WO2017126208A1 - Photon-counting ct apparatus - Google Patents

Photon-counting ct apparatus Download PDF

Info

Publication number
WO2017126208A1
WO2017126208A1 PCT/JP2016/084099 JP2016084099W WO2017126208A1 WO 2017126208 A1 WO2017126208 A1 WO 2017126208A1 JP 2016084099 W JP2016084099 W JP 2016084099W WO 2017126208 A1 WO2017126208 A1 WO 2017126208A1
Authority
WO
WIPO (PCT)
Prior art keywords
ray
unit
data
photon counting
detection unit
Prior art date
Application number
PCT/JP2016/084099
Other languages
French (fr)
Japanese (ja)
Inventor
小嶋 進一
康隆 昆野
史人 渡辺
高橋 勲
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Priority to US16/071,810 priority Critical patent/US10542947B2/en
Priority to CN201680078044.3A priority patent/CN108472004B/en
Publication of WO2017126208A1 publication Critical patent/WO2017126208A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment
    • A61B6/42Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment with arrangements for detecting radiation specially adapted for radiation diagnosis
    • A61B6/4208Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment with arrangements for detecting radiation specially adapted for radiation diagnosis characterised by using a particular type of detector
    • A61B6/4241Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment with arrangements for detecting radiation specially adapted for radiation diagnosis characterised by using a particular type of detector using energy resolving detectors, e.g. photon counting
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment
    • A61B6/02Devices for diagnosis sequentially in different planes; Stereoscopic radiation diagnosis
    • A61B6/03Computerised tomographs
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment
    • A61B6/02Devices for diagnosis sequentially in different planes; Stereoscopic radiation diagnosis
    • A61B6/03Computerised tomographs
    • A61B6/032Transmission computed tomography [CT]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment
    • A61B6/58Testing, adjusting or calibrating apparatus or devices for radiation diagnosis
    • A61B6/582Calibration
    • A61B6/585Calibration of detector units
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T11/002D [Two Dimensional] image generation
    • G06T11/003Reconstruction from projections, e.g. tomography
    • G06T11/005Specific pre-processing for tomographic reconstruction, e.g. calibration, source positioning, rebinning, scatter correction, retrospective gating
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T11/002D [Two Dimensional] image generation
    • G06T11/003Reconstruction from projections, e.g. tomography
    • G06T11/008Specific post-processing after tomographic reconstruction, e.g. voxelisation, metal artifact correction
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment
    • A61B6/40Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment with arrangements for generating radiation specially adapted for radiation diagnosis
    • A61B6/4035Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment with arrangements for generating radiation specially adapted for radiation diagnosis the source being combined with a filter or grating
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2211/00Image generation
    • G06T2211/40Computed tomography
    • G06T2211/408Dual energy

Definitions

  • the present invention relates to an X-ray CT (Computed Tomography) apparatus (hereinafter referred to as a PCCT apparatus) having a photon counting mode, and more particularly to a more accurate correction data collection technique.
  • a PCCT apparatus Computer Tomography apparatus
  • the X-ray CT apparatus obtains X-ray transmission data of a subject while rotating a pair of an X-ray source and an X-ray detector arranged opposite to each other with the subject interposed therebetween, and calculates a tomographic image (hereinafter referred to as a CT image). And is used as industrial and security inspection devices, medical diagnostic imaging devices, and the like.
  • Medical X-ray CT apparatuses include a PCCT apparatus equipped with a photon counting mode.
  • the PCCT apparatus for example, as shown in Patent Document 1, X-ray photons (X-ray photons) transmitted through a subject are counted for each detection element by a photon counting X-ray detector.
  • X-ray photons X-ray photons
  • a photon counting X-ray detector X-ray photons
  • the X-ray intensity for each energy value can be obtained by discriminating each counted X-ray photon by the energy value.
  • the PCCT apparatus may extract and image only X-rays in a specific energy range and use it for diagnosis.
  • an X-ray source is rotated to image a subject from various angles, but fluctuations in a rotation direction time integration result based on errors in the rotation direction notch interval (hereinafter referred to as rotation direction time fluctuations). ) Occurs.
  • an error occurs in the section that integrates each piece of data in the rotation direction (hereinafter, that section is referred to as a view), and the longer section has more data due to the difference in view length.
  • the short section has less data.
  • the X-ray intensity of the X-ray source fluctuates with time, these errors cause artifacts in the image obtained by the X-ray CT apparatus.
  • the X-ray CT apparatus uses a reference detector to reduce these errors.
  • a reference X-ray detector is placed in a place that does not pass through the subject, and measurement is performed in the same time as the X-ray detector in the place that has passed through the subject, so that an error in the notch spacing in the rotational direction is obtained.
  • the data of the time fluctuation in the rotation direction and the fluctuation of the X-ray source are collected. Then, it is possible to correct these two errors by correcting with the ratio of the output of the X-ray detector and the reference detector in each view.
  • the time fluctuation in the rotation direction and the fluctuation of the X-ray source based on the error in the notch interval in the rotation direction similar to the above-described X-ray CT apparatus occur. Therefore, a reference detector is required, but in the case of a PCCT apparatus, since data is collected for each energy range, it is necessary to assume fluctuations in X-rays for each energy range.
  • the photon counting detector includes a detection error due to pileup, which is a deviation for each energy range due to the detector characteristics.
  • the reference detector data also includes an error due to pileup. Therefore, it is necessary to reduce errors different from those of the conventional X-ray CT apparatus.
  • the present invention has been made in view of the above problems, and an object thereof is to provide a PCCT apparatus capable of correcting various fluctuations with high accuracy.
  • an X-ray irradiation unit that irradiates X-rays
  • a photon counting type X-ray detection unit that detects X-rays
  • an X-ray photon detected by the X-ray detection unit A data collection unit that counts for each energy range of a predetermined category and obtains measurement information for each energy range, a reference detection unit that measures fluctuations in X-rays emitted from the X-ray irradiation unit, and an X-ray irradiation unit
  • a photon counting CT apparatus including a time measuring unit that measures time fluctuation in a rotation direction.
  • FIG. 5 is a diagram for explaining an example of an X-ray detector according to Embodiment 1.
  • FIG. It is a figure which shows the functional block of the calculating part of a PCCT apparatus, and the example of a processing flow based on Example 1.
  • FIG. 5 is a diagram for explaining an example of an X-ray detector according to Embodiment 1.
  • FIG. 6 is a diagram for explaining an example of an X-ray detector according to Embodiment 2.
  • FIG. 10 is a diagram for explaining an example of an X-ray detector according to a fourth embodiment.
  • FIG. 10 is a diagram for explaining another example of the X-ray detector according to the fourth embodiment. It is a figure which shows the functional block of a calculating part, and the example of a processing flow based on Example 4.
  • FIG. FIG. 10 is a diagram illustrating a configuration example of a PCCT apparatus according to a fifth embodiment. It is a figure which shows the functional block of a calculating part, and the example of a processing flow based on Example 5.
  • FIG. It is a figure which shows the functional block of a calculating part, and the example of a processing flow based on Example 3.
  • FIG. It is a figure which shows an example of the pileup correction data of the PCCT apparatus based on Example 1.
  • a reference detection unit and a time measurement unit for measuring time are provided, and time fluctuation in the rotation direction is corrected by the time measured by the time measurement unit, and the correction of fluctuation of the X-ray source and pileup is measured.
  • a data collection unit that counts every time and obtains measurement information for each energy range, a reference detection unit that measures fluctuations in X-rays emitted from the X-ray irradiation unit, and time fluctuations in the rotational direction of the X-ray irradiation unit
  • a PCCT apparatus having a configuration including a time measurement unit that performs correction, and further includes a correction unit that corrects measurement data measured by the reference detection unit based on time measurement data measured by the time measurement unit.
  • a PCCT apparatus having a photon counting type X-ray detector is used instead of a conventional current mode measurement type integration type detector.
  • photons X-ray photons
  • a photon counting X-ray detector Individual x-ray photons have different energies.
  • the X-ray photons are discriminated for each predetermined energy range and counted, whereby the X-ray intensity that is the X-ray photon count for each energy range can be obtained as measurement information.
  • the PCCT apparatus 100 includes a user interface (hereinafter referred to as UI) unit 200, a measurement unit 300, and a calculation unit 400.
  • UI user interface
  • the UI unit 200 receives an input from the user and presents the processing result of the calculation unit 400 to the user. For this reason, the UI unit 200 includes an input device 210 such as a keyboard and a mouse, a display device such as a monitor, and an output device 220 such as a printer.
  • the display device includes a liquid crystal display, a CRT (Cathode Ray Tube), and the like. Note that the display device of the output device 220 may have a touch panel function and be configured to be used as the input device 210.
  • the measurement unit 300 irradiates the subject 101 with X-rays and measures X-ray photons transmitted through the subject 101 under the control of the calculation unit 400.
  • the measurement unit 300 includes an X-ray irradiation unit 310, an X-ray detection unit 320, a reference detection unit 350 disposed at a position where the subject does not pass through the side of the X-ray detection unit and enters the detector, a gantry ( A gantry 330, a control unit 340, and a table 102 on which the subject 101 is placed.
  • a circular opening 331 for placing the subject 101 and the table 102 on which the subject 101 is placed is provided.
  • a rotating plate 332 on which an X-ray detection unit 320 including an X-ray tube 311 and an X-ray detector 321 described later is mounted, and a drive mechanism for rotating the rotating plate 332 are arranged, and a control unit It is controlled by a gantry controller 342 which will be described later.
  • the rotating plate 332 has a notch 333 in the rotation direction, and integration is performed when the notch 333 passes. That is, when crossing the notch 333, a signal enters a detection controller 343 described later in the control unit 340, and a command for processing data is issued based on this signal.
  • the time required for the rotation of the rotating plate 332 depends on parameters input by the user via the UI unit 200. In this embodiment, for example, the time required for rotation is 1.0 s / time. For example, the number of times of photographing in one rotation by the measurement unit 300 is 900, and one photographing is performed every time the rotating plate 332 rotates 0.4 degrees. Each specification is not limited to these values, and can be variously changed according to the configuration of the PCCT apparatus 100. As described above, there is an error in the interval between the notches 333, which causes time fluctuation in the rotation direction.
  • the circumferential direction of the opening 331 is the x direction
  • the radial direction is the y direction
  • the direction perpendicular to them is the z direction.
  • the z direction is the same as the body axis direction of the subject 101.
  • the X-ray irradiation unit 310 generates X-rays and irradiates the subject 101 with the generated X-rays.
  • the X-ray irradiation unit 310 includes an X-ray tube 311, an X-ray filter 312, and a bowtie filter 313.
  • the X-ray tube 311 irradiates the subject 101 with an X-ray beam by a high voltage supplied in accordance with the control of an irradiation controller 341 described later.
  • the irradiated X-ray beam spreads with a fan angle and a cone angle.
  • the X-ray beam is applied to the subject 101 as the rotating plate 332 of the gantry 330 rotates.
  • the X-ray filter 312 adjusts the quality of X-rays emitted from the X-ray tube 311. That is, the X-ray spectrum is changed.
  • the X-ray filter 312 of this embodiment attenuates the X-rays irradiated from the X-ray tube 311 so that the X-rays irradiated from the X-ray tube 311 to the subject 101 have a predetermined energy distribution.
  • the X-ray filter 312 is used to optimize the exposure amount of the patient who is the subject 101. For this reason, it is designed to increase the dose in the required energy range.
  • the bow tie filter 313 suppresses the exposure amount of the peripheral part. It is used for optimizing the exposure dose by using the elliptical cross section of the human body as the subject 101, increasing the dose near the center, and lowering the ambient dose.
  • the X-ray detection unit 320 Each time an X-ray photon enters, the X-ray detection unit 320 outputs a signal capable of measuring the energy value of the X-ray photon.
  • the X-ray detection unit 320 includes an X-ray detector 321.
  • FIG. 2 illustrates a part of the X-ray detector 321.
  • the X-ray detector 321 of the present embodiment includes a plurality of detection elements 322 and a counting circuit electrically connected to each detection element 322 as shown in the cross-sectional and plan configurations of FIGS. 324 and a collimator 323 that limits the incident direction to the X-ray detector 321.
  • the reference detector 350 also has the same structure as the X-ray detector 321 illustrated in FIG. In the X-ray detection unit 320, the structure partially shown in FIG. 2A is repeated in the x direction.
  • the reference detection unit 350 may use some X-ray detectors at the end of the X-ray detection unit 320. In that case, care must be taken so that the subject does not protrude from the effective field of view (FOV: Field of View). Conversely, the X-ray detection unit 320 and the reference detection unit 350 may be separated to avoid overlapping with the FOV. Further, as shown in FIG.
  • the X-ray detector 321 includes a large number of detection elements 322 at substantially equidistant positions from a plurality of X-ray generation points of the X-ray tube 311 in the x direction and the z direction. 2 may be arranged in a two-dimensional manner, and this applies to both the X-ray detector 320 and the reference detector 350.
  • a plurality of detector modules which are planar X-ray detectors, are created, arranged so that the central portion of the plane is an arc, and are arranged in a pseudo arc shape.
  • the detector 321 may be used.
  • the X-rays incident on each detection element 322 are converted into one-pulse electric signals (analog signals) by each electrically connected counting circuit 324 every time one X-ray photon is incident.
  • the converted electrical signal is input to the arithmetic unit 400 described later.
  • the detection element 322 uses, for example, a CdTe telluride-based semiconductor element that directly converts incident X-ray photons into an electrical signal.
  • the detection element 322 may be a scintillator that emits fluorescence upon receiving X-rays and a photodiode that converts fluorescence into electricity.
  • the number of detection elements 322 of the X-ray detector 321 in the x direction is, for example, 1000.
  • the size of each detection element in the x direction is, for example, 1 mm.
  • the distance between the X-ray generation point of the X-ray tube 311 and the X-ray incident surface of the X-ray detector 321 is, for example, 1000 mm.
  • the diameter of the opening 331 of the gantry 330 is 700 mm, for example.
  • the specifications of the X-ray detection unit 320 are not limited to these values, and can be variously changed according to the configuration of the PCCT apparatus 100.
  • the control unit 340 includes an irradiation controller 341 that controls irradiation of X-rays from the X-ray tube 311, a gantry controller 342 that controls rotation of the rotating plate 332, a table controller 344 that controls driving of the table 102, and X A detection controller 343 that controls X-ray detection in the line detector 321 and a time measuring unit 345 that is a time measuring unit that measures time in the rotation direction are provided.
  • the time measuring device 345 receives the signal at the same time as the rotation time measurement time signal generated when crossing the notch 333 indicated by the gantry 330 enters the detection controller 343, and stores the rotation time measurement time.
  • controllers of the control unit 340 operate according to control by the measurement control unit 420 of the calculation unit 400 described later.
  • FIG. 3 shows a functional block diagram of the calculation unit 400 of this embodiment.
  • the arithmetic unit 400 controls the overall operation of the PCCT apparatus 100 and processes the data acquired by the measurement unit 300 to photograph the subject.
  • the calculation unit 400 includes an imaging condition setting unit 410, a measurement control unit 420, a data collection unit 430, a correction unit 440, and an image generation unit 450, which will be described in detail below.
  • the calculation unit 400 includes a central processing unit (CPU) 401, a memory 402, and an HDD (Hard disk drive) device 403 as hardware configurations.
  • the central processing unit 401 loads a program stored in the HDD device 403 in advance into the memory 402 and executes it, thereby realizing each function.
  • arithmetic unit 400 may be realized by an integrated circuit such as ASIC (Application Specific Integrated Circuit) or FPGA (Field Programmable Gate Array) instead of the program.
  • ASIC Application Specific Integrated Circuit
  • FPGA Field Programmable Gate Array
  • the HDD device 403 stores data used for processing, data generated during processing, data obtained as a result of processing, and the like.
  • the processing result is also output to an output device 220 such as a display device of the UI unit 200.
  • the shooting condition setting unit 410 receives and sets shooting conditions from the user using the UI unit 200. For example, the shooting condition setting unit 410 displays a reception screen for receiving shooting conditions on the display device, and receives the shooting conditions via the reception screen. The user inputs photographing conditions by operating the input device 210 such as a mouse, a keyboard, or a touch panel via the reception screen.
  • the input device 210 such as a mouse, a keyboard, or a touch panel via the reception screen.
  • the imaging conditions to be set are, for example, the tube current and tube voltage of the X-ray tube 311, the imaging range of the subject 101, the type of the X-ray filter 312, the shape of the bow tie filter 313, and the resolution.
  • the user does not necessarily have to input shooting conditions using the UI unit 200 each time.
  • typical photographing conditions stored in advance in the HDD 403 or the like may be read and used.
  • the measurement control unit 420 controls the control unit 340 according to the shooting conditions set by the user, and performs measurement.
  • the measurement control unit 420 moves the table 102 in a direction perpendicular to the rotating plate 332 with respect to the table controller 344, and the shooting position set using the rotating plate 332 is set. It is instructed to stop the movement when it matches. Thereby, the arrangement of the subject 101 is completed.
  • the measurement control unit 420 instructs the gantry controller 342 to operate the drive motor and start the rotation of the rotating plate 332 at the same timing as the instruction to the table controller 344.
  • the measurement control unit 420 instructs the X-ray irradiation timing of the X-ray tube 311 to the irradiation controller 341, and the detection controller 343 instructs the imaging timing of the X-ray detector 321. Accordingly, the measurement control unit 420 performs X-ray irradiation and X-ray photon detection by the detector, and starts measurement.
  • the measurement control unit 420 measures the entire imaging range by repeating these instructions to the control unit 340. Note that the measurement control unit 420 and the control unit 340 may perform control so as to perform imaging while moving the table 102 as in a known helical scan.
  • the data collection unit 430 counts X-ray photons derived from the X-rays detected by the X-ray detector 321 for each predetermined energy range, and outputs a count value for each energy range, that is, projection data that is measurement information. Obtained as imaging data 431.
  • the data collection unit 430 of this embodiment includes a data collection system (DAS: Data Acquisition System, hereinafter referred to as DAS), and this DAS counts the X-ray photons detected by the measurement unit 300 and images the count value. This is data 431. Further, the data collection unit 430 collects the output of the reference detection unit 350 as reference data 432 and collects the output of the time measuring device 345 as time measurement data 433.
  • DAS Data Acquisition System
  • the DAS acquires the energy value of each X-ray photon detected by the X-ray detector 321 and outputs the energy value (Bin) provided for each energy range according to the energy value to the count value. to add.
  • An energy bin is a storage area set for each energy range.
  • Each energy range is obtained by dividing the entire energy range from 0 keV to the maximum energy of the X-ray tube 311 by a predetermined energy width ⁇ B. If the energy width ⁇ B is, for example, 10 keV and the maximum energy is, for example, 140 keV, the total energy range 0 keV to 140 keV is changed to B1 (0 to 20 keV), B2 (20 to 40 keV), B3 (40 to 60 keV), B4 (60 to 80 keV). ), B5 (80 to 100 keV), B6 (100 to 120 keV), and B7 (120 to 140 keV).
  • the DAS sequentially adds to the count result of the energy bins provided in association with the corresponding energy range according to the detected energy value of the X-ray photon.
  • FIG. 4 shows an example of the result.
  • the horizontal axis represents each energy range B1 to B7, and the vertical axis represents the number of photons in each energy range.
  • the data collection unit 430 counts the number of X-ray photons for each energy range.
  • the obtained result shows the distribution of energy values (unit: keV) of X-ray photons. Accordingly, the data collection unit 430 thereby obtains a spectrum of the energy distribution of the X-rays detected by the X-ray detector 321.
  • the data collection unit 430 outputs imaging data 431 that is the obtained result as measurement information.
  • the total energy range, each energy range, that is, the energy range corresponding to each energy bin, and the number of energy bins are set in advance according to an instruction from the user or the like.
  • the data collection unit 430 collects reference data 432 and time measurement data 433, which will be described later, in addition to the imaging data 431.
  • the correction unit 440 performs correction processing using the imaging data 431, reference data 432, and time measurement data 433 collected by the data collection unit 430.
  • the correction processing performed here is, for example, linearity correction of a reference correction circuit using the reference data 432, logarithmic conversion processing, offset processing, sensitivity correction, beam hardening correction, and the like.
  • a known technique is used for a correction method other than the reference correction.
  • the reference correction method will be described later in the description of [Flow of pre-shooting process] and [Flow of shooting process].
  • the image generation unit 450 reconstructs an X-ray CT image from the number of X-ray photons stored in each energy bin, that is, the imaging data 431.
  • the image is reconstructed by performing log transformation on the measurement information, for example, the number of X-ray photons.
  • Various known methods such as the FeldKamp method and the successive approximation method can be used for the reconstruction. Note that image data stored in all energy bins may not be used for generating an image. Only imaging data which is a count value stored in an energy bin corresponding to a predetermined energy range may be used.
  • the data required before collection by the reference correction in the correction unit 440 is pile-up correction data 441.
  • the pile-up correction data 441 is data indicating the relationship between the dose rate data and the count value accompanying the pile-up, that is, the amount of change in measurement information.
  • the creation of the pile-up correction data 441 can be realized by measuring in advance how the signal amount of the reference detection unit 350 changes as a result of changing the dose rate of the X-ray irradiation unit 310. Usually, as the dose rate of the X-ray irradiation unit 310 is increased, the amount of pile-up is increased, so that the count number is shifted below the proportion with the dose rate. There is also a change in dose rate when acquiring correction data. Therefore, imaging for a sufficiently long time with respect to the change in the dose rate is performed for each data, and pile-up correction data 441 is created in which the deviation from the above-described proportion is the pile-up correction amount.
  • FIG. 13 shows an example of pile-up correction data 441 in the PCCT apparatus of this embodiment.
  • the horizontal axis represents the count number and the vertical axis represents the pile-up correction amount, and this pile-up correction amount is multiplied according to the count number.
  • FIG. 3 is a processing flow of the photographing process of the present embodiment. For example, it is assumed that pile-up correction data 441 as shown in FIG. 13 is created in advance in the above-described pre-shooting process flow.
  • the shooting condition setting unit 410 receives shooting conditions from the user via the UI unit 200 (step S1201).
  • Imaging conditions for accepting input include tube voltage, tube current, the type (thickness and material) of the X-ray filter 312, the shape of the bow tie filter 313, and the like.
  • the measurement control unit 420 performs measurement according to the imaging conditions set in step S1201 (step S1202), and the data collection unit 430 collects various data (step S1203).
  • the data collection unit 430 includes information on the subject 101, the imaging data 431 collected by the X-ray detection unit 320, the reference data 432 collected by the reference detection unit 350, and the time measurement which is a time measurement unit. Time measurement data 433 collected by the device 345 is obtained.
  • the correction unit 440 corrects the imaging data 431 collected by the data collection unit 430.
  • a dose per view to a dose per unit time that is, a dose to be converted into a dose rate ⁇ a dose rate conversion is performed (step S1204).
  • means that the value on the left side is converted to the value on the right side. This is due to the fact that the pileup depends on the dose rate, not the dose, and that the dose per view is not equivalent to the dose rate due to fluctuations in the view time.
  • the time per view based on the time measurement data 433 is divided and converted into a dose rate.
  • pile-up correction is performed using the reference data converted into the dose per unit time, that is, the dose rate (step S1205).
  • the pile-up correction method is created in the flow of the pre-shooting process, and the above-described correction regarding the counting of each energy range of the reference detection unit 350 is performed using the pile-up correction data 441 whose example is shown in FIG. .
  • the correction unit 440 corrects the dose rate data based on the dose rate data and the pile-up correction data obtained by measuring in advance the amount of change in measurement information that is a count value associated with pile-up.
  • the reference data corrected here is data per unit time, but the imaging data 431 of the data collection unit is data per view.
  • dose rate ⁇ dose conversion which is the reverse operation of step S1204, is performed on the corrected reference data (step S1206). Specifically, each view is converted into a dose by multiplying the time per view based on the time measurement data 433. Even if the dose is not converted in step S1206, the unit of the corrected reference data and the imaging data may be adjusted by performing the dose-to-dose rate conversion on the imaging data 431 in the same manner as in step S1204. Good.
  • step S1207 reference correction is performed on the imaged data (step S1207). Based on the count number of each energy range of the reference detection unit corrected in step S1206, the fluctuation of the X-ray count number is corrected to obtain corrected data 442. In the case of a normal X-ray CT apparatus, only the data obtained by adding up all the energy ranges can be obtained. However, since the PCCT apparatus measures each energy range, the X-ray fluctuation must be measured for each energy range. Correct correction is not possible. Therefore, reference correction is performed using data measured for each energy range.
  • step S1208 the X-ray source fluctuation and the time fluctuation in the rotation direction can be corrected. Thereafter, other corrections are performed (step S1208).
  • the corrections other than the reference correction are summarized in step 1208. However, correction may be performed before the reference correction if necessary, and some corrections may be performed before the reference correction. The correction may be performed before and after the part correction is performed after the reference correction.
  • the image generation unit 450 generates an image using the data obtained by the correction, stores the image in the image DB 470, and ends the process (step S1209).
  • the time fluctuation in the rotation direction is measured more accurately, and the deviation for each energy range associated with the detector characteristics generated in the reference detector is corrected.
  • the X-ray source fluctuation can be corrected, highly accurate correction can be performed.
  • the energy range can be set using a semiconductor detector for the reference detector 350.
  • an integral type detector is used as the reference detection unit 350.
  • an integrating circuit is used as the integrating detector, there is an advantage that correction specific to the counting circuit such as pileup is not necessary.
  • an integral detector is used as such a reference detector and integral reference data is obtained will be described with reference to FIGS.
  • the reference detection unit 350 is an integral detector
  • the correction unit is a signal amount of the reference detection unit 350 for the X-rays irradiated from the X-ray irradiation unit and an energy range of the X-ray detection unit 320.
  • the relationship between the measurement information for each energy range of the X-ray detection unit 320 at the time of subject imaging and the relationship between the measurement information obtained in advance and the signal amount of the reference detection unit during imaging are obtained in advance.
  • the differences from the first embodiment are the X-ray detection unit, the reference detection unit, the flow of pre-imaging processing, and the flow of imaging processing. These changes will be described below.
  • the X-ray detector 321 of the reference detection unit 350 uses an integration circuit 325 instead of the counting circuit 324 of FIG.
  • the integrating circuit 325 is a circuit that is used in a conventional X-ray CT apparatus, and is a circuit that adds and outputs the signal amounts of all X-rays incident on each view. Therefore, pile-up does not occur in the integration circuit 325, but data cannot be acquired in each energy range.
  • the factor that the signal of the reference detection unit 350 fluctuates is The fluctuation of the X-ray source, that is, the fluctuation of the X-ray intensity and dose rate of the X-ray tube 311 and the fluctuation of the time in the rotation direction, that is, the fluctuation of the time integration result in the rotation direction.
  • the integral-type reference detection unit 350 also performs measurement including the two fluctuations.
  • the ratio of each energy range may change, and the change may vary depending on the characteristics of the X-ray tube 311.
  • the ratio of the signal amount in each energy range does not change. Therefore, it is necessary to create correction data in consideration of these two fluctuation characteristics.
  • Example 2 The measurement method of Example 2 is shown below. First, the X-ray tube 311 is set to one of settable doses. Also, the bow tie filter 313 and the X-ray filter 312 are both removed. In this state, X-rays are irradiated, and both signals incident on the reference detection unit 350 and the X-ray detection unit 320 are measured. The signal detected by the integration circuit 325 of the reference detection unit 350 is categorized according to the fluctuation amount of the signal, and the dose rate of each energy range obtained by the X-ray detection unit 320 is calculated for each categorized fluctuation amount. . At this time, there may be a time lag between the views, so the time measurement data of the time measuring device 345 is used so that the time of each view becomes the reference time.
  • the averaging in each energy range is because the fluctuation of the X-ray tube 311 does not always fluctuate in the same manner in the entire energy range. By taking correction data in this way, the difference in fluctuation for each energy range can be smoothed.
  • energy range conversion data is created from the obtained integral data, that is, integration ⁇ energy range conversion data 443 is created.
  • a specific example of a method of creating this integration ⁇ energy range conversion data 443 is shown.
  • the bow tie filter 313 and the X-ray filter 312 described above are both removed and irradiated with X-rays, and time measurement data 433 is obtained for data obtained by measuring both signals incident on the reference detection unit 350 and the X-ray detection unit 320. Is divided by the time per view based on the above, and both signal amounts incident on the reference detection unit 350 and the X-ray detection unit 320 are converted into signal amounts per unit time.
  • the converted data is categorized by a value (unit: signal amount / time) obtained by converting the signal of the reference detection unit 350 into a signal amount per unit time. Since the signal amount depends on the setting value of the amplifier, the specific value of the value converted into the signal amount per unit time depends on the device setting.
  • the average value of the signal amount of each energy bin incident on the X-ray detector 320 in each categorized section is calculated.
  • the average value of the signal amount of each energy bin incident on the X-ray detection unit 320 The value is integral ⁇ energy range conversion data 443.
  • bin1 is 100 counts / s
  • bin2 is 1000counts / s
  • bin3 is 1000counts / s
  • bin4 is 700counts / s
  • the value converted to the signal amount per unit time is 1.01
  • bin1 is 110 counts / s
  • bin2 is 1100counts / s
  • bin3 is 900counts / s
  • bin4 is 500counts / s
  • a conversion table for conversion such as is created.
  • FIG. 6 is a processing flow of the photographing process of the present embodiment. It is assumed that the integration ⁇ each energy range conversion data 443 is created in advance in [Flow of pre-shooting processing] as described above.
  • Step S1301 of the photographing condition setting unit 410 and step S1302 of the measurement control unit 420 are equivalent to step S1201 and step S1202, respectively.
  • the data collection unit 430 collects various data (step S1303).
  • the data collection unit 430 includes the information of the subject 101 by collecting data, and the imaging data 431 collected by the X-ray detection unit 320 and the time measurement data 433 collected by the time measuring device 345 are the same as the previous example. Since the reference data collected by the reference detection unit 350 is integrated for the view, it is referred to as integration reference data 434 here.
  • the correction unit 440 corrects the imaging data collected by the data collection unit 430.
  • dose-to-dose rate conversion is performed for converting the integrated reference data 434 from a dose per view to a dose per unit time, that is, a dose rate (step S1304). This is because the fluctuation of the X-ray intensity of the X-ray tube 311 is based on fluctuation characteristics per unit time as shown in [Flow of pre-imaging processing].
  • step S1305 using the integration reference data converted into the dose per unit time, the integration ⁇ energy range conversion described above is performed (step S1305).
  • the integration ⁇ energy range conversion method uses the integration ⁇ each energy range conversion data 443 created in [Flow of pre-shooting processing], and a conversion table for counting each energy range based on each integration reference data of the reference detection unit. Create Since the data is data per unit time as in the first embodiment, dose rate ⁇ dose conversion, which is the reverse operation of step S1304, is performed (step S1306). Note that, as in the previous example, the unit of the correction data and the imaging data may be adjusted by performing the same dose rate conversion as that in step S1304 on the imaging data without being converted into the dose in step S1306.
  • reference correction is performed on the imaging data 431 (step S1307).
  • the fluctuation of the imaging data 431 that is the X-ray count number is corrected.
  • a specific calculation method divides a value converted into a signal amount per unit time based on integration ⁇ energy range conversion data 443. For example, when the value converted into the signal amount per unit time is 1, bin1 is divided by 100, bin2 is 1000, bin3 is 1000, and bin4 is 700. Note that the ratio may be divided by a ratio based on a certain standard conversion value.
  • step S1308 other corrections are performed (step S1308), and after the image is generated by the image generation unit 450 using the corrected data, the image is stored in the image DB 470 and the process is terminated (step S1308). S1309).
  • step S1304 to step S1307 the PCCT apparatus using the integral detector without pile-up as the reference detection unit measures the time fluctuation in the rotation direction more accurately, and the reference detection unit Since the X-ray source fluctuation can be corrected while correcting the deviation for each energy range accompanying the detector characteristics generated in step S1, the correction can be performed with high accuracy.
  • Example 1 describes an example in which time correction and pile-up correction are performed only on the detector of the reference detection unit 350. However, it may be necessary to perform time correction in the entire photon counting X-ray detection unit that detects X-rays. Therefore, an embodiment will be described in which time correction and pile-up correction are also performed by the detector of the X-ray detection unit 320. Since only the correction method is different from that of the first embodiment, the only difference from the first embodiment is [flow of photographing process]. Therefore, the changes in [Flow of shooting process] will be described below.
  • FIG. 12 shows an imaging process flow that is different from the first embodiment. Note that the pile-up correction data 441 is created in advance by a method similar to [Flow of pre-shooting process] in the first embodiment.
  • the shooting condition setting unit 410 receives shooting conditions from the user via the UI unit 200 (step S1201).
  • the measurement control unit 420 performs measurement in accordance with the imaging conditions set in step S1201 (step S1202), and the data collection unit 430 collects various data (step S1203).
  • the details up to this point are the same as in the first embodiment, and the details are omitted.
  • the correction unit 440 corrects the imaging data 431 and the reference data 432 collected by the data collection unit 430.
  • dose per unit time to dose per unit time that is, dose converted to dose rate ⁇ dose rate conversion is performed (step S1504). This is because the pile-up depends on the dose rate, not the dose, as in the first embodiment, and the dose per view is not equivalent to the dose rate due to fluctuations in the view time.
  • the conversion method converts the imaging data 431 and the reference data 432 into a dose rate for each view using the time per view based on the time measurement data 433.
  • pile-up correction is performed using the imaging data converted into the dose per unit time, that is, the dose rate, and reference data (step S1505).
  • the pile-up correction data 441 created in the pre-imaging processing flow is used to correct each energy range count for each of the imaging data converted into the dose rate and the reference data. Both data corrected here are data per unit time. Therefore, the dose rate ⁇ dose conversion (step S1206) performed in the first embodiment is not necessary.
  • steps S1504 to S1505 time fluctuations in the rotation direction are more accurately measured for both the imaging data and the reference data, and the detector characteristics generated by the reference detector are accompanied. Since the X-ray source fluctuation can be corrected while correcting the deviation for each energy range, high-accuracy correction is possible.
  • the present embodiment is an embodiment of a PCCT apparatus having a configuration capable of reducing pileup as compared with the configuration of the first embodiment.
  • the X-ray intensity incident on the detector may be reduced. Therefore, in the apparatus of the present embodiment, the size of the X-ray detector of the reference detection unit 350, that is, the X-ray detection region is smaller than the size of the X-ray detector 321 of the X-ray detection unit 320, that is, the X-ray detection region. By doing so, the pile-up amount of the reference detection unit 350 is reduced.
  • the reference detection unit 350 is created with a plurality of X-ray detectors having a size equal to or smaller than the size of the X-ray detector 321 and the size of the X-ray detector of the reference detection unit 350 is switched according to the X-ray dose. Enables more accurate reference correction.
  • the reference detection unit 350 has a plurality of sizes, that is, X-ray detectors 321 -b having a plurality of detection regions. Is used.
  • the plurality of sizes are used because the dose varies depending on the size of the subject 101, the imaging region, and the like. For example, a detector having a large detection area is used in an imaging condition with a very low dose, and a small X-ray detector is used in an imaging condition with a very high dose.
  • the smallest detector 321-c is created as shown in the cross-sectional and planar configurations of FIGS. 8A and 8B, and a plurality of detection signals from the detector 321-c are added and processed. Since a detection signal equivalent to a large detector can be obtained, a method that does not use a large size detector may be used.
  • the present embodiment when a plurality of size detectors are used for the reference detection unit 350, pile-up is reduced and reference correction can be performed more accurately in any case where only the smallest detector is created. Become. Further, when using detectors of a plurality of sizes, the number of circuits for processing the detection signal can be reduced as compared with the case where only the smallest detector is produced.
  • Example 4 the detector size of the reference detection unit is changed, whereas in Example 5, an X-ray dose variable filter is used to change the amount of X-ray incident on the reference detection unit. That is, this is an example of a configuration further including an X-ray dose variable filter that can switch a filter according to the X-ray dose of the X-ray irradiation unit between the reference detection unit and the X-ray irradiation unit.
  • the changes from the above-described embodiments are [Gantry], [Flow of pre-shooting process], and [Flow of shooting process].
  • an X-ray dosage variable filter 326 is provided between the reference detection unit 350 and the X-ray irradiation unit 310.
  • the variable X-ray dose filter 326 has a mechanism capable of taking in and out a plurality of metal plates, for example, and the type of the metal plate is, for example, copper. By inserting this metal plate, the X-ray dose incident on the reference detection unit 350 can be reduced, and the pile-up amount can be reduced.
  • the signal amount in each energy range changes. Therefore, it is necessary to measure the signal amount ratio for each energy range at the time of filter insertion.
  • variable X-ray dose filter 326 depends on the amount of tube current in the imaging conditions set by the user, so that the operation of the variable X-ray dose filter 326 is not linked to the X-ray filter 312. good. Therefore, a drive mechanism is provided separately from the X-ray filter 312 and the bow tie filter 313. However, since the X-ray filter 312 or the bow tie filter 313 and the variable X-ray dose filter 326 may be independent, the variable X-ray dose filter 326 may be placed between the X-ray filter 312 or the bow tie filter 313 and the reference detection unit 350. Further, it is possible to place the X-ray variable filter 326 at a position away from the X-ray tube such as immediately before the reference detection unit 350.
  • the X-ray tube 311 is set to one of settable doses. Also, the bow tie filter 313 and the X-ray filter 312 are both removed. X-rays are irradiated in this state.
  • the reference detector 350 measures signals in both the state where the X-ray dosage variable filter 326 is placed and the state where the X-ray variable filter 326 is not placed.
  • the signal detected by the reference detection unit 350 does not need to be corrected when the metal plate is inserted because there is little pile up, but it is piled up when the metal plate is not inserted.
  • the pile-up correction is performed at And the signal ratio at the time of the presence or absence of a metal plate is acquired as correction data.
  • This correction data is used as X-ray variable filter correction data, and X-ray variable filter correction data is measured for all settable doses.
  • the signal amount of each energy bin incident on the X-ray detection unit 320 when the X-ray dose variable filter 326 is not inserted as a reference is measured. For example, bin1 is 100 counts, bin2 is 1000 counts, bin3 is 1000 counts, and bin4 is 700 counts.
  • the signal amount when the X-ray dosage variable filter 326 is input under a certain condition designated by the user is measured. For example, it is assumed that bin1 is 90 counts, bin2 is 850 counts, bin3 is 600 counts, and bin4 is 200 counts. Such data is measured according to all conditions that can be set.
  • FIG. 11 is a processing flow of the photographing process of the present embodiment. It is assumed that the X-ray dose variable filter correction data 444 has been created in advance in the above [Flow of pre-imaging processing].
  • Step S1401 of the imaging condition setting unit 410 and step S1402 of the measurement control unit 420 are equivalent to step S1201 and step S1202, respectively.
  • the data collection unit 430 collects various data (step S1403).
  • the data collection unit 140 includes the information of the subject 101 by collecting data, and the imaging data 431 collected by the X-ray detection unit 320 and the time measurement data 433 collected by the time measuring device 345 are the same as the previous example.
  • the reference data collected by the reference detection unit 350 different attenuation amounts are generated in the respective energy ranges by the variable X-ray dose filter 326.
  • the collected reference data is referred to as filtering reference data 435.
  • the correction unit 440 corrects the imaging data 431 collected by the data collection unit 430.
  • a dose-to-dose rate conversion for converting the filtering reference data 435 from a dose per view to a dose per unit time, that is, a dose rate is performed (step S1404).
  • variable X-ray dose filter correction is performed using the data converted into the dose per unit time (step S1405).
  • the count value of each energy range of the reference detection unit 350 is corrected using the X-ray variable filter correction data 444 created in [Flow of pre-imaging processing].
  • the correction method divides according to the signal amount of each bin measured using the variable X-ray dose filter 326 under the same conditions as previously set. Note that the ratio may be divided by a ratio based on a certain standard conversion value.
  • step S1405 since the output data in step S1405 is data per unit time, dose rate ⁇ dose conversion, which is the reverse operation of step S1404, is performed (step S1406).
  • the unit of the correction data and the imaging data may be adjusted by performing the same dose rate conversion as that of step S1404 on the imaging data 431 without being converted into the dose in step S1406. Good.
  • step S1407 Based on the correction data created in steps S1404 to S1406, the fluctuation of the X-ray count is corrected to obtain corrected data 442.
  • step S1408 an image is generated by the image generation unit 450 using the corrected data, the image is stored in the image DB 470, and the process is terminated. (Step S1409).
  • the processes of S1404 and S1405 are also performed on the image data 431, and both outputs of S1405 are per unit time. Since the data is unified, the operation in S1406 is not necessary and is omitted, and the reference correction in S1407 may be performed.
  • step S1404 to step S1407 eliminates the need for pile-up correction of the reference detection unit during measurement of the subject, so that data processing can be performed at a higher speed.
  • this invention is not limited to the above-mentioned Example, Various modifications are included.
  • the above-described embodiments have been described in detail for better understanding of the present invention, and are not necessarily limited to those provided with all the configurations described above.
  • a part of the configuration of one embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of one embodiment.
  • part or all of them can be used, for example, ASIC (Application Specific). Needless to say, it may be realized by hardware by designing with an integrated circuit such as Integrated Circuit (FPGA) or FPGA (Field Programmable Gate Array).
  • FPGA Integrated Circuit
  • FPGA Field Programmable Gate Array

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Medical Informatics (AREA)
  • Physics & Mathematics (AREA)
  • Radiology & Medical Imaging (AREA)
  • Surgery (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Optics & Photonics (AREA)
  • Pathology (AREA)
  • Biophysics (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Molecular Biology (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Theoretical Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Pulmonology (AREA)
  • Apparatus For Radiation Diagnosis (AREA)

Abstract

The purpose of the present invention is to collect more accurate data using a photon-counting CT apparatus. The photon-counting CT apparatus is provided with a reference detection unit 350 and a time measuring instrument 345 for measuring the time fluctuation of an X-ray irradiation unit 310 in the direction of rotation. Time measurement data output from the time measuring instrument 345 is used to correct the time fluctuation in the direction of rotation of measurement data of the reference detection unit 350. The corrected measurement data of the reference detection unit 350 is used to correct the fluctuation and pile-up of an X-ray tube 311 of the X-ray irradiation unit 310. This allows for more accurate data correction.

Description

フォトンカウンティングCT装置Photon counting CT system
 本発明はフォトンカウンティング(photon counting)モードを有するX線CT(Computed Tomography)装置(以下、PCCT装置と呼ぶ。)に係り、特に、より正確な補正データ収集技術に関わる。 The present invention relates to an X-ray CT (Computed Tomography) apparatus (hereinafter referred to as a PCCT apparatus) having a photon counting mode, and more particularly to a more accurate correction data collection technique.
 X線CT装置は、被写体を挟んで対向配置されたX線源とX線検出器の対を回転させながら被写体のX線透過データを得、その断層画像(以下、CT画像とする)を計算により再構成する装置であり、工業用およびセキュリティ用の検査装置や医学用の画像診断装置等として用いられる。 The X-ray CT apparatus obtains X-ray transmission data of a subject while rotating a pair of an X-ray source and an X-ray detector arranged opposite to each other with the subject interposed therebetween, and calculates a tomographic image (hereinafter referred to as a CT image). And is used as industrial and security inspection devices, medical diagnostic imaging devices, and the like.
 医学用のX線CT装置には、フォトンカウンティングモードを搭載したPCCT装置がある。PCCT装置では、例えば特許文献1に見るように、フォトンカウンティング方式のX線検出器により、被写体を透過したX線の光子(X線フォトン)を検出素子毎にカウントする。これにより、例えばX線が透過した被写体の内部組織を構成する元素を推定可能なスペクトラムを得、元素レベルの違いが詳細に描出されたX線CT画像を得ることができる。 Medical X-ray CT apparatuses include a PCCT apparatus equipped with a photon counting mode. In the PCCT apparatus, for example, as shown in Patent Document 1, X-ray photons (X-ray photons) transmitted through a subject are counted for each detection element by a photon counting X-ray detector. Thereby, for example, it is possible to obtain a spectrum capable of estimating the elements constituting the internal tissue of the subject through which X-rays are transmitted, and to obtain an X-ray CT image in which the difference in element level is depicted in detail.
 また、PCCT装置では、カウントした個々のX線フォトンをエネルギー値で弁別することにより、エネルギー値毎の、X線強度を得ることができる。これを利用し、PCCT装置では、特定のエネルギー範囲のX線のみを抽出して画像化し、診断に用いることがある。 In the PCCT apparatus, the X-ray intensity for each energy value can be obtained by discriminating each counted X-ray photon by the energy value. Using this, the PCCT apparatus may extract and image only X-rays in a specific energy range and use it for diagnosis.
 X線CT装置ではX線源を回転させ、様々な角度から被写体を撮像するが、回転方向のノッチの間隔の誤差に基づく回転方向の時間積分結果の揺らぎ(以下、回転方向の時間揺らぎと称する)が発生する。すなわち、回転方向の1つ1つのデータを積分する区間(以下、その1区間をビュー(view)と呼ぶ)に誤差が発生し、ビューの長さの違いにより他より長い区間はデータが多くなり、逆に短い区間はデータが少なくなる。さらにX線源のX線強度は時間的に揺らぐためこれらの誤差によりX線CT装置では得られる画像にアーチファクトが発生する。これらのアーチファクトを防ぐためにX線CT装置では、リファレンス検出器を用いてそれらの誤差を軽減する。具体的には、被写体を通過しない場所にリファレンス用のX線検出器を配置し、被写体を透過した場所のX線検出器と同様の時間で計測することにより、回転方向のノッチの間隔の誤差に基づく回転方向の時間揺らぎとX線源の揺らぎのデータを収集する。そして、各ビューにおけるX線検出器とリファレンス検出器との出力の比で補正することで、これら2つの誤差を補正することが可能となる。 In an X-ray CT apparatus, an X-ray source is rotated to image a subject from various angles, but fluctuations in a rotation direction time integration result based on errors in the rotation direction notch interval (hereinafter referred to as rotation direction time fluctuations). ) Occurs. In other words, an error occurs in the section that integrates each piece of data in the rotation direction (hereinafter, that section is referred to as a view), and the longer section has more data due to the difference in view length. On the other hand, the short section has less data. Furthermore, since the X-ray intensity of the X-ray source fluctuates with time, these errors cause artifacts in the image obtained by the X-ray CT apparatus. In order to prevent these artifacts, the X-ray CT apparatus uses a reference detector to reduce these errors. Specifically, a reference X-ray detector is placed in a place that does not pass through the subject, and measurement is performed in the same time as the X-ray detector in the place that has passed through the subject, so that an error in the notch spacing in the rotational direction is obtained. Based on the above, the data of the time fluctuation in the rotation direction and the fluctuation of the X-ray source are collected. Then, it is possible to correct these two errors by correcting with the ratio of the output of the X-ray detector and the reference detector in each view.
特開2015-131028号公報JP2015-131028A
 PCCT装置においても、上述したX線CT装置と同様な回転方向のノッチの間隔の誤差に基づく回転方向の時間揺らぎ、およびX線源の揺らぎは発生する。そのため、リファレンス検出器が必要となるが、PCCT装置の場合はさらにエネルギー範囲ごとにデータを収集するため、エネルギー範囲ごとにX線の揺らぎを想定する必要がある。しかし、フォトンカウンティング方式の検出器は、検出器特性に伴うエネルギー範囲毎のずれであるパイルアップによる検出誤差を含んでおり、同様にリファレンス検出器のデータにもパイルアップに伴う誤差が含まれているため、従来のX線CT装置とは違った誤差低減が必要になる。 Also in the PCCT apparatus, the time fluctuation in the rotation direction and the fluctuation of the X-ray source based on the error in the notch interval in the rotation direction similar to the above-described X-ray CT apparatus occur. Therefore, a reference detector is required, but in the case of a PCCT apparatus, since data is collected for each energy range, it is necessary to assume fluctuations in X-rays for each energy range. However, the photon counting detector includes a detection error due to pileup, which is a deviation for each energy range due to the detector characteristics. Similarly, the reference detector data also includes an error due to pileup. Therefore, it is necessary to reduce errors different from those of the conventional X-ray CT apparatus.
 本発明は、上記の課題に鑑みてなされたもので、各種の揺らぎを精度よく補正可能なPCCT装置を提供することを目的とする。 The present invention has been made in view of the above problems, and an object thereof is to provide a PCCT apparatus capable of correcting various fluctuations with high accuracy.
 上記の目的を達成するため、本発明においては、X線を照射するX線照射部と、X線を検出するフォトンカウンティング方式のX線検出部と、X線検出部で検出したX線フォトンを予め定めた区分のエネルギー範囲毎に計数し、エネルギー範囲毎の計測情報を得るデータ収集部と、X線照射部から照射されるX線の揺らぎを計測するリファレンス検出部と、X線照射部の回転方向の時間揺らぎを計測する時間計測部と、を備えるフォトンカウンティングCT装置を提供する。 In order to achieve the above object, in the present invention, an X-ray irradiation unit that irradiates X-rays, a photon counting type X-ray detection unit that detects X-rays, and an X-ray photon detected by the X-ray detection unit A data collection unit that counts for each energy range of a predetermined category and obtains measurement information for each energy range, a reference detection unit that measures fluctuations in X-rays emitted from the X-ray irradiation unit, and an X-ray irradiation unit Provided is a photon counting CT apparatus including a time measuring unit that measures time fluctuation in a rotation direction.
 本発明により、PCCT装置において回転方向の時間揺らぎをより正確に計測することにより高精度な計測が可能となる。 According to the present invention, it is possible to measure with high accuracy by measuring the time fluctuation in the rotation direction more accurately in the PCCT apparatus.
実施例1-4に係る、PCCT装置の一構成例を示す図である。It is a figure which shows the example of 1 structure of the PCCT apparatus based on Example 1-4. 実施例1に係る、X線検出器の一例を説明するための図である。5 is a diagram for explaining an example of an X-ray detector according to Embodiment 1. FIG. 実施例1に係る、PCCT装置の演算部の機能ブロックと処理フロー例を示す図である。It is a figure which shows the functional block of the calculating part of a PCCT apparatus, and the example of a processing flow based on Example 1. FIG. 実施例1に係る、X線検出器の一例を説明するための図である。5 is a diagram for explaining an example of an X-ray detector according to Embodiment 1. FIG. 実施例2に係る、X線検出器の一例を説明するための図である。6 is a diagram for explaining an example of an X-ray detector according to Embodiment 2. FIG. 実施例2に係る、演算部の機能ブロックと処理フロー例を示す図である。It is a figure which shows the functional block of a calculating part and the example of a processing flow based on Example 2. FIG. 実施例4に係る、X線検出器の一例を説明するための図である。FIG. 10 is a diagram for explaining an example of an X-ray detector according to a fourth embodiment. 実施例4に係る、X線検出器の他の例を説明するための図である。FIG. 10 is a diagram for explaining another example of the X-ray detector according to the fourth embodiment. 実施例4に係る、演算部の機能ブロックと処理フロー例を示す図である。It is a figure which shows the functional block of a calculating part, and the example of a processing flow based on Example 4. FIG. 実施例5に係る、PCCT装置の一構成例を示す図である。FIG. 10 is a diagram illustrating a configuration example of a PCCT apparatus according to a fifth embodiment. 実施例5に係る、演算部の機能ブロックと処理フロー例を示す図である。It is a figure which shows the functional block of a calculating part, and the example of a processing flow based on Example 5. FIG. 実施例3に係る、演算部の機能ブロックと処理フロー例を示す図である。It is a figure which shows the functional block of a calculating part, and the example of a processing flow based on Example 3. FIG. 実施例1に係る、PCCT装置のパイルアップ補正データの一例を示す図である。It is a figure which shows an example of the pileup correction data of the PCCT apparatus based on Example 1. FIG.
 本発明の種々の実施の形態を図面に従い説明する。以下、実施の形態を説明するための全図において、同一機能を有するものは同一符号を付し、その繰り返しの説明は省略する。また、本発明において、PCCT装置の各種の揺らぎ、例えば回転方向の時間揺らぎ、X線源の揺らぎ、パイルアップに伴う揺らぎなどが精度よく補正するが、ここで、回転方向の時間揺らぎとは、回転方向の時間積分結果の揺らぎを意味し、X線源の揺らぎとは、X線源のX線照射量やX線スペクトルの揺らぎを意味する。 Various embodiments of the present invention will be described with reference to the drawings. Hereinafter, in all drawings for explaining the embodiments, the same reference numerals are given to those having the same function, and repeated explanation thereof is omitted. Further, in the present invention, various fluctuations of the PCCT apparatus, for example, time fluctuations in the rotation direction, fluctuations in the X-ray source, fluctuations associated with pile-up, etc. are corrected with high precision. Here, the time fluctuation in the rotation direction is The fluctuation of the time integration result in the rotation direction means fluctuation, and the fluctuation of the X-ray source means fluctuation of the X-ray irradiation amount or X-ray spectrum of the X-ray source.
 実施例1は、リファレンス検出部と時間を計測する時間計測部を設け、回転方向の時間揺らぎは時間計測部で計測した時間で補正し、X線源の揺らぎとパイルアップの補正については、計測した時間で回転方向の時間揺らぎを補正したリファレンス検出部の計測データを用いて補正するPCCT装置の実施例である。すなわち本実施例は、X線を照射するX線照射部と、X線を検出するフォトンカウンティング方式のX線検出部と、X線検出部で検出したX線フォトンを予め定めた区分のエネルギー範囲毎に計数し、エネルギー範囲毎の計測情報を得るデータ収集部と、X線照射部から照射されるX線の揺らぎを計測するリファレンス検出部と、X線照射部の回転方向の時間揺らぎを計測する時間計測部とを備える構成、更には時間計測部が計測した時間計測データに基づき、リファレンス検出部が計測した計測データを補正する補正部を備える構成のPCCT装置の実施例である。 In the first embodiment, a reference detection unit and a time measurement unit for measuring time are provided, and time fluctuation in the rotation direction is corrected by the time measured by the time measurement unit, and the correction of fluctuation of the X-ray source and pileup is measured. It is an Example of the PCCT apparatus which correct | amends using the measurement data of the reference detection part which correct | amended the time fluctuation of the rotation direction by the time which was made. That is, in this embodiment, an X-ray irradiation unit that irradiates X-rays, a photon counting X-ray detection unit that detects X-rays, and an X-ray photon detected by the X-ray detection unit in a predetermined energy range. A data collection unit that counts every time and obtains measurement information for each energy range, a reference detection unit that measures fluctuations in X-rays emitted from the X-ray irradiation unit, and time fluctuations in the rotational direction of the X-ray irradiation unit This is an embodiment of a PCCT apparatus having a configuration including a time measurement unit that performs correction, and further includes a correction unit that corrects measurement data measured by the reference detection unit based on time measurement data measured by the time measurement unit.
 本実施例では、X線CT装置として、従来の電流モード計測方式の積分型検出器ではなく、フォトンカウンティング方式のX線検出器を有するPCCT装置を用いる。PCCT装置では、被写体を透過したX線に由来する光子(X線フォトン)を、フォトンカウンティング方式のX線検出器で計数する。個々のX線フォトンは、異なるエネルギーを有する。PCCT装置では、このX線フォトンを、予め定めたエネルギー範囲毎に弁別して計数することにより、エネルギー範囲毎のX線フォトンのカウント数であるX線強度を計測情報として得ることができる。 In this embodiment, as an X-ray CT apparatus, a PCCT apparatus having a photon counting type X-ray detector is used instead of a conventional current mode measurement type integration type detector. In the PCCT apparatus, photons (X-ray photons) derived from X-rays transmitted through a subject are counted by a photon counting X-ray detector. Individual x-ray photons have different energies. In the PCCT apparatus, the X-ray photons are discriminated for each predetermined energy range and counted, whereby the X-ray intensity that is the X-ray photon count for each energy range can be obtained as measurement information.
 [X線CT装置の概略構成]
  図1を用いて、本実施例のPCCT装置の概略構成の一例を説明する。図1に示すように、本実施例のPCCT装置100は、ユーザインタフェース(以下、UIと呼ぶ)部200と、計測部300と、演算部400と、を備える。
[Schematic configuration of X-ray CT apparatus]
An example of a schematic configuration of the PCCT apparatus according to the present embodiment will be described with reference to FIG. As illustrated in FIG. 1, the PCCT apparatus 100 according to the present embodiment includes a user interface (hereinafter referred to as UI) unit 200, a measurement unit 300, and a calculation unit 400.
 UI部200は、ユーザからの入力を受け付け、演算部400による処理結果をユーザに提示する。このため、UI部200は、キーボード、マウスといった入力装置210と、モニタなどの表示装置、プリンタといった出力装置220とを備える。表示装置は、液晶ディスプレイやCRT(Cathode Ray Tube)等で構成される。なお、出力装置220の表示装置は、タッチパネル機能を有し、入力装置210として使用するよう構成してもよい。 The UI unit 200 receives an input from the user and presents the processing result of the calculation unit 400 to the user. For this reason, the UI unit 200 includes an input device 210 such as a keyboard and a mouse, a display device such as a monitor, and an output device 220 such as a printer. The display device includes a liquid crystal display, a CRT (Cathode Ray Tube), and the like. Note that the display device of the output device 220 may have a touch panel function and be configured to be used as the input device 210.
 [計測部]
  計測部300は、演算部400による制御に従って、被写体101にX線を照射し、被写体101を透過したX線フォトンを計測する。計測部300は、X線照射部310と、X線検出部320と、X線検出部の脇に被写体を透過せずに検出器に入射する位置に配置されたリファレンス検出部350と、ガントリ(Gantry:架台)330と、制御部340と、被写体101を載置するテーブル102と、を備える。
[Measurement section]
The measurement unit 300 irradiates the subject 101 with X-rays and measures X-ray photons transmitted through the subject 101 under the control of the calculation unit 400. The measurement unit 300 includes an X-ray irradiation unit 310, an X-ray detection unit 320, a reference detection unit 350 disposed at a position where the subject does not pass through the side of the X-ray detection unit and enters the detector, a gantry ( A gantry 330, a control unit 340, and a table 102 on which the subject 101 is placed.
 [ガントリ]
  ガントリ330の中央には、被写体101と、被写体101を載置するテーブル102とを配置するための円形の開口部331が設けられる。ガントリ330の内部には、後述するX線管311およびX線検出器321を備えるX線検出部320を搭載する回転板332と、回転板332を回転させるための駆動機構が配置され、制御部340の後述するガントリ制御器342で制御される。
[Gantry]
In the center of the gantry 330, a circular opening 331 for placing the subject 101 and the table 102 on which the subject 101 is placed is provided. Inside the gantry 330, a rotating plate 332 on which an X-ray detection unit 320 including an X-ray tube 311 and an X-ray detector 321 described later is mounted, and a drive mechanism for rotating the rotating plate 332 are arranged, and a control unit It is controlled by a gantry controller 342 which will be described later.
 さらに回転板332には回転方向にノッチ333が刻まれており、ノッチ333を通過したときに積分を実施する。すなわち、ノッチ333を横切ると制御部340内の後述する検出制御器343に信号が入り、この信号に基づき、データを処理する命令が発行される。回転板332の回転の所要時間は、ユーザがUI部200を介して入力したパラメータに依存する。本実施例では、例えば、回転の所要時間を1.0s/回とする。計測部300による1回転における撮影回数は、例えば、900回であり、回転板332が0.4度回転する毎に1回の撮影が行われる。各仕様はこれらの値に限定されるものではなく、PCCT装置100の構成に応じて種々変更可能である。なお、先に述べたように、ノッチ333の間隔に誤差があり、これにより回転方向の時間揺らぎが発生する。 Further, the rotating plate 332 has a notch 333 in the rotation direction, and integration is performed when the notch 333 passes. That is, when crossing the notch 333, a signal enters a detection controller 343 described later in the control unit 340, and a command for processing data is issued based on this signal. The time required for the rotation of the rotating plate 332 depends on parameters input by the user via the UI unit 200. In this embodiment, for example, the time required for rotation is 1.0 s / time. For example, the number of times of photographing in one rotation by the measurement unit 300 is 900, and one photographing is performed every time the rotating plate 332 rotates 0.4 degrees. Each specification is not limited to these values, and can be variously changed according to the configuration of the PCCT apparatus 100. As described above, there is an error in the interval between the notches 333, which causes time fluctuation in the rotation direction.
 図1に示すように、本明細書において、開口部331の周方向をx方向、径方向をy方向、それらに直交する方向をz方向とする。一般にz方向は、被写体101の体軸方向と同じ方向になる。 As shown in FIG. 1, in this specification, the circumferential direction of the opening 331 is the x direction, the radial direction is the y direction, and the direction perpendicular to them is the z direction. In general, the z direction is the same as the body axis direction of the subject 101.
 [X線照射部]
  X線照射部310は、X線を発生し、発生したX線を被写体101に照射する。X線照射部310は、X線管311と、X線フィルタ312と、ボウタイ(bowtie)フィルタ313と、を備える。
[X-ray irradiation part]
The X-ray irradiation unit 310 generates X-rays and irradiates the subject 101 with the generated X-rays. The X-ray irradiation unit 310 includes an X-ray tube 311, an X-ray filter 312, and a bowtie filter 313.
 X線管311は、後述する照射制御器341の制御に従って供給される高電圧により、被写体101にX線ビームを照射する。照射されるX線ビームは、ファン角およびコーン角を持って広がる。X線ビームは、ガントリ330の回転板332の回転に伴って、被写体101に照射される。 The X-ray tube 311 irradiates the subject 101 with an X-ray beam by a high voltage supplied in accordance with the control of an irradiation controller 341 described later. The irradiated X-ray beam spreads with a fan angle and a cone angle. The X-ray beam is applied to the subject 101 as the rotating plate 332 of the gantry 330 rotates.
 X線フィルタ312は、X線管311から照射されたX線の線質を調節する。すなわち、X線のスペクトルを変化させる。本実施例のX線フィルタ312は、X線管311から被写体101へ照射されるX線が、予め定めたエネルギー分布となるよう、X線管311から照射されたX線を減衰させる。X線フィルタ312は、被写体101である患者の被ばく量を最適化するために用いられる。このため、必要なエネルギー範囲の線量が強くなるよう設計される。 The X-ray filter 312 adjusts the quality of X-rays emitted from the X-ray tube 311. That is, the X-ray spectrum is changed. The X-ray filter 312 of this embodiment attenuates the X-rays irradiated from the X-ray tube 311 so that the X-rays irradiated from the X-ray tube 311 to the subject 101 have a predetermined energy distribution. The X-ray filter 312 is used to optimize the exposure amount of the patient who is the subject 101. For this reason, it is designed to increase the dose in the required energy range.
 ボウタイフィルタ313は、周辺部の被ばく量を抑える。被写体101である人体の断面が楕円形であることを用い、中心付近の線量を強くし、周囲の線量を低くして被ばく量を最適化するために用いられる。 The bow tie filter 313 suppresses the exposure amount of the peripheral part. It is used for optimizing the exposure dose by using the elliptical cross section of the human body as the subject 101, increasing the dose near the center, and lowering the ambient dose.
 [X線検出部、リファレンス検出部]
  X線検出部320は、X線フォトンが入射する毎に、当該X線フォトンのエネルギー値を計測可能な信号を出力する。X線検出部320は、X線検出器321を備える。
[X-ray detector, reference detector]
Each time an X-ray photon enters, the X-ray detection unit 320 outputs a signal capable of measuring the energy value of the X-ray photon. The X-ray detection unit 320 includes an X-ray detector 321.
 図2にX線検出器321の一部を例示する。本実施例のX線検出器321は、図2の(a)、(b)の断面、平面構成に示すように、複数の検出素子322、各検出素子322に電気的に接続されたカウンティング回路324、およびX線検出器321への入射方向を制限するコリメータ323を備える。 FIG. 2 illustrates a part of the X-ray detector 321. The X-ray detector 321 of the present embodiment includes a plurality of detection elements 322 and a counting circuit electrically connected to each detection element 322 as shown in the cross-sectional and plan configurations of FIGS. 324 and a collimator 323 that limits the incident direction to the X-ray detector 321.
 リファレンス検出部350も、図2に例示したX線検出器321と同じ構造を備える。X線検出部320は、図2の(a)に一部を示す構造がx方向に繰り返される。リファレンス検出部350はX線検出部320の端部の一部のX線検出器を使用してもよい。その場合、被写体が有効視野(FOV:Field of View)をはみ出ないように注意する必要がある。逆にFOVとの重なりを避けるため、X線検出部320とリファレンス検出部350との間を離してもよい。また、X線検出器321は、図2の(b)に示すように、X線管311の複数のX線発生点から略等距離の位置に多数の検出素子322を、x方向およびz方向に二次元状に配列した構成を有していてもよく、これはX線検出部320、リファレンス検出部350のいずれにもあてはまる。 The reference detector 350 also has the same structure as the X-ray detector 321 illustrated in FIG. In the X-ray detection unit 320, the structure partially shown in FIG. 2A is repeated in the x direction. The reference detection unit 350 may use some X-ray detectors at the end of the X-ray detection unit 320. In that case, care must be taken so that the subject does not protrude from the effective field of view (FOV: Field of View). Conversely, the X-ray detection unit 320 and the reference detection unit 350 may be separated to avoid overlapping with the FOV. Further, as shown in FIG. 2B, the X-ray detector 321 includes a large number of detection elements 322 at substantially equidistant positions from a plurality of X-ray generation points of the X-ray tube 311 in the x direction and the z direction. 2 may be arranged in a two-dimensional manner, and this applies to both the X-ray detector 320 and the reference detector 350.
 なお、製作を容易にするために平面状のX線検出器である検出器モジュールを複数作成し、平面の中心部分が円弧になるように配置して疑似的に円弧状に配列し、X線検出器321としてもよい。 In order to facilitate the production, a plurality of detector modules, which are planar X-ray detectors, are created, arranged so that the central portion of the plane is an arc, and are arranged in a pseudo arc shape. The detector 321 may be used.
 各検出素子322に入射したX線は、電気的に接続された各カウンティング回路324により、1つのX線フォトンが入射する毎に、1パルスの電気信号(アナログ信号)に変換される。変換された電気信号は、後述する演算部400に入力される。 The X-rays incident on each detection element 322 are converted into one-pulse electric signals (analog signals) by each electrically connected counting circuit 324 every time one X-ray photon is incident. The converted electrical signal is input to the arithmetic unit 400 described later.
 本実施例においては、検出素子322には、入射したX線フォトンを、直接電気信号に変換する、例えば、CdTeテルル化カドミウム(cadmium telluride)系の半導体素子を用いる。なお、検出素子322は、X線を受けて蛍光を発するシンチレータ(Scintillator)および蛍光を電気に変換するフォトダイオードを用いてもよい。 In this embodiment, the detection element 322 uses, for example, a CdTe telluride-based semiconductor element that directly converts incident X-ray photons into an electrical signal. Note that the detection element 322 may be a scintillator that emits fluorescence upon receiving X-rays and a photodiode that converts fluorescence into electricity.
 X線検出器321の検出素子322のx方向の数、すなわちチャンネル数は、例えば1000個である。各検出素子のx方向のサイズは、例えば1mmである。 The number of detection elements 322 of the X-ray detector 321 in the x direction, that is, the number of channels is, for example, 1000. The size of each detection element in the x direction is, for example, 1 mm.
 また、X線管311のX線発生点と、X線検出器321のX線入射面との距離は、例えば1000mmである。ガントリ330の開口部331の直径は、例えば700mmである。 The distance between the X-ray generation point of the X-ray tube 311 and the X-ray incident surface of the X-ray detector 321 is, for example, 1000 mm. The diameter of the opening 331 of the gantry 330 is 700 mm, for example.
 なお、ガントリ330と同様に、X線検出部320の各仕様はこれらの値に限定されるものはなく、PCCT装置100の構成に応じて種々変更可能である。 As with the gantry 330, the specifications of the X-ray detection unit 320 are not limited to these values, and can be variously changed according to the configuration of the PCCT apparatus 100.
 [制御部]
  制御部340は、X線管311からのX線の照射を制御する照射制御器341、回転板332の回転駆動を制御するガントリ制御器342、テーブル102の駆動を制御するテーブル制御器344、X線検出器321におけるX線検出を制御する検出制御器343、および回転方向の時間を計測する時間計測部である時間計測器345を備える。時間計測器345は、ガントリ330で示したノッチ333を横切った時に発生する回転方向の計測時間の信号が検出制御器343に入ると同時に信号を受信し、その回転方向の計測時間を記憶する。
[Control unit]
The control unit 340 includes an irradiation controller 341 that controls irradiation of X-rays from the X-ray tube 311, a gantry controller 342 that controls rotation of the rotating plate 332, a table controller 344 that controls driving of the table 102, and X A detection controller 343 that controls X-ray detection in the line detector 321 and a time measuring unit 345 that is a time measuring unit that measures time in the rotation direction are provided. The time measuring device 345 receives the signal at the same time as the rotation time measurement time signal generated when crossing the notch 333 indicated by the gantry 330 enters the detection controller 343, and stores the rotation time measurement time.
 これら制御部340の各制御器は、後述する演算部400の計測制御部420による制御に従って動作する。 These controllers of the control unit 340 operate according to control by the measurement control unit 420 of the calculation unit 400 described later.
 [演算部]
  図3に本実施例の演算部400の機能ブロック図を示す。演算部400は、PCCT装置100の動作全体を制御し、計測部300で取得したデータを処理することにより、被写体の撮影を行う。図3に示すように、演算部400は、以下で各々詳述する撮影条件設定部410と、計測制御部420と、データ収集部430と、補正部440と、画像生成部450とを備える。
[Calculation section]
FIG. 3 shows a functional block diagram of the calculation unit 400 of this embodiment. The arithmetic unit 400 controls the overall operation of the PCCT apparatus 100 and processes the data acquired by the measurement unit 300 to photograph the subject. As illustrated in FIG. 3, the calculation unit 400 includes an imaging condition setting unit 410, a measurement control unit 420, a data collection unit 430, a correction unit 440, and an image generation unit 450, which will be described in detail below.
 図1に示したように、演算部400は、ハードウェア構成としては、中央処理部(CPU:Central Processing Unit)401と、メモリ402と、HDD(Hard disk drive)装置403とを備える。例えばHDD装置403に予め保持するプログラムを、中央処理部401がメモリ402にロードして実行することにより、各機能を実現する。 As shown in FIG. 1, the calculation unit 400 includes a central processing unit (CPU) 401, a memory 402, and an HDD (Hard disk drive) device 403 as hardware configurations. For example, the central processing unit 401 loads a program stored in the HDD device 403 in advance into the memory 402 and executes it, thereby realizing each function.
 なお、演算部400の全部または一部の機能は、プログラムに代え、例えばASIC(Application Specific Integrated Circuit)、FPGA(Field Programmable Gate Array)などの集積回路などにより実現してもよい。 Note that all or part of the functions of the arithmetic unit 400 may be realized by an integrated circuit such as ASIC (Application Specific Integrated Circuit) or FPGA (Field Programmable Gate Array) instead of the program.
 また、HDD装置403には、処理に用いるデータ、処理中に生成されるデータ、処理の結果得られるデータ等が保存される。なお、処理結果は、UI部200の表示装置などの出力装置220にも出力される。 Also, the HDD device 403 stores data used for processing, data generated during processing, data obtained as a result of processing, and the like. The processing result is also output to an output device 220 such as a display device of the UI unit 200.
 [撮影条件設定部]
  撮影条件設定部410は、UI部200を使ってユーザから撮影条件を受け付けて設定する。例えば撮影条件設定部410は、撮影条件を受け付ける受付画面を表示装置に表示し、受付画面を介して撮影条件を受け付ける。ユーザは、受付画面を介して、例えばマウス、キーボード、タッチパネルなどの入力装置210を操作することにより、撮影条件を入力する。
[Shooting condition setting section]
The shooting condition setting unit 410 receives and sets shooting conditions from the user using the UI unit 200. For example, the shooting condition setting unit 410 displays a reception screen for receiving shooting conditions on the display device, and receives the shooting conditions via the reception screen. The user inputs photographing conditions by operating the input device 210 such as a mouse, a keyboard, or a touch panel via the reception screen.
 設定する撮影条件は、例えばX線管311の管電流、管電圧、被写体101の撮影範囲、X線フィルタ312の種類、ボウタイフィルタ313の形状、分解能等である。 The imaging conditions to be set are, for example, the tube current and tube voltage of the X-ray tube 311, the imaging range of the subject 101, the type of the X-ray filter 312, the shape of the bow tie filter 313, and the resolution.
 なお、ユーザは、必ずしも毎回UI部200を使って撮影条件を入力する必要はない。例えば事前にHDD403などに保存された典型的な撮影条件を読み出して用いてもよい。 Note that the user does not necessarily have to input shooting conditions using the UI unit 200 each time. For example, typical photographing conditions stored in advance in the HDD 403 or the like may be read and used.
 [計測制御部]
  計測制御部420は、ユーザが設定した撮影条件に従って、制御部340を制御し、計測を実行する。
[Measurement control unit]
The measurement control unit 420 controls the control unit 340 according to the shooting conditions set by the user, and performs measurement.
 具体的には、計測制御部420は、テーブル制御器344に対し、テーブル102を回転板332に対して垂直な方向に移動させ、回転板332を使って行われる撮影位置が設定された撮影位置と一致した時点で移動を停止するように指示する。これにより、被写体101の配置が完了する。 Specifically, the measurement control unit 420 moves the table 102 in a direction perpendicular to the rotating plate 332 with respect to the table controller 344, and the shooting position set using the rotating plate 332 is set. It is instructed to stop the movement when it matches. Thereby, the arrangement of the subject 101 is completed.
 また、計測制御部420は、テーブル制御器344への指示と同じタイミングで、ガントリ制御器342に対して駆動モーターを動作させ、回転板332の回転を開始するよう指示を行う。 Also, the measurement control unit 420 instructs the gantry controller 342 to operate the drive motor and start the rotation of the rotating plate 332 at the same timing as the instruction to the table controller 344.
 回転板332の回転が定速状態になり、かつ被写体101の配置が終了すると、計測制御部420は、照射制御器341に対し、X線管311のX線照射タイミングを指示し、検出制御器343に対し、X線検出器321の撮影タイミングを指示する。これにより、計測制御部420は、X線の照射および検出器によるX線フォトンの検出を行い、計測を開始する。 When the rotation of the rotating plate 332 is in a constant speed state and the placement of the subject 101 is completed, the measurement control unit 420 instructs the X-ray irradiation timing of the X-ray tube 311 to the irradiation controller 341, and the detection controller 343 instructs the imaging timing of the X-ray detector 321. Accordingly, the measurement control unit 420 performs X-ray irradiation and X-ray photon detection by the detector, and starts measurement.
 計測制御部420は、制御部340へのこれらの指示を繰り返すことで撮影範囲全体を計測する。なお、計測制御部420、制御部340は、公知のヘリカルスキャン(Helical Scan)のように、テーブル102を移動させながら撮影を行うよう制御してもよい。 The measurement control unit 420 measures the entire imaging range by repeating these instructions to the control unit 340. Note that the measurement control unit 420 and the control unit 340 may perform control so as to perform imaging while moving the table 102 as in a known helical scan.
 [データ収集部]
  データ収集部430は、X線検出器321が検出したX線に由来するX線フォトンを、予め定めたエネルギー範囲毎に計数し、当該エネルギー範囲毎のカウント値、すなわち計測情報である投影データを撮像データ431として得る。本実施例のデータ収集部430は、データ収集システム(DAS:Data Acquisition System、以下DASと表記)を備え、このDASが、計測部300が検出したX線フォトンの計数を行い、カウント値を撮像データ431とする。また、データ収集部430は、リファレンス検出部350の出力をリファレンスデータ432として収集し、時間計測器345の出力を時間計測データ433として収集する。
[Data collection section]
The data collection unit 430 counts X-ray photons derived from the X-rays detected by the X-ray detector 321 for each predetermined energy range, and outputs a count value for each energy range, that is, projection data that is measurement information. Obtained as imaging data 431. The data collection unit 430 of this embodiment includes a data collection system (DAS: Data Acquisition System, hereinafter referred to as DAS), and this DAS counts the X-ray photons detected by the measurement unit 300 and images the count value. This is data 431. Further, the data collection unit 430 collects the output of the reference detection unit 350 as reference data 432 and collects the output of the time measuring device 345 as time measurement data 433.
 DASは、X線検出器321が検出したX線フォトン1つ1つのエネルギー値を取得し、そのエネルギー値に応じてエネルギー範囲毎に設けられたエネルギービン(Bin)の計数結果であるカウント値に加算する。エネルギービンとは、エネルギー範囲毎に設定される記憶領域である。 The DAS acquires the energy value of each X-ray photon detected by the X-ray detector 321 and outputs the energy value (Bin) provided for each energy range according to the energy value to the count value. to add. An energy bin is a storage area set for each energy range.
 各エネルギー範囲は、0keVからX線管311の最大エネルギーまでの全エネルギー範囲を、所定のエネルギー幅ΔBで区分されたものである。エネルギー幅ΔBを例えば10keVとし、最大エネルギーを例えば140keVとすると、全エネルギー範囲0keV~140keVを、B1(0~20keV)、B2(20~40keV)、B3(40~60keV)、B4(60~80keV)、B5(80~100keV)、B6(100~120keV)、B7(120~140keV)の7つに区分されたエネルギー範囲とする。DASは、検出したX線フォトンのエネルギー値に応じて、該当するエネルギー範囲に対応づけて設けられたエネルギービンの計数結果に順次加算する。 Each energy range is obtained by dividing the entire energy range from 0 keV to the maximum energy of the X-ray tube 311 by a predetermined energy width ΔB. If the energy width ΔB is, for example, 10 keV and the maximum energy is, for example, 140 keV, the total energy range 0 keV to 140 keV is changed to B1 (0 to 20 keV), B2 (20 to 40 keV), B3 (40 to 60 keV), B4 (60 to 80 keV). ), B5 (80 to 100 keV), B6 (100 to 120 keV), and B7 (120 to 140 keV). The DAS sequentially adds to the count result of the energy bins provided in association with the corresponding energy range according to the detected energy value of the X-ray photon.
 図4に、その結果の一例を示す。同図に明らかなように、横軸は各エネルギー範囲B1~B7を、縦軸はそれぞれのエネルギー範囲におけるフォトン数を示している。このように、データ収集部430は、エネルギー範囲毎に、X線フォトンの数を計数する。図4に示すように、得られる結果はX線フォトンのエネルギー値(単位keV)の分布を示す。従って、データ収集部430は、これにより、X線検出器321で検出したX線のエネルギー分布もスペクトルを得る。データ収集部430は、得られた結果である撮像データ431を計測情報として出力する。 FIG. 4 shows an example of the result. As is clear from the figure, the horizontal axis represents each energy range B1 to B7, and the vertical axis represents the number of photons in each energy range. Thus, the data collection unit 430 counts the number of X-ray photons for each energy range. As shown in FIG. 4, the obtained result shows the distribution of energy values (unit: keV) of X-ray photons. Accordingly, the data collection unit 430 thereby obtains a spectrum of the energy distribution of the X-rays detected by the X-ray detector 321. The data collection unit 430 outputs imaging data 431 that is the obtained result as measurement information.
 なお、全エネルギー範囲、各エネルギー範囲、すなわち、各エネルギービンに対応するエネルギー範囲、及びエネルギービン数は、予め、ユーザからの指示等に従って設定され
る。データ収集部430は、この撮像データ431に加え、後で説明するリファレンスデータ432、時間計測データ433を収集する。
The total energy range, each energy range, that is, the energy range corresponding to each energy bin, and the number of energy bins are set in advance according to an instruction from the user or the like. The data collection unit 430 collects reference data 432 and time measurement data 433, which will be described later, in addition to the imaging data 431.
 [補正部]
  補正部440は、データ収集部430が収集した撮像データ431、リファレンスデータ432、時間計測データ433を使って補正処理を実施する。ここで行う補正処理は、例えば、リファレンスデータ432を用いたリファレンス補正回路のリニアリティ補正、対数変換処理、オフセット処理、感度補正、ビームハードニング補正などである。なお、ここではリファレンス補正以外の補正方法については公知の技術を用いるものとする。リファレンス補正の方法については、以降の[撮影前処理の流れ]、及び[撮影処理の流れ]の説明中に示す。
[Correction section]
The correction unit 440 performs correction processing using the imaging data 431, reference data 432, and time measurement data 433 collected by the data collection unit 430. The correction processing performed here is, for example, linearity correction of a reference correction circuit using the reference data 432, logarithmic conversion processing, offset processing, sensitivity correction, beam hardening correction, and the like. Here, a known technique is used for a correction method other than the reference correction. The reference correction method will be described later in the description of [Flow of pre-shooting process] and [Flow of shooting process].
 [画像生成部]
  画像生成部450は、各エネルギービンに保存されたX線フォトン数、すなわち撮像データ431から、X線CT画像を再構成する。画像は、例えばX線フォトン数である計測情報に対し、Log変換を行い、再構成する。再構成には、FeldKamp法、逐次近似法など、各種の公知の手法を用いることができる。なお、画像の生成には、全てのエネルギービンに保存された撮像データを用いなくてもよい。予め定めたエネルギー範囲に対応するエネルギービンに保存されたカウント値である撮像データのみを用いてもよい。
[Image generator]
The image generation unit 450 reconstructs an X-ray CT image from the number of X-ray photons stored in each energy bin, that is, the imaging data 431. The image is reconstructed by performing log transformation on the measurement information, for example, the number of X-ray photons. Various known methods such as the FeldKamp method and the successive approximation method can be used for the reconstruction. Note that image data stored in all energy bins may not be used for generating an image. Only imaging data which is a count value stored in an energy bin corresponding to a predetermined energy range may be used.
 [撮影前処理の流れ]
  ここでは、以上説明した各項目を用いて、実際に被写体を撮影する前の処理について説明する。撮影前には、各種補正で必要なデータを取得する。リファレンス補正以外の補正方法については公知の技術を用いるものとし、ここではリファレンス補正に必要なリファレンスデータ432の取得方法を説明する。
[Flow of pre-shooting processing]
Here, a process before actually photographing a subject will be described using each item described above. Before shooting, data necessary for various corrections is acquired. As a correction method other than the reference correction, a known technique is used. Here, a method for acquiring the reference data 432 necessary for the reference correction will be described.
 補正部440でのリファレンス補正で収集前に必要なデータは、パイルアップ補正データ441である。パイルアップ補正データ441は、線量率データとパイルアップに伴うカウント値、すなわち計測情報の変化量との関係を示すデータである。パイルアップ補正データ441の作成は、X線照射部310の線量率を変化させ、その結果リファレンス検出部350の信号量がどのように変化するかを予め計測することで実現できる。通常、X線照射部310の線量率を増大させるほどパイルアップの量が多くなるため、カウント数は線量率との比例よりも下の方にずれる。また補正データ取得時も線量率の変化がある。そのため線量率の変化に対して十分長時間の撮影を各データについて実施し、上述の比例からのずれをパイルアップ補正量とするパイルアップ補正データ441を作成する。 The data required before collection by the reference correction in the correction unit 440 is pile-up correction data 441. The pile-up correction data 441 is data indicating the relationship between the dose rate data and the count value accompanying the pile-up, that is, the amount of change in measurement information. The creation of the pile-up correction data 441 can be realized by measuring in advance how the signal amount of the reference detection unit 350 changes as a result of changing the dose rate of the X-ray irradiation unit 310. Usually, as the dose rate of the X-ray irradiation unit 310 is increased, the amount of pile-up is increased, so that the count number is shifted below the proportion with the dose rate. There is also a change in dose rate when acquiring correction data. Therefore, imaging for a sufficiently long time with respect to the change in the dose rate is performed for each data, and pile-up correction data 441 is created in which the deviation from the above-described proportion is the pile-up correction amount.
 図13に本実施例のPCCT装置におけるパイルアップ補正データ441の一例を示した。同図において、横軸はカウント数、縦軸はパイルアップ補正量を示し、このパイルアップ補正量がカウント数に応じて乗算される。 FIG. 13 shows an example of pile-up correction data 441 in the PCCT apparatus of this embodiment. In the figure, the horizontal axis represents the count number and the vertical axis represents the pile-up correction amount, and this pile-up correction amount is multiplied according to the count number.
 [撮影処理の流れ]
  次に、演算部400による撮影処理の流れについて説明する。図3は、本実施例の撮影処理の処理フローである。例えば図13に示すようなパイルアップ補正データ441は、上述した撮影前処理の流れにて予め作成されているものとする。
[Flow of shooting process]
Next, the flow of shooting processing by the calculation unit 400 will be described. FIG. 3 is a processing flow of the photographing process of the present embodiment. For example, it is assumed that pile-up correction data 441 as shown in FIG. 13 is created in advance in the above-described pre-shooting process flow.
 まず、撮影条件設定部410は、UI部200を介して、ユーザから撮影条件を受け付ける(ステップS1201)。ここで入力を受け付ける撮影条件には、管電圧、管電流、X線フィルタ312の種類(厚み、材質)、ボウタイフィルタ313の形状などがある。 First, the shooting condition setting unit 410 receives shooting conditions from the user via the UI unit 200 (step S1201). Imaging conditions for accepting input include tube voltage, tube current, the type (thickness and material) of the X-ray filter 312, the shape of the bow tie filter 313, and the like.
 次に、計測制御部420は、ステップS1201で設定された撮影条件に従って、計測を実行し(ステップS1202)、データ収集部430は、各種データを収集する(ステップS1203)。データ収集部430では、これらのデータ収集により、被写体101の情報を含み、X線検出部320で収集した撮像データ431、リファレンス検出部350で収集したリファレンスデータ432、および時間計測部である時間計測器345で収集した時間計測データ433を得る。 Next, the measurement control unit 420 performs measurement according to the imaging conditions set in step S1201 (step S1202), and the data collection unit 430 collects various data (step S1203). In the data collection unit 430, the data collection unit 430 includes information on the subject 101, the imaging data 431 collected by the X-ray detection unit 320, the reference data 432 collected by the reference detection unit 350, and the time measurement which is a time measurement unit. Time measurement data 433 collected by the device 345 is obtained.
 その後、補正部440で、データ収集部430が収集した撮像データ431を補正する。まず、リファレンスデータ432の各エネルギー範囲に対して、ビューあたりの線量から単位時間当たりの線量、つまり線量率に変換する線量→線量率変換を実施する(ステップS1204)なお、本明細書において、「→」はその左側の値から右側の値に変換することを意味する。これはパイルアップが線量ではなく線量率に依存すること、およびビューの時間に揺らぎがあるためビューあたりの線量は線量率と等価ではないことに起因する。変換の方法は各ビューについて、時間計測データ433に基づくビューあたりの時間で除算して線量率に変換する。 Thereafter, the correction unit 440 corrects the imaging data 431 collected by the data collection unit 430. First, for each energy range of the reference data 432, a dose per view to a dose per unit time, that is, a dose to be converted into a dose rate → a dose rate conversion is performed (step S1204). “→” means that the value on the left side is converted to the value on the right side. This is due to the fact that the pileup depends on the dose rate, not the dose, and that the dose per view is not equivalent to the dose rate due to fluctuations in the view time. In the conversion method, for each view, the time per view based on the time measurement data 433 is divided and converted into a dose rate.
 次に、単位時間当たりの線量、すなわち線量率に変換したリファレンスデータを用いてパイルアップ補正を実施する(ステップS1205)。パイルアップ補正の方法は、撮影前処理の流れで作成し、図13にその一例を示したパイルアップ補正データ441を用いて、リファレンス検出部350の各エネルギー範囲のカウントに関して上述した補正を実施する。補正部440は、線量率データとパイルアップに伴うカウント値である計測情報の変化量を予め計測したパイルアップ補正データに基づき、線量率データを補正する。ここで補正したリファレンスデータは単位時間当たりのデータであるが、データ収集部の撮像データ431はビューあたりのデータである。そのため、補正したリファレンスデータに対してステップS1204の逆の操作である線量率→線量変換を実施する(ステップS1206)。具体的には各ビューについて、時間計測データ433に基づくビューあたりの時間を乗算して線量に変換する。なお、ステップS1206で線量に変換しなくても、撮像データ431に対しステップS1204と同じく線量→線量率変換を実施することで、補正したリファレンスデータと撮像データの単位の合わせ込みを実施してもよい。 Next, pile-up correction is performed using the reference data converted into the dose per unit time, that is, the dose rate (step S1205). The pile-up correction method is created in the flow of the pre-shooting process, and the above-described correction regarding the counting of each energy range of the reference detection unit 350 is performed using the pile-up correction data 441 whose example is shown in FIG. . The correction unit 440 corrects the dose rate data based on the dose rate data and the pile-up correction data obtained by measuring in advance the amount of change in measurement information that is a count value associated with pile-up. The reference data corrected here is data per unit time, but the imaging data 431 of the data collection unit is data per view. Therefore, dose rate → dose conversion, which is the reverse operation of step S1204, is performed on the corrected reference data (step S1206). Specifically, each view is converted into a dose by multiplying the time per view based on the time measurement data 433. Even if the dose is not converted in step S1206, the unit of the corrected reference data and the imaging data may be adjusted by performing the dose-to-dose rate conversion on the imaging data 431 in the same manner as in step S1204. Good.
 この単位合わせの後、撮像データに対してリファレンス補正を実施する(ステップS1207)。ステップS1206で補正したリファレンス検出部の各エネルギー範囲のカウント数を元に、X線のカウント数の揺らぎを補正して補正後データ442を得る。通常のX線CT装置の場合、すべてのエネルギー範囲を足し合わせたデータしか得られないが、PCCT装置ではエネルギー範囲ごとに計測しているため、エネルギー範囲ごとにX線の揺らぎを計測しなければ正しく補正ができない。そのため、エネルギー範囲ごとに計測したデータを用いてリファレンス補正を実施する。 After this unit alignment, reference correction is performed on the imaged data (step S1207). Based on the count number of each energy range of the reference detection unit corrected in step S1206, the fluctuation of the X-ray count number is corrected to obtain corrected data 442. In the case of a normal X-ray CT apparatus, only the data obtained by adding up all the energy ranges can be obtained. However, since the PCCT apparatus measures each energy range, the X-ray fluctuation must be measured for each energy range. Correct correction is not possible. Therefore, reference correction is performed using data measured for each energy range.
 以上により、X線源揺らぎと、回転方向の時間揺らぎを補正することが可能となる。その後、他の補正を実施する(ステップS1208)。なお、リファレンス補正以外に挙げた補正に関しては、ステップ1208にまとめたが、必要に応じてリファレンス補正の前に補正を実施してもよく、また、一部の補正をリファレンス補正の前に、一部の補正をリファレンス補正の後に実施するなど前後で補正を実施してもよい。最後に補正で得られたデータを用いて画像生成部450は画像を生成し、画像DB470に画像を保存して処理を終了する(ステップS1209)。 As described above, the X-ray source fluctuation and the time fluctuation in the rotation direction can be corrected. Thereafter, other corrections are performed (step S1208). The corrections other than the reference correction are summarized in step 1208. However, correction may be performed before the reference correction if necessary, and some corrections may be performed before the reference correction. The correction may be performed before and after the part correction is performed after the reference correction. Finally, the image generation unit 450 generates an image using the data obtained by the correction, stores the image in the image DB 470, and ends the process (step S1209).
 本実施例のPCCT装置によれば、特にステップS1204~ステップS1207により、回転方向の時間揺らぎをより正確に計測し、リファレンス検出部にて発生する検出器特性に伴うエネルギー範囲毎のずれを補正しつつX線源揺らぎを補正可能であるため、高精度な補正が可能となる。 According to the PCCT apparatus of the present embodiment, in particular, in steps S1204 to S1207, the time fluctuation in the rotation direction is measured more accurately, and the deviation for each energy range associated with the detector characteristics generated in the reference detector is corrected. However, since the X-ray source fluctuation can be corrected, highly accurate correction can be performed.
 実施例1では、リファレンス検出部350に半導体検出器を用いてエネルギー範囲設定が可能としている。しかし、リファレンス検出部350の信号量とX線検出部320に属する各X線検出器321の各エネルギー範囲の信号量の対応がわかる場合は、リファレンス検出部350として、積分型検出器を用いることも可能である。積分型検出器として積分回路を使用した場合、パイルアップなどのカウンティング回路特有の補正が不要となる利点がある。実施例2では、このようなリファレンス検出部として積分型検出器を用い、積分リファレンスデータを得る構成の実施例を図5、図6に従い説明する。 In the first embodiment, the energy range can be set using a semiconductor detector for the reference detector 350. However, when the correspondence between the signal amount of the reference detection unit 350 and the signal amount of each energy range of each X-ray detector 321 belonging to the X-ray detection unit 320 is known, an integral type detector is used as the reference detection unit 350. Is also possible. When an integrating circuit is used as the integrating detector, there is an advantage that correction specific to the counting circuit such as pileup is not necessary. In the second embodiment, an embodiment in which an integral detector is used as such a reference detector and integral reference data is obtained will be described with reference to FIGS.
 実施例2は、リファレンス検出部350は積分型検出器であり、補正部は、X線照射部より照射したX線についてのリファレンス検出部350の信号量と、X線検出部320のエネルギー範囲毎の計測情報との関係を予め求めておき、被写体撮影時におけるX線検出部320のエネルギー範囲毎の計測情報と予め求めた計測情報との関係と、撮影中のリファレンス検出部の信号量と予め求めたリファレンス検出部の信号量との関係から、各エネルギー範囲毎に計測情報の補正を行う構成のPCCT装置の実施例である。実施例1から変更となる点はX線検出部、リファレンス検出部、撮影前処理の流れ、及び撮影処理の流れである。これらについて変更部分について以下で説明する。 In the second embodiment, the reference detection unit 350 is an integral detector, and the correction unit is a signal amount of the reference detection unit 350 for the X-rays irradiated from the X-ray irradiation unit and an energy range of the X-ray detection unit 320. The relationship between the measurement information for each energy range of the X-ray detection unit 320 at the time of subject imaging and the relationship between the measurement information obtained in advance and the signal amount of the reference detection unit during imaging are obtained in advance. It is an Example of the PCCT apparatus of the structure which correct | amends measurement information for every energy range from the relationship with the signal amount of the calculated | required reference detection part. The differences from the first embodiment are the X-ray detection unit, the reference detection unit, the flow of pre-imaging processing, and the flow of imaging processing. These changes will be described below.
 [X線検出部、リファレンス検出部]
  図5に示すように本実施例においては、リファレンス検出部350のX線検出器321は、図2のカウンティング回路324の代わりに積分回路325を使用する。積分回路325は従来のX線CT装置で使用されている回路であり、各ビューに入射した全X線の信号量を足し合わせて出力する回路である。そのため、積分回路325ではパイルアップは発生しないが、各エネルギー範囲でのデータの取得はできない。
[X-ray detector, reference detector]
As shown in FIG. 5, in this embodiment, the X-ray detector 321 of the reference detection unit 350 uses an integration circuit 325 instead of the counting circuit 324 of FIG. The integrating circuit 325 is a circuit that is used in a conventional X-ray CT apparatus, and is a circuit that adds and outputs the signal amounts of all X-rays incident on each view. Therefore, pile-up does not occur in the integration circuit 325, but data cannot be acquired in each energy range.
 しかしながら、PCCT装置の場合、各エネルギー範囲における線量率によって補正する必要があるため、積分したデータに関してもビューあたりの積分線量から積分線量率に変換してから補正する必要がある。そのため、補正演算が変更となる。それらの変更点を以下に示す。 However, in the case of the PCCT apparatus, since it is necessary to correct by the dose rate in each energy range, it is necessary to correct the integrated data after converting the integrated dose per view to the integrated dose rate. Therefore, the correction calculation is changed. These changes are shown below.
 [撮影前処理の流れ]
  上述のように、リファレンス検出部350に積分型検出器を使用した場合、リファレンス検出部350の信号量から各エネルギー範囲の補正量を求める必要がある。しかし、積分型検出器では各エネルギー範囲のデータを得ることはできないため、予め求める必要がある。先に説明したようにリファレンス検出部350の信号が揺らぐ要因は、
・X線源の揺らぎ、すなわちX線管311のX線強度や線量率の揺らぎ
・回転方向の時間揺らぎ、すなわち回転方向の時間積分結果の揺らぎ
である。積分型のリファレンス検出部350でも上記2つの揺らぎを含めて計測する。X線管311のX線強度が揺らいだ場合は各エネルギー範囲の比が変わる可能性があり、かつX線管311の特性によってその変化がばらつく可能性がある。一方、回転方向の時間揺らぎの場合は、各エネルギー範囲の信号量の比は変化しない。よってこれらの2つの揺らぎの特性を考慮して補正データを作成する必要がある。
[Flow of pre-shooting processing]
As described above, when an integral detector is used for the reference detection unit 350, it is necessary to obtain the correction amount of each energy range from the signal amount of the reference detection unit 350. However, since an integral detector cannot obtain data for each energy range, it must be obtained in advance. As described above, the factor that the signal of the reference detection unit 350 fluctuates is
The fluctuation of the X-ray source, that is, the fluctuation of the X-ray intensity and dose rate of the X-ray tube 311 and the fluctuation of the time in the rotation direction, that is, the fluctuation of the time integration result in the rotation direction. The integral-type reference detection unit 350 also performs measurement including the two fluctuations. When the X-ray intensity of the X-ray tube 311 fluctuates, the ratio of each energy range may change, and the change may vary depending on the characteristics of the X-ray tube 311. On the other hand, in the case of time fluctuation in the rotation direction, the ratio of the signal amount in each energy range does not change. Therefore, it is necessary to create correction data in consideration of these two fluctuation characteristics.
 実施例2の計測方法を以下に示す。まず、X線管311は設定可能な線量の1つに設定する。また、ボウタイフィルタ313やX線フィルタ312はいずれも外す。その状態でX線を照射し、リファレンス検出部350とX線検出部320に入射した双方の信号を測定する。リファレンス検出部350の積分回路325にて検出した信号を、その信号の揺らぎ量に応じてカテゴライズし、そのカテゴライズした揺らぎ量ごとにX線検出部320で得た各エネルギー範囲の線量率を計算する。このとき、ビュー間で時間ずれが発生している可能性があるため、時間計測器345の時間計測データを使って各ビューの時間が基準時間となるようにする。このように各エネルギー範囲で平均化するのはX線管311の揺らぎが全エネルギー範囲で同じように揺らぐとは限らないためである。このように補正データをとることで、エネルギー範囲ごとの揺らぎの違いを平滑化できるのである。この操作を設定可能な線量すべてで実施することにより、得られた積分データから各エネルギー範囲変換データを作成、すなわち積分→エネルギー範囲変換データ443を作成する。 The measurement method of Example 2 is shown below. First, the X-ray tube 311 is set to one of settable doses. Also, the bow tie filter 313 and the X-ray filter 312 are both removed. In this state, X-rays are irradiated, and both signals incident on the reference detection unit 350 and the X-ray detection unit 320 are measured. The signal detected by the integration circuit 325 of the reference detection unit 350 is categorized according to the fluctuation amount of the signal, and the dose rate of each energy range obtained by the X-ray detection unit 320 is calculated for each categorized fluctuation amount. . At this time, there may be a time lag between the views, so the time measurement data of the time measuring device 345 is used so that the time of each view becomes the reference time. The averaging in each energy range is because the fluctuation of the X-ray tube 311 does not always fluctuate in the same manner in the entire energy range. By taking correction data in this way, the difference in fluctuation for each energy range can be smoothed. By executing this operation with all the settable doses, energy range conversion data is created from the obtained integral data, that is, integration → energy range conversion data 443 is created.
 この積分→エネルギー範囲変換データ443の作成方法の具体例を示す。先に示したボウタイフィルタ313やX線フィルタ312はいずれも外してX線を照射し、リファレンス検出部350とX線検出部320に入射した双方の信号を測定したデータに対し、時間計測データ433に基づくビューあたりの時間で除算し、リファレンス検出部350とX線検出部320に入射した双方の信号量を単位時間当たりの信号量に変換する。変換したデータに対し、リファレンス検出部350の信号を単位時間当たりの信号量に変換した値(単位は信号量/時間)でカテゴライズする。信号量は増幅器の設定値に依存するため、単位時間当たりの信号量に変換した値の具体的な値は装置設定に依存する。そのカテゴライズした各々の区間においてX線検出部320に入射した各エネルギーbinの信号量の平均値を算出する。 A specific example of a method of creating this integration → energy range conversion data 443 is shown. The bow tie filter 313 and the X-ray filter 312 described above are both removed and irradiated with X-rays, and time measurement data 433 is obtained for data obtained by measuring both signals incident on the reference detection unit 350 and the X-ray detection unit 320. Is divided by the time per view based on the above, and both signal amounts incident on the reference detection unit 350 and the X-ray detection unit 320 are converted into signal amounts per unit time. The converted data is categorized by a value (unit: signal amount / time) obtained by converting the signal of the reference detection unit 350 into a signal amount per unit time. Since the signal amount depends on the setting value of the amplifier, the specific value of the value converted into the signal amount per unit time depends on the device setting. The average value of the signal amount of each energy bin incident on the X-ray detector 320 in each categorized section is calculated.
 このようにして求めたリファレンス検出部350の信号を単位時間当たりの信号量に変換した値がある値を示したときに、X線検出部320に入射する各エネルギーbinの信号量の平均値の値が積分→エネルギー範囲変換データ443となる。例えば120kV/200mAで1000ビューの条件で撮像したとき、単位時間当たりの信号量に変換した値が1となる設定の装置において、bin1は100 counts/s, bin2は1000counts/s, bin3は1000counts/s, bin4は700counts/sであり、単位時間当たりの信号量に変換した値が1.01ではbin1は110 counts/s, bin2は1100counts/s, bin3は900counts/s, bin4は500counts/sとなる、などのような変換のための変換テーブルが作成される。 When the value obtained by converting the signal of the reference detection unit 350 thus obtained into the signal amount per unit time indicates a certain value, the average value of the signal amount of each energy bin incident on the X-ray detection unit 320 The value is integral → energy range conversion data 443. For example, when imaging at 120kV / 200mA and 1000 view conditions, bin1 is 100 counts / s, bin2 is 1000counts / s, and bin3 is 1000counts / s, bin4 is 700counts / s, and the value converted to the signal amount per unit time is 1.01, bin1 is 110 counts / s, bin2 is 1100counts / s, bin3 is 900counts / s, bin4 is 500counts / s, A conversion table for conversion such as is created.
 [撮影処理の流れ]
  演算部400による本実施例の撮影処理の流れについて説明する。図6は、本実施例の撮影処理の処理フローである。積分→各エネルギー範囲変換データ443は、上述の通り、[撮影前処理の流れ]にて予め作成されているものとする。
[Flow of shooting process]
A flow of photographing processing of the present embodiment by the calculation unit 400 will be described. FIG. 6 is a processing flow of the photographing process of the present embodiment. It is assumed that the integration → each energy range conversion data 443 is created in advance in [Flow of pre-shooting processing] as described above.
 撮影条件設定部410のステップS1301、計測制御部420のステップS1302は、それぞれステップS1201、ステップS1202と同等である。 Step S1301 of the photographing condition setting unit 410 and step S1302 of the measurement control unit 420 are equivalent to step S1201 and step S1202, respectively.
 データ収集部430は、各種のデータを収集する(ステップS1303)。データ収集部430では、データの収集により、被写体101の情報を含み、X線検出部320で収集した撮像データ431、および時間計測器345で収集した時間計測データ433は先例と同じであるが、リファレンス検出部350で収集したリファレンスデータはビュー分で積分されているため、ここでは積分リファレンスデータ434と記す。 The data collection unit 430 collects various data (step S1303). The data collection unit 430 includes the information of the subject 101 by collecting data, and the imaging data 431 collected by the X-ray detection unit 320 and the time measurement data 433 collected by the time measuring device 345 are the same as the previous example. Since the reference data collected by the reference detection unit 350 is integrated for the view, it is referred to as integration reference data 434 here.
 その後、補正部440で、データ収集部430が収集した撮像データを補正する。まず、各エネルギー範囲に対して、積分リファレンスデータ434をビューあたりの線量から単位時間当たりの線量、つまり線量率に変換する線量→線量率変換を実施する(ステップS1304)。これは[撮影前処理の流れ]で示した通り、X線管311のX線強度の揺らぎはある単位時間当たりの揺らぎ特性に基づいているためである。 Thereafter, the correction unit 440 corrects the imaging data collected by the data collection unit 430. First, for each energy range, dose-to-dose rate conversion is performed for converting the integrated reference data 434 from a dose per view to a dose per unit time, that is, a dose rate (step S1304). This is because the fluctuation of the X-ray intensity of the X-ray tube 311 is based on fluctuation characteristics per unit time as shown in [Flow of pre-imaging processing].
 次に、単位時間当たりの線量に変換した積分リファレンスデータを用いて、上述した積分→エネルギー範囲変換を実施する(ステップS1305)。積分→エネルギー範囲変換の方法は、[撮影前処理の流れ]で作成した積分→各エネルギー範囲変換データ443を用いて、リファレンス検出部の各積分リファレンスデータに基づいて各エネルギー範囲のカウントに関する変換テーブルを作成する。実施例1と同様に、データは単位時間当たりのデータであるため、ステップS1304の逆の操作である線量率→線量変換を実施する(ステップS1306)。なお前例同様、ステップS1306で線量に変換しなくても、撮像データに対しステップS1304と同じ線量率変換を実施することで補正データと撮像データの単位の合わせ込みを実施してもよい。 Next, using the integration reference data converted into the dose per unit time, the integration → energy range conversion described above is performed (step S1305). The integration → energy range conversion method uses the integration → each energy range conversion data 443 created in [Flow of pre-shooting processing], and a conversion table for counting each energy range based on each integration reference data of the reference detection unit. Create Since the data is data per unit time as in the first embodiment, dose rate → dose conversion, which is the reverse operation of step S1304, is performed (step S1306). Note that, as in the previous example, the unit of the correction data and the imaging data may be adjusted by performing the same dose rate conversion as that in step S1304 on the imaging data without being converted into the dose in step S1306.
 この単位合わせの後、撮像データ431に対して、リファレンス補正を実施する(ステップS1307)。ステップS1304~ステップS1306で作成したリファレンス検出部350の積分リファレンスデータを基にした各エネルギー範囲の補正データを元に、X線のカウント数である撮像データ431の揺らぎを補正する。具体的な演算方法は積分→エネルギー範囲変換データ443に基づいて、単位時間当たりの信号量に変換した値を除算する。例えば、単位時間当たりの信号量に変換した値が1のときはbin1は100, bin2は1000, bin3は1000,bin4は700で除算する。なお、ある基準の変換値を元にその比で除算しても良い。 After this unit alignment, reference correction is performed on the imaging data 431 (step S1307). Based on the correction data of each energy range based on the integrated reference data of the reference detector 350 created in steps S1304 to S1306, the fluctuation of the imaging data 431 that is the X-ray count number is corrected. A specific calculation method divides a value converted into a signal amount per unit time based on integration → energy range conversion data 443. For example, when the value converted into the signal amount per unit time is 1, bin1 is divided by 100, bin2 is 1000, bin3 is 1000, and bin4 is 700. Note that the ratio may be divided by a ratio based on a certain standard conversion value.
 以下は実施例1同様に、他の補正を実施し(ステップS1308)、補正したデータを用いて画像生成部450で画像を生成した後、画像DB470に画像を保存して処理を終了する(ステップS1309)。 In the following, as in the first embodiment, other corrections are performed (step S1308), and after the image is generated by the image generation unit 450 using the corrected data, the image is stored in the image DB 470 and the process is terminated (step S1308). S1309).
 以上説明した実施例2の構成、特にステップS1304~ステップS1307により、リファレンス検出部としてパイルアップの無い積分検出器を用いたPCCT装置で、回転方向の時間揺らぎをより正確に計測し、リファレンス検出部にて発生する検出器特性に伴うエネルギー範囲毎のずれを補正しつつX線源揺らぎを補正可能であるため、高精度な補正が可能となる。 With the configuration of the second embodiment described above, in particular, step S1304 to step S1307, the PCCT apparatus using the integral detector without pile-up as the reference detection unit measures the time fluctuation in the rotation direction more accurately, and the reference detection unit Since the X-ray source fluctuation can be corrected while correcting the deviation for each energy range accompanying the detector characteristics generated in step S1, the correction can be performed with high accuracy.
 実施例1では、リファレンス検出部350の検出器のみに時間補正とパイルアップ補正を実施する実施例を記載した。しかし、X線を検出するフォトンカウンティング方式のX線検出部全体で時間補正を実施する必要が生じる可能性がある。そのため、X線検出部320の検出器でも時間補正とパイルアップ補正を実施する実施例を記載する。実施例1と補正方法のみが異なるため、実施例1から変更となる点は [撮影処理の流れ]のみである。そのため、[撮影処理の流れ]の変更点について以降に示す。 Example 1 describes an example in which time correction and pile-up correction are performed only on the detector of the reference detection unit 350. However, it may be necessary to perform time correction in the entire photon counting X-ray detection unit that detects X-rays. Therefore, an embodiment will be described in which time correction and pile-up correction are also performed by the detector of the X-ray detection unit 320. Since only the correction method is different from that of the first embodiment, the only difference from the first embodiment is [flow of photographing process]. Therefore, the changes in [Flow of shooting process] will be described below.
 [撮影処理の流れ]
  本実施例の実施例1と変更となる撮像処理の流れについて図12に示す。なお、パイルアップ補正データ441は、実施例1の[撮影前処理の流れ]と同様の方法で予め作成されているものとする。
[Flow of shooting process]
FIG. 12 shows an imaging process flow that is different from the first embodiment. Note that the pile-up correction data 441 is created in advance by a method similar to [Flow of pre-shooting process] in the first embodiment.
 まず、撮影条件設定部410は、UI部200を介して、ユーザから撮影条件を受け付ける(ステップS1201)。次に、計測制御部420は、ステップS1201で設定された撮影条件に従って、計測を実行し(ステップS1202)、データ収集部430は、各種データを収集する(ステップS1203)。ここまでは実施例1と変わらないため詳細は省略する。 First, the shooting condition setting unit 410 receives shooting conditions from the user via the UI unit 200 (step S1201). Next, the measurement control unit 420 performs measurement in accordance with the imaging conditions set in step S1201 (step S1202), and the data collection unit 430 collects various data (step S1203). The details up to this point are the same as in the first embodiment, and the details are omitted.
 その後、補正部440で、データ収集部430が収集した撮像データ431とリファレンスデータ432を補正する。それぞれのデータの各エネルギー範囲に対して、ビューあたりの線量から単位時間当たりの線量、つまり線量率に変換する線量→線量率変換を実施する(ステップS1504)。これは実施例1と同様にパイルアップが線量ではなく線量率に依存すること、およびビューの時間に揺らぎがあるためビューあたりの線量は線量率と等価ではないことに起因する。変換の方法は本実施例において、撮像データ431とリファレンスデータ432のいずれのデータについても、各ビューについて、時間計測データ433に基づくビューあたりの時間を用いて線量率に変換する。 Thereafter, the correction unit 440 corrects the imaging data 431 and the reference data 432 collected by the data collection unit 430. For each energy range of each data, dose per unit time to dose per unit time, that is, dose converted to dose rate → dose rate conversion is performed (step S1504). This is because the pile-up depends on the dose rate, not the dose, as in the first embodiment, and the dose per view is not equivalent to the dose rate due to fluctuations in the view time. In this embodiment, the conversion method converts the imaging data 431 and the reference data 432 into a dose rate for each view using the time per view based on the time measurement data 433.
 次に、単位時間当たりの線量、すなわち線量率に変換した撮像データとリファレンスデータを用いてパイルアップ補正を実施する(ステップS1505)。パイルアップ補正の方法は、撮影前処理の流れで作成したパイルアップ補正データ441を用いて、線量率に変換した撮像データとリファレンスデータそれぞれについて各エネルギー範囲のカウントに関して補正を実施する。ここで補正した双方のデータは単位時間当たりのデータである。そのため、実施例1で実施した線量率→線量変換(ステップS1206)は不要である。 Next, pile-up correction is performed using the imaging data converted into the dose per unit time, that is, the dose rate, and reference data (step S1505). In the pile-up correction method, the pile-up correction data 441 created in the pre-imaging processing flow is used to correct each energy range count for each of the imaging data converted into the dose rate and the reference data. Both data corrected here are data per unit time. Therefore, the dose rate → dose conversion (step S1206) performed in the first embodiment is not necessary.
 この単位合わせの後、撮像データに対してリファレンス補正を実施する(ステップS1207)。以下は実施例1と同じである。 After this unit alignment, reference correction is performed on the imaged data (step S1207). The following is the same as in Example 1.
 本実施例のPCCT装置によれば、特にステップS1504~ステップS1505により、撮像データとリファレンスデータの双方について回転方向の時間揺らぎをより正確に計測し、リファレンス検出部にて発生する検出器特性に伴うエネルギー範囲毎のずれを補正しつつX線源揺らぎを補正可能であるため、高精度な補正が可能となる。 According to the PCCT apparatus of the present embodiment, in particular, in steps S1504 to S1505, time fluctuations in the rotation direction are more accurately measured for both the imaging data and the reference data, and the detector characteristics generated by the reference detector are accompanied. Since the X-ray source fluctuation can be corrected while correcting the deviation for each energy range, high-accuracy correction is possible.
  本実施例は、実施例1の構成に比較してパイルアップを減らすことが可能な構成のPCCT装置の実施例である。パイルアップ量を減らすためには、検出器に入射するX線強度を減らせばよい。そこで、本実施例の装置においては、リファレンス検出部350のX線検出器のサイズ、すなわちX線検出領域を、X線検出部320のX線検出器321のサイズ、すなわちX線検出領域より小さくすることにより、リファレンス検出部350のパイルアップ量を低減する。または、リファレンス検出部350を、X線検出器321のサイズと同等若しくは小さいサイズの複数のX線検出器で作成し、X線量に応じてリファレンス検出部350のX線検出器のサイズを切り替えることでより正確なリファレンス補正を可能とする。 The present embodiment is an embodiment of a PCCT apparatus having a configuration capable of reducing pileup as compared with the configuration of the first embodiment. In order to reduce the pile-up amount, the X-ray intensity incident on the detector may be reduced. Therefore, in the apparatus of the present embodiment, the size of the X-ray detector of the reference detection unit 350, that is, the X-ray detection region is smaller than the size of the X-ray detector 321 of the X-ray detection unit 320, that is, the X-ray detection region. By doing so, the pile-up amount of the reference detection unit 350 is reduced. Alternatively, the reference detection unit 350 is created with a plurality of X-ray detectors having a size equal to or smaller than the size of the X-ray detector 321 and the size of the X-ray detector of the reference detection unit 350 is switched according to the X-ray dose. Enables more accurate reference correction.
 図7の(a)、(b)の断面、平面構成に示すように、本実施例では、リファレンス検出部350に複数のサイズ、すなわち検出領域が複数の大きさのX線検出器321-bを用いる。複数のサイズを用いるのは線量が被写体101のサイズや撮像部位等で変化するためである。例えば線量が非常に低い撮像条件では大きな検出領域の検出器を用い、線量が非常に高い撮像条件には小型のX線検出器を用いる。 As shown in the cross-sectional and planar configurations of FIGS. 7A and 7B, in this embodiment, the reference detection unit 350 has a plurality of sizes, that is, X-ray detectors 321 -b having a plurality of detection regions. Is used. The plurality of sizes are used because the dose varies depending on the size of the subject 101, the imaging region, and the like. For example, a detector having a large detection area is used in an imaging condition with a very low dose, and a small X-ray detector is used in an imaging condition with a very high dose.
 また、図8の(a)、(b)の断面、平面構成に示すように最も小型の検出器321-cのみを作成し、検出器321-cの複数の検出信号を加算処理することにより、大きな検出器と等価な検出信号が得られるので、大きなサイズの検出器を使わない方法でも良い。 Further, only the smallest detector 321-c is created as shown in the cross-sectional and planar configurations of FIGS. 8A and 8B, and a plurality of detection signals from the detector 321-c are added and processed. Since a detection signal equivalent to a large detector can be obtained, a method that does not use a large size detector may be used.
 上記の構成により、リファレンス検出部350のパイルアップが少なくなったため、補正部440における[撮影処理の流れ]のチャートが異なっている。図9に示すように、本実施例では、図3に比較して、リファレンス検出部350でのパイルアップ補正であるステップS1204~S1206を除いた方法で補正する。他のステップの内容は図3と同一である。また本実施例では、[撮影前処理の流れ]で取得したパイルアップ補正データ441の取得も不要である。そのため、時間計測器345で計測した時間補正データ433は不要であるが、X線検出器321のパイルアップ補正等に時間補正データ433を利用しても良い。 With the above configuration, since the pile-up of the reference detection unit 350 is reduced, the chart of [shooting process flow] in the correction unit 440 is different. As shown in FIG. 9, in this embodiment, correction is performed by a method that excludes steps S1204 to S1206, which is pile-up correction in the reference detection unit 350, as compared with FIG. The contents of the other steps are the same as in FIG. In this embodiment, it is not necessary to acquire the pile-up correction data 441 acquired in [Flow of pre-shooting process]. Therefore, the time correction data 433 measured by the time measuring device 345 is unnecessary, but the time correction data 433 may be used for pile-up correction of the X-ray detector 321 and the like.
 本実施例によれば、リファレンス検出部350に複数のサイズの検出器を用いる場合、最も小型の検出器のみを作成する場合のいずれにおいてもパイルアップを低減し、より正確にリファレンス補正が可能となる。更に、複数のサイズの検出器を用いる場合は、最も小型の検出器のみを作成する場合に比べて、検出信号を処理するための回路数の低減が可能となる。 According to the present embodiment, when a plurality of size detectors are used for the reference detection unit 350, pile-up is reduced and reference correction can be performed more accurately in any case where only the smallest detector is created. Become. Further, when using detectors of a plurality of sizes, the number of circuits for processing the detection signal can be reduced as compared with the case where only the smallest detector is produced.
 実施例4ではリファレンス検出部の検出器サイズを変化させたのに対し、実施例5ではリファレンス検出部へのX線の入射量を変化させるためにX線量可変フィルタを用いる。すなわち、リファレンス検出部とX線照射部との間に、X線照射部のX線量に応じてフィルタを切り替えることができるX線量可変フィルタを更に備える構成の実施例である。上述した各実施例との変更点は、[ガントリ]、[撮影前処理の流れ]、[撮影処理の流れ]の点である。 In Example 4, the detector size of the reference detection unit is changed, whereas in Example 5, an X-ray dose variable filter is used to change the amount of X-ray incident on the reference detection unit. That is, this is an example of a configuration further including an X-ray dose variable filter that can switch a filter according to the X-ray dose of the X-ray irradiation unit between the reference detection unit and the X-ray irradiation unit. The changes from the above-described embodiments are [Gantry], [Flow of pre-shooting process], and [Flow of shooting process].
 [ガントリ]
  本実施例においては、図10に示すようにリファレンス検出部350とX線照射部310との間にX線量可変フィルタ326を設ける。X線量可変フィルタ326は例えば複数の金属板を出し入れ可能な機構となっており、金属板の種類は例えば銅などである。この金属板を挿入することでリファレンス検出部350に入射するX線量を低減させ、パイルアップ量を減らすことが可能である。一方、金属フィルタを挿入すると各エネルギー範囲の信号量が変化する。そのため、あらかじめフィルタ挿入時のエネルギー範囲ごとの信号量の比を計測する必要がある。
[Gantry]
In this embodiment, as shown in FIG. 10, an X-ray dosage variable filter 326 is provided between the reference detection unit 350 and the X-ray irradiation unit 310. The variable X-ray dose filter 326 has a mechanism capable of taking in and out a plurality of metal plates, for example, and the type of the metal plate is, for example, copper. By inserting this metal plate, the X-ray dose incident on the reference detection unit 350 can be reduced, and the pile-up amount can be reduced. On the other hand, when a metal filter is inserted, the signal amount in each energy range changes. Therefore, it is necessary to measure the signal amount ratio for each energy range at the time of filter insertion.
 なお、X線量可変フィルタ326が有する金属板の厚さはユーザが設定した撮像条件の中の管電流量に依存するため、X線量可変フィルタ326の動作をX線フィルタ312と連動させなくても良い。そのためX線フィルタ312やボウタイフィルタ313とは駆動機構は別に設ける。但し、X線フィルタ312やボウタイフィルタ313とX線量可変フィルタ326が独立であれば良いので、X線フィルタ312やボウタイフィルタ313とリファレンス検出部350の間にX線量可変フィルタ326を置いても良く、また、リファレンス検出部350の直前などX線管から離れた位置にX線量可変フィルタ326を置くことも可能である。 Note that the thickness of the metal plate included in the variable X-ray dose filter 326 depends on the amount of tube current in the imaging conditions set by the user, so that the operation of the variable X-ray dose filter 326 is not linked to the X-ray filter 312. good. Therefore, a drive mechanism is provided separately from the X-ray filter 312 and the bow tie filter 313. However, since the X-ray filter 312 or the bow tie filter 313 and the variable X-ray dose filter 326 may be independent, the variable X-ray dose filter 326 may be placed between the X-ray filter 312 or the bow tie filter 313 and the reference detection unit 350. Further, it is possible to place the X-ray variable filter 326 at a position away from the X-ray tube such as immediately before the reference detection unit 350.
 [撮影前処理の流れ]
  X線量可変フィルタ326を使用した場合、フィルタによってエネルギー範囲毎にX線減衰率が変化するため、フィルタの有無に伴うエネルギー範囲ごとのX線量を予め求め、補正データとする必要がある。以下、この補正データの計測方法を示す。
[Flow of pre-shooting processing]
When the X-ray dose variable filter 326 is used, the X-ray attenuation rate changes for each energy range depending on the filter. Therefore, the X-ray dose for each energy range associated with the presence or absence of the filter must be obtained in advance and used as correction data. Hereinafter, a method for measuring the correction data will be described.
 まず、X線管311は設定可能な線量の1つに設定する。また、ボウタイフィルタ313やX線フィルタ312はいずれも外す。その状態でX線を照射する。リファレンス検出部350でX線量可変フィルタ326を置いた状態、置かない状態双方の信号を測定する。リファレンス検出部350にて検出した信号を、金属板を挿入した状態はパイルアップが少ないため補正が不要であるが、金属板を挿入していない状態ではパイルアップしているので、それぞれのエネルギー範囲においてパイルアップ補正を実施する。そして、金属板の有無の際の信号比を補正データとして取得しておく。この補正データをX線量可変フィルタ補正データとし、X線量可変フィルタ補正データを設定可能な全ての線量に対して計測する。 First, the X-ray tube 311 is set to one of settable doses. Also, the bow tie filter 313 and the X-ray filter 312 are both removed. X-rays are irradiated in this state. The reference detector 350 measures signals in both the state where the X-ray dosage variable filter 326 is placed and the state where the X-ray variable filter 326 is not placed. The signal detected by the reference detection unit 350 does not need to be corrected when the metal plate is inserted because there is little pile up, but it is piled up when the metal plate is not inserted. The pile-up correction is performed at And the signal ratio at the time of the presence or absence of a metal plate is acquired as correction data. This correction data is used as X-ray variable filter correction data, and X-ray variable filter correction data is measured for all settable doses.
 具体的に補正データの作成方法を示す。まず、基準としてX線量可変フィルタ326を入れない場合のX線検出部320に入射する各エネルギーbinの信号量を計測する。例えば、bin1は100 counts,bin2は1000counts,bin3は1000counts,bin4は700countsとなったとする。次に、X線量可変フィルタ326ユーザが指定したある条件で入れた場合の信号量を計測し、例えばbin1は90 counts,bin2は850counts,bin3は600counts,bin4は200countsとなったとする。このようなデータを設定可能な全ての条件に応じて計測する。 Specifically, how to create correction data is shown. First, the signal amount of each energy bin incident on the X-ray detection unit 320 when the X-ray dose variable filter 326 is not inserted as a reference is measured. For example, bin1 is 100 counts, bin2 is 1000 counts, bin3 is 1000 counts, and bin4 is 700 counts. Next, the signal amount when the X-ray dosage variable filter 326 is input under a certain condition designated by the user is measured. For example, it is assumed that bin1 is 90 counts, bin2 is 850 counts, bin3 is 600 counts, and bin4 is 200 counts. Such data is measured according to all conditions that can be set.
 [撮影処理の流れ]
  演算部400による本実施例の撮影処理の流れについて説明する。図11は、本実施例の撮影処理の処理フローである。X線量可変フィルタ補正データ444は、上述の[撮影前処理の流れ]にて予め作成されているものとする。
[Flow of shooting process]
A flow of photographing processing of the present embodiment by the calculation unit 400 will be described. FIG. 11 is a processing flow of the photographing process of the present embodiment. It is assumed that the X-ray dose variable filter correction data 444 has been created in advance in the above [Flow of pre-imaging processing].
 撮影条件設定部410のステップS1401、計測制御部420のステップS1402は、それぞれステップS1201、ステップS1202と同等である。データ収集部430は、各種データを収集する(ステップS1403)。データ収集部140では、データの収集により、被写体101の情報を含み、X線検出部320で収集した撮像データ431、および時間計測器345で収集した時間計測データ433は先例と同じであるが、リファレンス検出部350で収集したリファレンスデータはX線量可変フィルタ326により各エネルギー範囲で異なる減弱量が発生している。ここでは収集されたリファレンスデータをフィルタリングリファレンスデータ435と記す。 Step S1401 of the imaging condition setting unit 410 and step S1402 of the measurement control unit 420 are equivalent to step S1201 and step S1202, respectively. The data collection unit 430 collects various data (step S1403). The data collection unit 140 includes the information of the subject 101 by collecting data, and the imaging data 431 collected by the X-ray detection unit 320 and the time measurement data 433 collected by the time measuring device 345 are the same as the previous example. In the reference data collected by the reference detection unit 350, different attenuation amounts are generated in the respective energy ranges by the variable X-ray dose filter 326. Here, the collected reference data is referred to as filtering reference data 435.
 その後、補正部440で、データ収集部430が収集した撮像データ431を補正する。まず、各エネルギー範囲に対して、フィルタリングリファレンスデータ435をビューあたりの線量から単位時間当たりの線量、つまり線量率に変換する線量→線量率変換を実施する(ステップS1404)。これの理由は上述した各実施例と同様である。次に、単位時間当たりの線量に変換したデータを用いてX線量可変フィルタ補正を実施する(ステップS1405)。X線量可変フィルタ補正の方法は、[撮影前処理の流れ]で作成したX線量可変フィルタ補正データ444を用いて、リファレンス検出部350の各エネルギー範囲のカウント値を補正する。その補正方法は先に設定したと同条件のX線量可変フィルタ326を用いて計測した各binの信号量に応じて除算する。なお、ある基準の変換値を元にその比で除算しても良い。 Thereafter, the correction unit 440 corrects the imaging data 431 collected by the data collection unit 430. First, for each energy range, a dose-to-dose rate conversion for converting the filtering reference data 435 from a dose per view to a dose per unit time, that is, a dose rate is performed (step S1404). The reason for this is the same as in the above-described embodiments. Next, variable X-ray dose filter correction is performed using the data converted into the dose per unit time (step S1405). In the X-ray dose variable filter correction method, the count value of each energy range of the reference detection unit 350 is corrected using the X-ray variable filter correction data 444 created in [Flow of pre-imaging processing]. The correction method divides according to the signal amount of each bin measured using the variable X-ray dose filter 326 under the same conditions as previously set. Note that the ratio may be divided by a ratio based on a certain standard conversion value.
 先の実施例と同様に、ステップS1405の出力データは単位時間当たりのデータであるため、ステップS1404の逆の操作である線量率→線量変換を実施する(ステップS1406)。なお先の実施例同様、ステップS1406で線量に変換しなくても、撮像データ431に対しステップS1404と同じ線量率変換を実施することで補正データと撮像データの単位の合わせ込みを実施してもよい。 As in the previous embodiment, since the output data in step S1405 is data per unit time, dose rate → dose conversion, which is the reverse operation of step S1404, is performed (step S1406). As in the previous embodiment, the unit of the correction data and the imaging data may be adjusted by performing the same dose rate conversion as that of step S1404 on the imaging data 431 without being converted into the dose in step S1406. Good.
 最後にリファレンス補正を実施する(ステップS1407)。ステップS1404~ステップS1406で作成した補正データを元に、X線のカウント数の揺らぎを補正して補正後データ442とする。 Finally, reference correction is performed (step S1407). Based on the correction data created in steps S1404 to S1406, the fluctuation of the X-ray count is corrected to obtain corrected data 442.
 以下は先の実施例と同様に、他の補正を実施し(ステップS1408)、補正したデータを用いて画像生成部450で画像を生成した後、画像DB470に画像を保存して処理を終了する(ステップS1409)。 In the following, as in the previous embodiment, other corrections are performed (step S1408), an image is generated by the image generation unit 450 using the corrected data, the image is stored in the image DB 470, and the process is terminated. (Step S1409).
 なお、本実施例においても実施例3に示した撮像データ431に対する補正が必要な場合は、撮像データ431に対してもS1404、S1405の処理を実施し、S1405の出力は双方とも単位時間当たりのデータで統一されているため、S1406の操作は不要であるため省略し、S1407のリファレンス補正を実施すればよい。 Also in this embodiment, when the image data 431 shown in the third embodiment needs to be corrected, the processes of S1404 and S1405 are also performed on the image data 431, and both outputs of S1405 are per unit time. Since the data is unified, the operation in S1406 is not necessary and is omitted, and the reference correction in S1407 may be performed.
 本実施例においては、特にステップS1404~ステップS1407により、被写体の計測中においてはリファレンス検出部のパイルアップ補正が不要となるため、より高速にデータ処理を行うことが可能となる。 In this embodiment, in particular, step S1404 to step S1407 eliminates the need for pile-up correction of the reference detection unit during measurement of the subject, so that data processing can be performed at a higher speed.
 なお、本発明は上記した実施例に限定されるものではなく、様々な変形例が含まれる。例えば上記した実施例は本発明のより良い理解のために詳細に説明したのであり、必ずしも説明の全ての構成を備えるものに限定されものではない。また、ある実施例の構成の一部を他の実施例の構成に置き換えることが可能であり、また、ある実施例の構成に他の実施例の構成を加えることが可能である。また、各実施例の構成の一部について、他の構成の追加・削除・置換をすることが可能である。 In addition, this invention is not limited to the above-mentioned Example, Various modifications are included. For example, the above-described embodiments have been described in detail for better understanding of the present invention, and are not necessarily limited to those provided with all the configurations described above. Further, a part of the configuration of one embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of one embodiment. Further, it is possible to add, delete, and replace other configurations for a part of the configuration of each embodiment.
 更に、上述した各構成、機能、処理部等は、それらの一部又は全部を実現するプログラムを作成する例を説明したが、上述の通り、それらの一部又は全部を、例えばASIC(Application Specific Integrated Circuit)、FPGA(Field Programmable Gate Array)などの集積回路で設計する等によりハードウェアで実現しても良いことは言うまでもない。 Further, the above-described configuration, function, processing unit, and the like have been described as an example of creating a program that realizes a part or all of them. However, as described above, part or all of them can be used, for example, ASIC (Application Specific). Needless to say, it may be realized by hardware by designing with an integrated circuit such as Integrated Circuit (FPGA) or FPGA (Field Programmable Gate Array).
100 PCCT装置
101 被写体
102 テーブル
200 UI部
210 入力装置
220 出力装置
300 計測部
310 X線照射部
311 X線管
312 X線フィルタ
313 ボウタイフィルタ
320 X線検出部
321 X線検出器
322 検出素子
323 コリメータ
324 カウンティング回路
325 積分回路
326 X線量可変フィルタ
330 ガントリ
331 開口部
332 回転板
333 ノッチ
340 制御部
341 照射制御器
342 ガントリ制御器
343 検出制御器
344 テーブル制御器
345 時間計測器
350 リファレンス検出部
400 演算部
401 中央処理部
402 メモリ
403 HDD装置
410 撮影条件設定部
420 計測制御部
430 データ収集部
431 撮像データ
432 リファレンスデータ
433 時間計測データ
434 積分リファレンスデータ
435 フィルタリングレファレンスデータ
440 補正部
441 パイルアップ補正データ
442 補正後データ
443 積分→各エネルギー範囲変換データ
444 X線量可変フィルタ補正データ
450 画像生成部
470 画像データベース(DB)
100 PCCT device 101 Subject 102 Table 200 UI unit 210 Input device 220 Output device 300 Measuring unit 310 X-ray irradiation unit 311 X-ray tube 312 X-ray filter 313 Bowtie filter 320 X-ray detection unit 321 X-ray detector 322 Detection element 323 Collimator 324 counting circuit 325 integrating circuit 326 X-dose variable filter 330 gantry 331 opening 332 rotating plate 333 notch 340 control unit 341 irradiation controller 342 gantry controller 343 detection controller 344 table controller 345 time measurement unit 350 reference detection unit 400 Unit 401 Central processing unit 402 Memory 403 HDD device 410 Imaging condition setting unit 420 Measurement control unit 430 Data collection unit 431 Imaging data 432 Reference data 433 Time measurement data 434 Product Minute reference data 435 Filtering reference data 440 Correction unit 441 Pile-up correction data 442 Corrected data 443 Integration → each energy range conversion data 444 X-dose variable filter correction data 450 Image generation unit 470 Image database (DB)

Claims (15)

  1. X線を照射するX線照射部と、
    前記X線を検出するフォトンカウンティング方式のX線検出部と、
    前記X線検出部で検出したX線フォトンを予め定めた区分のエネルギー範囲毎に計数し、
    前記エネルギー範囲毎の計測情報を得るデータ収集部と、
    前記X線照射部から照射されるX線の揺らぎを計測するリファレンス検出部と、
    前記X線照射部の回転方向の時間揺らぎを計測する時間計測部と、を備える、
    ことを特徴とするフォトンカウンティングCT装置。
    An X-ray irradiation unit for irradiating X-rays;
    A photon counting type X-ray detector for detecting the X-ray;
    Count the X-ray photons detected by the X-ray detector for each predetermined energy range,
    A data collection unit for obtaining measurement information for each energy range;
    A reference detection unit for measuring fluctuations in X-rays emitted from the X-ray irradiation unit;
    A time measuring unit that measures time fluctuations in the rotational direction of the X-ray irradiation unit,
    A photon counting CT apparatus.
  2. 請求項1記載のフォトンカウンティングCT装置であって、
    前記時間計測部が計測した時間計測データに基づき、前記リファレンス検出部が計測した
    計測データを補正する補正部を更に備える、
    ことを特徴とするフォトンカウンティングCT装置。
    The photon counting CT apparatus according to claim 1,
    Based on the time measurement data measured by the time measurement unit, further comprising a correction unit for correcting the measurement data measured by the reference detection unit,
    A photon counting CT apparatus.
  3. 請求項2記載のフォトンカウンティングCT装置であって、
    前記補正部は、前記時間計測データに基づき、前記データ収集部が計測した前記計測情報を補正する、
    ことを特緒とするフォトンカウンティングCT装置。
    The photon counting CT apparatus according to claim 2,
    The correction unit corrects the measurement information measured by the data collection unit based on the time measurement data.
    Photon counting CT device that specializes in this.
  4. 請求項2記載のフォトンカウンティングCT装置であって、
    前記補正部は、前記時間計測データを用いて、前記リファレンス検出部の計測データを線量率データに変換する、
    ことを特徴とするフォトンカウンティングCT装置。
    The photon counting CT apparatus according to claim 2,
    The correction unit converts the measurement data of the reference detection unit into dose rate data using the time measurement data.
    A photon counting CT apparatus.
  5. 請求項4記載のフォトンカウンティングCT装置であって、
    前記補正部は、前記線量率データとパイルアップに伴う前記計測情報の変化量を予め計測したパイルアップ補正データに基づき、前記線量率データを補正する、
    ことを特徴とするフォトンカウンティングCT装置。
    The photon counting CT apparatus according to claim 4,
    The correction unit corrects the dose rate data based on pile-up correction data obtained by measuring in advance the change rate of the measurement information accompanying the dose rate data and pile-up,
    A photon counting CT apparatus.
  6. 請求項5記載のフォトンカウンティングCT装置であって、
    前記補正部は、前記時間計測データを用いて、補正された前記線量率データを線量データに変換する、
    ことを特徴とするフォトンカウンティングCT装置。
    The photon counting CT apparatus according to claim 5,
    The correction unit converts the corrected dose rate data into dose data using the time measurement data,
    A photon counting CT apparatus.
  7. 請求項6記載のフォトンカウンティングCT装置であって、
    前記補正部は、変換された前記線量データに基づき、前記エネルギー範囲毎の計測情報を補正する、
    ことを特徴とするフォトンカウンティングCT装置。
    The photon counting CT apparatus according to claim 6,
    The correction unit corrects the measurement information for each energy range based on the converted dose data,
    A photon counting CT apparatus.
  8. 請求項1記載のフォトンカウンティングCT装置であって、
    前記リファレンス検出部のX線検出器のサイズが、前記X線検出部のX線検出器のサイズより小さい、
    ことを特徴とするフォトンカウンティングCT装置。
    The photon counting CT apparatus according to claim 1,
    The size of the X-ray detector of the reference detection unit is smaller than the size of the X-ray detector of the X-ray detection unit,
    A photon counting CT apparatus.
  9. 請求項1記載のフォトンカウンティングCT装置であって、
    前記リファレンス検出部が、前記X線検出部の前記X線検出器のサイズと同等もしくは小さいサイズの複数のX線検出器で構成される、
    ことを特徴とするフォトンカウンティングCT装置。
    The photon counting CT apparatus according to claim 1,
    The reference detection unit is composed of a plurality of X-ray detectors having a size equal to or smaller than the size of the X-ray detector of the X-ray detection unit,
    A photon counting CT apparatus.
  10. 請求項1記載のフォトンカウンティングCT装置であって、
    前記リファレンス検出部と前記X線照射部との間に、前記X線照射部のX線量に応じてX線フィルタを変化可能なX線量可変フィルタを備える、
    ことを特徴とするフォトンカウンティングCT装置。
    The photon counting CT apparatus according to claim 1,
    An X-dose variable filter capable of changing an X-ray filter according to the X-ray dose of the X-ray irradiation unit is provided between the reference detection unit and the X-ray irradiation unit.
    A photon counting CT apparatus.
  11. 請求項2記載のフォトンカウンティングCT装置であって、
    前記リファレンス検出部は積分型検出器で構成され、
    前記補正部は、前記X線照射部より照射したX線についての前記リファレンス検出部の信号量と、前記X線検出部の前記エネルギー範囲毎の計測情報との予め求めた関係に基づき、被写体撮像時における前記X線検出部の前記エネルギー範囲毎の計測情報との関係と撮像中の前記リファレンス検出部の信号量との関係から、各エネルギー範囲毎に前記計測情報の補正を行う、
    ことを特徴とするフォトンカウンティングCT装置。
    The photon counting CT apparatus according to claim 2,
    The reference detector is composed of an integral detector,
    The correction unit captures an object based on a predetermined relationship between a signal amount of the reference detection unit for the X-rays emitted from the X-ray irradiation unit and measurement information for each energy range of the X-ray detection unit. From the relationship between the measurement information for each energy range of the X-ray detection unit at the time and the signal amount of the reference detection unit during imaging, the measurement information is corrected for each energy range.
    A photon counting CT apparatus.
  12. 請求項2記載のフォトンカウンティングCT装置であって、
    前記リファレンス検出部のX線検出器のサイズが、前記X線検出部のX線検出器のサイズより小さい、
    ことを特徴とするフォトンカウンティングCT装置。
    The photon counting CT apparatus according to claim 2,
    The size of the X-ray detector of the reference detection unit is smaller than the size of the X-ray detector of the X-ray detection unit,
    A photon counting CT apparatus.
  13. 請求項2記載のフォトンカウンティングCT装置であって、
    前記リファレンス検出部が、前記X線検出部の前記X線検出器のサイズと同等もしくは小さいサイズの複数のX線検出器で構成される、
    ことを特徴とするフォトンカウンティングCT装置。
    The photon counting CT apparatus according to claim 2,
    The reference detection unit is composed of a plurality of X-ray detectors having a size equal to or smaller than the size of the X-ray detector of the X-ray detection unit,
    A photon counting CT apparatus.
  14. 請求項2記載のフォトンカウンティングCT装置であって、
    前記リファレンス検出部と前記X線照射部との間に、前記X線照射部のX線量に応じてX線フィルタを変化可能なX線量可変フィルタを更に備える、
    ことを特徴とするフォトンカウンティングCT装置。
    The photon counting CT apparatus according to claim 2,
    An X-ray dose variable filter capable of changing an X-ray filter according to the X-ray dose of the X-ray irradiation unit is further provided between the reference detection unit and the X-ray irradiation unit.
    A photon counting CT apparatus.
  15. 請求項3記載のフォトンカウンティングCT装置であって、
    前記リファレンス検出部と前記X線照射部との間に、前記X線照射部のX線量に応じてX線フィルタを変化可能なX線量可変フィルタを更に備える、
    ことを特徴とするフォトンカウンティングCT装置。
    The photon counting CT apparatus according to claim 3,
    An X-ray dose variable filter capable of changing an X-ray filter according to the X-ray dose of the X-ray irradiation unit is further provided between the reference detection unit and the X-ray irradiation unit.
    A photon counting CT apparatus.
PCT/JP2016/084099 2016-01-22 2016-11-17 Photon-counting ct apparatus WO2017126208A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US16/071,810 US10542947B2 (en) 2016-01-22 2016-11-17 Photon-counting CT apparatus
CN201680078044.3A CN108472004B (en) 2016-01-22 2016-11-17 Photon counting CT device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016010455A JP6564330B2 (en) 2016-01-22 2016-01-22 Photon counting CT system
JP2016-010455 2016-01-22

Publications (1)

Publication Number Publication Date
WO2017126208A1 true WO2017126208A1 (en) 2017-07-27

Family

ID=59361636

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/084099 WO2017126208A1 (en) 2016-01-22 2016-11-17 Photon-counting ct apparatus

Country Status (4)

Country Link
US (1) US10542947B2 (en)
JP (1) JP6564330B2 (en)
CN (1) CN108472004B (en)
WO (1) WO2017126208A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3367086A4 (en) * 2015-10-23 2019-07-10 Job Corporation X-ray device, data processing device, and data processing method
CN109833053B (en) * 2019-02-28 2023-01-13 沈阳开普医疗影像技术有限公司 Dual-energy correction method for defects of CT shape filter
US11344266B2 (en) * 2019-09-16 2022-05-31 Redlen Technologies, Inc. Calibration methods for improving uniformity in X-ray photon counting detectors
CN117331110A (en) * 2022-06-27 2024-01-02 上海联影医疗科技股份有限公司 Detector for imaging system
WO2024062894A1 (en) * 2022-09-22 2024-03-28 キヤノン株式会社 Medical image processing device, method for controlling same, and medical image processing program

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014501596A (en) * 2011-01-10 2014-01-23 コーニンクレッカ フィリップス エヌ ヴェ Computed tomography (CT) data acquisition
JP2014128456A (en) * 2012-12-28 2014-07-10 Toshiba Corp X-ray ct apparatus and control program
JP2014210180A (en) * 2013-04-04 2014-11-13 株式会社東芝 X-ray computer tomographic apparatus
JP2015112475A (en) * 2013-12-11 2015-06-22 株式会社東芝 X-ray computer tomography device and reference correction program

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07384A (en) * 1993-06-17 1995-01-06 Hitachi Medical Corp X-ray ct system
JPH0824251A (en) * 1994-07-14 1996-01-30 Hitachi Medical Corp Apparatus and method for photographing x-ray tomoraphic image
US5991358A (en) * 1997-12-31 1999-11-23 Analogic Corporation Data acquisition system for generating accurate projection data in a CT scanner
US6256364B1 (en) 1998-11-24 2001-07-03 General Electric Company Methods and apparatus for correcting for x-ray beam movement
JP2009513220A (en) * 2005-10-28 2009-04-02 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Spectroscopic computed tomography method and apparatus
EP2664280A3 (en) * 2012-05-14 2013-12-04 Samsung Electronics Co., Ltd X-ray imaging apparatus and control method therefor
JP6289108B2 (en) 2014-01-14 2018-03-07 キヤノンメディカルシステムズ株式会社 Photon counting CT apparatus and photon counting CT data processing method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014501596A (en) * 2011-01-10 2014-01-23 コーニンクレッカ フィリップス エヌ ヴェ Computed tomography (CT) data acquisition
JP2014128456A (en) * 2012-12-28 2014-07-10 Toshiba Corp X-ray ct apparatus and control program
JP2014210180A (en) * 2013-04-04 2014-11-13 株式会社東芝 X-ray computer tomographic apparatus
JP2015112475A (en) * 2013-12-11 2015-06-22 株式会社東芝 X-ray computer tomography device and reference correction program

Also Published As

Publication number Publication date
JP2017127573A (en) 2017-07-27
JP6564330B2 (en) 2019-08-21
CN108472004B (en) 2021-07-23
US10542947B2 (en) 2020-01-28
CN108472004A (en) 2018-08-31
US20190021685A1 (en) 2019-01-24

Similar Documents

Publication Publication Date Title
WO2017126208A1 (en) Photon-counting ct apparatus
JP5582514B2 (en) X-ray CT system
JP6517376B2 (en) X-ray device with reduced pile-up
JP6539748B2 (en) X-ray CT data processing apparatus and X-ray CT apparatus equipped with the same
CN111435120A (en) Use and calibration of X-ray imaging systems
JP6031618B2 (en) X-ray imaging apparatus, X-ray imaging method, and monitoring method of X-ray imaging apparatus
KR20190085740A (en) Apparatus for tomography imaging, method for controlling the same, and computer program product
JP6339684B2 (en) Photon counting CT apparatus and estimated dose calculation method
US10497152B2 (en) X-ray CT apparatus and reconstruction processing apparatus
JP2011251018A (en) X-ray ct apparatus
JP6785732B2 (en) X-ray CT device and image generation method
JP2019020334A (en) Wave height frequency distribution acquisition device, wave height frequency distribution acquisition method, wave height frequency distribution acquisition program, and radiation imaging device
JP4041040B2 (en) Radiation tomography equipment
JP7106392B2 (en) Sensitivity correction method and photon counting detector
JP7391499B2 (en) Radiation detector, radiation diagnostic equipment, and charge sharing determination method
JP2015116408A (en) X-ray ct apparatus and defective element correction method
JP6956626B2 (en) X-ray CT equipment and reconstruction processing equipment
JP6815209B2 (en) X-ray CT device
CN104603606A (en) Method and device for determining x-ray radiation attenuation caused by object to be examined
US20240099670A1 (en) X-ray ct apparatus
US20230346323A1 (en) X-ray ct apparatus
JP6220599B2 (en) X-ray CT apparatus and projection data upsampling method
JP2024030533A (en) Photon counting type X-ray image diagnostic device and method for generating calibration data for pile-up correction
JP2019122523A (en) X-ray CT apparatus and image processing method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16886447

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16886447

Country of ref document: EP

Kind code of ref document: A1