WO2017126820A1 - Variable flying robot - Google Patents

Variable flying robot Download PDF

Info

Publication number
WO2017126820A1
WO2017126820A1 PCT/KR2017/000018 KR2017000018W WO2017126820A1 WO 2017126820 A1 WO2017126820 A1 WO 2017126820A1 KR 2017000018 W KR2017000018 W KR 2017000018W WO 2017126820 A1 WO2017126820 A1 WO 2017126820A1
Authority
WO
WIPO (PCT)
Prior art keywords
power line
flight robot
gear
wheel
driving
Prior art date
Application number
PCT/KR2017/000018
Other languages
French (fr)
Korean (ko)
Inventor
박준영
최인규
이재경
김석태
Original Assignee
한국전력공사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국전력공사 filed Critical 한국전력공사
Publication of WO2017126820A1 publication Critical patent/WO2017126820A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C27/00Rotorcraft; Rotors peculiar thereto
    • B64C27/04Helicopters
    • B64C27/08Helicopters with two or more rotors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C25/00Alighting gear
    • B64C25/02Undercarriages
    • B64C25/08Undercarriages non-fixed, e.g. jettisonable
    • B64C25/10Undercarriages non-fixed, e.g. jettisonable retractable, foldable, or the like
    • B64C25/12Undercarriages non-fixed, e.g. jettisonable retractable, foldable, or the like sideways
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C25/00Alighting gear
    • B64C25/32Alighting gear characterised by elements which contact the ground or similar surface 
    • B64C25/34Alighting gear characterised by elements which contact the ground or similar surface  wheeled type, e.g. multi-wheeled bogies
    • B64C25/36Arrangements or adaptations of wheels, tyres or axles in general
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C25/00Alighting gear
    • B64C25/32Alighting gear characterised by elements which contact the ground or similar surface 
    • B64C25/58Arrangements or adaptations of shock-absorbers or springs
    • B64C25/62Spring shock-absorbers; Springs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C27/00Rotorcraft; Rotors peculiar thereto
    • B64C27/52Tilting of rotor bodily relative to fuselage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C39/00Aircraft not otherwise provided for
    • B64C39/02Aircraft not otherwise provided for characterised by special use
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D45/00Aircraft indicators or protectors not otherwise provided for
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D47/00Equipment not otherwise provided for
    • B64D47/08Arrangements of cameras
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/08Locating faults in cables, transmission lines, or networks

Definitions

  • the present invention relates to a variable flight robot for maintenance of a power line that can fly when installed on a power line and when obstacles are avoided while the power line is running, and can run a power line when monitoring or inspecting the power line.
  • the power line is a general term for transmission lines, distribution lines, and electrical equipment belonging to the power transmission, and in order to supply high quality power, it is most important to operate the power line without trouble.
  • drones use high-speed rotors to fly while lifting their weights in the air, consuming a battery, and the use time is only a few minutes or tens of minutes.
  • due to the influence of the environment, such as wind gusts can be a situation that is not easy to control should pay attention to the operation.
  • Korean Patent Publication No. 846743 is a related art related to the present invention.
  • the present invention provides a variable flight robot that can be installed and dismantled in a live power line, and easy to avoid obstacles, and is capable of autonomous instantaneous autonomy for a long time by reducing energy consumed for driving, while allowing super close inspection to the power line for precise inspection. Its main purpose is to help.
  • a variable flight robot includes a body; A plurality of rotor parts disposed in the gas along a circumferential direction of the gas, each of which may be tilted; And a traveling part provided with at least one traveling wheel to be rotatable sideways of the body.
  • the present invention it is possible to be detached to the power line after flying close to the power line can be easily installed and dismantled on the power line in the ultra-high voltage live state, and when the obstacle is encountered after flying away from the power line by obstacles Since it can be mounted on the power line after avoiding, there is an effect of smoothing the obstacles.
  • the energy consumed for driving is reduced compared to the instantaneous flight can be autonomous instantaneous for a long time and at the same time close to the power line has the effect of enabling accurate inspection Will be.
  • FIG. 1 is a perspective view showing a variable flight robot according to an embodiment of the present invention.
  • FIG. 2 is a perspective view illustrating a rotor part of a variable flight robot and a tilting part for tilting the rotor part according to an embodiment of the present invention.
  • FIG 3 is a perspective view showing a running part of a variable flight robot according to an embodiment of the present invention.
  • Figure 4 is a perspective view showing a contact portion of the variable flight robot according to an embodiment of the present invention.
  • FIG. 5 is a view schematically showing a method of using a variable flight robot according to an embodiment of the present invention.
  • FIGS. 6A to 6C are diagrams illustrating a state in which a variable flight robot according to an embodiment of the present invention is in flight in proximity to a power line.
  • FIG. 7A to 7C are views illustrating a state in which a contact wheel of a variable flight robot according to an embodiment of the present invention is in contact with a power line in flight.
  • FIGS. 8A through 8C are diagrams illustrating a state in which a traveling part of a variable flight robot according to an embodiment of the present invention is in a vertical position.
  • FIGS. 9A to 9C are views illustrating a state in which a traveling wheel and a contact wheel of a variable flight robot according to an embodiment of the present invention are mounted in contact with a power line.
  • FIG. 10 is a perspective view illustrating a state in which a variable flight robot according to an embodiment of the present invention is driving along a power line.
  • FIG. 11 is a perspective view illustrating a modified example of a state in which a variable flight robot according to an embodiment of the present invention is driving along a power line.
  • top or up means the upward direction of the flying robot
  • bottom means the downward direction of the flying robot
  • FIG. 1 is a perspective view showing a variable flight robot according to an embodiment of the present invention.
  • variable flight robot 1 includes a base 10; A plurality of rotor portions 20 disposed in the gas along the circumferential direction of the gas, each of which can be tilted; And a traveling part 40 provided with at least one traveling wheel 41 so as to be rotatable in the body.
  • the body 10 may include a controller, a communication module, a battery, a motor, and the like that can remotely control the flying robot.
  • a controller a communication module
  • a battery a battery
  • a motor a motor
  • FIG. 2 is a perspective view illustrating a rotor part of a variable flight robot and a tilting part for tilting the rotor part according to an embodiment of the present invention.
  • Each rotor unit 20 has a connecting arm 21; A first rotary motor 22 installed at one end of the connecting arm; And it may include a blade 23 connected to the rotary shaft of the first rotary motor.
  • the rotor portion 20 is connected to a plurality of supports 24 extending radially from one end of the connecting arm 21, and the annular shape is connected to the end of these supports and the other end of the connecting arm at intervals surrounding the wings 23 And may further comprise an upper duct 25.
  • the duct may optimize the air flow during flight or driving while protecting the first rotary motor 22 and the wings 23.
  • variable flight robot 1 of the present invention having four rotor parts 20 is illustrated, but the number and arrangement of the rotor parts are not necessarily limited to the illustrated example.
  • variable flight robot may further include a tilting unit connected to the rotor unit to tilt the plurality of rotor units.
  • the tilting portion 30 includes a shaft 31 which crosses the base 10 laterally and is connected to the other end of the connecting arm 21 at both ends thereof.
  • the first gear 32 is provided in the middle of the shaft, and the first gear is engaged with the second gear 33 provided on the rotational shaft of the first drive motor 34.
  • the shaft 31 and the connecting arm 21 may be connected to each other in a bent shape at a predetermined angle.
  • a worm wheel and a worm may be employed as the first gear 32 and the second gear 33, but are not necessarily limited thereto, and any other transmission mechanism other than the gear may be adopted.
  • the combination of the worm wheel and the worm has an advantage that a separate braking means for fixing the worm wheel does not need to rotate due to mechanical properties.
  • the first driving motor 34 is installed to be fixed to the base 10, and the shaft 31 may also be supported by the bearing 35 to be rotatable to the base.
  • the rotational force of the first drive motor 34 is transmitted to the shaft 31 through the second gear 33 and the first gear 32, so that the shaft can be rotated by a predetermined angle, and eventually the shaft Rotor portions 20 located at both ends of the can be tilted.
  • the rotor section can be positioned at any angle between horizontal, vertical, or horizontal and vertical.
  • variable flight robot 1 of the present invention can fly up and down when the rotor part 20 is horizontally positioned and the blade 23 rotates at high speed, and the rotor part is positioned approximately vertically in the wing. When rotated, it can travel along an electric power line as mentioned later.
  • FIG 3 is a perspective view showing a running part of a variable flight robot according to an embodiment of the present invention.
  • the driving unit 40 includes a driving wheel 41; A mounting bracket 42 for holding the wheel shaft 41a of the traveling wheel; A rotation arm 44 having one end connected to the mounting bracket and having a rotation member 43 fixed to the other end; A third gear 45 provided on the rotation member; A fourth gear 46 meshing with the third gear; And a second driving motor 47 connected to the fourth gear.
  • a curved receiving groove 41b having a width corresponding to the diameter of the power line is formed on the circumferential surface of the travel wheel 41. This prevents the power line from being seated in the receiving groove so that the travel wheels can easily escape from the power line during travel.
  • the mounting bracket 42 may be additionally mounted with a second rotary motor 41c which is connected to the wheel shaft 41a and may drive the driving wheel 41 in rotation.
  • Worm wheels and worms may be employed as the third gear 45 and the fourth gear 46, but are not necessarily limited thereto, and any other transmission mechanism other than gears may be employed.
  • the second driving motor 47 is installed to be fixed to the base 10, and the rotating member 43 may also be supported by the bearing 48 to be rotatable to the base.
  • the base may be formed with a through slit 11 (see FIG. 1) or a concave groove along the moving trajectory of the pivoting arm.
  • FIG. 3 shows an example of a traveling part 40 in which the variable flight robot 1 of the present invention is linked with two pivoting arms 44 and two traveling wheels 41 to one second driving motor 47. have.
  • the fourth gear 46 which is a worm
  • two worm wheels, ie, third gears 45 disposed on both sides of the worm rotate in opposite directions to each other.
  • Rotating arm 44 may be rotated close to each other, or spread away from each other. Thereby, the rotational arm 44 and the traveling wheel 41 can be rotated laterally with respect to the base 10, and the traveling wheel can have a horizontal or vertical attitude.
  • the number and arrangement of the second driving motor, the rotating arm and the driving wheel are not necessarily limited to the illustrated example.
  • the driving unit 40 may be horizontally unfolded, and when the driving unit is erected vertically, the driving wheel 41 may travel forward or backward on the power line as described below. Will be.
  • variable flight robot may further include a contact portion installed in the gas to detect the contact with the power line, and to serve as a braking device.
  • Figure 4 is a perspective view showing a contact portion of the variable flight robot according to an embodiment of the present invention.
  • the contact portion 50 includes a contact wheel 51; A support bracket 52 holding the wheel shaft 51a of the contact wheel; A support arm 54 having one end connected to the support bracket and having a support member 53 fixed to the other end; A fifth gear 55 provided on the support member; A sixth gear 56 meshed with the fifth gear; A third drive motor 57 connected to the sixth gear and fixed to the base 10; And an elastic member 58 interposed between the support arm and the base.
  • a curved receiving groove 51b having a width corresponding to the diameter of the power line may be formed on the circumferential surface of the contact wheel 51. This prevents the power line from being seated in the receiving groove so that the contact wheel is easily detached from the power line.
  • a worm wheel and a worm may be employed as the fifth gear 55 and the sixth gear 56, but are not necessarily limited thereto, and any other transmission mechanism other than the gear may be adopted.
  • the support member 53 may be rotatably supported on the base 10 by a bearing 59 or the like, and the torsion spring is applied to the support member by fitting the torsion spring to the support member.
  • the silver may be fixed to the support arm 54 and the other end may be fixed to the base 10.
  • a switch unit such as a limit switch, which is in contact with each other and senses this rotation, is installed in the base 10.
  • the unit may be electrically connected to a controller (not shown).
  • At least one distance sensor 12 is mounted on the upper surface of the base 10 or in front and rear of the traveling direction, so that the variable flight robot 1 of the present invention can approach the power line and detect the power line.
  • a sensor such as an ultrasonic sensor may be employed, and the distance sensor may also be electrically connected to the controller.
  • the body 10 may be provided with a plurality of cameras for monitoring the power line.
  • a first camera 13 for monitoring a power line may be mounted on an upper surface of the base, and a second camera 14 for monitoring other equipment may be mounted on a lower surface of the base.
  • Such a camera may be a high resolution camera, an ultraviolet camera or a thermal imaging camera, and these cameras may serve as inspection devices.
  • variable flight robot 1 of the present invention flies and approaches the power line
  • the power line monitoring first camera 13 and the distance sensor 12 are used to parallel the longitudinal axis of the power line and the variable flight robot.
  • the variable flying robot can be gradually raised so that the contact wheel 51 is pressed by the power line.
  • the support arm 54 rotates down to contact the switch portion, and an electrical signal is transmitted from the switch portion to the controller, thereby detecting the contact with the power line.
  • the elastic member 58 supports the support arm while continuously applying elasticity to the support arm.
  • the contact portion 50 operates the third drive motor 57 while the variable flight robot 1 travels along the power line, thereby supporting the support member 53 such that the support arm 54 lifts the contact wheel 51.
  • a friction force between the contact wheel and the power line is generated, which enables braking.
  • the body may be provided with a robot arm for maintaining the power line.
  • An end of the robot arm is provided with, for example, a power tool, and can serve as a maintenance device such as tightening a bolt or removing foreign matter.
  • the variable flight robot 1 may include a controller in the body 10.
  • the controller receives the position of the flight robot measured from the sensors such as the distance sensor 12 and compares it with the reference set value to perform attitude control and position control of the current variable flight robot, and the remote control device through the communication module. It serves to control to transmit the real-time image data captured by the plurality of cameras.
  • controller in the aircraft controls the operation of the variable flight robot by outputting a control command to the rotary motors and the drive motor in accordance with various control commands received from the remote control device through the communication module.
  • a remote controller a PC such as a laptop or a tablet, a smartphone, or the like is used, and the rotor part 20, the tilting part 30, and the driving part 40 of the variable flight robot 1 are used.
  • the contact unit 50, the operation control commands of the components such as the robot arm, and receive the real-time image data about the power line can check the defect while checking the surface state of the power line.
  • variable flight robot a method of using a variable flight robot according to an embodiment of the present invention will be described.
  • FIG. 5 is a view schematically showing a method of using a variable flight robot according to an embodiment of the present invention.
  • the traveling part of the variable flight robot 1 When approaching the power line 2, the traveling part of the variable flight robot 1 is erected so that the traveling wheel is placed on the power line, and the traveling wheel performs the inspection or maintenance of the power line while traveling on the power line.
  • variable flight robot 1 When the variable flight robot 1 encounters an obstacle 3 such as, for example, an aviation obstacle indicator or a child lock, the vehicle is stopped and the obstacle is avoided through the flight after the driving part is separated from the power line 2.
  • an obstacle 3 such as, for example, an aviation obstacle indicator or a child lock
  • variable flight robot 1 After avoiding obstacles, the variable flight robot 1 is approached to the power line 2 to raise the driving part so that the driving wheel is placed on the power line again, so that the variable flight robot can continue to check or maintain the power line while driving the power line. do.
  • variable flight robot According to an embodiment of the present invention.
  • FIGS. 7A to 7C illustrate contact of a variable flight robot according to an embodiment of the present invention.
  • 8A through 8C are diagrams illustrating a state in which a wheel is vertically driven while the driving unit of the variable flight robot according to an embodiment of the present invention is placed vertically.
  • the flight of the variable flight robot for example, by rotating the blades 23 of the plurality of rotor portion 20 at the same speed, to raise and lower the body 10 in the vertical direction, You can control the altitude of the gas by increasing it.
  • variable flight robot 1 is allowed to fly close to the power line 2 as shown in Figs. 6A to 6C. If the power line is close to the power line using the first camera 13 and the distance sensor 12 for monitoring the power line in a state in which the longitudinal axis of the power line and the variable flight robot in parallel with the contact wheel 51 is pressed by the power line variable flight Slowly raise the robot.
  • the support arm 54 rotates downward to come into contact with the switch portion, and electrical signals are transmitted from the switch portion to the controller. It will detect contact with the power line.
  • the elastic member 58 (see FIG. 4) supports the support arm while applying elasticity to the support arm.
  • variable flight robot 1 When the contact with the power line 2 is detected, the variable flight robot 1 is hovered in the air through the attitude control of the controller to fly, and rotates the driving unit 40 as shown in FIGS. 8A to 8C. Stand upright.
  • FIGS. 9A to 9C are views illustrating a state in which a traveling wheel and a contact wheel of a variable flight robot according to an embodiment of the present invention are mounted in contact with a power line.
  • the process of detaching the variable flight robot of the present invention from the power line may be performed in the reverse order.
  • the tilting method of the rotor part is not limited to the example shown in FIG. 10, and for example, one side of the rotor parts 20 located at the front and the rear, for example, the rear rotor parts, as shown in FIG. 11, tilt upward and the other side.
  • the rotor parts can also be tilted down.
  • variable flight robot 1 of the present invention may use the thrust of the rotor unit 20 to travel along the power line 2.
  • the rotors 23 of the rotor parts located at the front and rear are rotated in opposite directions so that these rotor parts generate thrust in the same direction.
  • the variable flight robot sends wind in the direction opposite to the direction of travel.
  • the thrust of the rotor unit may be used only for driving the variable flight robot, but as shown in FIG. 11, together with the rotor unit 20, a second rotary motor connected to the wheel shaft of the traveling wheel 41 ( 41c) can be used to add the driving force of the second rotary motor.
  • variable flight robot 1 may travel along the power line 2 by the sole driving of the second rotary motor 41c connected to the wheel shaft of the travel wheel 41 without thrust of the rotor unit.
  • variable flight robot 1 avoids the obstacle 3 through the flight, and after avoiding the obstacle, approaches the power line and runs. By attaching the unit back to the power line, the variable flight robot can continue to perform the inspection or maintenance of the power line while driving the power line.
  • the present invention it is possible to be detached to the power line after flying close to the power line can be easily installed and dismantled on the power line in the ultra-high voltage live state, and when the obstacle is encountered after flying away from the power line by obstacles The obstacle can be smoothly avoided since it can be mounted on the power line again after avoiding.
  • the energy consumed for driving is reduced compared to the instantaneous flight, and autonomous instantaneous operation is possible for a long time, and at the same time close inspection to the power line enables precise inspection.
  • the present invention is capable of avoiding precise inspection and obstacles, and is useful for monitoring and inspecting power lines.

Landscapes

  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Manipulator (AREA)
  • Toys (AREA)

Abstract

The present invention relates to a variable flying robot comprising: an airframe; a plurality of independently-tiltable rotor parts arranged at the airframe along the circumferential direction of the airframe; and a running part having at least one a running wheel and installed to be rotatable in the lateral direction of the airframe. Therefore, the robot can prevent an electric power line accident and enables remote maintenance or repair of a high-voltage and high-elevation electric power line, thereby maximizing work stability.

Description

가변형 비행로봇Variable flight robot
본 발명은, 전력선에 설치될 때와 전력선의 주행 중 장애물을 회피할 때에는 비행을 하고, 전력선로의 감시나 점검 시에는 전력선을 주행할 수 있는 전력선로 유지보수용 가변형 비행로봇에 관한 것이다. The present invention relates to a variable flight robot for maintenance of a power line that can fly when installed on a power line and when obstacles are avoided while the power line is running, and can run a power line when monitoring or inspecting the power line.
전력선로는 전력의 전송에 사용되는 송전선, 배전선 및 이에 속하는 전기설비 등을 총칭하는 것으로, 양질의 전력을 공급하기 위해서는 전력선로를 고장 없이 운영하는 것이 무엇보다도 중요하다.The power line is a general term for transmission lines, distribution lines, and electrical equipment belonging to the power transmission, and in order to supply high quality power, it is most important to operate the power line without trouble.
따라서 전력선로의 사고를 예방하기 위해서 전력선로를 주기적으로 점검할 필요성이 있으며, 일반적으로 도보 순시와 헬기 순시로 전력선로의 유지보수를 수행하고 있다. Therefore, it is necessary to periodically check the power line in order to prevent the power line accidents, and in general, maintenance of the power line is performed by walking and helicopter patrols.
하지만, 도보 순시는 인력에 의한 육안 점검으로 고전압, 고소(高所)의 전력선에 대한 접근 한계로 시야의 확보가 어렵고, 헬기 순시는 고속 비행으로 인해 점검의 정확성이 낮고 계절 및 지역에 따라 운영하기 어려운 경우가 많다.However, due to human visual inspection by walking personnel, it is difficult to secure visibility due to the limitation of access to power lines of high voltage and high places, and helicopter patrols have low accuracy of inspection and operate according to season and region due to high speed flight. Often difficult.
이들 점검 방법의 한계점을 해결하기 위하여, 전력선에 직접 설치되어 주행하면서 전력선로를 초근접 감시하거나 점검하는 로봇이 개발되고 있다. In order to solve the limitations of these inspection methods, robots that are installed directly on the power line and run while supervising or inspecting the power line have been developed.
하지만, 이와 같은 주행형 로봇은 전력선로 상에 위치한 항공장애 표시구나 애자련 금구류 등과 같은 장애물을 넘을 수 있어야 하기 때문에 이를 위한 복잡한 기계적 구조나 장치들을 장착하게 되어 로봇의 무게와 부피가 상당히 커지게 된다. 더구나, 활선 상태인 전력선에 로봇을 직접 설치하기가 매우 복잡하고 어려우며 시간과 노력이 많이 소요됨과 더불어, 작업 안전성 측면에서도 위험부담이 있다. However, these robots must be able to overcome obstacles such as aviation fault indicators and child locks located on the power lines, so that they can be equipped with complicated mechanical structures or devices to make the robots considerably larger in weight and volume. do. Moreover, it is very complicated and difficult to install the robot directly on the live power line, and it takes a lot of time and effort, and there is also a risk in terms of work safety.
한편, 비행을 통해 전력선로에 가까이 접근하는 것이 가능한 드론(Drone)을 전력선로의 감시에 사용하려는 연구가 활발하게 진행되고 있다. On the other hand, research is being actively conducted to use the drone, which can approach the power line by flight, for monitoring the power line.
그런데 드론의 경우 고속회전하는 날개를 사용하여 자신의 무게를 공중으로 들어올리면서 비행을 해야 하기 때문에 배터리의 소모가 빨라 사용시간이 수분 내지 수십 분에 불과하다. 또한, 돌풍 등과 같은 환경의 영향에 따라 제어가 쉽지 않은 상황이 발생할 수 있기 때문에 운행에 주의를 기울여야 한다.However, drones use high-speed rotors to fly while lifting their weights in the air, consuming a battery, and the use time is only a few minutes or tens of minutes. In addition, due to the influence of the environment, such as wind gusts can be a situation that is not easy to control should pay attention to the operation.
참고로, 본 발명과 관련된 선행기술로는 대한민국 특허공보 제846743호가 있다.For reference, Korean Patent Publication No. 846743 is a related art related to the present invention.
이에 본 발명은 활선 상태인 전력선에 설치 및 철거, 그리고 장애물의 회피가 용이하고, 구동에 소모되는 에너지를 줄여 장시간 자율적인 순시가 가능하면서 전력선에 초근접하여 정밀한 점검이 가능한 가변형 비행로봇을 제공하는 데에 그 주된 목적이 있다. Accordingly, the present invention provides a variable flight robot that can be installed and dismantled in a live power line, and easy to avoid obstacles, and is capable of autonomous instantaneous autonomy for a long time by reducing energy consumed for driving, while allowing super close inspection to the power line for precise inspection. Its main purpose is to help.
본 발명의 일 실시예에 따른 가변형 비행로봇은, 기체(機體); 상기 기체의 둘레방향을 따라 상기 기체에 배치되며, 각각 틸팅가능한 복수의 로터부; 및 적어도 하나의 주행휠을 갖추고서 상기 기체의 측방으로 회동가능하게 설치된 주행부를 포함하는 것을 특징으로 한다. According to one embodiment of the present invention, a variable flight robot includes a body; A plurality of rotor parts disposed in the gas along a circumferential direction of the gas, each of which may be tilted; And a traveling part provided with at least one traveling wheel to be rotatable sideways of the body.
이상과 같이 본 발명에 의하면, 비행을 통해 전력선에 근접한 후 전력선에 탈착이 가능하여 초고압 활선 상태인 전력선에 용이하게 설치 및 철거할 수 있고, 장애물을 만났을 경우에 전력선으로부터 이탈한 후 비행하여 장애물을 회피한 다음에 다시 전력선에 장착될 수 있으므로 장애물의 회피가 원활하게 되는 효과가 있다. As described above, according to the present invention, it is possible to be detached to the power line after flying close to the power line can be easily installed and dismantled on the power line in the ultra-high voltage live state, and when the obstacle is encountered after flying away from the power line by obstacles Since it can be mounted on the power line after avoiding, there is an effect of smoothing the obstacles.
또한, 본 발명에 의하면, 전력선을 직접 주행하면서 유지보수를 수행함으로써, 비행 순시에 비해 구동에 소모되는 에너지를 줄여 장시간 자율적인 순시가 가능함과 동시에 전력선에 초근접하여 정밀한 점검이 가능하게 되는 효과가 있게 된다. In addition, according to the present invention, by performing the maintenance while driving the power line directly, the energy consumed for driving is reduced compared to the instantaneous flight can be autonomous instantaneous for a long time and at the same time close to the power line has the effect of enabling accurate inspection Will be.
궁극적으로, 본 발명에 의하면 전력선로의 사고를 미연에 방지함은 물론, 고전압, 고소의 전력선로에 대한 유지보수를 원격으로 실시함으로써 작업 안전성을 극대화할 수 있는 장점이 있게 되는 것이다.Ultimately, according to the present invention, as well as preventing accidents of the power line in advance, there is an advantage that can maximize the work safety by performing maintenance on the power line of the high voltage, high power remotely.
도 1은 본 발명의 일 실시예에 따른 가변형 비행로봇을 도시한 사시도이다. 1 is a perspective view showing a variable flight robot according to an embodiment of the present invention.
도 2는 본 발명의 일 실시예에 따른 가변형 비행로봇의 로터부와, 이 로터부를 틸팅시키는 틸팅부를 도시한 사시도이다. 2 is a perspective view illustrating a rotor part of a variable flight robot and a tilting part for tilting the rotor part according to an embodiment of the present invention.
도 3은 본 발명의 일 실시예에 따른 가변형 비행로봇의 주행부를 도시한 사시도이다. 3 is a perspective view showing a running part of a variable flight robot according to an embodiment of the present invention.
도 4는 본 발명의 일 실시예에 따른 가변형 비행로봇의 접촉부를 도시한 사시도이다.Figure 4 is a perspective view showing a contact portion of the variable flight robot according to an embodiment of the present invention.
도 5는 본 발명의 일 실시예에 따른 가변형 비행로봇의 사용 방법을 개략적으로 도시한 도면이다. 5 is a view schematically showing a method of using a variable flight robot according to an embodiment of the present invention.
도 6a 내지 도 6c는 본 발명의 일 실시예에 따른 가변형 비행로봇이 전력선에 근접하여 비행 중인 상태를 도시한 도면들이다.6A to 6C are diagrams illustrating a state in which a variable flight robot according to an embodiment of the present invention is in flight in proximity to a power line.
도 7a 내지 도 7c는 본 발명의 일 실시예에 따른 가변형 비행로봇의 접촉휠이 전력선에 접촉하여 비행 중인 상태를 도시한 도면들이다.7A to 7C are views illustrating a state in which a contact wheel of a variable flight robot according to an embodiment of the present invention is in contact with a power line in flight.
도 8a 내지 도 8c는 본 발명의 일 실시예에 따른 가변형 비행로봇의 주행부를 수직하게 세운 채로 비행 중인 상태를 도시한 도면들이다.8A through 8C are diagrams illustrating a state in which a traveling part of a variable flight robot according to an embodiment of the present invention is in a vertical position.
도 9a 내지 도 9c는 본 발명의 일 실시예에 따른 가변형 비행로봇의 주행휠과 접촉휠이 전력선에 접촉하여 장착된 상태를 도시한 도면들이다.9A to 9C are views illustrating a state in which a traveling wheel and a contact wheel of a variable flight robot according to an embodiment of the present invention are mounted in contact with a power line.
도 10은 본 발명의 일 실시예에 따른 가변형 비행로봇이 전력선을 따라 주행 중인 상태를 도시한 사시도이다.10 is a perspective view illustrating a state in which a variable flight robot according to an embodiment of the present invention is driving along a power line.
도 11은 본 발명의 일 실시예에 따른 가변형 비행로봇이 전력선을 따라 주행 중인 상태의 변형예를 도시한 사시도이다.11 is a perspective view illustrating a modified example of a state in which a variable flight robot according to an embodiment of the present invention is driving along a power line.
이하, 본 발명이 예시적인 도면을 통해 상세하게 설명된다. 각 도면의 구성요소들에 참조부호를 부가함에 있어서, 동일한 구성요소들에 대해서는 비록 다른 도면상에 표시되더라도 가능한 한 동일한 부호를 가지도록 하고 있음에 유의해야 한다. 또한, 본 발명을 설명함에 있어, 관련된 공지 구성 또는 기능에 대한 구체적인 설명이 본 발명의 요지를 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명은 생략한다.Hereinafter, the present invention will be described in detail through exemplary drawings. In adding reference numerals to the components of each drawing, it should be noted that the same reference numerals are assigned to the same components as much as possible even though they are shown in different drawings. In addition, in describing the present invention, when it is determined that the detailed description of the related well-known configuration or function may obscure the gist of the present invention, the detailed description thereof will be omitted.
본 명세서에서는 설명의 편의를 위해 방향성을 정의하는 용어가 사용된다. 예를 들어, 용어 "상부(측)" 또는 "위"는 비행로봇의 상승 방향을 의미하며, 용어 "하부(측)" 또는 "아래"는 반대로 비행로봇의 하강 방향을 의미한다. In the present specification, for convenience of description, terms defining directionality are used. For example, the term "top" or "up" means the upward direction of the flying robot, and the term "bottom" or "bottom" means the downward direction of the flying robot.
이러한 용어들은 구성요소들 간의 위치 관계를 나타내거나 비행로봇의 작동 관계를 설명하기 위해 사용된 것에 불과하며, 발명의 범위를 제한하기 위해 사용된 것이 아니라는 점을 밝혀두고자 한다. These terms are only used to describe the positional relationship between the components or to describe the operational relationship of the flight robot, and are not intended to limit the scope of the invention.
도 1은 본 발명의 일 실시예에 따른 가변형 비행로봇을 도시한 사시도이다.1 is a perspective view showing a variable flight robot according to an embodiment of the present invention.
이에 도시된 바와 같이, 본 발명의 일 실시예에 따른 가변형 비행로봇(1)은 기체(10); 이 기체의 둘레방향을 따라 기체에 배치되며, 각각 틸팅가능한 복수의 로터부(20); 및 적어도 하나의 주행휠(41)을 갖추고서 기체에 회동가능하게 설치된 주행부(40)를 포함하고 있다. As shown therein, the variable flight robot 1 according to the embodiment of the present invention includes a base 10; A plurality of rotor portions 20 disposed in the gas along the circumferential direction of the gas, each of which can be tilted; And a traveling part 40 provided with at least one traveling wheel 41 so as to be rotatable in the body.
도면에 도시하지 않았지만, 기체(10) 내에는 비행로봇을 원격으로 조정 가능하게 하는 제어기, 통신모듈, 배터리 및 모터 등을 내장할 수 있다. 여기서 통신모듈, 배터리 및 모터 등의 구성 및 기능은 이미 공지된 것이므로 상세한 설명은 생략한다.Although not shown in the drawings, the body 10 may include a controller, a communication module, a battery, a motor, and the like that can remotely control the flying robot. Here, since the configuration and function of the communication module, the battery, and the motor are already known, a detailed description thereof will be omitted.
도 2는 본 발명의 일 실시예에 따른 가변형 비행로봇의 로터부와, 이 로터부를 틸팅시키는 틸팅부를 도시한 사시도이다. 2 is a perspective view illustrating a rotor part of a variable flight robot and a tilting part for tilting the rotor part according to an embodiment of the present invention.
각 로터부(20)는 연결아암(21); 이 연결아암의 일단에 설치된 제1회전모터(22); 및 이 제1회전모터의 회전축에 연결된 날개(23)를 포함할 수 있다. Each rotor unit 20 has a connecting arm 21; A first rotary motor 22 installed at one end of the connecting arm; And it may include a blade 23 connected to the rotary shaft of the first rotary motor.
또한, 로터부(20)는 연결아암(21)의 일단에서 방사상으로 뻗은 복수의 지지대(24), 및 이들 지지대의 단부와 연결아암의 타단에 연결되어 날개(23)와 간격을 두고 둘러싸는 환형상의 덕트(25)를 추가로 포함할 수 있다. 이 덕트는 제1회전모터(22)와 날개(23) 등을 보호하면서 비행 또는 주행 시 공기 흐름을 최적화할 수 있다. Further, the rotor portion 20 is connected to a plurality of supports 24 extending radially from one end of the connecting arm 21, and the annular shape is connected to the end of these supports and the other end of the connecting arm at intervals surrounding the wings 23 And may further comprise an upper duct 25. The duct may optimize the air flow during flight or driving while protecting the first rotary motor 22 and the wings 23.
도면들에는 본 발명의 가변형 비행로봇(1)이 4개의 로터부(20)를 가진 예가 도시되어 있지만, 로터부의 개수와 배치가 반드시 도시된 예에 한정되는 것은 아니다. In the drawings, an example of the variable flight robot 1 of the present invention having four rotor parts 20 is illustrated, but the number and arrangement of the rotor parts are not necessarily limited to the illustrated example.
본 발명의 일 실시예에 따른 가변형 비행로봇은 복수의 로터부를 틸팅시킬 수 있도록 로터부에 연결된 틸팅부를 더 포함할 수 있다. The variable flight robot according to an embodiment of the present invention may further include a tilting unit connected to the rotor unit to tilt the plurality of rotor units.
틸팅부(30)는 기체(10)를 측방으로 가로질러 놓이고서 그 양단에 전술한 연결아암(21)의 타단이 연결되는 샤프트(31)를 포함한다. 이 샤프트의 중간에는 제1기어(32)가 마련되어 있으며, 이 제1기어는 제1구동모터(34)의 회전축 상에 마련된 제2기어(33)와 치합되어 있다. The tilting portion 30 includes a shaft 31 which crosses the base 10 laterally and is connected to the other end of the connecting arm 21 at both ends thereof. The first gear 32 is provided in the middle of the shaft, and the first gear is engaged with the second gear 33 provided on the rotational shaft of the first drive motor 34.
샤프트(31)와 연결아암(21)은 서로 소정의 각도를 갖고 절곡된 형상으로 연결될 수 있다.The shaft 31 and the connecting arm 21 may be connected to each other in a bent shape at a predetermined angle.
제1기어(32)와 제2기어(33)로는 웜휠과 웜이 채용될 수 있지만, 반드시 이에 한정되는 것은 아니며, 기어 외에 다른 임의의 전동기구가 채택되어도 무방하다. 다만, 웜휠과 웜의 조합은 기계적 특성상 웜휠이 돌아가지 않도록 고정하기 위한 별도의 제동수단이 필요하지 않은 장점이 있다.A worm wheel and a worm may be employed as the first gear 32 and the second gear 33, but are not necessarily limited thereto, and any other transmission mechanism other than the gear may be adopted. However, the combination of the worm wheel and the worm has an advantage that a separate braking means for fixing the worm wheel does not need to rotate due to mechanical properties.
제1구동모터(34)는 기체(10)에 고정되게 설치되며, 샤프트(31)도 기체에 회전가능하게 베어링(35) 등으로 지지될 수 있다. The first driving motor 34 is installed to be fixed to the base 10, and the shaft 31 may also be supported by the bearing 35 to be rotatable to the base.
이에 따라, 제1구동모터(34)의 회전력이 제2기어(33)와 제1기어(32)를 통해 샤프트(31)에 전달됨으로써, 이 샤프트가 소정의 각도만큼 회전될 수 있으며, 결국 샤프트의 양단에 위치한 로터부(20)가 틸팅될 수 있다. 이로써, 로터부가 수평, 수직, 또는 수평과 수직 사이의 임의의 각도로 자세를 가질 수 있다. Accordingly, the rotational force of the first drive motor 34 is transmitted to the shaft 31 through the second gear 33 and the first gear 32, so that the shaft can be rotated by a predetermined angle, and eventually the shaft Rotor portions 20 located at both ends of the can be tilted. In this way, the rotor section can be positioned at any angle between horizontal, vertical, or horizontal and vertical.
따라서, 본 발명의 가변형 비행로봇(1)은 복수의 로터부(20)가 수평으로 위치되어 날개(23)가 고속으로 회전하면 상하로 비행할 수 있으며, 복수의 로터부가 대략 수직으로 위치되어 날개가 회전하면 후술하는 바와 같이 전력선을 따라 주행할 수 있다. Therefore, the variable flight robot 1 of the present invention can fly up and down when the rotor part 20 is horizontally positioned and the blade 23 rotates at high speed, and the rotor part is positioned approximately vertically in the wing. When rotated, it can travel along an electric power line as mentioned later.
도 3은 본 발명의 일 실시예에 따른 가변형 비행로봇의 주행부를 도시한 사시도이다. 3 is a perspective view showing a running part of a variable flight robot according to an embodiment of the present invention.
주행부(40)는 주행휠(41); 이 주행휠의 휠축(41a)을 보유지지하는 장착브라켓(42); 일단이 장착브라켓에 연결되고 타단에 고정된 회동부재(43)를 구비한 회동아암(44); 회동부재에 마련된 제3기어(45); 이 제3기어와 치합되는 제4기어(46); 및 이 제4기어에 연결된 제2구동모터(47)를 포함할 수 있다. The driving unit 40 includes a driving wheel 41; A mounting bracket 42 for holding the wheel shaft 41a of the traveling wheel; A rotation arm 44 having one end connected to the mounting bracket and having a rotation member 43 fixed to the other end; A third gear 45 provided on the rotation member; A fourth gear 46 meshing with the third gear; And a second driving motor 47 connected to the fourth gear.
주행휠(41)의 원주면에는 전력선의 지름에 대응하는 폭의 만곡된 수용홈(41b)이 형성되어 있다. 이로써, 전력선이 수용홈 안에 안착되어 주행휠이 주행 중에 전력선으로부터 쉽게 벗어나는 것이 방지된다.A curved receiving groove 41b having a width corresponding to the diameter of the power line is formed on the circumferential surface of the travel wheel 41. This prevents the power line from being seated in the receiving groove so that the travel wheels can easily escape from the power line during travel.
또한, 장착브라켓(42)에는 휠축(41a)에 연결되어 주행휠(41)을 회전 구동시킬 수 있는 제2회전모터(41c)가 추가로 장착될 수 있다. In addition, the mounting bracket 42 may be additionally mounted with a second rotary motor 41c which is connected to the wheel shaft 41a and may drive the driving wheel 41 in rotation.
제3기어(45)와 제4기어(46)로는 웜휠과 웜이 채용될 수 있지만, 반드시 이에 한정되는 것은 아니며, 기어 외에 다른 임의의 전동기구가 채택되어도 무방하다. Worm wheels and worms may be employed as the third gear 45 and the fourth gear 46, but are not necessarily limited thereto, and any other transmission mechanism other than gears may be employed.
제2구동모터(47)는 기체(10)에 고정되게 설치되며, 회동부재(43)도 기체에 회전가능하게 베어링(48) 등으로 지지될 수 있다. 회동아암(44)의 회동시 간섭을 방지하기 위해 기체에는 회동아암의 이동 궤적을 따라 관통슬릿(11; 도 1 참조) 또는 오목홈이 형성될 수도 있다. The second driving motor 47 is installed to be fixed to the base 10, and the rotating member 43 may also be supported by the bearing 48 to be rotatable to the base. In order to prevent the interference when the pivoting arm 44 rotates, the base may be formed with a through slit 11 (see FIG. 1) or a concave groove along the moving trajectory of the pivoting arm.
도 3에는 본 발명의 가변형 비행로봇(1)이 하나의 제2구동모터(47)에 2개의 회동아암(44)과 2개의 주행휠(41)이 연동되는 주행부(40)의 예가 도시되어 있다. 이와 같이 구성됨에 따라, 제2구동모터에 의해 예컨대 웜인 제4기어(46)가 구동되면 웜의 양쪽에 각각 배치된 2개의 웜휠, 즉 제3기어(45)가 서로 반대 방향으로 회전하여 2개의 회동아암(44)이 서로 가깝게 회동되거나, 서로 멀어지게 펼쳐질 수 있다. 이로써, 회동아암(44)과 주행휠(41)이 기체(10)에 대해 측방으로 회동될 수 있으며, 주행휠은 수평 또는 수직의 자세를 가질 수 있다. 3 shows an example of a traveling part 40 in which the variable flight robot 1 of the present invention is linked with two pivoting arms 44 and two traveling wheels 41 to one second driving motor 47. have. As such, when the fourth gear 46, which is a worm, is driven by the second driving motor, two worm wheels, ie, third gears 45, disposed on both sides of the worm rotate in opposite directions to each other. Rotating arm 44 may be rotated close to each other, or spread away from each other. Thereby, the rotational arm 44 and the traveling wheel 41 can be rotated laterally with respect to the base 10, and the traveling wheel can have a horizontal or vertical attitude.
하지만, 제2구동모터와 회동아암 및 주행휠의 개수와 배치가 반드시 도시된 예에 한정되는 것은 아니다. However, the number and arrangement of the second driving motor, the rotating arm and the driving wheel are not necessarily limited to the illustrated example.
따라서, 본 발명의 가변형 비행로봇(1)은 주행부(40)가 수평하게 펼쳐질 수 있으며, 주행부가 수직하게 세워질 때에는 후술하는 바와 같이 주행휠(41)이 전력선을 타고 전진 또는 후진하면서 주행할 수 있게 된다. Therefore, in the variable flight robot 1 of the present invention, the driving unit 40 may be horizontally unfolded, and when the driving unit is erected vertically, the driving wheel 41 may travel forward or backward on the power line as described below. Will be.
한편, 본 발명의 일 실시예에 따른 가변형 비행로봇은 전력선과의 접촉을 감지함과 더불어, 제동장치로서의 역할을 수행할 수 있도록 기체에 설치된 접촉부를 더 포함할 수 있다. On the other hand, the variable flight robot according to an embodiment of the present invention may further include a contact portion installed in the gas to detect the contact with the power line, and to serve as a braking device.
도 4는 본 발명의 일 실시예에 따른 가변형 비행로봇의 접촉부를 도시한 사시도이다. Figure 4 is a perspective view showing a contact portion of the variable flight robot according to an embodiment of the present invention.
접촉부(50)는 접촉휠(51); 이 접촉휠의 휠축(51a)을 보유지지하는 지지브라켓(52); 일단이 지지브라켓에 연결되고 타단에 고정된 지지부재(53)를 구비한 지지아암(54); 지지부재에 마련된 제5기어(55); 이 제5기어와 치합되는 제6기어(56); 이 제6기어에 연결되고 기체(10)에 고정된 제3구동모터(57); 및 지지아암과 기체 사이에 개재되는 탄성부재(58)를 포함하고 있다. The contact portion 50 includes a contact wheel 51; A support bracket 52 holding the wheel shaft 51a of the contact wheel; A support arm 54 having one end connected to the support bracket and having a support member 53 fixed to the other end; A fifth gear 55 provided on the support member; A sixth gear 56 meshed with the fifth gear; A third drive motor 57 connected to the sixth gear and fixed to the base 10; And an elastic member 58 interposed between the support arm and the base.
접촉휠(51)의 원주면에도 전력선의 지름에 대응하는 폭의 만곡된 수용홈(51b)이 형성될 수 있다. 이로써, 전력선이 수용홈 안에 안착되어 접촉휠이 전력선으로부터 쉽게 이탈되는 것이 방지된다.A curved receiving groove 51b having a width corresponding to the diameter of the power line may be formed on the circumferential surface of the contact wheel 51. This prevents the power line from being seated in the receiving groove so that the contact wheel is easily detached from the power line.
제5기어(55)와 제6기어(56)로는 웜휠과 웜이 채용될 수 있지만, 반드시 이에 한정되는 것은 아니며, 기어 외에 다른 임의의 전동기구가 채택되어도 무방하다. A worm wheel and a worm may be employed as the fifth gear 55 and the sixth gear 56, but are not necessarily limited thereto, and any other transmission mechanism other than the gear may be adopted.
지지부재(53)는 기체(10)에 회전가능하게 베어링(59) 등으로 지지될 수 있으며, 탄성부재(58)로는 토션스프링이 적용되어 지지부재에 토션스프링이 끼워짐과 동시에 토션스프링의 일단은 지지아암(54)에 고정되고 타단은 기체(10)에 고정되게 설치될 수 있다. The support member 53 may be rotatably supported on the base 10 by a bearing 59 or the like, and the torsion spring is applied to the support member by fitting the torsion spring to the support member. The silver may be fixed to the support arm 54 and the other end may be fixed to the base 10.
또한, 지지아암(54) 또는 지지부재(53)가 소정의 각도만큼 회전하면 접촉하여 이 회전을 감지하도록 된 예컨대 리미트스위치와 같은 스위치부(미도시)가 기체(10)에 설치되고, 이 스위치부는 제어기(미도시)에 전기적으로 연결될 수 있다. Further, when the support arm 54 or the support member 53 rotates by a predetermined angle, a switch unit (not shown) such as a limit switch, which is in contact with each other and senses this rotation, is installed in the base 10. The unit may be electrically connected to a controller (not shown).
더구나, 기체(10)의 상부면 또는 진행방향의 앞뒤에는 각각 적어도 하나의 거리센서(12)가 장착되어, 본 발명의 가변형 비행로봇(1)이 전력선에 접근하여 전력선을 감지할 수 있게 한다. 거리센서로는 초음파 센서 등과 같은 센서가 채용될 수 있으며, 이 거리센서도 제어기에 전기적으로 연결될 수 있다. In addition, at least one distance sensor 12 is mounted on the upper surface of the base 10 or in front and rear of the traveling direction, so that the variable flight robot 1 of the present invention can approach the power line and detect the power line. As the distance sensor, a sensor such as an ultrasonic sensor may be employed, and the distance sensor may also be electrically connected to the controller.
또, 기체(10)에는 전력선로를 감시하기 위한 복수의 카메라가 설치될 수 있다. 예를 들어, 기체의 상부면에는 전력선을 감시하는 제1카메라(13)가 장착되고, 기체의 하부면에는 기타 설비를 감시하는 제2카메라(14)가 장착될 수 있다. 이러한 카메라로는 고해상도 카메라, 자외선 카메라 또는 열화상 카메라가 채용될 수 있으며, 이들 카메라가 점검장치로서의 역할을 수행할 수 있다. In addition, the body 10 may be provided with a plurality of cameras for monitoring the power line. For example, a first camera 13 for monitoring a power line may be mounted on an upper surface of the base, and a second camera 14 for monitoring other equipment may be mounted on a lower surface of the base. Such a camera may be a high resolution camera, an ultraviolet camera or a thermal imaging camera, and these cameras may serve as inspection devices.
이에 따라, 본 발명의 가변형 비행로봇(1)이 비행하여 전력선에 근접하면 전력선 감시용 제1카메라(13)와 거리센서(12)를 이용하여 전력선과 가변형 비행로봇의 길이방향 축선을 평행하게 맞춘 상태에서 접촉휠(51)이 전력선에 의해 눌리도록 가변형 비행로봇을 서서히 상승시킬 수 있다. 접촉휠이 전력선에 의해 눌리면서 지지아암(54)이 아래로 회전하여 스위치부와 접촉하고, 이 스위치부로부터 제어기로 전기신호가 전달됨으로써, 전력선과의 접촉을 감지하게 된다. 이때, 탄성부재(58)는 지지아암에 지속적으로 탄발력을 가하면서 지지아암을 지지하게 된다. Accordingly, when the variable flight robot 1 of the present invention flies and approaches the power line, the power line monitoring first camera 13 and the distance sensor 12 are used to parallel the longitudinal axis of the power line and the variable flight robot. In this state, the variable flying robot can be gradually raised so that the contact wheel 51 is pressed by the power line. As the contact wheel is pressed by the power line, the support arm 54 rotates down to contact the switch portion, and an electrical signal is transmitted from the switch portion to the controller, thereby detecting the contact with the power line. At this time, the elastic member 58 supports the support arm while continuously applying elasticity to the support arm.
특히, 접촉부(50)는 가변형 비행로봇(1)이 전력선을 따라 주행하는 중에 제3구동모터(57)를 작동시켜 지지아암(54)이 접촉휠(51)을 들어올리도록 지지부재(53)를 회전시키면, 접촉휠과 전력선 사이의 마찰력이 발생하게 되어 제동을 할 수 있다. In particular, the contact portion 50 operates the third drive motor 57 while the variable flight robot 1 travels along the power line, thereby supporting the support member 53 such that the support arm 54 lifts the contact wheel 51. When rotated, a friction force between the contact wheel and the power line is generated, which enables braking.
추가로, 도면에 도시하지 않았지만, 기체에는 전력선로를 정비하기 위한 로봇팔이 설치될 수도 있다. 이 로봇팔의 단부에는 예컨대 전동공구를 구비하여, 볼트의 조임이나 이물의 제거 등과 같은 정비장치로서의 역할을 수행할 수 있다. In addition, although not shown in the drawings, the body may be provided with a robot arm for maintaining the power line. An end of the robot arm is provided with, for example, a power tool, and can serve as a maintenance device such as tightening a bolt or removing foreign matter.
본 발명에 따른 가변형 비행로봇(1)은 기체(10) 내에 제어기를 포함할 수 있다. 이 제어기는 거리센서(12) 등의 센서들로부터 측정된 비행로봇의 위치 등을 입력받아 기준 설정값과 비교하여 현재 가변형 비행로봇의 자세제어와 위치제어를 수행하고, 통신모듈을 통해 원격제어장치로 복수의 카메라에서 촬영된 실시간 영상데이터를 전송시키도록 제어하는 역할을 한다.The variable flight robot 1 according to the present invention may include a controller in the body 10. The controller receives the position of the flight robot measured from the sensors such as the distance sensor 12 and compares it with the reference set value to perform attitude control and position control of the current variable flight robot, and the remote control device through the communication module. It serves to control to transmit the real-time image data captured by the plurality of cameras.
또한, 기체 내 제어기는 통신모듈을 통해 원격제어장치로부터 전송받은 각종 제어명령에 따라 회전모터들과 구동모터들로 제어명령을 출력시켜 가변형 비행로봇의 작동을 제어한다. In addition, the controller in the aircraft controls the operation of the variable flight robot by outputting a control command to the rotary motors and the drive motor in accordance with various control commands received from the remote control device through the communication module.
도면에 도시하지 않았지만, 원격제어장치로는 리모콘, 노트북이나 태블릿 등과 같은 PC, 스마트폰 등이 사용되어, 가변형 비행로봇(1)의 로터부(20), 틸팅부(30), 주행부(40), 접촉부(50), 로봇팔 등과 같은 구성요소들의 작동제어명령을 송신하고, 전력선로에 관한 실시간 영상데이터를 수신받아 전력선로의 표면 상태를 점검하면서 결함을 찾아낼 수 있다. Although not shown in the drawings, a remote controller, a PC such as a laptop or a tablet, a smartphone, or the like is used, and the rotor part 20, the tilting part 30, and the driving part 40 of the variable flight robot 1 are used. ), The contact unit 50, the operation control commands of the components such as the robot arm, and receive the real-time image data about the power line can check the defect while checking the surface state of the power line.
이하에서는 본 발명의 일 실시예에 따른 가변형 비행로봇의 사용 방법을 설명하기로 한다. Hereinafter, a method of using a variable flight robot according to an embodiment of the present invention will be described.
도 5는 본 발명의 일 실시예에 따른 가변형 비행로봇의 사용 방법을 개략적으로 도시한 도면이다. 5 is a view schematically showing a method of using a variable flight robot according to an embodiment of the present invention.
먼저, 본 발명의 가변형 비행로봇(1)을 비행시켜 전력선(2)에 접근시킨다. First, by flying the variable flight robot 1 of the present invention to approach the power line (2).
이 전력선(2)에 근접하면 가변형 비행로봇(1)의 주행부를 세워 주행휠이 전력선 위에 놓이게 하고, 주행휠이 전력선을 타고 주행하면서 전력선로의 점검 또는 정비를 수행한다. When approaching the power line 2, the traveling part of the variable flight robot 1 is erected so that the traveling wheel is placed on the power line, and the traveling wheel performs the inspection or maintenance of the power line while traveling on the power line.
가변형 비행로봇(1)의 주행 중 예컨대 항공장애 표시구나 애자련 금구류 등과 같은 장애물(3)을 만나게 되면 주행을 멈추고, 주행부를 전력선(2)으로부터 이탈시킨 후 비행을 통해 장애물을 회피한다. When the variable flight robot 1 encounters an obstacle 3 such as, for example, an aviation obstacle indicator or a child lock, the vehicle is stopped and the obstacle is avoided through the flight after the driving part is separated from the power line 2.
장애물을 회피한 다음에는 가변형 비행로봇(1)을 전력선(2)에 접근시켜 주행부를 세워 다시 주행휠이 전력선 위에 놓이게 함으로써, 가변형 비행로봇이 전력선을 주행하면서 전력선로의 점검 또는 정비를 계속 수행하게 한다.After avoiding obstacles, the variable flight robot 1 is approached to the power line 2 to raise the driving part so that the driving wheel is placed on the power line again, so that the variable flight robot can continue to check or maintain the power line while driving the power line. do.
도 6a 내지 도 9c를 참조로 하여 본 발명의 일 실시예에 따른 가변형 비행로봇의 작동을 보다 상세히 설명한다. With reference to Figures 6a to 9c will be described in more detail the operation of the variable flight robot according to an embodiment of the present invention.
도 6a 내지 도 6c는 본 발명의 일 실시예에 따른 가변형 비행로봇이 전력선에 근접하여 비행 중인 상태를 도시한 도면들이고, 도 7a 내지 도 7c는 본 발명의 일 실시예에 따른 가변형 비행로봇의 접촉휠이 전력선에 접촉하여 비행 중인 상태를 도시한 도면들이며, 도 8a 내지 도 8c는 본 발명의 일 실시예에 따른 가변형 비행로봇의 주행부를 수직하게 세운 채로 비행 중인 상태를 도시한 도면들이다.6A to 6C are diagrams illustrating a state in which a variable flight robot according to an embodiment of the present invention is in flight in close proximity to a power line, and FIGS. 7A to 7C illustrate contact of a variable flight robot according to an embodiment of the present invention. 8A through 8C are diagrams illustrating a state in which a wheel is vertically driven while the driving unit of the variable flight robot according to an embodiment of the present invention is placed vertically.
먼저, 가변형 비행로봇(1)의 비행은, 예를 들어 복수의 로터부(20)가 가진 날개(23)들을 동일한 속도로 회전시켜, 수직방향으로 기체(10)를 상승 및 하강시키고, 가속도를 증가시켜 기체의 고도를 제어할 수 있다. First, the flight of the variable flight robot 1, for example, by rotating the blades 23 of the plurality of rotor portion 20 at the same speed, to raise and lower the body 10 in the vertical direction, You can control the altitude of the gas by increasing it.
이와 같이 하여 가변형 비행로봇(1)을 도 6a 내지 도 6c에서와 같이 전력선(2)에 근접하여 비행하게 한다. 전력선에 근접하면 전력선 감시용 제1카메라(13)와 거리센서(12)를 이용하여 전력선과 가변형 비행로봇의 길이방향 축선을 평행하게 맞춘 상태에서 접촉휠(51)이 전력선에 의해 눌리도록 가변형 비행로봇을 서서히 상승시킨다. In this way, the variable flight robot 1 is allowed to fly close to the power line 2 as shown in Figs. 6A to 6C. If the power line is close to the power line using the first camera 13 and the distance sensor 12 for monitoring the power line in a state in which the longitudinal axis of the power line and the variable flight robot in parallel with the contact wheel 51 is pressed by the power line variable flight Slowly raise the robot.
도 7a 내지 도 7c에서와 같이 접촉휠(51)이 전력선(2)에 의해 눌리면, 지지아암(54)이 아래로 회전하여 스위치부와 접촉하고, 이 스위치부로부터 제어기로 전기신호가 전달됨으로써, 전력선과의 접촉을 감지하게 된다. 이때, 탄성부재(58; 도 4 참조)는 지지아암에 탄발력을 가하면서 지지아암을 지지하고 있다. When the contact wheel 51 is pressed by the power line 2 as shown in Figs. 7A to 7C, the support arm 54 rotates downward to come into contact with the switch portion, and electrical signals are transmitted from the switch portion to the controller. It will detect contact with the power line. At this time, the elastic member 58 (see FIG. 4) supports the support arm while applying elasticity to the support arm.
전력선(2)과의 접촉이 감지되면, 제어기의 자세제어를 통해 가변형 비행로봇(1)은 공중에서 정지(Hovering)되어 비행하고, 도 8a 내지 도 8c에서와 같이 주행부(40)를 회동시켜 수직하게 세운다. When the contact with the power line 2 is detected, the variable flight robot 1 is hovered in the air through the attitude control of the controller to fly, and rotates the driving unit 40 as shown in FIGS. 8A to 8C. Stand upright.
주행부(40)의 주행휠(41)이 완전히 세워지면 복수의 로터부(20)가 가진 날개(23)들의 회전속도를 점차 줄여서 최종적으로 정지시킨다. 도 9a 내지 도 9c는 본 발명의 일 실시예에 따른 가변형 비행로봇의 주행휠과 접촉휠이 전력선에 접촉하여 장착된 상태를 도시한 도면들이다.When the driving wheel 41 of the driving unit 40 is completely raised, the rotational speed of the blades 23 of the plurality of rotor units 20 is gradually reduced to finally stop. 9A to 9C are views illustrating a state in which a traveling wheel and a contact wheel of a variable flight robot according to an embodiment of the present invention are mounted in contact with a power line.
날개(23)들의 회전이 완전히 정지되면 전력선(2)의 상부는 주행휠(41)의 수용홈에 닿아 있게 되고, 접촉휠(51)도 탄성부재(58)가 지지아암(54)에 가한 탄발력에 의해 지속적으로 전력선의 하부에 그 수용홈이 닿아 있게 되는 것이다. When the rotation of the blades 23 is completely stopped, the upper portion of the power line (2) is in contact with the receiving groove of the driving wheel 41, the contact wheel 51 also burnt the elastic member 58 applied to the support arm (54) The accommodating grooves are constantly touching the lower part of the power line by the force.
본 발명의 가변형 비행로봇을 전력선으로부터 이탈시키는 과정은 전술한 과정을 역순으로 실행하면 된다. The process of detaching the variable flight robot of the present invention from the power line may be performed in the reverse order.
이어서, 본 발명의 가변형 비행로봇이 전력선을 주행하는 과정을 설명한다. Next, a process of driving the power line by the variable flight robot of the present invention will be described.
도 9a 내지 도 9c에서와 같이 가변형 비행로봇(1)이 전력선(2)에 장착되면, 도 10에 도시된 바와 같이 가변형 비행로봇의 진행방향의 앞뒤에 위치한 로터부(20)를 서로 마주보도록 틸팅시킨다. 9a to 9c, when the variable flight robot 1 is mounted on the power line 2, as shown in FIG. 10, tilting the rotor parts 20 located in front and behind in the traveling direction of the variable flight robot as shown in FIG. Let's do it.
하지만, 로터부의 틸팅 방식은 도 10에 도시된 예에 한정되지 않으며, 예를 들어 도 11에 도시된 바와 같이 앞뒤에 위치한 로터부(20)들 중 일측, 예컨대 뒤쪽 로터부들은 위쪽으로 틸팅시키고 타측 로터부들은 아래로 틸팅시키는 것도 가능하다. However, the tilting method of the rotor part is not limited to the example shown in FIG. 10, and for example, one side of the rotor parts 20 located at the front and the rear, for example, the rear rotor parts, as shown in FIG. 11, tilt upward and the other side. The rotor parts can also be tilted down.
본 발명의 가변형 비행로봇(1)은 전력선(2)을 따라 주행하기 위하여 로터부(20)의 추력을 이용할 수 있다. The variable flight robot 1 of the present invention may use the thrust of the rotor unit 20 to travel along the power line 2.
도 10에서와 같이 앞뒤에 위치한 로터부(20)들이 서로 마주보도록 틸팅된 경우에는 이들 로터부들이 동일한 방향으로 추력을 발생시키도록 앞뒤에 위치한 로터부들의 날개(23)들이 서로 반대 방향으로 회전되게 제어한다. 이렇게 날개부들이 회전함으로써, 가변형 비행로봇이 주행하고자 하는 방향의 반대쪽으로 바람을 내보내게 된다. When the rotor parts 20 located at the front and rear are tilted to face each other as shown in FIG. 10, the rotors 23 of the rotor parts located at the front and rear are rotated in opposite directions so that these rotor parts generate thrust in the same direction. To control. As the wings rotate, the variable flight robot sends wind in the direction opposite to the direction of travel.
도 11에서와 같이 앞뒤에 위치한 로터부(20)들이 상하로 배치되게 틸팅된 경우에는 앞뒤에 위치한 로터부들의 날개(23)들이 동일한 방향으로, 즉 가변형 비행로봇이 주행하고자 하는 방향의 반대쪽으로 바람을 내보내도록 회전되게 제어한다. When the rotor parts 20 located at the front and the rear are tilted to be disposed up and down as shown in FIG. 11, the wings 23 of the rotor parts located at the front and the back are winded in the same direction, that is, in a direction opposite to the direction in which the variable flight robot intends to travel. Controls to rotate to export
전술한 바와 같이, 가변형 비행로봇의 주행을 위하여 로터부의 추력만 이용할 수도 있지만, 도 11에 도시된 바와 같이 이들 로터부(20)와 함께, 주행휠(41)의 휠축에 연결된 제2회전모터(41c)를 사용하여 제2회전모터의 구동력을 부가할 수 있다. As described above, the thrust of the rotor unit may be used only for driving the variable flight robot, but as shown in FIG. 11, together with the rotor unit 20, a second rotary motor connected to the wheel shaft of the traveling wheel 41 ( 41c) can be used to add the driving force of the second rotary motor.
혹은, 로터부의 추력 없이 주행휠(41)의 휠축에 연결된 제2회전모터(41c)의 단독 구동에 의해 가변형 비행로봇(1)이 전력선(2)을 따라 주행하는 것도 가능하다. Alternatively, the variable flight robot 1 may travel along the power line 2 by the sole driving of the second rotary motor 41c connected to the wheel shaft of the travel wheel 41 without thrust of the rotor unit.
한편, 도 10에 도시된 바와 같이, 주행 중 전력선(2) 상에 예컨대 항공장애 표시구와 같은 장애물(3)이 거리센서(12)나 제2카메라(14) 등으로 감지된 경우에는 가변형 비행로봇(1)의 주행을 정지해야 한다. On the other hand, as shown in Figure 10, when the obstacle 3, such as the aviation failure indicator on the power line 2 while driving is detected by the distance sensor 12, the second camera 14, etc., the variable flight robot The driving of (1) must be stopped.
이때에는, 접촉부(50)의 제3구동모터(57; 도 4 참조)를 작동시켜 지지아암(54)이 접촉휠(51)을 들어올리도록 지지부재(53)를 회전시키면, 접촉휠과 전력선 사이의 마찰력이 발생하게 되어 제동을 할 수 있고, 이에 따라 가변형 비행로봇(1)의 주행을 정지시킬 수 있다. At this time, when the support member 54 is rotated so that the support arm 54 lifts the contact wheel 51 by operating the third driving motor 57 (see FIG. 4) of the contact portion 50, the contact wheel and the power line are separated. The frictional force of the brake can be generated, thereby stopping the traveling of the variable flight robot (1).
다음으로, 전술한 바와 같이 주행부(40)를 전력선(2)으로부터 이탈시킨 후 가변형 비행로봇(1)은 비행을 통해 장애물(3)을 회피하고, 장애물을 회피한 다음에는 전력선에 접근하여 주행부를 다시 전력선에 장착하게 함으로써, 가변형 비행로봇이 전력선을 주행하면서 전력선로의 점검 또는 정비를 계속 수행하게 할 수 있다. Next, as described above, after the driving unit 40 is separated from the power line 2, the variable flight robot 1 avoids the obstacle 3 through the flight, and after avoiding the obstacle, approaches the power line and runs. By attaching the unit back to the power line, the variable flight robot can continue to perform the inspection or maintenance of the power line while driving the power line.
이상과 같이 본 발명에 의하면, 비행을 통해 전력선에 근접한 후 전력선에 탈착이 가능하여 초고압 활선 상태인 전력선에 용이하게 설치 및 철거할 수 있고, 장애물을 만났을 경우에 전력선으로부터 이탈한 후 비행하여 장애물을 회피한 다음에 다시 전력선에 장착될 수 있으므로 장애물의 회피가 원활하게 이루어질 수 있다. As described above, according to the present invention, it is possible to be detached to the power line after flying close to the power line can be easily installed and dismantled on the power line in the ultra-high voltage live state, and when the obstacle is encountered after flying away from the power line by obstacles The obstacle can be smoothly avoided since it can be mounted on the power line again after avoiding.
또한, 본 발명에 의하면, 전력선을 직접 주행하면서 유지보수를 수행함으로써, 비행 순시에 비해 구동에 소모되는 에너지를 줄여 장시간 자율적인 순시가 가능함과 동시에 전력선에 초근접하여 정밀한 점검이 가능하게 된다. In addition, according to the present invention, by performing maintenance while driving the power line directly, the energy consumed for driving is reduced compared to the instantaneous flight, and autonomous instantaneous operation is possible for a long time, and at the same time close inspection to the power line enables precise inspection.
이상의 설명은 본 발명의 기술 사상을 예시적으로 설명한 것에 불과한 것으로서, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자라면 본 발명의 본질적인 특성에서 벗어나지 않는 범위에서 다양한 수정 및 변형이 가능할 것이다. 따라서, 본 발명에 개시된 실시예는 본 발명의 기술 사상을 한정하기 위한 것이 아니라 설명하기 위한 것이고, 이러한 실시예에 의하여 본 발명의 기술 사상의 범위가 한정되는 것은 아니다. 본 발명의 보호 범위는 아래의 청구범위에 의하여 해석되어야 하며, 그와 동등한 범위 내에 있는 모든 기술 사상은 본 발명의 권리범위에 포함되는 것으로 해석되어야 할 것이다.The above description is merely illustrative of the technical idea of the present invention, and those skilled in the art to which the present invention pertains may make various modifications and changes without departing from the essential characteristics of the present invention. Therefore, the embodiments disclosed in the present invention are not intended to limit the technical idea of the present invention but to describe the present invention, and the scope of the technical idea of the present invention is not limited by these embodiments. The protection scope of the present invention should be interpreted by the following claims, and all technical ideas within the equivalent scope should be interpreted as being included in the scope of the present invention.
이상과 같이, 본 발명은 정밀한 점검 맟 장애물의 회피가 가능하여, 전력선로의 감시 및 점검에 유용하다. As described above, the present invention is capable of avoiding precise inspection and obstacles, and is useful for monitoring and inspecting power lines.

Claims (15)

  1. 기체(機體);Gas;
    상기 기체의 둘레방향을 따라 상기 기체에 배치되며, 각각 틸팅가능한 복수의 로터부; 및 A plurality of rotor parts disposed in the gas along a circumferential direction of the gas, each of which may be tilted; And
    적어도 하나의 주행휠을 갖추고서 상기 기체의 측방으로 회동가능하게 설치된 주행부A traveling part rotatably installed to the side of the body with at least one traveling wheel
    를 포함하는 가변형 비행로봇. Variable flight robot comprising a.
  2. 제1항에 있어서, The method of claim 1,
    상기 로터부는 The rotor part
    연결아암; Connecting arm;
    상기 연결아암의 일단에 설치된 제1회전모터; 및 A first rotating motor installed at one end of the connecting arm; And
    상기 제1회전모터의 회전축에 연결된 날개Wings connected to the rotating shaft of the first rotary motor
    를 포함하는 것을 특징으로 하는 가변형 비행로봇. Variable flight robot comprising a.
  3. 제2항에 있어서,The method of claim 2,
    상기 로터부는 The rotor part
    상기 연결아암의 일단에서 방사상으로 뻗은 복수의 지지대; 및 A plurality of supports extending radially from one end of the connecting arm; And
    상기 지지대의 단부와 상기 연결아암의 타단에 연결되어 상기 날개와 간격을 두고 둘러싸는 덕트A duct connected to an end of the support and the other end of the connecting arm and spaced apart from the wing;
    를 더 포함하는 것을 특징으로 하는 가변형 비행로봇.Variable flight robot further comprises a.
  4. 제2항에 있어서, The method of claim 2,
    상기 복수의 로터부를 틸팅시키기 위한 틸팅부를 더 포함하고, And a tilting part for tilting the plurality of rotor parts,
    상기 틸팅부는 The tilting unit
    상기 기체를 가로질러 놓이고서 양단에 상기 로터부가 가진 상기 연결아암의 타단이 연결되는 샤프트;A shaft placed across the gas and having opposite ends of the connecting arm with the rotor part connected to both ends thereof;
    상기 샤프트의 중간에 마련된 제1기어;A first gear provided in the middle of the shaft;
    상기 제1기어와 치합되는 제2기어; 및A second gear meshing with the first gear; And
    상기 제2기어에 연결된 제1구동모터A first driving motor connected to the second gear
    를 구비하는 것을 특징으로 하는 가변형 비행로봇.Variable flight robot characterized in that it comprises a.
  5. 제1항에 있어서, The method of claim 1,
    상기 주행부는 The running part
    주행휠; Traveling wheel;
    상기 주행휠의 휠축을 보유지지하는 장착브라켓; A mounting bracket for holding a wheel shaft of the driving wheel;
    일단이 상기 장착브라켓에 연결되고 타단에 고정된 회동부재를 구비한 회동아암; A rotation arm having one end connected to the mounting bracket and having a rotation member fixed at the other end;
    상기 회동부재에 마련된 제3기어; A third gear provided on the pivot member;
    상기 제3기어와 치합되는 제4기어; 및 A fourth gear meshed with the third gear; And
    상기 제4기어에 연결된 제2구동모터A second driving motor connected to the fourth gear
    를 포함하는 것을 특징으로 하는 가변형 비행로봇. Variable flight robot comprising a.
  6. 제5항에 있어서, The method of claim 5,
    상기 장착브라켓에는 상기 휠축에 연결되어 상기 주행휠을 회전 구동시킬 수 있는 제2회전모터가 장착된 것을 특징으로 하는 가변형 비행로봇. The mounting bracket is a variable flight robot, characterized in that the second rotation motor is connected to the wheel shaft for driving the driving wheel rotation.
  7. 제1항에 있어서, The method of claim 1,
    상기 기체에는 전력선과의 접촉을 감지함과 더불어, 제동장치로서의 역할을 하는 접촉부가 설치된 것을 특징으로 하는 가변형 비행로봇. The gas can detect a contact with the power line, and a variable flight robot, characterized in that the contact portion that serves as a braking device is installed.
  8. 제7항에 있어서,The method of claim 7, wherein
    상기 접촉부는The contact portion
    접촉휠; Contact wheel;
    상기 접촉휠의 휠축을 보유지지하는 지지브라켓; A support bracket for holding a wheel shaft of the contact wheel;
    일단이 상기 지지브라켓에 연결되고 타단에 고정된 지지부재를 구비한 지지아암; A support arm having one end connected to the support bracket and having a support member fixed to the other end;
    상기 지지부재에 마련된 제5기어; A fifth gear provided on the support member;
    상기 제5기어와 치합되는 제6기어; A sixth gear meshing with the fifth gear;
    상기 제6기어에 연결되고 상기 기체에 고정된 제3구동모터; 및 A third driving motor connected to the sixth gear and fixed to the gas; And
    상기 지지아암과 상기 기체 사이에 개재되는 탄성부재An elastic member interposed between the support arm and the base
    를 포함하는 것을 특징으로 하는 가변형 비행로봇. Variable flight robot comprising a.
  9. 제8항에 있어서, The method of claim 8,
    상기 탄성부재는 토션스프링이고, The elastic member is a torsion spring,
    상기 지지부재에 상기 토션스프링이 끼워짐과 동시에 상기 토션스프링의 일단은 상기 지지아암에 고정되고 상기 토션스프링의 타단은 상기 기체에 고정되게 설치된 것을 특징으로 하는 가변형 비행로봇.And at least one end of the torsion spring is fixed to the support arm and the other end of the torsion spring is fixed to the body while the torsion spring is fitted to the support member.
  10. 제8항에 있어서, The method of claim 8,
    상기 지지아암 또는 상기 지지부재가 일정 각도만큼 회전하면 접촉되는 스위치부를 더 포함하는 것을 특징으로 하는 가변형 비행로봇. And a switch unit which is contacted when the support arm or the support member rotates by a predetermined angle.
  11. 제1항에 있어서, The method of claim 1,
    상기 기체에는 적어도 하나의 거리센서가 장착된 것을 특징으로 하는 가변형 비행로봇.The aircraft is a variable flight robot, characterized in that the at least one distance sensor is mounted.
  12. 제1항에 있어서, The method of claim 1,
    상기 기체에는 전력선로를 감시하기 위한 복수의 카메라가 설치된 것을 특징으로 하는 가변형 비행로봇.The aircraft is a variable flight robot, characterized in that a plurality of cameras for monitoring the power line is installed.
  13. 제1항에 있어서, The method of claim 1,
    상기 주행휠이 전력선을 타고 주행하면서 장애물을 만나면 주행을 멈추고, 상기 주행부를 상기 전력선으로부터 이탈시킨 후 비행을 통해 상기 장애물을 회피하도록 제어되는 것을 특징으로 하는 가변형 비행로봇. The driving wheel stops driving when it meets an obstacle while driving on a power line, and is controlled so as to avoid the obstacle through a flight after leaving the driving part from the power line.
  14. 제4항에 있어서, The method of claim 4, wherein
    상기 복수의 로터부 중 진행방향의 앞뒤에 위치한 로터부가 서로 마주보도록 틸팅되는 것을 특징으로 하는 가변형 비행로봇. The rotor of the plurality of rotors located in the front and rear of the traveling direction is tilted so as to face each other variable flight robot.
  15. 제4항에 있어서,The method of claim 4, wherein
    상기 샤프트와 상기 연결아암은 일정 각도를 갖고 절곡된 형상으로 연결되어, 상기 복수의 로터부 중 진행방향의 앞뒤에 위치한 로터부가 상하로 배치되게 틸팅되는 것을 특징으로 하는 가변형 비행로봇.The shaft and the connecting arm are connected in a bent shape at a predetermined angle, the variable flying robot, characterized in that the rotor portion located in front and rear of the traveling direction of the plurality of rotor portions are tilted to be arranged up and down.
PCT/KR2017/000018 2016-01-20 2017-01-02 Variable flying robot WO2017126820A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2016-0007153 2016-01-20
KR1020160007153A KR101837585B1 (en) 2016-01-20 2016-01-20 Transformable flying robot

Publications (1)

Publication Number Publication Date
WO2017126820A1 true WO2017126820A1 (en) 2017-07-27

Family

ID=59362528

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/000018 WO2017126820A1 (en) 2016-01-20 2017-01-02 Variable flying robot

Country Status (2)

Country Link
KR (1) KR101837585B1 (en)
WO (1) WO2017126820A1 (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107728021A (en) * 2017-10-19 2018-02-23 上海电力学院 The partial discharge number of photons detection means compensated based on inclination angle and supersonic sounding
CN108639321A (en) * 2018-06-29 2018-10-12 长沙市云智航科技有限公司 A kind of component that verts for more rotor flying vehicles
WO2019019521A1 (en) * 2017-07-28 2019-01-31 深圳市道通智能航空技术有限公司 Cradle head and aircraft
CN109613393A (en) * 2018-11-26 2019-04-12 惠安耐亚节能科技有限公司 A kind of cable car electric power detection device moved using upper air current
CN109747825A (en) * 2019-01-22 2019-05-14 深圳市飞米机器人科技有限公司 Aircraft
CN111409404A (en) * 2020-03-02 2020-07-14 上海工程技术大学 Turbojet-driven air-ground amphibious transportation aircraft
CN112173142A (en) * 2020-09-25 2021-01-05 中国直升机设计研究所 Helicopter cable-proof device
CN112572794A (en) * 2020-12-16 2021-03-30 深圳市瑞可创新科技有限公司 A unmanned aerial vehicle for taking photo by plane that has a protect function
CN112748184A (en) * 2020-12-28 2021-05-04 海南电网有限责任公司琼海供电局 A ultrasonic wave hidden danger detection device for distribution network
CN113126088A (en) * 2021-03-13 2021-07-16 中铁十二局集团有限公司 Tunnel detection robot and tunnel detection method
CN113682476A (en) * 2019-01-23 2021-11-23 杭州零零科技有限公司 Unmanned flight system and control system for unmanned flight system
CN113978718A (en) * 2021-12-24 2022-01-28 天津斑斓航空科技有限公司 Aircraft active tilting structure, control method and aircraft
CN114180082A (en) * 2021-12-09 2022-03-15 湖南翼航航空科技有限公司 Unmanned aerial vehicle with high security flight anticollision institution
CN114228997A (en) * 2020-12-29 2022-03-25 国网山东省电力公司蒙阴县供电公司 High-altitude cable sheath detection method
CN115230964A (en) * 2022-09-02 2022-10-25 王庆峰 High-voltage line inspection robot based on dual-rotor unmanned aerial vehicle

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101965362B1 (en) * 2017-12-11 2019-04-03 한국항공우주연구원 Unmanned aircraft for power cable checking using take-off and landing on power cable
KR102259261B1 (en) * 2019-03-06 2021-06-01 지상현 Live cable detection and drone charging system using drone and method using thereof
KR102331583B1 (en) * 2020-06-29 2021-11-25 이상현 Drone having multiple flying modes
KR102351536B1 (en) * 2020-09-15 2022-01-14 한전케이디엔주식회사 Upward opgw checking for drone
KR102460338B1 (en) * 2021-01-08 2022-10-31 조금배 Portable aircraft for manned boarding
CN115258162A (en) * 2022-09-02 2022-11-01 王庆峰 Unmanned line maintenance robot

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102412530A (en) * 2011-12-23 2012-04-11 北京国网富达科技发展有限责任公司 Line navigation amphibious power circuit comprehensive maintenance robot and circuit maintenance method thereof
US8991740B2 (en) * 2012-08-29 2015-03-31 Draganfly Innovations Inc. Vehicle with aerial and ground mobility
KR20150118499A (en) * 2014-04-14 2015-10-22 (주)에스앤티 Lifesaving system and methods using an Unmmanned Aerial Vehicle
CN105071295A (en) * 2015-09-07 2015-11-18 李烨 Unmanned aerial vehicle suspension walking device
KR20160003073A (en) * 2013-04-30 2016-01-08 니다베르가-엔지니어링 아게 Automated and versatile autonomous-climbing undercarriage with flight capability

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2625098A4 (en) * 2010-10-06 2018-01-17 Donald Orval Shaw Aircraft with wings and movable propellers

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102412530A (en) * 2011-12-23 2012-04-11 北京国网富达科技发展有限责任公司 Line navigation amphibious power circuit comprehensive maintenance robot and circuit maintenance method thereof
US8991740B2 (en) * 2012-08-29 2015-03-31 Draganfly Innovations Inc. Vehicle with aerial and ground mobility
KR20160003073A (en) * 2013-04-30 2016-01-08 니다베르가-엔지니어링 아게 Automated and versatile autonomous-climbing undercarriage with flight capability
KR20150118499A (en) * 2014-04-14 2015-10-22 (주)에스앤티 Lifesaving system and methods using an Unmmanned Aerial Vehicle
CN105071295A (en) * 2015-09-07 2015-11-18 李烨 Unmanned aerial vehicle suspension walking device

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019019521A1 (en) * 2017-07-28 2019-01-31 深圳市道通智能航空技术有限公司 Cradle head and aircraft
CN109305377A (en) * 2017-07-28 2019-02-05 深圳市道通智能航空技术有限公司 Holder and aircraft
CN107728021A (en) * 2017-10-19 2018-02-23 上海电力学院 The partial discharge number of photons detection means compensated based on inclination angle and supersonic sounding
CN108639321A (en) * 2018-06-29 2018-10-12 长沙市云智航科技有限公司 A kind of component that verts for more rotor flying vehicles
CN109613393A (en) * 2018-11-26 2019-04-12 惠安耐亚节能科技有限公司 A kind of cable car electric power detection device moved using upper air current
CN109747825A (en) * 2019-01-22 2019-05-14 深圳市飞米机器人科技有限公司 Aircraft
CN109747825B (en) * 2019-01-22 2022-01-18 深圳市飞米机器人科技有限公司 Aircraft with a flight control device
CN113682476A (en) * 2019-01-23 2021-11-23 杭州零零科技有限公司 Unmanned flight system and control system for unmanned flight system
CN113682476B (en) * 2019-01-23 2024-03-26 杭州零零科技有限公司 Unmanned flying system and control system for unmanned flying system
CN111409404A (en) * 2020-03-02 2020-07-14 上海工程技术大学 Turbojet-driven air-ground amphibious transportation aircraft
CN111409404B (en) * 2020-03-02 2022-10-04 上海工程技术大学 Turbojet-driven air-ground amphibious transportation aircraft
CN112173142A (en) * 2020-09-25 2021-01-05 中国直升机设计研究所 Helicopter cable-proof device
CN112173142B (en) * 2020-09-25 2022-11-25 中国直升机设计研究所 Helicopter cable-proof device
CN112572794A (en) * 2020-12-16 2021-03-30 深圳市瑞可创新科技有限公司 A unmanned aerial vehicle for taking photo by plane that has a protect function
CN112748184A (en) * 2020-12-28 2021-05-04 海南电网有限责任公司琼海供电局 A ultrasonic wave hidden danger detection device for distribution network
CN112748184B (en) * 2020-12-28 2024-04-26 海南电网有限责任公司琼海供电局 Ultrasonic hidden trouble detection device for power distribution network
CN114228997B (en) * 2020-12-29 2024-05-07 国网山东省电力公司蒙阴县供电公司 High-altitude cable sheath detection method
CN114228997A (en) * 2020-12-29 2022-03-25 国网山东省电力公司蒙阴县供电公司 High-altitude cable sheath detection method
CN113126088A (en) * 2021-03-13 2021-07-16 中铁十二局集团有限公司 Tunnel detection robot and tunnel detection method
CN113126088B (en) * 2021-03-13 2022-06-10 中铁十二局集团有限公司 Tunnel detection robot and tunnel detection method
CN114180082A (en) * 2021-12-09 2022-03-15 湖南翼航航空科技有限公司 Unmanned aerial vehicle with high security flight anticollision institution
CN114180082B (en) * 2021-12-09 2023-07-18 湖南翼航航空科技有限公司 Unmanned aerial vehicle with high security anticollision institution that flies
CN113978718A (en) * 2021-12-24 2022-01-28 天津斑斓航空科技有限公司 Aircraft active tilting structure, control method and aircraft
CN113978718B (en) * 2021-12-24 2022-03-18 天津斑斓航空科技有限公司 Aircraft active tilting structure, control method and aircraft
CN115230964A (en) * 2022-09-02 2022-10-25 王庆峰 High-voltage line inspection robot based on dual-rotor unmanned aerial vehicle

Also Published As

Publication number Publication date
KR20170087573A (en) 2017-07-31
KR101837585B1 (en) 2018-03-14

Similar Documents

Publication Publication Date Title
WO2017126820A1 (en) Variable flying robot
ES2937394T3 (en) Method and apparatus for locating faults in overhead power lines
CN102694351B (en) High voltage overhead transmission line line-inspection unmanned aerial vehicle photoelectric detection device
JP6393630B2 (en) Inspection apparatus and inspection method
WO2018056501A1 (en) Transformable flying robot for power line maintenance, and control method therefor
CN204355271U (en) A kind of many rotors with anti-collision cover patrol and examine aircraft
CN104269777A (en) Patrol robot system for overhead high-voltage transmission line
CN106741854B (en) A kind of rigidity decoupling empennage regulating mechanism
CN106786170A (en) Transmission line polling robot
CN103855644A (en) Multi-rotary-wing intelligent inspection robot for overhead line
WO2018216825A1 (en) Hybrid unmanned aerial vehicle capable of driving and flying
CN102317039A (en) Route inspecting robot and system
JPH0724751A (en) Inspection work robot
CN107000851A (en) The automatic dead stick control system of unmanned plane, control method and unmanned plane
JP2006529077A (en) Power line inspection vehicle
CN203983835U (en) Many rotary wind types Intelligent overhead-line circuit scanning test robot
KR20180007196A (en) Transformable flying robot
JP2018090990A (en) Cable inspection device
CN113777484B (en) GIS defect detection device and method
CN109591030A (en) A kind of interior crusing robot
CN112977821B (en) Transmission line inspection aircraft
CN102922529B (en) Inspection robot system along split conductors
CN106312996A (en) Device and method for automatically getting on/off line by autonomous obstacle-surmounting inspection robot for overhead transmission line
CN206242834U (en) One kind can flight formula power circuit walking operation robot
CN206223916U (en) A kind of insulator breakdown patrols and examines aircraft

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17741586

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17741586

Country of ref document: EP

Kind code of ref document: A1