WO2017126636A1 - Laminate film - Google Patents

Laminate film Download PDF

Info

Publication number
WO2017126636A1
WO2017126636A1 PCT/JP2017/001822 JP2017001822W WO2017126636A1 WO 2017126636 A1 WO2017126636 A1 WO 2017126636A1 JP 2017001822 W JP2017001822 W JP 2017001822W WO 2017126636 A1 WO2017126636 A1 WO 2017126636A1
Authority
WO
WIPO (PCT)
Prior art keywords
laminated film
resin
spectral intensity
layer
resin layer
Prior art date
Application number
PCT/JP2017/001822
Other languages
French (fr)
Japanese (ja)
Inventor
陽祐 早川
哲也 小尻
山下 孝典
山下 力也
かおる 宮崎
Original Assignee
大日本印刷株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大日本印刷株式会社 filed Critical 大日本印刷株式会社
Priority to CN201780007282.XA priority Critical patent/CN108472923B/en
Priority to CN202010380998.8A priority patent/CN111497380B/en
Publication of WO2017126636A1 publication Critical patent/WO2017126636A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • B32B15/085Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin comprising polyolefins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D65/00Wrappers or flexible covers; Packaging materials of special type or form
    • B65D65/38Packaging materials of special type or form
    • B65D65/40Applications of laminates for particular packaging purposes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • B32B15/09Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin comprising polyesters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/14Layered products comprising a layer of metal next to a fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/32Layered products comprising a layer of synthetic resin comprising polyolefins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/36Layered products comprising a layer of synthetic resin comprising polyesters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B33/00Layered products characterised by particular properties or particular surface features, e.g. particular surface coatings; Layered products designed for particular purposes not covered by another single class
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/02Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • B32B7/023Optical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/12Interconnection of layers using interposed adhesives or interposed materials with bonding properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/10Coating on the layer surface on synthetic resin layer or on natural or synthetic rubber layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/26Polymeric coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/02Synthetic macromolecular fibres
    • B32B2262/0261Polyamide fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/40Properties of the layers or laminate having particular optical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2553/00Packaging equipment or accessories not otherwise provided for

Definitions

  • the present invention relates to a laminated film.
  • Patent Document 1 a laminated film in which a resin layer is laminated on a support such as a base material layer or a barrier layer has been widely used in various fields such as packaging materials.
  • Some laminated films used as packaging materials, such as battery packaging materials, are used for cold forming for the purpose of forming a space for containing contents.
  • a laminated film subjected to cold forming is usually produced as a belt-like laminated film, and is used for various purposes by cutting into an appropriate size.
  • a phenomenon called curl in which the laminated film is curved may occur.
  • the curl is generated in the laminated film, it is difficult to position the mold when the laminated film is molded, and there is a problem that the yield cannot be achieved because the film cannot be molded with a desired accuracy.
  • the efficiency of the forming process of the laminated film is lowered.
  • a lubricant is coated on the resin layer surface of the laminated film, or a lubricant is blended into the resin forming the resin layer, and the lubricant is bleeded out on the resin layer surface before being used for molding.
  • a method of improving the slipperiness of the resin layer surface by By adopting such a method, at the time of cold forming, the laminated film is easily drawn into the mold, and cracks and pinholes in the laminated film can be suppressed.
  • the main object of the invention according to the first aspect of the present invention is to provide a laminated film in which curling is suppressed and the mold can be easily positioned during molding.
  • a lubricant may be blended or coated on the surface of the resin layer of the laminated film subjected to cold forming.
  • the lubricant to be coated on the surface of the resin layer and the lubricant to be blended in the resin layer are set to a predetermined amount, when the laminated film is molded, if the lubricant adheres to the mold, Cracks and pinholes may occur.
  • the amount of the resin may change greatly, and the lubricant may adhere to the mold during molding, or the moldability may deteriorate.
  • the lubricant easily enters the resin layer. As a result, the slipperiness of the resin layer is lowered, and the moldability is easily lowered.
  • the saturation solubility of the lubricant inside the resin layer decreases, the amount of lubricant located on the surface of the resin layer increases, and the mold is contaminated. It becomes easy.
  • the invention according to the second aspect of the present invention exhibits stable moldability by suppressing a significant change in the amount of the lubricant present on the surface of the resin layer.
  • the main object is to provide a laminated film in which lump adhesion is effectively suppressed.
  • the present inventors have intensively studied to solve the above problems.
  • the spectral intensity ratio A obtained by dividing the intensity by the spectral intensity of the amorphous part, and the crystalline part of the resin measured by Raman spectroscopy in the other direction on the same plane orthogonal to the one direction of the resin layer.
  • the invention according to the first aspect of the present invention provides the following aspects of the invention.
  • Item 1A At least a laminated film composed of a laminate of a support and a resin layer formed of a resin, The spectral intensity ratio A obtained by dividing the spectral intensity of the crystal part of the resin measured by Raman spectroscopy in one direction on the plane of the resin layer by the spectral intensity of the amorphous part, and the one direction of the resin layer The absolute value of the difference from the spectral intensity ratio B obtained by dividing the spectral intensity of the crystalline part of the resin by the spectral intensity of the amorphous part measured by Raman spectroscopy in the other direction on the same plane perpendicular to
  • is a laminated film having a range of 0.00 to 0.70.
  • Item 2A The laminated film having a length of 90 mm in one direction and a length of 150 mm in the other direction is prepared, and in the center of the laminated film, on the two lines connecting the diagonals of the laminated film, the thickness direction of the laminated film Two cuts with a length of 100 mm with the center being the center are made from the side of the support and placed on a horizontal surface so that the support is on the bottom, and at 8 ° C.
  • the laminated film according to Item 1A wherein the maximum distance h is 30 mm or less when the maximum distance h between the horizontal plane and the center is measured in a direction perpendicular to the horizontal plane after standing for a time.
  • Item 3A Item 2.
  • Item 3. The laminated film according to any one of Items 1A to 3A, wherein the sum (A + B) of the spectral intensity ratio A and the spectral intensity ratio B is in the range of 1.95 to 2.66.
  • Item 4. The laminated film according to any one of Items 1A to 4A, wherein the support has a barrier layer.
  • the support has a base material layer and a barrier layer, Item 4.
  • Item 6. The laminated film according to Item 6A, wherein the base material layer is made of a polyester film.
  • Item 9A. Item 6.
  • Item 10A. Item 10. The laminated film according to any one of Items 1A to 9A, which is used as a packaging material.
  • the present inventors at least in the laminated film composed of a laminate of a support and a resin layer formed of a resin, the resin measured by Raman spectroscopy in one direction on the resin layer plane
  • the spectral intensity ratio A obtained by dividing the spectral intensity of the crystal part by the spectral intensity of the amorphous part and the Raman spectrum measured in the other direction on the same plane orthogonal to the one direction of the resin layer
  • the sum of the spectral intensity ratio B obtained by dividing the spectral intensity of the crystal part of the resin by the spectral intensity of the amorphous part is in the range of 1.95 or more and 2.66 or less, so that it exists on the surface of the resin layer. It has been found that a significant change in the amount of lubricant can be suppressed and that stable moldability can be exhibited even in cold forming (molding depth of 4.0 mm or more).
  • the invention according to the second aspect of the present invention provides the following aspects of the invention.
  • Item 1B At least a laminated film composed of a laminate of a support and a resin layer formed of a resin, The spectral intensity ratio A obtained by dividing the spectral intensity of the crystal part of the resin measured by Raman spectroscopy in one direction on the plane of the resin layer by the spectral intensity of the amorphous part, and the one direction of the resin layer And the spectral intensity ratio B obtained by dividing the spectral intensity of the crystal part of the resin measured by Raman spectroscopy in the other direction on the same plane orthogonal to the spectral intensity of the amorphous part is 1.
  • Item 2B The laminated film according to Item 1B, wherein the resin layer includes a lubricant.
  • Item 3. The laminated film according to Item 1B or 2B, wherein the absolute value
  • the laminated film having a length of 90 mm in one direction and a length of 150 mm in the other direction is prepared, and in the center of the laminated film, on the two lines connecting the diagonals of the laminated film, the thickness direction of the laminated film Two cuts with a length of 100 mm with the center being the center are made from the side of the support and placed on a horizontal surface so that the support is on the bottom, and at 8 ° C. After standing for a time, when the maximum distance h between the horizontal plane and the center is measured in a direction perpendicular to the horizontal plane, the maximum distance h is 30 mm or less.
  • the laminated film as described. Item 5B. Item 4.
  • Item 6B. Item 6.
  • Item 7B. The support has a base material layer and a barrier layer, Item 6.
  • Item 8B The laminated film according to Item 7B, wherein the base material layer has a multilayer structure composed of a laminate of a polyester film and a nylon film.
  • Item 11. The laminated film according to any one of Items 1B to 10B, which is used as a packaging material.
  • Item 12. The laminated film according to any one of Items 1B to 11B, which is a laminated film subjected to cold forming.
  • the laminated film according to the first aspect of the present invention has a spectral intensity obtained by dividing the spectral intensity of the crystal part of the resin measured by Raman spectroscopy in one direction on the resin layer plane by the spectral intensity of the amorphous part.
  • Spectral intensity obtained by dividing the spectral intensity of the crystal part of the resin measured by Raman spectroscopy in the other direction on the same plane orthogonal to the one direction of the resin layer A by the spectral intensity of the amorphous part When the absolute value
  • the laminated film according to the second aspect of the present invention is obtained by dividing the spectral intensity of the crystalline part of the resin measured by Raman spectroscopy in one direction on the resin layer plane by the spectral intensity of the amorphous part. Obtained by dividing the spectral intensity of the crystal part of the resin measured by Raman spectroscopy in the other direction on the same plane orthogonal to the one direction of the resin layer by the spectral intensity of the amorphous part.
  • the sum of the spectral intensity ratio B is in the range of 1.95 or more and 2.66 or less, a significant change in the amount of the lubricant present on the surface of the resin layer is suppressed, and cold forming (for example, the forming depth is 4). 0.0 mm or more), stable moldability can be exhibited.
  • the laminated film of the first aspect of the present invention is a laminated film composed of at least a support and a resin layer formed of a resin, and Raman spectroscopy in one direction on the resin layer plane
  • the spectral intensity ratio A obtained by dividing the spectral intensity of the crystal part of the resin measured by the method by the spectral intensity of the amorphous part, and Raman in the other direction on the same plane perpendicular to the one direction of the resin layer
  • of the difference from the spectral intensity ratio B obtained by dividing the spectral intensity of the crystalline part of the resin by the spectral intensity of the amorphous part measured by spectroscopy is 0.00 or more and 0.00. It is characterized by being in the range of 70 or less.
  • the above spectral intensity usually shows the absolute value
  • the laminated film of the second aspect of the present invention is a laminated film composed of at least a support and a resin layer formed of a resin, and is unidirectional on the resin layer plane
  • the spectral intensity ratio obtained by dividing the spectral intensity of the crystal part of the resin measured by Raman spectroscopy in MD (Machine Direction), which is the flow direction when forming the resin layer, by the spectral intensity of the amorphous part A and the spectral intensity of the crystal part of the resin measured by Raman spectroscopy in the other direction for example, TD: Transverse Direction
  • the sum of the spectral intensity ratio B obtained by dividing by the intensity is in the range of 1.95 to 2.66. .
  • the laminated film of the present invention will be described in detail.
  • the matter which is different between the laminated film of the first aspect and the laminated film of the second aspect it is clearly shown which aspect is concerned, and the laminated film of the first aspect
  • the matters common to the laminated film of the second aspect are the descriptions of the laminated film of the present invention.
  • symbol in drawing was used in common with the 1st aspect and the 2nd aspect.
  • the base film 21, the barrier layer 22, the adhesive layer A, and the adhesive layer B of the support 2 are common to the laminated film of the first aspect and the second aspect.
  • the symbol “ ⁇ ” is used as the notation of the numerical range.
  • the meaning of the numerical range “the value X is A1 to A2” means “A1 ⁇ X ⁇ A2 "means.
  • MD and TD of the laminated film for example, when a barrier layer 22 described later is made of an aluminum foil, the rolling direction of the aluminum foil is MD, and the direction perpendicular to the same plane as MD is TD. The rolling direction of the aluminum foil can be confirmed by the rolling trace of the aluminum foil.
  • the laminated film of the present invention (first aspect and second aspect) is formed by laminating a support 2 and a resin layer 1 as shown in FIG. 1, for example.
  • the resin layer 1 may be composed of only one layer, or may be composed of a plurality of layers.
  • the base material layer 21, the barrier layer 22, etc. are mentioned, for example.
  • the support 2 may be composed of only one layer or may be composed of a plurality of layers.
  • the support body 2 has the base material layer 21 and the barrier layer 22, the laminated
  • an adhesive layer A is provided between these layers as necessary. (Not shown) may be provided.
  • An adhesive layer B (not shown) may be provided as needed.
  • the resin layer 1 is made of resin and is laminated on the support 2.
  • the resin layer 1 can be a heat-fusible resin layer.
  • the heat-fusible resin layer is a layer that constitutes the innermost layer of the packaging material when the contents are sealed with the packaging material. When sealing the contents, the surfaces of the heat-fusible resin layer 1 can be brought into contact with each other, and the contacted parts can be heat-sealed to seal the contents.
  • a laminated film is usually produced as a strip-like laminate and is used for various applications as described later by cutting into an appropriate size.
  • a phenomenon called curl in which the laminated film is curved may occur.
  • the curl is generated in the laminated film, it is difficult to position the mold when the laminated film is molded, and there is a problem that the yield cannot be achieved because the film cannot be molded with a desired accuracy.
  • the efficiency of the forming process of the laminated film is lowered.
  • the resin measured by Raman spectroscopy in one direction of the resin layer 1 (for example, MD which is the flow direction when forming the resin layer 1).
  • of the difference between the spectral intensity ratio B (crystal part / amorphous part) of the crystal part and the amorphous part of the resin measured by spectroscopy is in the range of 0.00 to 0.70. It is in.
  • the absolute value of the difference between the spectral intensity ratio A and the spectral intensity ratio B of the resin layer 1 is in such a range, so that curling of the laminated film is suppressed and molding is performed.
  • the positioning of the mold at the time becomes easy.
  • the details of this mechanism can be considered as follows.
  • of the difference between the spectral intensity ratio A and the spectral intensity ratio B is small as described above (for example, The difference between the ratio of the crystal part and the amorphous part in MD and the ratio of the crystal part and the amorphous part in TD is small), so the ratio of the crystal part in one direction and the other direction orthogonal to the one direction is It is considered that the distortion of the shape of the laminated film based on the difference is suppressed, and as a result, the curl amount h of the laminated film 10 can be reduced.
  • the curl amount h of the laminated film 10 is an index indicating the degree of curvature of the laminated film 10.
  • a laminated film 10 having a length of 90 mm in one direction and a length of 150 mm in the other direction orthogonal to the one direction is prepared.
  • the center P of the laminated film 10 the length from which the center is the center from the support side so as to penetrate in the thickness direction of the laminated film on two lines connecting the respective diagonals of the laminated film 10. Two cuts (through the laminated film) with a thickness of 100 mm are made.
  • the laminated film with the cuts is placed on the horizontal surface 30 so that the support is on the lower side, and allowed to stand at 20 ° C. for 8 hours.
  • the distance between the apex (center P) of the four surfaces raised by curling and the horizontal plane 30 is measured, and the largest value is set as the maximum distance h. Let the amount be h.
  • the curl amount h can be measured using a height gauge manufactured by Mitutoyo Corporation.
  • BA is preferably about 0.00 to 0.66, more preferably about 0.00 to 0.51, still more preferably about 0.00 to 0.43, and still more preferably 0.00 to About 0.33, more preferably about 0.00 to 0.27, more preferably about 0.00 to 0.15, more preferably about 0.00 to 0.10, and still more preferably 0.00 to 0.00.
  • the range is about 08, particularly preferably about 0.00 to 0.05.
  • the spectral intensity ratio A is preferably about 0.90 to 1.17, more preferably about 0.90 to 1.15, still more preferably about 0.92 to 1.07, The range of about 0.99 to 1.05 is particularly preferable, and the spectral intensity ratio B is preferably about 0.90 to 1.66, more preferably about 0.90 to 1.51, and still more preferably. Is about 1.00 to 1.43, more preferably about 1.00 to 1.25, and particularly preferably about 1.00 to 1.10.
  • the curl amount h of the laminated film 10 of the present invention is preferably about 30 mm or less, more preferably about 29 mm or less, further preferably about 28 mm or less, more preferably about 27 mm or less, still more preferably 25 mm or less, more preferably about about 20 mm or less, More preferably, about 10 mm or less, More preferably, about 5 mm or less is mentioned.
  • a preferred lower limit of the curl amount h is 0 mm.
  • the spectral intensity ratio A in one direction (for example, TD which is the vertical direction of the same plane as MD) and the other direction (for example, MD) orthogonal to the one direction.
  • a spectral intensity ratio B in TD which is the vertical direction of the same plane, respectively, using a microscope laser Raman spectrometer (for example, LabRAM HR-800 manufactured by HORIBA JOBIN YVON) It is a value measured under the following measurement conditions and analysis conditions.
  • a Raman spectrum is measured so that the MD and the incident laser polarization plane are parallel, and in the measurement of the spectral intensity B in the TD, the TD and the incident laser polarization plane are parallel.
  • Measure the Raman spectrum Measurement conditions: excitation laser wavelength 633 nm, exposure time 15 seconds, objective lens 50 times, number of integrations 8 times, confocal hole diameter ⁇ 0.1 mm, grating 800 L / mm Analysis conditions: (1) The average value of the scattering intensity at a Raman shift of 600 to 700 cm ⁇ 1 is taken as the baseline value.
  • the peak value at 809 cm ⁇ 1 is obtained by subtracting the baseline value from the maximum value of the scattering intensity in the range of Raman shift 809 ⁇ 2 cm ⁇ 1.
  • the peak value at 842 cm ⁇ 1 is obtained by subtracting the baseline value from the maximum value of the scattering intensity in the range of Raman shift 842 ⁇ 2 cm ⁇ 1.
  • the spectral intensity ratios A and B are calculated using the peak intensities in (2) and (3) above.
  • the spectral intensity ratio A of the crystal part and the amorphous part in one direction (for example, MD which is the flow direction when forming the resin layer 1) is orthogonal to this.
  • the sum (A + B) of the spectral intensity ratio B of the crystal part and the amorphous part in the other direction (for example, TD which is the vertical direction of MD in the same plane) may be in the range of 1.95 to 2.66. preferable.
  • the sum of the spectral intensity ratio A and the spectral intensity ratio B is within such a range, thereby suppressing a significant change in the amount of the lubricant present on the surface of the resin layer 1 and stable moldability.
  • the amount of lubricant transferred from the surface of the resin layer 1 to the inside can be made constant.
  • a significant change in the amount of lubricant present on the surface of the resin layer 1 is suppressed, the laminated film 10 of the first aspect exhibits stable moldability, and adhesion of the lubricant mass to the mold is effective. It is thought that it is suppressed.
  • the spectral intensity ratio A in one direction (for example, MD which is the flow direction when forming the resin layer 1) and the other direction orthogonal to the spectral intensity ratio A (for example, MD are the same).
  • the sum of the spectral intensity ratios B in the vertical direction of the plane (TD) may be within the above range, but it suppresses a significant change in the amount of the lubricant present on the surface of the resin layer 1 and can also be used in cold forming.
  • the viewpoint of exhibiting stable moldability and suppressing adhesion of a lump of lubricant to the mold it is preferably about 1.95 to 2.66, more preferably about 1.95 to 2.60, More preferably, about 1.95 to 2.51, more preferably about 1.95 to 2.41, more preferably about 1.95 to 2.35, still more preferably about 1.95 to 2.10, and still more preferably.
  • the resin crystal part measured by Raman spectroscopy in one direction of the resin layer 1 (for example, MD which is the flow direction when forming the resin layer 1) Raman spectroscopy in the spectral intensity ratio A (crystal part / amorphous part) of the amorphous part and the other direction orthogonal to the one direction of the resin layer 1 (for example, TD which is the vertical direction of the same plane as MD)
  • the sum (A + B) of the spectrum intensity ratio B (crystal part / amorphous part) of the crystal part and the amorphous part of the resin to be measured is in the range of 1.95 to 2.66.
  • the sum of the spectral intensity ratio A and the spectral intensity ratio B is within such a range, thereby suppressing a significant change in the amount of lubricant present on the surface of the resin layer 1. It is possible to effectively suppress adhesion of a lump of lubricant to the mold while exhibiting stable moldability.
  • the details of this mechanism can be considered as follows. That is, in the resin layer 1, there are a crystal part and an amorphous part of the resin, but when a lubricant is contained inside the resin layer 1, the lubricant is present in the amorphous part of the resin.
  • the amount of lubricant transferred from the surface of the resin layer 1 to the inside can be made constant.
  • a significant change in the amount of the lubricant present on the surface of the resin layer 1 is suppressed, the laminated film 10 exhibits a stable moldability, and adhesion of the lubricant mass to the mold is effectively suppressed. It is thought that there is.
  • the spectral intensity ratio A in one direction (for example, MD, which is the flow direction when forming the resin layer 1), and the other direction (for example, MD) orthogonal to this.
  • the sum of the spectral intensity ratios B in TD which is the vertical direction of the same plane, may be in the above range, but suppresses a significant change in the amount of lubricant present on the surface of the resin layer 1 and is cold formed.
  • it is preferably about 1.95 to 2.60, more preferably 1.95 to 2.51.
  • the spectral intensity ratio A is preferably about 0.90 to 1.17, more preferably about 0.90 to 1.15, still more preferably about 0.92 to 1.07, The range of about 0.99 to 1.05 is particularly preferable, and the spectral intensity ratio B is preferably about 0.90 to 1.66, more preferably about 0.90 to 1.51, and still more preferably. Is about 1.00 to 1.43, more preferably about 1.00 to 1.25, and particularly preferably about 1.00 to 1.10.
  • the spectral intensity ratio A between the crystal part and the amorphous part in one direction (for example, MD which is the flow direction when forming the resin layer 1)
  • of the difference between the spectral intensity ratio B of the crystal part and the amorphous part in the other orthogonal direction (for example, TD which is the vertical direction of the same plane as MD) is 0.00-0. It is preferable to be in the range of 70.
  • of the difference between the spectral intensity ratio A and the spectral intensity ratio B is in such a range, the curl amount h of the laminated film 10 of the second aspect can be reduced.
  • the above spectral intensity usually shows the absolute value
  • the laminated film 10 is usually produced as a belt-like laminated film, and is used for various applications as described later by cutting into an appropriate size.
  • the laminated film 10 after being cut when the curl amount h is large, it is difficult to position the mold when molding.
  • BA ⁇ of the difference between the spectral intensity ratio A and the spectral intensity ratio B is in the above range, and the curl amount h is in the following range, for example. In this case, it is possible to easily position the mold when forming, and to efficiently perform the forming process of the laminated film of the second aspect.
  • being in the above range can be considered as follows.
  • of the difference between the spectral intensity ratio A and the spectral intensity ratio B is small as described above (for example, , The difference between the ratio of the crystal part and the amorphous part in MD and the ratio of the crystal part and the amorphous part in TD is small), so the ratio of the crystal part in one direction and the other direction orthogonal to the one direction
  • the distortion of the shape of the laminated film based on the difference is suppressed, and as a result, it is considered that the curl amount h of the laminated film 10 of the second aspect can be reduced.
  • of the difference between the spectral intensity ratio A and the spectral intensity ratio B is more preferably 0.00.
  • a range of degrees is mentioned.
  • the resin constituting the resin layer 1 is not particularly limited, but the resin layer 1 is preferably formed of a thermoplastic resin.
  • the thermoplastic resin include polyolefin, cyclic polyolefin, carboxylic acid-modified polyolefin, carboxylic acid-modified cyclic polyolefin, and the like.
  • polyolefins include polyethylene such as low density polyethylene, medium density polyethylene, high density polyethylene, and linear low density polyethylene; homopolypropylene, polypropylene block copolymers (for example, block copolymers of propylene and ethylene), polypropylene Crystalline or amorphous polypropylene such as random copolymers (for example, random copolymers of propylene and ethylene); ethylene-butene-propylene terpolymers, and the like.
  • polyethylene and polypropylene are preferable, and polypropylene is particularly preferable.
  • Cyclic polyolefin is a copolymer of olefin and cyclic monomer.
  • the olefin include ethylene, propylene, 4-methyl-1-pentene, butadiene, and isoprene.
  • the cyclic monomer include cyclic alkenes such as norbornene; cyclic dienes such as cyclopentadiene, dicyclopentadiene, cyclohexadiene, norbornadiene, and the like.
  • a cyclic alkene is preferable, and norbornene is more preferable.
  • Carboxylic acid-modified polyolefin is a polymer obtained by modifying polyolefin with carboxylic acid.
  • carboxylic acid used for modification include maleic acid, acrylic acid, itaconic acid, crotonic acid, maleic anhydride, itaconic anhydride and the like.
  • the carboxylic acid-modified cyclic polyolefin is a copolymer obtained by copolymerizing a part of the monomer constituting the cyclic polyolefin in place of the ⁇ , ⁇ -unsaturated carboxylic acid or its acid anhydride, or ⁇ , ⁇ with respect to the cyclic polyolefin.
  • the cyclic polyolefin to be modified with carboxylic acid can be the same as the above cyclic polyolefin.
  • the carboxylic acid used for modification can be the same as that used for modification of the acid-modified cycloolefin copolymer.
  • thermoplastic resins in the first embodiment, by setting the absolute value of the difference between the spectral intensity ratio A and the spectral intensity ratio B in the above range, the curl amount h of the laminated film 10 is further increased.
  • polyolefin, cyclic polyolefin, and blended polymers thereof more preferably polyethylene, polypropylene, a copolymer of ethylene and norbornene, and Among these, two or more kinds of blend polymers are listed.
  • the sum of the spectral intensity ratio A and the spectral intensity ratio B in the above range, a significant change in the amount of lubricant present on the surface of the resin layer 1 is suppressed, Even in cold forming, these resins are preferable from the viewpoint of exhibiting stable formability and suppressing adhesion of a lump of lubricant to the mold.
  • the resin constituting the resin layer 1 As a method of setting the sum and difference of the spectral intensity ratio A and the spectral intensity ratio B in the above numerical range, for example, as the resin constituting the resin layer 1, the resin exemplified above is used, The method of setting the temperature of the chill roll cooled at the time of formation of the resin layer 1 to 10 degreeC or more and less than 50 degreeC is mentioned, for example.
  • the temperature is less than 10 degreeC, the peelability of the chill roll surface and the resin layer deteriorates, and tearing occurs when peeling.
  • the temperature is 50 ° C. or higher, the ratio of the crystal part is increased, the amount of the lubricant deposited at the time of forming the laminated film is excessively increased, and stable moldability is hardly exhibited.
  • the temperature of the chill roll for setting the sum and difference of the spectral intensity ratio A and the spectral intensity ratio B within the above numerical range is preferably about 10 to 50 ° C., more preferably about 15 to 48 ° C. Preferably, it is about 15 to 33 ° C, more preferably about 15 to 31 ° C, more preferably about 15 to 28 ° C, and particularly preferably about 25 to 28 ° C.
  • the resin layer 1 may be formed of only one type of resin component or may be formed of a blend polymer that is a combination of two or more types of resin components. Furthermore, as described above, the resin layer 1 may be formed of only one layer, or may be formed of two or more layers using the same or different resin components.
  • a lubricant is usually present on the surface of the resin layer 1.
  • the slipperiness of the surface of the resin layer 1 is improved, and the moldability of the laminated film is enhanced.
  • the resin layer 1 can be used when a lubricant is blended in the resin layer 1 or immediately after the surface of the resin layer 1 is coated with the lubricant. Even when only one of the lubricants is included, the lubricant moves over time, and the lubricant exists on both the surface and the inside of the resin layer 1. That is, in the laminated film 10, a lubricant may be included in the resin layer 1 in advance, or after the production of the laminated film 10, the surface of the resin layer 1 may be coated before molding.
  • Examples of a method for causing a lubricant to be present on the surface of the resin layer 1 include a method of coating the lubricant on the surface of the resin layer 1 and a method of blending a lubricant with the polyolefin forming the resin layer 1. As described above, even when a lubricant is blended with the polyolefin forming the resin layer 1, the lubricant can be present on the surface of the resin layer 1 by bleeding out the lubricant on the surface of the resin layer 1. . On the other hand, when a lubricant is coated on the surface of the resin layer 1, the lubricant can be present inside the resin layer 1 by moving a part of the lubricant from the surface to the inside.
  • the laminated film As a method of bleeding out the lubricant on the surface of the resin layer 1, it is general to age the laminated film at a slightly high temperature of about 30 to 50 ° C. for several hours to 3 days to facilitate the bleeding out. Is.
  • the movement of the lubricant between the inside and the surface of the resin layer 1 as described above is a phenomenon that is particularly likely to occur in the amide-based lubricant described later.
  • the amide-based lubricant is not particularly limited as long as it has an amide group, and preferred examples include fatty acid amides and aromatic bisamides.
  • An amide type lubricant may be used individually by 1 type, and may be used in combination of 2 or more types.
  • fatty acid amides include saturated fatty acid amides, unsaturated fatty acid amides, substituted amides, methylol amides, saturated fatty acid bisamides, and unsaturated fatty acid bisamides.
  • saturated fatty acid amide include lauric acid amide, palmitic acid amide, stearic acid amide, behenic acid amide, hydroxy stearic acid amide and the like.
  • unsaturated fatty acid amide include oleic acid amide and erucic acid amide.
  • substituted amide examples include N-oleyl palmitic acid amide, N-stearyl stearic acid amide, N-stearyl oleic acid amide, N-oleyl stearic acid amide, N-stearyl erucic acid amide and the like.
  • methylolamide examples include methylol stearamide.
  • saturated fatty acid bisamides include methylene bis stearamide, ethylene biscapric amide, ethylene bis lauric acid amide, ethylene bis stearic acid amide, ethylene bishydroxy stearic acid amide, ethylene bisbehenic acid amide, hexamethylene bis stearic acid amide.
  • acid amide hexamethylene bisbehenic acid amide, hexamethylene hydroxystearic acid amide, N, N′-distearyl adipic acid amide, N, N′-distearyl sebacic acid amide, and the like.
  • unsaturated fatty acid bisamides include ethylene bisoleic acid amide, ethylene biserucic acid amide, hexamethylene bisoleic acid amide, N, N′-dioleyl adipic acid amide, N, N′-dioleyl sebacic acid amide Etc.
  • Specific examples of the fatty acid ester amide include stearoamidoethyl stearate.
  • aromatic bisamide include m-xylylene bis stearic acid amide, m-xylylene bishydroxy stearic acid amide, N, N′-distearyl isophthalic acid amide and the like.
  • the content of the lubricant present on the surface and inside of the resin layer 1 is preferably 700 ppm or more, more preferably about 700 to 3000 ppm, further preferably 700 to 2500 ppm on a mass basis.
  • the level is particularly preferably about 1200 to 2000 ppm.
  • these values mean content when the lubricant which exists in the surface and the inside of the resin layer 1 exists in the resin layer 1 altogether.
  • the thickness of the resin layer 1 is not particularly limited, but is preferably about 5 to 500 ⁇ m, for example, from the viewpoint of further reducing the curl amount h of the laminated film 10 and making it easier to position the mold during molding. Is about 5 to 200 ⁇ m.
  • the thickness of the resin layer 1 can be measured from the cross section of the thickness direction of a laminated
  • the base material layer 21, the barrier layer 22, etc. are mentioned, for example.
  • the support 2 may be composed of only one layer or may be composed of a plurality of layers.
  • the support body 2 has the base material layer 21 and the barrier layer 22, it is preferable to laminate
  • FIG. When the support 2 has the base material layer 21 and the barrier layer 22, for the purpose of improving the adhesiveness between the base material layer 21 and the barrier layer 22, an adhesive layer A is provided between these layers as necessary. May be provided.
  • the adhesive layer B may be provided as needed.
  • these layers will be described in detail.
  • the base material layer 21 that can be included as the support 2 is a layer that is provided as necessary and serves as the base material of the laminated film 10.
  • the material for forming the base material layer 21 is not particularly limited. Specific examples of the material for forming the base material layer 21 include, for example, polyester, polyamide, epoxy, acrylic, fluorine resin, polyurethane, silicon resin, phenol, polyetherimide, polyimide, and mixtures and copolymers thereof. Resin.
  • polyester examples include polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate, polybutylene naphthalate, polyethylene isophthalate, polycarbonate, copolymerized polyester mainly composed of ethylene terephthalate, butylene terephthalate as a repeating unit.
  • examples thereof include a copolymer polyester mainly used.
  • the copolymer polyester mainly composed of ethylene terephthalate is a copolymer polyester that polymerizes with ethylene isophthalate mainly composed of ethylene terephthalate (hereinafter, polyethylene (terephthalate / isophthalate)).
  • polyethylene terephthalate / isophthalate
  • polyethylene terephthalate / adipate
  • polyethylene terephthalate / sodium sulfoisophthalate
  • polyethylene terephthalate / sodium isophthalate
  • polyethylene terephthalate / phenyl-dicarboxylate
  • polyethylene terephthalate / decanedicarboxylate
  • a copolymer polyester mainly composed of butylene terephthalate as a repeating unit specifically, a copolymer polyester that polymerizes with butylene isophthalate having butylene terephthalate as a repeating unit (hereinafter referred to as polybutylene (terephthalate / isophthalate)).
  • polybutylene (terephthalate / adipate) polybutylene (terephthalate / sebacate), polybutylene (terephthalate / decanedicarboxylate), polybutylene naphthalate and the like.
  • These polyesters may be used individually by 1 type, and may be used in combination of 2 or more type.
  • polyamides include aliphatic polyamides such as nylon 6, nylon 66, nylon 610, nylon 12, nylon 46, and a copolymer of nylon 6 and nylon 66; terephthalic acid and / or isophthalic acid Nylon 6I, Nylon 6T, Nylon 6IT, Nylon 6I6T (I represents isophthalic acid, T represents terephthalic acid) and the like, and polymetaxylylene azide Polyamide containing aromatics such as Pamide (MXD6); Alicyclic polyamides such as Polyaminomethylcyclohexyl Adipamide (PACM6); and Lactam components and isocyanate components such as 4,4′-diphenylmethane-diisocyanate are copolymerized Polyamide, co-weight Polyester amide copolymer and polyether ester amide copolymer is a copolymer of polyamide and polyester and polyalkylene ether glycol; copolymers thereof, and the like.
  • MXD6 Polya
  • polyamides may be used individually by 1 type, and may be used in combination of 2 or more type.
  • the stretched polyamide film is excellent in stretchability, can prevent whitening due to resin cracking of the base material layer 21 during molding, and is suitably used as a material for forming the base material layer 21.
  • the base material layer 21 may be formed of a uniaxially or biaxially stretched resin film, or may be formed of an unstretched resin film. Among them, a uniaxially or biaxially stretched resin film, in particular, a biaxially stretched resin film has improved heat resistance due to orientation crystallization, and thus is suitably used as the base material layer 21.
  • the resin film forming the base layer 21 is preferably nylon or polyester, more preferably biaxially stretched nylon, biaxially stretched polyester, and particularly preferably biaxially stretched nylon.
  • the base material layer 21 can be laminated with resin films of different materials in order to improve the pinhole resistance of the laminated film 10.
  • resin films of different materials include a multilayer structure in which a polyester film and a nylon film are laminated, and a multilayer structure in which a biaxially stretched polyester and a biaxially stretched nylon are laminated.
  • each resin film may be adhere
  • a method of bonding in a hot-melt state such as a co-extrusion lamination method, a sandwich lamination method, or a thermal lamination method can be mentioned.
  • the adhesive agent to be used may be a two-component curable adhesive, or a one-component curable adhesive.
  • the adhesive mechanism of the adhesive is not particularly limited, and may be any of a chemical reaction type, a solvent volatilization type, a heat melting type, a hot pressure type, an electron beam curable type, an ultraviolet curable type, and the like.
  • polyester resin, polyether resin, polyurethane resin, epoxy resin, phenol resin resin, polyamide resin, polyolefin resin, polyvinyl acetate resin, cellulose resin, (meth) acrylic resin Resins, polyimide resins, amino resins, rubbers, and silicone resins can be used.
  • the thickness of the base material layer 21 is not particularly limited, but can be, for example, about 5 to 50 ⁇ m, preferably about 10 to 30 ⁇ m.
  • the barrier layer 22 that can be included as the support 2 is a layer provided as necessary.
  • the laminated film 10 when used as a packaging material or the like, in addition to improving the strength, it functions as a barrier layer for preventing water vapor, oxygen, light, etc. from entering the inside sealed by the laminated film 10.
  • the metal constituting the barrier layer 22 include aluminum, stainless steel, and titanium, and preferably aluminum.
  • the barrier layer 22 can be formed of, for example, a metal foil, a metal vapor-deposited film, an inorganic oxide vapor-deposited film, a carbon-containing inorganic oxide vapor-deposited film, a film provided with these vapor-deposited films, etc.
  • the barrier layer is made of, for example, annealed aluminum (JIS H4160: 1994 A8021H-O, JIS H4160: 1994 A8079H). -O, JIS H4000: 2014 A8021P-O, JIS H4000: 2014 A8079P-O) and the like are more preferable.
  • the thickness of the barrier layer 22 is not particularly limited, but can be, for example, about 10 to 200 ⁇ m, preferably about 20 to 100 ⁇ m.
  • the barrier layer 22 is preferably subjected to chemical conversion treatment on at least one surface, preferably both surfaces, for the purpose of stabilizing adhesion, preventing dissolution and corrosion, and the like.
  • the chemical conversion treatment refers to a treatment for forming an acid-resistant film on the surface of the barrier layer.
  • chromate treatment using a chromium compound such as chromium nitrate, chromium fluoride, chromium sulfate, chromium acetate, chromium oxalate, chromium biphosphate, chromic acid acetyl acetate, chromium chloride, potassium sulfate chromium; Phosphoric acid treatment using a phosphoric acid compound such as sodium phosphate, potassium phosphate, ammonium phosphate, polyphosphoric acid; an aminated phenol polymer having a repeating unit represented by the following general formulas (1) to (4) is used And chromate treatment.
  • a chromium compound such as chromium nitrate, chromium fluoride, chromium sulfate, chromium acetate, chromium oxalate, chromium biphosphate, chromic acid acetyl acetate, chromium chloride, potassium
  • X represents a hydrogen atom, a hydroxyl group, an alkyl group, a hydroxyalkyl group, an allyl group or a benzyl group.
  • R 1 and R 2 are the same or different and each represents a hydroxyl group, an alkyl group, or a hydroxyalkyl group.
  • examples of the alkyl group represented by X, R 1 and R 2 include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group, Examples thereof include a linear or branched alkyl group having 1 to 4 carbon atoms such as a tert-butyl group.
  • Examples of the hydroxyalkyl group represented by X, R 1 and R 2 include a hydroxymethyl group, a 1-hydroxyethyl group, a 2-hydroxyethyl group, a 1-hydroxypropyl group, a 2-hydroxypropyl group, 3- C1-C4 straight or branched chain in which one hydroxy group such as hydroxypropyl group, 1-hydroxybutyl group, 2-hydroxybutyl group, 3-hydroxybutyl group, 4-hydroxybutyl group is substituted
  • An alkyl group is mentioned.
  • the alkyl group and hydroxyalkyl group represented by X, R 1 and R 2 may be the same or different.
  • X is preferably a hydrogen atom, a hydroxyl group or a hydroxyalkyl group.
  • the number average molecular weight of the aminated phenol polymer having a repeating unit represented by the general formulas (1) to (4) is preferably, for example, 500 to 1,000,000, more preferably about 1,000 to 20,000. preferable.
  • a phosphoric acid is coated with a metal oxide such as aluminum oxide, titanium oxide, cerium oxide, tin oxide, or barium sulfate fine particles dispersed therein.
  • a method of forming a corrosion-resistant treatment layer on the surface of the barrier layer 22 by performing a baking treatment at 150 ° C. or higher is mentioned.
  • a resin layer obtained by crosslinking a cationic polymer with a crosslinking agent may be further formed on the corrosion-resistant treatment layer.
  • examples of the cationic polymer include polyethyleneimine, an ionic polymer complex composed of a polymer having polyethyleneimine and a carboxylic acid, a primary amine graft acrylic resin obtained by graft polymerization of a primary amine on an acrylic main skeleton, and polyallylamine. Or the derivative, aminophenol, etc. are mentioned.
  • these cationic polymers only one type may be used, or two or more types may be used in combination.
  • examples of the crosslinking agent include a compound having at least one functional group selected from the group consisting of an isocyanate group, a glycidyl group, a carboxyl group, and an oxazoline group, and a silane coupling agent. As these crosslinking agents, only one type may be used, or two or more types may be used in combination.
  • the chemical conversion treatment only one type of chemical conversion treatment may be performed, or two or more types of chemical conversion processing may be performed in combination. Furthermore, these chemical conversion treatments may be carried out using one kind of compound alone, or may be carried out using a combination of two or more kinds of compounds.
  • a chromate treatment a chemical conversion treatment combining a chromium compound, a phosphate compound, and an aminated phenol polymer are preferable.
  • chromium compounds chromic acid compounds are preferred.
  • the amount of the acid-resistant film formed on the surface of the barrier layer 22 in the chemical conversion treatment is not particularly limited.
  • the chromium compound is chromium per 1 m 2 of the surface of the barrier layer 22.
  • About 0.5 to 50 mg in terms of conversion preferably about 1.0 to 40 mg, about 0.5 to 50 mg, preferably about 1.0 to 40 mg in terms of phosphorus, and about 1.0 to 40 mg of aminated phenol polymer. It is desirable that it is contained in a proportion of about 200 mg, preferably about 5.0 to 150 mg.
  • a solution containing a compound used for forming an acid-resistant film is applied to the surface of the barrier layer by a bar coating method, a roll coating method, a gravure coating method, a dipping method, etc., and then the temperature of the barrier layer is 70. It is carried out by heating so as to reach about 200 ° C to 200 ° C.
  • the barrier layer may be previously subjected to a degreasing treatment by an alkali dipping method, an electrolytic cleaning method, an acid cleaning method, an electrolytic acid cleaning method, or the like. By performing the degreasing process in this manner, it is possible to more efficiently perform the chemical conversion process on the surface of the barrier layer.
  • the adhesive layer A that can be included in the support 2 is a layer provided as necessary for the purpose of increasing the adhesive strength between the base material layer 21 and the barrier layer 22.
  • the adhesive layer A is formed of an adhesive capable of adhering the base material layer 21 and the barrier layer 22.
  • the adhesive used for forming the adhesive layer A may be a two-component curable adhesive or a one-component curable adhesive.
  • the adhesive mechanism of the adhesive used for forming the adhesive layer A is not particularly limited, and may be any of a chemical reaction type, a solvent volatilization type, a heat melting type, a hot pressure type, and the like.
  • Polyolefin resin polyvinyl acetate resin; cellulose adhesive; (meth) acrylic resin; polyimide resin; amino resin such as urea resin and melamine resin; chloroprene rubber, nitrile rubber, steel Silicone resin; - down rubber such as butadiene rubber fluorinated ethylene propylene copolymer, and the like.
  • adhesive components may be used individually by 1 type, and may be used in combination of 2 or more type.
  • the combination mode of two or more kinds of adhesive components is not particularly limited.
  • a mixed resin of polyamide and acid-modified polyolefin a mixed resin of polyamide and metal-modified polyolefin, polyamide and polyester
  • examples thereof include a mixed resin of polyester and acid-modified polyolefin, and a mixed resin of polyester and metal-modified polyolefin.
  • extensibility, durability under high humidity conditions, anti-hypertensive action, thermal deterioration-preventing action during heat sealing, etc. are excellent, and a decrease in laminate strength between the base material layer 21 and the barrier layer 22 is suppressed.
  • a polyurethane two-component curable adhesive polyamide, polyester, or a blended resin of these with a modified polyolefin is preferable.
  • the adhesive layer A may be multilayered with different adhesive components.
  • the adhesive component disposed on the base material layer 21 side is changed to the base material layer 21. It is preferable to select a resin excellent in adhesiveness and to select an adhesive component excellent in adhesiveness to the barrier layer 22 as an adhesive component disposed on the barrier layer 22 side.
  • the adhesive component disposed on the barrier layer 22 side is preferably an acid-modified polyolefin, a metal-modified polyolefin, a polyester and an acid-modified polyolefin. And a resin containing a copolyester.
  • the thickness of the adhesive layer A is, for example, about 2 to 50 ⁇ m, preferably about 3 to 25 ⁇ m.
  • Adhesive layer B In the laminated film 10, adhesion between the support 2 (for example, the base material layer 21 and the barrier layer 22) and the resin layer 1 is performed for the purpose of firmly bonding the support 2 and the resin layer 1. Layer B may be further provided.
  • the adhesive layer B is formed of an adhesive component capable of bonding the base material layer 21, the barrier layer 22, and the like that can be included as the support 2 and the resin layer 1.
  • the adhesive used for forming the adhesive layer B may be a two-component curable adhesive or a one-component curable adhesive.
  • the adhesion mechanism of the adhesive component used for forming the adhesive layer B is not particularly limited, and examples thereof include a chemical reaction type, a solvent volatilization type, a heat melting type, and a hot pressure type.
  • the thickness of the adhesive layer B is not particularly limited, but is preferably about 1 to 40 ⁇ m, for example, and more preferably about 2 to 30 ⁇ m.
  • each layer constituting the laminated film 10 may be subjected to corona treatment, in order to improve or stabilize the film forming property, lamination processing, suitability for final product secondary processing (pouching, embossing), etc.
  • Surface activation treatment such as blast treatment, oxidation treatment, and ozone treatment may be performed.
  • the laminated film 10 of this invention can be manufactured by laminating
  • the laminated film 10 is obtained by the following laminating process.
  • the base material layer 21 and the barrier layer 22 are laminated.
  • This lamination can be performed by, for example, a dry lamination method using the above-described adhesive component that forms the adhesive layer A or the like.
  • a method of laminating the base material layer 21 and the barrier layer 22 a method of extruding and forming a resin that forms the base material layer 21 on the surface of the barrier layer 22, or a metal on one surface of the base material layer 21.
  • a method of forming the barrier layer 22 by vapor-depositing the material is also included.
  • the resin layer 1 is laminated on the barrier layer 22.
  • the resin layer 1 can be formed by, for example, melt extrusion of a thermoplastic resin or a dry lamination method. For the purpose of increasing the adhesive strength between the barrier layer 22 and the resin layer 1, if necessary, an adhesive component for forming the adhesive layer B is applied on the barrier layer 22, dried, and then from above The resin layer 1 may be formed.
  • the resin layer 1 is formed of a plurality of layers, the resin layer 1 formed of a plurality of layers can be laminated by a known method such as a coextrusion method.
  • an aging treatment or the like may be performed.
  • the aging treatment can be performed, for example, by heating the laminated film 10 at a temperature of about 30 to 100 ° C. for 1 to 200 hours.
  • the obtained laminated film 10 may be heated at a temperature equal to or higher than the melting peak temperature of the resin layer 1.
  • the temperature at this time is preferably the melting peak temperature of the resin layer 1 + 5 ° C. or higher and the melting peak temperature + 100 ° C. or lower, more preferably the melting peak temperature + 10 ° C. or higher and the melting peak temperature + 80 ° C. or lower.
  • the melting peak temperature of the resin layer 1 refers to the endothermic peak temperature in the differential scanning calorimetry of the resin component constituting the resin layer 1.
  • the heating in the aging treatment and the heating above the melting peak temperature of the resin layer 1 can be performed by, for example, a hot roll contact method, a hot air method, a near or far infrared method, and the like.
  • each layer constituting the laminated film may be subjected to corona treatment, blasting, or the like to improve or stabilize film forming properties, lamination processing, suitability for final product secondary processing (pouching, embossing), etc., as necessary.
  • Surface activation treatment such as treatment, oxidation treatment, and ozone treatment may be performed.
  • the laminate film 10 of the present invention is usually produced as a strip-like laminate film, and is used for various applications by cutting into an appropriate size.
  • the laminated film 10 of the present invention can be suitably used as a laminated film that is used for cold forming, in particular, having a forming depth of 0.5 mm or more, and preferably about 4.0 to 7.0 mm.
  • a packaging material etc. are mentioned.
  • the packaging material can be used for packaging various contents such as medicines, cosmetics, foods, and electrolytic solutions.
  • the packaging material of the present invention is suitably used as a pharmaceutical packaging material, a cosmetic packaging material, a food packaging material, a battery packaging material, and the like.
  • the packaging material can be deformed according to the shape of the contents, and can be a package that accommodates the contents.
  • a barrier layer 22 made of an aluminum foil (thickness: 40 ⁇ m) subjected to chemical conversion treatment on both surfaces was laminated by a dry laminating method. Specifically, a two-component urethane adhesive (a polyol compound and an aromatic isocyanate compound) was applied to one surface of the aluminum foil, and an adhesive layer A (thickness 4 ⁇ m) was formed on the barrier layer 22.
  • a two-component urethane adhesive a polyol compound and an aromatic isocyanate compound
  • an aging treatment is performed to support the base material layer 21 / adhesive layer A / barrier layer 22 laminated in order.
  • the chemical conversion treatment of the aluminum foil used as the barrier layer 22 is performed by rolling a treatment liquid composed of a phenol resin, a chromium fluoride compound, and phosphoric acid so that the coating amount of chromium is 10 mg / m 2 (dry mass). The coating was performed on both surfaces of the aluminum foil and baked.
  • the structure of the base material layer 21 used in Examples and Comparative Examples is as follows.
  • Examples 1 and 2 A laminate of PET film (12 ⁇ m) / adhesive layer (3 ⁇ m) / nylon film (15 ⁇ m) (nylon is on the barrier layer side)
  • Example 3 PET (5 ⁇ m) / nylon (20 ⁇ m) two-layer coextruded film (nylon is on the barrier layer side)
  • Example 4 Three-layer coextruded film of PET (5 ⁇ m) / thermoplastic polyester elastomer (1 ⁇ m) / nylon (20 ⁇ m) (nylon is on the barrier layer side)
  • Examples 5 and 6 PET film (12 ⁇ m) monolayer
  • Examples 7 to 16 and Comparative Example 1 Nylon film (25 ⁇ m) monolayer “PET” means “polyethylene terephthalate”.
  • Examples 1 to 11 and Comparative Example 1 a resin A (carboxylic acid-modified polypropylene, melting peak temperature 160 ° C.) and a resin B (fatty acid amide-based lubricant) that form the resin layer 1 on the barrier layer 22 side of the support.
  • the resin layer 1 (thickness 25 ⁇ m / 25 ⁇ m, resin B is the innermost layer side) was laminated on the barrier layer 22 by coextrusion of polypropylene containing, melting peak temperature 140 ° C.) in the molten state (250 ° C.).
  • the laminated films of Examples 1 to 11 and Comparative Example 1 in which the base layer 21 / adhesive layer A / barrier layer 22 / resin layer 1 were laminated in order were obtained.
  • stacking the resin layer 1 was made into the temperature of Table 1 and Table 2, respectively.
  • Examples 12 and 13 a two-component urethane adhesive (a polyol compound and an aromatic isocyanate compound) was applied to the barrier layer 22 side to form an adhesive layer B (thickness 4 ⁇ m).
  • unstretched polypropylene film (3-layer extruded product, propylene-ethylene random copolymer (resin B, 4 ⁇ m) containing fatty acid amide-based lubricant / propylene-ethylene block copolymer (22 ⁇ m) / propylene-ethylene random copolymer (4 ⁇ m), resin B are bonded together to form a resin layer 1.
  • laminated films of Examples 12 and 13 in which the base material layer 21 / adhesive layer A / barrier layer 22 / adhesive layer B / resin layer 1 were laminated in order were obtained.
  • Example 14 a resin composed of acid-modified polypropylene as a main agent and methylene diisocyanate as a curing agent was applied to the barrier layer 22 side to form a resin layer B (thickness 1 ⁇ m).
  • Example 15 a resin composed of acid-modified polypropylene as a main agent and methylene diisocyanate as a curing agent was applied to the barrier layer 22 side to form a resin layer B (thickness 3 ⁇ m).
  • Example 16 a resin composed of an acid-modified polypropylene as a main component and an epoxy resin (weight average molecular weight 500) as a curing agent was applied to the barrier layer 22 side to form a resin layer B (thickness 1 ⁇ m).
  • Measuring instrument LabRAM HR-800 manufactured by HORIBA JOBIN YVON In the measurement of the spectral intensity A in the MD, a Raman spectrum is measured so that the MD and the incident laser polarization plane are parallel, and in the measurement of the spectral intensity B in the TD, the TD and the incident laser polarization plane are parallel. Raman spectrum was measured. Measurement conditions: excitation laser wavelength 633 nm, exposure time 15 seconds, objective lens 50 times, number of integrations 8 times, confocal hole diameter ⁇ 0.1 mm, grating 800 L / mm Analysis conditions: (1) The average value of the scattering intensity at a Raman shift of 600 to 700 cm ⁇ 1 is taken as the baseline value.
  • the peak value at 809 cm ⁇ 1 is obtained by subtracting the baseline value from the maximum value of the scattering intensity in the range of Raman shift 809 ⁇ 2 cm ⁇ 1.
  • the peak value at 842 cm ⁇ 1 is obtained by subtracting the baseline value from the maximum value of the scattering intensity in the range of Raman shift 842 ⁇ 2 cm ⁇ 1.
  • the spectral intensity ratios A and B are calculated using the peak intensities in (2) and (3) above. As described above, when polypropylene is used as the resin for forming the resin layer 1, the peak of the crystal part of the resin is observed in the vicinity of 809 cm-1 in the spectrum measurement by Raman spectroscopy, and the peak of the amorphous part is 842 cm. Observed around -1.
  • the spectral intensity ratio A and the spectral intensity ratio B can be calculated from the obtained values.
  • each diagonal of the laminated film is set at the center of the laminated film having a length of 90 mm in one direction (MD) and a length of 150 mm in the other direction (TD) perpendicular to the one direction.
  • Two cuts (cuts that penetrate the laminated film) having a length of 100 mm are provided from the support side so as to penetrate the laminated film in the thickness direction of the laminated film.
  • the substrate was placed on a horizontal surface with the support on the lower side and allowed to stand at 20 ° C. for 8 hours. Next, as shown in FIG.
  • ⁇ Lubricant precipitation evaluation 1> The laminated film obtained above was stored at 20 ° C. for 1 week, then cut, and a strip of 120 mm ⁇ 80 mm was produced as a test sample. Next, a straight mold composed of a 30 mm ⁇ 50 mm rectangular male mold and a female mold with a clearance of 0.5 mm between the male mold is used, and on the female mold so that the resin layer 1 side is located on the male mold side. The above test samples are placed, and 5000 pieces (5000 shots) of each test sample are pressed with a presser pressure (surface pressure) of 0.1 MPa so that the forming depth is 4.0 mm, and cold forming ( Pulling in one step).
  • a presser pressure surface pressure
  • the lubricant precipitation of the test sample at this time was evaluated according to the following criteria. The results are shown in Table 1.
  • BA In the laminated films of Examples 1 to 8 and 12 to 16 in which
  • BA ⁇ of the difference between the spectral intensity ratio A in one direction in the resin layer and the spectral intensity ratio B in the other direction orthogonal to the one direction is a large comparison of 0.73.
  • the curl amount h was 37 mm, and it was difficult to position the mold.
  • multilayer film of the comparative example 1 whose sum (A + B) of the spectral intensity ratio A and the spectral intensity ratio B is 2.77 the result of lubricant precipitation evaluation was inferior.
  • ⁇ Lubricant precipitation evaluation 2> After storing the laminated films of Examples 1, 2, 6, 7, 9 to 16 and Comparative Example 1 obtained above at the respective storage temperatures shown in Table 2 (5 ° C., 20 ° C., 40 ° C.) for 1 week. Cut into 120 mm ⁇ 80 mm strips to prepare test samples. Next, a straight mold composed of a 30 mm ⁇ 50 mm rectangular male mold and a female mold with a clearance of 0.5 mm between the male mold is used, and on the female mold so that the resin layer 1 side is located on the male mold side.
  • the above test samples are placed, and 5000 pieces (5000 shots) of each test sample are pressed with a presser pressure (surface pressure) of 0.1 MPa so that the forming depth is 4.0 mm. Inter-molding (retraction one-stage molding) was performed. The lubricant precipitation of the test sample at this time was evaluated according to the following criteria. The results are shown in Table 2.
  • the curl amount is a value measured in the same manner as in the above ⁇ Measurement of curl amount h> for any test sample stored at each temperature.
  • BA ⁇ of the difference between the spectral intensity ratio A in one direction in the resin layer and the spectral intensity ratio B in the other direction orthogonal to the one direction is a large comparison of 0.73.
  • the curl was large and it was difficult to position the mold.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Laminated Bodies (AREA)

Abstract

Provided is a laminate film in which curl is suppressed and that is easily positioned in a mold during molding. The laminate film is formed from at least a laminated body of a support and a resin layer formed from a resin. The laminate film has an absolute value |B-A| of a difference between a spectral intensity ratio A obtained by dividing the spectral intensity, which is measured by Raman spectroscopy in one direction of the resin layer, of a crystal portion of the resin by the spectral intensity of an amorphous portion, and a spectral intensity ratio B obtained by dividing the spectral intensity, which is measured by Raman spectroscopy in another direction of the resin layer orthogonal to the one direction, of a crystal portion of the resin by the spectral intensity of an amorphous portion, in the range of 0.00 or more to 0.70 or less.

Description

積層フィルムLaminated film
 本発明は、積層フィルムに関する。 The present invention relates to a laminated film.
 従来、基材層やバリア層などの支持体の上に樹脂層が積層された積層フィルムが、例えば包装材料などの様々な分野で広く使用されている(特許文献1)。包装材料として使用されるような積層フィルムの中には、例えば電池用包装材料などのように、内容物を収容するための空間を形成することなどを目的として、冷間成形に供されるものが存在する。 Conventionally, a laminated film in which a resin layer is laminated on a support such as a base material layer or a barrier layer has been widely used in various fields such as packaging materials (Patent Document 1). Some laminated films used as packaging materials, such as battery packaging materials, are used for cold forming for the purpose of forming a space for containing contents. Exists.
 冷間成形に供される積層フィルムは、通常、帯状の積層フィルムとして製造され、適当な大きさに切断することにより、種々の用途に使用される。切断された後の積層フィルムにおいて、積層フィルムが湾曲するカールと称される現象が生じる場合がある。積層フィルムに大きなカールが生じていると、積層フィルムを成形する際に金型の位置決めが困難となり、所望の精度で成形できずに歩留まりが低下するという問題がある。また、積層フィルムの成形工程の効率が低下するという問題もある。 A laminated film subjected to cold forming is usually produced as a belt-like laminated film, and is used for various purposes by cutting into an appropriate size. In the laminated film after being cut, a phenomenon called curl in which the laminated film is curved may occur. When the curl is generated in the laminated film, it is difficult to position the mold when the laminated film is molded, and there is a problem that the yield cannot be achieved because the film cannot be molded with a desired accuracy. There is also a problem that the efficiency of the forming process of the laminated film is lowered.
 また、冷間成形に供される積層フィルムにおいては、冷間成形の際に、積層フィルムが引き延ばされることによって、金型のフランジ部において、クラックやピンホールが発生しやすいという問題がある。このような問題を解決するために、積層フィルムの樹脂層表面に滑剤をコーティングしたり、樹脂層を形成する樹脂に滑剤を配合し、成形に供される前に樹脂層表面に滑剤をブリードアウトさせることなどにより、樹脂層表面の滑り性を高める方法が知られている。このような方法を採用することにより、冷間成形時において、積層フィルムが金型に引き込まれやすくなり、積層フィルムのクラックやピンホールを抑制することができる。 Also, in the laminated film used for cold forming, there is a problem that cracks and pinholes are likely to occur in the flange portion of the mold by stretching the laminated film during cold forming. In order to solve such problems, a lubricant is coated on the resin layer surface of the laminated film, or a lubricant is blended into the resin forming the resin layer, and the lubricant is bleeded out on the resin layer surface before being used for molding. There is known a method of improving the slipperiness of the resin layer surface by, By adopting such a method, at the time of cold forming, the laminated film is easily drawn into the mold, and cracks and pinholes in the laminated film can be suppressed.
 しかしながら、樹脂層の表面に存在する滑剤の量が多すぎると、滑剤が金型に付着し、塊となって金型を汚染するという問題がある。金型が汚染されたまま、他の積層フィルム成形すると、金型に付着した滑剤の塊が積層フィルムの表面に付着する。積層フィルムの表面に滑剤の塊が付着していると、成形後の2枚の積層フィルムの樹脂層同士を熱融着して包装材料を形成する場合などにおいて、滑剤が付着した部分の溶け方が不均一となるため、シール不良が発生しやすくなるといった問題を生じる。また、金型に付着した滑剤の塊を除去するための洗浄が必要となり、成形工程の効率が低下する。 However, if the amount of the lubricant present on the surface of the resin layer is too large, there is a problem that the lubricant adheres to the mold and becomes a lump and contaminates the mold. When another laminated film is molded while the mold is contaminated, a lump of lubricant adhered to the mold adheres to the surface of the laminated film. When a lump of lubricant adheres to the surface of the laminated film, how to melt the part to which the lubricant has adhered, such as when the resin layers of the two laminated films after molding are heat-sealed to form a packaging material Is non-uniform, which causes a problem that a seal failure is likely to occur. Further, it is necessary to perform cleaning for removing the lump of lubricant adhering to the mold, and the efficiency of the molding process is lowered.
 一方、成形時において、樹脂層の表面に存在する滑剤の量が少なすぎると、積層フィルムの滑り性が低くなるため、積層フィルムの成形性が低下するという問題がある。 On the other hand, when the amount of the lubricant present on the surface of the resin layer is too small during molding, there is a problem that the slipperiness of the laminated film is lowered and the moldability of the laminated film is lowered.
特開2008-287971号公報JP 2008-287971 A
 このような状況下、本発明の第1の態様に係る発明は、カールが抑制されており、成形時の金型の位置決めが容易な積層フィルムを提供することを主な目的とする。 Under such circumstances, the main object of the invention according to the first aspect of the present invention is to provide a laminated film in which curling is suppressed and the mold can be easily positioned during molding.
 また、上述のように、冷間成形に供される積層フィルムの樹脂層には、滑剤が配合されたり、表面に滑剤がコーティングされることがある。しかしながら、樹脂層表面にコーティングする滑剤や、樹脂層に配合する滑剤を所定量に設定しているにも拘わらず、積層フィルムの成形時において、金型に滑剤が付着する場合や、積層フィルムにクラックやピンホールが発生する場合がある。具体的には、樹脂層に滑剤を配合する場合及びコーティングする場合のいずれにおいても、積層フィルムを製造してから、成形に供されるまでの保管環境等によって、樹脂層の表面に位置する滑剤の量が大幅に変化し、成形時に金型に滑剤が付着したり、成形性が低下することがある。例えば、積層フィルムを高温下で保管した場合には、滑剤は樹脂層の内部に入り込みやすく、その結果、樹脂層の滑り性が低下して、成形性が低下しやすくなる。一方、積層フィルムを室温以下の低温下で保管した場合には、樹脂層の内部での滑剤の飽和溶解度が低下し、樹脂層の表面に位置する滑剤量が増加して、金型が汚染されやすくなる。 Further, as described above, a lubricant may be blended or coated on the surface of the resin layer of the laminated film subjected to cold forming. However, even when the lubricant to be coated on the surface of the resin layer and the lubricant to be blended in the resin layer are set to a predetermined amount, when the laminated film is molded, if the lubricant adheres to the mold, Cracks and pinholes may occur. Specifically, in both cases where a lubricant is blended and coated in the resin layer, the lubricant located on the surface of the resin layer depending on the storage environment from the production of the laminated film to the time it is used for molding. The amount of the resin may change greatly, and the lubricant may adhere to the mold during molding, or the moldability may deteriorate. For example, when the laminated film is stored at a high temperature, the lubricant easily enters the resin layer. As a result, the slipperiness of the resin layer is lowered, and the moldability is easily lowered. On the other hand, when the laminated film is stored at a low temperature below room temperature, the saturation solubility of the lubricant inside the resin layer decreases, the amount of lubricant located on the surface of the resin layer increases, and the mold is contaminated. It becomes easy.
 このような状況下、本発明の第2の態様に係る発明は、樹脂層表面に存在する滑剤量の大幅な変化を抑制することにより、安定した成形性を発揮し、金型への滑剤の塊の付着が効果的に抑制された積層フィルムを提供することを主な目的とする。 Under such circumstances, the invention according to the second aspect of the present invention exhibits stable moldability by suppressing a significant change in the amount of the lubricant present on the surface of the resin layer. The main object is to provide a laminated film in which lump adhesion is effectively suppressed.
 本発明者らは、上記のような課題を解決すべく鋭意検討を行った。その結果、少なくとも、支持体と、樹脂により形成された樹脂層との積層体から構成された積層フィルムにおいて、樹脂層平面での一方向におけるラマン分光法で測定される前記樹脂の結晶部のスペクトル強度を非晶部のスペクトル強度で除して得られるスペクトル強度比Aと、樹脂層の前記一方向に直交する同一平面上での他方向におけるラマン分光法で測定される前記樹脂の結晶部のスペクトル強度を非晶部のスペクトル強度で除して得られるスペクトル強度比Bとの差の絶対値|B-A|が、0.00以上0.70以下の範囲にあることにより、積層フィルムのカールが抑制され、成形時の金型の位置決めが容易になることを見出した。 The present inventors have intensively studied to solve the above problems. As a result, the spectrum of the crystal part of the resin measured by Raman spectroscopy in one direction on the resin layer plane in a laminated film composed of at least a support and a resin layer formed of resin. The spectral intensity ratio A obtained by dividing the intensity by the spectral intensity of the amorphous part, and the crystalline part of the resin measured by Raman spectroscopy in the other direction on the same plane orthogonal to the one direction of the resin layer. When the absolute value | BA | of the difference from the spectral intensity ratio B obtained by dividing the spectral intensity by the spectral intensity of the amorphous part is in the range of 0.00 to 0.70, It was found that curling is suppressed and positioning of the mold during molding becomes easy.
 すなわち、本発明の第1の態様に係る発明は、下記に掲げる態様の発明を提供する。
項1A. 少なくとも、支持体と、樹脂により形成された樹脂層との積層体から構成された積層フィルムであって、
 前記樹脂層平面での一方向におけるラマン分光法で測定される前記樹脂の結晶部のスペクトル強度を非晶部のスペクトル強度で除して得られるスペクトル強度比Aと、前記樹脂層の前記一方向に直交する同一平面上での他方向におけるラマン分光法で測定される前記樹脂の結晶部のスペクトル強度を非晶部のスペクトル強度で除して得られるスペクトル強度比Bとの差の絶対値|B-A|が、0.00以上0.70以下の範囲にある、積層フィルム。
項2A. 前記一方向の長さ90mm、前記他方向の長さ150mmの前記積層フィルムを用意し、当該積層フィルムの中心において、前記積層フィルムのそれぞれの対角を結ぶ2つの線上に、積層フィルムの厚み方向に貫通するようにして、前記支持体側から、前記中心が中央となる長さ100mmの2本の切れ込みを入れ、これを前記支持体が下側になるようにして水平面に置いて20℃で8時間静置した後、前記水平面とは垂直方向において、前記水平面と前記中心との最大距離hを測定した場合に、当該最大距離hが、30mm以下である、項1Aに記載の積層フィルム。
項3A. 前記樹脂層が、ポリオレフィンにより構成されている、項1A又は2Aに記載の積層フィルム。
項4A. 前記スペクトル強度比Aと、前記スペクトル強度比Bとの和(A+B)が、1.95以上2.66以下の範囲にある、項1A~3Aのいずれかに記載の積層フィルム。
項5A. 前記支持体が、バリア層を有する、項1A~4Aのいずれかに記載の積層フィルム。
項6A. 前記支持体が、基材層とバリア層を有し、
 前記バリア層の前記基材層とは反対側に前記樹脂層が積層されている、項1A~4Aのいずれかに記載の積層フィルム。
項7A. 前記基材層は、ポリエステルフィルムとナイロンフィルムとの積層体から構成された多層構造を有している、項6Aに記載の積層フィルム。
項8A. 前記基材層は、ポリエステルフィルムにより構成されている、項6Aに記載の積層フィルム。
項9A. 前記基材層は、ナイロンフィルムにより構成されている、項6Aに記載の積層フィルム。
項10A. 包装材料として使用される、項1A~9Aのいずれかに記載の積層フィルム。
項11A. 冷間成形に供される積層フィルムである、項1A~10Aのいずれかに記載の積層フィルム。
That is, the invention according to the first aspect of the present invention provides the following aspects of the invention.
Item 1A. At least a laminated film composed of a laminate of a support and a resin layer formed of a resin,
The spectral intensity ratio A obtained by dividing the spectral intensity of the crystal part of the resin measured by Raman spectroscopy in one direction on the plane of the resin layer by the spectral intensity of the amorphous part, and the one direction of the resin layer The absolute value of the difference from the spectral intensity ratio B obtained by dividing the spectral intensity of the crystalline part of the resin by the spectral intensity of the amorphous part measured by Raman spectroscopy in the other direction on the same plane perpendicular to | B-A | is a laminated film having a range of 0.00 to 0.70.
Item 2A. The laminated film having a length of 90 mm in one direction and a length of 150 mm in the other direction is prepared, and in the center of the laminated film, on the two lines connecting the diagonals of the laminated film, the thickness direction of the laminated film Two cuts with a length of 100 mm with the center being the center are made from the side of the support and placed on a horizontal surface so that the support is on the bottom, and at 8 ° C. The laminated film according to Item 1A, wherein the maximum distance h is 30 mm or less when the maximum distance h between the horizontal plane and the center is measured in a direction perpendicular to the horizontal plane after standing for a time.
Item 3A. Item 2. The laminated film according to Item 1A or 2A, wherein the resin layer is made of polyolefin.
Item 4A. Item 3. The laminated film according to any one of Items 1A to 3A, wherein the sum (A + B) of the spectral intensity ratio A and the spectral intensity ratio B is in the range of 1.95 to 2.66.
Item 5A. Item 4. The laminated film according to any one of Items 1A to 4A, wherein the support has a barrier layer.
Item 6A. The support has a base material layer and a barrier layer,
Item 4. The laminated film according to any one of Items 1A to 4A, wherein the resin layer is laminated on a side of the barrier layer opposite to the base material layer.
Item 7A. Item 6. The laminated film according to Item 6A, wherein the base material layer has a multilayer structure composed of a laminate of a polyester film and a nylon film.
Item 8A. Item 6. The laminated film according to Item 6A, wherein the base material layer is made of a polyester film.
Item 9A. Item 6. The laminated film according to Item 6A, wherein the base material layer is made of a nylon film.
Item 10A. Item 10. The laminated film according to any one of Items 1A to 9A, which is used as a packaging material.
Item 11A. Item 10. The laminated film according to any one of Items 1A to 10A, which is a laminated film subjected to cold forming.
 また、本発明者らは、少なくとも、支持体と、樹脂により形成された樹脂層との積層体から構成された積層フィルムにおいて、樹脂層平面での一方向におけるラマン分光法で測定される前記樹脂の結晶部のスペクトル強度を非晶部のスペクトル強度で除して得られるスペクトル強度比Aと、樹脂層の前記一方向に直交する同一平面上での他方向におけるラマン分光法で測定される前記樹脂の結晶部のスペクトル強度を非晶部のスペクトル強度で除して得られるスペクトル強度比Bとの和が、1.95以上2.66以下の範囲にあることにより、樹脂層表面に存在する滑剤量の大幅な変化を抑制し、冷間成形(成形深さが4.0mm以上)においても、安定した成形性を発揮できることを見出した。 In addition, the present inventors, at least in the laminated film composed of a laminate of a support and a resin layer formed of a resin, the resin measured by Raman spectroscopy in one direction on the resin layer plane The spectral intensity ratio A obtained by dividing the spectral intensity of the crystal part by the spectral intensity of the amorphous part and the Raman spectrum measured in the other direction on the same plane orthogonal to the one direction of the resin layer The sum of the spectral intensity ratio B obtained by dividing the spectral intensity of the crystal part of the resin by the spectral intensity of the amorphous part is in the range of 1.95 or more and 2.66 or less, so that it exists on the surface of the resin layer. It has been found that a significant change in the amount of lubricant can be suppressed and that stable moldability can be exhibited even in cold forming (molding depth of 4.0 mm or more).
 すなわち、本発明の第2の態様に係る発明は、下記に掲げる態様の発明を提供する。
項1B. 少なくとも、支持体と、樹脂により形成された樹脂層との積層体から構成された積層フィルムであって、
 前記樹脂層平面での一方向におけるラマン分光法で測定される前記樹脂の結晶部のスペクトル強度を非晶部のスペクトル強度で除して得られるスペクトル強度比Aと、前記樹脂層の前記一方向に直交する同一平面上での他方向におけるラマン分光法で測定される前記樹脂の結晶部のスペクトル強度を非晶部のスペクトル強度で除して得られるスペクトル強度比Bとの和が、1.95以上2.66以下の範囲にある、積層フィルム。
項2B. 前記樹脂層が、滑剤を含む、項1Bに記載の積層フィルム。
項3B. 前記スペクトル強度比Aと、前記スペクトル強度比Bとの差の絶対値|B-A|が、0.00以上0.70以下の範囲にある、項1B又は2Bに記載の積層フィルム。
項4B. 前記一方向の長さ90mm、前記他方向の長さ150mmの前記積層フィルムを用意し、当該積層フィルムの中心において、前記積層フィルムのそれぞれの対角を結ぶ2つの線上に、積層フィルムの厚み方向に貫通するようにして、前記支持体側から、前記中心が中央となる長さ100mmの2本の切れ込みを入れ、これを前記支持体が下側になるようにして水平面に置いて20℃で8時間静置した後、前記水平面とは垂直方向おいて、前記水平面と前記中心との最大距離hを測定した場合に、当該最大距離hが、30mm以下である、項1B~3Bのいずれかに記載の積層フィルム。
項5B. 前記樹脂層が、ポリオレフィンにより構成されている、項1B~4Bのいずれかに記載の積層フィルム。
項6B. 前記支持体が、バリア層を有する、項1B~5Bのいずれかに記載の積層フィルム。
項7B. 前記支持体が、基材層とバリア層を有し、
 前記バリア層の前記基材層とは反対側に前記樹脂層が積層されている、項1B~5Bのいずれかに記載の積層フィルム。
項8B. 前記基材層は、ポリエステルフィルムとナイロンフィルムとの積層体から構成された多層構造を有している、項7Bに記載の積層フィルム。
項9B. 前記基材層は、ポリエステルフィルムにより構成されている、項7Bに記載の積層フィルム。
項10B. 前記基材層は、ナイロンフィルムにより構成されている、項7Bに記載の積層フィルム。
項11B. 包装材料として使用される、項1B~10Bのいずれかに記載の積層フィルム。
項12B. 冷間成形に供される積層フィルムである、項1B~11Bのいずれかに記載の積層フィルム。
That is, the invention according to the second aspect of the present invention provides the following aspects of the invention.
Item 1B. At least a laminated film composed of a laminate of a support and a resin layer formed of a resin,
The spectral intensity ratio A obtained by dividing the spectral intensity of the crystal part of the resin measured by Raman spectroscopy in one direction on the plane of the resin layer by the spectral intensity of the amorphous part, and the one direction of the resin layer And the spectral intensity ratio B obtained by dividing the spectral intensity of the crystal part of the resin measured by Raman spectroscopy in the other direction on the same plane orthogonal to the spectral intensity of the amorphous part is 1. A laminated film in the range of 95 to 2.66.
Item 2B. The laminated film according to Item 1B, wherein the resin layer includes a lubricant.
Item 3B. Item 3. The laminated film according to Item 1B or 2B, wherein the absolute value | BA | of the difference between the spectral intensity ratio A and the spectral intensity ratio B is in the range of 0.00 to 0.70.
Item 4B. The laminated film having a length of 90 mm in one direction and a length of 150 mm in the other direction is prepared, and in the center of the laminated film, on the two lines connecting the diagonals of the laminated film, the thickness direction of the laminated film Two cuts with a length of 100 mm with the center being the center are made from the side of the support and placed on a horizontal surface so that the support is on the bottom, and at 8 ° C. After standing for a time, when the maximum distance h between the horizontal plane and the center is measured in a direction perpendicular to the horizontal plane, the maximum distance h is 30 mm or less. The laminated film as described.
Item 5B. Item 4. The laminated film according to any one of Items 1B to 4B, wherein the resin layer is made of polyolefin.
Item 6B. Item 6. The laminated film according to any one of Items 1B to 5B, wherein the support has a barrier layer.
Item 7B. The support has a base material layer and a barrier layer,
Item 6. The laminated film according to any one of Items 1B to 5B, wherein the resin layer is laminated on the opposite side of the barrier layer from the base material layer.
Item 8B. Item 8. The laminated film according to Item 7B, wherein the base material layer has a multilayer structure composed of a laminate of a polyester film and a nylon film.
Item 9B. The laminated film according to Item 7B, wherein the base material layer is formed of a polyester film.
Item 10B. The laminated film according to Item 7B, wherein the base material layer is made of a nylon film.
Item 11B. Item 11. The laminated film according to any one of Items 1B to 10B, which is used as a packaging material.
Item 12B. Item 12. The laminated film according to any one of Items 1B to 11B, which is a laminated film subjected to cold forming.
 本発明の第1の態様に係る積層フィルムは、樹脂層平面での一方向におけるラマン分光法で測定される樹脂の結晶部のスペクトル強度を非晶部のスペクトル強度で除して得られるスペクトル強度比Aと、樹脂層の前記一方向に直交する同一平面上での他方向におけるラマン分光法で測定される樹脂の結晶部のスペクトル強度を非晶部のスペクトル強度で除して得られるスペクトル強度比Bとの差の絶対値|B-A|が、0.00以上0.70以下の範囲にあることにより、積層フィルムのカールが抑制され、成形時の金型の位置決めが容易になる。このため、積層フィルムを所望の精度で成形することができ、歩留まりを向上させることができる。また、積層フィルムの成形工程の効率を向上させることができる。 The laminated film according to the first aspect of the present invention has a spectral intensity obtained by dividing the spectral intensity of the crystal part of the resin measured by Raman spectroscopy in one direction on the resin layer plane by the spectral intensity of the amorphous part. Spectral intensity obtained by dividing the spectral intensity of the crystal part of the resin measured by Raman spectroscopy in the other direction on the same plane orthogonal to the one direction of the resin layer A by the spectral intensity of the amorphous part When the absolute value | BA− of the difference from the ratio B is in the range of 0.00 to 0.70, curling of the laminated film is suppressed and positioning of the mold during molding becomes easy. For this reason, a laminated film can be shape | molded with a desired precision and a yield can be improved. Moreover, the efficiency of the forming process of the laminated film can be improved.
 また、本発明の第2の態様に係る積層フィルムは、樹脂層平面での一方向におけるラマン分光法で測定される樹脂の結晶部のスペクトル強度を非晶部のスペクトル強度で除して得られるスペクトル強度比Aと、樹脂層の前記一方向に直交する同一平面上での他方向におけるラマン分光法で測定される樹脂の結晶部のスペクトル強度を非晶部のスペクトル強度で除して得られるスペクトル強度比Bとの和が、1.95以上2.66以下の範囲にあることにより、樹脂層表面に存在する滑剤量の大幅な変化が抑制され、冷間成形(例えば成形深さが4.0mm以上)においても、安定した成形性を発揮することができる。 In addition, the laminated film according to the second aspect of the present invention is obtained by dividing the spectral intensity of the crystalline part of the resin measured by Raman spectroscopy in one direction on the resin layer plane by the spectral intensity of the amorphous part. Obtained by dividing the spectral intensity of the crystal part of the resin measured by Raman spectroscopy in the other direction on the same plane orthogonal to the one direction of the resin layer by the spectral intensity of the amorphous part. When the sum of the spectral intensity ratio B is in the range of 1.95 or more and 2.66 or less, a significant change in the amount of the lubricant present on the surface of the resin layer is suppressed, and cold forming (for example, the forming depth is 4). 0.0 mm or more), stable moldability can be exhibited.
本発明の積層フィルムの積層構造を示す模式的断面図である。It is typical sectional drawing which shows the laminated structure of the laminated | multilayer film of this invention. 本発明の積層フィルムのカール量を説明するための模式図である。It is a schematic diagram for demonstrating the curl amount of the laminated | multilayer film of this invention. ポリプロピレンにより形成された樹脂層について、ラマン分光法を用いて、樹脂の結晶部と非晶部のスペクトル強度比(結晶部/非晶部)を測定した場合のスペクトルを示す模式図である。It is a schematic diagram which shows the spectrum at the time of measuring the spectral intensity ratio (crystal part / amorphous part) of the crystalline part of a resin, and an amorphous part about the resin layer formed with the polypropylene using Raman spectroscopy.
 本発明の第1の態様の積層フィルムは、少なくとも、支持体と、樹脂により形成された樹脂層との積層体から構成された積層フィルムであって、前記樹脂層平面での一方向におけるラマン分光法で測定される前記樹脂の結晶部のスペクトル強度を非晶部のスペクトル強度で除して得られるスペクトル強度比Aと、前記樹脂層の前記一方向に直交する同一平面での他方向におけるラマン分光法で測定される前記樹脂の結晶部のスペクトル強度を非晶部のスペクトル強度で除して得られるスペクトル強度比Bとの差の絶対値|B-A|が、0.00以上0.70以下の範囲にあることを特徴とする。なお、上記スペクトル強度は、通常、樹脂層の同一平面上におけるMD、TD(後述)での直交した位置での差の絶対値|B-A|が最も大きく表れるものであるが、その位置関係に限られるものではない。 The laminated film of the first aspect of the present invention is a laminated film composed of at least a support and a resin layer formed of a resin, and Raman spectroscopy in one direction on the resin layer plane The spectral intensity ratio A obtained by dividing the spectral intensity of the crystal part of the resin measured by the method by the spectral intensity of the amorphous part, and Raman in the other direction on the same plane perpendicular to the one direction of the resin layer The absolute value | BA | of the difference from the spectral intensity ratio B obtained by dividing the spectral intensity of the crystalline part of the resin by the spectral intensity of the amorphous part measured by spectroscopy is 0.00 or more and 0.00. It is characterized by being in the range of 70 or less. The above spectral intensity usually shows the absolute value | BA− of the difference at orthogonal positions in MD and TD (described later) on the same plane of the resin layer. It is not limited to.
 また、本発明の第2の態様の積層フィルムは、少なくとも、支持体と、樹脂により形成された樹脂層との積層体から構成された積層フィルムであって、前記樹脂層平面での一方向(例えば、樹脂層を形成する際の流れ方向であるMD:Machine Direction)におけるラマン分光法で測定される前記樹脂の結晶部のスペクトル強度を非晶部のスペクトル強度で除して得られるスペクトル強度比Aと、前記樹脂層の前記一方向に直交する同一平面上での他方向(例えば、TD:Transverse Direction)におけるラマン分光法で測定される前記樹脂の結晶部のスペクトル強度を非晶部のスペクトル強度で除して得られるスペクトル強度比Bとの和が、1.95以上2.66以下の範囲にあることを特徴とする。 Further, the laminated film of the second aspect of the present invention is a laminated film composed of at least a support and a resin layer formed of a resin, and is unidirectional on the resin layer plane ( For example, the spectral intensity ratio obtained by dividing the spectral intensity of the crystal part of the resin measured by Raman spectroscopy in MD (Machine Direction), which is the flow direction when forming the resin layer, by the spectral intensity of the amorphous part A and the spectral intensity of the crystal part of the resin measured by Raman spectroscopy in the other direction (for example, TD: Transverse Direction) on the same plane orthogonal to the one direction of the resin layer. The sum of the spectral intensity ratio B obtained by dividing by the intensity is in the range of 1.95 to 2.66. .
 以下、本発明の積層フィルムについて詳述する。なお、本明細書において、第1の態様の積層フィルムと第2の態様の積層フィルムとで相違する事項については、いずれの態様についての事項であるかを明示し、第1の態様の積層フィルムと第2の態様の積層フィルムとで共通する事項については、本発明の積層フィルムについての説明とした。また、図面中の符号は、第1の態様と第2の態様で共通して用いた。例えば、下記記載において、支持体2の基材層21、バリア層22、接着層A、接着層Bについては、第1の態様の積層フィルムと第2の態様とで共通している。 Hereinafter, the laminated film of the present invention will be described in detail. In addition, in this specification, about the matter which is different between the laminated film of the first aspect and the laminated film of the second aspect, it is clearly shown which aspect is concerned, and the laminated film of the first aspect The matters common to the laminated film of the second aspect are the descriptions of the laminated film of the present invention. Moreover, the code | symbol in drawing was used in common with the 1st aspect and the 2nd aspect. For example, in the following description, the base film 21, the barrier layer 22, the adhesive layer A, and the adhesive layer B of the support 2 are common to the laminated film of the first aspect and the second aspect.
 請求の範囲及び明細書において、数値範囲の表記として、符号「~」を使用しているが、例えば、「値XがA1~A2である」とする数値範囲の意味は、「A1≦X≦A2」を意味する。また、積層フィルムのMD、TDについては、例えば、後述のバリア層22がアルミニウム箔により構成されている場合には、アルミニウム箔の圧延方向がMDとなり、MDに同一平面垂直方向がTDとなる。アルミニウム箔の圧延方向は、アルミニウム箔の圧延痕によって確認することができる。 In the claims and the description, the symbol “˜” is used as the notation of the numerical range. For example, the meaning of the numerical range “the value X is A1 to A2” means “A1 ≦ X ≦ A2 "means. As for MD and TD of the laminated film, for example, when a barrier layer 22 described later is made of an aluminum foil, the rolling direction of the aluminum foil is MD, and the direction perpendicular to the same plane as MD is TD. The rolling direction of the aluminum foil can be confirmed by the rolling trace of the aluminum foil.
 積層フィルムの積層構造
 本発明(第1の態様及び第2の態様)の積層フィルムは、例えば図1に示されるように、支持体2と、樹脂層1が積層されてなる。樹脂層1は、1層のみにより構成されていてもよいし、複数の層により構成されていてもよい。
Laminated Structure of Laminated Film The laminated film of the present invention (first aspect and second aspect) is formed by laminating a support 2 and a resin layer 1 as shown in FIG. 1, for example. The resin layer 1 may be composed of only one layer, or may be composed of a plurality of layers.
 また、支持体2を構成する層としては、例えば、基材層21、バリア層22などが挙げられる。支持体2は、1層のみにより構成されていてもよいし、複数の層により構成されていてもよい。また、支持体2が基材層21及びバリア層22を有する場合、本発明の積層フィルムは、図1に示されるように、基材層21、バリア層22、及び樹脂層1の順に積層されていることが好ましい。支持体2が基材層21及びバリア層22を有する場合、基材層21とバリア層22との接着性を高めることなどを目的として、これらの層の間に、必要に応じて接着層A(図示しない)を設けてもよい。また、支持体2と樹脂層1との接着性を高めることなどを目的として、これらの層の間(例えば、基材層21と樹脂層1との間、バリア層22と樹脂層1との間など)に、必要に応じて接着層B(図示しない)を設けてもよい。 Moreover, as a layer which comprises the support body 2, the base material layer 21, the barrier layer 22, etc. are mentioned, for example. The support 2 may be composed of only one layer or may be composed of a plurality of layers. Moreover, when the support body 2 has the base material layer 21 and the barrier layer 22, the laminated | multilayer film of this invention are laminated | stacked in order of the base material layer 21, the barrier layer 22, and the resin layer 1, as FIG. 1 shows. It is preferable. When the support 2 has the base material layer 21 and the barrier layer 22, for the purpose of improving the adhesiveness between the base material layer 21 and the barrier layer 22, an adhesive layer A is provided between these layers as necessary. (Not shown) may be provided. Moreover, between these layers (for example, between the base material layer 21 and the resin layer 1, between the barrier layer 22 and the resin layer 1 for the purpose of improving the adhesiveness of the support body 2 and the resin layer 1, etc. An adhesive layer B (not shown) may be provided as needed.
 積層フィルムの各層の構成
[樹脂層1]
 積層フィルム10において、樹脂層1は、樹脂により形成されており、支持体2の上に積層されている。後述のように、本発明の積層フィルム10を包装材料などとして用いる場合、樹脂層1を熱融着性樹脂層とすることができる。熱融着性樹脂層は、包装材料によって内容物を密封する際に、包装材料の最内層を構成する層である。内容物を密閉する際に、熱融着性樹脂層1の表面同士を互いに接触させ、接触した部分を熱融着して内容物を密封することができる。
Configuration of each layer of laminated film [resin layer 1]
In the laminated film 10, the resin layer 1 is made of resin and is laminated on the support 2. As will be described later, when the laminated film 10 of the present invention is used as a packaging material or the like, the resin layer 1 can be a heat-fusible resin layer. The heat-fusible resin layer is a layer that constitutes the innermost layer of the packaging material when the contents are sealed with the packaging material. When sealing the contents, the surfaces of the heat-fusible resin layer 1 can be brought into contact with each other, and the contacted parts can be heat-sealed to seal the contents.
 上述の通り、積層フィルムは、通常、帯状の積層体として製造され、適当な大きさに切断することにより、後述のような種々の用途に使用される。切断された後の積層フィルム10においては、積層フィルムが湾曲するカールと称される現象が生じる場合がある。積層フィルムに大きなカールが生じていると、積層フィルムを成形する際に金型の位置決めが困難となり、所望の精度で成形できずに歩留まりが低下するという問題がある。また、積層フィルムの成形工程の効率が低下するという問題もある。 As described above, a laminated film is usually produced as a strip-like laminate and is used for various applications as described later by cutting into an appropriate size. In the laminated film 10 after being cut, a phenomenon called curl in which the laminated film is curved may occur. When the curl is generated in the laminated film, it is difficult to position the mold when the laminated film is molded, and there is a problem that the yield cannot be achieved because the film cannot be molded with a desired accuracy. There is also a problem that the efficiency of the forming process of the laminated film is lowered.
 これに対して、第1の態様の積層フィルム10においては、樹脂層1の一方向(例えば、樹脂層1を形成する際の流れ方向であるMD)におけるラマン分光法で測定される前記樹脂の結晶部と非晶部のスペクトル強度比A(結晶部/非晶部)と、樹脂層1の前記一方向に直交する他方向(例えば、MDとは同一平面の垂直方向であるTD)におけるラマン分光法で測定される前記樹脂の結晶部と非晶部のスペクトル強度比B(結晶部/非晶部)との差の絶対値|B-A|が、0.00~0.70の範囲にある。第1の態様の積層フィルム10においては、樹脂層1のスペクトル強度比Aとスペクトル強度比Bとの差の絶対値が、このような範囲にあることにより、積層フィルムのカールが抑制され、成形時の金型の位置決めが容易になる。この機序の詳細としては、次のように考えることができる。すなわち、樹脂層1においては、樹脂の結晶部と非晶部とが存在するが、スペクトル強度比Aとスペクトル強度比Bとの差の絶対値|B-A|が上記のように小さい(例えば、MDにおける結晶部と非晶部との割合と、TDにおける結晶部と非晶部との割合との差が小さい)ため、一方向と当該一方向に直交する他方向における結晶部の割合の相違に基づく積層フィルムの形状の歪みが抑制されており、結果として、積層フィルム10のカール量hを小さくすることができるものと考えられる。 On the other hand, in the laminated film 10 of the first aspect, the resin measured by Raman spectroscopy in one direction of the resin layer 1 (for example, MD which is the flow direction when forming the resin layer 1). Raman intensity in the spectral intensity ratio A (crystal part / amorphous part) between the crystal part and the amorphous part and the other direction orthogonal to the one direction of the resin layer 1 (for example, TD which is the perpendicular direction of MD in the same plane) The absolute value | BA | of the difference between the spectral intensity ratio B (crystal part / amorphous part) of the crystal part and the amorphous part of the resin measured by spectroscopy is in the range of 0.00 to 0.70. It is in. In the laminated film 10 of the first aspect, the absolute value of the difference between the spectral intensity ratio A and the spectral intensity ratio B of the resin layer 1 is in such a range, so that curling of the laminated film is suppressed and molding is performed. The positioning of the mold at the time becomes easy. The details of this mechanism can be considered as follows. That is, in the resin layer 1, although there are a crystalline part and an amorphous part of the resin, the absolute value | BA | of the difference between the spectral intensity ratio A and the spectral intensity ratio B is small as described above (for example, The difference between the ratio of the crystal part and the amorphous part in MD and the ratio of the crystal part and the amorphous part in TD is small), so the ratio of the crystal part in one direction and the other direction orthogonal to the one direction is It is considered that the distortion of the shape of the laminated film based on the difference is suppressed, and as a result, the curl amount h of the laminated film 10 can be reduced.
 本発明において、積層フィルム10のカール量hとは、積層フィルム10の湾曲の程度を示す指標である。カール量hの測定には、図2の模式図に示されるように、一方向の長さ90mm、当該一方向に直交する他方向の長さ150mmの積層フィルム10を用意する。次に、当該積層フィルム10の中心Pにおいて、積層フィルム10のそれぞれの対角を結ぶ2つの線上に、積層フィルムの厚み方向に貫通するようにして、支持体側から、前記中心が中央となる長さ100mmの2本の切れ込み(積層フィルムを貫通している)を入れる。次に、切り込みを入れた積層フィルムを前記支持体が下側になるようにして水平面30に置いて20℃で8時間静置する。次に、積層フィルムの水平面30とは垂直方向において、カールにより立ち上がった4つの面の頂点(中心P)と水平面30との距離を測定し、その最も大きな数値を最大距離hとし、これをカール量hとする。カール量hは、ミツトヨ社製のハイトゲージなどを用いて測定できる。 In the present invention, the curl amount h of the laminated film 10 is an index indicating the degree of curvature of the laminated film 10. For measurement of the curl amount h, as shown in the schematic diagram of FIG. 2, a laminated film 10 having a length of 90 mm in one direction and a length of 150 mm in the other direction orthogonal to the one direction is prepared. Next, at the center P of the laminated film 10, the length from which the center is the center from the support side so as to penetrate in the thickness direction of the laminated film on two lines connecting the respective diagonals of the laminated film 10. Two cuts (through the laminated film) with a thickness of 100 mm are made. Next, the laminated film with the cuts is placed on the horizontal surface 30 so that the support is on the lower side, and allowed to stand at 20 ° C. for 8 hours. Next, in the direction perpendicular to the horizontal plane 30 of the laminated film, the distance between the apex (center P) of the four surfaces raised by curling and the horizontal plane 30 is measured, and the largest value is set as the maximum distance h. Let the amount be h. The curl amount h can be measured using a height gauge manufactured by Mitutoyo Corporation.
 第1の態様の積層フィルム10のカール量hをより小さくして、成形時の金型の位置決めをより一層容易にする観点からは、スペクトル強度比Aとスペクトル強度比Bとの差の絶対値|B-A|としては、好ましくは0.00~0.66程度、より好ましくは0.00~0.51程度、さらに好ましくは0.00~0.43程度、さらに好ましくは0.00~0.33程度、さらに好ましくは0.00~0.27程度、さらに好ましくは0.00~0.15程度、さらに好ましくは0.00~0.10程度、さらに好ましくは0.00~0.08程度、特に好ましくは0.00~0.05程度の範囲が挙げられる。また、同様の観点から、上記スペクトル強度比Aとしては、好ましくは0.90~1.17程度、より好ましくは0.90~1.15程度、さらに好ましくは0.92~1.07程度、特に好ましくは0.99~1.05程度の範囲が挙げられ、上記スペクトル強度比Bとしては、好ましくは0.90~1.66程度、より好ましくは0.90~1.51程度、さらに好ましくは1.00~1.43程度、さらに好ましくは1.00~1.25程度、特に好ましくは1.00~1.10程度の範囲が挙げられる。 The absolute value of the difference between the spectral intensity ratio A and the spectral intensity ratio B from the viewpoint of further reducing the curl amount h of the laminated film 10 of the first embodiment and further facilitating the positioning of the mold during molding. | BA is preferably about 0.00 to 0.66, more preferably about 0.00 to 0.51, still more preferably about 0.00 to 0.43, and still more preferably 0.00 to About 0.33, more preferably about 0.00 to 0.27, more preferably about 0.00 to 0.15, more preferably about 0.00 to 0.10, and still more preferably 0.00 to 0.00. The range is about 08, particularly preferably about 0.00 to 0.05. From the same viewpoint, the spectral intensity ratio A is preferably about 0.90 to 1.17, more preferably about 0.90 to 1.15, still more preferably about 0.92 to 1.07, The range of about 0.99 to 1.05 is particularly preferable, and the spectral intensity ratio B is preferably about 0.90 to 1.66, more preferably about 0.90 to 1.51, and still more preferably. Is about 1.00 to 1.43, more preferably about 1.00 to 1.25, and particularly preferably about 1.00 to 1.10.
 本発明の積層フィルム10のカール量hとしては、好ましくは約30mm以下、より好ましくは約29mm以下、さらに好ましくは約28mm以下、さらに好ましくは約27mm以下、さらに好ましくは25mm以下、さらに好ましくは約20mm以下、さらに好ましくは約10mm以下、さらに好ましくは約5mm以下が挙げられる。なお、カール量hの好ましい下限は、0mmである。 The curl amount h of the laminated film 10 of the present invention is preferably about 30 mm or less, more preferably about 29 mm or less, further preferably about 28 mm or less, more preferably about 27 mm or less, still more preferably 25 mm or less, more preferably about about 20 mm or less, More preferably, about 10 mm or less, More preferably, about 5 mm or less is mentioned. A preferred lower limit of the curl amount h is 0 mm.
 本発明の積層フィルム10の樹脂層1において、一方向(例えば、MDとは同一平面の垂直方向であるTD)における上記スペクトル強度比Aと、前記一方向に直交する他方向(例えば、MDとは同一平面の垂直方向であるTD)におけるスペクトル強度比Bとは、それぞれ、顕微鏡レーザーラマン分光測定装置(例えば、ホリバ・ジョバンイボン(HORIBA JOBIN YVON)社製のLabRAM HR-800)を用いて、以下の測定条件及び解析条件で測定した値である。
MDにおける上記スペクトル強度Aの測定では、MDと入射レーザ偏光面が平行になるようにラマンスペクトルを測定し、TDにおける上記スペクトル強度Bの測定では、TDと入射レーザ偏光面が平行となるようにラマンスペクトルを測定する。
測定条件:励起用レーザ波長633nm、露光時間15秒、対物レンズ50倍、積算回数8回、共焦点ホール径φ0.1mm、グレーティング800L/mm
解析条件:
(1)ラマンシフト600~700cm-1の散乱強度の平均値をベースライン値とする。
(2)ラマンシフト809±2cm-1の範囲における散乱強度の最大値から、上記ベースライン値を減じて、809cm-1におけるピーク強度を求める。
(3)ラマンシフト842±2cm-1の範囲における散乱強度の最大値から、上記ベースライン値を減じて、842cm-1におけるピーク強度を求める。
(4)上記(2)及び(3)のピーク強度を用いて、スペクトル強度比A,Bを算出する。
In the resin layer 1 of the laminated film 10 of the present invention, the spectral intensity ratio A in one direction (for example, TD which is the vertical direction of the same plane as MD) and the other direction (for example, MD) orthogonal to the one direction. Is a spectral intensity ratio B in TD, which is the vertical direction of the same plane, respectively, using a microscope laser Raman spectrometer (for example, LabRAM HR-800 manufactured by HORIBA JOBIN YVON) It is a value measured under the following measurement conditions and analysis conditions.
In the measurement of the spectral intensity A in the MD, a Raman spectrum is measured so that the MD and the incident laser polarization plane are parallel, and in the measurement of the spectral intensity B in the TD, the TD and the incident laser polarization plane are parallel. Measure the Raman spectrum.
Measurement conditions: excitation laser wavelength 633 nm, exposure time 15 seconds, objective lens 50 times, number of integrations 8 times, confocal hole diameter φ0.1 mm, grating 800 L / mm
Analysis conditions:
(1) The average value of the scattering intensity at a Raman shift of 600 to 700 cm −1 is taken as the baseline value.
(2) The peak value at 809 cm−1 is obtained by subtracting the baseline value from the maximum value of the scattering intensity in the range of Raman shift 809 ± 2 cm−1.
(3) The peak value at 842 cm−1 is obtained by subtracting the baseline value from the maximum value of the scattering intensity in the range of Raman shift 842 ± 2 cm−1.
(4) The spectral intensity ratios A and B are calculated using the peak intensities in (2) and (3) above.
 なお、例えば、後述のように、樹脂層1を形成する樹脂としてポリプロピレンを用いた場合には、ラマン分光法によるスペクトル測定において、図3の模式図に示されるように、樹脂の結晶部のピークはラマンシフト809cm-1付近に観測され、非晶部のピークはラマンシフト842cm-1付近に観測される。このように、樹脂の結晶部と非晶部とは、通常、異なる位置にスペクトルのピークが観察されるため、一方向(例えば、MD)及びこれに直交する他方向(例えば、TD)における結晶部と非晶部とのピーク強度を測定し、得られた値から、スペクトル強度比Aとスペクトル強度比Bを算出することができる。 For example, as will be described later, when polypropylene is used as the resin for forming the resin layer 1, in the spectrum measurement by Raman spectroscopy, as shown in the schematic diagram of FIG. Is observed near the Raman shift 809 cm−1, and the peak of the amorphous part is observed near the Raman shift 842 cm−1. As described above, since the peak of the spectrum is usually observed at a different position between the crystal part and the amorphous part of the resin, the crystal in one direction (for example, MD) and the other direction (for example, TD) orthogonal to the one. The peak intensity of the part and the amorphous part are measured, and the spectrum intensity ratio A and the spectrum intensity ratio B can be calculated from the obtained values.
 また、第1の態様の積層フィルム10においては、一方向(例えば、樹脂層1を形成する際の流れ方向であるMD)における結晶部と非晶部のスペクトル強度比Aと、これに直交する他方向(例えば、MDとは同一平面の垂直方向であるTD)における結晶部と非晶部のスペクトル強度比Bとの和(A+B)が、1.95~2.66の範囲にあることが好ましい。積層フィルム10においては、スペクトル強度比Aとスペクトル強度比Bとの和が、このような範囲にあることにより、樹脂層1表面に存在する滑剤量の大幅な変化を抑制し、安定した成形性を発揮しつつ、金型への滑剤の塊の付着を効果的に抑制することが可能となる。この機序の詳細としては、次のように考えることができる。すなわち、樹脂層1においては、樹脂の結晶部と非晶部とが存在するが、樹脂層1内部に滑剤が含まれる場合、滑剤は、樹脂の非晶部に存在する。従って、前記一方向及び他方向における樹脂の非晶部と結晶部との割合の合計が上記の一定範囲にあることにより、温度変化等に伴う樹脂層1内部から表面への滑剤のブリードアウト量と、樹脂層1の表面から内部への滑剤の移行量とを一定にすることが可能となる。その結果、樹脂層1表面に存在する滑剤量の大幅な変化が抑制され、第1の態様の積層フィルム10が安定した成形性を発揮し、かつ、金型への滑剤の塊の付着が効果的に抑制されているものと考えられる。 Moreover, in the laminated film 10 of the first aspect, the spectral intensity ratio A of the crystal part and the amorphous part in one direction (for example, MD which is the flow direction when forming the resin layer 1) is orthogonal to this. The sum (A + B) of the spectral intensity ratio B of the crystal part and the amorphous part in the other direction (for example, TD which is the vertical direction of MD in the same plane) may be in the range of 1.95 to 2.66. preferable. In the laminated film 10, the sum of the spectral intensity ratio A and the spectral intensity ratio B is within such a range, thereby suppressing a significant change in the amount of the lubricant present on the surface of the resin layer 1 and stable moldability. It is possible to effectively suppress adhesion of a lump of lubricant to the mold while exhibiting the above. The details of this mechanism can be considered as follows. That is, in the resin layer 1, there are a crystal part and an amorphous part of the resin, but when a lubricant is contained inside the resin layer 1, the lubricant is present in the amorphous part of the resin. Therefore, the amount of lubricant bleed-out from the inside of the resin layer 1 to the surface due to a temperature change or the like when the sum of the ratio of the amorphous part and the crystal part of the resin in the one direction and the other direction is in the above-mentioned predetermined range. And the amount of lubricant transferred from the surface of the resin layer 1 to the inside can be made constant. As a result, a significant change in the amount of lubricant present on the surface of the resin layer 1 is suppressed, the laminated film 10 of the first aspect exhibits stable moldability, and adhesion of the lubricant mass to the mold is effective. It is thought that it is suppressed.
 第1の態様の積層フィルム10において、一方向(例えば、樹脂層1を形成する際の流れ方向であるMD)における上記スペクトル強度比Aと、これに直交する他方向(例えば、MDとは同一平面の垂直方向であるTD)における上記スペクトル強度比Bの和としては、上記の範囲にあればよいが、樹脂層1表面に存在する滑剤量の大幅な変化を抑制し、冷間成形においても、安定した成形性を発揮させ、かつ、金型への滑剤の塊の付着を抑制する観点からは、好ましくは1.95~2.66程度、より好ましくは1.95~2.60程度、さらに好ましくは1.95~2.51程度、さらに好ましくは1.95~2.41程度、さらに好ましくは1.95~2.35程度、さらに好ましくは1.95~2.10程度、さらに好ましくは1.99~2.09程度、特に好ましくは2.00~2.07程度の範囲が挙げられる。 In the laminated film 10 of the first aspect, the spectral intensity ratio A in one direction (for example, MD which is the flow direction when forming the resin layer 1) and the other direction orthogonal to the spectral intensity ratio A (for example, MD are the same). The sum of the spectral intensity ratios B in the vertical direction of the plane (TD) may be within the above range, but it suppresses a significant change in the amount of the lubricant present on the surface of the resin layer 1 and can also be used in cold forming. From the viewpoint of exhibiting stable moldability and suppressing adhesion of a lump of lubricant to the mold, it is preferably about 1.95 to 2.66, more preferably about 1.95 to 2.60, More preferably, about 1.95 to 2.51, more preferably about 1.95 to 2.41, more preferably about 1.95 to 2.35, still more preferably about 1.95 to 2.10, and still more preferably. Is 1 About 99 to 2.09, and particularly preferably include a range of about 2.00 to 2.07.
 また、第2の態様の積層フィルム10においては、樹脂層1の一方向(例えば、樹脂層1を形成する際の流れ方向であるMD)におけるラマン分光法で測定される前記樹脂の結晶部と非晶部のスペクトル強度比A(結晶部/非晶部)と、樹脂層1の前記一方向に直交する他方向(例えば、MDとは同一平面の垂直方向であるTD)におけるラマン分光法で測定される前記樹脂の結晶部と非晶部のスペクトル強度比B(結晶部/非晶部)との和(A+B)が、1.95~2.66の範囲にある。第2の態様の積層フィルム10においては、スペクトル強度比Aとスペクトル強度比Bとの和が、このような範囲にあることにより、樹脂層1表面に存在する滑剤量の大幅な変化を抑制し、安定した成形性を発揮しつつ、金型への滑剤の塊の付着を効果的に抑制することができる。この機序の詳細としては、次のように考えることができる。すなわち、樹脂層1においては、樹脂の結晶部と非晶部とが存在するが、樹脂層1内部に滑剤が含まれる場合、滑剤は、樹脂の非晶部に存在する。従って、前記一方向及び他方向における樹脂の非晶部と結晶部との割合の合計が上記の一定範囲にあることにより、温度変化等に伴う樹脂層1内部から表面への滑剤のブリードアウト量と、樹脂層1の表面から内部への滑剤の移行量とを一定にすることが可能となる。その結果、樹脂層1表面に存在する滑剤量の大幅な変化が抑制され、積層フィルム10が安定した成形性を発揮し、かつ、金型への滑剤の塊の付着が効果的に抑制されているものと考えられる。 Further, in the laminated film 10 of the second aspect, the resin crystal part measured by Raman spectroscopy in one direction of the resin layer 1 (for example, MD which is the flow direction when forming the resin layer 1) Raman spectroscopy in the spectral intensity ratio A (crystal part / amorphous part) of the amorphous part and the other direction orthogonal to the one direction of the resin layer 1 (for example, TD which is the vertical direction of the same plane as MD) The sum (A + B) of the spectrum intensity ratio B (crystal part / amorphous part) of the crystal part and the amorphous part of the resin to be measured is in the range of 1.95 to 2.66. In the laminated film 10 of the second aspect, the sum of the spectral intensity ratio A and the spectral intensity ratio B is within such a range, thereby suppressing a significant change in the amount of lubricant present on the surface of the resin layer 1. It is possible to effectively suppress adhesion of a lump of lubricant to the mold while exhibiting stable moldability. The details of this mechanism can be considered as follows. That is, in the resin layer 1, there are a crystal part and an amorphous part of the resin, but when a lubricant is contained inside the resin layer 1, the lubricant is present in the amorphous part of the resin. Therefore, the amount of lubricant bleed-out from the inside of the resin layer 1 to the surface due to a temperature change or the like when the sum of the ratio of the amorphous part and the crystal part of the resin in the one direction and the other direction is in the above-mentioned predetermined range. And the amount of lubricant transferred from the surface of the resin layer 1 to the inside can be made constant. As a result, a significant change in the amount of the lubricant present on the surface of the resin layer 1 is suppressed, the laminated film 10 exhibits a stable moldability, and adhesion of the lubricant mass to the mold is effectively suppressed. It is thought that there is.
 また、第2の態様の積層フィルム10において、一方向(例えば、樹脂層1を形成する際の流れ方向であるMD)における上記スペクトル強度比Aと、これに直交する他方向(例えば、MDとは同一平面の垂直方向であるTD)における上記スペクトル強度比Bの和としては、上記の範囲にあればよいが、樹脂層1表面に存在する滑剤量の大幅な変化を抑制し、冷間成形においても、安定した成形性を発揮させ、かつ、金型への滑剤の塊の付着を抑制する観点からは、好ましくは1.95~2.60程度、より好ましくは1.95~2.51程度、さらに好ましくは1.95~2.41程度、さらに好ましくは1.95~2.35程度、さらに好ましくは1.95~2.10程度、さらに好ましくは1.99~2.09程度、特に好ましくは2.00~2.07程度の範囲が挙げられる。また、同様の観点から、上記スペクトル強度比Aとしては、好ましくは0.90~1.17程度、より好ましくは0.90~1.15程度、さらに好ましくは0.92~1.07程度、特に好ましくは0.99~1.05程度の範囲が挙げられ、上記スペクトル強度比Bとしては、好ましくは0.90~1.66程度、より好ましくは0.90~1.51程度、さらに好ましくは1.00~1.43程度、さらに好ましくは1.00~1.25程度、特に好ましくは1.00~1.10程度の範囲が挙げられる。 Moreover, in the laminated film 10 of the second aspect, the spectral intensity ratio A in one direction (for example, MD, which is the flow direction when forming the resin layer 1), and the other direction (for example, MD) orthogonal to this. The sum of the spectral intensity ratios B in TD, which is the vertical direction of the same plane, may be in the above range, but suppresses a significant change in the amount of lubricant present on the surface of the resin layer 1 and is cold formed. However, from the viewpoint of exhibiting stable moldability and suppressing adhesion of a lump of lubricant to the mold, it is preferably about 1.95 to 2.60, more preferably 1.95 to 2.51. More preferably, about 1.95 to 2.41, more preferably about 1.95 to 2.35, more preferably about 1.95 to 2.10, more preferably about 1.99 to 2.09, Especially preferred The range of about 2.00 to 2.07, and the like. From the same viewpoint, the spectral intensity ratio A is preferably about 0.90 to 1.17, more preferably about 0.90 to 1.15, still more preferably about 0.92 to 1.07, The range of about 0.99 to 1.05 is particularly preferable, and the spectral intensity ratio B is preferably about 0.90 to 1.66, more preferably about 0.90 to 1.51, and still more preferably. Is about 1.00 to 1.43, more preferably about 1.00 to 1.25, and particularly preferably about 1.00 to 1.10.
 また、第2の態様の積層フィルム10においては、一方向(例えば、樹脂層1を形成する際の流れ方向であるMD)における結晶部と非晶部のスペクトル強度比Aと、前記一方向に直交する他方向(例えば、MDとは同一平面の垂直方向であるTD)における結晶部と非晶部のスペクトル強度比Bとの差の絶対値|B-A|が、0.00~0.70の範囲にあることが好ましい。上記スペクトル強度比Aとスペクトル強度比Bとの差の絶対値|B-A|が、このような範囲にあることにより、第2の態様の積層フィルム10のカール量hを小さくすることができる。なお、上記スペクトル強度は、通常、樹脂層の同一平面上におけるMD、TD(後述)での直交した位置での差の絶対値|B-A|が最も大きく表れるものであるが、その位置関係に限られるものではない。 In addition, in the laminated film 10 of the second aspect, the spectral intensity ratio A between the crystal part and the amorphous part in one direction (for example, MD which is the flow direction when forming the resin layer 1), and the one direction The absolute value | B−A | of the difference between the spectral intensity ratio B of the crystal part and the amorphous part in the other orthogonal direction (for example, TD which is the vertical direction of the same plane as MD) is 0.00-0. It is preferable to be in the range of 70. When the absolute value | BA | of the difference between the spectral intensity ratio A and the spectral intensity ratio B is in such a range, the curl amount h of the laminated film 10 of the second aspect can be reduced. . The above spectral intensity usually shows the absolute value | BA− of the difference at orthogonal positions in MD and TD (described later) on the same plane of the resin layer. It is not limited to.
 前述の通り、積層フィルム10、通常、帯状の積層フィルムとして製造され、適当な大きさに切断することにより、後述のような種々の用途に使用される。切断された後の積層フィルム10において、上記のカール量hが大きい場合、成形を行う際に金型の位置決めが困難となる。第2の態様の積層フィルム10において、スペクトル強度比Aとスペクトル強度比Bとの差の絶対値|B-A|が上記の範囲内にあり、カール量hが例えば後述のような範囲にある場合には、成形を行う際に金型の位置決めを容易に行うことができ、第2の態様の積層フィルムの成形工程を効率的に行うことが可能となる。 As described above, the laminated film 10 is usually produced as a belt-like laminated film, and is used for various applications as described later by cutting into an appropriate size. In the laminated film 10 after being cut, when the curl amount h is large, it is difficult to position the mold when molding. In the laminated film 10 of the second embodiment, the absolute value | BA− of the difference between the spectral intensity ratio A and the spectral intensity ratio B is in the above range, and the curl amount h is in the following range, for example. In this case, it is possible to easily position the mold when forming, and to efficiently perform the forming process of the laminated film of the second aspect.
 第2の態様の積層フィルム10において、一方向における結晶部と非晶部のスペクトル強度比Aと、当該一方向に直交する他方向における結晶部と非晶部のスペクトル強度比Bとの差の絶対値|B-A|が、上記の範囲にあることによって、積層フィルム10のカール量hを小さくすることができる機序としては、次のように考えることができる。すなわち、樹脂層1においては、樹脂の結晶部と非晶部とが存在するが、スペクトル強度比Aとスペクトル強度比Bとの差の絶対値|B-A|が上記のように小さい(例えば、MDにおける結晶部と非晶部との割合と、TDにおける結晶部と非晶部との割合との差が小さい)ため、一方向と前記一方向に直交する他方向における結晶部の割合の相違に基づく積層フィルムの形状の歪みが抑制されており、結果として、第2の態様の積層フィルム10のカール量hを小さくすることができるものと考えられる。 In the laminated film 10 of the second aspect, the difference between the spectral intensity ratio A between the crystal part and the amorphous part in one direction and the spectral intensity ratio B between the crystal part and the amorphous part in the other direction orthogonal to the one direction. The mechanism that can reduce the curl amount h of the laminated film 10 by the absolute value | BA | being in the above range can be considered as follows. That is, in the resin layer 1, although there are a crystalline part and an amorphous part of the resin, the absolute value | BA | of the difference between the spectral intensity ratio A and the spectral intensity ratio B is small as described above (for example, , The difference between the ratio of the crystal part and the amorphous part in MD and the ratio of the crystal part and the amorphous part in TD is small), so the ratio of the crystal part in one direction and the other direction orthogonal to the one direction The distortion of the shape of the laminated film based on the difference is suppressed, and as a result, it is considered that the curl amount h of the laminated film 10 of the second aspect can be reduced.
 第2の態様の積層フィルム10のカール量hをより一層小さくする観点からは、スペクトル強度比Aとスペクトル強度比Bとの差の絶対値|B-A|としては、より好ましくは0.00~0.66程度、さらに好ましくは0.00~0.51程度、さらに好ましくは0.00~0.43程度、さらに好ましくは0.00~0.33程度、さらに好ましくは0.00~0.27程度、さらに好ましくは0.00~0.15程度、さらに好ましくは0.00~0.10程度、さらに好ましくは0.00~0.08程度、特に好ましくは0.00~0.05程度の範囲が挙げられる。 From the viewpoint of further reducing the curl amount h of the laminated film 10 of the second embodiment, the absolute value | BA | of the difference between the spectral intensity ratio A and the spectral intensity ratio B is more preferably 0.00. About 0.66, more preferably about 0.00 to 0.51, more preferably about 0.00 to 0.43, more preferably about 0.00 to 0.33, and still more preferably 0.00 to 0. About 27, more preferably about 0.00 to 0.15, more preferably about 0.00 to 0.10, still more preferably about 0.00 to 0.08, and particularly preferably 0.00 to 0.05. A range of degrees is mentioned.
 本発明の積層フィルム10において、樹脂層1を構成する樹脂としては、特に制限されないが、樹脂層1は、熱可塑性樹脂により形成されていることが好ましい。熱可塑性樹脂としては、例えば、ポリオレフィン、環状ポリオレフィン、カルボン酸変性ポリオレフィン、カルボン酸変性環状ポリオレフィンなどが挙げられる。 In the laminated film 10 of the present invention, the resin constituting the resin layer 1 is not particularly limited, but the resin layer 1 is preferably formed of a thermoplastic resin. Examples of the thermoplastic resin include polyolefin, cyclic polyolefin, carboxylic acid-modified polyolefin, carboxylic acid-modified cyclic polyolefin, and the like.
 ポリオレフィンとしては、具体的には、低密度ポリエチレン、中密度ポリエチレン、高密度ポリエチレン、線状低密度ポリエチレンなどのポリエチレン;ホモポリプロピレン、ポリプロピレンのブロックコポリマー(例えば、プロピレンとエチレンのブロックコポリマー)、ポリプロピレンのランダムコポリマー(例えば、プロピレンとエチレンのランダムコポリマー)などの結晶性または非晶性のポリプロピレン;エチレン-ブテン-プロピレンのターポリマーなどが挙げられる。これらのポリオレフィンの中でも、ポリエチレン及びポリプロピレンが好ましく、ポリプロピレンが特に好ましい。 Specific examples of polyolefins include polyethylene such as low density polyethylene, medium density polyethylene, high density polyethylene, and linear low density polyethylene; homopolypropylene, polypropylene block copolymers (for example, block copolymers of propylene and ethylene), polypropylene Crystalline or amorphous polypropylene such as random copolymers (for example, random copolymers of propylene and ethylene); ethylene-butene-propylene terpolymers, and the like. Among these polyolefins, polyethylene and polypropylene are preferable, and polypropylene is particularly preferable.
 環状ポリオレフィンは、オレフィンと環状モノマーとの共重合体である。オレフィンとしては、例えば、エチレン、プロピレン、4-メチル-1-ペンテン、ブタジエン、イソプレンなどが挙げられる。また、環状モノマーとしては、例えば、ノルボルネンなどの環状アルケン;シクロペンタジエン、ジシクロペンタジエン、シクロヘキサジエン、ノルボルナジエンなどの環状ジエンなどが挙げられる。これらのポリオレフィンの中でも、環状アルケンが好ましく、ノルボルネンがさらに好ましい。 Cyclic polyolefin is a copolymer of olefin and cyclic monomer. Examples of the olefin include ethylene, propylene, 4-methyl-1-pentene, butadiene, and isoprene. Examples of the cyclic monomer include cyclic alkenes such as norbornene; cyclic dienes such as cyclopentadiene, dicyclopentadiene, cyclohexadiene, norbornadiene, and the like. Among these polyolefins, a cyclic alkene is preferable, and norbornene is more preferable.
 カルボン酸変性ポリオレフィンとは、ポリオレフィンをカルボン酸で変性したポリマーである。変性に使用されるカルボン酸としては、例えば、マレイン酸、アクリル酸、イタコン酸、クロトン酸、無水マレイン酸、無水イタコン酸などが挙げられる。 Carboxylic acid-modified polyolefin is a polymer obtained by modifying polyolefin with carboxylic acid. Examples of the carboxylic acid used for modification include maleic acid, acrylic acid, itaconic acid, crotonic acid, maleic anhydride, itaconic anhydride and the like.
 カルボン酸変性環状ポリオレフィンとは、環状ポリオレフィンを構成するモノマーの一部を、α,β-不飽和カルボン酸またはその酸無水物に代えて共重合することにより、或いは環状ポリオレフィンに対してα,β-不飽和カルボン酸またはその酸無水物をブロック重合またはグラフト重合することにより得られるポリマーである。カルボン酸変性される環状ポリオレフィンは、上記の環状ポリオレフィンと同様とすることができる。また、変性に使用されるカルボン酸としては、上記の酸変性シクロオレフィンコポリマーの変性に用いられるものと同様とすることができる。 The carboxylic acid-modified cyclic polyolefin is a copolymer obtained by copolymerizing a part of the monomer constituting the cyclic polyolefin in place of the α, β-unsaturated carboxylic acid or its acid anhydride, or α, β with respect to the cyclic polyolefin. A polymer obtained by block or graft polymerization of an unsaturated carboxylic acid or acid anhydride thereof. The cyclic polyolefin to be modified with carboxylic acid can be the same as the above cyclic polyolefin. The carboxylic acid used for modification can be the same as that used for modification of the acid-modified cycloolefin copolymer.
 これらの熱可塑性樹脂の中でも、第1の態様において、上記のスペクトル強度比Aとスペクトル強度比Bとの差の絶対値を上記の範囲に設定することにより、積層フィルム10のカール量hをより小さくして、成形時の金型の位置決めをより一層容易にする観点からは、好ましくはポリオレフィン、環状ポリオレフィン、及びこれらのブレンドポリマー;さらに好ましくはポリエチレン、ポリプロピレン、エチレンとノルボルネンの共重合体、及びこれらの中の2種類以上のブレンドポリマーが挙げられる。また、第2の態様においても、上記のスペクトル強度比Aとスペクトル強度比Bとの和を上記の範囲に設定することにより、樹脂層1表面に存在する滑剤量の大幅な変化を抑制し、冷間成形においても、安定した成形性を発揮させ、かつ、金型への滑剤の塊の付着を抑制する観点からは、これらの樹脂が好ましい。 Among these thermoplastic resins, in the first embodiment, by setting the absolute value of the difference between the spectral intensity ratio A and the spectral intensity ratio B in the above range, the curl amount h of the laminated film 10 is further increased. From the viewpoint of reducing the size and further facilitating the positioning of the mold during molding, preferably polyolefin, cyclic polyolefin, and blended polymers thereof; more preferably polyethylene, polypropylene, a copolymer of ethylene and norbornene, and Among these, two or more kinds of blend polymers are listed. Also in the second aspect, by setting the sum of the spectral intensity ratio A and the spectral intensity ratio B in the above range, a significant change in the amount of lubricant present on the surface of the resin layer 1 is suppressed, Even in cold forming, these resins are preferable from the viewpoint of exhibiting stable formability and suppressing adhesion of a lump of lubricant to the mold.
 上記のスペクトル強度比Aとスペクトル強度比Bとの和及び差を上記の数値範囲に設定する方法としては、例えば、樹脂層1を構成する樹脂として、上記で例示した樹脂を使用し、さらに、樹脂層1の形成時に冷却するチルロールの温度を、例えば、10℃以上、50℃未満に設定する方法が挙げられる。当該温度が10℃未満の場合は、チルロール表面と樹脂層との剥離性が悪化し、剥離する際、破れ等が発生する。一方、50℃以上とすると、結晶部の割合が大きくなり、積層フィルムの成形時における滑剤の析出量が多くなりすぎ、安定した成形性が発揮されにくくなる。上記のスペクトル強度比Aとスペクトル強度比Bとの和及び差を上記の数値範囲に設定するためのチルロールの温度としては、好ましくは10~50℃程度、より好ましくは15~48℃程度、さらに好ましくは15~33℃程度、さらに好ましくは15~31℃程度、さらに好ましくは15~28℃程度、特に好ましくは25~28℃程度が挙げられる。 As a method of setting the sum and difference of the spectral intensity ratio A and the spectral intensity ratio B in the above numerical range, for example, as the resin constituting the resin layer 1, the resin exemplified above is used, The method of setting the temperature of the chill roll cooled at the time of formation of the resin layer 1 to 10 degreeC or more and less than 50 degreeC is mentioned, for example. When the said temperature is less than 10 degreeC, the peelability of the chill roll surface and the resin layer deteriorates, and tearing occurs when peeling. On the other hand, when the temperature is 50 ° C. or higher, the ratio of the crystal part is increased, the amount of the lubricant deposited at the time of forming the laminated film is excessively increased, and stable moldability is hardly exhibited. The temperature of the chill roll for setting the sum and difference of the spectral intensity ratio A and the spectral intensity ratio B within the above numerical range is preferably about 10 to 50 ° C., more preferably about 15 to 48 ° C. Preferably, it is about 15 to 33 ° C, more preferably about 15 to 31 ° C, more preferably about 15 to 28 ° C, and particularly preferably about 25 to 28 ° C.
 樹脂層1は、1種類の樹脂成分のみから形成されていてもよく、2種類以上の樹脂成分を組み合わせたブレンドポリマーから形成されていてもよい。さらに、樹脂層1は、上記のとおり、1層のみで形成されていてもよく、同一または異なる樹脂成分によって2層以上により形成されていてもよい。 The resin layer 1 may be formed of only one type of resin component or may be formed of a blend polymer that is a combination of two or more types of resin components. Furthermore, as described above, the resin layer 1 may be formed of only one layer, or may be formed of two or more layers using the same or different resin components.
 積層フィルム10が成形に供される際、通常、樹脂層1の表面には滑剤が存在している。これにより、樹脂層1表面の滑り性が向上し、積層フィルムの成形性が高められている。なお、滑剤は、樹脂層1を形成するポリオレフィン樹脂などの樹脂中を移動しやすいため、樹脂層1に滑剤を配合した場合や、樹脂層1の表面に滑剤をコーティングした直後など、樹脂層1のいずれか一方のみにしか滑剤が含まれない場合にも、時間の経過と共に、滑剤が移動して、樹脂層1の表面と内部の両方に滑剤が存在する。すなわち、積層フィルム10においては、予め樹脂層1中に滑剤が含まれていてもよいし、積層フィルム10の製造後、成形前に樹脂層1の表面に滑剤をコーティングしてもよい。 When the laminated film 10 is subjected to molding, a lubricant is usually present on the surface of the resin layer 1. Thereby, the slipperiness of the surface of the resin layer 1 is improved, and the moldability of the laminated film is enhanced. Since the lubricant easily moves in a resin such as a polyolefin resin forming the resin layer 1, the resin layer 1 can be used when a lubricant is blended in the resin layer 1 or immediately after the surface of the resin layer 1 is coated with the lubricant. Even when only one of the lubricants is included, the lubricant moves over time, and the lubricant exists on both the surface and the inside of the resin layer 1. That is, in the laminated film 10, a lubricant may be included in the resin layer 1 in advance, or after the production of the laminated film 10, the surface of the resin layer 1 may be coated before molding.
 樹脂層1の表面に滑剤を存在させる方法としては、樹脂層1の表面に滑剤をコーティングしたり、樹脂層1を形成するポリオレフィンなどに滑剤を配合する方法が挙げられる。なお、上述の通り、樹脂層1を形成するポリオレフィンなどに滑剤を配合する場合にも、樹脂層1の表面に滑剤をブリードアウトさせることにより、樹脂層1の表面に滑剤を存在させることができる。一方、樹脂層1の表面に滑剤をコーティングする場合にも、表面から内部に滑剤の一部が移動することにより、樹脂層1の内部に滑剤を存在させることができる。なお、樹脂層1の表面に滑剤をブリードアウトさせる方法としては、積層フィルムを30~50℃程度のやや高温下で、数時間~3日間程度熟成させて、促進的にブリードアウトさせるのが一般的である。以上のような、樹脂層1の内部と表面における滑剤の移動は、特に、後述のアミド系滑剤において生じやすい現象である。 Examples of a method for causing a lubricant to be present on the surface of the resin layer 1 include a method of coating the lubricant on the surface of the resin layer 1 and a method of blending a lubricant with the polyolefin forming the resin layer 1. As described above, even when a lubricant is blended with the polyolefin forming the resin layer 1, the lubricant can be present on the surface of the resin layer 1 by bleeding out the lubricant on the surface of the resin layer 1. . On the other hand, when a lubricant is coated on the surface of the resin layer 1, the lubricant can be present inside the resin layer 1 by moving a part of the lubricant from the surface to the inside. As a method of bleeding out the lubricant on the surface of the resin layer 1, it is general to age the laminated film at a slightly high temperature of about 30 to 50 ° C. for several hours to 3 days to facilitate the bleeding out. Is. The movement of the lubricant between the inside and the surface of the resin layer 1 as described above is a phenomenon that is particularly likely to occur in the amide-based lubricant described later.
 滑剤の種類としては、特に制限されないが、上記のスペクトル強度比Aとスペクトル強度比Bとの和(A+B)を上記の範囲に設定することにより、樹脂層1表面に存在する滑剤量の大幅な変化を抑制し、冷間成形においても、安定した成形性を発揮させ、かつ、金型への滑剤の塊の付着を抑制する観点からは、好ましくはアミド系滑剤が挙げられる。 Although it does not restrict | limit especially as a kind of lubricant, By setting the sum (A + B) of said spectrum intensity ratio A and spectrum intensity ratio B to said range, the amount of lubricant which exists in the resin layer 1 surface is large. From the viewpoint of suppressing changes, exhibiting stable moldability even in cold forming, and suppressing adhesion of a lump of lubricant to the mold, amide-based lubricants are preferably used.
 アミド系滑剤としては、アミド基を有するものであれば特に制限されないが、好ましくは脂肪酸アミド及び芳香族ビスアミドが挙げられる。アミド系滑剤は、1種類単独で使用してもよいし、2種類以上を組み合わせて使用してもよい。 The amide-based lubricant is not particularly limited as long as it has an amide group, and preferred examples include fatty acid amides and aromatic bisamides. An amide type lubricant may be used individually by 1 type, and may be used in combination of 2 or more types.
 脂肪酸アミドとしては、例えば、飽和脂肪酸アミド、不飽和脂肪酸アミド、置換アミド、メチロールアミド、飽和脂肪酸ビスアミド、不飽和脂肪酸ビスアミドなどが挙げられる。飽和脂肪酸アミドの具体例としては、ラウリン酸アミド、パルミチン酸アミド、ステアリン酸アミド、ベヘン酸アミド、ヒドロキシステアリン酸アミドなどが挙げられる。不飽和脂肪酸アミドの具体例としては、オレイン酸アミド、エルカ酸アミドなどが挙げられる。置換アミドの具体例としては、N-オレイルパルミチン酸アミド、N-ステアリルステアリン酸アミド、N-ステアリルオレイン酸アミド、N-オレイルステアリン酸アミド、N-ステアリルエルカ酸アミドなどが挙げられる。また、メチロールアミドの具体例としては、メチロールステアリン酸アミドなどが挙げられる。飽和脂肪酸ビスアミドの具体例としては、メチレンビスステアリン酸アミド、エチレンビスカプリン酸アミド、エチレンビスラウリン酸アミド、エチレンビスステアリン酸アミド、エチレンビスヒドロキシステアリン酸アミド、エチレンビスベヘン酸アミド、ヘキサメチレンビスステアリン酸アミド、ヘキサメチレンビスベヘン酸アミド、ヘキサメチレンヒドロキシステアリン酸アミド、N,N’-ジステアリルアジピン酸アミド、N,N’-ジステアリルセバシン酸アミドなどが挙げられる。不飽和脂肪酸ビスアミドの具体例としては、エチレンビスオレイン酸アミド、エチレンビスエルカ酸アミド、ヘキサメチレンビスオレイン酸アミド、N,N’-ジオレイルアジピン酸アミド、N,N’-ジオレイルセバシン酸アミドなどが挙げられる。脂肪酸エステルアミドの具体例としては、ステアロアミドエチルステアレートなどが挙げられる。また、芳香族系ビスアミドの具体例としては、m-キシリレンビスステアリン酸アミド、m-キシリレンビスヒドロキシステアリン酸アミド、N,N’-ジステアリルイソフタル酸アミドなどが挙げられる。 Examples of fatty acid amides include saturated fatty acid amides, unsaturated fatty acid amides, substituted amides, methylol amides, saturated fatty acid bisamides, and unsaturated fatty acid bisamides. Specific examples of the saturated fatty acid amide include lauric acid amide, palmitic acid amide, stearic acid amide, behenic acid amide, hydroxy stearic acid amide and the like. Specific examples of the unsaturated fatty acid amide include oleic acid amide and erucic acid amide. Specific examples of the substituted amide include N-oleyl palmitic acid amide, N-stearyl stearic acid amide, N-stearyl oleic acid amide, N-oleyl stearic acid amide, N-stearyl erucic acid amide and the like. Specific examples of methylolamide include methylol stearamide. Specific examples of saturated fatty acid bisamides include methylene bis stearamide, ethylene biscapric amide, ethylene bis lauric acid amide, ethylene bis stearic acid amide, ethylene bishydroxy stearic acid amide, ethylene bisbehenic acid amide, hexamethylene bis stearic acid amide. And acid amide, hexamethylene bisbehenic acid amide, hexamethylene hydroxystearic acid amide, N, N′-distearyl adipic acid amide, N, N′-distearyl sebacic acid amide, and the like. Specific examples of unsaturated fatty acid bisamides include ethylene bisoleic acid amide, ethylene biserucic acid amide, hexamethylene bisoleic acid amide, N, N′-dioleyl adipic acid amide, N, N′-dioleyl sebacic acid amide Etc. Specific examples of the fatty acid ester amide include stearoamidoethyl stearate. Specific examples of the aromatic bisamide include m-xylylene bis stearic acid amide, m-xylylene bishydroxy stearic acid amide, N, N′-distearyl isophthalic acid amide and the like.
 樹脂層1に滑剤が含まれる場合、樹脂層1の表面と内部に存在する滑剤の含有量としては、質量基準で、好ましくは700ppm以上、より好ましくは700~3000ppm程度、さらに好ましくは700~2500ppm程度、特に好ましくは1200~2000ppm程度が挙げられる。なお、これらの値は、樹脂層1の表面及び内部に存在する滑剤が、全て樹脂層1中に存在するとした場合における含有量を意味する。 When the resin layer 1 contains a lubricant, the content of the lubricant present on the surface and inside of the resin layer 1 is preferably 700 ppm or more, more preferably about 700 to 3000 ppm, further preferably 700 to 2500 ppm on a mass basis. The level is particularly preferably about 1200 to 2000 ppm. In addition, these values mean content when the lubricant which exists in the surface and the inside of the resin layer 1 exists in the resin layer 1 altogether.
 樹脂層1の厚みとしては、特に制限されないが、積層フィルム10のカール量hをより小さくして、成形時の金型の位置決めをより一層容易にする観点からは、例えば5~500μm程度、好ましくは5~200μm程度が挙げられる。なお、樹脂層1の厚みは、積層フィルムの厚み方向の断面から測定することができる。 The thickness of the resin layer 1 is not particularly limited, but is preferably about 5 to 500 μm, for example, from the viewpoint of further reducing the curl amount h of the laminated film 10 and making it easier to position the mold during molding. Is about 5 to 200 μm. In addition, the thickness of the resin layer 1 can be measured from the cross section of the thickness direction of a laminated | multilayer film.
 [支持体2]
 支持体2を構成する層としては、例えば、基材層21、バリア層22などが挙げられる。支持体2は、1層のみにより構成されていてもよいし、複数の層により構成されていてもよい。支持体2が基材層21及びバリア層22を有する場合、積層フィルム10の層構成が、基材層21、バリア層22、及び樹脂層1の順となるように積層することが好ましい。支持体2が基材層21及びバリア層22を有する場合、基材層21とバリア層22との接着性を高めることなどを目的として、これらの層の間に、必要に応じて接着層Aを設けてもよい。また、支持体2と樹脂層1との接着性を高めることなどを目的として、これらの層の間(例えば、基材層21と樹脂層1との間、バリア層22と樹脂層1との間など)に、必要に応じて接着層Bを設けてもよい。以下、これらの層について詳述する。
[Support 2]
As a layer which comprises the support body 2, the base material layer 21, the barrier layer 22, etc. are mentioned, for example. The support 2 may be composed of only one layer or may be composed of a plurality of layers. When the support body 2 has the base material layer 21 and the barrier layer 22, it is preferable to laminate | stack so that the layer structure of the laminated | multilayer film 10 may become the order of the base material layer 21, the barrier layer 22, and the resin layer 1. FIG. When the support 2 has the base material layer 21 and the barrier layer 22, for the purpose of improving the adhesiveness between the base material layer 21 and the barrier layer 22, an adhesive layer A is provided between these layers as necessary. May be provided. Moreover, between these layers (for example, between the base material layer 21 and the resin layer 1, between the barrier layer 22 and the resin layer 1 for the purpose of improving the adhesiveness of the support body 2 and the resin layer 1, etc. The adhesive layer B may be provided as needed. Hereinafter, these layers will be described in detail.
 (基材層21)
 積層フィルム10において、支持体2として含まれ得る基材層21は、必要に応じて設けられ、積層フィルム10の基材となる層である。基材層21を形成する素材については、特に制限されない。基材層21を形成する素材の具体例としては、例えば、ポリエステル、ポリアミド、エポキシ、アクリル、フッ素樹脂、ポリウレタン、珪素樹脂、フェノール、ポリエーテルイミド、ポリイミド、及びこれらの混合物や共重合物等の樹脂が挙げられる。
(Base material layer 21)
In the laminated film 10, the base material layer 21 that can be included as the support 2 is a layer that is provided as necessary and serves as the base material of the laminated film 10. The material for forming the base material layer 21 is not particularly limited. Specific examples of the material for forming the base material layer 21 include, for example, polyester, polyamide, epoxy, acrylic, fluorine resin, polyurethane, silicon resin, phenol, polyetherimide, polyimide, and mixtures and copolymers thereof. Resin.
 ポリエステルとしては、具体的には、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート、ポリブチレンナフタレート、ポリエチレンイソフタレート、ポリカーボネート、エチレンテレフタレートを繰り返し単位の主体とした共重合ポリエステル、ブチレンテレフタレートを繰り返し単位の主体とした共重合ポリエステル等が挙げられる。また、エチレンテレフタレートを繰り返し単位の主体とした共重合ポリエステルとしては、具体的には、エチレンテレフタレートを繰り返し単位の主体としてエチレンイソフタレートと重合する共重合体ポリエステル(以下、ポリエチレン(テレフタレート/イソフタレート)にならって略す)、ポリエチレン(テレフタレート/イソフタレート)、ポリエチレン(テレフタレート/アジペート)、ポリエチレン(テレフタレート/ナトリウムスルホイソフタレート)、ポリエチレン(テレフタレート/ナトリウムイソフタレート)、ポリエチレン(テレフタレート/フェニル-ジカルボキシレート)、ポリエチレン(テレフタレート/デカンジカルボキシレート)等が挙げられる。また、ブチレンテレフタレートを繰り返し単位の主体とした共重合ポリエステルとしては、具体的には、ブチレンテレフタレートを繰り返し単位の主体としてブチレンイソフタレートと重合する共重合体ポリエステル(以下、ポリブチレン(テレフタレート/イソフタレート)にならって略す)、ポリブチレン(テレフタレート/アジペート)、ポリブチレン(テレフタレート/セバケート)、ポリブチレン(テレフタレート/デカンジカルボキシレート)、ポリブチレンナフタレート等が挙げられる。これらのポリエステルは、1種単独で使用してもよく、また2種以上を組み合わせて使用してもよい。 Specific examples of the polyester include polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate, polybutylene naphthalate, polyethylene isophthalate, polycarbonate, copolymerized polyester mainly composed of ethylene terephthalate, butylene terephthalate as a repeating unit. Examples thereof include a copolymer polyester mainly used. The copolymer polyester mainly composed of ethylene terephthalate is a copolymer polyester that polymerizes with ethylene isophthalate mainly composed of ethylene terephthalate (hereinafter, polyethylene (terephthalate / isophthalate)). Abbreviated), polyethylene (terephthalate / isophthalate), polyethylene (terephthalate / adipate), polyethylene (terephthalate / sodium sulfoisophthalate), polyethylene (terephthalate / sodium isophthalate), polyethylene (terephthalate / phenyl-dicarboxylate) And polyethylene (terephthalate / decanedicarboxylate). In addition, as a copolymer polyester mainly composed of butylene terephthalate as a repeating unit, specifically, a copolymer polyester that polymerizes with butylene isophthalate having butylene terephthalate as a repeating unit (hereinafter referred to as polybutylene (terephthalate / isophthalate)). For example), polybutylene (terephthalate / adipate), polybutylene (terephthalate / sebacate), polybutylene (terephthalate / decanedicarboxylate), polybutylene naphthalate and the like. These polyesters may be used individually by 1 type, and may be used in combination of 2 or more type.
 また、ポリアミドとしては、具体的には、ナイロン6、ナイロン66、ナイロン610、ナイロン12、ナイロン46、ナイロン6とナイロン66との共重合体等の脂肪族系ポリアミド;テレフタル酸及び/又はイソフタル酸に由来する構成単位を含むナイロン6I、ナイロン6T、ナイロン6IT、ナイロン6I6T(Iはイソフタル酸、Tはテレフタル酸を表す)等のヘキサメチレンジアミン-イソフタル酸-テレフタル酸共重合ポリアミド、ポリメタキシリレンアジパミド(MXD6)等の芳香族を含むポリアミド;ポリアミノメチルシクロヘキシルアジパミド(PACM6)等の脂環系ポリアミド;さらにラクタム成分や、4,4’-ジフェニルメタン-ジイソシアネート等のイソシアネート成分を共重合させたポリアミド、共重合ポリアミドとポリエステルやポリアルキレンエーテルグリコールとの共重合体であるポリエステルアミド共重合体やポリエーテルエステルアミド共重合体;これらの共重合体等が挙げられる。これらのポリアミドは、1種単独で使用してもよく、また2種以上を組み合わせて使用してもよい。延伸ポリアミドフィルムは延伸性に優れており、成形時の基材層21の樹脂割れによる白化の発生を防ぐことができ、基材層21の形成素材として好適に使用される。 Specific examples of polyamides include aliphatic polyamides such as nylon 6, nylon 66, nylon 610, nylon 12, nylon 46, and a copolymer of nylon 6 and nylon 66; terephthalic acid and / or isophthalic acid Nylon 6I, Nylon 6T, Nylon 6IT, Nylon 6I6T (I represents isophthalic acid, T represents terephthalic acid) and the like, and polymetaxylylene azide Polyamide containing aromatics such as Pamide (MXD6); Alicyclic polyamides such as Polyaminomethylcyclohexyl Adipamide (PACM6); and Lactam components and isocyanate components such as 4,4′-diphenylmethane-diisocyanate are copolymerized Polyamide, co-weight Polyester amide copolymer and polyether ester amide copolymer is a copolymer of polyamide and polyester and polyalkylene ether glycol; copolymers thereof, and the like. These polyamides may be used individually by 1 type, and may be used in combination of 2 or more type. The stretched polyamide film is excellent in stretchability, can prevent whitening due to resin cracking of the base material layer 21 during molding, and is suitably used as a material for forming the base material layer 21.
 基材層21は、1軸又は2軸延伸された樹脂フィルムで形成されていてもよく、また未延伸の樹脂フィルムで形成してもよい。中でも、1軸又は2軸延伸された樹脂フィルム、とりわけ2軸延伸された樹脂フィルムは、配向結晶化することにより耐熱性が向上しているので、基材層21として好適に使用される。 The base material layer 21 may be formed of a uniaxially or biaxially stretched resin film, or may be formed of an unstretched resin film. Among them, a uniaxially or biaxially stretched resin film, in particular, a biaxially stretched resin film has improved heat resistance due to orientation crystallization, and thus is suitably used as the base material layer 21.
 これらの中でも、基材層21を形成する樹脂フィルムとして、好ましくはナイロン、ポリエステル、更に好ましくは2軸延伸ナイロン、2軸延伸ポリエステル、特に好ましくは2軸延伸ナイロンが挙げられる。 Among these, the resin film forming the base layer 21 is preferably nylon or polyester, more preferably biaxially stretched nylon, biaxially stretched polyester, and particularly preferably biaxially stretched nylon.
 基材層21は、積層フィルム10の耐ピンホール性を向上させるために、異なる素材の樹脂フィルムを積層化することも可能である。具体的には、ポリエステルフィルムとナイロンフィルムとを積層させた多層構造や、2軸延伸ポリエステルと2軸延伸ナイロンとを積層させた多層構造等が挙げられる。基材層21を多層構造にする場合、各樹脂フィルムは接着剤を介して接着してもよく、また接着剤を介さず直接積層させてもよい。接着剤を介さず接着させる場合には、例えば、共押出しラミネート法、サンドイッチラミネート法、サーマルラミネート法等の熱溶融状態で接着させる方法が挙げられる。また、接着剤を介して接着させる場合、使用する接着剤は、2液硬化型接着剤であってもよく、また1液硬化型接着剤であってもよい。更に、接着剤の接着機構についても、特に制限されず、化学反応型、溶剤揮発型、熱溶融型、熱圧型、電子線硬化型や紫外線硬化型等のいずれであってもよい。接着剤の成分としてポリエステル系樹脂、ポリエーテル系樹脂、ポリウレタン系樹脂、エポキシ系樹脂、フェノール樹脂系樹脂、ポリアミド系樹脂、ポリオレフィン系樹脂、ポリ酢酸ビニル系樹脂、セルロース系樹脂、(メタ)アクリル系樹脂、ポリイミド系樹脂、アミノ樹脂、ゴム、シリコーン系樹脂が挙げられる。 The base material layer 21 can be laminated with resin films of different materials in order to improve the pinhole resistance of the laminated film 10. Specific examples include a multilayer structure in which a polyester film and a nylon film are laminated, and a multilayer structure in which a biaxially stretched polyester and a biaxially stretched nylon are laminated. When making the base material layer 21 into a multilayer structure, each resin film may be adhere | attached through an adhesive agent, and may be laminated | stacked directly without an adhesive agent. In the case of bonding without using an adhesive, for example, a method of bonding in a hot-melt state such as a co-extrusion lamination method, a sandwich lamination method, or a thermal lamination method can be mentioned. Moreover, when making it adhere | attach through an adhesive agent, the adhesive agent to be used may be a two-component curable adhesive, or a one-component curable adhesive. Furthermore, the adhesive mechanism of the adhesive is not particularly limited, and may be any of a chemical reaction type, a solvent volatilization type, a heat melting type, a hot pressure type, an electron beam curable type, an ultraviolet curable type, and the like. As an adhesive component, polyester resin, polyether resin, polyurethane resin, epoxy resin, phenol resin resin, polyamide resin, polyolefin resin, polyvinyl acetate resin, cellulose resin, (meth) acrylic resin Resins, polyimide resins, amino resins, rubbers, and silicone resins can be used.
 基材層21の厚みは、特に制限されないが、例えば、5~50μm程度、好ましくは10~30μm程度とすることができる。 The thickness of the base material layer 21 is not particularly limited, but can be, for example, about 5 to 50 μm, preferably about 10 to 30 μm.
 (バリア層22)
 積層フィルム10において、支持体2として含まれ得るバリア層22は、必要に応じて設けられる層である。例えば積層フィルム10を包装材料などとして用いる場合には、強度向上の他、積層フィルム10によって密封された内部に水蒸気、酸素、光などが侵入することを防止するためのバリア層として機能する。バリア層22を構成する金属としては、具体的には、アルミニウム、ステンレス、チタンなどが挙げられ、好ましくはアルミニウムが挙げられる。バリア層22は、例えば、金属箔や金属蒸着膜、無機酸化物蒸着膜、炭素含有無機酸化物蒸着膜、これらの蒸着膜を設けたフィルムなどにより形成することができ、金属箔により形成することが好ましく、アルミニウム合金箔により形成することがさらに好ましい。積層フィルムの製造時に、バリア層22にしわやピンホールが発生することを防止する観点からは、バリア層は、例えば、焼きなまし処理済みのアルミニウム(JIS H4160:1994 A8021H-O、JIS H4160:1994 A8079H-O、JIS H4000:2014 A8021P-O、JIS H4000:2014 A8079P-O)など軟質アルミニウム合金箔により形成することがより好ましい。
(Barrier layer 22)
In the laminated film 10, the barrier layer 22 that can be included as the support 2 is a layer provided as necessary. For example, when the laminated film 10 is used as a packaging material or the like, in addition to improving the strength, it functions as a barrier layer for preventing water vapor, oxygen, light, etc. from entering the inside sealed by the laminated film 10. Specific examples of the metal constituting the barrier layer 22 include aluminum, stainless steel, and titanium, and preferably aluminum. The barrier layer 22 can be formed of, for example, a metal foil, a metal vapor-deposited film, an inorganic oxide vapor-deposited film, a carbon-containing inorganic oxide vapor-deposited film, a film provided with these vapor-deposited films, etc. Is preferable, and it is more preferable to form with an aluminum alloy foil. From the viewpoint of preventing the generation of wrinkles and pinholes in the barrier layer 22 during the production of the laminated film, the barrier layer is made of, for example, annealed aluminum (JIS H4160: 1994 A8021H-O, JIS H4160: 1994 A8079H). -O, JIS H4000: 2014 A8021P-O, JIS H4000: 2014 A8079P-O) and the like are more preferable.
 バリア層22の厚みは、特に制限されないが、例えば、10~200μm程度、好ましくは20~100μm程度とすることができる。 The thickness of the barrier layer 22 is not particularly limited, but can be, for example, about 10 to 200 μm, preferably about 20 to 100 μm.
 バリア層22は、接着の安定化、溶解や腐食の防止などのために、少なくとも一方の面、好ましくは両面が化成処理されていることが好ましい。ここで、化成処理とは、バリア層の表面に耐酸性皮膜を形成する処理をいう。化成処理としては、例えば、硝酸クロム、フッ化クロム、硫酸クロム、酢酸クロム、蓚酸クロム、重リン酸クロム、クロム酸アセチルアセテート、塩化クロム、硫酸カリウムクロムなどのクロム化合物を用いたクロメート処理;リン酸ナトリウム、リン酸カリウム、リン酸アンモニウム、ポリリン酸などのリン酸化合物を用いたリン酸処理;下記一般式(1)~(4)で表される繰り返し単位を有するアミノ化フェノール重合体を用いたクロメート処理などが挙げられる。 The barrier layer 22 is preferably subjected to chemical conversion treatment on at least one surface, preferably both surfaces, for the purpose of stabilizing adhesion, preventing dissolution and corrosion, and the like. Here, the chemical conversion treatment refers to a treatment for forming an acid-resistant film on the surface of the barrier layer. As the chemical conversion treatment, for example, chromate treatment using a chromium compound such as chromium nitrate, chromium fluoride, chromium sulfate, chromium acetate, chromium oxalate, chromium biphosphate, chromic acid acetyl acetate, chromium chloride, potassium sulfate chromium; Phosphoric acid treatment using a phosphoric acid compound such as sodium phosphate, potassium phosphate, ammonium phosphate, polyphosphoric acid; an aminated phenol polymer having a repeating unit represented by the following general formulas (1) to (4) is used And chromate treatment.
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
 一般式(1)~(4)中、Xは、水素原子、ヒドロキシル基、アルキル基、ヒドロキシアルキル基、アリル基またはベンジル基を示す。また、R1及びR2は、それぞれ同一または異なって、ヒドロキシル基、アルキル基、またはヒドロキシアルキル基を示す。一般式(1)~(4)において、X、R1及びR2で示されるアルキル基としては、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、tert-ブチル基などの炭素数1~4の直鎖または分枝鎖状アルキル基が挙げられる。また、X、R1及びR2で示されるヒドロキシアルキル基としては、例えば、ヒドロキシメチル基、1-ヒドロキシエチル基、2-ヒドロキシエチル基、1-ヒドロキシプロピル基、2-ヒドロキシプロピル基、3-ヒドロキシプロピル基、1-ヒドロキシブチル基、2-ヒドロキシブチル基、3-ヒドロキシブチル基、4-ヒドロキシブチル基などのヒドロキシ基が1個置換された炭素数1~4の直鎖または分枝鎖状アルキル基が挙げられる。一般式(1)~(4)において、X、R1及びR2で示されるアルキル基及びヒドロキシアルキル基は、それぞれ同一であってもよいし、異なっていてもよい。一般式(1)~(4)において、Xは、水素原子、ヒドロキシル基またはヒドロキシアルキル基であることが好ましい。一般式(1)~(4)で表される繰り返し単位を有するアミノ化フェノール重合体の数平均分子量は、例えば、500~100万であることが好ましく、1000~2万程度であることがより好ましい。 In the general formulas (1) to (4), X represents a hydrogen atom, a hydroxyl group, an alkyl group, a hydroxyalkyl group, an allyl group or a benzyl group. R 1 and R 2 are the same or different and each represents a hydroxyl group, an alkyl group, or a hydroxyalkyl group. In the general formulas (1) to (4), examples of the alkyl group represented by X, R 1 and R 2 include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group, Examples thereof include a linear or branched alkyl group having 1 to 4 carbon atoms such as a tert-butyl group. Examples of the hydroxyalkyl group represented by X, R 1 and R 2 include a hydroxymethyl group, a 1-hydroxyethyl group, a 2-hydroxyethyl group, a 1-hydroxypropyl group, a 2-hydroxypropyl group, 3- C1-C4 straight or branched chain in which one hydroxy group such as hydroxypropyl group, 1-hydroxybutyl group, 2-hydroxybutyl group, 3-hydroxybutyl group, 4-hydroxybutyl group is substituted An alkyl group is mentioned. In the general formulas (1) to (4), the alkyl group and hydroxyalkyl group represented by X, R 1 and R 2 may be the same or different. In the general formulas (1) to (4), X is preferably a hydrogen atom, a hydroxyl group or a hydroxyalkyl group. The number average molecular weight of the aminated phenol polymer having a repeating unit represented by the general formulas (1) to (4) is preferably, for example, 500 to 1,000,000, more preferably about 1,000 to 20,000. preferable.
 また、バリア層22に耐食性を付与する化成処理方法として、リン酸中に、酸化アルミニウム、酸化チタン、酸化セリウム、酸化スズなどの金属酸化物や硫酸バリウムの微粒子を分散させたものをコーティングし、150℃以上で焼付け処理を行うことにより、バリア層22の表面に耐食処理層を形成する方法が挙げられる。また、耐食処理層の上には、カチオン性ポリマーを架橋剤で架橋させた樹脂層をさらに形成してもよい。ここで、カチオン性ポリマーとしては、例えば、ポリエチレンイミン、ポリエチレンイミンとカルボン酸を有するポリマーからなるイオン高分子錯体、アクリル主骨格に1級アミンをグラフト重合させた1級アミングラフトアクリル樹脂、ポリアリルアミンまたはその誘導体、アミノフェノールなどが挙げられる。これらのカチオン性ポリマーとしては、1種類のみを用いてもよいし、2種類以上を組み合わせて用いてもよい。また、架橋剤としては、例えば、イソシアネート基、グリシジル基、カルボキシル基、及びオキサゾリン基よりなる群から選ばれた少なくとも1種の官能基を有する化合物、シランカップリング剤などが挙げられる。これらの架橋剤としては、1種類のみを用いてもよいし、2種類以上を組み合わせて用いてもよい。 Further, as a chemical conversion treatment method for imparting corrosion resistance to the barrier layer 22, a phosphoric acid is coated with a metal oxide such as aluminum oxide, titanium oxide, cerium oxide, tin oxide, or barium sulfate fine particles dispersed therein. A method of forming a corrosion-resistant treatment layer on the surface of the barrier layer 22 by performing a baking treatment at 150 ° C. or higher is mentioned. Further, a resin layer obtained by crosslinking a cationic polymer with a crosslinking agent may be further formed on the corrosion-resistant treatment layer. Here, examples of the cationic polymer include polyethyleneimine, an ionic polymer complex composed of a polymer having polyethyleneimine and a carboxylic acid, a primary amine graft acrylic resin obtained by graft polymerization of a primary amine on an acrylic main skeleton, and polyallylamine. Or the derivative, aminophenol, etc. are mentioned. As these cationic polymers, only one type may be used, or two or more types may be used in combination. Examples of the crosslinking agent include a compound having at least one functional group selected from the group consisting of an isocyanate group, a glycidyl group, a carboxyl group, and an oxazoline group, and a silane coupling agent. As these crosslinking agents, only one type may be used, or two or more types may be used in combination.
 化成処理は、1種類の化成処理のみを行ってもよいし、2種類以上の化成処理を組み合わせて行ってもよい。さらに、これらの化成処理は、1種の化合物を単独で使用して行ってもよく、また2種以上の化合物を組み合わせて使用して行ってもよい。化成処理の中でも、クロメート処理や、クロム化合物、リン酸化合物、及びアミノ化フェノール重合体を組み合わせた化成処理などが好ましい。クロム化合物の中でも、クロム酸化合物が好ましい。 As the chemical conversion treatment, only one type of chemical conversion treatment may be performed, or two or more types of chemical conversion processing may be performed in combination. Furthermore, these chemical conversion treatments may be carried out using one kind of compound alone, or may be carried out using a combination of two or more kinds of compounds. Among the chemical conversion treatments, a chromate treatment, a chemical conversion treatment combining a chromium compound, a phosphate compound, and an aminated phenol polymer are preferable. Of the chromium compounds, chromic acid compounds are preferred.
 化成処理においてバリア層22の表面に形成させる耐酸性皮膜の量については、特に制限されないが、例えば、上記のクロメート処理を行う場合であれば、バリア層22の表面1m2当たり、クロム化合物がクロム換算で0.5~50mg程度、好ましくは1.0~40mg程度、リン化合物がリン換算で0.5~50mg程度、好ましくは1.0~40mg程度、及びアミノ化フェノール重合体が1.0~200mg程度、好ましくは5.0~150mg程度の割合で含有されていることが望ましい。 The amount of the acid-resistant film formed on the surface of the barrier layer 22 in the chemical conversion treatment is not particularly limited. For example, in the case of performing the above chromate treatment, the chromium compound is chromium per 1 m 2 of the surface of the barrier layer 22. About 0.5 to 50 mg in terms of conversion, preferably about 1.0 to 40 mg, about 0.5 to 50 mg, preferably about 1.0 to 40 mg in terms of phosphorus, and about 1.0 to 40 mg of aminated phenol polymer. It is desirable that it is contained in a proportion of about 200 mg, preferably about 5.0 to 150 mg.
 化成処理は、耐酸性皮膜の形成に使用する化合物を含む溶液を、バーコート法、ロールコート法、グラビアコート法、浸漬法などによって、バリア層の表面に塗布した後に、バリア層の温度が70℃~200℃程度になるように加熱することにより行われる。また、バリア層に化成処理を施す前に、予めバリア層を、アルカリ浸漬法、電解洗浄法、酸洗浄法、電解酸洗浄法などによる脱脂処理に供してもよい。このように脱脂処理を行うことにより、バリア層の表面の化成処理をより効率的に行うことが可能となる。 In the chemical conversion treatment, a solution containing a compound used for forming an acid-resistant film is applied to the surface of the barrier layer by a bar coating method, a roll coating method, a gravure coating method, a dipping method, etc., and then the temperature of the barrier layer is 70. It is carried out by heating so as to reach about 200 ° C to 200 ° C. Further, before the chemical conversion treatment is performed on the barrier layer, the barrier layer may be previously subjected to a degreasing treatment by an alkali dipping method, an electrolytic cleaning method, an acid cleaning method, an electrolytic acid cleaning method, or the like. By performing the degreasing process in this manner, it is possible to more efficiently perform the chemical conversion process on the surface of the barrier layer.
 (接着層A)
 積層フィルム10において、支持体2に含まれ得る接着層Aは、基材層21とバリア層22との接着強度を高めることを目的として、必要に応じて設けられる層である。
(Adhesive layer A)
In the laminated film 10, the adhesive layer A that can be included in the support 2 is a layer provided as necessary for the purpose of increasing the adhesive strength between the base material layer 21 and the barrier layer 22.
 接着層Aは、基材層21とバリア層22とを接着可能である接着剤によって形成される。接着層Aの形成に使用される接着剤は、2液硬化型接着剤であってもよく、また1液硬化型接着剤であってもよい。更に、接着層Aの形成に使用される接着剤の接着機構についても、特に制限されず、化学反応型、溶剤揮発型、熱溶融型、熱圧型等のいずれであってもよい。 The adhesive layer A is formed of an adhesive capable of adhering the base material layer 21 and the barrier layer 22. The adhesive used for forming the adhesive layer A may be a two-component curable adhesive or a one-component curable adhesive. Further, the adhesive mechanism of the adhesive used for forming the adhesive layer A is not particularly limited, and may be any of a chemical reaction type, a solvent volatilization type, a heat melting type, a hot pressure type, and the like.
 接着層Aの形成に使用できる接着剤の樹脂成分としては、具体的には、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート、ポリブチレンナフタレート、ポリエチレンイソフタレート、ポリカーボネート、共重合ポリエステル等のポリエステル系樹脂;ポリエーテル系接着剤;ポリウレタン系接着剤;エポキシ系樹脂;フェノール樹脂系樹脂;ナイロン6、ナイロン66、ナイロン12、共重合ポリアミド等のポリアミド系樹脂;ポリオレフィン、酸変性ポリオレフィン、金属変性ポリオレフィン等のポリオレフィン系樹脂;ポリ酢酸ビニル系樹脂;セルロース系接着剤;(メタ)アクリル系樹脂;ポリイミド系樹脂;尿素樹脂、メラミン樹脂等のアミノ樹脂;クロロプレンゴム、ニトリルゴム、スチレン-ブタジエンゴム等のゴム;シリコーン系樹脂;ふっ化エチレンプロピレン共重合体等が挙げられる。これらの接着剤成分は1種単独で使用してもよく、また2種以上を組み合わせて使用してもよい。2種以上の接着剤成分の組み合わせ態様については、特に制限されないが、例えば、その接着剤成分として、ポリアミドと酸変性ポリオレフィンとの混合樹脂、ポリアミドと金属変性ポリオレフィンとの混合樹脂、ポリアミドとポリエステル、ポリエステルと酸変性ポリオレフィンとの混合樹脂、ポリエステルと金属変性ポリオレフィンとの混合樹脂等が挙げられる。これらの中でも、展延性、高湿度条件下における耐久性や応変抑制作用、ヒートシール時の熱劣化抑制作用等が優れ、基材層21とバリア層22との間のラミネート強度の低下を抑えてデラミネーションの発生を効果的に抑制するという観点から、好ましくはポリウレタン系2液硬化型接着剤;ポリアミド、ポリエステル、又はこれらと変性ポリオレフィンとのブレンド樹脂が挙げられる。 Specific examples of the resin component of the adhesive that can be used to form the adhesive layer A include polyesters such as polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate, polybutylene naphthalate, polyethylene isophthalate, polycarbonate, and copolyester. Resin; Polyether adhesive; Polyurethane adhesive; Epoxy resin; Phenol resin resin; Polyamide resin such as nylon 6, nylon 66, nylon 12, copolymer polyamide; polyolefin, acid-modified polyolefin, metal-modified polyolefin, etc. Polyolefin resin; polyvinyl acetate resin; cellulose adhesive; (meth) acrylic resin; polyimide resin; amino resin such as urea resin and melamine resin; chloroprene rubber, nitrile rubber, steel Silicone resin; - down rubber such as butadiene rubber fluorinated ethylene propylene copolymer, and the like. These adhesive components may be used individually by 1 type, and may be used in combination of 2 or more type. The combination mode of two or more kinds of adhesive components is not particularly limited. For example, as the adhesive component, a mixed resin of polyamide and acid-modified polyolefin, a mixed resin of polyamide and metal-modified polyolefin, polyamide and polyester, Examples thereof include a mixed resin of polyester and acid-modified polyolefin, and a mixed resin of polyester and metal-modified polyolefin. Among these, extensibility, durability under high humidity conditions, anti-hypertensive action, thermal deterioration-preventing action during heat sealing, etc. are excellent, and a decrease in laminate strength between the base material layer 21 and the barrier layer 22 is suppressed. From the viewpoint of effectively suppressing the occurrence of delamination, a polyurethane two-component curable adhesive; polyamide, polyester, or a blended resin of these with a modified polyolefin is preferable.
 また、接着層Aは異なる接着剤成分で多層化してもよい。接着層Aを異なる接着剤成分で多層化する場合、基材層21とバリア層22とのラミネート強度を向上させるという観点から、基材層21側に配される接着剤成分を基材層21との接着性に優れる樹脂を選択し、バリア層22側に配される接着剤成分をバリア層22との接着性に優れる接着剤成分を選択することが好ましい。接着層Aを異なる接着剤成分で多層化する場合、具体的には、バリア層22側に配置される接着剤成分としては、好ましくは、酸変性ポリオレフィン、金属変性ポリオレフィン、ポリエステルと酸変性ポリオレフィンとの混合樹脂、共重合ポリエステルを含む樹脂等が挙げられる。 Also, the adhesive layer A may be multilayered with different adhesive components. When the adhesive layer A is multilayered with different adhesive components, from the viewpoint of improving the laminate strength between the base material layer 21 and the barrier layer 22, the adhesive component disposed on the base material layer 21 side is changed to the base material layer 21. It is preferable to select a resin excellent in adhesiveness and to select an adhesive component excellent in adhesiveness to the barrier layer 22 as an adhesive component disposed on the barrier layer 22 side. When the adhesive layer A is multilayered with different adhesive components, specifically, the adhesive component disposed on the barrier layer 22 side is preferably an acid-modified polyolefin, a metal-modified polyolefin, a polyester and an acid-modified polyolefin. And a resin containing a copolyester.
 接着層Aの厚さについては、例えば、2~50μm程度、好ましくは3~25μm程度が挙げられる。 The thickness of the adhesive layer A is, for example, about 2 to 50 μm, preferably about 3 to 25 μm.
 (接着層B)
 積層フィルム10においては、支持体2と樹脂層1とを強固に接着させることなどを目的として、支持体2(例えば、基材層21、バリア層22など)と樹脂層1との間に接着層Bをさらに設けてもよい。
(Adhesive layer B)
In the laminated film 10, adhesion between the support 2 (for example, the base material layer 21 and the barrier layer 22) and the resin layer 1 is performed for the purpose of firmly bonding the support 2 and the resin layer 1. Layer B may be further provided.
 接着層Bは、支持体2として含まれ得る基材層21、バリア層22などと樹脂層1とを接着可能な接着剤成分によって形成される。接着層Bの形成に使用される接着剤は、2液硬化型接着剤であってもよく、また1液硬化型接着剤であってもよい。また、接着層Bの形成に使用される接着剤成分の接着機構についても、特に限定されず、例えば、化学反応型、溶剤揮発型、熱溶融型、熱圧型などが挙げられる。 The adhesive layer B is formed of an adhesive component capable of bonding the base material layer 21, the barrier layer 22, and the like that can be included as the support 2 and the resin layer 1. The adhesive used for forming the adhesive layer B may be a two-component curable adhesive or a one-component curable adhesive. Further, the adhesion mechanism of the adhesive component used for forming the adhesive layer B is not particularly limited, and examples thereof include a chemical reaction type, a solvent volatilization type, a heat melting type, and a hot pressure type.
 接着層Bの形成に使用できる接着剤成分の具体例としては、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート、ポリブチレンナフタレート、ポリエチレンイソフタレート、ポリカーボネート、共重合ポリエステルなどのポリエステル系樹脂;ポリエーテル系接着剤;ポリウレタン系接着剤;エポキシ系樹脂;フェノール樹脂系樹脂;ナイロン6、ナイロン66、ナイロン12、共重合ポリアミドなどのポリアミド系樹脂;ポリオレフィン、カルボン酸変性ポリオレフィン、金属変性ポリオレフィンなどのポリオレフィン系樹脂、ポリ酢酸ビニル系樹脂;セルロース系接着剤;(メタ)アクリル系樹脂;ポリイミド系樹脂;尿素樹脂、メラミン樹脂などのアミノ樹脂;クロロプレンゴム、ニトリルゴム、スチレン-ブタジエンゴムなどのゴム;シリコーン系樹脂などが挙げられる。これらの接着剤成分は1種類のみを用いてもよく、2種類以上を組み合わせて用いてもよい。 Specific examples of the adhesive component that can be used for forming the adhesive layer B include polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate, polybutylene naphthalate, polyethylene isophthalate, polycarbonate, copolymer polyester, and other polyester resins; polyethers Polyurethane adhesives; epoxy resins; phenol resin resins; polyamide resins such as nylon 6, nylon 66, nylon 12, copolymer polyamides; polyolefins such as polyolefins, carboxylic acid modified polyolefins, metal modified polyolefins Resin, polyvinyl acetate resin; cellulose adhesive; (meth) acrylic resin; polyimide resin; urea resin, melamine resin and other amino resins; chloroprene rubber, nitrile rubber - styrene rubbers such as butadiene rubber; and silicone resins. These adhesive components may be used alone or in combination of two or more.
 接着層Bの厚みは、特に制限されないが、例えば、1~40μm程度とすることが好ましく、2~30μm程度とすることがより好ましい。 The thickness of the adhesive layer B is not particularly limited, but is preferably about 1 to 40 μm, for example, and more preferably about 2 to 30 μm.
 なお、積層フィルム10を構成する各層は、必要に応じて、製膜性、積層化加工、最終製品2次加工(パウチ化、エンボス成形)適性などを向上または安定化するために、コロナ処理、ブラスト処理、酸化処理、オゾン処理などの表面活性化処理が施されていてもよい。 It should be noted that each layer constituting the laminated film 10 may be subjected to corona treatment, in order to improve or stabilize the film forming property, lamination processing, suitability for final product secondary processing (pouching, embossing), etc. Surface activation treatment such as blast treatment, oxidation treatment, and ozone treatment may be performed.
 積層フィルムの製造方法
 本発明の積層フィルム10は、支持体2と樹脂層1とを積層させることにより製造することができ、具体的には、例えば、以下の製造方法を例示することができる。
Manufacturing method of laminated film The laminated film 10 of this invention can be manufactured by laminating | stacking the support body 2 and the resin layer 1, Specifically, the following manufacturing methods can be illustrated, for example.
 例えば、支持体2が基材層21、バリア層22を有する場合であれば、以下の積層工程によって積層フィルム10が得られる。まず、基材層21とバリア層22とを積層する。この積層は、例えば、接着層Aを形成する上記の接着剤成分などを用いたドライラミネート法などにより行うことができる。また、基材層21とバリア層22とを積層する方法としては、基材層21を形成する樹脂をバリア層22の表面に押出し形成する方法や、基材層21の一方側の表面に金属を蒸着してバリア層22を形成する方法なども挙げられる。次に、バリア層22の上に樹脂層1を積層する。樹脂層1は、例えば、熱可塑性樹脂の溶融押出しや、ドライラミネート法により形成することができる。バリア層22と樹脂層1との接着強度を高めることを目的として、必要に応じて、バリア層22の上に接着層Bを形成する接着剤成分を塗布し、乾燥させた後、その上から樹脂層1を形成してもよい。樹脂層1が、複数の層により形成されている場合、共押出法などの公知の方法により複数の層により形成された樹脂層1を積層することができる。 For example, if the support 2 has the base material layer 21 and the barrier layer 22, the laminated film 10 is obtained by the following laminating process. First, the base material layer 21 and the barrier layer 22 are laminated. This lamination can be performed by, for example, a dry lamination method using the above-described adhesive component that forms the adhesive layer A or the like. Further, as a method of laminating the base material layer 21 and the barrier layer 22, a method of extruding and forming a resin that forms the base material layer 21 on the surface of the barrier layer 22, or a metal on one surface of the base material layer 21. A method of forming the barrier layer 22 by vapor-depositing the material is also included. Next, the resin layer 1 is laminated on the barrier layer 22. The resin layer 1 can be formed by, for example, melt extrusion of a thermoplastic resin or a dry lamination method. For the purpose of increasing the adhesive strength between the barrier layer 22 and the resin layer 1, if necessary, an adhesive component for forming the adhesive layer B is applied on the barrier layer 22, dried, and then from above The resin layer 1 may be formed. When the resin layer 1 is formed of a plurality of layers, the resin layer 1 formed of a plurality of layers can be laminated by a known method such as a coextrusion method.
 得られた積層フィルム10における各層の接着性を高めるために、エージング処理などを行ってもよい。エージング処理は、例えば、積層フィルム10を30~100℃程度の温度下に1~200時間加熱することにより行うことができる。さらに、得られた積層フィルムにおける各層の接着性をさらに高めるために、得られた積層フィルム10を樹脂層1の融解ピーク温度以上の温度で加熱してもよい。このときの温度は、樹脂層1の融解ピーク温度+5℃以上、融解ピーク温度+100℃以下であることが好ましく、融解ピーク温度+10℃以上、融解ピーク温度+80℃以下であることがより好ましい。なお、本発明において、樹脂層1の融解ピーク温度とは、樹脂層1を構成する樹脂成分の示差走査熱量測定における吸熱ピーク温度をいう。エージング処理での加熱及び樹脂層1の融解ピーク温度以上での加熱は、それぞれ、例えば、熱ロール接触式、熱風式、近または遠赤外線式などの方式により行うことができる。 In order to improve the adhesion of each layer in the obtained laminated film 10, an aging treatment or the like may be performed. The aging treatment can be performed, for example, by heating the laminated film 10 at a temperature of about 30 to 100 ° C. for 1 to 200 hours. Furthermore, in order to further enhance the adhesion of each layer in the obtained laminated film, the obtained laminated film 10 may be heated at a temperature equal to or higher than the melting peak temperature of the resin layer 1. The temperature at this time is preferably the melting peak temperature of the resin layer 1 + 5 ° C. or higher and the melting peak temperature + 100 ° C. or lower, more preferably the melting peak temperature + 10 ° C. or higher and the melting peak temperature + 80 ° C. or lower. In the present invention, the melting peak temperature of the resin layer 1 refers to the endothermic peak temperature in the differential scanning calorimetry of the resin component constituting the resin layer 1. The heating in the aging treatment and the heating above the melting peak temperature of the resin layer 1 can be performed by, for example, a hot roll contact method, a hot air method, a near or far infrared method, and the like.
 なお、積層フィルムを構成する各層は、必要に応じて、製膜性、積層化加工、最終製品2次加工(パウチ化、エンボス成形)適性などを向上または安定化するために、コロナ処理、ブラスト処理、酸化処理、オゾン処理などの表面活性化処理が施されていてもよい。 It should be noted that each layer constituting the laminated film may be subjected to corona treatment, blasting, or the like to improve or stabilize film forming properties, lamination processing, suitability for final product secondary processing (pouching, embossing), etc., as necessary. Surface activation treatment such as treatment, oxidation treatment, and ozone treatment may be performed.
 積層フィルムの用途
 本発明の積層フィルム10は、上述の通り、通常、帯状の積層フィルムとして製造され、適当な大きさに切断することにより、種々の用途に使用される。また、本発明の積層フィルム10は、特に、成形深さが0.5mm以上、好ましくは4.0~7.0mm程度の冷間成形に供される積層フィルムとして好適に使用することができる。積層フィルム10の具体的な用途としては、特に制限されないが、例えば、包装材料などが挙げられる。例えば、積層フィルム10を包装材料として用いる場合、当該包装材料は、薬品、化粧品、食品、電解液などの様々な内容物の包装に利用することができる。すなわち、本発明の包装材料は、薬品用包装材料、化粧品用包装材料、食品用包装材料、電池用包装材料などとして好適に使用される。また、包装材料は、内容物の形状に合わせて変形され、内容物を収容する包装体とすることもできる。



Use of Laminate Film As described above, the laminate film 10 of the present invention is usually produced as a strip-like laminate film, and is used for various applications by cutting into an appropriate size. In addition, the laminated film 10 of the present invention can be suitably used as a laminated film that is used for cold forming, in particular, having a forming depth of 0.5 mm or more, and preferably about 4.0 to 7.0 mm. Although it does not restrict | limit especially as a specific use of the laminated | multilayer film 10, For example, a packaging material etc. are mentioned. For example, when the laminated film 10 is used as a packaging material, the packaging material can be used for packaging various contents such as medicines, cosmetics, foods, and electrolytic solutions. That is, the packaging material of the present invention is suitably used as a pharmaceutical packaging material, a cosmetic packaging material, a food packaging material, a battery packaging material, and the like. In addition, the packaging material can be deformed according to the shape of the contents, and can be a package that accommodates the contents.



 以下に、実施例を示して本発明を詳細に説明する。ただし、本発明は、実施例に限定されない。 Hereinafter, the present invention will be described in detail with reference to examples. However, the present invention is not limited to the examples.
 <実施例1~16及び比較例1>
[積層フィルムの製造]
 後述の構成を備える基材層21の上に、両面に化成処理を施したアルミニウム箔(厚さ40μm)からなるバリア層22をドライラミネート法により積層させた。具体的には、アルミニウム箔の一方面に、2液型ウレタン接着剤(ポリオール化合物と芳香族イソシアネート系化合物)を塗布し、バリア層22上に接着層A(厚さ4μm)を形成した。次いで、バリア層22上の接着層Aと基材層21を加圧加熱貼合した後、エージング処理を実施することにより、基材層21/接着層A/バリア層22が順に積層された支持体を得た。なお、バリア層22として使用したアルミニウム箔の化成処理は、フェノール樹脂、フッ化クロム化合物、及びリン酸からなる処理液をクロムの塗布量が10mg/m2(乾燥質量)となるように、ロールコート法によりアルミニウム箔の両面に塗布し、焼付けすることにより行った。
<Examples 1 to 16 and Comparative Example 1>
[Manufacture of laminated film]
On the base material layer 21 having the configuration described later, a barrier layer 22 made of an aluminum foil (thickness: 40 μm) subjected to chemical conversion treatment on both surfaces was laminated by a dry laminating method. Specifically, a two-component urethane adhesive (a polyol compound and an aromatic isocyanate compound) was applied to one surface of the aluminum foil, and an adhesive layer A (thickness 4 μm) was formed on the barrier layer 22. Next, after the adhesive layer A and the base material layer 21 on the barrier layer 22 are pressure-heated and bonded, an aging treatment is performed to support the base material layer 21 / adhesive layer A / barrier layer 22 laminated in order. Got the body. In addition, the chemical conversion treatment of the aluminum foil used as the barrier layer 22 is performed by rolling a treatment liquid composed of a phenol resin, a chromium fluoride compound, and phosphoric acid so that the coating amount of chromium is 10 mg / m 2 (dry mass). The coating was performed on both surfaces of the aluminum foil and baked.
 実施例及び比較例で使用した基材層21の構成は、以下の通りである。
実施例1,2:PETフィルム(12μm)/接着剤層(3μm)/ナイロンフィルム(15μm)の積層体(ナイロンがバリア層側)
実施例3:PET(5μm)/ナイロン(20μm)の2層共押出フィルム(ナイロンがバリア層側)
実施例4:PET(5μm)/熱可塑性ポリエステルエラストマー(1μm)/ナイロン(20μm)の3層共押出フィルム(ナイロンがバリア層側)
実施例5,6:PETフィルム(12μm)単層
実施例7から16及び比較例1:ナイロンフィルム(25μm)単層
なお、「PET」は、「ポリエチレンテレフタレート」を意味する。
The structure of the base material layer 21 used in Examples and Comparative Examples is as follows.
Examples 1 and 2: A laminate of PET film (12 μm) / adhesive layer (3 μm) / nylon film (15 μm) (nylon is on the barrier layer side)
Example 3: PET (5 μm) / nylon (20 μm) two-layer coextruded film (nylon is on the barrier layer side)
Example 4: Three-layer coextruded film of PET (5 μm) / thermoplastic polyester elastomer (1 μm) / nylon (20 μm) (nylon is on the barrier layer side)
Examples 5 and 6: PET film (12 μm) monolayer Examples 7 to 16 and Comparative Example 1: Nylon film (25 μm) monolayer “PET” means “polyethylene terephthalate”.
 次いで、実施例1から11及び比較例1では、支持体のバリア層22側に樹脂層1を形成する樹脂A(カルボン酸変性ポリプロピレン、融解ピーク温度160℃)と樹脂B(脂肪酸アミド系滑剤を含むポリプロピレン、融解ピーク温度140℃)を溶融状態(250℃)で共押し出しすることにより、バリア層22上に樹脂層1(厚さ25μm/25μm、樹脂Bが最内層側)を積層させた。斯して、基材層21/接着層A/バリア層22/樹脂層1が順に積層された実施例1から実施例11及び比較例1の各積層フィルムを得た。なお、樹脂層1を積層した後に積層体を冷却するチルロールの温度は、それぞれ、表1及び表2に記載の温度とした。 Next, in Examples 1 to 11 and Comparative Example 1, a resin A (carboxylic acid-modified polypropylene, melting peak temperature 160 ° C.) and a resin B (fatty acid amide-based lubricant) that form the resin layer 1 on the barrier layer 22 side of the support. The resin layer 1 (thickness 25 μm / 25 μm, resin B is the innermost layer side) was laminated on the barrier layer 22 by coextrusion of polypropylene containing, melting peak temperature 140 ° C.) in the molten state (250 ° C.). Thus, the laminated films of Examples 1 to 11 and Comparative Example 1 in which the base layer 21 / adhesive layer A / barrier layer 22 / resin layer 1 were laminated in order were obtained. In addition, the temperature of the chill roll which cools a laminated body after laminating | stacking the resin layer 1 was made into the temperature of Table 1 and Table 2, respectively.
 また、実施例12、13では、2液型ウレタン接着剤(ポリオール化合物と芳香族イソシアネート系化合物)をバリア層22側に塗布し、接着層B(厚さ4μm)を形成した。次いで、未延伸ポリプロピレンフィルム(3層押し出し品、脂肪酸アミド系滑剤を含むプロピレン-エチレンランダムコポリマー(樹脂B、4μm)/プロピレン-エチレンブロックコポリマー(22μm)/プロピレン-エチレンランダムコポリマー(4μm)、樹脂Bが最内層側)を貼り合わせ、樹脂層1を形成した。斯して、基材層21/接着層A/バリア層22/接着層B/樹脂層1が順に積層された実施例12、13の各積層フィルムを得た。 In Examples 12 and 13, a two-component urethane adhesive (a polyol compound and an aromatic isocyanate compound) was applied to the barrier layer 22 side to form an adhesive layer B (thickness 4 μm). Next, unstretched polypropylene film (3-layer extruded product, propylene-ethylene random copolymer (resin B, 4 μm) containing fatty acid amide-based lubricant / propylene-ethylene block copolymer (22 μm) / propylene-ethylene random copolymer (4 μm), resin B Are bonded together to form a resin layer 1. Thus, laminated films of Examples 12 and 13 in which the base material layer 21 / adhesive layer A / barrier layer 22 / adhesive layer B / resin layer 1 were laminated in order were obtained.
 また、実施例14では、主剤としての酸変性ポリプロピレンと、硬化剤としてのメチレンジイソシアネートからなる樹脂をバリア層22側に塗布し、樹脂層B(厚さ1μm)を形成した。実施例15では、主剤としての酸変性ポリプロピレンと、硬化剤としてのメチレンジイソシアネートからなる樹脂をバリア層22側に塗布し、樹脂層B(厚さ3μm)を形成した。実施例16では、主剤としての酸変性ポリプロピレンと、硬化剤としてのエポキシ樹脂(重量平均分子量500)からなる樹脂をバリア層22側に塗布し、樹脂層B(厚さ1μm)を形成した。次いで、実施例14~16では、それぞれ、未延伸ポリプロピレンフィルム(3層押し出し品、脂肪酸アミド系滑剤を含むプロピレン-エチレンランダムコポリマー(樹脂B、4μm)/プロピレン-エチレンブロックコポリマー(22μm)/プロピレン-エチレンランダムコポリマー(4μm)、樹脂Bが最内層側)を貼り合わせ、樹脂層1を形成した。斯して、基材層21/接着層A/バリア層22/接着層B/樹脂層1が順に積層された実施例14、15、16の各積層フィルムを得た。実施例及び比較例において、樹脂Bに含まれる脂肪酸アミド系滑剤の量は、表1、2に記載の通りである。 In Example 14, a resin composed of acid-modified polypropylene as a main agent and methylene diisocyanate as a curing agent was applied to the barrier layer 22 side to form a resin layer B (thickness 1 μm). In Example 15, a resin composed of acid-modified polypropylene as a main agent and methylene diisocyanate as a curing agent was applied to the barrier layer 22 side to form a resin layer B (thickness 3 μm). In Example 16, a resin composed of an acid-modified polypropylene as a main component and an epoxy resin (weight average molecular weight 500) as a curing agent was applied to the barrier layer 22 side to form a resin layer B (thickness 1 μm). Next, in Examples 14 to 16, unstretched polypropylene film (3-layer extruded product, propylene-ethylene random copolymer (resin B, 4 μm) containing fatty acid amide-based lubricant / propylene-ethylene block copolymer (22 μm) / propylene- An ethylene random copolymer (4 μm) and the resin B is the innermost layer side) were bonded together to form a resin layer 1. Thus, laminated films of Examples 14, 15, and 16 in which the base layer 21 / adhesive layer A / barrier layer 22 / adhesive layer B / resin layer 1 were laminated in order were obtained. In Examples and Comparative Examples, the amount of the fatty acid amide lubricant contained in the resin B is as shown in Tables 1 and 2.
 <ラマン分光法によるスペクトル強度A,Bの測定>
 上記で得られた積層フィルムの樹脂層について、一方向(MD)における上記スペクトル強度比Aと、当該一方向に直交する他方向(TD)におけるスペクトル強度比Bを、それぞれ、ラマン分光法を用いて、以下の測定機器、測定条件、及び解析条件により測定した。結果を表1及び表2に示す。
測定機器:ホリバ・ジョバンイボン(HORIBA JOBIN YVON)社製のLabRAM HR-800
MDにおける上記スペクトル強度Aの測定では、MDと入射レーザ偏光面が平行になるようにラマンスペクトルを測定し、TDにおける上記スペクトル強度Bの測定では、TDと入射レーザ偏光面が平行となるようにラマンスペクトルを測定した。
測定条件:励起用レーザ波長633nm、露光時間15秒、対物レンズ50倍、積算回数8回、共焦点ホール径φ0.1mm、グレーティング800L/mm
解析条件:
(1)ラマンシフト600~700cm-1の散乱強度の平均値をベースライン値とする。
(2)ラマンシフト809±2cm-1の範囲における散乱強度の最大値から、上記ベースライン値を減じて、809cm-1におけるピーク強度を求める。
(3)ラマンシフト842±2cm-1の範囲における散乱強度の最大値から、上記ベースライン値を減じて、842cm-1におけるピーク強度を求める。
(4)上記(2)及び(3)のピーク強度を用いて、スペクトル強度比A,Bを算出する。前述の通り、樹脂層1を形成する樹脂としてポリプロピレンを用いた場合には、ラマン分光法によるスペクトル測定において、樹脂の結晶部のピークは809cm-1付近に観測され、非晶部のピークは842cm-1付近に観測される。このように、樹脂の結晶部と非晶部とは、通常、異なる位置にスペクトルのピークが観察されるため、一方向(MD)及びこれに直交する他方向(TD)における結晶部と非晶部とのピーク強度を測定し、得られた値から、スペクトル強度比Aとスペクトル強度比Bを算出することができる。
<Measurement of spectral intensities A and B by Raman spectroscopy>
About the resin layer of the laminated film obtained above, the spectral intensity ratio A in one direction (MD) and the spectral intensity ratio B in the other direction (TD) orthogonal to the one direction are respectively measured using Raman spectroscopy. The measurement was performed using the following measuring equipment, measurement conditions, and analysis conditions. The results are shown in Tables 1 and 2.
Measuring instrument: LabRAM HR-800 manufactured by HORIBA JOBIN YVON
In the measurement of the spectral intensity A in the MD, a Raman spectrum is measured so that the MD and the incident laser polarization plane are parallel, and in the measurement of the spectral intensity B in the TD, the TD and the incident laser polarization plane are parallel. Raman spectrum was measured.
Measurement conditions: excitation laser wavelength 633 nm, exposure time 15 seconds, objective lens 50 times, number of integrations 8 times, confocal hole diameter φ0.1 mm, grating 800 L / mm
Analysis conditions:
(1) The average value of the scattering intensity at a Raman shift of 600 to 700 cm −1 is taken as the baseline value.
(2) The peak value at 809 cm−1 is obtained by subtracting the baseline value from the maximum value of the scattering intensity in the range of Raman shift 809 ± 2 cm−1.
(3) The peak value at 842 cm−1 is obtained by subtracting the baseline value from the maximum value of the scattering intensity in the range of Raman shift 842 ± 2 cm−1.
(4) The spectral intensity ratios A and B are calculated using the peak intensities in (2) and (3) above. As described above, when polypropylene is used as the resin for forming the resin layer 1, the peak of the crystal part of the resin is observed in the vicinity of 809 cm-1 in the spectrum measurement by Raman spectroscopy, and the peak of the amorphous part is 842 cm. Observed around -1. As described above, since the peak of the spectrum is usually observed at different positions between the crystal part and the amorphous part of the resin, the crystal part and the amorphous part in one direction (MD) and the other direction (TD) orthogonal thereto are observed. The spectral intensity ratio A and the spectral intensity ratio B can be calculated from the obtained values.
 <カール量hの測定>
 上記で得られた積層フィルムを用い、一方向(MD)の長さ90mm、当該一方向に直交する他方向(TD)の長さ150mmの積層フィルムの中心において、積層フィルムのそれぞれの対角を結ぶ2つの線上に、積層フィルムの厚み方向に貫通するようにして、前記支持体側から、当該中心が中央となる長さ100mmの2本の切れ込み(積層フィルムを貫通する切れ込み)を入れ、これを前記支持体が下側になるようにして水平面に置いて20℃で8時間静置した。次に、図2に示すように、水平面とは垂直方向において、カールにより立ち上がった4つの面の頂点(中心P)と水平面30との距離をハイトゲージ(ミツトヨ社製)を用いて測定し、その最も大きな数値を最大距離hとした。結果を表1及び表2に示す。
<Measurement of curl amount h>
Using the laminated film obtained above, each diagonal of the laminated film is set at the center of the laminated film having a length of 90 mm in one direction (MD) and a length of 150 mm in the other direction (TD) perpendicular to the one direction. Two cuts (cuts that penetrate the laminated film) having a length of 100 mm are provided from the support side so as to penetrate the laminated film in the thickness direction of the laminated film. The substrate was placed on a horizontal surface with the support on the lower side and allowed to stand at 20 ° C. for 8 hours. Next, as shown in FIG. 2, in the direction perpendicular to the horizontal plane, the distance between the apex (center P) of the four surfaces raised by the curl and the horizontal plane 30 is measured using a height gauge (made by Mitutoyo Corporation). The largest value was taken as the maximum distance h. The results are shown in Tables 1 and 2.
 <滑剤析出評価1>
 上記で得られた積層フィルムを20℃で1週間保管した後、裁断し、120mm×80mmの短冊片を作製して試験サンプルとした。次に、30mm×50mmの矩形状の雄型とこの雄型とのクリアランスが0.5mmの雌型からなるストレート金型を用い、雄型側に樹脂層1側が位置するように雌型上に上記試験サンプルを載置し、成形深さ4.0mmとなるようにして、それぞれ、5000個(5000ショット)の試験サンプルを0.1MPaの押え圧(面圧)で押えて、冷間成形(引き込み1段成形)した。この時の試験サンプルの滑剤析出について、以下の基準に従って、評価した。結果を表1に示す。
A:成形5000回で金型に滑剤の付着無し
B:成形5000回で金型への滑剤の付着を確認したが、成形状態には影響なし
C:成形5000回で金型への滑剤の付着により成形サンプルに圧痕が発生
<Lubricant precipitation evaluation 1>
The laminated film obtained above was stored at 20 ° C. for 1 week, then cut, and a strip of 120 mm × 80 mm was produced as a test sample. Next, a straight mold composed of a 30 mm × 50 mm rectangular male mold and a female mold with a clearance of 0.5 mm between the male mold is used, and on the female mold so that the resin layer 1 side is located on the male mold side. The above test samples are placed, and 5000 pieces (5000 shots) of each test sample are pressed with a presser pressure (surface pressure) of 0.1 MPa so that the forming depth is 4.0 mm, and cold forming ( Pulling in one step). The lubricant precipitation of the test sample at this time was evaluated according to the following criteria. The results are shown in Table 1.
A: No adhesion of lubricant to the mold after 5000 moldings B: Adhesion of lubricant to the mold was confirmed after 5000 moldings, but there was no effect on the molding state C: Lubricant adhered to the molds after 5000 moldings Causes indentations in molded samples
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 表1に示されるように、樹脂層における一方向(MD)における上記スペクトル強度比Aと、当該一方向に直交する他方向(TD)におけるスペクトル強度比Bとの差の絶対値|B-A|が0.01~0.66である実施例1~8、12~16の積層フィルムにおいては、カール量hを30mm以下程度に抑えることができ、比較例1に比して、金型の位置決めを行いやすかった。また、スペクトル強度比Aとスペクトル強度比Bとの和(A+B)が、2.06~2.66の範囲である実施例1~8、12~16の積層フィルムにおいては、滑剤析出評価の結果が良好であった。これに対して、樹脂層における一方向における上記スペクトル強度比Aと、当該一方向に直交する他方向におけるスペクトル強度比Bとの差の絶対値|B-A|が、0.73と大きい比較例1の積層フィルムにおいては、カール量hが37mmとなり、金型の位置決めが困難であった。また、スペクトル強度比Aとスペクトル強度比Bとの和(A+B)が、2.77である比較例1の積層フィルムにおいては、滑剤析出評価の結果が劣っていた。 As shown in Table 1, the absolute value of the difference between the spectral intensity ratio A in one direction (MD) in the resin layer and the spectral intensity ratio B in the other direction (TD) orthogonal to the one direction | BA In the laminated films of Examples 1 to 8 and 12 to 16 in which | is 0.01 to 0.66, the curl amount h can be suppressed to about 30 mm or less. It was easy to perform positioning. In addition, in the laminated films of Examples 1 to 8 and 12 to 16 in which the sum (A + B) of the spectrum intensity ratio A and the spectrum intensity ratio B is in the range of 2.06 to 2.66, the result of the lubricant deposition evaluation Was good. In contrast, the absolute value | BA− of the difference between the spectral intensity ratio A in one direction in the resin layer and the spectral intensity ratio B in the other direction orthogonal to the one direction is a large comparison of 0.73. In the laminated film of Example 1, the curl amount h was 37 mm, and it was difficult to position the mold. Moreover, in the laminated | multilayer film of the comparative example 1 whose sum (A + B) of the spectral intensity ratio A and the spectral intensity ratio B is 2.77, the result of lubricant precipitation evaluation was inferior.
 <滑剤析出評価2>
 上記で得られた実施例1、2、6、7、9~16、比較例1の積層フィルムを表2に記載の各保管温度(5℃、20℃、40℃)で1週間保管した後、裁断し、120mm×80mmの短冊片を作製して試験サンプルとした。次に、30mm×50mmの矩形状の雄型とこの雄型とのクリアランスが0.5mmの雌型からなるストレート金型を用い、雄型側に樹脂層1側が位置するように雌型上に上記試験サンプルを載置し、成形深さ4.0mmとなるようにして、それぞれ、5000個(5000ショット)の試験サンプルを0.1MPaの押え圧(面圧)で押えて、連続して冷間成形(引き込み1段成形)した。この時の試験サンプルの滑剤析出について、以下の基準に従って、評価した。結果を表2に示す。なお、カール量については、各温度で保管した任意の試験サンプルについて、上記の<カール量hの測定>と同様にして測定した値である。
A:成形5000回で金型に滑剤の付着無し
B:成形5000回で金型への滑剤の付着を確認したが、成形状態には影響なし
C:成形5000回で金型への滑剤の付着により成形サンプルに圧痕が発生
<Lubricant precipitation evaluation 2>
After storing the laminated films of Examples 1, 2, 6, 7, 9 to 16 and Comparative Example 1 obtained above at the respective storage temperatures shown in Table 2 (5 ° C., 20 ° C., 40 ° C.) for 1 week. Cut into 120 mm × 80 mm strips to prepare test samples. Next, a straight mold composed of a 30 mm × 50 mm rectangular male mold and a female mold with a clearance of 0.5 mm between the male mold is used, and on the female mold so that the resin layer 1 side is located on the male mold side. The above test samples are placed, and 5000 pieces (5000 shots) of each test sample are pressed with a presser pressure (surface pressure) of 0.1 MPa so that the forming depth is 4.0 mm. Inter-molding (retraction one-stage molding) was performed. The lubricant precipitation of the test sample at this time was evaluated according to the following criteria. The results are shown in Table 2. The curl amount is a value measured in the same manner as in the above <Measurement of curl amount h> for any test sample stored at each temperature.
A: No adhesion of lubricant to the mold after 5000 moldings B: Adhesion of lubricant to the mold was confirmed after 5000 moldings, but there was no effect on the molding state C: Lubricant adhered to the molds after 5000 moldings Causes indentations in molded samples
 <4.0mm成形性評価>
 成形深さ4.0mmとなるようにして、上記の滑剤析出評価2と同様にして、それぞれ、5000個の試験サンプルについて、冷間成形を行い、ピンホールの発生の有無を確認した。成形性は、以下の基準で評価した。結果を表2に示す。
A:ピンホール発生なし
B:ピンホール発生率10%以下
C:ピンホール発生率11%以上
<4.0 mm formability evaluation>
In the same manner as the lubricant deposition evaluation 2 described above, cold forming was performed on each of 5000 test samples so as to determine whether or not pinholes were generated, so that the forming depth was 4.0 mm. Formability was evaluated according to the following criteria. The results are shown in Table 2.
A: No pinhole generation B: Pinhole generation rate 10% or less C: Pinhole generation rate 11% or more
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 表2に示されるように、樹脂層における一方向(MD)における上記スペクトル強度比Aと、当該一方向に直交する他方向(TD)におけるスペクトル強度比Bとの差の絶対値|B-A|が0.05~0.66である実施例1、2、6、7、9~16の積層フィルムにおいては、カールを抑えることができ、比較例1に比して、金型の位置決めを行いやすかった。また、スペクトル強度比Aとスペクトル強度比Bとの和(A+B)が、1.99~2.66の範囲である実施例1、2、6、7、9~16の積層フィルムにおいては、滑剤析出評価の結果が良好であり、成形性にも優れていた。これに対して、樹脂層における一方向における上記スペクトル強度比Aと、当該一方向に直交する他方向におけるスペクトル強度比Bとの差の絶対値|B-A|が、0.73と大きい比較例1の積層フィルムにおいては、カールが大きく、金型の位置決めが困難であった。また、スペクトル強度比Aとスペクトル強度比Bとの和(A+B)が、2.77である比較例1の積層フィルムにおいては、滑剤析出評価の結果が劣っていた。 As shown in Table 2, the absolute value of the difference between the spectral intensity ratio A in one direction (MD) in the resin layer and the spectral intensity ratio B in the other direction (TD) orthogonal to the one direction | BA In the laminated films of Examples 1, 2, 6, 7, and 9 to 16 in which | is 0.05 to 0.66, curling can be suppressed. It was easy to do. In the laminated films of Examples 1, 2, 6, 7, and 9 to 16, the sum of the spectral intensity ratio A and the spectral intensity ratio B (A + B) is in the range of 1.99 to 2.66. The result of precipitation evaluation was good and the moldability was also excellent. In contrast, the absolute value | BA− of the difference between the spectral intensity ratio A in one direction in the resin layer and the spectral intensity ratio B in the other direction orthogonal to the one direction is a large comparison of 0.73. In the laminated film of Example 1, the curl was large and it was difficult to position the mold. Moreover, in the laminated | multilayer film of the comparative example 1 whose sum (A + B) of the spectral intensity ratio A and the spectral intensity ratio B is 2.77, the result of lubricant precipitation evaluation was inferior.
1…樹脂層
2…支持体
21…基材層
22…バリア層
10…積層フィルム
30…水平面
DESCRIPTION OF SYMBOLS 1 ... Resin layer 2 ... Support body 21 ... Base material layer 22 ... Barrier layer 10 ... Laminated film 30 ... Horizontal surface

Claims (14)

  1.  少なくとも、支持体と、樹脂により形成された樹脂層との積層体から構成された積層フィルムであって、
     前記樹脂層平面での一方向におけるラマン分光法で測定される前記樹脂の結晶部のスペクトル強度を非晶部のスペクトル強度で除して得られるスペクトル強度比Aと、前記樹脂層の前記一方向に直交する同一平面上での他方向におけるラマン分光法で測定される前記樹脂の結晶部のスペクトル強度を非晶部のスペクトル強度で除して得られるスペクトル強度比Bとの差の絶対値|B-A|が、0.00以上0.70以下の範囲にある、積層フィルム。
    At least a laminated film composed of a laminate of a support and a resin layer formed of a resin,
    The spectral intensity ratio A obtained by dividing the spectral intensity of the crystal part of the resin measured by Raman spectroscopy in one direction on the plane of the resin layer by the spectral intensity of the amorphous part, and the one direction of the resin layer The absolute value of the difference from the spectral intensity ratio B obtained by dividing the spectral intensity of the crystalline part of the resin by the spectral intensity of the amorphous part measured by Raman spectroscopy in the other direction on the same plane perpendicular to | B-A | is a laminated film having a range of 0.00 to 0.70.
  2.  少なくとも、支持体と、樹脂により形成された樹脂層との積層体から構成された積層フィルムであって、
     前記樹脂層平面での一方向におけるラマン分光法で測定される前記樹脂の結晶部のスペクトル強度を非晶部のスペクトル強度で除して得られるスペクトル強度比Aと、前記樹脂層の前記一方向に直交する同一平面上での他方向におけるラマン分光法で測定される前記樹脂の結晶部のスペクトル強度を非晶部のスペクトル強度で除して得られるスペクトル強度比Bとの和が、1.95以上2.66以下の範囲にある、積層フィルム。
    At least a laminated film composed of a laminate of a support and a resin layer formed of a resin,
    The spectral intensity ratio A obtained by dividing the spectral intensity of the crystal part of the resin measured by Raman spectroscopy in one direction on the plane of the resin layer by the spectral intensity of the amorphous part, and the one direction of the resin layer And the spectral intensity ratio B obtained by dividing the spectral intensity of the crystal part of the resin measured by Raman spectroscopy in the other direction on the same plane orthogonal to the spectral intensity of the amorphous part is 1. A laminated film in the range of 95 to 2.66.
  3.  前記樹脂層が、滑剤を含む、請求項2に記載の積層フィルム。 The laminated film according to claim 2, wherein the resin layer contains a lubricant.
  4.  前記スペクトル強度比Aと、前記スペクトル強度比Bとの差の絶対値|B-A|が、0.00以上0.70以下の範囲にある、請求項2又は3に記載の積層フィルム。 The laminated film according to claim 2 or 3, wherein the absolute value | BA of the difference between the spectral intensity ratio A and the spectral intensity ratio B is in the range of 0.00 to 0.70.
  5.  前記一方向の長さ90mm、前記他方向の長さ150mmの前記積層フィルムを用意し、当該積層フィルムの中心において、前記積層フィルムのそれぞれの対角を結ぶ2つの線上に、積層フィルムの厚み方向に貫通するようにして、前記支持体側から、前記中心が中央となる長さ100mmの2本の切れ込みを入れ、これを前記支持体が下側になるようにして水平面に置いて20℃で8時間静置した後、前記水平面とは垂直方向において、前記水平面と前記中心との最大距離hを測定した場合に、当該最大距離hが、30mm以下である、請求項1~4のいずれかに記載の積層フィルム。 The laminated film having a length of 90 mm in one direction and a length of 150 mm in the other direction is prepared, and in the center of the laminated film, on the two lines connecting the diagonals of the laminated film, the thickness direction of the laminated film Two cuts with a length of 100 mm with the center being the center are made from the side of the support and placed on a horizontal surface so that the support is on the bottom, and at 8 ° C. The maximum distance h is 30 mm or less when the maximum distance h between the horizontal plane and the center is measured in a direction perpendicular to the horizontal plane after standing for a period of time. The laminated film as described.
  6.  前記樹脂層が、ポリオレフィンにより構成されている、請求項1~5のいずれかに記載の積層フィルム。 The laminated film according to any one of claims 1 to 5, wherein the resin layer is made of polyolefin.
  7.  前記スペクトル強度比Aと、前記スペクトル強度比Bとの和(A+B)が、1.95以上2.66以下の範囲にある、請求項1~6のいずれかに記載の積層フィルム。 The laminated film according to any one of claims 1 to 6, wherein the sum (A + B) of the spectral intensity ratio A and the spectral intensity ratio B is in the range of 1.95 or more and 2.66 or less.
  8.  前記支持体が、バリア層を有する、請求項1~7のいずれかに記載の積層フィルム。 The laminated film according to any one of claims 1 to 7, wherein the support has a barrier layer.
  9.  前記支持体が、基材層とバリア層を有し、
     前記バリア層の前記基材層とは反対側に前記樹脂層が積層されている、請求項1~7のいずれかに記載の積層フィルム。
    The support has a base material layer and a barrier layer,
    The laminated film according to any one of claims 1 to 7, wherein the resin layer is laminated on a side of the barrier layer opposite to the base material layer.
  10.  前記基材層は、ポリエステルフィルムとナイロンフィルムとの積層体から構成された多層構造を有している、請求項9に記載の積層フィルム。 The laminate film according to claim 9, wherein the base material layer has a multilayer structure composed of a laminate of a polyester film and a nylon film.
  11.  前記基材層は、ポリエステルフィルムにより構成されている、請求項10に記載の積層フィルム。 The said base material layer is a laminated | multilayer film of Claim 10 comprised by the polyester film.
  12.  前記基材層は、ナイロンフィルムにより構成されている、請求項10に記載の積層フィルム。 The laminated film according to claim 10, wherein the base material layer is made of a nylon film.
  13.  包装材料として使用される、請求項1~12のいずれかに記載の積層フィルム。 The laminated film according to any one of claims 1 to 12, which is used as a packaging material.
  14.  冷間成形に供される積層フィルムである、請求項1~13のいずれかに記載の積層フィルム。 The laminated film according to any one of claims 1 to 13, which is a laminated film subjected to cold forming.
PCT/JP2017/001822 2016-01-19 2017-01-19 Laminate film WO2017126636A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201780007282.XA CN108472923B (en) 2016-01-19 2017-01-19 Laminated film
CN202010380998.8A CN111497380B (en) 2016-01-19 2017-01-19 Laminated film

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP2016-008254 2016-01-19
JP2016008253 2016-01-19
JP2016008254 2016-01-19
JP2016-008253 2016-01-19
JP2016018409 2016-02-02
JP2016018408 2016-02-02
JP2016-018408 2016-02-02
JP2016-018409 2016-02-02

Publications (1)

Publication Number Publication Date
WO2017126636A1 true WO2017126636A1 (en) 2017-07-27

Family

ID=59361766

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/001822 WO2017126636A1 (en) 2016-01-19 2017-01-19 Laminate film

Country Status (2)

Country Link
CN (2) CN111497380B (en)
WO (1) WO2017126636A1 (en)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002146343A (en) * 2000-08-22 2002-05-22 Mitsui Chemicals Inc Sealant resin composition, sealant film and its use
JP2004181776A (en) * 2002-12-03 2004-07-02 Toyobo Co Ltd Polyamide laminated film
JP2009283382A (en) * 2008-05-26 2009-12-03 Showa Denko Packaging Co Ltd Method for manufacturing for package material of battery case
JP2010167652A (en) * 2009-01-22 2010-08-05 Kohjin Co Ltd Polyamide laminated film with excellent permeability to water vapor and alcohol
JP2012104248A (en) * 2010-11-08 2012-05-31 Toray Advanced Film Co Ltd Laminated material for secondary battery container, secondary battery container, and method for manufacturing secondary battery container
JP2013082469A (en) * 2011-10-07 2013-05-09 Showa Denko Packaging Co Ltd Packaging material for molding and method for manufacturing the same
JP2013222555A (en) * 2012-04-13 2013-10-28 Toppan Printing Co Ltd Sheath material for lithium-ion battery and method of manufacturing the same
JP2014024876A (en) * 2012-06-21 2014-02-06 Unitika Ltd Adhesive for packaging material and packaging material
JP2015147382A (en) * 2014-02-07 2015-08-20 大日本印刷株式会社 Laminate for deep drawing and deep-drawn container
JP2016068495A (en) * 2014-09-30 2016-05-09 大日本印刷株式会社 Laminated film
JP2016068496A (en) * 2014-09-30 2016-05-09 大日本印刷株式会社 Laminated film

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4901978B2 (en) * 2010-05-31 2012-03-21 住友化学株式会社 Stretched film, polarizing stretched film, and method for producing polarizing plate
CN105122496B (en) * 2013-03-25 2018-01-19 大日本印刷株式会社 Battery use packing material

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002146343A (en) * 2000-08-22 2002-05-22 Mitsui Chemicals Inc Sealant resin composition, sealant film and its use
JP2004181776A (en) * 2002-12-03 2004-07-02 Toyobo Co Ltd Polyamide laminated film
JP2009283382A (en) * 2008-05-26 2009-12-03 Showa Denko Packaging Co Ltd Method for manufacturing for package material of battery case
JP2010167652A (en) * 2009-01-22 2010-08-05 Kohjin Co Ltd Polyamide laminated film with excellent permeability to water vapor and alcohol
JP2012104248A (en) * 2010-11-08 2012-05-31 Toray Advanced Film Co Ltd Laminated material for secondary battery container, secondary battery container, and method for manufacturing secondary battery container
JP2013082469A (en) * 2011-10-07 2013-05-09 Showa Denko Packaging Co Ltd Packaging material for molding and method for manufacturing the same
JP2013222555A (en) * 2012-04-13 2013-10-28 Toppan Printing Co Ltd Sheath material for lithium-ion battery and method of manufacturing the same
JP2014024876A (en) * 2012-06-21 2014-02-06 Unitika Ltd Adhesive for packaging material and packaging material
JP2015147382A (en) * 2014-02-07 2015-08-20 大日本印刷株式会社 Laminate for deep drawing and deep-drawn container
JP2016068495A (en) * 2014-09-30 2016-05-09 大日本印刷株式会社 Laminated film
JP2016068496A (en) * 2014-09-30 2016-05-09 大日本印刷株式会社 Laminated film

Also Published As

Publication number Publication date
CN108472923B (en) 2020-12-18
CN111497380A (en) 2020-08-07
CN108472923A (en) 2018-08-31
CN111497380B (en) 2022-05-17

Similar Documents

Publication Publication Date Title
JP6477584B2 (en) Battery packaging material, battery, and manufacturing method thereof
JP6566133B2 (en) Battery packaging material, method for producing the same, battery, and polyester film
JP6679918B2 (en) Battery packaging material
WO2017094724A1 (en) Packaging material for battery, battery, and method for manufacturing packaging material for battery
WO2018174056A1 (en) Packaging material for batteries, method for producing same, polybutylene terephthalate film for packaging material for batteries, and battery
JPWO2020071254A1 (en) Exterior materials for power storage devices, their manufacturing methods, and power storage devices
JP7010211B2 (en) Battery packaging materials, their manufacturing methods, and batteries
JP6686279B2 (en) Battery packaging materials and batteries
JP5850119B1 (en) Laminated film
JP5850120B1 (en) Laminated film
JP7160224B1 (en) Exterior material for power storage device, manufacturing method thereof, and power storage device
JP2017136833A (en) Laminated film
WO2017126636A1 (en) Laminate film
JP7088434B1 (en) Exterior materials for power storage devices, their manufacturing methods, and power storage devices
JP2017136834A (en) Laminated film
JP6769142B2 (en) Battery packaging materials, their manufacturing methods and batteries
JP2018134878A (en) Method for producing laminate film
JP6488827B2 (en) Winding body for battery packaging materials
JP2024088437A (en) Packing material for battery
JP6421519B2 (en) Packaging materials
JP2016020051A (en) Method for manufacturing laminate film
JP2004114390A (en) Polyester resin film-laminated steel sheet

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17741513

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17741513

Country of ref document: EP

Kind code of ref document: A1