WO2017126616A1 - Cell model for ewing's sarcoma family of tumors, and antitumor agent screening method using same - Google Patents

Cell model for ewing's sarcoma family of tumors, and antitumor agent screening method using same Download PDF

Info

Publication number
WO2017126616A1
WO2017126616A1 PCT/JP2017/001778 JP2017001778W WO2017126616A1 WO 2017126616 A1 WO2017126616 A1 WO 2017126616A1 JP 2017001778 W JP2017001778 W JP 2017001778W WO 2017126616 A1 WO2017126616 A1 WO 2017126616A1
Authority
WO
WIPO (PCT)
Prior art keywords
cells
ews
ewing sarcoma
cell
sarcoma family
Prior art date
Application number
PCT/JP2017/001778
Other languages
French (fr)
Japanese (ja)
Inventor
泰広 山田
真吾 河村
Original Assignee
国立大学法人京都大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人京都大学 filed Critical 国立大学法人京都大学
Publication of WO2017126616A1 publication Critical patent/WO2017126616A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K67/00Rearing or breeding animals, not otherwise provided for; New or modified breeds of animals
    • A01K67/027New or modified breeds of vertebrates
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/10Cells modified by introduction of foreign genetic material
    • C12N5/12Fused cells, e.g. hybridomas
    • C12N5/16Animal cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/02Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving viable microorganisms

Definitions

  • the present invention relates to a cell and a method for screening a drug using the cell, and specifically relates to a screening method for an Ewing sarcoma family tumor model cell and an antitumor agent using the same.
  • Ewing's sarcoma of family tumors are sarcomas that affect bone and soft tissue from childhood to adolescence.
  • the site of onset varies, and there are many metastatic sites, such as lung, bone marrow, and bone.
  • Chimeric genes have been detected in most Ewing sarcoma family tumor patients, and the chimeric genes are considered to be the causative genes for carcinogenesis. If a genetic test detects chimeric genes such as EWS-FLI, EWS-ERG, EWS-ETV1, and EWS-FEV, it will be a definitive diagnosis of Ewing sarcoma family tumors.
  • Chemotherapy that is highly effective against Ewing sarcoma family tumors includes doxorubicin, cyclophosphamide, vincristine, ifosfamide, etoposide, and actinomycin, and multidrug chemotherapy combining these is performed.
  • progress in chemotherapy has improved treatment outcomes, there is nothing definitive, and multidisciplinary treatment combining chemotherapy, surgery, and radiation therapy is necessary.
  • the prognosis is poor when it occurs in a region where it is difficult to perform surgery and radiation irradiation such as the head and neck, spine, and pelvis.
  • long-term survivors after treatment have increased secondary cancer caused by anticancer drugs and radiation, and long-term follow-up of late complications including secondary cancer is important.
  • Non-Patent Documents 1 and 2 the chimeric gene EWS-FLI1 is introduced into a primary-cultured bone-derived cell or bone marrow-derived mesenchymal progenitor cell using a retroviral vector to produce a tumor, but EWS-FLI1 is made constitutively. It is unclear whether tumor cells have acquired cell proliferation and tumorigenicity depending on EWS-FLI1.
  • an object of the present invention is to establish a model cell of an Ewing sarcoma family tumor that can be used for screening of an effective new anticancer substance against an Ewing sarcoma family tumor and that forms a tumor by directly reacting with a chimeric gene. To do.
  • EWS-FLI1-dependent osteosarcoma model was constructed from mouse bone marrow stromal cells using the doxycycline-inducible EWS-FLI1 system. did. Furthermore, using artificial pluripotent stem (iPS) cell technology, we have succeeded in obtaining EWS-FLI1-dependent osteosarcoma-derived iPS cells having cancer-related gene abnormalities. And it discovered that these cells could be used suitably for the screening of the medicine with respect to Ewing sarcoma family tumor, and came to complete this invention.
  • iPS artificial pluripotent stem
  • Ewing sarcoma family tumor cells derived from bone marrow stromal cells, in which an EWS chimeric gene placed under the control of a promoter containing an inducible transcriptional regulatory sequence is introduced onto the chromosome and grows upon expression of the EWS chimeric protein Ewing sarcoma family tumor cells that are capable and have acquired infinite growth potential (immortalized).
  • EWS chimeric gene placed under the control of a promoter containing an inducible transcriptional regulatory sequence is introduced onto the chromosome and grows upon expression of the EWS chimeric protein Ewing sarcoma family tumor cells that are capable and have acquired infinite growth potential (immortalized).
  • EWS chimeric gene is the EWS-FLI1 gene.
  • Ewing sarcoma family tumor model non-human mammal which is transplanted with the Ewing sarcoma family tumor cell according to any one of [1] to [5] and develops Ewing sarcoma family tumor depending on the expression of EWS chimeric protein .
  • [8] A step of adding a test compound to the Ewing sarcoma family tumor cell according to any one of [1] to [5] cultured under the induction of EWS chimeric gene expression, Examining a tumor phenotype and selecting a test compound as a therapeutic drug candidate compound for an Ewing sarcoma family tumor, using as an index the reduction of the proliferative ability of the Ewing sarcoma family tumor cells or the reduction of the tumor phenotype
  • a screening method for an Ewing sarcoma family tumor therapeutic agent comprising a step.
  • a step of differentiating the induced pluripotent stem cell according to [6] into a bone cell, a step of inducing expression of an EWS chimeric protein, and a test compound on the Ewing sarcoma family tumor cell expressing the obtained EWS chimeric protein The step of adding, the step of determining the proliferative ability or tumor phenotype of the Ewing sarcoma family tumor cells, and reducing the proliferative ability of the Ewing sarcoma family tumor cells or reducing the tumor phenotype,
  • a method for screening an Ewing sarcoma family tumor therapeutic agent comprising a step of selecting a test compound as a therapeutic drug candidate compound for an Ewing sarcoma family tumor.
  • a step of culturing the induced pluripotent stem cell according to [6] in a bone differentiation-inducing medium to which a test compound is added in a state where no EWS chimeric protein is expressed to differentiate into an osteocyte, and a degree of differentiation into an osteocyte A screening method for a bone differentiation promoting substance, comprising a step of determining, and a step of selecting a test compound as a bone differentiation promoting substance using as an index an increase in the degree of differentiation into the bone cells.
  • sarcoma cells capable of controlling the expression of chimeric genes (such as EWS-FLI1) detected in Ewing sarcoma family tumors by stimulation with drugs and the like, and iPS cells derived from sarcoma cells were obtained.
  • This sarcoma cell differs from conventional cell lines in that cell proliferation activity is induced depending on the expression of the chimeric gene.
  • sarcoma cell-derived iPS cells can form Ewing sarcoma family tumors by expressing a chimeric gene after induction of bone differentiation. These are considered cell lines that can directly monitor the effects of the chimeric gene.
  • Cell lines that respond to the Ewing sarcoma family tumor-associated chimeric gene are useful for screening the development of direct molecular target-specific inhibitors against the chimeric gene. Moreover, since ON / OFF of the expression of the chimeric gene can be regulated and the phenotype of the tumor can be reversibly controlled, it can be suitably used for analyzing the mechanism of osteosarcoma generation.
  • EWS-FLI1 expression system using lentivirus Lentiviral vectors are introduced into bone marrow stromal cells collected from Rosa26-M2rtTA mice, and EWS-FLI1-expressing neomycin resistant cells are selected.
  • the microscope picture which shows the growth in the Dox containing medium or Dox free medium of the immortalized cell (EFN # 2) in each cell. EFN # 2 grew rapidly in Dox-containing medium. Dox removal caused delayed growth and morphological changes in EWS-FLI1-expressing cells (4 days after removal).
  • the graph which shows the result of qRT-PCR which shows the mRNA expression of EWS-FLI1 with and without Dox in a Dox treatment sample. Data are presented as mean ⁇ SD.
  • the expression level of Dox-untreated cells was set to 1.
  • the figure (photograph) which shows the result of the western blotting which uses an anti- HA antibody.
  • EWS-FLI1 protein was detected in the presence of Dox.
  • EFN # 2 developed tumors in immunocompromised mice only in the presence of Dox (10 weeks after transplantation).
  • FIG. 6 shows the results of an in vivo tumor formation assay using sarcoma cell line SCOS # 2. Dox treatment was discontinued at 3 weeks and mice were sacrificed at 7 weeks. The micrograph of the obtained iPS cell-like cell. IPS cell-like cells were constructed from sarcoma cells by introducing reprogrammed transcription factors. The graph which shows the result of qRT-PCR which shows the expression level of a pluripotency related gene in a sarcoma origin iPS cell-like cell. It was revealed that the expression level of pluripotency-related genes is equivalent to that of ES cells.
  • FIG. 1 Schematic diagram of in vitro bone differentiation. The figure which shows the result of the qRT-PCR analysis of a bone differentiation related gene. Wild type ES cells (V6.5) or EWS-FLI1-inducible ES cells (Rosa-rtTA / Rosa :: tetO-EWS-FLI1-ires-mCherry) were used as controls in bone differentiation experiments. Regarding the expression of bone differentiation-related genes, sarcoma-derived iPS cells and control ES cells on day 0 and day 17 during bone differentiation were examined. Mean values ⁇ SD of three independent experiments are shown. The average expression level of ES cells on day 17 was set to 1.
  • EWS-FLI1-induced ES cells (Rosa-M2rtTA / Col1a1 :: tetO-EWS-FLI1-ires-mCherry) were used as a control. Shown is the mean ⁇ SD of 6 independent osteogenic regions in 2 independent sarcoma-derived iPS cell teratomas or 9 independent osteogenic regions in 2 independent ES cell teratomas. Mann-Whitney U test was used for statistical analysis. Graph showing proliferation of iPS cells or control ES cells with and without Dox.
  • EWS-FLI1 expression does not promote proliferation of undifferentiated pluripotent stem cells.
  • Osteogenic cells derived from iPS cells with EWS-FLI1 developed tumors in immunocompromised mice only in the presence of Dox (3-7 weeks after treatment).
  • the Ewing sarcoma family tumor cells of the present invention are derived from bone marrow stromal cells, and an EWS chimeric gene placed under the control of a promoter containing an inducible transcriptional regulatory sequence is introduced onto the chromosome, and during expression of the EWS chimeric protein, It is a cell that can grow and has infinite proliferation ability.
  • the Ewing sarcoma family tumor cell of the present invention introduces an EWS chimera gene that is placed under control of a promoter containing an inducible transcription control sequence into bone marrow stromal cells derived from a mammal, It can be obtained by selecting immortalized cells that can grow in a state in which the protein is expressed.
  • Bone marrow stromal cells can be obtained from a variety of sources. Sources of bone marrow stromal cells and methods for obtaining bone marrow stromal cells from those sources and methods for culturing them have been described in the prior art (eg Friedenstein et al., 1987, Cell Tissue Kinetics 20: 263- 272; Castro-Malaspina et al., 1980, Blood 56: 289-301; Mets et al., 1981, Mech. Ageing Develop. 16: 81-89; Piersma et al., 1985, Exp. Hematol. 13: 237 -243; Caplan, 1991, J.Orthoped.Res.
  • Bone marrow stromal cells can be obtained from any bone marrow, including, for example, cells from the bone marrow obtained by aspiration of the iliac crest of a human donor. Methods for obtaining bone marrow from a donor are well known techniques.
  • bone marrow stromal cells can also be obtained commercially, for example, bone marrow stromal cells isolated from humans, mice, rats, rabbits, dogs, goats, sheep, pigs and horses can be obtained from Cognate® Bioservices (Baltimore , MD).
  • EWS chimeric genes examples include EWS-FLI, EWS-ERG, EWS-ETV1, and EWS-FEV as described in Cancer Res. 2000 Mar 15; 60 (6): 1536-40 etc.
  • EWS-FLI1 is preferable.
  • EWS-FLI1 is preferably human-derived EWS-FLI1, for example, a fusion protein of EWS (SEQ ID NO: 2) and FLI1 (SEQ ID NO: 3) encoded by the nucleotide sequence of base numbers 1-1494 of SEQ ID NO: 1. Examples include proteins containing amino acid sequences.
  • an amino acid sequence having 80% or more, preferably 90% or more, more preferably 95% or more identity with the above-mentioned amino acid sequence is included as long as the function of inducing cells into cancer and inducing the Ewing sarcoma family tumor is maintained. It may be a protein.
  • inducible transcription control sequences include sequences that initiate transcription from a promoter in response to stimuli such as drugs. Examples include Tet operator sequences, Cumate operator sequences (System Biosciences: SparQ Cumate Switch Inducible System), ⁇ An operator sequence (Special Table 2006-526991) and the like can be mentioned.
  • the Tet operator sequence is a sequence that binds a reverse tetracycline-regulated transactivator (tetracycline response factor: TRE), and reverse tetracycline expressed from the host cell depending on reverse tetracycline such as doxycycline (Dox) added to the cell.
  • TRE reverse tetracycline response factor
  • Dox doxycycline
  • a regulatory transactivator binds and induces expression of a gene linked downstream thereof.
  • Examples of the reverse tetracycline-regulated transactivator include a fusion protein composed of a mutant Tet repressor protein (tTetR) and a VP16 activation domain (AD) included in Clonetech's Tet-On® System.
  • tTetR Tet repressor protein
  • AD VP16 activation domain
  • An EWS chimeric gene linked to a promoter capable of functioning in mammalian cells is arranged downstream of the inducible transcription control sequence.
  • promoters that can function in mammalian cells include ⁇ -actin promoters, CMV promoters, CAG (CAGGS) promoters, etc., but many types of promoters are known and are not particularly limited thereto.
  • the expression construct for gene transfer includes a tag sequence (for example, Flag tag: SEQ ID NO: 4, HA tag: SEQ ID NO: 5), drug in addition to the above-described inducible transcription control sequence, promoter, and EWS chimeric gene. Selection marker sequences such as resistance genes, ribosome binding sequences, photoprotein coding sequences and the like may be included.
  • a tag sequence for example, Flag tag: SEQ ID NO: 4, HA tag: SEQ ID NO: 5
  • Selection marker sequences such as resistance genes, ribosome binding sequences, photoprotein coding sequences and the like may be included.
  • the EWS chimeric gene and the drug resistance gene under the control of the Tet operon, it becomes possible to induce the EWS chimeric gene and the drug resistance gene simultaneously by administration of doxycycline (Dox).
  • Dox doxycycline
  • the EWS chimeric gene is an oncogene, it contributes to carcinogenesis only in certain cell types and causes toxicity in many cell tumors.
  • Dox + drugs such as neomycin
  • the method of gene transfer onto the chromosome is not particularly limited, and examples thereof include a method using a viral vector, a method using a plasmid vector, a method using an artificial chromosome, and the like.
  • a method using a viral vector is preferable, and a lentiviral vector is used. The method is more preferred.
  • a simian immunodeficiency virus vector As a lentiviral vector, a simian immunodeficiency virus vector, an equine infectious anemia virus (EIAV) vector, a human immunodeficiency virus (HIV, for example, HIV1 or HIV2) vector, a feline immunodeficiency virus (FIV) vector, etc. can be used.
  • EIAV equine infectious anemia virus
  • HAV human immunodeficiency virus
  • HIV human immunodeficiency virus
  • FMV feline immunodeficiency virus
  • a commercially available lentiviral vector can also be used.
  • EWS chimeric gene placed under the control of a promoter containing an inducible transcription control sequence is introduced into a bone marrow stromal cell derived from a mammal and then added to a chromosome, and then a stimulating substance for gene expression induction is added.
  • the EWS chimeric protein of the present invention can be obtained by expressing an EWS chimeric protein, and culturing and growing cells in that state, and selecting immortalized cells.
  • Ewing sarcoma family tumor cells are characterized by chromosomal abnormalities, tumor-specific genes, and expression of cell cycle markers (eg, Ki67) in addition to their proliferative ability.
  • the Ewing sarcoma family tumor cells of the present invention may be established.
  • an Ewing sarcoma family tumor model animal that produces an Ewing sarcoma family tumor depending on the expression of the EWS chimeric protein can be obtained.
  • the transplant site and the amount of cells used for transplantation may be appropriately determined according to the body weight of the animal, the desired phenotype, and the like.
  • iPS cells ⁇ Artificial pluripotent stem (iPS) cells>
  • Ewing sarcoma family tumor cells of the present invention By initializing the Ewing sarcoma family tumor cells of the present invention, it is possible to obtain iPS cells that can differentiate into cells exhibiting the Ewing sarcoma family tumor phenotype depending on the expression of the EWS chimeric protein.
  • iPS cells introduce certain nuclear reprogramming substances into the Ewing sarcoma family tumor cells of the present invention in the form of DNA or protein, or increase the endogenous mRNA and protein expression of the nuclear reprogramming substances by drugs.
  • the nuclear reprogramming substance is not particularly limited as long as it is a gene specifically expressed in ES cells, a gene that plays an important role in maintaining undifferentiation of ES cells, or a gene product thereof.
  • Oct3 / 4 Klf4, Klf1, Klf2, Klf5, Sox2, Sox1, Sox3, Sox15, Sox17, Sox18, c-Myc, L-Myc, N-Myc, TERT, SV40 Large T antigen, HPV16 E6, HPB28 E7 Examples are Lin28b, Nanog, Esrrb, or Esrrg.
  • These reprogramming substances may be used in combination when iPS cells are established.
  • Nucleotide sequences of mouse and human cDNAs of each nuclear reprogramming substance and amino acid sequence information of the protein encoded by the cDNA can be obtained by referring to NCBI accession numbers described in WO 2007/079666.
  • a person skilled in the art can prepare a desired nuclear reprogramming substance by a conventional method based on the cDNA sequence or amino acid sequence information.
  • nuclear reprogramming substances may be introduced into tumor cells to be reprogrammed in the form of proteins, for example, by lipofection, binding to cell membrane permeable peptides, microinjection, or in the form of DNA.
  • it can be introduced into tumor cells by techniques such as vectors such as viruses, plasmids, artificial chromosomes, lipofection, liposomes, and microinjection.
  • viral vectors examples include retroviral vectors and lentiviral vectors (above, Cell, 126, pp.663-676, 2006; Cell, 131, pp.861-872, 2007; Science, 318, pp.1917-1920, 2007 ), Adenovirus vectors (Science, 322, 945-949, 2008), adeno-associated virus vectors, Sendai virus vectors (Proc Jpn Acad Ser B Phys Biol Sci. 85, 348-62, 2009) and the like.
  • artificial chromosome vectors include human artificial chromosomes (HAC), yeast artificial chromosomes (YAC), and bacterial artificial chromosomes (BAC, PAC).
  • a plasmid for mammalian cells can be used (Science, 322: 949-953, 2008).
  • the vector can contain regulatory sequences such as a promoter, an enhancer, a ribosome binding sequence, a terminator, and a polyadenylation site so that a nuclear reprogramming substance can be expressed.
  • promoter used examples include EF1 ⁇ promoter, CAG promoter, SR ⁇ promoter, SV40 promoter, LTR promoter, CMV (cytomegalovirus) promoter, RSV (rous sarcoma virus) promoter, MoMuLV (Moloney murine leukemia virus) LTR, HSV- A TK (herpes simplex virus thymidine kinase) promoter or the like is used.
  • EF1 ⁇ promoter, CAG promoter, MoMuLV LTR, CMV promoter, SR ⁇ promoter and the like can be mentioned.
  • drug resistance genes for example, kanamycin resistance gene, ampicillin resistance gene, puromycin resistance gene, etc.
  • thymidine kinase gene diphtheria toxin gene and other selectable marker sequences
  • green fluorescent protein (GFP) green fluorescent protein
  • GUS ⁇ -glucuronidase
  • reporter gene sequences such as FLAG, and the like.
  • the above vector contains a LoxP sequence before and after the gene or promoter encoding the nuclear reprogramming substance and the gene encoding the nuclear reprogramming substance that binds to it. You may have.
  • transposons include, for example, piggyBac, a transposon derived from lepidopterous insects (Kaji, K. et al., (2009), Nature, 458: 771-775, Woltjen et al., (2009), Nature, 458: 766-770, WO 2010/012077).
  • the vector replicates without chromosomal integration and is present episomally, so that the origin and replication of lymphotrophic herpes virus, BK virus, and bovine papillomavirus
  • sequence which concerns on may be included. Examples include EBNA-1 and oriP or Large T and SV40ori sequences (WO 2009/115295, WO 2009/157201 and WO 2009/149233).
  • an expression vector for polycistronic expression may be used.
  • the gene-encoding sequence may be linked by an IRES or foot-and-mouth disease virus (FMDV) 2A coding region (Science, 322: 949-953, 2008 and WO 2009/092042, WO 2009/152529).
  • FMDV foot-and-mouth disease virus
  • HDAC histone deacetylase
  • VPA valproic acid
  • MC 1293 sodium butyrate
  • M344 small molecule inhibitors
  • siRNA and shRNA against HDAC e.g., HDAC1 siRNA (Smartpool® (Millipore), HuSH 29mer shRNA Nucleic acid expression inhibitors such as Constructs against HDAC1 (OriGene) etc.
  • DNA methyltransferase inhibitors eg 5'-azacytidine
  • G9a Histone methyltransferase inhibitors [eg, small molecule inhibitors such as BIX-01294 (Cell Stem Cell, 2: 525-528 (2008)), siRNA and shRNA against G9a (eg, G9a siRNA (human) (Santa Cruz Biotechnology) Etc.), L-channel] calcium] agonist (eg B ayk8644) (Cell Stem Cell, 3, 568-574 (2008)), p53 inhibitors (eg siRNA and shRNA against p53) (Cell Stem Cell, 3, 475-479 (2008)), Wnt Signaling activator (eg soluble Wnt3a ) (Cell Stem Cell, 3, 132-135 (2008)), growth factors such as LIF or bFGF, ALK5 inhibitors (eg, SB431542) (Nat.
  • small BIX-01294 Cell Stem Cell, 2: 525-528 (2008)
  • siRNA and shRNA against G9a eg, G9a siRNA (human) (Santa Cruz
  • Examples of the drug in the method for increasing the expression of the endogenous protein of the nuclear reprogramming substance by the drug include 6-bromoindirubin-3'-oxime, indirubin-5-nitro-3'-oxime, valproic acid, 2- (3- (6-methylpyridin-2-yl) -lH-pyrazol-4-yl) -1,5-naphthyridine, 1- (4-methylphenyl) -2- (4,5,6,7-tetrahydro-2-imino- 3 (2H) -benzothiazolyl) ethanone HBr (pifithrin-alpha), prostaglandin J2, and prostaglandin E2 are exemplified (WO 2010/068955).
  • Examples of the culture medium for iPS cell induction include (1) DMEM, DMEM / F12 or DME medium containing 10-15% FBS (these media include LIF, penicillin / streptomycin, puromycin, L-glutamine). , (2) ES cell culture medium containing bFGF or SCF, such as mouse ES cell culture medium (for example, TX-WES medium, thrombos. X) or primate ES cell culture medium (for example, primate (human & monkey) ES cell culture medium (Reprocell, Kyoto, Japan), mTeSR-1).
  • mouse ES cell culture medium for example, TX-WES medium, thrombos. X
  • primate ES cell culture medium for example, primate (human & monkey) ES cell culture medium (Reprocell, Kyoto, Japan), mTeSR-1).
  • a tumor cell and a nuclear reprogramming substance are contacted in DMEM or DMEM / F12 medium containing 10% FBS in the presence of 5% CO 2 at 37 ° C.
  • Culture for ⁇ 7 days then re-spread cells onto feeder cells (eg, mitomycin C-treated STO cells, SNL cells, etc.), and bFGF-containing primate ES cells approximately 10 days after contact between tumor cells and nuclear reprogramming substance
  • the cells can be cultured in a culture medium and ES cell-like colonies can be generated about 30 to about 45 days or more after the contact.
  • the cells may be cultured under conditions of an oxygen concentration as low as 5-10%.
  • 10% FBS-containing DMEM medium including LIF, penicillin / streptomycin, puromycin, L-glutamine, etc.
  • feeder cells eg, mitomycin C-treated STO cells, SNL cells, etc.
  • Non-essential amino acids, ⁇ -mercaptoethanol, etc. can be included as appropriate.
  • ES-like colonies can be formed after about 25 to about 30 days or more.
  • the medium is replaced with a fresh medium once a day from the second day after the start of the culture.
  • the number of tumor cells used for nuclear reprogramming is not limited, but ranges from about 5 ⁇ 10 3 to about 5 ⁇ 10 6 cells per 100 cm 2 of culture dish.
  • marker gene-expressing cells When a gene containing a drug resistance gene is used as the marker gene, marker gene-expressing cells can be selected by culturing in a medium (selective medium) containing the corresponding drug.
  • the marker gene when the marker gene is a fluorescent protein gene, the marker gene-expressing cells can be obtained by observing with a fluorescence microscope, by adding a luminescent substrate in the case of a luminescent enzyme gene, Can be detected.
  • iPS cells can be confirmed by expression of pluripotency-related genes such as Nanog and Oct3 / 4, demethylation of Nanog promoter and Oct3 / 4 distal enhancer, or teratoma formation.
  • pluripotency-related genes such as Nanog and Oct3 / 4, demethylation of Nanog promoter and Oct3 / 4 distal enhancer, or teratoma formation.
  • iPS cells obtained as described above are cultured and differentiated into bone cells, so that the EWS chimeric protein expression depends on the expression of Ewing sarcoma family tumors. Presenting cells can be obtained.
  • Adhesive culture, suspension culture, or culture using feeder cells may be used.
  • a medium for culturing iPS cells can be prepared using a medium used for culturing animal cells as a basal medium.
  • the basal medium include IMDM medium, Medium ⁇ 199 medium, Eagle's Minimum Essential Medium (EMEM) medium, ⁇ MEM medium, Doulbecco's modified Eagle's Medium (DMEM) medium, Ham's F12 medium, RPMI 1640 medium, and Fischer's medium. Media and the like are included.
  • ⁇ MEM medium is preferable.
  • the medium may contain serum or may be serum-free.
  • albumin transferrin, Knockout Serum Replacement (KSR) (serum substitute for FBS during ES cell culture), fatty acid, insulin, collagen precursor, trace element, 2-mercaptoethanol, 3'-thiol May contain one or more serum replacements such as glycerol, lipids, amino acids, L-glutamine, Glutamax (Invitrogen), non-essential amino acids, vitamins, antibiotics, antioxidants, pyruvate, buffers, inorganic salts , N2 supplement (Invitrogen), B27 supplement (Invitrogen), and one or more cytokines. What is necessary is just to add a component required for the bone differentiation illustrated to triiodothyronine to this. The method of bone differentiation is described, for example, in Nature 467, 285-290. 2010.
  • the culture temperature is not limited to the following, but is about 30 to 40 ° C., preferably about 37 ° C.
  • the culture is performed in an atmosphere of CO 2 -containing air, and the CO 2 concentration is preferably about 2 to 5%. is there.
  • Bone differentiation can be confirmed by expression of bone differentiation markers such as bone differentiation-related genes such as Runx2, Sp7, Pth1r, Col1a1 and Dmp1, and cell morphology.
  • bone differentiation markers such as bone differentiation-related genes such as Runx2, Sp7, Pth1r, Col1a1 and Dmp1, and cell morphology.
  • One embodiment of the screening method of the present invention includes a step of adding a test compound to the Ewing sarcoma family tumor cell of the present invention cultured under the induction of EWS chimeric protein expression, the proliferative ability of the Ewing sarcoma family tumor cell, or Examining a tumor phenotype and selecting a test compound as a therapeutic drug candidate compound for an Ewing sarcoma family tumor, using as an index the reduction of the proliferative ability of the Ewing sarcoma family tumor cells or the reduction of the tumor phenotype Process. If the growth ability or tumor phenotype of the tumor cell line is reduced or decreased as compared with the absence of the compound or the addition of the control compound, the test compound can be selected as a tumor therapeutic drug candidate compound.
  • Other aspects of the screening method of the present invention include the step of differentiating the EPS sarcoma family tumor cell-derived iPS cells of the present invention into bone cells, the step of inducing the expression of EWS chimeric protein, and the expression of the obtained EWS chimeric protein.
  • Adding a test compound to an Ewing sarcoma family tumor cell, determining a growth ability or tumor phenotype of the Ewing sarcoma family tumor cell, and reducing the growth ability of the Ewing sarcoma family tumor cell, or tumor expression Selecting a test compound as a candidate drug for a Ewing sarcoma family tumor using the reduction in type as an index.
  • a compound may be added simultaneously with the induction of EWS chimeric protein expression.
  • the proliferation ability of tumor cells can be examined by a known method.
  • the tumor cell phenotype can be examined by cell morphology, expression of tumor marker genes and cell cycle-related genes such as Ki67, expression of tumor proteins, etc.
  • the expression level of genes and proteins is determined by known methods. can do.
  • screening for therapeutic drugs for Ewing sarcoma family tumors can be performed using a non-human mammal transplanted with the Ewing sarcoma family tumor cells of the present invention.
  • the expression of EWS chimeric protein is induced in a non-human mammal transplanted with the Ewing sarcoma family tumor cell of the present invention, and the obtained EWS chimeric protein is expressed and tested on an Ewing sarcoma family tumor model animal that has produced a tumor.
  • a compound is administered to determine the size or tumor phenotype of the Ewing sarcoma family tumor cell, and to reduce the size of the Ewing sarcoma family tumor or to decrease the tumor phenotype as an index
  • the mode of selecting as a therapeutic drug candidate compound for a family tumor is exemplified.
  • the EPS sarcoma family tumor cell-derived iPS cell of the present invention is cultured in a bone differentiation-inducing medium supplemented with a test compound in a state where no EWS chimeric protein is expressed. And a step of determining the degree of differentiation into bone cells, and a step of selecting a test compound as a bone differentiation promoting substance using as an index the increase in the degree of differentiation into bone cells. Since the EPS sarcoma family tumor cell-derived iPS cells of the present invention have suppressed bone differentiation compared to control cells, screening for a bone differentiation promoting substance can be performed using bone differentiation as an index.
  • the test compound can be selected as a bone differentiation promoting substance.
  • Bone differentiation promoting substances can be therapeutic agents for bone-related diseases such as osteoporosis, and since bone differentiation failure has been shown to be involved in sarcoma formation, bone differentiation promoting substances can also be candidates for sarcoma inhibitory substances.
  • the degree of differentiation into bone cells can be confirmed by the expression of bone differentiation markers such as bone differentiation-related genes such as Runx2, Sp7, Pth1r, Col1a1 and Dmp1, and the morphology of cells.
  • test substance can be used, for example, cell extract, cell culture supernatant, microbial fermentation product, marine organism-derived extract, plant extract, purified protein or crude protein. , Peptides, non-peptide compounds, synthetic low molecular weight compounds, and natural compounds.
  • the test substance may also be (1) a biological library method, (2) a synthetic library method using deconvolution, and (3) a “one-bead one-compound” library method.
  • (4) can be obtained using any of a number of approaches in combinatorial library methods known in the art, including synthetic library methods using affinity chromatography sorting.
  • Biological library methods using affinity chromatography sorting are limited to peptide libraries, but the other four approaches can be applied to small molecule compound libraries of peptides, non-peptide oligomers, or compounds (Lam (1997) Anticancer Drug Des . 12: 145-67).
  • Examples of methods for the synthesis of molecular libraries can be found in the art (DeWitt et al. (1993) Proc. Natl. Acad. Sci. USA 90: 6909-13; Erb et al. (1994) Proc. Natl Acad. Sci. USA 91: 11422-6; Zuckermann et al. (1994) J. Med. Chem. 37: 2678-85; Cho et al.
  • the obtained vector was introduced into KH2 ES cells (Genesis 44, 23-28. 2006) having the Rosa26-M2rtTA allele by electroporation.
  • ES cells were cultured in an ES medium containing 15 ⁇ g / ml blasticidin S (Bsd, Funakoshi Co., Ltd.). Bsd resistant colonies were collected and expanded. It was confirmed by Southern blotting that the ES clone was correctly targeted.
  • lentiviral vector Construction of lentiviral vector, lentiviral infection and cell culture
  • pEN-TmiRC3 and pSLIK-Neo lentiviral vector plasmids obtained from Addgene were modified.
  • pEN-TmiRC3 was digested with SpeI and XhoI, and EWS-FLI1-FLAG-HA was ligated downstream of the tetOP-mCMV promoter.
  • the ires-NeoR cassette was ligated to the 3 ′ side of the HA tag, and then the UbiC-rtTA3-ires-NeoR sequence was excised from pSLIK-Neo.
  • the pSLIK-TetO-EWS-FLI1-ires-Neo vector is obtained. It was.
  • Bone marrow stromal cells were obtained from 3-6 week old Rosa26-M2rtTA mice (Genesis 44, 23-28. 2006) as reported in Nat Protoc 4, 102-106. 2009. Non-adherent cells (hematopoietic cells) were removed by exchanging the medium 3 to 4 days after collection of bone marrow cells, and the adherent cells were infected with lentivirus. The cells were then placed in DMEM (Nacalai Tesque) containing 10% FBS (Gibco), penicillin, streptomycin, 200 ⁇ g / ml G418 (Nacalai Tesque) and 2 ⁇ g / ml Dox (Sigma) for 2 months. Cultured and EWS-FLI1-dependent immortalized cells were selected. The same medium was used to maintain the osteosarcoma cell lines, SCOS # 2 and SCOS # 12.
  • Rosa-M2rtTA / Rosa tetO-EWS-FLI1 mice and immunocompromised mice inoculated with sarcoma cells were treated with 2 mg / ml Dox-containing water and 10 mg / ml sucrose. Because of early lethality, Rosa-M2rtTA / Col1a1 :: tetO-EWS-FLI1 mice were treated with lower concentrations of Dox (100 ⁇ g / ml to 2 mg / ml).
  • iPS cells Induction and maintenance of iPS cells Induction of iPS cells by utilizing retroviral vectors (pMX-hOCT3 / 4, pMX-hSOX2, pMX-hKLF4 and pMX-h-cMYC; Addgene) containing reprogramming factors went.
  • Reprogramming factor-induced sarcoma cells are cultured in ES cell medium supplemented with human recombinant LIF (Wako Pure Chemical Industries, Ltd.), 2-mercaptoethanol (Invitrogen) and 50 ⁇ g / ml L-ascorbic acid (Sigma).
  • LIF human recombinant LIF
  • 2-mercaptoethanol Invitrogen
  • 50 ⁇ g / ml L-ascorbic acid Sigma.
  • the constructed iPS cells were maintained in ES cell medium supplemented with LIF, 1 ⁇ M PD0325901 (Stemgent) and 3 ⁇ M CHIR99021 (Stemgent
  • RT-PCR and quantitative real-time RT-PCR RNA was extracted using RNeasy plus mini kit (QIAGEN). Up to 1 ⁇ g of RNA was used for reverse transcription to cDNA.
  • RT-PCR and quantitative real-time PCR were performed using Go-Taq Green Master Mix and Go-Taq qPCR Master Mix (Promega), respectively. Transcript levels were normalized by ⁇ -actin.
  • the cultured cells were washed with immunocytochemistry PBS and fixed with 2% paraformaldehyde for 10 minutes at room temperature.
  • the antibodies used were anti-p53 (Abcam; dilution 1: 200) and anti-p21 (HUGO291) (Abcam; dilution 1: 500).
  • Xenograft assay A total of 3 ⁇ 10 6 EWS-FLI1-dependent immortalized cells, EWS-FLI1-dependent in NOD / ShiJic-scid Jcl mice or BALB / cSLC-nu / nu mice purchased from CLEA Japan and Japan SLC, respectively Sarcoma cells, ES cells or iPS cells were transplanted. NOD / ShiJic-scid Jcl mice were inoculated with EWS-FLI1-dependent immortalized cells and the mice were sacrificed 10 weeks after transplantation. The subcutaneous tissue of BALB / cSLC-nu / nu mice was inoculated with EWS-FLI1-dependent osteosarcoma cells.
  • ES cells / iPS cells were transplanted into BALB / cSLC-nu / nu mice, and teratomas were obtained 3 to 4 weeks later.
  • Cultured cells were washed with ALP stained PBS, fixed, and stained with ALP staining kit (Sigma) according to manufacturer's protocol.
  • Senescence-related ⁇ -gal stained PBS were washed with PBS, fixed, and stained with an aging ⁇ -galactosidase staining kit (# 9860S, Cell Signaling) according to the manufacturer's protocol.
  • the cultured cells were washed with alizarin red-stained PBS and fixed with 4% paraformaldehyde for 5 minutes at room temperature. Fixed cells were washed several times with deionized water and stained for 5 minutes in alizarin red staining solution (alizarin red (Sigma, A5533) 2%, adjusted to pH 4.2 with NH 4 OH). Similarly, deparaffinized sections were stained in alizarin red staining solution for 5 minutes.
  • lentiviral integration site was examined by a slightly modified method described in Stem Cells 27, 300-306. Genomic DNA extracted from SCOS # 2 was digested into 500-800 bp fragments using an ultrasonicator (Covaris E210). The linker cassettes obtained by annealing LC1 and LC2 were ligated to their digested genomic DNA fragments. Then, the first PCR was performed using the primer set of AP1_F and pSLIK1_R, and the nested PCR was performed using the primer set of AP2_F and pSLIK2_R.
  • the PCR product was cloned into the pCR4-TOPO vector (Invitrogen) by the TA cloning method, and the DNA sequence of the inserted fragment was analyzed by 3500 ⁇ L Genetic Analyzer (Applied Biosystems) using the seq_LTR_R primer. The resulting sequence was examined by BLAST.
  • Genomic DNA was extracted using the PureLink® Genomic DNA Mini Kit (Invitrogen).
  • Array comparative genomic hybridization analysis was performed using SurePrint G3 mouse genomic CGH microarray kit (Agilent), and analysis was performed using Agilent Genomic Workbench 7.0.
  • Bisulfite genome sequencing Bisulfite treatment was performed using EZ DNA Methylation-Gold Kit TM (ZYMO RESEARCH) according to the manufacturer's protocol. The PCR primers used are indicated in the additional information.
  • the amplification product was cloned into pCR4-TOPO vector (Invitrogen) and transformed into DH5 ⁇ . Colonies were randomly selected and sequenced using M13 forward and reverse primers for each gene.
  • EWS-FLI1-inducible ES cells and mice First, an attempt was made to construct an EWS-FLI1-inducible mouse model by the locus targeting method. Use KH2 mice with tet-inducible cassette and Rosa26 targeting vector (Cell 156, 663-677. 2014; J Clin Invest 123, 600-610. 2013; Genesis 44, 23-28. 2006) Two types of ES cells containing the Dox-inducible EWS-FLI1 allele were constructed.
  • the reverse tetracycline-regulated transactivator (rtTA) is expressed from the Rosa26 locus, while the Tet operator-EWS-FLI1-ires-mCherry construct is integrated into the 3′UTR of the Col1a1 locus.
  • rtTA reverse tetracycline-regulated transactivator
  • Col1a1 the Tet operator-EWS-FLI1-ires-mCherry construct is integrated into the 3′UTR of the Col1a1 locus.
  • Rosa-M2rtTA / Col1a1 :: tetO-EWS-FLI1 the other is incorporated into intron 1 of the Rosa26 locus
  • Both ES cells expressed mCherry fluorescence when treated with Dox in vitro.
  • the inducible EWS-FLI1 expression in ES cells was also confirmed by qRT-PCR and Western blotting.
  • mice blastocyst injection of the ES cells was performed to obtain chimeric mice.
  • EWS-FLI1 was expressed in a wide variety of organs and tissues of the mouse, including bone marrow and bone cortex where Ewing sarcoma often occurs.
  • Some mice (Rosa-M2rtTA / Col1a1 :: tetO-EWS-FLI1) died shortly after EWS-FLI1 induction, which was accompanied by atypical changes in intestinal cells due to abnormal differentiation (14 mice) 8 of them).
  • EWS-FLI1-dependent immortalized cells by Dox-inducible EWS-FLI1 lentiviral system Our results suggested that induction of EWS-FLI1 in mature mice is not sufficient for sarcoma development. Therefore, a lentiviral EWS-FLI1 expression vector having a Dox-inducible expression system was prepared.
  • the TetO-EWS-FLI1-ires-Neo cassette (FIG. 1) was transduced with lentivirus into bone marrow stromal cells of Rosa26-M2rtTA (3-4 weeks old). Transduced bone marrow cells were cultured with Dox and G418.
  • EWS-FLI1-dependent immortalized cells that have formed osteosarcoma in vivo have tumorigenic potential in vivo
  • EFN # 2 and EFN # 12 The mice were transplanted subcutaneously. Mice transplanted 10 weeks after inoculation developed tumors from both cell lines when administered Dox (16/16 for EFN # 2, 2/4 for EFN # 12; FIGS. 5 and 6
  • Dox 16/16 for EFN # 2, 2/4 for EFN # 12; FIGS. 5 and 6
  • no tumor formation was observed in mice (0/16 for EFN # 2, 0/4 for EFN # 12; FIGS. 5 and 6
  • Histological analysis revealed that these tumors consisted of small round blue cells similar to Ewing sarcoma. Many tumor cells showed osteoid formation and were considered small cell osteosarcoma.
  • immunohistochemistry showed that tumor cells expressed EWS-FLI1 and were positive for Ki67, a marker for proliferating cells (data not shown).
  • EWS-FLI1-dependent osteosarcoma cell line In order to investigate the characteristics of EWS-FLI1-induced osteosarcoma in more detail, we investigated the subcutaneous bones of immunocompromised mice inoculated with EFN # 2 and EFN # 12 cells.
  • EWS-FLI1-dependent osteosarcoma cell lines were constructed from sarcomas (SCOS # 2 and SCOS # 12, respectively).
  • the constructed osteosarcoma cell lines expressed EWS-FLI1 in a Dox concentration-dependent manner and actively proliferated in the presence of Dox (Fig. 7).
  • SCOS # 2 and SCOS # 12 changed their morphology after Dox removal and stopped cell growth.
  • EWS-FLI1 whose osteosarcoma cell bone differentiation was promoted by loss of EWS-FLI1 expression
  • SCOS # 2 and SCOS # 12 to identify EWS-FLI1-expressing sarcoma cells.
  • Gene expression profiles were compared among EWS-FLI1 non-expressing sarcoma cells.
  • extracellular matrix-related genes and extracellular region-related genes, often including osteogenesis-related genes and chondrogenesis-related genes compared to Dox-treated EWS-FLI1-expressing sarcoma cells by GO enrichment analysis in both cell lines was significantly enriched in Dox-untreated sarcoma cells (72 hours) (FIGS. 8, 9).
  • SCOS # 2 and SCOS # 12 formed the aforementioned small cell osteosarcoma in immunocompromised mice receiving Dox (FIG. 13). These sarcoma cells had high cell proliferating activity according to Ki67 immunohistochemistry (FIG. 13). Consistent with the in vitro findings that growth of both SCOS # 2 and SCOS # 12 is dependent on EWS-FLI1 expression, the subcutaneous tumors stopped or retarded growth after removal of Dox in vivo (FIGS. 13 and 14). Histological analysis revealed that the tumor from which Dox was removed was composed of osteoid tissue, mature bone tissue and a small number of blue cells (FIG. 13). These results indicated that loss of EWS-FLI1 promotes bone differentiation of osteosarcoma cells in vivo. Based on the above, our results revealed the role of EWS-FLI1 expression in the inhibition of terminal differentiation of osteosarcoma cells.
  • iPS cells from EWS-FLI1-induced osteosarcoma cells Considering that additional genetic abnormalities may be required for EWS-FLI1-induced sarcoma development, multi-potency from EWS-FLI1-induced sarcoma cells Construction of sex stem cells should provide a unique tool to study the effects of genetic abnormalities other than EWS-FLI1 expression on sarcoma development.
  • OCT3 / 4 OCT3 / 4
  • SOX2, KLF4, and cMYC were introduced into the sarcoma cells to obtain iPS cell-like colonies in the absence of EWS-FLI1 expression (colony formation efficiency).
  • iPS cell-like cells expressed pluripotency-related genes such as Nanog and Oct3 / 4 at the same level as ES cells (FIG. 16).
  • the overall gene expression pattern of iPS cell-like cells was similar to that of normal ES cells and control iPS cells.
  • the sarcoma-derived iPS cell-like cells showed demethylation of both Nanog promoter and Oct3 / 4 distal enhancer (FIG. 17). This indicates that these cells have acquired pluripotency via epigenetic reconstitution. Silencing of the exogenous 4 factor expression occurring in the late stage of cell reprogramming was observed in several iPS cell-like clones. This suggests that these cells have been fully reprogrammed.
  • array CGH array comparative genomic hybridization
  • sarcoma-derived iPS cell-like cells have several identical chromosomal abnormalities, confirming that these iPS cell-like clones were obtained from the parent sarcoma cells. These sarcoma-derived iPS cell-like cells have lost the ability to become mature chimeric mice upon blastocyst injection, presumably due to the widespread genetic abnormalities observed in CGH analysis. However, sarcoma-derived iPS cell-like cells formed teratomas composed of cells that differentiated into three different germ layers when inoculated into subcutaneous tissues of immunocompromised mice (FIG. 18). This indicates that these cells are pluripotent. These results indicate that iPS cells were successfully produced from EWS-FLI1-induced osteosarcoma cells.
  • EWS-FLI1-dependent osteosarcoma may arise from osteogenic cells due to increased bone differentiation of sarcoma cells when EWS-FLI1, which shows abnormal bone differentiation independent of EWS-FLI1 expression, disappears It was done. Therefore, in the absence of EWS-FLI1 expression, an attempt was made in vitro to induce osteogenic cells, which are the assumed sarcoma of the sarcoma, from pluripotent stem cells (FIG. 19) (Method of Nature 467, 285-290. 2010). reference). In control ES cells, bone differentiation stimulation induced bone differentiation-related genes such as Runx2, Sp7, Pth1r, Col1a1 and Dmp1 (day 17) (FIG. 20).
  • Bone differentiation stimulation also induced the expression of Runx2, which is an important transcription factor for bone differentiation, in sarcoma-derived iPS cells, but the induction of bone morphogenetic genes downstream of Runx2 decreased even without EWS-FLI1 expression ( Day 17) ( Figure 20).
  • Runx2 is an important transcription factor for bone differentiation
  • Figure 20 the induction of bone morphogenetic genes downstream of Runx2 decreased even without EWS-FLI1 expression
  • Both sarcoma-derived iPS cells and control ES cells formed teratomas, and these teratomas contained osteogenic regions in the absence of EWS-FLI1 expression (FIG. 22).
  • the Ki67 positive rate of sarcoma iPS cell-derived osteogenic cells was significantly higher than that of control ES cell-derived osteogenic cells (P ⁇ 0.01) (FIG. 23).
  • sarcoma-derived iPS cells show abnormal bone differentiation independent of EWS-FLI1 expression, which is also inhibited by differentiation other than EWS-FLI1 fusion and maintains proliferative progenitor cell state It suggests.
  • EWS-FLI1 expression induced rapid sarcoma development from sarcoma-iPS cell-derived osteogenic cells. Analysis of the cooperative action between EWS-FLI1 expression and differentiation abnormalities related to genetic abnormalities on sarcoma development. Tried. In both sarcoma-derived iPS cells and control ES cells (Rosa-M2rtTA / Rosa :: tetO-EWS-FLI1), EWS-FLI1 expression has no promoting effect on cell proliferation under undifferentiated culture conditions (FIG. 24). Next, bone differentiation of sarcoma-derived iPS cells and control ES cells was induced in vitro, followed by EWS-FLI1 expression (FIG. 25).
  • osteogenic precursor cells derived from sarcoma-derived iPS cells and control ES cells were treated with Dox (FIG. 25).
  • sarcoma-derived osteogenic cells showed significant cell proliferation in vitro in response to Dox on day 31 (FIGS. 26 and 27).
  • Histological analysis revealed that these xenograft tumors were sarcomas composed of small round blue cells (FIG. 29).
  • Osteogenic cells derived from control ES cells did not show clear EWS-FLI1-dependent proliferation in vivo (data not shown). This confirms that sarcoma development requires additional abnormalities.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • Zoology (AREA)
  • Organic Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Biochemistry (AREA)
  • Microbiology (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Physics & Mathematics (AREA)
  • Environmental Sciences (AREA)
  • Biophysics (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Analytical Chemistry (AREA)
  • Immunology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Animal Husbandry (AREA)
  • Cell Biology (AREA)
  • Plant Pathology (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

In order to address the problem of establishing a cell model for the Ewing's sarcoma family of tumors that reacts directly with chimeric genes to form tumors and can be used in screening for an effective, novel anticarcinogen for the Ewing's sarcoma family of tumors, the present invention provides an Ewing's sarcoma family of tumors (ESFT) cell derived from bone marrow stromal cells, wherein an EWS chimeric gene controlled by a promoter that includes an inducible transcriptional regulatory sequence is introduced into a chromosome, and the ESFT cell is viable and has unlimited proliferative capacity during expression of the EWS chimeric protein.

Description

ユーイング肉腫ファミリー腫瘍モデル細胞とそれを用いた抗腫瘍剤のスクリーニング方法Ewing sarcoma family tumor model cell and screening method for antitumor agent using the same
本発明は細胞および細胞を用いた医薬のスクリーニング方法に関し、具体的には、ユーイング肉腫ファミリー腫瘍モデル細胞とそれを用いた抗腫瘍剤のスクリーニング方法に関する。 The present invention relates to a cell and a method for screening a drug using the cell, and specifically relates to a screening method for an Ewing sarcoma family tumor model cell and an antitumor agent using the same.
ユーイング肉腫ファミリー腫瘍(Ewing's sarcoma of family tumors:ESFT)は、小児期から青年期の骨や軟部組織に発症する肉腫である。発症部位は様々であり、転移部位は肺、骨髄、骨が多く、転移した部位により予後は異なるが、一般に予後は不良である。 Ewing's sarcoma of family tumors (ESFT) are sarcomas that affect bone and soft tissue from childhood to adolescence. The site of onset varies, and there are many metastatic sites, such as lung, bone marrow, and bone.
ユーイング肉腫ファミリー腫瘍患者のほとんどにキメラ遺伝子が検出され、キメラ遺伝子が発がんの原因遺伝子と考えられている。遺伝子検査にてEWS-FLI、EWS-ERG、EWS-ETV1、EWS-FEVなどのキメラ遺伝子が検出されれば、ユーイング肉腫ファミリー腫瘍の確定診断となる。 Chimeric genes have been detected in most Ewing sarcoma family tumor patients, and the chimeric genes are considered to be the causative genes for carcinogenesis. If a genetic test detects chimeric genes such as EWS-FLI, EWS-ERG, EWS-ETV1, and EWS-FEV, it will be a definitive diagnosis of Ewing sarcoma family tumors.
ユーイング肉腫ファミリー腫瘍に対して有効性が高い化学療法として、ドキソルビシン、シクロホスファミド、ビンクリスチン、イホスファミド、エトポシド、アクチノマイシンが挙げられ、これらを組み合わせた多剤併用化学療法が行われる。化学療法の進歩とともに治療成績の改善を認めているが、決定的なものは無く、化学療法、外科治療、放射線治療を組み合わせた集学的治療が必要である。特に頭頸部、脊椎、骨盤部などの手術、放射線照射を行い難い部位に発生した場合の予後は不良である。また治療後の長期生存者には、抗がん剤や放射線照射による二次がんが増加しており、二次がんを含めた晩期合併症の長期にわたるフォローアップが重要となる。 Chemotherapy that is highly effective against Ewing sarcoma family tumors includes doxorubicin, cyclophosphamide, vincristine, ifosfamide, etoposide, and actinomycin, and multidrug chemotherapy combining these is performed. Although progress in chemotherapy has improved treatment outcomes, there is nothing definitive, and multidisciplinary treatment combining chemotherapy, surgery, and radiation therapy is necessary. In particular, the prognosis is poor when it occurs in a region where it is difficult to perform surgery and radiation irradiation such as the head and neck, spine, and pelvis. In addition, long-term survivors after treatment have increased secondary cancer caused by anticancer drugs and radiation, and long-term follow-up of late complications including secondary cancer is important.
以上のような背景から、ユーイング肉腫ファミリー腫瘍に対する効果的な新規抗がん物質の開発が望まれている。特にユーイング肉腫ファミリー腫瘍に特徴的で、かつ肉腫発生の根本的な原因であるキメラ遺伝子に対する分子標的特異的阻害物質の開発が期待されている。 In view of the above background, development of an effective new anticancer substance against Ewing sarcoma family tumors is desired. In particular, development of molecular target-specific inhibitors for chimeric genes that are characteristic of Ewing sarcoma family tumors and that are the root cause of sarcoma development is expected.
現在までキメラ遺伝子によるユーイング肉腫ファミリー腫瘍の動物モデル、細胞モデル作製の取り組みがなされてきたが、キメラ遺伝子導入による肉腫形成および細胞株作製の報告はあるものの、キメラ遺伝子に直接反応する腫瘍モデル作製の報告はない。例えば、非特許文献1および2ではキメラ遺伝子EWS-FLI1をレトロウイルスベクターで初代培養の骨由来細胞または骨髄由来間葉前駆細胞に導入し、腫瘍を作製しているが、EWS-FLI1を恒常的に発現させており、腫瘍細胞がEWS-FLI1に依存して細胞増殖および腫瘍形成能を獲得しているかどうかは不明である。 To date, efforts have been made to create animal models and cell models of Ewing sarcoma family tumors using chimeric genes, but there are reports of sarcoma formation and cell line production by introducing chimeric genes, but the creation of tumor models that respond directly to chimeric genes. There are no reports. For example, in Non-Patent Documents 1 and 2, the chimeric gene EWS-FLI1 is introduced into a primary-cultured bone-derived cell or bone marrow-derived mesenchymal progenitor cell using a retroviral vector to produce a tumor, but EWS-FLI1 is made constitutively. It is unclear whether tumor cells have acquired cell proliferation and tumorigenicity depending on EWS-FLI1.
従来のユーイング肉腫ファミリー腫瘍細胞株はキメラ遺伝子に直接反応するものではなく、それらを用いて薬剤スクリーニングを行っても化合物の作用点がキメラ遺伝子であるかは不明であり、単に細胞増殖を抑制する化合物が得られる可能性が高いという問題があった。 Conventional Ewing sarcoma family tumor cell lines do not react directly with chimeric genes, and even if they are used for drug screening, it is unknown whether the compound's site of action is a chimeric gene, and it simply suppresses cell growth. There was a problem that the possibility of obtaining a compound was high.
したがって、本発明は、ユーイング肉腫ファミリー腫瘍に対する効果的な新規抗がん物質のスクリーニングに使用できる、キメラ遺伝子に直接反応して腫瘍を形成するユーイング肉腫ファミリー腫瘍のモデル細胞を樹立することを課題とする。 Therefore, an object of the present invention is to establish a model cell of an Ewing sarcoma family tumor that can be used for screening of an effective new anticancer substance against an Ewing sarcoma family tumor and that forms a tumor by directly reacting with a chimeric gene. To do.
本発明者らは上記課題を解決するために鋭意検討を行った結果、ドキシサイクリン誘導性EWS-FLI1系を使用してマウス骨髄間質細胞よりEWS-FLI1依存的骨肉腫モデルを構築することに成功した。さらに、人工多能性幹(iPS)細胞技術を利用して、癌関連性遺伝子異常を有するEWS-FLI1依存的骨肉腫由来iPS細胞を得ることにも成功した。そして、これらの細胞が、ユーイング肉腫ファミリー腫瘍に対する医薬のスクリーニングに好適に使用できることを見出し、本発明を完成させるに至った。 As a result of intensive studies to solve the above problems, the present inventors succeeded in constructing an EWS-FLI1-dependent osteosarcoma model from mouse bone marrow stromal cells using the doxycycline-inducible EWS-FLI1 system. did. Furthermore, using artificial pluripotent stem (iPS) cell technology, we have succeeded in obtaining EWS-FLI1-dependent osteosarcoma-derived iPS cells having cancer-related gene abnormalities. And it discovered that these cells could be used suitably for the screening of the medicine with respect to Ewing sarcoma family tumor, and came to complete this invention.
すなわち、本発明は以下を提供する。
[1]骨髄間質細胞由来のユーイング肉腫ファミリー腫瘍細胞であって、誘導型転写制御配列を含むプロモーターの制御下に置かれたEWSキメラ遺伝子が染色体上に導入され、EWSキメラタンパク質の発現時に生育可能であり、無限増殖能を獲得した(不死化された)、ユーイング肉腫ファミリー腫瘍細胞。
[2]EWSキメラ遺伝子がEWS-FLI1遺伝子である、[1]に記載のユーイング肉腫ファミリー腫瘍細胞。
[3]EWSキメラ遺伝子が薬剤耐性遺伝子とともに誘導型転写制御配列を含むプロモーターの制御下に置かれた、[1]または[2]に記載のユーイング肉腫ファミリー腫瘍細胞。
[4]誘導型転写制御配列がTetオペレーターであり、前記細胞はリバーステトラサイクリン制御性トランス活性化因子を発現する、[1]~[3]のいずれかに記載のユーイング肉腫ファミリー腫瘍細胞。
[5]前記EWSキメラ遺伝子はレンチウイルスベクターを用いて染色体上に導入された、[1]~[4]のいずれかに記載のユーイング肉腫ファミリー腫瘍細胞。
[6][1]~[5]のいずれかに記載のユーイング肉腫ファミリー腫瘍細胞を初期化することによって得られる人工多能性幹細胞。
[7][1]~[5]のいずれかに記載のユーイング肉腫ファミリー腫瘍細胞が移植され、EWSキメラタンパク質の発現依存的にユーイング肉腫ファミリー腫瘍を発症する、ユーイング肉腫ファミリー腫瘍モデル非ヒト哺乳動物。
[8]EWSキメラ遺伝子の発現誘導下で培養された[1]~[5]のいずれかに記載のユーイング肉腫ファミリー腫瘍細胞に試験化合物を添加する工程、該ユーイング肉腫ファミリー腫瘍細胞の増殖能または腫瘍表現型を調べる工程、及び、該ユーイング肉腫ファミリー腫瘍細胞の増殖能を低下させること、または腫瘍表現型を減少させることを指標として、試験化合物をユーイング肉腫ファミリー腫瘍の治療薬候補化合物として選択する工程を含む、ユーイング肉腫ファミリー腫瘍治療薬のスクリーニング方法。
[9][6]に記載の人工多能性幹細胞を骨細胞に分化させる工程、EWSキメラタンパク質の発現を誘導する工程、得られたEWSキメラタンパク質を発現するユーイング肉腫ファミリー腫瘍細胞に試験化合物を添加する工程、該ユーイング肉腫ファミリー腫瘍細胞の増殖能または腫瘍表現型を決定する工程、及び、該ユーイング肉腫ファミリー腫瘍細胞の増殖能を低下させること、または腫瘍表現型を減少させることを指標として、試験化合物をユーイング肉腫ファミリー腫瘍の治療薬候補化合物として選択する工程を含む、ユーイング肉腫ファミリー腫瘍治療薬のスクリーニング方法。
[10][6]に記載の人工多能性幹細胞をEWSキメラタンパク質が発現しない状態で試験化合物を添加した骨分化誘導培地で培養して骨細胞に分化させる工程、骨細胞への分化度を決定する工程、及び、該骨細胞への分化度を増加させることを指標として、試験化合物を骨分化促進物質として選択する工程を含む、骨分化促進物質のスクリーニング方法。
That is, the present invention provides the following.
[1] Ewing sarcoma family tumor cells derived from bone marrow stromal cells, in which an EWS chimeric gene placed under the control of a promoter containing an inducible transcriptional regulatory sequence is introduced onto the chromosome and grows upon expression of the EWS chimeric protein Ewing sarcoma family tumor cells that are capable and have acquired infinite growth potential (immortalized).
[2] The Ewing sarcoma family tumor cell according to [1], wherein the EWS chimeric gene is the EWS-FLI1 gene.
[3] The Ewing sarcoma family tumor cell according to [1] or [2], wherein the EWS chimeric gene is placed under the control of a promoter containing an inducible transcription control sequence together with a drug resistance gene.
[4] The Ewing sarcoma family tumor cell according to any one of [1] to [3], wherein the inducible transcription control sequence is a Tet operator and the cell expresses a reverse tetracycline-regulated transactivator.
[5] The Ewing sarcoma family tumor cell according to any one of [1] to [4], wherein the EWS chimeric gene is introduced onto a chromosome using a lentiviral vector.
[6] An induced pluripotent stem cell obtained by reprogramming the Ewing sarcoma family tumor cell according to any one of [1] to [5].
[7] Ewing sarcoma family tumor model non-human mammal, which is transplanted with the Ewing sarcoma family tumor cell according to any one of [1] to [5] and develops Ewing sarcoma family tumor depending on the expression of EWS chimeric protein .
[8] A step of adding a test compound to the Ewing sarcoma family tumor cell according to any one of [1] to [5] cultured under the induction of EWS chimeric gene expression, Examining a tumor phenotype and selecting a test compound as a therapeutic drug candidate compound for an Ewing sarcoma family tumor, using as an index the reduction of the proliferative ability of the Ewing sarcoma family tumor cells or the reduction of the tumor phenotype A screening method for an Ewing sarcoma family tumor therapeutic agent comprising a step.
[9] A step of differentiating the induced pluripotent stem cell according to [6] into a bone cell, a step of inducing expression of an EWS chimeric protein, and a test compound on the Ewing sarcoma family tumor cell expressing the obtained EWS chimeric protein The step of adding, the step of determining the proliferative ability or tumor phenotype of the Ewing sarcoma family tumor cells, and reducing the proliferative ability of the Ewing sarcoma family tumor cells or reducing the tumor phenotype, A method for screening an Ewing sarcoma family tumor therapeutic agent, comprising a step of selecting a test compound as a therapeutic drug candidate compound for an Ewing sarcoma family tumor.
[10] A step of culturing the induced pluripotent stem cell according to [6] in a bone differentiation-inducing medium to which a test compound is added in a state where no EWS chimeric protein is expressed to differentiate into an osteocyte, and a degree of differentiation into an osteocyte A screening method for a bone differentiation promoting substance, comprising a step of determining, and a step of selecting a test compound as a bone differentiation promoting substance using as an index an increase in the degree of differentiation into the bone cells.
本発明により、薬剤等の刺激によりユーイング肉腫ファミリー腫瘍に検出されるキメラ遺伝子(EWS-FLI1など)の発現コントロールが可能な肉腫細胞、および肉腫細胞由来のiPS細胞が得られた。この肉腫細胞ではキメラ遺伝子の発現に依存して細胞増殖活性が誘導される点で従来の細胞株とは異なる。また、肉腫細胞由来iPS細胞は、骨分化誘導後にキメラ遺伝子を発現させることで、ユーイング肉腫ファミリー腫瘍を形成することが可能である。これらは、キメラ遺伝子による影響を直接的にモニター可能な細胞系と考えられる。
ユーイング肉腫ファミリー腫瘍関連キメラ遺伝子に応答する細胞系は、キメラ遺伝子に対する直接的な分子標的特異的阻害物質の開発のスクリーニングに有用である。また、キメラ遺伝子の発現のON OFFを調節でき、腫瘍の表現型を可逆的に制御できるので、骨肉腫発生のメカニズム解析などにも好適に使用できる。
According to the present invention, sarcoma cells capable of controlling the expression of chimeric genes (such as EWS-FLI1) detected in Ewing sarcoma family tumors by stimulation with drugs and the like, and iPS cells derived from sarcoma cells were obtained. This sarcoma cell differs from conventional cell lines in that cell proliferation activity is induced depending on the expression of the chimeric gene. In addition, sarcoma cell-derived iPS cells can form Ewing sarcoma family tumors by expressing a chimeric gene after induction of bone differentiation. These are considered cell lines that can directly monitor the effects of the chimeric gene.
Cell lines that respond to the Ewing sarcoma family tumor-associated chimeric gene are useful for screening the development of direct molecular target-specific inhibitors against the chimeric gene. Moreover, since ON / OFF of the expression of the chimeric gene can be regulated and the phenotype of the tumor can be reversibly controlled, it can be suitably used for analyzing the mechanism of osteosarcoma generation.
レンチウイルスを用いたEWS-FLI1発現系の模式図。Rosa26-M2rtTAマウスから採取された骨髄間質細胞にレンチウイルスベクターを導入し、EWS-FLI1発現ネオマイシン耐性細胞を選択する。Schematic diagram of EWS-FLI1 expression system using lentivirus. Lentiviral vectors are introduced into bone marrow stromal cells collected from Rosa26-M2rtTA mice, and EWS-FLI1-expressing neomycin resistant cells are selected. 各細胞における不死化細胞(EFN#2)のDox含有培地またはDox不含有培地での生育を示す顕微鏡写真。EFN#2はDox含有培地中で急速に増殖した。Doxの除去によりEWS-FLI1発現性細胞の増殖の遅延化及び形態の変化が引き起こされた(除去から4日後)。The microscope picture which shows the growth in the Dox containing medium or Dox free medium of the immortalized cell (EFN # 2) in each cell. EFN # 2 grew rapidly in Dox-containing medium. Dox removal caused delayed growth and morphological changes in EWS-FLI1-expressing cells (4 days after removal). Dox処理試料におけるDox有り無しでのEWS-FLI1のmRNA発現を示すqRT-PCRの結果を示すグラフ。データは平均値±SDとして提示されている。Dox非処理細胞の発現レベルを1に設定した。The graph which shows the result of qRT-PCR which shows the mRNA expression of EWS-FLI1 with and without Dox in a Dox treatment sample. Data are presented as mean ± SD. The expression level of Dox-untreated cells was set to 1. 抗HA抗体を使用するウエスタンブロッティングの結果を示す図(写真)。Doxの存在下でEWS-FLI1タンパク質が検出された。The figure (photograph) which shows the result of the western blotting which uses an anti- HA antibody. EWS-FLI1 protein was detected in the presence of Dox. EWS-FLI1依存的不死化細胞(EFN#2)を移植したマウスの、Dox有り無しでの腫瘍形成を示す写真。EFN#2はDoxの存在下でのみ免疫低下状態のマウスにおいて腫瘍を発生した(移植から10週間後)。The photograph which shows the tumor formation in the presence or absence of Dox of the mouse | mouth which transplanted the EWS-FLI1-dependent immortalized cell (EFN # 2). EFN # 2 developed tumors in immunocompromised mice only in the presence of Dox (10 weeks after transplantation). Dox有り無しでのEFN#2の移植から10週間後の腫瘍重量を示す図。腫瘍発生はDox投与に依存した。The figure which shows the tumor weight 10 weeks after the transplantation of EFN # 2 with and without Dox. Tumor development was dependent on Dox administration. 構築されたEWS-FLI1依存的肉腫細胞株(SCOS#2及びSCOS#12)の細胞増殖アッセイの結果を示す図。肉腫細胞の増殖はEWS-FLI1発現に依存し、Dox曝露を受けていない肉腫細胞はDoxの除去から3日後に増殖を失い始めた。The figure which shows the result of the cell proliferation assay of the constructed | assembled EWS-FLI1 dependent sarcoma cell line (SCOS # 2 and SCOS # 12). Sarcoma cell proliferation was dependent on EWS-FLI1 expression, and sarcoma cells that had not received Dox exposure began to lose proliferation 3 days after Dox removal. 細胞外領域関連遺伝子及びマトリックス関連遺伝子がSCOS#2細胞においてDoxの除去から72時間後に発現上昇することが遺伝子オントロジー濃縮分析により示された。それらの発現上昇した遺伝子は1.5を超えるホールド変化及び1.0E-4未満のp値のカットオフポイントにより選択された。上位5つの濃縮クラスターが明らかにされている。Gene ontology enrichment analysis showed that extracellular region-related genes and matrix-related genes were upregulated 72 hours after Dox removal in SCOS # 2 cells. Those genes with elevated expression were selected with a hold change greater than 1.5 and a cut-off point with a p-value less than 1.0E-4. The top five enriched clusters are revealed. 骨形成関連遺伝子及び軟骨形成関連遺伝子のスキャッタープロット分析。骨形成関連遺伝子及び軟骨形成関連遺伝子がSCOS#2細胞においてDoxの除去から72時間後に発現上昇することが明らかになった。Scatter plot analysis of osteogenesis related genes and chondrogenesis related genes. It was revealed that osteogenesis-related genes and chondrogenesis-related genes are upregulated 72 hours after Dox removal in SCOS # 2 cells. アルカリホスファターゼ染色の結果を示す図(写真)。上は顕微鏡写真。Doxの除去から5日後に肉腫細胞はアルカリホスファターゼ活性を示した。スケールバー、100μm。The figure (photograph) which shows the result of alkaline phosphatase dyeing | staining. Above is a photomicrograph. Five days after the removal of Dox, the sarcoma cells showed alkaline phosphatase activity. Scale bar, 100 μm. Doxの除去から38日後の細胞の顕微鏡写真(下はDox有)。Doxの除去から38日後にゆっくりと増殖する不均一な細胞が観察された。A photomicrograph of cells 38 days after Dox removal (bottom with Dox). Heterogeneous cells were observed that grew slowly 38 days after Dox removal. Doxの除去から38日後にqRT-PCRによりmRNA発現レベルを測定した結果を示す図(左はDox有)。Doxの除去から38日後に細胞はより高い骨分化関連遺伝子の発現を示した。データは平均値±SDとして提示されている。Dox処理細胞の発現レベルを1に設定した。qRT-PCRではSost、Fgf23及びMepeはDox処理試料中に検出不可能であった。そのため、代わりにDox非処理細胞の発現レベルを1に設定した。The figure which shows the result of having measured mRNA expression level by qRT-PCR 38 days after the removal of Dox (the left has Dox). 38 days after Dox removal, the cells showed higher expression of bone differentiation related genes. Data are presented as mean ± SD. The expression level of Dox treated cells was set to 1. In qRT-PCR, Sost, Fgf23 and Mepe were not detectable in Dox-treated samples. Therefore, the expression level of Dox-untreated cells was set to 1 instead. HE染色、Ki67免疫組織化学およびAlizarin red染色の結果を示す図(写真)。Doxの除去により小青色細胞集団の顕著な減少及び骨形成の増加が引き起こされたことがHE染色により示されている。Ki67免疫組織化学によりDoxによる肉腫における活発細胞増殖が示される。スケールバー、50μm(Dox処理)、200μm(Dox非処理、上)、50μm(Dox非処理、下)。The figure (photograph) which shows the result of HE dyeing | staining, Ki67 immunohistochemistry, and Alizarin red dyeing | staining. HE staining shows that Dox removal caused a significant decrease in small blue cell population and increased bone formation. Ki67 immunohistochemistry shows active cell proliferation in sarcomas due to Dox. Scale bar, 50 μm (Dox treated), 200 μm (Dox untreated, top), 50 μm (Dox untreated, bottom). 肉腫細胞株SCOS#2を使用するインビボ腫瘍形成アッセイの結果を示す図。3週目にDox処理を中止し、7週目にマウスを殺処理した。FIG. 6 shows the results of an in vivo tumor formation assay using sarcoma cell line SCOS # 2. Dox treatment was discontinued at 3 weeks and mice were sacrificed at 7 weeks. 得られたiPS細胞様細胞の顕微鏡写真。再プログラム化転写因子を導入することにより肉腫細胞からiPS細胞様細胞を構築した。The micrograph of the obtained iPS cell-like cell. IPS cell-like cells were constructed from sarcoma cells by introducing reprogrammed transcription factors. 肉腫由来iPS細胞様細胞における多能性関連遺伝子の発現レベルを示すqRT-PCRの結果を示すグラフ。多能性関連遺伝子の発現レベルがES細胞のものと同等であることが明らかにされた。データは平均値±SDとして提示されている。ES細胞の発現レベルを1に設定した。The graph which shows the result of qRT-PCR which shows the expression level of a pluripotency related gene in a sarcoma origin iPS cell-like cell. It was revealed that the expression level of pluripotency-related genes is equivalent to that of ES cells. Data are presented as mean ± SD. The expression level of ES cells was set to 1. バイサルファイトシーケンシング分析の結果を示す図。肉腫由来iPS細胞様細胞においてNanogプロモーターとOct3/4遠位エンハンサー領域が脱メチル化されていることが明らかにされた。白丸と黒丸はそれぞれCpG部位における非メチル化シトシンとメチル化シトシンを表す。The figure which shows the result of a bisulfite sequencing analysis. It was revealed that the Nanog promoter and Oct3 / 4 distal enhancer region were demethylated in sarcoma-derived iPS cell-like cells. White circles and black circles represent unmethylated cytosine and methylated cytosine at the CpG site, respectively. 神経組織、軟骨組織、円柱上皮の切片の染色結果を示す写真。肉腫iPS細胞は免疫低下状態のマウスの皮下組織中に外胚葉組織、中胚葉組織及び内胚葉組織から構成されるテラトーマを生じた。スケールバー、50μm。The photograph which shows the dyeing | staining result of the section | slice of a nerve tissue, a cartilage tissue, and columnar epithelium. Sarcoma iPS cells produced teratomas composed of ectoderm tissue, mesoderm tissue and endoderm tissue in the subcutaneous tissue of immunocompromised mice. Scale bar, 50 μm. インビトロ骨分化の模式図。Schematic diagram of in vitro bone differentiation. 骨分化関連遺伝子のqRT-PCR分析の結果を示す図。骨分化実験において野生型ES細胞(V6.5)又はEWS-FLI1誘導性ES細胞(Rosa-rtTA/Rosa::tetO-EWS-FLI1-ires-mCherry)を対照として使用した。骨分化関連遺伝子の発現について骨分化中の0日目と17日目の肉腫由来iPS細胞と対照ES細胞を調査した。3回の独立した実験の平均値±SDが示されている。17日目のES細胞の平均発現レベルを1に設定した。The figure which shows the result of the qRT-PCR analysis of a bone differentiation related gene. Wild type ES cells (V6.5) or EWS-FLI1-inducible ES cells (Rosa-rtTA / Rosa :: tetO-EWS-FLI1-ires-mCherry) were used as controls in bone differentiation experiments. Regarding the expression of bone differentiation-related genes, sarcoma-derived iPS cells and control ES cells on day 0 and day 17 during bone differentiation were examined. Mean values ± SD of three independent experiments are shown. The average expression level of ES cells on day 17 was set to 1. iPS細胞様細胞におけるアリザリンレッド染色の結果を示す写真。比較にES細胞を示した。明るい赤みがかったオレンジ色に染色された細胞外カルシウム沈着物が明らかになった(骨分化誘導から28日後)。スケールバー、20μm。The photograph which shows the result of alizarin red dyeing | staining in an iPS cell-like cell. ES cells were shown for comparison. A bright reddish orange stained extracellular calcium deposit was revealed (28 days after induction of bone differentiation). Scale bar, 20 μm. テラトーマ中の類骨産生を有する骨形成領域の組織学的分析の結果を示す写真。肉腫iPS細胞に由来する類骨産生細胞は対照ES細胞に由来するものよりも高い細胞増殖活性を有することがKi67免疫組織化学により明らかにされた。スケールバー、50μm。The photograph which shows the result of the histological analysis of the bone formation area | region which has the osteoid production in teratoma. Ki67 immunohistochemistry revealed that osteoid-producing cells derived from sarcoma iPS cells had higher cell proliferative activity than those derived from control ES cells. Scale bar, 50 μm. 肉腫iPS細胞又は対照ES細胞に由来するテラトーマ中の骨形成領域のKi67陽性率を示す図。EWS-FLI1誘導性ES細胞(Rosa-M2rtTA/Col1a1::tetO-EWS-FLI1-ires-mCherry)を対照として使用した。2つの独立した肉腫由来iPS細胞テラトーマ中の6つの独立した骨形成領域又は2つの独立したES細胞テラトーマ中の9つの独立した骨形成領域の平均値±SDが示されている。統計学的分析にはマン・ホイットニーのU検定を使用した。The figure which shows the Ki67 positive rate of the bone formation area | region in the teratoma derived from a sarcoma iPS cell or a control ES cell. EWS-FLI1-induced ES cells (Rosa-M2rtTA / Col1a1 :: tetO-EWS-FLI1-ires-mCherry) were used as a control. Shown is the mean ± SD of 6 independent osteogenic regions in 2 independent sarcoma-derived iPS cell teratomas or 9 independent osteogenic regions in 2 independent ES cell teratomas. Mann-Whitney U test was used for statistical analysis. Dox有り無しでのiPS細胞又は対照ES細胞の増殖を示すグラフ。EWS-FLI1発現は未分化多能性幹細胞の増殖を促進しない。Graph showing proliferation of iPS cells or control ES cells with and without Dox. EWS-FLI1 expression does not promote proliferation of undifferentiated pluripotent stem cells. インビトロ骨分化及びEWS-FLI1誘導の模式図。誘導された骨形成細胞(骨分化誘導から17日後)を後にDoxで2週間処理した、又は処理しなかった。Schematic diagram of in vitro bone differentiation and EWS-FLI1 induction. Induced osteogenic cells (17 days after induction of bone differentiation) were later treated with Dox for 2 weeks or not. Dox有り無しでの各細胞の増殖を示す写真。肉腫iPS細胞由来骨形成細胞はDox処理によって顕著に細胞増殖するが、Rosa-M2rtTA/Rosa::tetO-EWS-FLI1 ES細胞由来骨形成細胞はそのようにならなかった。The photograph which shows the proliferation of each cell with and without Dox. Although sarcoma iPS cell-derived osteogenic cells proliferated remarkably by Dox treatment, Rosa-M2rtTA / Rosa :: tetO-EWS-FLI1 ES cell-derived osteogenic cells did not. EWS-FLI1発現に関するqRT-PCR分析の結果を示すグラフ。誘導された骨形成細胞におけるEWS-FLI1発現はDox曝露によって検出可能であった。The graph which shows the result of qRT-PCR analysis regarding EWS-FLI1 expression. EWS-FLI1 expression in induced osteogenic cells was detectable by Dox exposure. 肉腫iPS細胞由来骨形成細胞を移植されたマウスの、Dox有り無しでの腫瘍形成を示す写真。EWS-FLI1を有するiPS細胞から誘導された骨形成細胞はDoxの存在下でのみ免疫低下状態のマウスにおいて腫瘍を発生した(処理から3~7週間後)。The photograph which shows the tumor formation with and without Dox of the mouse | mouth transplanted with the sarcoma iPS cell origin osteogenic cell. Osteogenic cells derived from iPS cells with EWS-FLI1 developed tumors in immunocompromised mice only in the presence of Dox (3-7 weeks after treatment). 腫瘍組織のHE染色の結果を示す写真(左はDoxなし)。組織学的に見ると、発生した腫瘍は小細胞性骨肉腫に類似した小円形青色細胞から構成される肉腫であった。スケールバー、200μm(左)及び50μm(右)。The photograph which shows the result of HE dyeing | staining of tumor tissue (the left is no Dox). Histologically, the tumor that developed was a sarcoma composed of small round blue cells similar to small cell osteosarcoma. Scale bar, 200 μm (left) and 50 μm (right).
<ユーイング肉腫ファミリー腫瘍細胞>
本発明のユーイング肉腫ファミリー腫瘍細胞は、骨髄間質細胞に由来し、誘導型転写制御配列を含むプロモーターの制御下に置かれたEWSキメラ遺伝子が染色体上に導入され、EWSキメラタンパク質の発現時に、生育可能であり、無限増殖能を有する細胞である。
<Ewing sarcoma family tumor cells>
The Ewing sarcoma family tumor cells of the present invention are derived from bone marrow stromal cells, and an EWS chimeric gene placed under the control of a promoter containing an inducible transcriptional regulatory sequence is introduced onto the chromosome, and during expression of the EWS chimeric protein, It is a cell that can grow and has infinite proliferation ability.
本発明のユーイング肉腫ファミリー腫瘍細胞は、哺乳動物由来の骨髄間質細胞に、誘導型転写制御配列を含むプロモーターの制御下に置かれたEWSキメラ遺伝子を、染色体に組み込む形で導入し、EWSキメラタンパク質を発現させた状態で生育でき、不死化した細胞を選別することで得ることができる。 The Ewing sarcoma family tumor cell of the present invention introduces an EWS chimera gene that is placed under control of a promoter containing an inducible transcription control sequence into bone marrow stromal cells derived from a mammal, It can be obtained by selecting immortalized cells that can grow in a state in which the protein is expressed.
骨髄間質細胞は、様々な供給源から得ることができる。骨髄間質細胞の供給源およびそれらの供給源から骨髄間質細胞を得る方法及びその培養方法は、従来技術に記載されている(例えば、Friedenstein et al.、1987, Cell Tissue Kinetics 20 : 263-272 ; Castro-Malaspina et al.、1980, Blood 56 : 289-301 ; Mets et al.、1981, Mech. Ageing Develop. 16 : 81-89 ; Piersma et al.、1985, Exp. Hematol. 13 : 237-243 ; Caplan, 1991, J.Orthoped.Res. 9:641-650; Prockop,1997, Science 276:71-74 ; Beresford et al.、1992, J.Cell Sci. 102:341-351; Cheng et al.、1994, Endocrinology 134:277-286 ; Rickard et al.、1994, Develop. Biol. 161: 218-228 ; Clark et al.、1995, Ann. N. Y. Acad. Sci. 770 : 70-78)。 Bone marrow stromal cells can be obtained from a variety of sources. Sources of bone marrow stromal cells and methods for obtaining bone marrow stromal cells from those sources and methods for culturing them have been described in the prior art (eg Friedenstein et al., 1987, Cell Tissue Kinetics 20: 263- 272; Castro-Malaspina et al., 1980, Blood 56: 289-301; Mets et al., 1981, Mech. Ageing Develop. 16: 81-89; Piersma et al., 1985, Exp. Hematol. 13: 237 -243; Caplan, 1991, J.Orthoped.Res. 9: 641-650; Prockop, 1997, Science 276: 71-74; Beresford et al., 1992, J.Cell Sci. 102: 341-351; Cheng et al., 1994, Endocrinology 134: 277-286; Rickard et al., 1994, Develop. Biol. 161: 218-228; Clark et al., 1995, Ann. N. Y. Acad. Sci. 770: 70- 78).
骨髄間質細胞は、任意の骨髄から得ることができ、例えば、ヒトのドナーの腸骨稜の吸引によって得られる骨髄からの細胞を含む。ドナーから骨髄を得る方法は周知技術である。さらに、骨髄間質細胞は商業的に得ることもでき、例えば、ヒト、マウス、ラット、ウサギ、イヌ、ヤギ、ヒツジ、ブタ及びウマから単離された骨髄間質細胞は、Cognate Bioservices社(Baltimore, MD)から入手可能である。 Bone marrow stromal cells can be obtained from any bone marrow, including, for example, cells from the bone marrow obtained by aspiration of the iliac crest of a human donor. Methods for obtaining bone marrow from a donor are well known techniques. In addition, bone marrow stromal cells can also be obtained commercially, for example, bone marrow stromal cells isolated from humans, mice, rats, rabbits, dogs, goats, sheep, pigs and horses can be obtained from Cognate® Bioservices (Baltimore , MD).
EWSキメラ遺伝子としては、Cancer Res. 2000 Mar 15;60(6):1536-40 等に記載されるようにEWS-FLI 、EWS-ERG、EWS-ETV1、EWS-FEVなどが例示されるが、好ましくはEWS-FLI1である。
EWS-FLI1としてはヒト由来のEWS-FLI1が好ましく、例えば、配列番号1の塩基番号1~1494の塩基配列によってコードされる、EWS(配列番号2)とFLI1(配列番号3)の融合タンパク質のアミノ酸配列を含むタンパク質が挙げられる。ただし、細胞を癌化させてユーイング肉腫ファミリー腫瘍を誘導する機能を維持する限り、上記アミノ酸配列と80%以上、好ましくは90%以上、より好ましくは95%以上の同一性を有するアミノ酸配列を含むタンパク質であってもよい。
Examples of EWS chimeric genes include EWS-FLI, EWS-ERG, EWS-ETV1, and EWS-FEV as described in Cancer Res. 2000 Mar 15; 60 (6): 1536-40 etc. EWS-FLI1 is preferable.
EWS-FLI1 is preferably human-derived EWS-FLI1, for example, a fusion protein of EWS (SEQ ID NO: 2) and FLI1 (SEQ ID NO: 3) encoded by the nucleotide sequence of base numbers 1-1494 of SEQ ID NO: 1. Examples include proteins containing amino acid sequences. However, an amino acid sequence having 80% or more, preferably 90% or more, more preferably 95% or more identity with the above-mentioned amino acid sequence is included as long as the function of inducing cells into cancer and inducing the Ewing sarcoma family tumor is maintained. It may be a protein.
誘導型転写制御配列としては、薬剤等の刺激に応答してプロモーターからの転写を開始させる配列が挙げられ、例えば、Tetオペレーター配列、Cumateオペレーター配列(System Biosciences社:SparQ Cumate Switch Inducible System)、γオペレーター配列(特表2006-526991)などが挙げられる。 Examples of inducible transcription control sequences include sequences that initiate transcription from a promoter in response to stimuli such as drugs. Examples include Tet operator sequences, Cumate operator sequences (System Biosciences: SparQ Cumate Switch Inducible System), γ An operator sequence (Special Table 2006-526991) and the like can be mentioned.
Tetオペレーター配列はリバーステトラサイクリン制御性トランス活性化因子が結合する配列(テトラサイクリン応答因子:TRE)であり、細胞に添加されたドキシサイクリン(Dox)などのリバーステトラサイクリンに依存して宿主細胞から発現したリバーステトラサイクリン制御性トランス活性化因子が結合し、その下流に連結された遺伝子の発現が誘導される。 The Tet operator sequence is a sequence that binds a reverse tetracycline-regulated transactivator (tetracycline response factor: TRE), and reverse tetracycline expressed from the host cell depending on reverse tetracycline such as doxycycline (Dox) added to the cell. A regulatory transactivator binds and induces expression of a gene linked downstream thereof.
リバーステトラサイクリン制御性トランス活性化因子としては、Clonetech社のTet-On Systemに含まれる、変異型Tetリプレッサータンパク質(tTetR)とVP16活性化ドメイン(AD)より構成される融合タンパク質が例示され、Tetオペレーター配列を用いる際には遺伝子が導入される宿主細胞として、当該タンパク質を発現した細胞を用いる。 Examples of the reverse tetracycline-regulated transactivator include a fusion protein composed of a mutant Tet repressor protein (tTetR) and a VP16 activation domain (AD) included in Clonetech's Tet-On® System. When using an operator sequence, a cell expressing the protein is used as a host cell into which a gene is introduced.
誘導型転写制御配列の下流には哺乳動物細胞で機能し得るプロモーターに連結されたEWSキメラ遺伝子が配置される。哺乳動物細胞で機能し得るプロモーターとしては、β-アクチンプロモーター、CMVプロモーター、CAG(CAGGS)プロモーター等が例示されるが、プロモーターの種類は多く知られており、特にこれらに限定されない。 An EWS chimeric gene linked to a promoter capable of functioning in mammalian cells is arranged downstream of the inducible transcription control sequence. Examples of promoters that can function in mammalian cells include β-actin promoters, CMV promoters, CAG (CAGGS) promoters, etc., but many types of promoters are known and are not particularly limited thereto.
なお、遺伝子導入のための発現コンストラクトには、上記の誘導型転写制御配列、プロモーター、EWSキメラ遺伝子の他に、タグ配列(例えば、Flagタグ:配列番号4、HAタグ:配列番号5)、薬剤耐性遺伝子などの選択マーカー配列、リボソーム結合配列、発光タンパク質コード配列などが含まれてよい。 The expression construct for gene transfer includes a tag sequence (for example, Flag tag: SEQ ID NO: 4, HA tag: SEQ ID NO: 5), drug in addition to the above-described inducible transcription control sequence, promoter, and EWS chimeric gene. Selection marker sequences such as resistance genes, ribosome binding sequences, photoprotein coding sequences and the like may be included.
なお、EWSキメラ遺伝子と薬剤耐性遺伝子をTetオペロン制御下におくことで、ドキシサイクリン(Dox)投与によってEWSキメラ遺伝子と薬剤耐性遺伝子を同時に誘導可能になる。EWSキメラ遺伝子はがん遺伝子であるものの、特定の細胞種でのみ発がんに寄与し、多くの細胞腫において毒性をもたらすところ、腫瘍細胞をDox+薬剤(ネオマイシンなど)存在下で培養することで、確実にEWSキメラ遺伝子で正に制御される細胞を選別できる。これにより、より確実にEWSキメラ遺伝子に依存した腫瘍細胞を得ることが可能になる。 By placing the EWS chimeric gene and the drug resistance gene under the control of the Tet operon, it becomes possible to induce the EWS chimeric gene and the drug resistance gene simultaneously by administration of doxycycline (Dox). Although the EWS chimeric gene is an oncogene, it contributes to carcinogenesis only in certain cell types and causes toxicity in many cell tumors. By culturing tumor cells in the presence of Dox + drugs (such as neomycin), it is ensured. Cells that are positively controlled by the EWS chimeric gene can be selected. This makes it possible to obtain tumor cells that depend on the EWS chimeric gene more reliably.
染色体上への遺伝子導入の方法は特に制限されず、ウイルスベクターを用いる方法、プラスミドベクターを用いる方法、人工染色体を用いる方法などが挙げられるが、ウイルスベクターを用いる方法が好ましく、レンチウイルスベクターを用いる方法がより好ましい。 The method of gene transfer onto the chromosome is not particularly limited, and examples thereof include a method using a viral vector, a method using a plasmid vector, a method using an artificial chromosome, and the like. A method using a viral vector is preferable, and a lentiviral vector is used. The method is more preferred.
レンチウイルスベクターとしては、サル免疫不全ウイルスベクター、ウマ伝染性貧血ウイルス(EIAV)ベクター、ヒト免疫不全ウイルス(HIV、例えばHIV1またはHIV2)ベクター、ネコ免疫不全ウイルス(FIV)ベクターなどを用いることができ、市販のレンチウイルスベクターを使用することもできる。 As a lentiviral vector, a simian immunodeficiency virus vector, an equine infectious anemia virus (EIAV) vector, a human immunodeficiency virus (HIV, for example, HIV1 or HIV2) vector, a feline immunodeficiency virus (FIV) vector, etc. can be used. A commercially available lentiviral vector can also be used.
誘導型転写制御配列を含むプロモーターの制御下に置かれたEWSキメラ遺伝子を、哺乳動物由来の骨髄間質細胞に、染色体に組み込む形で導入し、その後、遺伝子発現誘導のための刺激物質を添加してEWSキメラタンパク質を発現させ、その状態で細胞を培養し、生育でき、不死化した細胞を選別することで本発明のユーイング肉腫ファミリー腫瘍細胞を得ることができる。ユーイング肉腫ファミリー腫瘍細胞は、その増殖能に加え、染色体異常や腫瘍特異的遺伝子や細胞周期マーカー(例えばKi67)の発現などでも特徴づけられる。なお、本発明のユーイング肉腫ファミリー腫瘍細胞は株化されたものでもよい。 An EWS chimeric gene placed under the control of a promoter containing an inducible transcription control sequence is introduced into a bone marrow stromal cell derived from a mammal and then added to a chromosome, and then a stimulating substance for gene expression induction is added. The EWS chimeric protein of the present invention can be obtained by expressing an EWS chimeric protein, and culturing and growing cells in that state, and selecting immortalized cells. Ewing sarcoma family tumor cells are characterized by chromosomal abnormalities, tumor-specific genes, and expression of cell cycle markers (eg, Ki67) in addition to their proliferative ability. The Ewing sarcoma family tumor cells of the present invention may be established.
本発明のユーイング肉腫ファミリー腫瘍細胞をマウスやラットなどの非ヒト哺乳動物に移植することで、EWSキメラタンパク質の発現依存的にユーイング肉腫ファミリー腫瘍を生じるユーイング肉腫ファミリー腫瘍モデル動物を得ることができる。なお、移植部位や移植に用いる細胞の量は動物の体重や目的の表現型などに応じ適宜決定すればよい。 By transplanting the Ewing sarcoma family tumor cells of the present invention into a non-human mammal such as a mouse or a rat, an Ewing sarcoma family tumor model animal that produces an Ewing sarcoma family tumor depending on the expression of the EWS chimeric protein can be obtained. Note that the transplant site and the amount of cells used for transplantation may be appropriately determined according to the body weight of the animal, the desired phenotype, and the like.
<人工多能性幹(iPS)細胞>
本発明のユーイング肉腫ファミリー腫瘍細胞を初期化することで、EWSキメラタンパク質の発現依存的にユーイング肉腫ファミリー腫瘍の表現型を呈する細胞に分化し得るiPS細胞を得ることができる。
<Artificial pluripotent stem (iPS) cells>
By initializing the Ewing sarcoma family tumor cells of the present invention, it is possible to obtain iPS cells that can differentiate into cells exhibiting the Ewing sarcoma family tumor phenotype depending on the expression of the EWS chimeric protein.
iPS細胞は、ある特定の核初期化物質を、DNAまたはタンパク質の形態で本発明のユーイング肉腫ファミリー腫瘍細胞に導入することまたは薬剤によって当該核初期化物質の内在性のmRNAおよびタンパク質の発現を上昇させることによって作製することができる(K. Takahashi and S. Yamanaka (2006) Cell, 126: 663-676、K. Takahashi et al. (2007) Cell, 131: 861-872、J. Yu et al. (2007) Science, 318: 1917-1920、M. Nakagawa et al. (2008) Nat. Biotechnol., 26: 101-106、国際公開WO 2007/069666および国際公開WO 2010/068955)。核初期化物質は、ES細胞に特異的に発現している遺伝子またはES細胞の未分化維持に重要な役割を果たす遺伝子もしくはその遺伝子産物であればよく、特に限定されないが、例えば、Oct3/4, Klf4, Klf1, Klf2, Klf5, Sox2, Sox1, Sox3, Sox15, Sox17, Sox18, c-Myc, L-Myc, N-Myc, TERT, SV40 Large T antigen, HPV16 E6, HPV16 E7, Bmil, Lin28, Lin28b,Nanog, EsrrbまたはEsrrgが例示される。これらの初期化物質は、iPS細胞樹立の際には、組み合わされて使用されてもよい。例えば、上記初期化物質を、少なくとも1つ、2つもしくは3つ含む組み合わせであり、好ましくは4つを含む組み合わせである。 iPS cells introduce certain nuclear reprogramming substances into the Ewing sarcoma family tumor cells of the present invention in the form of DNA or protein, or increase the endogenous mRNA and protein expression of the nuclear reprogramming substances by drugs. (K. Takahashi and S. Yamanaka (2006) Cell, 126: 663-676, K. Takahashi et al. (2007) Cell, 131: 861-872, J. Yu et al. (2007) Science, 318: 1917-1920, M. Nakagawa et al. (2008) Nat. Biotechnol., 26: 101-106, International Publication WO 2007/069666 and International Publication WO / 2010/068955). The nuclear reprogramming substance is not particularly limited as long as it is a gene specifically expressed in ES cells, a gene that plays an important role in maintaining undifferentiation of ES cells, or a gene product thereof. For example, Oct3 / 4 , Klf4, Klf1, Klf2, Klf5, Sox2, Sox1, Sox3, Sox15, Sox17, Sox18, c-Myc, L-Myc, N-Myc, TERT, SV40 Large T antigen, HPV16 E6, HPB28 E7 Examples are Lin28b, Nanog, Esrrb, or Esrrg. These reprogramming substances may be used in combination when iPS cells are established. For example, a combination including at least one, two, or three of the above-described initialization substances, preferably a combination including four.
上記の各核初期化物質のマウスおよびヒトcDNAのヌクレオチド配列並びに当該cDNAにコードされるタンパク質のアミノ酸配列情報は、WO 2007/069666に記載のNCBI accession numbersを参照することにより取得できる。当業者は、当該cDNA配列またはアミノ酸配列情報に基づいて、常法により所望の核初期化物質を調製することができる。 Nucleotide sequences of mouse and human cDNAs of each nuclear reprogramming substance and amino acid sequence information of the protein encoded by the cDNA can be obtained by referring to NCBI accession numbers described in WO 2007/079666. A person skilled in the art can prepare a desired nuclear reprogramming substance by a conventional method based on the cDNA sequence or amino acid sequence information.
これらの核初期化物質は、タンパク質の形態で、例えばリポフェクション、細胞膜透過性ペプチドとの結合、マイクロインジェクションなどの手法によって初期化対象の腫瘍細胞に導入してもよいし、あるいは、DNAの形態で、例えば、ウイルス、プラスミド、人工染色体などのベクター、リポフェクション、リポソーム、マイクロインジェクションなどの手法によって腫瘍細胞内に導入することができる。ウイルスベクターとしては、レトロウイルスベクター、レンチウイルスベクター(以上、Cell, 126, pp.663-676, 2006; Cell, 131, pp.861-872, 2007; Science, 318, pp.1917-1920, 2007)、アデノウイルスベクター(Science, 322, 945-949, 2008)、アデノ随伴ウイルスベクター、センダイウイルスベクター(Proc Jpn Acad Ser B Phys Biol Sci. 85, 348-62, 2009)などが例示される。
また、人工染色体ベクターとしては、例えばヒト人工染色体(HAC)、酵母人工染色体(YAC)、細菌人工染色体(BAC、PAC)などが含まれる。プラスミドとしては、哺乳動物細胞用プラスミドを使用しうる(Science, 322:949-953, 2008)。ベクターには、核初期化物質が発現可能なように、プロモーター、エンハンサー、リボゾーム結合配列、ターミネーター、ポリアデニル化サイトなどの制御配列を含むことができる。使用されるプロモーターとしては、例えばEF1αプロモーター、CAGプロモーター、SRαプロモーター、SV40プロモーター、LTRプロモーター、CMV(サイトメガロウイルス)プロモーター、RSV(ラウス肉腫ウイルス)プロモーター、MoMuLV(モロニーマウス白血病ウイルス)LTR、HSV-TK(単純ヘルペスウイルスチミジンキナーゼ)プロモーターなどが用いられる。なかでも、EF1αプロモーター、CAGプロモーター、MoMuLV LTR、CMVプロモーター、SRαプロモーターなどが挙げられる。さらに、必要に応じて、薬剤耐性遺伝子(例えばカナマイシン耐性遺伝子、アンピシリン耐性遺伝子、ピューロマイシン耐性遺伝子など)、チミジンキナーゼ遺伝子、ジフテリアトキシン遺伝子などの選択マーカー配列、緑色蛍光タンパク質(GFP)、βグルクロニダーゼ(GUS)、FLAGなどのレポーター遺伝子配列などを含むことができる。また、上記ベクターには、腫瘍細胞への導入後、核初期化物質をコードする遺伝子もしくはプロモーターとそれに結合する核初期化物質をコードする遺伝子を共に切除するために、それらの前後にLoxP配列を有してもよい。別の好ましい一実施態様においては、トランスポゾンを用いて染色体に導入遺伝子を組み込んだ後に、プラスミドベクターもしくはアデノウイルスベクターを用いて細胞に転移酵素を作用させ、導入遺伝子を完全に染色体から除去する方法が用いられ得る。好ましいトランスポゾンとしては、例えば、鱗翅目昆虫由来のトランスポゾンであるpiggyBac等が挙げられる(Kaji, K. et al., (2009), Nature, 458: 771-775、Woltjen et al., (2009), Nature, 458: 766-770 、WO 2010/012077)。さらに、ベクターには、染色体への組み込みがなくとも複製されて、エピソーマルに存在するように、リンパ指向性ヘルペスウイルス(lymphotrophic herpes virus)、BKウイルスおよび牛乳頭腫(Bovine papillomavirus)の起点とその複製に係る配列を含んでいてもよい。例えば、EBNA-1およびoriPもしくはLarge TおよびSV40ori配列を含むことが挙げられる(WO 2009/115295、WO 2009/157201およびWO 2009/149233)。また、複数の核初期化物質を同時に導入するために、ポリシストロニックに発現させる発現ベクターを用いてもよい。ポリシストロニックに発現させるためには、遺伝子をコードする配列の間は、IRESまたは口蹄病ウイルス(FMDV)2Aコード領域により結合されていてもよい(Science, 322:949-953, 2008およびWO 2009/092042、WO 2009/152529)。
These nuclear reprogramming substances may be introduced into tumor cells to be reprogrammed in the form of proteins, for example, by lipofection, binding to cell membrane permeable peptides, microinjection, or in the form of DNA. For example, it can be introduced into tumor cells by techniques such as vectors such as viruses, plasmids, artificial chromosomes, lipofection, liposomes, and microinjection. Examples of viral vectors include retroviral vectors and lentiviral vectors (above, Cell, 126, pp.663-676, 2006; Cell, 131, pp.861-872, 2007; Science, 318, pp.1917-1920, 2007 ), Adenovirus vectors (Science, 322, 945-949, 2008), adeno-associated virus vectors, Sendai virus vectors (Proc Jpn Acad Ser B Phys Biol Sci. 85, 348-62, 2009) and the like.
Examples of artificial chromosome vectors include human artificial chromosomes (HAC), yeast artificial chromosomes (YAC), and bacterial artificial chromosomes (BAC, PAC). As a plasmid, a plasmid for mammalian cells can be used (Science, 322: 949-953, 2008). The vector can contain regulatory sequences such as a promoter, an enhancer, a ribosome binding sequence, a terminator, and a polyadenylation site so that a nuclear reprogramming substance can be expressed. Examples of the promoter used include EF1α promoter, CAG promoter, SRα promoter, SV40 promoter, LTR promoter, CMV (cytomegalovirus) promoter, RSV (rous sarcoma virus) promoter, MoMuLV (Moloney murine leukemia virus) LTR, HSV- A TK (herpes simplex virus thymidine kinase) promoter or the like is used. Among them, EF1α promoter, CAG promoter, MoMuLV LTR, CMV promoter, SRα promoter and the like can be mentioned. Furthermore, if necessary, drug resistance genes (for example, kanamycin resistance gene, ampicillin resistance gene, puromycin resistance gene, etc.), thymidine kinase gene, diphtheria toxin gene and other selectable marker sequences, green fluorescent protein (GFP), β-glucuronidase ( GUS), reporter gene sequences such as FLAG, and the like. In addition, after introduction into a tumor cell, the above vector contains a LoxP sequence before and after the gene or promoter encoding the nuclear reprogramming substance and the gene encoding the nuclear reprogramming substance that binds to it. You may have. In another preferred embodiment, there is a method for completely removing a transgene from a chromosome by incorporating a transgene into a chromosome using a transposon and then allowing a transferase to act on the cell using a plasmid vector or an adenovirus vector. Can be used. Preferred transposons include, for example, piggyBac, a transposon derived from lepidopterous insects (Kaji, K. et al., (2009), Nature, 458: 771-775, Woltjen et al., (2009), Nature, 458: 766-770, WO 2010/012077). In addition, the vector replicates without chromosomal integration and is present episomally, so that the origin and replication of lymphotrophic herpes virus, BK virus, and bovine papillomavirus The arrangement | sequence which concerns on may be included. Examples include EBNA-1 and oriP or Large T and SV40ori sequences (WO 2009/115295, WO 2009/157201 and WO 2009/149233). Moreover, in order to simultaneously introduce a plurality of nuclear reprogramming substances, an expression vector for polycistronic expression may be used. For polycistronic expression, the gene-encoding sequence may be linked by an IRES or foot-and-mouth disease virus (FMDV) 2A coding region (Science, 322: 949-953, 2008 and WO 2009/092042, WO 2009/152529).
核初期化に際して、iPS細胞の誘導効率を高めるために、上記の因子の他に、例えば、ヒストンデアセチラーゼ(HDAC)阻害剤[例えば、バルプロ酸(VPA)(Nat. Biotechnol., 26(7): 795-797 (2008))、トリコスタチンA、酪酸ナトリウム、MC 1293、M344等の低分子阻害剤、HDACに対するsiRNAおよびshRNA(例、HDAC1 siRNA Smartpool(登録商標) (Millipore)、HuSH 29mer shRNA Constructs against HDAC1 (OriGene)等)等の核酸性発現阻害剤など]、DNAメチルトランスフェラーゼ阻害剤(例えば5’-azacytidine)(Nat. Biotechnol., 26(7): 795-797 (2008))、G9aヒストンメチルトランスフェラーゼ阻害剤[例えば、BIX-01294 (Cell Stem Cell, 2: 525-528 (2008))等の低分子阻害剤、G9aに対するsiRNAおよびshRNA(例、G9a siRNA(human) (Santa Cruz Biotechnology)等)等の核酸性発現阻害剤など]、L-channel calcium agonist (例えばBayk8644) (Cell Stem Cell, 3, 568-574 (2008))、p53阻害剤(例えばp53に対するsiRNAおよびshRNA)(Cell Stem Cell, 3, 475-479 (2008))、Wnt Signaling activator(例えばsoluble Wnt3a)(Cell Stem Cell, 3, 132-135 (2008))、LIFまたはbFGFなどの増殖因子、ALK5阻害剤(例えば、SB431542)(Nat. Methods, 6: 805-8 (2009))、mitogen-activated protein kinase signaling阻害剤、glycogen synthase kinase-3阻害剤(PloS Biology, 6(10), 2237-2247 (2008))、miR-291-3p、miR-294、miR-295などのmiRNA (R.L. Judson et al., Nat. Biotech., 27:459-461 (2009))、等を使用することができる。 In order to increase the induction efficiency of iPS cells upon nuclear reprogramming, in addition to the above factors, for example, histone deacetylase (HDAC) inhibitors [for example, valproic acid (VPA) (Nat. Biotechnol., 26 (7 ): 795-797 (2008)), small molecule inhibitors such as trichostatin A, sodium butyrate, MC 1293, M344, siRNA and shRNA against HDAC (e.g., HDAC1 siRNA (Smartpool® (Millipore), HuSH 29mer shRNA Nucleic acid expression inhibitors such as Constructs against HDAC1 (OriGene) etc.], DNA methyltransferase inhibitors (eg 5'-azacytidine) (Nat. Biotechnol., 26 (7): 795-797 (2008)), G9a Histone methyltransferase inhibitors [eg, small molecule inhibitors such as BIX-01294 (Cell Stem Cell, 2: 525-528 (2008)), siRNA and shRNA against G9a (eg, G9a siRNA (human) (Santa Cruz Biotechnology) Etc.), L-channel] calcium] agonist (eg B ayk8644) (Cell Stem Cell, 3, 568-574 (2008)), p53 inhibitors (eg siRNA and shRNA against p53) (Cell Stem Cell, 3, 475-479 (2008)), Wnt Signaling activator (eg soluble Wnt3a ) (Cell Stem Cell, 3, 132-135 (2008)), growth factors such as LIF or bFGF, ALK5 inhibitors (eg, SB431542) (Nat. Methods, 6: 805-8 (2009)), mitogen-activated protein kinase signaling inhibitor, glycogen synthase kinase-3 inhibitor (PloS Biology, 6 (10), 2237-2247 (2008)), miR 291-3p, miR-294, miR-295 and other miRNA (RL Judson et al., Nat. Biotech., 27: 459-461 2009 (2009)), etc. can be used.
薬剤によって核初期化物質の内在性のタンパク質の発現を上昇させる方法における薬剤としては、6-bromoindirubin-3'-oxime、indirubin-5-nitro-3'-oxime、valproic acid、2-(3-(6-methylpyridin-2-yl)-lH-pyrazol-4-yl)-1,5-naphthyridine、1-(4-methylphenyl)-2-(4,5,6,7-tetrahydro-2-imino-3(2H)-benzothiazolyl)ethanone HBr(pifithrin-alpha)、prostaglandin J2および prostaglandin E2等が例示される(WO 2010/068955)。 Examples of the drug in the method for increasing the expression of the endogenous protein of the nuclear reprogramming substance by the drug include 6-bromoindirubin-3'-oxime, indirubin-5-nitro-3'-oxime, valproic acid, 2- (3- (6-methylpyridin-2-yl) -lH-pyrazol-4-yl) -1,5-naphthyridine, 1- (4-methylphenyl) -2- (4,5,6,7-tetrahydro-2-imino- 3 (2H) -benzothiazolyl) ethanone HBr (pifithrin-alpha), prostaglandin J2, and prostaglandin E2 are exemplified (WO 2010/068955).
iPS細胞誘導のための培養培地としては、例えば(1) 10~15%FBSを含有するDMEM、DMEM/F12またはDME培地(これらの培地にはさらに、LIF、penicillin/streptomycin、puromycin、L-グルタミン、非必須アミノ酸類、β-メルカプトエタノールなどを適宜含むことができる。)、(2) bFGFまたはSCFを含有するES細胞培養用培地、例えばマウスES細胞培養用培地(例えばTX-WES培地、トロンボX社)または霊長類ES細胞培養用培地(例えば霊長類(ヒト&サル)ES細胞用培地(リプロセル、京都、日本)、mTeSR-1)、などが含まれる。 Examples of the culture medium for iPS cell induction include (1) DMEM, DMEM / F12 or DME medium containing 10-15% FBS (these media include LIF, penicillin / streptomycin, puromycin, L-glutamine). , (2) ES cell culture medium containing bFGF or SCF, such as mouse ES cell culture medium (for example, TX-WES medium, thrombos. X) or primate ES cell culture medium (for example, primate (human & monkey) ES cell culture medium (Reprocell, Kyoto, Japan), mTeSR-1).
培養法の例としては、たとえば、37℃、5%CO2存在下にて、10%FBS含有DMEMまたはDMEM/F12培地中で腫瘍細胞と核初期化物質 (DNAまたはタンパク質) を接触させ約4~7日間培養し、その後、細胞をフィーダー細胞 (たとえば、マイトマイシンC処理STO細胞、SNL細胞等) 上にまきなおし、腫瘍細胞と核初期化物質の接触から約10日後からbFGF含有霊長類ES細胞培養用培地で培養し、該接触から約30~約45日またはそれ以上ののちにES細胞様コロニーを生じさせることができる。また、iPS細胞の誘導効率を高めるために、5-10%と低い酸素濃度の条件下で培養してもよい。 As an example of the culture method, for example, a tumor cell and a nuclear reprogramming substance (DNA or protein) are contacted in DMEM or DMEM / F12 medium containing 10% FBS in the presence of 5% CO 2 at 37 ° C. Culture for ~ 7 days, then re-spread cells onto feeder cells (eg, mitomycin C-treated STO cells, SNL cells, etc.), and bFGF-containing primate ES cells approximately 10 days after contact between tumor cells and nuclear reprogramming substance The cells can be cultured in a culture medium and ES cell-like colonies can be generated about 30 to about 45 days or more after the contact. Further, in order to increase the induction efficiency of iPS cells, the cells may be cultured under conditions of an oxygen concentration as low as 5-10%.
あるいは、その代替培養法として、フィーダー細胞 (たとえば、マイトマイシンC処理STO細胞、SNL細胞等) 上で10%FBS含有DMEM培地(これにはさらに、LIF、ペニシリン/ストレプトマイシン、ピューロマイシン、L-グルタミン、非必須アミノ酸類、β-メルカプトエタノールなどを適宜含むことができる。)で培養し、約25~約30日またはそれ以上ののちにES様コロニーを生じさせることができる。上記培養の間には、培養開始2日目以降から毎日1回新鮮な培地と培地交換を行う。また、核初期化に使用する腫瘍細胞の細胞数は、限定されないが、培養ディッシュ100cm2あたり約5×103~約5×106細胞の範囲である。 Alternatively, as an alternative culture method, 10% FBS-containing DMEM medium (including LIF, penicillin / streptomycin, puromycin, L-glutamine, etc.) on feeder cells (eg, mitomycin C-treated STO cells, SNL cells, etc.) Non-essential amino acids, β-mercaptoethanol, etc. can be included as appropriate.) And ES-like colonies can be formed after about 25 to about 30 days or more. During the culture, the medium is replaced with a fresh medium once a day from the second day after the start of the culture. The number of tumor cells used for nuclear reprogramming is not limited, but ranges from about 5 × 10 3 to about 5 × 10 6 cells per 100 cm 2 of culture dish.
マーカー遺伝子として薬剤耐性遺伝子を含む遺伝子を用いた場合は、対応する薬剤を含む培地(選択培地)で培養を行うことによりマーカー遺伝子発現細胞を選択することができる。またマーカー遺伝子が蛍光タンパク質遺伝子の場合は蛍光顕微鏡で観察することによって、発光酵素遺伝子の場合は発光基質を加えることによって、また発色酵素遺伝子の場合は発色基質を加えることによって、マーカー遺伝子発現細胞を検出することができる。 When a gene containing a drug resistance gene is used as the marker gene, marker gene-expressing cells can be selected by culturing in a medium (selective medium) containing the corresponding drug. In addition, when the marker gene is a fluorescent protein gene, the marker gene-expressing cells can be obtained by observing with a fluorescence microscope, by adding a luminescent substrate in the case of a luminescent enzyme gene, Can be detected.
iPS細胞が得られたことはNanog及びOct3/4などの多能性関連遺伝子の発現やNanogプロモーター及びOct3/4遠位エンハンサーなどの脱メチル化、またはテラトーマ形成などによって確認できる。 Obtaining iPS cells can be confirmed by expression of pluripotency-related genes such as Nanog and Oct3 / 4, demethylation of Nanog promoter and Oct3 / 4 distal enhancer, or teratoma formation.
iPS細胞の骨細胞への分化誘導方法
前述のように得られたiPS細胞を培養し、骨細胞に分化させることでEWSキメラタンパク質の発現依存的にユーイング肉腫ファミリー腫瘍の表現型を呈する細胞を得ることができる。
Method of inducing differentiation of iPS cells into bone cells <br/> The iPS cells obtained as described above are cultured and differentiated into bone cells, so that the EWS chimeric protein expression depends on the expression of Ewing sarcoma family tumors. Presenting cells can be obtained.
iPS細胞の培養は公知の方法を用いることができる。接着培養でもよいし、浮遊培養でもよいし、フィーダー細胞を用いる培養でもよい。 Known methods can be used for culturing iPS cells. Adhesive culture, suspension culture, or culture using feeder cells may be used.
iPS細胞を培養するための培地は、動物細胞の培養に用いられる培地を基礎培地として調製することができる。基礎培地としては、例えば、IMDM培地、Medium 199培地、Eagle’s Minimum Essential Medium (EMEM)培地、αMEM培地、Doulbecco’s modified Eagle’s Medium (DMEM)培地、Ham’s F12培地、RPMI 1640培地、Fischer’s培地、およびこれらの混合培地などが包含される。好ましくは、αMEM培地である。さらに、培地には、血清が含有されていてもよいし、あるいは無血清でもよい。必要に応じて、例えば、アルブミン、トランスフェリン、Knockout Serum Replacement(KSR)(ES細胞培養時のFBSの血清代替物)、脂肪酸、インスリン、コラーゲン前駆体、微量元素、2-メルカプトエタノール、3’-チオールグリセロールなどの1つ以上の血清代替物を含んでもよいし、脂質、アミノ酸、L-グルタミン、Glutamax(Invitrogen)、非必須アミノ酸、ビタミン、抗生物質、抗酸化剤、ピルビン酸、緩衝剤、無機塩類、N2サプリメント(Invitrogen)、B27サプリメント(Invitrogen)、およびサイトカインを1つ以上含有しうる。これにトリヨードサイロニンに例示される骨分化に必要な成分を加えればよい。骨分化の方法は、例えば、Nature 467, 285-290. 2010に記載されている。 A medium for culturing iPS cells can be prepared using a medium used for culturing animal cells as a basal medium. Examples of the basal medium include IMDM medium, Medium 、 199 medium, Eagle's Minimum Essential Medium (EMEM) medium, αMEM medium, Doulbecco's modified Eagle's Medium (DMEM) medium, Ham's F12 medium, RPMI 1640 medium, and Fischer's medium. Media and the like are included. ΑMEM medium is preferable. Furthermore, the medium may contain serum or may be serum-free. If necessary, for example, albumin, transferrin, Knockout Serum Replacement (KSR) (serum substitute for FBS during ES cell culture), fatty acid, insulin, collagen precursor, trace element, 2-mercaptoethanol, 3'-thiol May contain one or more serum replacements such as glycerol, lipids, amino acids, L-glutamine, Glutamax (Invitrogen), non-essential amino acids, vitamins, antibiotics, antioxidants, pyruvate, buffers, inorganic salts , N2 supplement (Invitrogen), B27 supplement (Invitrogen), and one or more cytokines. What is necessary is just to add a component required for the bone differentiation illustrated to triiodothyronine to this. The method of bone differentiation is described, for example, in Nature 467, 285-290. 2010.
培養温度は、以下に限定されないが、約30~40℃、好ましくは約37℃であり、CO2含有空気の雰囲気下で培養が行われ、CO2濃度は、好ましくは約2~5%である。 The culture temperature is not limited to the following, but is about 30 to 40 ° C., preferably about 37 ° C. The culture is performed in an atmosphere of CO 2 -containing air, and the CO 2 concentration is preferably about 2 to 5%. is there.
骨分化は、Runx2、Sp7、Pth1r、Col1a1及びDmp1などの骨分化関連遺伝子などの骨分化マーカーの発現や細胞の形態などで確認することができる。 Bone differentiation can be confirmed by expression of bone differentiation markers such as bone differentiation-related genes such as Runx2, Sp7, Pth1r, Col1a1 and Dmp1, and cell morphology.
<スクリーニング方法>
本発明のスクリーニング方法の一つの態様は、EWSキメラタンパク質の発現誘導下で培養された、上記本発明のユーイング肉腫ファミリー腫瘍細胞に試験化合物を添加する工程、該ユーイング肉腫ファミリー腫瘍細胞の増殖能または腫瘍表現型を調べる工程、及び、該ユーイング肉腫ファミリー腫瘍細胞の増殖能を低下させること、または腫瘍表現型を減少させることを指標として、試験化合物をユーイング肉腫ファミリー腫瘍の治療薬候補化合物として選択する工程を含む。化合物無添加時または対照化合物添加時と比較して腫瘍細胞株の増殖能または腫瘍表現型が低下または減少すればその試験化合物を腫瘍治療薬候補化合物として選択できる。
<Screening method>
One embodiment of the screening method of the present invention includes a step of adding a test compound to the Ewing sarcoma family tumor cell of the present invention cultured under the induction of EWS chimeric protein expression, the proliferative ability of the Ewing sarcoma family tumor cell, or Examining a tumor phenotype and selecting a test compound as a therapeutic drug candidate compound for an Ewing sarcoma family tumor, using as an index the reduction of the proliferative ability of the Ewing sarcoma family tumor cells or the reduction of the tumor phenotype Process. If the growth ability or tumor phenotype of the tumor cell line is reduced or decreased as compared with the absence of the compound or the addition of the control compound, the test compound can be selected as a tumor therapeutic drug candidate compound.
本発明のスクリーニング方法の他の態様は、上記本発明のユーイング肉腫ファミリー腫瘍細胞由来iPS細胞を骨細胞に分化させる工程、EWSキメラタンパク質の発現を誘導する工程、得られたEWSキメラタンパク質を発現するユーイング肉腫ファミリー腫瘍細胞に試験化合物を添加する工程、該ユーイング肉腫ファミリー腫瘍細胞の増殖能または腫瘍表現型を決定する工程、及び、該ユーイング肉腫ファミリー腫瘍細胞の増殖能を低下させること、または腫瘍表現型を減少させることを指標として、試験化合物をユーイング肉腫ファミリー腫瘍の治療薬候補化合物として選択する工程を含む。なお、EWSキメラタンパク質の発現誘導と同時に化合物を加えてもよい。 Other aspects of the screening method of the present invention include the step of differentiating the EPS sarcoma family tumor cell-derived iPS cells of the present invention into bone cells, the step of inducing the expression of EWS chimeric protein, and the expression of the obtained EWS chimeric protein. Adding a test compound to an Ewing sarcoma family tumor cell, determining a growth ability or tumor phenotype of the Ewing sarcoma family tumor cell, and reducing the growth ability of the Ewing sarcoma family tumor cell, or tumor expression Selecting a test compound as a candidate drug for a Ewing sarcoma family tumor using the reduction in type as an index. A compound may be added simultaneously with the induction of EWS chimeric protein expression.
腫瘍細胞の増殖能は公知の方法で調べることができる。また、腫瘍細胞の表現型としては、細胞形態、腫瘍マーカー遺伝子やKi67などの細胞周期関連遺伝子の発現、腫瘍タンパク質の発現等で調べることができ、遺伝子やタンパク質の発現レベルは公知の方法で決定することができる。 The proliferation ability of tumor cells can be examined by a known method. The tumor cell phenotype can be examined by cell morphology, expression of tumor marker genes and cell cycle-related genes such as Ki67, expression of tumor proteins, etc. The expression level of genes and proteins is determined by known methods. can do.
また、本発明のユーイング肉腫ファミリー腫瘍細胞を移植した非ヒト哺乳動物を用いてユーイング肉腫ファミリー腫瘍治療薬のスクリーニングを行うこともできる。
例えば、本発明のユーイング肉腫ファミリー腫瘍細胞が移植された非ヒト哺乳動物においてEWSキメラタンパク質の発現を誘導し、得られたEWSキメラタンパク質を発現し、腫瘍を生じたユーイング肉腫ファミリー腫瘍モデル動物に試験化合物を投与し、該ユーイング肉腫ファミリー腫瘍細胞のサイズや腫瘍表現型を決定し、該ユーイング肉腫ファミリー腫瘍のサイズを低下させること、または腫瘍表現型を減少させることを指標として、試験化合物をユーイング肉腫ファミリー腫瘍の治療薬候補化合物として選択する、という態様が例示される。
In addition, screening for therapeutic drugs for Ewing sarcoma family tumors can be performed using a non-human mammal transplanted with the Ewing sarcoma family tumor cells of the present invention.
For example, the expression of EWS chimeric protein is induced in a non-human mammal transplanted with the Ewing sarcoma family tumor cell of the present invention, and the obtained EWS chimeric protein is expressed and tested on an Ewing sarcoma family tumor model animal that has produced a tumor. A compound is administered to determine the size or tumor phenotype of the Ewing sarcoma family tumor cell, and to reduce the size of the Ewing sarcoma family tumor or to decrease the tumor phenotype as an index The mode of selecting as a therapeutic drug candidate compound for a family tumor is exemplified.
さらに、本発明のスクリーニング方法の他の態様は、上記本発明のユーイング肉腫ファミリー腫瘍細胞由来iPS細胞を、EWSキメラタンパク質が発現しない状態で試験化合物を添加した骨分化誘導培地で培養して骨細胞に分化させる工程、骨細胞への分化度を決定する工程、及び、該骨細胞への分化度を増加させることを指標として、試験化合物を骨分化促進物質として選択する工程を含む。本発明のユーイング肉腫ファミリー腫瘍細胞由来iPS細胞はコントロール細胞に比べて骨分化が抑制されているので、これを用いて骨分化を指標として骨分化促進物質のスクリーニングを行うことができる。化合物無添加時または対照化合物添加時と比較して骨分化を促進すればその試験化合物を骨分化促進物質として選択できる。骨分化促進物質は骨粗鬆症などの骨関連疾患の治療薬になりうるし、骨分化不全が肉腫形成に関わることが示されたため、骨分化促進物質は肉腫抑制物質の候補にもなりうる。なお、骨細胞への分化度は、Runx2、Sp7、Pth1r、Col1a1及びDmp1などの骨分化関連遺伝子などの骨分化マーカーの発現や細胞の形態などで確認することができる。 Furthermore, in another aspect of the screening method of the present invention, the EPS sarcoma family tumor cell-derived iPS cell of the present invention is cultured in a bone differentiation-inducing medium supplemented with a test compound in a state where no EWS chimeric protein is expressed. And a step of determining the degree of differentiation into bone cells, and a step of selecting a test compound as a bone differentiation promoting substance using as an index the increase in the degree of differentiation into bone cells. Since the EPS sarcoma family tumor cell-derived iPS cells of the present invention have suppressed bone differentiation compared to control cells, screening for a bone differentiation promoting substance can be performed using bone differentiation as an index. If bone differentiation is promoted compared to when no compound is added or when a control compound is added, the test compound can be selected as a bone differentiation promoting substance. Bone differentiation promoting substances can be therapeutic agents for bone-related diseases such as osteoporosis, and since bone differentiation failure has been shown to be involved in sarcoma formation, bone differentiation promoting substances can also be candidates for sarcoma inhibitory substances. The degree of differentiation into bone cells can be confirmed by the expression of bone differentiation markers such as bone differentiation-related genes such as Runx2, Sp7, Pth1r, Col1a1 and Dmp1, and the morphology of cells.
本発明のスクリーニング方法においては、任意の被検物質を用いることができ、例えば、細胞抽出物、細胞培養上清、微生物発酵産物、海洋生物由来の抽出物、植物抽出物、精製タンパク質又は粗タンパク質、ペプチド、非ペプチド化合物、合成低分子化合物、及び天然化合物が例示される。本発明において、被検物質はまた、(1)生物学的ライブラリ法、(2)デコンヴォルーションを用いる合成ライブラリ法、(3)「1ビーズ1化合物(one-bead one-compound)」ライブラリ法、及び(4)アフィニティクロマトグラフィ選別を使用する合成ライブラリ法を含む当技術分野で公知のコンビナトリアルライブラリ法における多くのアプローチのいずれかを使用して得ることができる。アフィニティクロマトグラフィ選別を使用する生物学的ライブラリ法はペプチドライブラリに限定されるが、その他の4つのアプローチはペプチド、非ペプチドオリゴマー、又は化合物の低分子化合物ライブラリに適用できる(Lam (1997) Anticancer Drug Des. 12: 145-67)。分子ライブラリの合成方法の例は、当技術分野において見出され得る(DeWitt et al. (1993) Proc. Natl. Acad. Sci. USA 90: 6909-13; Erb et al. (1994) Proc. Natl. Acad. Sci. USA 91: 11422-6; Zuckermann et al. (1994) J. Med. Chem. 37: 2678-85; Cho et al. (1993)Science 261: 1303-5; Carell et al. (1994) Angew. Chem. Int. Ed. Engl. 33: 2059;Carell et al. (1994) Angew. Chem. Int. Ed. Engl. 33: 2061; Gallop et al. (1994)J. Med. Chem. 37: 1233-51)。化合物ライブラリは、溶液(Houghten (1992) Bio/Techniques 13: 412-21を参照のこと)又はビーズ(Lam (1991) Nature 354: 82-4)、チップ(Fodor (1993) Nature 364: 555-6)、細菌(米国特許第5,223,409号)、胞子(米国特許第5,571,698号、同第5,403,484号、及び同第5,223,409号)、プラスミド(Cull et al.(1992) Proc. Natl. Acad. Sci. USA 89: 1865-9)若しくはファージ(Scott and Smith(1990) Science 249: 386-90; Devlin (1990) Science 249: 404-6; Cwirla et al. (1990) Proc. Natl. Acad. Sci. USA 87: 6378-82; Felici (1991) J. Mol. Biol. 222: 301-10; 米国特許出願第2002103360号)として作製され得る。 In the screening method of the present invention, any test substance can be used, for example, cell extract, cell culture supernatant, microbial fermentation product, marine organism-derived extract, plant extract, purified protein or crude protein. , Peptides, non-peptide compounds, synthetic low molecular weight compounds, and natural compounds. In the present invention, the test substance may also be (1) a biological library method, (2) a synthetic library method using deconvolution, and (3) a “one-bead one-compound” library method. And (4) can be obtained using any of a number of approaches in combinatorial library methods known in the art, including synthetic library methods using affinity chromatography sorting. Biological library methods using affinity chromatography sorting are limited to peptide libraries, but the other four approaches can be applied to small molecule compound libraries of peptides, non-peptide oligomers, or compounds (Lam (1997) Anticancer Drug Des . 12: 145-67). Examples of methods for the synthesis of molecular libraries can be found in the art (DeWitt et al. (1993) Proc. Natl. Acad. Sci. USA 90: 6909-13; Erb et al. (1994) Proc. Natl Acad. Sci. USA 91: 11422-6; Zuckermann et al. (1994) J. Med. Chem. 37: 2678-85; Cho et al. (1993) Science 261: 1303-5; Carell et al. ( 1994) Angew. Chem. Int. Ed. Engl. 33: 2059; Carell et al. (1994) Angew. Chem. Int. Ed. Engl. 33: 2061; Gallop et al. (1994) J. Med. Chem. 37: 1233-51). Compound libraries are available in solution (see Houghten (1992) Bio / Techniques 13: 412-21) or beads (Lam (1991) Nature 354: 82-4), chips (Fodor (1993) Nature 364: 555-6 ), Bacteria (US Pat. No. 5,223,409), spores (US Pat. Nos. 5,571,698, 5,403,484, and 5,223,409), plasmids (Cull et al. (1992) Proc. Natl. Acad. Sci. USA 89) : 1865-9) or phage (Scott and Smith (1990) Science 249: Devlin (1990) Science 249: 404-6; Cwirla et al. (1990) Proc. Natl. Acad. Sci. USA 87: 6378-82; Felici (1991) J. Mol. Biol 222: 301-10; US Patent Application No. 2002103360).
以下、実施例を挙げて本発明をより具体的に説明する。ただし、本発明は以下の態様には限定されない。 Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited to the following modes.
<実験材料と方法>
Rosa26ターゲティング・ベクター、ES細胞ターゲティング、及びキメラマウスの作製
ユーイング肉腫細胞株TC135(Int J Cancer 128, 216-226. 2011)からEWS-FLI1融合遺伝子をクローニングした。Rosa-M2rtTA/Rosa::tetO-EWS-FLI1系についてはRed/ET BAC組換えシステムを使用してTetOP-EWS-FLI1-FLAG-HA-ires-mCherry-pA及び選択カセット(SA-rox-PGK-EM7-BsdR-pA-rox-2pA)をRosa26 BACのイントロン1に導入した。得られたベクターをRosa26-M2rtTAアレルを有するKH2 ES細胞(Genesis 44, 23-28. 2006)に電気穿孔法で導入した。
15μg/mlのブラスチシジンS(Bsd、フナコシ株式会社)を含有するES培地でES細胞を培養した。Bsd耐性コロニーを回収し、増殖させた。ESクローンが正確にターゲットされたことをサザンブロッティングにより確認した。Rosa-M2rtTA/Col1a1::tetO-EWS-FLI1系についてはEWS-FLI1-FLAG-HA-ires-mCherry-pA配列をpBS31に挿入し、それを上述のようにKH2 ES細胞に電気穿孔法で導入した。両方の系で胚盤胞注入によりキメラマウスを得た。
<Experimental materials and methods>
Rosa26 targeting vector, ES cell targeting, and generation of chimeric mice The EWS-FLI1 fusion gene was cloned from the Ewing sarcoma cell line TC135 (Int J Cancer 128, 216-226. 2011). For the Rosa-M2rtTA / Rosa :: tetO-EWS-FLI1 system using the Red / ET BAC recombination system, TetOP-EWS-FLI1-FLAG-HA-ires-mCherry-pA and the selection cassette (SA-rox-PGK -EM7-BsdR-pA-rox-2pA) was introduced into intron 1 of Rosa26 BAC. The obtained vector was introduced into KH2 ES cells (Genesis 44, 23-28. 2006) having the Rosa26-M2rtTA allele by electroporation.
ES cells were cultured in an ES medium containing 15 μg / ml blasticidin S (Bsd, Funakoshi Co., Ltd.). Bsd resistant colonies were collected and expanded. It was confirmed by Southern blotting that the ES clone was correctly targeted. For the Rosa-M2rtTA / Col1a1 :: tetO-EWS-FLI1 system, the EWS-FLI1-FLAG-HA-ires-mCherry-pA sequence was inserted into pBS31 and introduced into KH2 ES cells by electroporation as described above. did. Chimeric mice were obtained by blastocyst injection in both systems.
レンチウイルスベクターの構築、レンチウイルスの感染及び細胞培養
ドキシサイクリン(Dox)誘導性レンチウイルスベクターを構築するため、Addgeneから入手したpEN-TmiRC3及びpSLIK-Neoレンチウイルスベクタープラスミドを改変した。まず、pEN-TmiRC3をSpeIとXhoIで消化してEWS-FLI1-FLAG-HAをtetOP-mCMVプロモーターの下流にライゲーションした。その後、ires-NeoRカセットをHAタグの3’側にライゲーションし、続いてpSLIK-NeoからUbiC-rtTA3-ires-NeoR配列を切り出した。pEN-TmiRC3(tetO-EWS-FLI1-ires-Neo)とpSLIK(UbiC-rtTA3-ires-Neo無し)との間のLR組換えの後に、pSLIK-TetO-EWS-FLI1-ires-Neoベクターを得た。
Construction of lentiviral vector, lentiviral infection and cell culture To construct a doxycycline (Dox) inducible lentiviral vector, pEN-TmiRC3 and pSLIK-Neo lentiviral vector plasmids obtained from Addgene were modified. First, pEN-TmiRC3 was digested with SpeI and XhoI, and EWS-FLI1-FLAG-HA was ligated downstream of the tetOP-mCMV promoter. Thereafter, the ires-NeoR cassette was ligated to the 3 ′ side of the HA tag, and then the UbiC-rtTA3-ires-NeoR sequence was excised from pSLIK-Neo. After LR recombination between pEN-TmiRC3 (tetO-EWS-FLI1-ires-Neo) and pSLIK (no UbiC-rtTA3-ires-Neo), the pSLIK-TetO-EWS-FLI1-ires-Neo vector is obtained. It was.
Nat Protoc 4, 102-106. 2009に報告されたようにして、 3~4週齢のRosa26-M2rtTAマウス(Genesis 44, 23-28. 2006)から骨髄間質細胞を得た。骨髄細胞の採取から3~4日後に培地を交換することにより非付着細胞(造血細胞)を除去し、付着細胞にレンチウイルスを感染させた。その後、10%のFBS(Gibco)、ペニシリン、ストレプトマイシン、200μg/mlのG418(ナカライテスク株式会社)及び2μg/mlのDox(Sigma)を含有するDMEM(ナカライテスク株式会社)で細胞を2か月間培養し、EWS-FLI1依存的不死化細胞を選択した。同じ培地を用いて骨肉腫細胞株、SCOS#2及びSCOS#12を維持した。 Bone marrow stromal cells were obtained from 3-6 week old Rosa26-M2rtTA mice (Genesis 44, 23-28. 2006) as reported in Nat Protoc 4, 102-106. 2009. Non-adherent cells (hematopoietic cells) were removed by exchanging the medium 3 to 4 days after collection of bone marrow cells, and the adherent cells were infected with lentivirus. The cells were then placed in DMEM (Nacalai Tesque) containing 10% FBS (Gibco), penicillin, streptomycin, 200 μg / ml G418 (Nacalai Tesque) and 2 μg / ml Dox (Sigma) for 2 months. Cultured and EWS-FLI1-dependent immortalized cells were selected. The same medium was used to maintain the osteosarcoma cell lines, SCOS # 2 and SCOS # 12.
インビボ実験
Rosa-M2rtTA/Rosa::tetO-EWS-FLI1マウス及び肉腫細胞を接種された免疫低下状態のマウスを2mg/mlのDox含有水と10mg/mlのショ糖で処理した。早期の致死性のため、より低い濃度のDox(100μg/ml~2mg/ml)でRosa-M2rtTA/Col1a1::tetO-EWS-FLI1マウスを処理した。
In Vivo Experiments Rosa-M2rtTA / Rosa :: tetO-EWS-FLI1 mice and immunocompromised mice inoculated with sarcoma cells were treated with 2 mg / ml Dox-containing water and 10 mg / ml sucrose. Because of early lethality, Rosa-M2rtTA / Col1a1 :: tetO-EWS-FLI1 mice were treated with lower concentrations of Dox (100 μg / ml to 2 mg / ml).
iPS細胞の誘導及び維持
初期化因子を含むレトロウイルスベクター(pMX-hOCT3/4、pMX-hSOX2、pMX-hKLF4及びpMX-h-cMYC;Addgene)を利用することによりiPS細胞誘導を行った。ヒト組換えLIF(和光純薬工業株式会社)、2-メルカプトエタノール(Invitrogen)及び50μg/mlのL-アスコルビン酸(Sigma)を添加したES細胞培地の中で初期化因子誘導性肉腫細胞を培養し、LIF、1μMのPD0325901(Stemgent社)及び3μMのCHIR99021(Stemgent社)を添加したES細胞培地でそれらの構築されたiPS細胞を維持した。
Induction and maintenance of iPS cells Induction of iPS cells by utilizing retroviral vectors (pMX-hOCT3 / 4, pMX-hSOX2, pMX-hKLF4 and pMX-h-cMYC; Addgene) containing reprogramming factors went. Reprogramming factor-induced sarcoma cells are cultured in ES cell medium supplemented with human recombinant LIF (Wako Pure Chemical Industries, Ltd.), 2-mercaptoethanol (Invitrogen) and 50 μg / ml L-ascorbic acid (Sigma). The constructed iPS cells were maintained in ES cell medium supplemented with LIF, 1 μM PD0325901 (Stemgent) and 3 μM CHIR99021 (Stemgent).
RT-PCR及び定量的リアルタイムRT-PCR
RNeasyプラスミニキット(QIAGEN社)を使用してRNAを抽出した。最大で1μgまでのRNAをcDNAへの逆転写反応に使用した。Go-TaqグリーンマスターミックスとGo-Taq qPCRマスターミックス(Promega社)をそれぞれ使用してRT-PCRと定量的リアルタイムPCRを行った。β-アクチンにより転写物レベルを標準化した。
RT-PCR and quantitative real-time RT-PCR
RNA was extracted using RNeasy plus mini kit (QIAGEN). Up to 1 μg of RNA was used for reverse transcription to cDNA. RT-PCR and quantitative real-time PCR were performed using Go-Taq Green Master Mix and Go-Taq qPCR Master Mix (Promega), respectively. Transcript levels were normalized by β-actin.
ウエスタンブロット分析
500μlのRIPA溶解緩衝液の中に培養細胞を採取し、タンパク質濃度を測定した。2×SDSを使用してタンパク質を95℃で5分間変性処理した。総計で20μgの変性タンパク質を10%のSDS/PAGEゲルに負荷し、PVDF膜(Amersham Hybond-P PVDFメンブレン、GEヘルスケア社)に転写した。次の抗体を使用するイムノブロッティングによりタンパク質を検出した:抗HA(Cell Signaling社;希釈度1:600)、抗βアクチン(Santa Cruz社;希釈度1:1000)。視覚化のためにPierce ECLプラス・ウエスタンブロッティング基質(Thermo Scientific社)を使用し、検出にLAS4000(GEヘルスケア社)を使用した。
Western blot analysis Cultured cells were harvested in 500 μl RIPA lysis buffer and protein concentration was determined. The protein was denatured at 95 ° C. for 5 minutes using 2 × SDS. A total of 20 μg of denatured protein was loaded onto a 10% SDS / PAGE gel and transferred to a PVDF membrane (Amersham Hybond-P PVDF membrane, GE Healthcare). Proteins were detected by immunoblotting using the following antibodies: anti-HA (Cell Signaling; dilution 1: 600), anti-β-actin (Santa Cruz; dilution 1: 1000). Pierce ECL plus Western blotting substrate (Thermo Scientific) was used for visualization and LAS4000 (GE Healthcare) was used for detection.
組織学的分析及び免疫組織化学
全ての組織試料及び腫瘍試料を4%パラフォルムアルデヒドで一晩固定し、パラフィンに包埋した。標準的プロトコルを用いてヘマトキシリンとエオシンにより切片を染色した。免疫組織化学について、使用した抗体は抗HA(Cell signaling;希釈度1:200)と抗Ki67(SP6)(Abcam社;希釈度1:150)であった。
Histological analysis and immunohistochemistry All tissue and tumor samples were fixed overnight in 4% paraformaldehyde and embedded in paraffin. Sections were stained with hematoxylin and eosin using standard protocols. For immunohistochemistry, the antibodies used were anti-HA (Cell signaling; dilution 1: 200) and anti-Ki67 (SP6) (Abcam; dilution 1: 150).
免疫細胞化学
PBSで培養細胞を洗浄し、2%パラフォルムアルデヒドにより室温で10分間固定した。免疫細胞化学について、使用した抗体は抗p53(Abcam社;希釈度1:200)と抗p21(HUGO291)(Abcam社;希釈度1:500)であった。
The cultured cells were washed with immunocytochemistry PBS and fixed with 2% paraformaldehyde for 10 minutes at room temperature. For immunocytochemistry, the antibodies used were anti-p53 (Abcam; dilution 1: 200) and anti-p21 (HUGO291) (Abcam; dilution 1: 500).
細胞増殖アッセイ
肉腫細胞及びES/iPS細胞をそれぞれ5×104細胞/ウェルと1×105細胞/ウェルの密度で12ウェル培養プレートに播種した。実験を三回行い、各試料を2回測定した。自動細胞計測器(TC10(商標)、Bio-Rad社)により細胞数を測定した。
Cell proliferation assay Sarcoma cells and ES / iPS cells were seeded in 12-well culture plates at a density of 5 x 10 4 cells / well and 1 x 10 5 cells / well, respectively. The experiment was performed three times and each sample was measured twice. The number of cells was measured with an automatic cell counter (TC10 (trademark), Bio-Rad).
異種移植アッセイ
CLEA Japan及びJapan SLCよりそれぞれ購入したNOD/ShiJic-scid Jclマウス又はBALB/cSLC-nu/nuマウスに総計で3×106個のEWS-FLI1依存的不死化細胞、EWS-FLI1依存的肉腫細胞、ES細胞又はiPS細胞を移植した。
NOD/ShiJic-scid JclマウスにEWS-FLI1依存的不死化細胞を接種し、それらのマウスを移植から10週間後に殺処理した。BALB/cSLC-nu/nuマウスの皮下組織にEWS-FLI1依存的骨肉腫細胞を接種した。毎週デジタル式ノギスにより腫瘍サイズを測定し、次のように腫瘍体積を計算した:体積=幅2×長さ÷2。BALB/cSLC-nu/nuマウスにES細胞/iPS細胞を移植し、3~4週間後にテラトーマを得た。
Xenograft assay A total of 3 × 10 6 EWS-FLI1-dependent immortalized cells, EWS-FLI1-dependent in NOD / ShiJic-scid Jcl mice or BALB / cSLC-nu / nu mice purchased from CLEA Japan and Japan SLC, respectively Sarcoma cells, ES cells or iPS cells were transplanted.
NOD / ShiJic-scid Jcl mice were inoculated with EWS-FLI1-dependent immortalized cells and the mice were sacrificed 10 weeks after transplantation. The subcutaneous tissue of BALB / cSLC-nu / nu mice was inoculated with EWS-FLI1-dependent osteosarcoma cells. Tumor size was measured weekly with a digital caliper and tumor volume was calculated as follows: volume = width 2 × length ÷ 2. ES cells / iPS cells were transplanted into BALB / cSLC-nu / nu mice, and teratomas were obtained 3 to 4 weeks later.
ES細胞/iPS細胞の骨形成系列へのインビトロ分化
Nature 467, 285-290. 2010に記載されるインビトロ骨分化プロトコルをわずかに改変して用いた。具体的には、ES分化培地(IMDM、15%のFBS、ペニシリン/ストレプトマイシン、L-グルタミン、L-アスコルビン酸、トランスフェリン、チオグリセロール)を含む96ウェルプレート(Nunclon(商標)Sphere、Thermo Scientific社)中に5000個のES細胞又はiPS細胞を2日間培養した。2日目にレチノイン酸を添加した(終濃度、10-6M)。5日目に胚様体を収集し、6ウェル組織培養ディッシュに移し、骨分化培地(αMEM、10%のFBS、ペニシリン/ストレプトマイシン、L-グルタミン、2nMのトリヨードサイロニン、ITS)中で培養した。一日おきに培地を交換した。17日目にRNAを抽出し、誘導した骨形成細胞の骨形成遺伝子の発現を定量的リアルタイムRT-PCRにより確認した。28日目にアリザリンレッド染色を行った。
In vitro differentiation of ES cells / iPS cells into osteogenic lineage
The in vitro bone differentiation protocol described in Nature 467, 285-290. 2010 was used with slight modifications. Specifically, 96-well plate (Nunclon ™ Sphere, Thermo Scientific) containing ES differentiation medium (IMDM, 15% FBS, penicillin / streptomycin, L-glutamine, L-ascorbic acid, transferrin, thioglycerol) Inside, 5000 ES cells or iPS cells were cultured for 2 days. On the second day, retinoic acid was added (final concentration, 10 −6 M). On day 5, embryoid bodies were collected, transferred to 6-well tissue culture dishes, and cultured in bone differentiation medium (αMEM, 10% FBS, penicillin / streptomycin, L-glutamine, 2 nM triiodothyronine, ITS). did. The medium was changed every other day. On day 17, RNA was extracted, and the expression of osteogenic genes in the induced osteogenic cells was confirmed by quantitative real-time RT-PCR. On day 28, alizarin red staining was performed.
ALP染色
PBSで培養細胞を洗浄し、固定し、そして製造業者のプロトコルに従ってALP染色キット(Sigma)で染色した。
Cultured cells were washed with ALP stained PBS, fixed, and stained with ALP staining kit (Sigma) according to manufacturer's protocol.
老化関連β-gal染色
PBSで培養細胞を洗浄し、固定し、そして製造業者のプロトコルに従って老化β-ガラクトシダーゼ染色キット(9860S番、Cell Signaling社)で染色した。
Senescence-related β-gal stained PBS were washed with PBS, fixed, and stained with an aging β-galactosidase staining kit (# 9860S, Cell Signaling) according to the manufacturer's protocol.
アリザリンレッド染色
PBSで培養細胞を洗浄し、4%パラフォルムアルデヒドにより室温で5分間固定した。固定した細胞を脱イオン水で数回洗浄し、アリザリンレッド染色溶液(アリザリンレッド(Sigma、A5533)2%、NH4OHによりpH4.2に調節)中で5分間染色した。同様に、脱パラフィン化切片をアリザリンレッド染色溶液中で5分間染色した。
The cultured cells were washed with alizarin red-stained PBS and fixed with 4% paraformaldehyde for 5 minutes at room temperature. Fixed cells were washed several times with deionized water and stained for 5 minutes in alizarin red staining solution (alizarin red (Sigma, A5533) 2%, adjusted to pH 4.2 with NH 4 OH). Similarly, deparaffinized sections were stained in alizarin red staining solution for 5 minutes.
レンチウイルス組込み部位の検出
Stem Cells 27, 300-306.に記載される方法をわずかに改変した方法でレンチウイルス組込み部位を調べた。SCOS#2から抽出したゲノムDNAをウルトラソニケーター(Covaris E210)により500~800bpの断片に消化した。LC1とLC2をアニーリングして得たリンカーカセットをそれらの消化されたゲノムDNA断片に結合した。その後、AP1_FとpSLIK1_Rのプライマーセットを用いて最初のPCRを行い、AP2_FとpSLIK2_Rのプライマーセットを用いてネステッドPCRを行った。PCR産物をTAクローニング法によりpCR4-TOPOベクター(Invitrogen)にクローン化し、seq_LTR_Rプライマーを用いて3500xL Genetic Analyzer(Applied Biosystems社)により挿入断片のDNA配列を分析した。得られた配列をBLASTで調査した。
Detection of lentivirus integration site
The lentiviral integration site was examined by a slightly modified method described in Stem Cells 27, 300-306. Genomic DNA extracted from SCOS # 2 was digested into 500-800 bp fragments using an ultrasonicator (Covaris E210). The linker cassettes obtained by annealing LC1 and LC2 were ligated to their digested genomic DNA fragments. Then, the first PCR was performed using the primer set of AP1_F and pSLIK1_R, and the nested PCR was performed using the primer set of AP2_F and pSLIK2_R. The PCR product was cloned into the pCR4-TOPO vector (Invitrogen) by the TA cloning method, and the DNA sequence of the inserted fragment was analyzed by 3500 × L Genetic Analyzer (Applied Biosystems) using the seq_LTR_R primer. The resulting sequence was examined by BLAST.
アレイ比較ゲノムハイブリダイゼーション
PureLink(登録商標)ゲノムDNAミニキット(Invitrogen)を使用してゲノムDNAを抽出した。SurePrint G3マウスゲノムCGHマイクロアレイキット(Agilent社)を使用してアレイ比較ゲノムハイブリダイゼーション分析を行い、Agilentゲノミック・ワークベンチ7.0により解析を行った。
Array comparative genomic hybridization Genomic DNA was extracted using the PureLink® Genomic DNA Mini Kit (Invitrogen). Array comparative genomic hybridization analysis was performed using SurePrint G3 mouse genomic CGH microarray kit (Agilent), and analysis was performed using Agilent Genomic Workbench 7.0.
マイクロアレイ分析
RNeasyミニキットを使用して調製された200ngの全RNAをWT発現キット(Ambion社)によるcDNA合成の対象とし、それにより生じたcDNAを断片化し、マウス・ジーン1.0STアレイ(Affymetrix社)にハイブリダイズした。ハイブリダイゼーション後に製造業者の標準的プロトコルに従ってGeneChipアレイを洗浄し、GeneChipフルイディクス・ステーション450(Affymetrix社)によって染色し、そしてスキャナー3000TGシステム(Affymetrix社)により検出した。GeneSpring GXソフトウェア(バージョン13.0、Agilent Technology社)を使用することにより得られたデータを分析した。
Microarray analysis 200 ng of total RNA prepared using the RNeasy mini kit was subjected to cDNA synthesis using the WT expression kit (Ambion), the resulting cDNA was fragmented, and the mouse gene 1.0ST array (Affymetrix) ). Following hybridization, the GeneChip array was washed according to the manufacturer's standard protocol, stained with GeneChip Fluidic Station 450 (Affymetrix), and detected with the Scanner 3000TG system (Affymetrix). Data obtained by using GeneSpring GX software (version 13.0, Agilent Technology) was analyzed.
バイサルファイトゲノムシーケンシング
製造業者のプロトコルに従ってEZ DNA Methylation-Gold Kit(商標)(ZYMO RESEARCH社)を使用してバイサルファイト処理を行った。使用したPCRプライマーは追加情報に示されている。増幅産物をpCR4-TOPOベクター(Invitrogen)にクローン化し、DH5αに形質転換した。コロニーを無作為に選択し、各遺伝子についてM13フォワードプライマーとリバースプライマーを用いてシーケンシングした。
Bisulfite genome sequencing Bisulfite treatment was performed using EZ DNA Methylation-Gold Kit ™ (ZYMO RESEARCH) according to the manufacturer's protocol. The PCR primers used are indicated in the additional information. The amplification product was cloned into pCR4-TOPO vector (Invitrogen) and transformed into DH5α. Colonies were randomly selected and sequenced using M13 forward and reverse primers for each gene.
<参考例>
EWS-FLI1誘導性ES細胞及びマウスの構築
まず、遺伝子座ターゲティング法によるEWS-FLI1誘導性マウスモデルの構築を試みた。tet-inducibleカセットが組み込まれたKH2系マウスとRosa26ターゲティング・ベクター(Cell 156, 663-677. 2014; J Clin Invest 123, 600-610. 2013;Genesis 44, 23-28. 2006)を利用することでDox誘導性EWS-FLI1アレルを含有するES細胞2種類を構築した。それらのES細胞では、Rosa26遺伝子座からリバーステトラサイクリン制御性トランスアクチベーター(rtTA)が発現し、一方ではTetオペレーター-EWS-FLI1-ires-mCherryコンストラクトがCol1a1遺伝子座の3’UTRに組み込まれており(Rosa-M2rtTA/Col1a1::tetO-EWS-FLI1)、もう一方ではRosa26遺伝子座のイントロン1に組み込まれている(Rosa-M2rtTA/Rosa::tetO-EWS-FLI1)。インビトロでDoxにより処理されると両方のES細胞がmCherry蛍光を発現した。また、ES細胞におけるその誘導性EWS-FLI1発現はqRT-PCRとウエスタンブロッティングによっても確認された。
<Reference example>
Construction of EWS-FLI1-inducible ES cells and mice First, an attempt was made to construct an EWS-FLI1-inducible mouse model by the locus targeting method. Use KH2 mice with tet-inducible cassette and Rosa26 targeting vector (Cell 156, 663-677. 2014; J Clin Invest 123, 600-610. 2013; Genesis 44, 23-28. 2006) Two types of ES cells containing the Dox-inducible EWS-FLI1 allele were constructed. In these ES cells, the reverse tetracycline-regulated transactivator (rtTA) is expressed from the Rosa26 locus, while the Tet operator-EWS-FLI1-ires-mCherry construct is integrated into the 3′UTR of the Col1a1 locus. (Rosa-M2rtTA / Col1a1 :: tetO-EWS-FLI1), and the other is incorporated into intron 1 of the Rosa26 locus (Rosa-M2rtTA / Rosa :: tetO-EWS-FLI1). Both ES cells expressed mCherry fluorescence when treated with Dox in vitro. The inducible EWS-FLI1 expression in ES cells was also confirmed by qRT-PCR and Western blotting.
次に上記ES細胞の胚盤胞注入を行い、キメラマウスを得た。Dox処理するとEWS-FLI1はユーイング肉腫が多くの場合に生じる骨髄と骨皮質をはじめとするそのマウスの多種多様な器官と組織において発現した。幾匹かのマウス(Rosa-M2rtTA/Col1a1::tetO-EWS-FLI1)はEWS-FLI1誘導直後に死亡し、それには分化異常に起因する腸細胞の異形性変化が伴った(14匹のマウスのうちの8匹)。しかしながら、長期のEWS-FLI1の誘導(最大で13か月)にもかかわらず、どちらの系でもEWS-FLI1依存的腫瘍形成を全く観察しなかった(Rosa-M2rtTA/Col1a1::tetO-EWS-FLI1マウス:n=14、Rosa-M2rtTA/Rosa::tetO-EWS-FLI1マウス:n=9)。 Next, blastocyst injection of the ES cells was performed to obtain chimeric mice. When treated with Dox, EWS-FLI1 was expressed in a wide variety of organs and tissues of the mouse, including bone marrow and bone cortex where Ewing sarcoma often occurs. Some mice (Rosa-M2rtTA / Col1a1 :: tetO-EWS-FLI1) died shortly after EWS-FLI1 induction, which was accompanied by atypical changes in intestinal cells due to abnormal differentiation (14 mice) 8 of them). However, despite long-term induction of EWS-FLI1 (up to 13 months), no EWS-FLI1-dependent tumor formation was observed in either system (Rosa-M2rtTA / Col1a1 :: tetO-EWS- FLI1 mice: n = 14, Rosa-M2rtTA / Rosa :: tetO-EWS-FLI1 mice: n = 9).
<実施例>
Dox誘導性EWS-FLI1レンチウイルスシステムによるEWS-FLI1依存的不死化細胞の構築
成熟マウスにおけるEWS-FLI1の誘導は肉腫発生に充分ではないことが我々の結果から示唆された。そこで、Dox誘導性発現系を有するレンチウイルス性EWS-FLI1発現ベクターを作製した。Rosa26-M2rtTA(3~4週齢)の骨髄間質細胞にTetO-EWS-FLI1-ires-Neoカセット(図1)をレンチウイルスにより形質導入した。形質導入された骨髄細胞をDox及びG418と共に培養した。その後、Dox及びG418を含有する培地の中で生存細胞を2か月間培養した。EWS-FLI1誘導性アレルを有する大半の細胞は生き残らなかったが、我々はそれでも3つの不死化細胞株(EFN#2、EFN#12及びEFV#4;図2)を得た。それらの3株はDoxに応答してEWS-FLI1のmRNAとタンパク質を発現し(図3及び4)、Dox含有培養条件下で絶えず細胞増殖した(図2)。Doxが除去されると2つの細胞株(EFN#2及びEFN#12)の形態が徐々に平坦な形にまで変化し、且つ、細胞増殖が阻害された。これらの観察は、我々がインビトロでマウス成熟骨髄間質細胞から2つのEWS-FLI1依存的不死化細胞株を得たことを示している。
<Example>
Construction of EWS-FLI1-dependent immortalized cells by Dox-inducible EWS-FLI1 lentiviral system Our results suggested that induction of EWS-FLI1 in mature mice is not sufficient for sarcoma development. Therefore, a lentiviral EWS-FLI1 expression vector having a Dox-inducible expression system was prepared. The TetO-EWS-FLI1-ires-Neo cassette (FIG. 1) was transduced with lentivirus into bone marrow stromal cells of Rosa26-M2rtTA (3-4 weeks old). Transduced bone marrow cells were cultured with Dox and G418. Thereafter, viable cells were cultured for 2 months in a medium containing Dox and G418. Although most cells with the EWS-FLI1 inducible allele did not survive, we still obtained three immortalized cell lines (EFN # 2, EFN # 12 and EFV # 4; FIG. 2). Three of these strains expressed EWS-FLI1 mRNA and protein in response to Dox (FIGS. 3 and 4), and constantly grew cells under Dox-containing culture conditions (FIG. 2). When Dox was removed, the morphology of the two cell lines (EFN # 2 and EFN # 12) gradually changed to a flat shape and cell growth was inhibited. These observations indicate that we obtained two EWS-FLI1-dependent immortalized cell lines from mouse mature bone marrow stromal cells in vitro.
EWS-FLI1依存的不死化細胞はインビボで骨肉腫を形成した
EWS-FLI1依存的不死化細胞株がインビボで腫瘍形成能を有するか確認するため、我々はEFN#2及びEFN#12を免疫低下状態のマウスの皮下に移植した。接種から10週間後に移植を受けたマウスはDoxを投与されると両方の細胞株から腫瘍を発生したが(EFN#2については16/16、EFN#12については2/4;図5及び6)、一方でDox投与が無いと腫瘍形成はマウスにおいて観察されなかった(EFN#2について0/16、EFN#12について0/4;図5及び6)。それらの腫瘍はユーイング肉腫に類似した小円形青色細胞から構成されることが組織学的分析により明らかになった。腫瘍細胞は多くが類骨形成を示し、小細胞性骨肉腫であると考えられた。さらに、腫瘍細胞がEWS-FLI1を発現し、増殖性細胞のマーカーであるKi67について陽性であることが免疫組織化学により示された(データを示さず)。
In order to confirm whether EWS-FLI1-dependent immortalized cells that have formed osteosarcoma in vivo have tumorigenic potential in vivo, we immunoreduced EFN # 2 and EFN # 12 The mice were transplanted subcutaneously. Mice transplanted 10 weeks after inoculation developed tumors from both cell lines when administered Dox (16/16 for EFN # 2, 2/4 for EFN # 12; FIGS. 5 and 6 On the other hand, in the absence of Dox administration, no tumor formation was observed in mice (0/16 for EFN # 2, 0/4 for EFN # 12; FIGS. 5 and 6). Histological analysis revealed that these tumors consisted of small round blue cells similar to Ewing sarcoma. Many tumor cells showed osteoid formation and were considered small cell osteosarcoma. Furthermore, immunohistochemistry showed that tumor cells expressed EWS-FLI1 and were positive for Ki67, a marker for proliferating cells (data not shown).
EWS-FLI1依存的骨肉腫細胞株の構築
EWS-FLI1誘導性骨肉腫の特性をさらに詳細に調べるため、我々はEFN#2細胞及びEFN#12細胞を接種された免疫低下状態のマウスの皮下骨肉腫からEWS-FLI1依存的骨肉腫細胞株を構築した(それぞれSCOS#2及びSCOS#12)。上記EWS-FLI1依存的不死化細胞において観察されたように、それらの構築された骨肉腫細胞株はDox濃度依存的にEWS-FLI1を発現し、Doxの存在下で活発に細胞増殖した(図7)。Doxの除去後にSCOS#2及びSCOS#12はそれらの形態を変化させ、細胞増殖を停止した。我々は同時にp53及びp21の発現の上昇を観察したが、老化関連β-gal(SAβgal)活性の上昇は観察されなかった。Doxを再投与すると増殖を停止していた細胞が細胞増殖能を再獲得した。EWS-FLI1の消失によりそれらの骨肉腫細胞の細胞周期が停止することがこの可逆的な表現型から示唆された。
Construction of EWS-FLI1-dependent osteosarcoma cell line In order to investigate the characteristics of EWS-FLI1-induced osteosarcoma in more detail, we investigated the subcutaneous bones of immunocompromised mice inoculated with EFN # 2 and EFN # 12 cells. EWS-FLI1-dependent osteosarcoma cell lines were constructed from sarcomas (SCOS # 2 and SCOS # 12, respectively). As observed in the EWS-FLI1-dependent immortalized cells, the constructed osteosarcoma cell lines expressed EWS-FLI1 in a Dox concentration-dependent manner and actively proliferated in the presence of Dox (Fig. 7). SCOS # 2 and SCOS # 12 changed their morphology after Dox removal and stopped cell growth. We simultaneously observed increased expression of p53 and p21, but no increase in senescence-related β-gal (SAβgal) activity. When Dox was re-administered, cells that had stopped growing regained their cell growth ability. This reversible phenotype suggested that the loss of EWS-FLI1 arrested the cell cycle of these osteosarcoma cells.
レンチウイルスのゲノム挿入が骨肉腫発生において役割を果たす可能性があることを考慮して、我々はEWS-FLI1誘導性骨肉腫細胞株(SCOS#2)のウイルス組込み部位を決定した。我々は、肉腫発生の遺伝的駆動因子として作用する可能性が無い位置であるCd14の13kb下流の遺伝子間領域に単一の組込みを特定した。 Considering that lentiviral genomic insertion may play a role in osteosarcoma development, we determined the site of viral integration of the EWS-FLI1-induced osteosarcoma cell line (SCOS # 2). We have identified a single integration in the intergenic region 13 kb downstream of Cd14, a position that is unlikely to act as a genetic driver of sarcoma development.
EWS-FLI1発現の消失により骨肉腫細胞の骨分化が促進された
EWS-FLI1の標的を調査するため、我々は次にSCOS#2及びSCOS#12を使用してEWS-FLI1発現性肉腫細胞とEWS-FLI1非発現性肉腫細胞の間で遺伝子発現プロファイルを比較した。興味深いことに両方の細胞株においてGO濃縮分析によりDox処理EWS-FLI1発現性肉腫細胞と比較すると多くの場合に骨発生関連遺伝子及び軟骨発生関連遺伝子を含む細胞外マトリックス関連遺伝子及び細胞外領域関連遺伝子がDox非処理肉腫細胞(72時間)において著しく濃縮された(図8、9)。ユーイング肉腫細胞におけるshRNAによるEWS-FLI1の長期ノックダウンにより骨形成系列、脂肪生成系列及び軟骨形成系列への細胞分化が引き起こされ、Cancer Cell 11, 421-429 2007などで示唆されるユーイング肉腫の間葉系幹細胞(MSC)起源と合致した。同様に、本研究ではSCOS#2及びSCOS#12におけるEWS-FLI1の短期の消失によりアルカリホスファターゼ活性の増加と共に骨分化の促進が引き起こされた(図10)。EWS-FLI1の長期の消失の後にある分画の肉腫細胞はゆっくりと細胞増殖し、且つ、不均一な形態を示した(図11)。EWS-FLI1の発現が中止された肉腫細胞はより高いレベルの骨分化マーカー遺伝子(図12)、並びに軟骨形成遺伝子と脂肪生成遺伝子を発現した。
To investigate the target of EWS-FLI1 whose osteosarcoma cell bone differentiation was promoted by loss of EWS-FLI1 expression , we next used SCOS # 2 and SCOS # 12 to identify EWS-FLI1-expressing sarcoma cells. Gene expression profiles were compared among EWS-FLI1 non-expressing sarcoma cells. Interestingly, extracellular matrix-related genes and extracellular region-related genes, often including osteogenesis-related genes and chondrogenesis-related genes, compared to Dox-treated EWS-FLI1-expressing sarcoma cells by GO enrichment analysis in both cell lines Was significantly enriched in Dox-untreated sarcoma cells (72 hours) (FIGS. 8, 9). In Ewing sarcoma cells, long-term knockdown of EWS-FLI1 by shRNA causes cell differentiation into osteogenic, adipogenic, and chondrogenic series, which is suggested by Cancer Cell 11, 421-429 2007, etc. Consistent with the origin of leaf stem cells (MSC). Similarly, in this study, the short-term loss of EWS-FLI1 in SCOS # 2 and SCOS # 12 caused the promotion of bone differentiation along with increased alkaline phosphatase activity (FIG. 10). Fraction sarcoma cells after long-term loss of EWS-FLI1 grew slowly and showed heterogeneous morphology (FIG. 11). Sarcoma cells in which EWS-FLI1 expression was discontinued expressed higher levels of bone differentiation marker genes (FIG. 12), as well as chondrogenic and adipogenic genes.
SCOS#2及びSCOS#12はDoxを投与された免疫低下状態のマウスにおいて前述の小細胞性骨肉腫を形成した(図13)。これらの肉腫細胞はKi67免疫組織化学によると高い細胞増殖活性を有した(図13)。SCOS#2及びSCOS#12の両方の増殖がEWS-FLI1発現に依存するというインビトロでの知見と一致して、前記皮下腫瘍はインビボでDoxの除去後に増殖を停止又は遅延化した(図13及び14)。Doxが除去された腫瘍は類骨組織及び成熟骨組織と少数の青色細胞から構成されることが組織学的分析により明らかになった(図13)。これらの結果はEWS-FLI1の消失によりインビボで骨肉腫細胞の骨分化が促進されることを表した。以上より、我々の結果は骨肉腫細胞の末期分化の抑制に対するEWS-FLI1発現の役割を明らかにした。 SCOS # 2 and SCOS # 12 formed the aforementioned small cell osteosarcoma in immunocompromised mice receiving Dox (FIG. 13). These sarcoma cells had high cell proliferating activity according to Ki67 immunohistochemistry (FIG. 13). Consistent with the in vitro findings that growth of both SCOS # 2 and SCOS # 12 is dependent on EWS-FLI1 expression, the subcutaneous tumors stopped or retarded growth after removal of Dox in vivo (FIGS. 13 and 14). Histological analysis revealed that the tumor from which Dox was removed was composed of osteoid tissue, mature bone tissue and a small number of blue cells (FIG. 13). These results indicated that loss of EWS-FLI1 promotes bone differentiation of osteosarcoma cells in vivo. Based on the above, our results revealed the role of EWS-FLI1 expression in the inhibition of terminal differentiation of osteosarcoma cells.
EWS-FLI1誘導性骨肉腫細胞からのiPS細胞の構築
EWS-FLI1誘導性肉腫発生に追加的遺伝子異常が必要とされる可能性があることを考慮すると、EWS-FLI1誘導性肉腫細胞から多能性幹細胞を構築することにより、肉腫発生に対するEWS-FLI1発現以外の遺伝子異常の影響を研究するためのユニークなツールが提供されるはずである。我々はSCOS#2及びSCOS#12からのiPS細胞の構築を試みた。それらの肉腫細胞からの単一細胞クローニングの後にOCT3/4、SOX2、KLF4及びcMYCをそれらの肉腫細胞に導入し、EWS-FLI1の発現が無い状態でiPS細胞様コロニーを得た(コロニー形成効率は0.0009%であった。図15)。これらのiPS細胞様細胞はES細胞と同等のレベルでNanog及びOct3/4などの多能性関連遺伝子を発現した(図16)。同様に、iPS細胞様細胞の全体的遺伝子発現パターンは通常のES細胞及び対照iPS細胞のパターンと同様であった。
Construction of iPS cells from EWS-FLI1-induced osteosarcoma cells Considering that additional genetic abnormalities may be required for EWS-FLI1-induced sarcoma development, multi-potency from EWS-FLI1-induced sarcoma cells Construction of sex stem cells should provide a unique tool to study the effects of genetic abnormalities other than EWS-FLI1 expression on sarcoma development. We tried to construct iPS cells from SCOS # 2 and SCOS # 12. After single cell cloning from these sarcoma cells, OCT3 / 4, SOX2, KLF4, and cMYC were introduced into the sarcoma cells to obtain iPS cell-like colonies in the absence of EWS-FLI1 expression (colony formation efficiency). Was 0.0009% (FIG. 15). These iPS cell-like cells expressed pluripotency-related genes such as Nanog and Oct3 / 4 at the same level as ES cells (FIG. 16). Similarly, the overall gene expression pattern of iPS cell-like cells was similar to that of normal ES cells and control iPS cells.
前記肉腫由来iPS細胞様細胞はNanogプロモーターとOct3/4遠位エンハンサーの両方の脱メチル化を示した(図17)。これはこれらの細胞がエピジェネティック再構成を経て多能性を獲得したことを表している。細胞再プログラム化の後期ステージに生じる前記外来性4因子の発現のサイレンシングが幾つかのiPS細胞様クローンにおいて観察された。これはこれらの細胞が充分に再プログラム化されたことを示唆している。次に我々はアレイ比較ゲノムハイブリダイゼーション(アレイCGH)を行い、前記単一細胞由来肉腫細胞が広範な染色体異常を有していることを発見した。複数の肉腫由来iPS細胞様細胞が幾つかの同一の染色体異常を有しており、これはこれらのiPS細胞様クローンが前記親肉腫細胞から得られたことを確認するものである。これらの肉腫由来iPS細胞様細胞は胚盤胞注入により成熟キメラマウスになる能力を喪失しており、おそらくはこれはCGH分析において観察された広範な遺伝子異常のためである。しかしながら、肉腫由来iPS細胞様細胞は免疫低下状態のマウスの皮下組織に接種されると3種類の異なる胚葉へ分化する細胞から構成されるテラトーマを形成した(図18)。これはそれらの細胞が多能性を有することを示している。これらの結果はEWS-FLI1誘導性骨肉腫細胞からのiPS細胞の作製に成功したことを示している。 The sarcoma-derived iPS cell-like cells showed demethylation of both Nanog promoter and Oct3 / 4 distal enhancer (FIG. 17). This indicates that these cells have acquired pluripotency via epigenetic reconstitution. Silencing of the exogenous 4 factor expression occurring in the late stage of cell reprogramming was observed in several iPS cell-like clones. This suggests that these cells have been fully reprogrammed. Next, we performed array comparative genomic hybridization (array CGH) and found that the single cell-derived sarcoma cells had extensive chromosomal abnormalities. Several sarcoma-derived iPS cell-like cells have several identical chromosomal abnormalities, confirming that these iPS cell-like clones were obtained from the parent sarcoma cells. These sarcoma-derived iPS cell-like cells have lost the ability to become mature chimeric mice upon blastocyst injection, presumably due to the widespread genetic abnormalities observed in CGH analysis. However, sarcoma-derived iPS cell-like cells formed teratomas composed of cells that differentiated into three different germ layers when inoculated into subcutaneous tissues of immunocompromised mice (FIG. 18). This indicates that these cells are pluripotent. These results indicate that iPS cells were successfully produced from EWS-FLI1-induced osteosarcoma cells.
肉腫由来iPS細胞はEWS-FLI1発現と無関係に骨分化異常を示す
EWS-FLI1が消失したときの肉腫細胞の骨分化の増加からEWS-FLI1依存的骨肉腫が骨形成細胞から生じる可能性が提起された。したがって、EWS-FLI1の発現が無い状態で多能性幹細胞からインビトロで前記肉腫の想定起始細胞である骨形成細胞の誘導を試みた(図19) (Nature 467, 285-290. 2010の方法参照)。対照ES細胞では骨分化刺激はRunx2、Sp7、Pth1r、Col1a1及びDmp1などの骨分化関連遺伝子を誘導した(17日目)(図20)。骨分化刺激は肉腫由来iPS細胞においても骨分化の重要な転写因子であるRunx2の発現を誘導したが、Runx2の下流にある骨形成遺伝子の誘導はEWS-FLI1の発現が無くても減少した(17日目)(図20)。骨分化誘導を延長したとき(28日目)、アリザリンレッド染色により評価すると石灰化領域が全ての試料で検出された(図21)。しかしながら、石灰化された面積は肉腫由来iPS細胞よりも対照ES細胞で大きかった(図21)。我々は免疫低下状態のマウスにおいてテラトーマを作製するために肉腫由来iPS細胞のインビボ分化方法を用いた。肉腫由来iPS細胞と対照ES細胞の両方がテラトーマを形成し、それらのテラトーマにはEWS-FLI1の発現が無い状態で骨形成領域が含まれた(図22)。肉腫iPS細胞由来骨形成細胞のKi67陽性率は対照ES細胞由来骨形成細胞のものよりも有意に高かった(P<0.01)(図23)。まとめると、肉腫由来iPS細胞はEWS-FLI1発現と無関係に骨分化異常を示し、これはEWS-FLI1融合以外の遺伝的変化によっても骨分化が阻害され、増殖性始原細胞状態が維持されることを示唆している。
Sarcoma-derived iPS cells suggest that EWS-FLI1-dependent osteosarcoma may arise from osteogenic cells due to increased bone differentiation of sarcoma cells when EWS-FLI1, which shows abnormal bone differentiation independent of EWS-FLI1 expression, disappears It was done. Therefore, in the absence of EWS-FLI1 expression, an attempt was made in vitro to induce osteogenic cells, which are the assumed sarcoma of the sarcoma, from pluripotent stem cells (FIG. 19) (Method of Nature 467, 285-290. 2010). reference). In control ES cells, bone differentiation stimulation induced bone differentiation-related genes such as Runx2, Sp7, Pth1r, Col1a1 and Dmp1 (day 17) (FIG. 20). Bone differentiation stimulation also induced the expression of Runx2, which is an important transcription factor for bone differentiation, in sarcoma-derived iPS cells, but the induction of bone morphogenetic genes downstream of Runx2 decreased even without EWS-FLI1 expression ( Day 17) (Figure 20). When bone differentiation induction was prolonged (day 28), calcified areas were detected in all samples as assessed by alizarin red staining (FIG. 21). However, the calcified area was greater in control ES cells than in sarcoma-derived iPS cells (FIG. 21). We used an in vivo differentiation method of sarcoma-derived iPS cells to generate teratomas in immunocompromised mice. Both sarcoma-derived iPS cells and control ES cells formed teratomas, and these teratomas contained osteogenic regions in the absence of EWS-FLI1 expression (FIG. 22). The Ki67 positive rate of sarcoma iPS cell-derived osteogenic cells was significantly higher than that of control ES cell-derived osteogenic cells (P <0.01) (FIG. 23). In summary, sarcoma-derived iPS cells show abnormal bone differentiation independent of EWS-FLI1 expression, which is also inhibited by differentiation other than EWS-FLI1 fusion and maintains proliferative progenitor cell state It suggests.
EWS-FLI1発現は肉腫-iPS細胞由来骨形成細胞からの急速な肉腫発生を誘導した
肉腫発生に対するEWS-FLI1発現と遺伝子異常に関連する分化異常との間の協同作用の分析を試みた。肉腫由来iPS細胞と対照ES細胞(Rosa-M2rtTA/Rosa::tetO-EWS-FLI1)の両方においてEWS-FLI1発現は未分化培養条件下で細胞増殖に何の促進効果も無い(図24)。次に、肉腫由来iPS細胞と対照ES細胞の骨分化をインビトロで誘導し、その後でEWS-FLI1発現を誘導した(図25)。骨分化プロトコルの17日目に肉腫由来iPS細胞と対照ES細胞に由来する骨形成前駆細胞をDoxで処理した(図25)。その結果、肉腫由来骨形成細胞のみが31日目にDoxに応答して顕著な細胞増殖をインビトロで示した(図26及び27)。これらの細胞の異種移植によりDoxを投与されたマウスにおいてのみ腫瘍発生が生じた(図28)。これらの異種移植腫瘍は小円形青色細胞から構成される肉腫であることが組織学的分析により明らかになった(図29)。対照ES細胞に由来する骨形成細胞はインビボで明確なEWS-FLI1依存的増殖を示さなかった(データを示さず)。これは肉腫発生が追加の異常を必要とすることを確認している。まとめると、これらの結果は肉腫ゲノムと関連する分化能異常がEWS-FLI1発現時の骨形成細胞の急速な悪性形質転換に寄与することを示唆している。
EWS-FLI1 expression induced rapid sarcoma development from sarcoma-iPS cell-derived osteogenic cells. Analysis of the cooperative action between EWS-FLI1 expression and differentiation abnormalities related to genetic abnormalities on sarcoma development. Tried. In both sarcoma-derived iPS cells and control ES cells (Rosa-M2rtTA / Rosa :: tetO-EWS-FLI1), EWS-FLI1 expression has no promoting effect on cell proliferation under undifferentiated culture conditions (FIG. 24). Next, bone differentiation of sarcoma-derived iPS cells and control ES cells was induced in vitro, followed by EWS-FLI1 expression (FIG. 25). On day 17 of the bone differentiation protocol, osteogenic precursor cells derived from sarcoma-derived iPS cells and control ES cells were treated with Dox (FIG. 25). As a result, only sarcoma-derived osteogenic cells showed significant cell proliferation in vitro in response to Dox on day 31 (FIGS. 26 and 27). Tumor development occurred only in mice administered Dox by xenotransplantation of these cells (FIG. 28). Histological analysis revealed that these xenograft tumors were sarcomas composed of small round blue cells (FIG. 29). Osteogenic cells derived from control ES cells did not show clear EWS-FLI1-dependent proliferation in vivo (data not shown). This confirms that sarcoma development requires additional abnormalities. Taken together, these results suggest that the differentiation potential associated with the sarcoma genome contributes to the rapid malignant transformation of osteogenic cells during EWS-FLI1 expression.

Claims (10)

  1. 骨髄間質細胞由来のユーイング肉腫ファミリー腫瘍細胞であって、
    誘導型転写制御配列を含むプロモーターの制御下に置かれたEWSキメラ遺伝子が染色体上に導入され、EWSキメラタンパク質の発現時に、生育可能であり、無限増殖能を有する、ユーイング肉腫ファミリー腫瘍細胞。
    Ewing sarcoma family tumor cells derived from bone marrow stromal cells,
    An Ewing sarcoma family tumor cell in which an EWS chimeric gene placed under the control of a promoter containing an inducible transcriptional regulatory sequence is introduced onto a chromosome and can grow upon expression of the EWS chimeric protein and has infinite proliferation ability.
  2. EWSキメラ遺伝子がEWS-FLI1遺伝子である、請求項1に記載のユーイング肉腫ファミリー腫瘍細胞。 The Ewing sarcoma family tumor cell according to claim 1, wherein the EWS chimeric gene is the EWS-FLI1 gene.
  3. EWSキメラ遺伝子が薬剤耐性遺伝子とともに誘導型転写制御配列を含むプロモーターの制御下に置かれた、請求項1または2に記載のユーイング肉腫ファミリー腫瘍細胞。 The Ewing sarcoma family tumor cell according to claim 1 or 2, wherein the EWS chimeric gene is placed under the control of a promoter containing an inducible transcription control sequence together with a drug resistance gene.
  4. 誘導型転写制御配列がTetオペレーターであり、前記細胞はリバーステトラサイクリン制御性トランス活性化因子を発現する、請求項1~3のいずれか一項に記載のユーイング肉腫ファミリー腫瘍細胞。 The Ewing sarcoma family tumor cell according to any one of claims 1 to 3, wherein the inducible transcription control sequence is a Tet operator and the cell expresses a reverse tetracycline-regulated transactivator.
  5. 前記EWSキメラ遺伝子はレンチウイルスベクターを用いて染色体上に導入された、請求項1~4のいずれか一項に記載のユーイング肉腫ファミリー腫瘍細胞。 The Ewing sarcoma family tumor cell according to any one of claims 1 to 4, wherein the EWS chimeric gene is introduced onto a chromosome using a lentiviral vector.
  6. 請求項1~5のいずれか一項に記載のユーイング肉腫ファミリー腫瘍細胞を初期化することによって得られる人工多能性幹細胞。 An induced pluripotent stem cell obtained by reprogramming the Ewing sarcoma family tumor cell according to any one of claims 1 to 5.
  7. 請求項1~5のいずれか一項に記載のユーイング肉腫ファミリー腫瘍細胞が移植され、EWSキメラタンパク質の発現依存的にユーイング肉腫ファミリー腫瘍を発症する、ユーイング肉腫ファミリー腫瘍モデル非ヒト哺乳動物。 An Ewing sarcoma family tumor model non-human mammal, which is transplanted with the Ewing sarcoma family tumor cell according to any one of claims 1 to 5 and develops the Ewing sarcoma family tumor depending on the expression of the EWS chimeric protein.
  8. EWSキメラ遺伝子の発現誘導下で培養された請求項1~5のいずれか一項に記載のユーイング肉腫ファミリー腫瘍細胞に試験化合物を添加する工程、該ユーイング肉腫ファミリー腫瘍細胞の増殖能または腫瘍表現型を調べる工程、及び、該ユーイング肉腫ファミリー腫瘍細胞の増殖能を低下させること、または腫瘍表現型を減少させることを指標として、試験化合物をユーイング肉腫ファミリー腫瘍の治療薬候補化合物として選択する工程を含む、ユーイング肉腫ファミリー腫瘍治療薬のスクリーニング方法。 6. A step of adding a test compound to Ewing sarcoma family tumor cells according to any one of claims 1 to 5 cultured under the induction of expression of an EWS chimeric gene, the proliferative ability or tumor phenotype of the Ewing sarcoma family tumor cells And a step of selecting a test compound as a therapeutic drug candidate compound for Ewing sarcoma family tumors using as an index the reduction of the proliferative ability of the Ewing sarcoma family tumor cells or the reduction of the tumor phenotype , Screening method for Ewing sarcoma family tumor therapeutic agent.
  9. 請求項6に記載の人工多能性幹細胞を骨細胞に分化させる工程、EWSキメラタンパク質の発現を誘導する工程、得られたEWSキメラタンパク質を発現するユーイング肉腫ファミリー腫瘍細胞に試験化合物を添加する工程、該ユーイング肉腫ファミリー腫瘍細胞の増殖能または腫瘍表現型を決定する工程、及び、該ユーイング肉腫ファミリー腫瘍細胞の増殖能を低下させること、または腫瘍表現型を減少させることを指標として、試験化合物をユーイング肉腫ファミリー腫瘍の治療薬候補化合物として選択する工程を含む、ユーイング肉腫ファミリー腫瘍治療薬のスクリーニング方法。 The step of differentiating the induced pluripotent stem cells according to claim 6 into bone cells, the step of inducing the expression of EWS chimeric protein, and the step of adding a test compound to the Ewing sarcoma family tumor cells expressing the obtained EWS chimeric protein Determining the growth ability or tumor phenotype of the Ewing sarcoma family tumor cell, and reducing the growth ability of the Ewing sarcoma family tumor cell or reducing the tumor phenotype as an index, A screening method for a therapeutic agent for Ewing sarcoma family tumor, comprising a step of selecting the candidate compound as a therapeutic agent for Ewing sarcoma family tumor.
  10. 請求項6に記載の人工多能性幹細胞をEWSキメラタンパク質が発現しない状態で試験化合物を添加した骨分化誘導培地で培養して骨細胞に分化させる工程、骨細胞への分化度を決定する工程、及び、該骨細胞への分化度を増加させることを指標として、試験化合物を骨分化促進物質として選択する工程を含む、骨分化促進物質のスクリーニング方法。 A step of culturing the induced pluripotent stem cell according to claim 6 in a bone differentiation-inducing medium to which a test compound is added in a state in which no EWS chimeric protein is expressed to differentiate into a bone cell, a step of determining the degree of differentiation into a bone cell And a method for screening a bone differentiation promoting substance, comprising the step of selecting a test compound as a bone differentiation promoting substance using as an index the increase in the degree of differentiation into the bone cells.
PCT/JP2017/001778 2016-01-21 2017-01-19 Cell model for ewing's sarcoma family of tumors, and antitumor agent screening method using same WO2017126616A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016010122A JP2019050732A (en) 2016-01-21 2016-01-21 Ewing sarcoma family tumor model cells and screening method of anti-tumor agent using the same
JP2016-010122 2016-01-21

Publications (1)

Publication Number Publication Date
WO2017126616A1 true WO2017126616A1 (en) 2017-07-27

Family

ID=59361735

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/001778 WO2017126616A1 (en) 2016-01-21 2017-01-19 Cell model for ewing's sarcoma family of tumors, and antitumor agent screening method using same

Country Status (2)

Country Link
JP (1) JP2019050732A (en)
WO (1) WO2017126616A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019124348A1 (en) * 2017-12-19 2019-06-27 国立大学法人京都大学 Novel method for inducing osteogenic differentiation
JP2020167956A (en) * 2019-04-03 2020-10-15 学校法人東京医科大学 Method for producing mature tissue, and method for producing organ

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
KAWAMURA, SHINGO: "Ewing Nikushu Model Mouse Sakusei no Kokoromi", THE JOURNAL OF THE JAPANESE ORTHOPAEDIC ASSOCIATION, vol. 89, no. 6, 2015, pages S1246 *
MATSUDA, Y. ET AL.: "Application of iPS cell technology to cancer epigenome study: Uncovering the mechanism of cell stat", PATHOLOGY INTERNATIONAL, vol. 64, no. 7, July 2014 (2014-07-01), pages 299 - 308, XP055317309, ISSN: 1320-5463, DOI: doi:10.1111/pin.12180 *
SEMI, KATSUNORI ET AL., vol. 32, no. 19, December 2014 (2014-12-01), pages 3061 - 3065, ISSN: 0288-5514 *
YOSHITAKA MIYAGAWA: "Inducible Expression of Chimeric EWS/ETS Proteins Confers Ewing's Family Tumor-Like Phenotypes to Human Mesenchymal Progenitor Cells", MOLECULAR AND CELLULAR BIOLOGY, vol. 28, no. 7, 2008, pages 2125 - 2137 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019124348A1 (en) * 2017-12-19 2019-06-27 国立大学法人京都大学 Novel method for inducing osteogenic differentiation
JPWO2019124348A1 (en) * 2017-12-19 2020-12-03 国立大学法人京都大学 New bone differentiation induction method
US11859209B2 (en) 2017-12-19 2024-01-02 Kyoto University Method for inducing osteogenic differentiation
JP2020167956A (en) * 2019-04-03 2020-10-15 学校法人東京医科大学 Method for producing mature tissue, and method for producing organ

Also Published As

Publication number Publication date
JP2019050732A (en) 2019-04-04

Similar Documents

Publication Publication Date Title
US20230282445A1 (en) Method of nuclear reprogramming
EP2307539B1 (en) Method of efficiently establishing induced pluripotent stem cells
JP5553289B2 (en) New nuclear initialization material
JP5827220B2 (en) Method for improving the efficiency of establishment of induced pluripotent stem cells
KR101657318B1 (en) Multipotent/pluripotent cells and methods
EP2536828B1 (en) Method of efficiently establishing induced pluripotent stem cells
US20200181568A1 (en) Method for inducing differentiation of pluripotent stem cells into germ cells
JP2013528356A (en) Selection method of human induced pluripotent stem cells
US20130183757A1 (en) Method of efficiently establishing induced pluripotent stem cells
WO2009143421A2 (en) Methods for promoting fusion and reprogramming of somatic cells
WO2017126616A1 (en) Cell model for ewing&#39;s sarcoma family of tumors, and antitumor agent screening method using same
JP5773393B2 (en) Efficient method for establishing induced pluripotent stem cells
JP6847374B2 (en) Screening methods for cancer treatments
CN116529361B (en) Induction of pluripotent stem cells using polycistronic SOX2, KLF4 and optionally C-MYC production
JP2019162054A (en) Efficient method for establishing induced pluripotent stem cell
WO2018225751A1 (en) Method for maintaining and amplifying colon cancer stem cells and method for inducing colon cancer organoid
WO2012141181A1 (en) Nuclear reprogramming substance
WO2016167329A1 (en) Method for producing stem cell clones suitable for induction of differentiation into somatic cells

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17741493

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17741493

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP