weak or there is interference, the accuracy of the TA estimation is drastically deteriorated.
  • FIG. 1 is a schematic diagram of a working mechanism of a TA estimation process based on a SRS frequency domain correlation method in the related art
  • FIG. 2 is a schematic diagram of a working mechanism of a TA estimation process in a PUCCH frequency domain correlation method according to the related art
  • FIG. 3 is a flowchart of a method for estimating a TA in an embodiment of the present disclosure
  • FIG. 4 is a schematic structural diagram of an estimation apparatus of a TA in an embodiment of the present disclosure
  • FIG. 5 is a schematic diagram of a working mechanism of an estimation method of a PUCCH frequency domain TA in an alternative embodiment of the present disclosure
  • FIG. 6 is a schematic structural diagram of an electronic device in an embodiment of the present disclosure.
  • the present disclosure provides a method and an apparatus for estimating a TA, which can reduce the accuracy of the channel estimation and the interference when the TA estimation is performed in the PUCCH scenario in the related art.
  • the accuracy of the TA estimation is sharp.
  • step 310 frequency domain data of the PUCCH is obtained.
  • step 320 the frequency domain data is processed.
  • the frequency domain data is subjected to at least one of the following processes: calculating a channel estimation vector of the target user according to the frequency domain data, and performing anti-fading on the frequency domain data according to the channel estimation vector. And calculating an interference noise covariance matrix of the target user according to the frequency domain data, and performing anti-interference processing on the frequency domain data according to the interference noise covariance matrix.
  • step 330 the inverse frequency Fourier transform is performed on the processed frequency domain data to obtain a TA.
  • the embodiment of the present disclosure adds anti-interference and anti-fading processing to the processing flow of the TACCH-based TA estimation, and has the function of anti-destruction and anti-interference. Even in the case of a weakened channel or interference, the TA estimation algorithm of the present disclosure can improve the TA value estimation performance of the PUCCH, and the accuracy is easily affected by the weakened channel and interference when the TA value estimation is performed in the PUCCH scenario in the related art. When the channel is weak or there is interference, the accuracy of the TA estimation is drastically deteriorated.
  • the PUCCH frequency domain data r User can be obtained by the following formula:
  • the number of subcarriers SC on one resource block RB, n represents the number of pilot symbols and data symbols, and i represents the subcarrier number.
  • P is the number of receiving antennas of the radio base station, 0, 1, ..., P-1 represents the antenna number, and T represents the transposition.
  • calculating a channel estimation vector H Tg,p of the p-th antenna of the Tg target users in the channel estimation vector of the target user according to the frequency domain data includes:
  • Base sequence Cyclic shift ⁇ Tg defined reference signal sequence base sequence Divided into different groups, u is the group number, v is the base serial number in the group, and the cyclic shift of the Tg target users
  • Tg is the serial number of the target user.
  • n s represents the sequence number of the radio intraframe slot
  • l represents the sequence number of the OFDM symbol in which the cell reference signal is located in the slot
  • p represents the antenna sequence number.
  • n' Tg (n s ) is a cyclic shift of the slot number of the Tg target users in the radio frame
  • n s Right Perform the remainder operation.
  • Reference signal sequences For the length of the reference signal sequence, Multiple reference signal sequences can be derived from one base sequence by different alpha values. For maximum upstream bandwidth.
  • the qth root Zadoff-Chu sequence ( q ) is defined as:
  • q For the length of the Zadoff-Chu sequence, q can be obtained from:
  • Calculating the calculation formula of the interference noise covariance matrix R uu in the interference noise covariance matrix of the target user according to the frequency domain data r User includes:
  • r Id (n) [r Id,0 (n) r Id,1 (n) ... r Id,P-1 (n)] T ,
  • IdNum is the total number of idle users
  • Id is the serial number of the idle user
  • Id 0, 1, ..., IdNum-1
  • H in H indicates conjugate transposition
  • n' Id (n s ) is the first Id
  • the idle intra-frame slot number of an idle user is a cyclic shift of n s .
  • performing anti-fading processing on the frequency domain data r User includes:
  • H Tg [H Tg, 0 H Tg, 1 ... H Tg, P-1 ] T ;
  • performing anti-interference processing on the frequency domain data r User includes:
  • Ruu -1 is the inverse of Ruu.
  • anti-fading and anti-interference processing is performed on the frequency domain data r User , including:
  • the embodiment of the present disclosure further provides an estimation device for the TA.
  • the device includes: an acquisition module 10, a calculation module 20, a processing module 30, and an estimation module 40.
  • the obtaining module 10 is configured to acquire frequency domain data of the PUCCH.
  • the calculation module 20 is coupled to the acquisition module 10 and configured to calculate at least one of a channel estimation vector and an interference noise covariance matrix of the target user based on the frequency domain data.
  • the processing module 30 is coupled to the computing module 20 and configured to perform at least one of the following processing on the frequency domain data: performing anti-fading processing on the frequency domain data according to the channel estimation vector, and performing frequency domain data according to the interference noise covariance matrix Perform anti-interference treatment.
  • the estimation module 40 is coupled to the processing module 30 and configured to perform inverse Fourier transform on the processed frequency domain data to obtain a TA.
  • the obtaining module 10 obtains the frequency domain data r User by the following formula: among them, The number of subcarriers SC on one resource block RB, n represents the number of pilot symbols and data symbols, and i represents the subcarrier number. P is the number of receiving antennas of the radio base station, 0, 1, ..., P-1 represents the antenna number, and T represents the transposition.
  • the above calculation module 20 may further include a first calculation unit and a second calculation unit.
  • the first calculating unit is configured to calculate a channel estimation vector according to the following formula, a channel estimation vector of the pth antenna of the Tgth target user among them, Base sequence Cyclic shift ⁇ Tg defined reference signal sequence, base sequence Divided into different groups, u is the group number, v is the base serial number in the group, and the cyclic shift of the Tg target users
  • Tg is the serial number of the target user.
  • n s represents the sequence number of the radio intraframe slot
  • l represents the sequence number of the OFDM symbol in which the cell reference signal is located in the slot
  • p represents the antenna sequence number.
  • n' Tg (n s ) is a cyclic shift of the slot number of the Tg target users in the radio frame
  • n s Right Perform the remainder operation.
  • the second calculation unit is configured to calculate the interference noise covariance matrix Ruu according to the following formula:
  • r Id (n) [r Id,0 (n) r Id,1 (n) ... r Id,P-1 (n)] T ,
  • IdNum is the total number of idle users
  • Id is the serial number of the idle user
  • Id 0, 1, ..., IdNum-1
  • H in H indicates conjugate transposition
  • n' Id (n s ) is the first Id
  • the idle intra-frame slot number of an idle user is a cyclic shift of n s .
  • the calculation formula of the anti-fading processing of the frequency domain data r User by the processing module 30 is:
  • H Tg [H Tg, 0 H Tg, 1 ... H Tg, P-1 ] T .
  • the calculation formula of the anti-interference processing performed by the processing module 30 on the frequency domain data r User is: Among them, Ruu -1 is the inverse of Ruu.
  • the calculation formula of the anti-fading and anti-interference processing of the frequency domain data r User by the processing module 30 is:
  • An embodiment of the present disclosure provides a method for estimating a TA, as shown in FIG. 5, including:
  • the eNodeB samples the air interface data 30720 points per millisecond, and the interval between every two sampling points is recorded as T s . Go to the CP, and then undergo Fourier transform to obtain N-point frequency domain data, and extract corresponding PUCCH frequency domain data according to high-level information;
  • the frequency domain data composition vector of all antennas includes:
  • the channel estimation process of the target user of the relevant calculated PUCCH is as follows:
  • H Tg is calculated according to the following formula:
  • H Tg [H Tg, 0 H Tg, 1 ... H Tg, P-1 ] T ;
  • the calculation process of the interference noise covariance matrix Ruu of PUCCH is as follows, the frequency domain data of the antenna p Perform de-sequence processing of idle code channel users:
  • the obtained r Id,p (n) is the interference noise of the symbol n.
  • the vector can be composed:
  • r Id (n) [r Id,0 (n) r Id,1 (n) ... r Id,P-1 (n)] T ;
  • the eNodeB has four receiving antennas, and performs 2048-point TA estimation based on PUCCH format 2.
  • the TA estimation includes:
  • the eNodeB samples the air interface data 30720 points per millisecond, and the interval between every two sampling points is recorded as T s . After removing the cyclic shift and then performing Fourier transform, 2048 point frequency domain data is obtained, and corresponding PUCCH frequency domain data is extracted;
  • the frequency domain data composition vectors of all antennas are:
  • H Tg [H Tg, 0 H Tg, 1 ... H Tg, 3 ] T ;
  • the method provided by the present disclosure can be anti-fading and anti-interference, anti-interference alone or anti-fading alone, so that the accuracy of TA estimation can be improved under a weakened channel and in a PUCCH scenario where interference exists.
  • the present disclosure also provides a non-transitory computer readable storage medium storing computer executable instructions arranged to perform the method of any of the above embodiments.
  • the present disclosure also provides a hardware structure diagram of an electronic device.
  • the electronic device includes:
  • At least one processor 60 which is exemplified by a processor 60 in FIG. 6; and a memory 61, may further include a communication interface 62 and a bus 63.
  • the processor 60, the communication interface 62, and the memory 61 can complete communication with each other through the bus 63.
  • Communication interface 62 can be used for information transfer.
  • the processor 60 can call the logic instructions in the memory 61 to perform the estimation method of the TA.
  • logic instructions in the memory 61 described above may be implemented in the form of a software functional unit and sold or used as a stand-alone product, and may be stored in a computer readable storage medium.
  • the memory 61 is used as a computer readable storage medium for storing software programs, computer executable programs, program instructions or modules corresponding to the methods in the embodiments of the present disclosure.
  • the processor 60 executes the function application and data processing by running a software program, an instruction or a module stored in the memory 61, that is, an estimation method of the TA.
  • the memory 61 may include a storage program area and an storage data area, wherein the storage program area may store an operating system, an application required for at least one function; the storage data area may store data created according to usage of the terminal device, and the like. Further, the memory 61 may include a high speed random access memory, and may also include a nonvolatile memory.
  • the technical solution of the present disclosure may be embodied in the form of a software product stored in a storage medium, including one or more instructions for causing a computer device (which may be a personal computer, a server, a network device, etc.) Performing all or part of the steps of the method of the embodiments of the present disclosure.
  • the foregoing storage medium may be a non-transitory storage medium, including: a USB flash drive, a mobile hard disk, a read-only memory (ROM), and a random access memory (Random Access).
  • a medium that can store program code such as a memory, a RAM, or an optical disk, or a transient storage medium.
  • the method and apparatus for estimating the timing advance provided by the present disclosure can improve the accuracy of TA estimation under a weakened channel and in a PUCCH scenario where interference occurs.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Power Engineering (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本文公开了一种时间提前量的估计方法和装置,其中,该方法包括:获取PUCCH的频域数据;对所述频域数据进行以下至少一种处理:根据频域数据计算目标用户的信道估计向量,并根据所述信道估计向量对所述频域数据进行抗衰弱处理,和,根据所述频域数据计算目标用户的干扰噪声协方差矩阵,并根据干扰噪声协方差矩阵对频域数据进行抗干扰处理;以及对处理后的频域数据进行傅里叶反变换,以得到TA。

Description

时间提前量的估计方法和装置 技术领域
本公开涉及通讯领域,例如涉及一种时间提前量(Timing Advance,TA)的估计方法和装置。
背景技术
在长期演进(Long Term Evolution,LTE)系统中,TA是表征演进基站(evolved NodeB,eNodeB)接收到用户设备(User Equipment,UE)所发送的数据的定时偏差的参量。为了保持上行同步,eNodeB指示UE在规定的时间点发送上行解调参考信号(Demodulation Reference Signal,DMRS)或探测参考信号(Sounding Reference Signal,SRS),经过定时测量得到TA,eNodeB通过物理下行共享信道将TA调整命令下发给UE进行调整,以保持UE与eNodeB的上行同步。
应用场景中,如果不传输SRS和DMRS,就没有办法进行实时TA估计。但是如果此时有上行的物理上行链路控制信道(Physical Uplink Control Channel,PUCCH)传输,可以使用PUCCH进行上行TA估计。
相关技术中的TA估计的算法基于时域滑动相关法或频域相关法。以下是SRS频域相关法中的TA估计流程(参见图1):
eNodeB每毫秒采样空中接口的数据30720点,每两采样点间隔记为Ts,去循环前缀(Cyclic Prefix,CP),再经过傅里叶变换后,得到N点频域数据,根据高层信息提取相应的SRS频域数据DR(m),R表示接收(Receive),m=0,1,2...M-1,M为SRS数据的长度。同时本地序列经过傅里叶变换后得到相应的本地(local)SRS频域数据Dlocal(m),m=0,1,2...M-1,DR(m)和Dlocal(m)进行频域共轭乘运算PF(m)=DR(m)*(Dlocal(m))*,(Dlocal(m))*是(Dlocal(m)的共轭,m=0,1,2...M-1。对PF(m)补(L-M)个0后得到总共L点的PF(k),k=0,1,....L-1,L为正整数。其中,PF(k)=0,k=M,M+1...,L-1,经过L点的傅里叶反变换变换到时域,在L点的时域数据中寻找峰值最大点,并以此峰值最大点作为TA,也就是峰值和第一个点的时间距离。另外对于PUCCH来说,eNodeB高层可以告知物理层当前子帧当前资 源块(Resource Block,RB)上所有存在用户的PUCCH资源序号(Resource Index),及待做TA估计目标用户的PUCCH资源序号(以下简称目标用户码道)。而根据协议,一个PUCCH的RB上对于格式1最多可以复用36个PUCCH资源序号,对于格式2最多可以复用12个PUCCH资源序号。对于不存在的用户的PUCCH资源序号,以下简称空闲用户码道。以下是基于PUCCH的TA估计的流程(参见图2):
eNodeB每毫秒采样空口的数据30720点,每两采样点间隔记为Ts,去CP,再经过傅里叶变换,得到N点频域数据,根据高层信息提取相应的PUCCH频域数据,如格式2天线p的频域数据符号每个资源单元(Resource Element,RE)数据记为
Figure PCTCN2017070335-appb-000001
其中
Figure PCTCN2017070335-appb-000002
表示一个RB上的子载波(Subcarrier,SC)的数目,
Figure PCTCN2017070335-appb-000003
n表示符号编号,n=0,1,2...13,i表示子载波编号,i=0,1,2...11,p表示天线序号。对每个用户(包括目标用户码道和所有的空闲用户码道)数据符号和导频符号做去基本序列(abase sequence 
Figure PCTCN2017070335-appb-000004
)运算和消除每个符号的循环前缀操作:
Figure PCTCN2017070335-appb-000005
其中,参考信号基序列
Figure PCTCN2017070335-appb-000006
对应《3rd Generation Partnership Project Technical Specification Group Radio Access Network Evolved Universal Terrestrial Radio Access(E-UTRA);Physical Channels and Modulation》(版本V11.6.0)5.5章节
Figure PCTCN2017070335-appb-000007
其中,循环移位
Figure PCTCN2017070335-appb-000008
ns表示无线帧内时隙的序号,l表示时隙内小区参考信号所在的正交频分复用(Orthogonal Frequency Division Multiplexing,OFDM)符号的序号,
Figure PCTCN2017070335-appb-000009
为上述文章的5.4.2章节中的小区cell级循环移位,CS为循环移位(Cycle Shift)的简称,n’(ns)为用户级的循环移位,
Figure PCTCN2017070335-appb-000010
p表示天线序号。
对rUser(n,i)补(L-M)个0后得到总共L点的数据,对补0后的数据rUser(n,i)进行L点的反傅里叶变换。把符号间的信号进行合并。在合并后的L点的时域数据中寻找峰值最大点,并以此峰值最大点作为TA。
DMRS和PUCCH也可以通过相同流程估计得到TA。但是,由于PUCCH就一个RB,能量峰值相对SRS和DMRS小,所以TA估计精度容易受衰弱信道和干扰的影响。当信道衰弱严重或存在干扰时,TA估计精度会急剧变差。
发明内容
本公开提供一种TA值的估计方法和装置,能够减少相关技术中PUCCH场景下进行TA值估计时,精度容易受衰弱信道和干扰的影响,当信道衰弱严重或存在干扰时,TA估计精度会急剧变差的现象。
本公开提供一种时间提前量的估计方法,包括:获取物理上行链路控制信道PUCCH的频域数据;对所述频域数据进行以下至少一种处理:根据所述频域数据计算目标用户的信道估计向量,并根据所述信道估计向量对所述频域数据进行抗衰弱处理,和,根据所述频域数据计算目标用户的干扰噪声协方差矩阵,并根据所述干扰噪声协方差矩阵对所述频域数据进行抗干扰处理;以及对处理后的所述频域数据进行傅里叶反变换,以得到TA。
可选的,PUCCH的频域数据rUser通过如下公式获取:
Figure PCTCN2017070335-appb-000011
其中,
Figure PCTCN2017070335-appb-000012
为一个资源块RB上的子载波SC数目,n表示导频符号和数据符号的编号,i表示子载波编号,
Figure PCTCN2017070335-appb-000013
P为无线基站的接收天线数,0,1,...,P-1表示天线序号,T表示转置。
可选的,根据所述频域数据计算目标用户的信道估计向量,包括:
第Tg个目标用户的第p个天线的信道估计向量HTg,p的计算公式包括:
Figure PCTCN2017070335-appb-000014
其中,
Figure PCTCN2017070335-appb-000015
为由基序列的循环移位αTg定义的参考信号序列,基序列
Figure PCTCN2017070335-appb-000017
被分成不同的组,u为组号,v为组内的基序列号,第Tg个目标用户的循环移位
Figure PCTCN2017070335-appb-000018
Figure PCTCN2017070335-appb-000019
Tg为目标用户的序号,
Figure PCTCN2017070335-appb-000020
Figure PCTCN2017070335-appb-000021
的共轭,ns表示无线帧内时隙的序号,l表示时隙内小区参考信号所在的OFDM符号的序号,p表示天线序号,
Figure PCTCN2017070335-appb-000022
为小区级循环移位,n’Tg(ns)为第Tg个目标用户的无线帧内时隙序号为ns的循环移位,
Figure PCTCN2017070335-appb-000023
为对
Figure PCTCN2017070335-appb-000024
进行求余运算;
根据所述频域数据rUser计算目标用户的干扰噪声协方差矩阵中干扰噪声协方差矩阵Ruu的计算公式包括:
Figure PCTCN2017070335-appb-000025
其中,第Id个空闲用户的干扰噪声协方差矩阵Ruu(Id)=rId(n)*(rId(n))H
rId(n)=[rId,0(n) rId,1(n) ... rId,P-1(n)]T
Figure PCTCN2017070335-appb-000026
第Id个空闲用户的循环移位
Figure PCTCN2017070335-appb-000027
Figure PCTCN2017070335-appb-000028
IdNum为空闲用户的总数,Id为空闲用户的序号,Id=0,1,...,IdNum-1,()H中的H表示共轭转置,n’Id(ns)为第Id个空闲用户的无线帧内时隙序号为ns的循环移位。
可选的,对所述频域数据rUser进行抗衰弱处理,包括:
Figure PCTCN2017070335-appb-000029
其中,HTg=[HTg,0 HTg,1 ... HTg,P-1]T
对所述频域数据rUser进行抗干扰处理,包括:
Figure PCTCN2017070335-appb-000030
其中,Ruu-1为Ruu的逆;
对频域数据rUser进行抗衰弱处理和抗干扰处理,包括:
Figure PCTCN2017070335-appb-000031
本公开还提供一种TA的估计装置,包括:获取模块,设置为获取物理上行链路控制信道PUCCH的频域数据;计算模块,设置为根据所述频域数据计算目标用户的信道估计向量和干扰噪声协方差矩阵中的至少一个;处理模块,设置为对所述频域数据进行以下至少一种处理:根据所述信道估计向量对所述频域数据进行抗衰弱处理,和,根据所述干扰噪声协方差矩阵对所述频域数据进行抗干扰处理;以及估计模块,设置为对处理后的所述频域数据进行傅里叶反变换,以得到TA。
可选的,所述获取模块通过如下公式获取频域数据rUser
Figure PCTCN2017070335-appb-000032
其中,
Figure PCTCN2017070335-appb-000033
为一个资源块RB上的子载波SC数目,n表示导频符号和数据符号的编号,i表示子载波编号,
Figure PCTCN2017070335-appb-000034
P为无线基站的接收天线数,0,1,...,P-1表示天线序号,T表示转置。
可选的,所述计算模块包括:
第一计算单元,设置为根据如下公式计算所述信道估计向量:
第Tg个目标用户的第p个天线的信道估计向量
Figure PCTCN2017070335-appb-000035
其中,
Figure PCTCN2017070335-appb-000036
为由基序列
Figure PCTCN2017070335-appb-000037
的循环移位αTg定义的参考信号序列,基序列
Figure PCTCN2017070335-appb-000038
被分成不同的组,u为组号,v为组内的基序列号,第Tg个目标用户的循环移位
Figure PCTCN2017070335-appb-000039
Figure PCTCN2017070335-appb-000040
Tg为目标用户的序号,
Figure PCTCN2017070335-appb-000041
Figure PCTCN2017070335-appb-000042
的共轭,ns表示无线帧内时隙的序号,l表示时隙内小区参考信号所在的OFDM符号的序号,p表示天线序号,
Figure PCTCN2017070335-appb-000043
为小区级循环移位,n’Tg(ns)为第Tg个目标用户的无线帧内时隙序号为ns的循环移位,
Figure PCTCN2017070335-appb-000044
为对
Figure PCTCN2017070335-appb-000045
进行求余运算;以及
第二计算单元,设置为根据如下公式计算所述干扰噪声协方差矩阵Ruu
Figure PCTCN2017070335-appb-000046
其中,第Id个空闲用户的干扰噪声协方差矩阵Ruu(Id)=rId(n)*(rId(n))H
rId(n)=[rId,0(n) rId,1(n) ... rId,P-1(n)]T
Figure PCTCN2017070335-appb-000047
第Id个空闲用户的循环移位
Figure PCTCN2017070335-appb-000048
Figure PCTCN2017070335-appb-000049
IdNum为空闲用户的总数,Id为空闲用户的序号,Id=0,1,...,IdNum-1,()H中的H表示共轭转置,n’Id(ns)为第Id个空闲用户的无线帧内时隙序号为ns的循环移位。
可选的,所述处理模块对频域数据rUser进行抗衰弱处理,包括:
Figure PCTCN2017070335-appb-000050
其中,HTg=[HTg,0 HTg,1 ... HTg,P-1]T
所述处理模块对频域数据rUser进行抗干扰处理,包括:
Figure PCTCN2017070335-appb-000051
其中,Ruu-1为Ruu的逆;
所述处理模块对频域数据rUser进行抗衰弱和抗干扰处理,包括:
Figure PCTCN2017070335-appb-000052
本公开还提供了一种非暂态计算机可读存储介质,存储有计算机可执行指令,所述计算机可执行指令设置为执行上述的方法。
本公开还提供了一种电子设备,包括:
至少一个处理器;以及
与所述至少一个处理器通信连接的存储器;其中,
所述存储器存储有可被所述至少一个处理器执行的指令,所述指令被所述至少一个处理器执行,以使所述至少一个处理器执行上述方法。
本公开在相关的基于PUCCH的TA估计的处理流程中加入了抗干扰抗衰弱处理,使得改进后的TA估计算法能够抗衰弱以及抗干扰。即使在衰弱信道或存在干扰的情况下,本公开的TA估计算法也可以改善PUCCH的TA值估计性能,减少了相关技术中PUCCH场景下进行TA值估计时,精度容易受衰弱信道和干扰的影响,当信道衰弱严重或存在干扰时,TA估计精度会急剧变差的现象。
附图说明
图1是相关技术中基于SRS频域相关法中TA估计流程工作机制示意图;
图2是相关技术中基于PUCCH频域相关法中TA估计流程工作机制示意图;
图3是本公开实施例中TA的估计方法的流程图;
图4是本公开实施例中TA的估计装置的结构示意图;
图5是本公开可选实施例中PUCCH频域TA的估计方法工作机制示意图;以及
图6是本公开实施例中电子设备的结构示意图。
具体实施方式
本公开提供了一种TA的估计方法和装置,可以减少相关技术中PUCCH场景下进行TA估计时,精度容易受衰弱信道和干扰的影响,当信道衰弱严重或存在干扰时,TA估计精度会急剧变差的现象,以下结合附图以及实施例,对本公开进行详细说明。在不冲突的情况下,本公开的实施例以及实施例中的技术特征可以相互任意组合。本公开实施例提供一种TA的估计方法,该方法的流程如图3所示。
在步骤310中,获取PUCCH的频域数据。
在步骤320中,对所述频域数据进行处理。
该步骤中,对所述频域数据进行以下至少一种处理:根据频域数据计算目标用户的信道估计向量,根据所述信道估计向量对所述频域数据进行抗衰弱处 理;和,根据频域数据计算目标用户的干扰噪声协方差矩阵,根据所述干扰噪声协方差矩阵对所述频域数据进行抗干扰处理。
在步骤330中,对处理后的频域数据进行傅里叶反变换,以得到TA。
本公开实施例在基于PUCCH的TA估计的处理流程中加入了抗干扰抗衰弱处理,具有抗衰弱抗干扰的功能。即使在衰弱信道或存在干扰的情况下,本公开的TA估计算法也可以改善PUCCH的TA值估计性能,减少了相关技术中PUCCH场景下进行TA值估计时,精度容易受衰弱信道和干扰的影响,当信道衰弱严重或存在干扰时,TA估计精度会急剧变差的现象。
在实现过程中,PUCCH的频域数据rUser可以通过如下公式获取:
Figure PCTCN2017070335-appb-000053
其中,
Figure PCTCN2017070335-appb-000054
为一个资源块RB上的子载波SC数目,n表示导频符号和数据符号的编号,i表示子载波编号,
Figure PCTCN2017070335-appb-000055
P为无线基站的接收天线数,0,1,...,P-1表示天线序号,T表示转置。
可选的,根据所述频域数据计算目标用户的信道估计向量中第Tg个目标用户的第p个天线的信道估计向量HTg,p的计算公式包括:
Figure PCTCN2017070335-appb-000056
其中,
Figure PCTCN2017070335-appb-000057
为由基序列
Figure PCTCN2017070335-appb-000058
的循环移位αTg定义的参考信号序列,基序列
Figure PCTCN2017070335-appb-000059
被分成不同的组,u为组号,v为组内的基序列号,第Tg个目标用户的循环移位
Figure PCTCN2017070335-appb-000060
Figure PCTCN2017070335-appb-000061
Tg为目标用户的序号,
Figure PCTCN2017070335-appb-000062
Figure PCTCN2017070335-appb-000063
的共轭,ns表示无线帧内时隙 的序号,l表示时隙内小区参考信号所在的OFDM符号的序号,p表示天线序号,
Figure PCTCN2017070335-appb-000064
为小区级循环移位,n’Tg(ns)为第Tg个目标用户的无线帧内时隙序号为ns的循环移位,
Figure PCTCN2017070335-appb-000065
为对
Figure PCTCN2017070335-appb-000066
进行求余运算。
参考信号序列
Figure PCTCN2017070335-appb-000067
由基序列
Figure PCTCN2017070335-appb-000068
的循环移位α通过以下公式获得的:
Figure PCTCN2017070335-appb-000069
Figure PCTCN2017070335-appb-000070
为参考信号序列的长度,
Figure PCTCN2017070335-appb-000071
通过不同的α值,由一个基序列可以得到多个参考信号序列。
Figure PCTCN2017070335-appb-000072
为最大上行带宽。
对基序列
Figure PCTCN2017070335-appb-000073
进行分组,其中,u为组号,u∈{0,1,...,29},v为组内的基序列号,这样,参考信号序列长度
Figure PCTCN2017070335-appb-000074
每组包含一个基序列(v=0),以及,参考信号序列长度
Figure PCTCN2017070335-appb-000075
每组包含两个基序列(v=0,1),u,v随着时间变化,参见3GPP TS 36.211(版本V11.6.0)标准的5.5.1.3节以及5.5.1.4节所述。基序列
Figure PCTCN2017070335-appb-000076
的定义取决于序列长度
Figure PCTCN2017070335-appb-000077
以m=3为例,即参考信号序列长度
Figure PCTCN2017070335-appb-000078
基序列
Figure PCTCN2017070335-appb-000079
可由以下公式得出:
Figure PCTCN2017070335-appb-000080
其中,第q个根Zadoff-Chu序列(root Zadoff-Chu sequence)xq(k)被定义为:
Figure PCTCN2017070335-appb-000081
Figure PCTCN2017070335-appb-000082
为Zadoff-Chu序列的长度,q可由下式得到:
Figure PCTCN2017070335-appb-000083
Figure PCTCN2017070335-appb-000084
其中,Zadoff-Chu序列的长度
Figure PCTCN2017070335-appb-000085
由满足
Figure PCTCN2017070335-appb-000086
的最大素数给出
根据所述频域数据rUser计算目标用户的干扰噪声协方差矩阵中干扰噪声协方差矩阵Ruu的计算公式包括:
Figure PCTCN2017070335-appb-000087
其中,第Id个空闲用户的干扰噪声协方差矩阵Ruu(Id)=rId(n)*(rId(n))H
rId(n)=[rId,0(n) rId,1(n) ... rId,P-1(n)]T
Figure PCTCN2017070335-appb-000088
第Id个空闲用户的循环移位
Figure PCTCN2017070335-appb-000089
Figure PCTCN2017070335-appb-000090
IdNum为空闲用户的总数,Id为空闲用户的序号,Id=0,1,...,IdNum-1,()H中的H表示共轭转置,n’Id(ns)为第Id个空闲用户的无线帧内时隙序号为ns的循环移位。
可选的,对所述频域数据rUser进行抗衰弱处理包括:
Figure PCTCN2017070335-appb-000091
其中,HTg=[HTg,0 HTg,1 ... HTg,P-1]T
可选的,对所述频域数据rUser进行抗干扰处理包括:
Figure PCTCN2017070335-appb-000092
其中,Ruu-1为Ruu的逆。
可选的,对频域数据rUser进行抗衰弱和抗干扰处理,包括:
Figure PCTCN2017070335-appb-000093
本公开实施例还提供一种TA的估计装置,如图4所示,该装置包括:获取模块10、计算模块20、处理模块30以及估计模块40。
获取模块10设置为获取PUCCH的频域数据。
计算模块20,与获取模块10耦合,设置为根据频域数据计算目标用户的信道估计向量和干扰噪声协方差矩阵中的至少一个。
处理模块30,与计算模块20耦合,设置为对所述频域数据进行以下至少一种处理:根据信道估计向量对频域数据进行抗衰弱处理,和,根据干扰噪声协方差矩阵对频域数据进行抗干扰处理。
估计模块40,与处理模块30耦合,设置为对处理后的频域数据进行傅里叶反变换,以得到TA。
上述获取模块10通过如下公式获取频域数据rUser
Figure PCTCN2017070335-appb-000094
Figure PCTCN2017070335-appb-000095
其中,
Figure PCTCN2017070335-appb-000096
为一个资源块RB上的子载波SC数目,n表示导频符号和数据符号的编号,i表示子载波编号,
Figure PCTCN2017070335-appb-000097
P为无线基站的接收天线数,0,1,...,P-1表示天线序号,T表示转置。
上述计算模块20还可以包括第一计算单元和第二计算单元。
第一计算单元设置为根据如下公式计算信道估计向量,第Tg个目标用户的第p个天线的信道估计向量
Figure PCTCN2017070335-appb-000098
其中,
Figure PCTCN2017070335-appb-000099
为由基序列
Figure PCTCN2017070335-appb-000100
的循环移位αTg定义的参考信号序列,基序列
Figure PCTCN2017070335-appb-000101
被分成不同的组,u为组号,v为组内的基序列号,第Tg个目标用户的循环移位
Figure PCTCN2017070335-appb-000102
Figure PCTCN2017070335-appb-000103
Tg为目标用户的序号,
Figure PCTCN2017070335-appb-000104
Figure PCTCN2017070335-appb-000105
的共轭,ns表示无线帧内时隙 的序号,l表示时隙内小区参考信号所在的OFDM符号的序号,p表示天线序号,
Figure PCTCN2017070335-appb-000106
为小区级循环移位,n’Tg(ns)为第Tg个目标用户的无线帧内时隙序号为ns的循环移位,
Figure PCTCN2017070335-appb-000107
为对
Figure PCTCN2017070335-appb-000108
进行求余运算。
第二计算单元设置为根据如下公式计算干扰噪声协方差矩阵Ruu
Figure PCTCN2017070335-appb-000109
其中,第Id个空闲用户的干扰噪声协方差矩阵
Figure PCTCN2017070335-appb-000110
rId(n)=[rId,0(n) rId,1(n) ... rId,P-1(n)]T
Figure PCTCN2017070335-appb-000111
第Id个空闲用户的循环移位
Figure PCTCN2017070335-appb-000112
Figure PCTCN2017070335-appb-000113
IdNum为空闲用户的总数,Id为空闲用户的序号,Id=0,1,...,IdNum-1,()H中的H表示共轭转置,n’Id(ns)为第Id个空闲用户的无线帧内时隙序号为ns的循环移位。
可选的,上述处理模块30对频域数据rUser进行抗衰弱处理的计算公式为:
Figure PCTCN2017070335-appb-000114
其中,HTg=[HTg,0 HTg,1 ... HTg,P-1]T
可选的,处理模块30对频域数据rUser进行抗干扰处理的计算公式为:
Figure PCTCN2017070335-appb-000115
其中,Ruu-1为Ruu的逆。
可选的,处理模块30对频域数据rUser进行抗衰弱和抗干扰处理的计算公式为:
Figure PCTCN2017070335-appb-000116
可选实施例
本公开实施例在衰弱信道下或系统存在干扰时,可以提高基于PUCCH的TA估计的精确度,获得较精确的TA估计值。本公开实施例提供一种TA的估计方法,如图5所示,包含:
eNodeB每毫秒采样空口的数据30720点,每两采样点间隔记为Ts。去CP,再经过傅里叶变换,得到N点频域数据,根据高层信息提取相应的PUCCH频域数据;
其中,所有天线的频域数据组成向量包括:
Figure PCTCN2017070335-appb-000117
计算得到目标用户的信道估计HTg
其中,相关计算的PUCCH的目标用户的信道估计流程如下:
Figure PCTCN2017070335-appb-000118
其中,n是导频符号,本实施例中HTg根据如下公式计算:
HTg=[HTg,0 HTg,1 ... HTg,P-1]T
计算得到目标用户的干扰噪声协方差矩阵Ruu
PUCCH的干扰噪声协方差矩阵Ruu计算流程如下,对天线p的频域数据
Figure PCTCN2017070335-appb-000119
进行空闲码道用户的去序列处理:
Figure PCTCN2017070335-appb-000120
得到的rId,p(n)是符号n的干扰噪声,当有eNodeB有P个天线时,可以组成向量:
rId(n)=[rId,0(n) rId,1(n) ... rId,P-1(n)]T
得到干扰噪声协方差矩阵:
Ruu(Id)=rId(n)*(rId(n))H
Figure PCTCN2017070335-appb-000121
对目标用户频域数据
Figure PCTCN2017070335-appb-000122
进行抗衰弱抗干扰处理:
Figure PCTCN2017070335-appb-000123
也可进行单独抗干扰或单独抗干扰处理,即:
抗衰弱处理:
Figure PCTCN2017070335-appb-000124
抗干扰处理:
Figure PCTCN2017070335-appb-000125
Figure PCTCN2017070335-appb-000126
在补L-12点的0之后,进行L点的傅里叶反变换,得到能量峰值,获得TA。
下面以在20M的LTE系统为例,eNodeB具有4个接收天线,基于PUCCH格式2进行2048点的TA估计,TA估计包括:
eNodeB每毫秒采样空口的数据30720点,每两采样点间隔记为Ts。去除循环移位,再经过傅里叶变换后,得到2048点频域数据,提取相应的PUCCH频域数据;
所有天线的频域数据组成向量有:
Figure PCTCN2017070335-appb-000127
根据背景技术中基于PUCCH的TA估计的方法得到目标用户的信道估计HTg
HTg=[HTg,0 HTg,1 ... HTg,3]T
根据背景技术中基于PUCCH的TA估计的方法得到目标用户的干扰噪声协方差矩阵Ruu
对目标用户频域数据
Figure PCTCN2017070335-appb-000128
进行抗衰弱和抗干扰处理:
Figure PCTCN2017070335-appb-000129
也可只进行抗干扰或抗干扰处理:
抗衰弱处理:
Figure PCTCN2017070335-appb-000130
抗干扰处理:
Figure PCTCN2017070335-appb-000131
Figure PCTCN2017070335-appb-000132
补(2048-12)点的0之后,进行2048点的傅里叶反变换,得到能量峰值,获得TA。
本公开提供的方法能够抗衰弱和抗干扰、单独抗干扰或单独抗衰弱,使得在衰弱信道下且存在干扰的PUCCH场景下,可以提高TA估计的精度。
本公开还提供了一种非暂态计算机可读存储介质,存储有计算机可执行指令,所述计算机可执行指令设置为执行上述任一实施例中的方法。
本公开还提供了一种电子设备的硬件结构示意图。参见图6,该电子设备包括:
至少一个处理器(Processor)60,图6中以一个处理器60为例;和存储器(Memory)61,还可以包括通信接口(Communications Interface)62和总线63。其中,处理器60、通信接口62、存储器61可以通过总线63完成相互间的通信。通信接口62可以用于信息传输。处理器60可以调用存储器61中的逻辑指令,以执行TA的估计方法。
此外,上述的存储器61中的逻辑指令可以通过软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。
存储器61作为一种计算机可读存储介质,可用于存储软件程序、计算机可执行程序,如本公开实施例中的方法对应的程序指令或模块。处理器60通过运行存储在存储器61中的软件程序、指令或模块,从而执行功能应用以及数据处理,即实现TA的估计方法。
存储器61可包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需的应用程序;存储数据区可存储根据终端设备的使用所创建的数据等。此外,存储器61可以包括高速随机存取存储器,还可以包括非易失性存储器。
本公开的技术方案可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括一个或多个指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本公开实施例所述方法的全部或部分步骤。而前述的存储介质可以是非暂态存储介质,包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access  Memory,RAM)、磁碟或者光盘等多种可以存储程序代码的介质,也可以是暂态存储介质。
工业实用性
本公开提供的时间提前量的估计方法和装置,使得在衰弱信道下且存在干扰的PUCCH场景下,可以提高TA估计的精度。

Claims (9)

  1. 一种时间提前量TA的估计方法,包括:
    获取物理上行链路控制信道PUCCH的频域数据;
    对所述频域数据进行以下至少一种处理:
    根据所述频域数据计算目标用户的信道估计向量,并根据所述信道估计向量对所述频域数据进行抗衰弱处理,和,
    根据所述频域数据计算目标用户的干扰噪声协方差矩阵,并根据所述干扰噪声协方差矩阵对所述频域数据进行抗干扰处理;以及
    对处理后的所述频域数据进行傅里叶反变换,以得到TA。
  2. 如权利要求1所述的方法,其中,PUCCH的频域数据通过如下公式获取:
    Figure PCTCN2017070335-appb-100001
    其中,
    Figure PCTCN2017070335-appb-100002
    为一个资源块RB上的子载波SC数目,n表示导频符号和数据符号的编号,i表示子载波编号,i=0,1,......,
    Figure PCTCN2017070335-appb-100003
    P为无线基站的接收天线数,0,1,...,P-1表示天线序号,T表示转置。
  3. 如权利要求2所述的方法,其中,根据所述频域数据计算目标用户的信道估计向量中第Tg个目标用户的第p个天线的信道估计向量HTg,p的计算公式包括:
    Figure PCTCN2017070335-appb-100004
    其中,
    Figure PCTCN2017070335-appb-100005
    为由基序列
    Figure PCTCN2017070335-appb-100006
    的循环移位αTg定义的参考信号序列,基序列
    Figure PCTCN2017070335-appb-100007
    被分成不同的组,u为组号,v为组内的基序列号,第Tg个目标用户的循环移位
    Figure PCTCN2017070335-appb-100008
    Tg为目标用户的序号,
    Figure PCTCN2017070335-appb-100009
    Figure PCTCN2017070335-appb-100010
    的共轭,ns表示无线帧内时隙的序号,l表示时隙内小区参考信号所在的OFDM符号的序号,p表示天线序号,p=0,1,...,P-1,
    Figure PCTCN2017070335-appb-100011
    为小区级循环移位,n′Tg(ns)为第Tg个目标用户的无线帧内时隙序号为ns的循环移位,
    Figure PCTCN2017070335-appb-100012
    为对
    Figure PCTCN2017070335-appb-100013
    进行求余运算;
    根据所述频域数据rUser计算目标用户的干扰噪声协方差矩阵中干扰噪声协方差矩阵Ruu的计算公式包括:
    Figure PCTCN2017070335-appb-100014
    其中,第Id个空闲用户的干扰噪声协方差矩阵Ruu(Id)=rId(n)*(rId(n))H,rId(n)=[rId,0(n) rId,1(n) … rId,P-1(n)]T
    Figure PCTCN2017070335-appb-100015
    第Id个空闲用户的循环移位
    Figure PCTCN2017070335-appb-100016
    Figure PCTCN2017070335-appb-100017
    IdNum为空闲用户的总数,Id为空闲用户的序号,Id=0,1,...,IdNum-1,()H中的H表示共轭转置,n′Id(ns)为第Id个空闲用户的无线帧内时隙序号为ns的循环移位。
  4. 如权利要求3所述的方法,其中,对所述频域数据rUser进行抗衰弱处理,包括:
    Figure PCTCN2017070335-appb-100018
    其中,HTg=[HTg,0 HTg,1 … HTg,P-1]T
    对所述频域数据rUser进行抗干扰处理,包括:
    Figure PCTCN2017070335-appb-100019
    其中,Ruu-1为Ruu的逆;
    对频域数据rUser进行抗衰弱处理和抗干扰处理,包括:
    Figure PCTCN2017070335-appb-100020
  5. 一种时间提前量TA的估计装置,包括:
    获取模块,设置为获取物理上行链路控制信道PUCCH的频域数据;
    计算模块,设置为根据所述频域数据计算目标用户的信道估计向量和干扰 噪声协方差矩阵中的至少一个;
    处理模块,设置为对所述频域数据进行以下至少一种处理:根据所述信道估计向量对所述频域数据进行抗衰弱处理,和,根据所述干扰噪声协方差矩阵对所述频域数据进行抗干扰处理;以及
    估计模块,设置为对处理后的所述频域数据进行傅里叶反变换,以得到TA。
  6. 如权利要求5所述的装置,其中,所述获取模块通过如下公式获取频域数据rUser
    Figure PCTCN2017070335-appb-100021
    其中,
    Figure PCTCN2017070335-appb-100022
    为一个资源块RB上的子载波SC数目,n表示导频符号和数据符号的编号,i表示子载波编号,i=0,1,......,
    Figure PCTCN2017070335-appb-100023
    P为无线基站的接收天线数,0,1,...,P-1表示天线序号,T表示转置。
  7. 如权利要求6所述的装置,其中,所述计算模块包括:
    第一计算单元,设置为根据如下公式计算所述信道估计向量:
    第Tg个目标用户的第p个天线的信道估计向量
    Figure PCTCN2017070335-appb-100024
    其中,
    Figure PCTCN2017070335-appb-100025
    为由基序列
    Figure PCTCN2017070335-appb-100026
    均循环移位αTg定义的参考信号序列,基序列
    Figure PCTCN2017070335-appb-100027
    被分成不同的组,u为组号,v为组内的基序列号,第Tg个目标用户的循 环移位
    Figure PCTCN2017070335-appb-100028
    Figure PCTCN2017070335-appb-100029
    Tg为目标用户的序号,
    Figure PCTCN2017070335-appb-100030
    Figure PCTCN2017070335-appb-100031
    的共轭,ns表示无线帧内时隙的序号,l表示时隙内小区参考信号所在的OFDM符号的序号,p表示天线序号,p=0,1,...,P-1,
    Figure PCTCN2017070335-appb-100032
    为小区级循环移位,n′Tg(ns)为第Tg个目标用户的无线帧内时隙序号为ns的循环移位,
    Figure PCTCN2017070335-appb-100033
    为对
    Figure PCTCN2017070335-appb-100034
    进行求余运算;以及
    第二计算单元,设置为根据如下公式计算所述干扰噪声协方差矩阵Ruu
    Figure PCTCN2017070335-appb-100035
    其中,第Id个空闲用户的干扰噪声协方差矩阵Ruu(Id)=rId(n)*(rId(n))H,rId(n)=[rId,0(n) rId,1(n) … rId,P-1(n)]T
    Figure PCTCN2017070335-appb-100036
    第Id个空闲用户的循环移位
    Figure PCTCN2017070335-appb-100037
    Figure PCTCN2017070335-appb-100038
    IdNum为空闲用户的总数,Id为空闲用户的序号,Id=0,1,...,IdNum-1, ()H中的H表示共轭转置,n′Id(ns)为第Id个空闲用户的无线帧内时隙序号为ns的循环移位。
  8. 如权利要求7所述的装置,其中,所述处理模块对频域数据rUser进行抗衰弱处理,包括:
    Figure PCTCN2017070335-appb-100039
    其中,HTg=[HTg,0 HTg,1 … HTg,P-1]T
    所述处理模块对频域数据rUser进行抗干扰处理,包括:
    Figure PCTCN2017070335-appb-100040
    其中,Ruu-1为Ruu的逆;
    所述处理模块对频域数据rUser进行抗衰弱和抗干扰处理,包括:
    Figure PCTCN2017070335-appb-100041
  9. 一种非暂态计算机可读存储介质,存储有计算机可执行指令,所述计算机可执行指令设置为执行权利要求1-4中任一项的方法。
PCT/CN2017/070335 2016-01-26 2017-01-05 时间提前量的估计方法和装置 WO2017128938A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610052709.5 2016-01-26
CN201610052709.5A CN106998557A (zh) 2016-01-26 2016-01-26 一种ta值的估计方法和装置

Publications (1)

Publication Number Publication Date
WO2017128938A1 true WO2017128938A1 (zh) 2017-08-03

Family

ID=59398966

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/070335 WO2017128938A1 (zh) 2016-01-26 2017-01-05 时间提前量的估计方法和装置

Country Status (2)

Country Link
CN (1) CN106998557A (zh)
WO (1) WO2017128938A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113473641A (zh) * 2020-03-31 2021-10-01 华为技术有限公司 一种通信方法和通信装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102307167A (zh) * 2011-09-22 2012-01-04 京信通信系统(中国)有限公司 调整上行定时提前量的方法、装置及基站系统
CN102421184A (zh) * 2010-09-28 2012-04-18 大唐移动通信设备有限公司 一种确定时间提前量的方法和设备
CN102469046A (zh) * 2010-11-09 2012-05-23 中兴通讯股份有限公司 一种时间提前量估计方法及系统
US20120300751A1 (en) * 2011-05-25 2012-11-29 Fujitsu Limited Base station, user terminal, and communication method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102421184A (zh) * 2010-09-28 2012-04-18 大唐移动通信设备有限公司 一种确定时间提前量的方法和设备
CN102469046A (zh) * 2010-11-09 2012-05-23 中兴通讯股份有限公司 一种时间提前量估计方法及系统
US20120300751A1 (en) * 2011-05-25 2012-11-29 Fujitsu Limited Base station, user terminal, and communication method
CN102307167A (zh) * 2011-09-22 2012-01-04 京信通信系统(中国)有限公司 调整上行定时提前量的方法、装置及基站系统

Also Published As

Publication number Publication date
CN106998557A (zh) 2017-08-01

Similar Documents

Publication Publication Date Title
CN109076609B (zh) 用于前导码检测和到达时间估计的方法和接收器
KR102652475B1 (ko) 통신 시스템에서 동기 신호의 송수신 방법 및 장치
CN107820273B (zh) 一种检测D2D中sidelink的同步信号的方法及装置
US9451597B2 (en) Method and apparatus for receiving physical uplink control channel in LTE system
CN109391403B (zh) 用于无线信号的发送和接收的方法和装置
CN107113757B (zh) Sc-fdma中的没有前导码的上行链路同步
CN110224964B (zh) 符号同步方法、装置、接收机设备和存储介质
Sanguinetti et al. A random access algorithm for LTE systems
US10200229B2 (en) Method and apparatus for extracting resource block from signal
US9860102B2 (en) Method for transmitting signal in communication system
CN112911698A (zh) 通信系统中的定时同步方法及装置
CN108738123B (zh) 一种同步信号发送方法和装置
CN107294678B (zh) 用于信道估计的方法和通信设备
TW200841660A (en) System and methods for rapid uplink air interface synchronization
CN106507467A (zh) 一种非实时lte上行链路数据定时同步的方法
WO2019237311A1 (en) Frequency domain prach filter for prach signal recovery
WO2017128938A1 (zh) 时间提前量的估计方法和装置
CN103441830A (zh) 一种基于探测参考信号的定时同步方法
CN111757367B (zh) 一种干扰检测方法、信号发送方法及装置
CN111630820B (zh) 用于确定相位跟踪参考信号资源位置的方法、装置和设备
KR20180008171A (ko) Gfdm 기반 신호 프레임, 및 이에 기반한 통신 방법 및 장치들
CN113055318B (zh) 一种信道估计方法
TW201815133A (zh) 傳輸數據的方法、信道估計的方法和裝置
CN103428151B (zh) 去循环前缀的方法及装置
WO2011144076A2 (zh) 上行随机接入信号的处理方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17743553

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17743553

Country of ref document: EP

Kind code of ref document: A1